
DESIGNING SECURITY REQUIREMENTS

MODELS THROUGH PLANNING.

Volha Bryl, Fabio Massacci,

John Mylopoulos and Nicola Zannone

March 2006

Technical Report # DIT-06-003

Designing Security Requirements Models through
Planning?

Volha Bryl1, Fabio Massacci1, John Mylopoulos1,2, and Nicola Zannone1

1 University of Trento - Italy
{bryl,massacci,zannone}@dit.unitn.it

2 University of Toronto - Canada
jm@cs.toronto.edu

Abstract. The quest for designing secure and trusted software has led to re-
fined Software Engineering methodologies that rely on tools to support the de-
sign process. Automated reasoning mechanisms for requirements and software
verification are by now a well-accepted part of the design process, and model
driven architectures support the automation of the refinement process. We claim
that we can further push the envelope towards the automatic exploration and se-
lection among design alternatives and show that this is concretely possible for Se-
cure Tropos, a requirements engineering methodology that addresses security and
trust concerns. In Secure Tropos, a design consists of a network of actors (agents,
positions or roles) with delegation/permission dependencies among them. Ac-
cordingly, the generation of design alternatives can be accomplished by a planner
which is given as input a set of actors and goals and generates alternative multi-
agent plans to fulfill all given goals. We validate our claim with a case study using
a state-of-the-art planner.

1 Introduction

The design of secure and trusted software that meets stakeholder needs is an increas-
ingly hot issue in Software Engineering (SE). This quest has led to refined Requirements
Engineering (RE) and SE methodologies so that security concerns can be addressed dur-
ing the early stages of software development (e.g. Secure Tropos vs i*/Tropos, UMLsec
vs UML, etc.). Moreover, industrial software production processes have been tightened
to reduce the number of existing bugs in operational software systems through code
walkthroughs, security reviews etc. Further, the complexity of present software is such
that all methodologies come with tools for automation support.

The tricky question in such a setting is what kind of automation? Almost fifty years
ago the idea of actually deriving code directly from the specification (such as that advo-
cated in [21]) started a large programme for deductive program synthesis,3 that is still
? We thank Alfonso Gerevini and Alessandro Saetti for the support on the use of LPG-td. This

work has been partially funded by EU Commission, through the SENSORIA, SERENITY and
S3MS projects, by the FIRB programme of MIUR under the ASTRO and SECURITY projects,
also by the Provincial Authority of Trentino, through the MOSTRO and STAMPS projects.

3 A system goal together with a set of axioms are specified in a formal specification language.
Then the system goal is proved from the axioms using a theorem prover. A program for achiev-
ing the goal is extracted from the proof of the theorem.

active now [4, 10, 24, 28]. However, these approaches are largely domain-specific, re-
quire considerable expertise on the part of their users, and in some cases do not actually
guarantee that the synthesized program will meet all requirements stated up front [10].

Another approach is to facilitate the work of the designer by supporting tedious
aspects of software development by automating the design refinement process. This ap-
proach underlies Model Driven Architectures (MDA) [26], which focuses on the (pos-
sibly automatic) transformation from one system model to another. Tools supporting
MDA exist and are used in the Rational Unified Process for software development in
UML. Yet, the state-of-the-art is still not satisfactory [29].

Such approaches only cover part of the work of the designer. We advocate that there
is another activity where the support of automation could be most beneficial [19]:

“Exploring alternative options is at the heart of the requirements and design
processes.”

Indeed, in most SE methodologies the designer has tools to report and verify the final
choices (be it goal models in KAOS, UML classes, or Java code), but not actually the
possibility of automatically exploring design alternatives (i.e., thepotential choicesthat
the designer may adopt for the fulfillment of system actors’ objectives) and finding a
satisfactory one. Conceptually, this automatic selection of alternatives is done in de-
ductive program synthesis: theorem provers select appropriate axioms to establish the
system goal. Instead, we claim that the automatic selection of alternatives should and
indeed can be done during the very early stages of software development. After all, the
automatic generation of alternatives is most beneficial and effective during these stages.

There are good reasons for this claim. Firstly, during early stages the design space is
large, and a good choice can have significant impact on the whole development project.
Supporting the selection of alternatives could lead to a more thorough analysis of better
quality designs with respect to security and trust. Secondly, requirements models are
by construction simpler and more abstract than implementation models (i.e., code).
Therefore, techniques for automated reasoning about alternatives at the early stages of
the development process may succeed where automated software synthesis failed.

Since our overall goal is to design a secure system we have singled out the Secure
Tropos methodology [15] as the target for our work. Its primitive concepts include
those of Tropos and i* [6], but also concepts that address security concerns, such as
ownership, permission and trust. Further, the framework already supports the designer
with automated reasoning tools for the verification of requirements as follows:

1. Graphical capture of the requirements for the organization and the system-to-be,
2. Formal verification of the functional and security requirements by

– completion of the model drawn by the designer with axioms (a process hidden
to the designer),

– checking the model for the satisfaction of formal properties corresponding to
specific security or design patterns

In this framework (as in many other similar RE and SE frameworks) the selection of
alternatives is left to the designer. We will show that we can do better.

Indeed, in Tropos (resp. Secure Tropos) requirements are conceived as networks
of functional dependencies (resp. delegation of execution) among actors (organiza-
tional/human/software agents, positions and roles) for goals, tasks and resources. Every
dependency (resp. delegation of execution) also involves two actors, where one actor
depends on the other for the delivery of a resource, the fulfillment of a goal, or the exe-
cution of a task. Intuitively, these can be seen asactionsthat the designer has ascribed
to the members of the organization and the system-to-be. As suggested by Gans et al.
[13] the task of designing such networks can then be framed as a planning problem for
multi-agent systems: selecting a suitable possible design corresponds to selecting a plan
that satisfies the prescribed or described goals of human or system actors. Secure Tro-
pos adds to the picture also the notion of delegation of permission and various notions
of trust.

In this paper we show that it is possible to use an off-the-shelf planner to select
among the potential dependencies the actual ones that will constitute the final choice of
the requirements engineer. If a planner is already able to deliver good results then this
looks a promising avenue for transferring the technique to complex industry-level case
studies where a customized automated reasoning tool might be very handy. At the same
time, if the problem is not trivial, not all planners will be able to deliver, and indeed this
turned out to be the case. The techniques we use are sufficiently powerful to cope with
security requirements as well as functional requirements, but we concentrate here on
their applicability to a security setting where an automation support for the selection of
potentially conflicting alternatives is more urgent. The application of the same planning
techniques to the overall software development phases can be found in [3].

In this work we have not focused on optimal designs: after all, human designers do
not aim for optimality in their designs. As noted by Herbert Simon in his lecture on a
“Science of Design” [30] what makes humans effective (in comparison to machines) is
their ability to identify a satisficing design as opposed to an optimal one.

Of course, we assume that the designer remains in the loop: designs generated by
the planner are suggestions to be refined, amended and approved by the designer. The
planner is a(nother) support tool intended to facilitate the design process.

The rest of the paper is structured as follows. Section 2 explains Secure Tropos
concepts and describes the requirements verification process. In Sections 3, 4 and 5 the
planning approach to the system design is introduced and explained, , while in Section
6 the implementation of our approach is presented. Finally, in Sections 7 and 8 a brief
overview of related work is presented and conclusions are drawn.

2 Secure Tropos

Secure Tropos [15] is a RE methodology for modeling and analyzing functional and
security requirements, extending the Tropos methodology [6]. This methodology is tai-
lored to describe both the system-to-be and its organizational environment starting with
early phases of the system development process. The main advantage of this approach
is that one can capture not only thewhator thehow, but also thewhya security mech-
anism should be included in the system design. In particular, Secure Tropos deals with
business-level (as opposed to low-level) security requirements. The focus of such re-

quirements includes, but is not limited to, how to build trust among different partners
in a virtual organization and trust management. Although their name doesnot mention
security, they are generally regarded as part of the overall security framework.

Secure Tropos uses the concepts of actor, goal, task, resource and social relations
for defining entitlements, capabilities and responsibilities of actors. Anactor is an in-
tentional entity that performs actions to achieve goals. Agoal represents an objective
of an actor. Ataskspecifies a particular sequence of actions that should be executed for
satisfying a goal. Aresourcerepresents a physical or an informational entity.

Actors’ desires, entitlements, capabilities and responsibilities are defined through
social relations. In particular, Secure Tropos supportsrequesting, ownership, provision-
ing, trust, anddelegation. Requesting identifies desires of actors. Ownership identifies
the legitimate owner of a goal, task and resource, that has full authority on access and
disposition of his possessions. Provisioning identifies actors who have the capabilities
to achieve a goal, execute a task or deliver a resource. We demonstrate the use of these
concepts through the design of a Medical IS for the payment of medical care.4

Example 1.The Health Care Authority (HCA) is the “owner” of the goalprovide
medical care; that is, it is the only one that can decide who can provide medical care
and through what process. On the other hand,Patient wants this goal to be fulfilled.
This goal can be AND decomposed into two sub-goals:provisioning of medical care
andpayment for medical care. TheHealthcare Provider has the capability for the
provisioning of medical care, but it should wait for authorization fromHCA before
doing so.

Delegation of executionis used to model situations where an actor (the delegator)
delegates the responsibilities to achieve a goal, execute a task, or deliver a resource to
another actor (the delegatee) since he has not the capability to provide one of above by
himself. It corresponds to the actual choice of the design.Trust of executionrepresents
the belief of an actor (the trustor) that another actor (the trustee) has the capabilities to
achieve a goal, execute a task or deliver a resource. Essentially, delegation is an action
due to a decision, whereas trust is a mental state driving such decision. Tropos depen-
dency can be defined in terms of trust and delegation [16]. Thus, a Tropos model can be
seen as a particular Secure Tropos model. In order to model both functional and security
requirements, Secure Tropos introduces also relations involving permission.Delegation
of permissionis used when in the domain of analysis there is a formal passage of au-
thority (e.g. a signed piece of paper, a digital credential, etc.). This relation is used to
model scenarios where an actor authorizes another actor to achieve a goal, execute a
task, or deliver a resource. It corresponds to the actual choice of the design.Trust of
permissionrepresents the belief of an actor that another actor will not misuse the goal,
task or resource.

Example 2.TheHCA must choose between different providers for the welfare manage-
ment for executives of a public institution. Indeed, since they have a special private-law

4 An extended description of the example is provided in the Appendix.

Fig. 1. Secure Tropos model

contract, they can qualify for both theINPDAP andINPDAI5 welfare schemes. TheIN-
PDAP scheme requires that thePatient partially pays for medical care (with a ticket)
and the main cost is directly covered by theHCA. On the contrary, theINPDAI scheme
requires that thePatient pays in advance the full cost of medical care and then gets
reimbursed. Once an institution has decided the payment scheme, this will be part of
the requirements to be passed onto the next stages of system development. Obviously,
the choice of the alternative may have significant impacts on other parts of the design.

Figure 1 summarizes Examples 1 and 2 in terms of a Secure Tropos model. In this
diagram, actors are represented as circles and goals as ovals. LabelsO, P andR are
used for representing ownership, provisioning and requesting relations, respectively.
Finally, we represent trust of permission and trust of execution relationships as edges
respectively labelledTp andTe.

Once a stage of themodeling phaseis concluded, Secure Tropos provides mecha-
nisms for the verification of the model [15]. This means that the design process iterates
over the following steps:

– model the system;
– translate the model into a set of clauses (this is done automatically);
– verify whether appropriate design or security patterns are satisfied by the model.

5 INPDAP (Istituto Nazionale di Previdenza per i Dipendenti dell’Amministrazione Pubblica)
and INPDAI (Istituto Nazionale di Previdenza per i Dirigenti di Aziende Industriali) are two
Italian national welfare institutes.

(a) Potential choices (b) Actual choice

(c) Potential choices (d) Actual choice

Fig. 2. Design Alternatives

Through this process, we can verify the compliance of the model with desirable
properties. For example, it can be checked whether the delegator trusts that the delegatee
will achieve a goal, execute a task or deliver a resource (trust of execution), or will use a
goal, task or resource correctly (trust of permission). Other desirable properties involve
verifying whether an actor who requires a service, is confident that it will be delivered.
Furthermore, an owner may wish to delegate permissions to an actor only if the latter
actually does need the permission. This is done, for example, to avoid the possibility of
having alternate paths of permission delegations. Secure Tropos provides the support
for identifying all these situations.

Secure Tropos has been used for modeling and analyzing real and comprehensive
case studies where we have identified vulnerabilities affecting the organizational struc-
ture of a bank and its IT system [23], and verified the compliance to the Italian legisla-
tion on Privacy and Data Protection by the University of Trento [22].

3 Design as Planning

So far the automated reasoning capabilities of Secure Tropos are only able to check that
subtle errors are not overlooked. This is rather unsatisfactory from the point of view
of the designer. Whereas he may have a good understanding of possible alternatives,
he may not be sure which is the most appropriate alternative for the case at hand. This
is particularly true for delegations of permission that need to comply with complex
privacy regulations (see [22]).

Example 3.Figures 2(a) and 2(c) present fragments of Figure 1, that point out the po-
tential choices of the design. The requirements engineer has identified trust relations
between theHCA andINPDAP andINPDAI. However, when passing the requirements

onto the next stage only one alternative has to be selected because that will be the sys-
tem that is chosen. Figures 2(b) and 2(d) present the actual choices corresponding to
the potential choices presented in Figures 2(a) and 2(c), respectively.

Here, we want to support the requirements engineer in the selection of the best
alternative by changing the design process as follows:

– Requirements analysis phase
• Identify system actors along with their desires, capabilities and entitlements,

and possible ways of goal decomposition.
• Define trust relationships among actors both in terms of execution and permis-

sion.
– Design phase

• The space of design alternatives is automatically explored to identify delega-
tion of execution/permission.

• Depending on the time/importance of the goal the designer may settle for sat-
isficing solutions [30] or ask for an optimal solution.

To support the designer in the process of selecting the best alternative we advocate a
planning approach which recently has proved to be applicable in the field of automatic
Web service composition [5].

The basic idea behind the planning approach is to automatically determine the
course of actions (i.e., a plan) needed to achieve a certain goal where an action is a
transition rule from one state of the system to another [33, 27]. Actions are described in
terms of preconditions and effects: if the precondition is true in the current state of the
system, then the action is performed. As consequence of the action, the system will be
in a new state where the effect of the action is true. Thus, once we have described the
initial state of the system, the goal that should be achieved (i.e. the desired final state of
the system), and the set of possible actions that actors can perform, the solution of the
planning problem is the (not necessarily optimal) sequence of actions that allows the
system to reach the desired state from the initial state.

In order to cast the design process as a planning problem, we need to address the
following question:which are the “actions” in a software design?When drawing a
Secure Tropos model, the designer assigns the execution of goals to actors, delegates
permissions and – last but not least – identifies appropriate goal refinements among
selected alternatives. These are the actions to be used by the planner in order to fulfill
all initial actor goals.

4 Planning Domain

The planning approach requires a specification language to represent the planning do-
main and the states of the system. Different types of logics could be applied for this
purpose, e.g. first order logic is often used to describe the planning domain with con-
junctions of literals6 specifying the states of the system. We find this representation

6 Let p be a predicate symbol with arityn, and t1, . . . , tn be its corresponding arguments.
p(t1, . . . , tn) is called anatom. The expressionliteral denotes an atom or its negation.

Table 1.Primitive Predicates

Goal Properties
AND decompositionn(g : goal, g1 : goal, . . . , gn : goal)
OR decompositionn(g : goal, g1 : goal, . . . , gn : goal)
Actor Properties
provides(a : actor, g : goal)
requests(a : actor, g : goal)
owns(a : actor, g : goal)
Actor Relations
trustexe(a : actor, b : actor, g : goal)
trustper(a : actor, b : actor, g : goal)

Table 2.Actions

Basic Actions
DelegateExecution(a : actor, b : actor, g : goal)
DelegatePermission(a : actor, b : actor, g : goal)
Satisfy(a : actor, g : goal)
AND Refinen(a : actor, g : goal, g1 : goal, . . . , gn : goal)
OR Refinen(a : actor, g : goal, g1 : goal, . . . , gn : goal)
Absence of Trust
Negotiate(a : actor, b : actor, g : goal)
Contract(a : actor, b : actor, g : goal)
DelegateExecution under suspicion(a : actor, b : actor, g : goal)
Fulfill(a : actor, g : goal)
Evaluate(a : actor, g : goal)

particularly useful for modeling real case studies. Indeed, when considering security
requirements at enterprise level, one must be able to reason both at the class level (e.g.
the CEO, the CERT team member, the employee of the HR department) and at the
instance level (e.g. John Doe and Mark Doe playing those roles).

The planning domain language should provide support for specifying:

– the initial state of the system,
– the goal of the planning problem,
– the actions that can be performed,
– the axioms of background theory.

Table 1 presents the predicates used to describe theinitial state of the systemin
terms of actor and goal properties, and social relations among actors. We use

– AND/OR decomposition to describe the possible decomposition of a goal;
– provides, requests and owns to indicate that an actor has the capabilities to

achieve a goal, desires the achievement of a goal, and is the legitimate owner of
a goal, respectively;

– trustexe andtrustper to represent trust of execution and trust of permission rela-
tions, respectively.

The desired state of the system (orgoal of the planning problem) is described
through the conjunction of predicatesdone derived from the requesting relation in the
initial state. Essentially, for eachrequest(a,g) we need to derivedone(g).

By contrast, anaction represents an activity to accomplish a goal. We list them in
Table 2 and define them in terms of preconditions and effects as follows:

Satisfy. The satisfaction of goals is an essential action. Following the definition of goal
satisfaction given in [15], we say that an actor satisfies a goal only if the actor wants
and is able to achieve the goal, and – last but not least – he is entitled to achieve it.
The effect of this action is the fulfillment of the goal.

DelegateExecution. An actor may not have enough capabilities to achieve assigned
goals by himself, and so he has to delegate their execution to other actors. We
represent this passage of responsibilities through actionDelegateExecution. It is
performed only if the delegator requires the fulfillment of the goal and trusts that
the delegatee will achieve it. Its effect is that the delegator does not worry any more
about the fulfillment of this goal after delegating it since he has delegated its exe-
cution to a trusted actor. Furthermore, the delegatee takes the responsibility for the
fulfillment of the goal and so it becomes his own desire. Notice that the delegator
does not care how the delegatee satisfies the goal (e.g. by his own capabilities or by
further delegation). It is up to the delegatee to decide it.

DelegatePermission. In the initial state of the system, only the owner of a goal is
entitled to achieve it. However, this does not mean that he wants it or has the ca-
pabilities to achieve it. On the contrary, in the system there may be some actors
that want that goal and others that can achieve it. Thus, the owner could decide to
authorize trusted actors to achieve the goal. The formal passage of authority takes
place when the owner issues a certificate that authorizes another actor to achieve
the goal. We represent the act of issuing a permission through actionDelegate-
Permission which is performed only if the delegator has the permission on the
goal and trusts that the delegatee will not misuse the goal. The consequence of this
action is to grant rights (on the goal) to the delegatee, that, in turn, can re-delegate
them to other trusted actors.

AND/OR Refine. An important aspect of Secure Tropos is goal refinement. In partic-
ular, the framework supports two types of refinement: ORdecomposition, which
suggests the list of alternative ways to satisfy a goal, and AND-decomposition,
which refines a goal into subgoals which all are to be satisfied in order to satisfy
the initial goal. We introduce actionsAND Refine andOR Refine. Essentially,
AND Refine andOR Refine represent the action of refining a goal along a pos-
sible decomposition. An actor refines a goal only if he actually needs it. Thus, a
precondition ofAND Refine andOR Refine is that the actor requests the fulfill-
ment of the initial goal. A second precondition determines the way in which the
goal is refined. The effect ofAND Refine andOR Refine is that the actor who
refines the goal focuses on the fulfillment of subgoals instead of the fulfillment of
the initial goal. One may argue if decomposing a goal really takes time, and thus, if
it is reasonable to treat it as an action. However, a goal may be decomposed in dif-
ferent ways. Thus, we assume that the act of thinking on how it can be decomposed
takes time.

In addition to actions we defineaxiomsin the planning domain. These are rules that
hold in every state of the system and are used to complete the description of the current
state. They are used to propagate actors and goal properties along goal refinement: a
goal is satisfied if all its AND-subgoals or at least one of the OR-subgoals are satisfied.
Moreover, axioms are used to derive and propagate entitlements. Since the owner is

entitled to achieve his goals, execute his tasks and access his resources, we need to
propagate actors’ entitlements top-down along goal refinement.

5 Delegation and Contract

Many business and social studies have emphasized the key role played by trust as a
necessary condition for ensuring the success of organizations [8]. Trust is used to build
collaboration between humans and organizations since it is a necessary antecedent for
cooperation [1]. However, common sense suggests that fully trusted domains are simply
idealizations. Actually, many domains require that actors who do not have the capabil-
ities to fulfill their objectives, must delegate the execution of their goals to other actors
even if they do not trust the delegatees. Accordingly, much work in recent years has
focused on the development of frameworks capable of coping with lack of trust, some-
times by introducing an explicit notion of distrust [13, 16].

The presence (or lack) of trust relations among system actors particularly influences
the strategies to achieve a goal [20]. In other words, the selection of actions to fulfill a
goal changes depending on the belief of the delegator about the possible behavior of the
delegatee. In particular, if the delegator trusts the delegatee, the first is confident that
the latter will fulfill the goal and so he does not need to verify the actions performed
by the delegatee. On the contrary, if the delegator does not trust the delegatee, the first
wants some form of control on the behavior of the latter.

Different solutions have been proposed to ensure for the delegator the fulfillment
of his objectives. A first batch of solutions comes from transaction cost economics and
contract theories that view a contract as a basis for trust [34]. This approach assumes
that a delegation must occur only in the presence of trust. This implies that the delegator
and the delegatee have to reach an agreement before delegating a service. Essentially,
the idea is to use a contract to define precisely what the delegatee should do and so
establish trust between the delegator and the delegatee. Other theories propose models
where effective performance may occur also in the absence of trust [11]. Essentially,
they argue that various control mechanisms can ensure the effective fulfillment of ac-
tors’s objectives.

In this paper we propose a solution for delegation of execution that borrows ideas
from both approaches. The case for delegation of permission is similar. The process
of delegating in the absence of trust is composed of two phases:establishing trustand
control. The establishing trust phase consists of a sequence of actions, namelyNego-
tiate andContract. In Negotiate the parties negotiate the duties and responsibilities
accepted by each party after delegation. The postcondition is an informal agreement
representing the initial and informal decision of parties to enter into a partnership. Dur-
ing the execution ofContract the parties formalize the agreement established during
negotiation. The postcondition ofContract is a trust “under suspicion” relation be-
tween the delegator and the delegatee. Once the delegator has delegated the goal and
the delegatee has fulfilled the goal, the first wants to verify if the latter has really satis-
fied his objective. This control is performed using actionEvaluation. Its postcondition
is the “real” fulfillment of the goal. To support this solution we have introduced some

additional actions (last part of Table 2) to distinguish the case in which the delegation
is based on trust from the case in which the delegator does not trust the delegatee.

Sometimes establishing new trust relations might be more convenient than extend-
ing existing trust relations. A technical “side-effect” of our solution is that it is possible
to control the length of trusted delegation chains. Essentially, every action has a unit
cost. Therefore, refining an action into sub-actions corresponds to increasing the cost
associated with the action. In particular, refining the delegation action in absence of
trust guarantees that the framework first try to delegate to trusted actors, but if the dele-
gation chain results too long it can decide to establish a new trust relation rather than to
follow the entire trust chain.

Need-to-know property of a design decision states that the owner of a goal, a task
or a resource wants that only the actors who need permission on its possession are
authorized to access it. Essentially, only the actor that achieves a goal, executes a task or
delivers a resource, and the actors that belong to the delegation of permission chain from
the owner to the provider should be entitled to access this goal, task or resource. Thus,
we want to obtain a plan where only the actions that contribute to reaching the desired
state occur, so that if any action is removed from the plan, the resulting plan no longer
satisfies the goal of the planning problem. This approach guarantees the absence of
alternative paths of permission delegations since a plan does not contain any redundant
actions.

6 Using the Planner

In the last years many planners have been proposed (Table 3). In order to choose one of
them we have analyzed the following requirements:

1. The planner should produce solutions that satisfyneed-to-know property by con-
struction, that is, the planner should not produce redundant plans. Under non-
redundant plan we mean that, by deleting an arbitrary action of the plan, the re-
sulting plan is no more a “valid” plan (i.e. it does not allow reaching the desired
state from the initial state).

2. The planner should use PDDL (Planning Domain Definition Language) [14], since
it is becoming the “standard” planning language and many research groups work
on its implementation. In particular, the planner should use PDDL 2.2 specifica-
tions [9], since this version supports features, such as derived predicates, that are
essential for implementing our planning domain.

3. The planner should be available on both Linux and Windows platforms as our pre-
vious Secure Tropos reasoning tool works on both.

Table 4 presents a comparison among the planners we have considered with respect
to above requirements. Based on such requirements, we have chosen LPG-td, a fully
automated system for solving planning problems, supporting PDDL 2.2. Figure 3 shows
the specification of actionsSatisfy andDelegatePermission in PDDL 2.2.

We have applied our approach to the Medical IS presented in Figure 1. The desired
state of the system is obviously one where the patient gets medical care. The PDDL 2.2
specification of the planning problem is given in the Appendix.

Table 3.Comparison among planners

Planner Release URL
DLVK 2005-02-23http://www.dbai.tuwien.ac.at/proj/dlv/K/
IPP 4.1 2000-01-05http://www.informatik.uni-freiburg.de/ koehler/ipp.html
CPT 1.0 2004-11-10http://www.cril.univ-artois.fr/ vidal/cpt.en.html
SGPLAN 2004-06 http://manip.crhc.uiuc.edu/programs/SGPlan/index.html
SATPLAN 2004-10-19http://www.cs.washington.edu/homes/kautz/satplan/
LPG-td 2004-06 http://zeus.ing.unibs.it/lpg/

Table 4.Comparison among planners

XXXXXXXRequirement
Planner

DLVK IPP CPT SGPLAN SATPLAN LPG-td

1 X X X X X
2 X X X
3 X X X X

(: action Satisfy
: parameters (?a− actor ?g− goal)
: precondition (and

(provides ?a ?g)
(requests ?a ?g)
(has per ?a ?g))

: effect (and
(done ?g)
not (requests ?a ?g)))

(a) Satisfy

(: action DelegatePermission
: parameters (?a ?b− actor ?g− goal)
: precondition (and

(trustper ?a ?b ?g)
(has per ?a ?g))

: effect (and
(has per ?b ?g)))

(b) DelegatePermission

Fig. 3. Actions’ Specification

DelegateExecution Pat HP ProvideMC
AND Refine HP ProvideMC ProvisioningMC PaymentMC
DelegatePermission HCA HP ProvisioningMC
Satisfy HP ProvisioningMC
DelegateExecution HP HCA PaymentMC
DelegateExecution HCA INPDAP PaymentMC
AND Refine INPDAP PaymentMC PaymentTicket PaymentHCA
DelegateExecution HCA INPDAP PaymentHCA
Satisfy HCA PaymentHCA
OR Refine INPDAP PaymentTicket PaymentTicketINPDAP PaymentTicketHP
DelegatePermission HCA INPDAP PaymentTicketINPDAP
Satisfy INPDAP PaymentTicketINPDAP

Fig. 4. The optimal solution

Figure 4 shows the optimal solution (i.e., the plan composed of the fewer number of
actions than any other plan) proposed by LPG-td. However, this was not the first choice
of the planner. Before selecting this plan, the planner proposed other two sub-optimal
alternatives (see the Appendix for the discussion). It is interesting to see that the planner
has first provided a solution with INPDAP, then a solution with INPDAI, and then,
finally, a revised solution with INPDAP. A number of other experiments were conduced
to test the scalability of our approach. The results are reported in the Appendix.

7 Related Work

In recent years many efforts have addressed the integration of security with the system
development process, in particular during early requirements analysis. In this setting,
many researchers have recognized trust as an important aspect of this process since
trust influences the specification of security and privacy policies. However, very few
requirements engineering methodologies introduce trust concerns during the system
development process. Yu et al. [35] model trust by using the concept of softgoal, i.e.
goal having no clear definition for deciding whether it is satisfied or not. However,
this approach considers trust as a separate concept from security and does not provide a
complete framework to consider security and trust throughout the development process.
Haley et al. [17] propose to use trust assumptions, problem frames and threat descrip-
tions to aid requirements engineers to define and analyze security requirements, and to
document the decisions made during the process.

Other approaches focus on security requirements without taking into account trust
aspect. van Lamsweerde et al introduce the notion of antigoals for representing the
goals of attackers [32]. McDermott et al. define abuse case model [25] to specify the
interactions among actors, which results are harmful to some actors. Similarly, Sindre
et al. define the concept of a misuse case [31], the inverse of a use case, which describes
a function that the system should block.

Model Driven Architecture (MDA) approach [26], proposed by Object Management
Group, is a framework for defining software design methodologies. Its central focus is
on the model transformation, for instance, from the platform-independent model of
the system to platform-specific models used for implementation purposes. Models are
usually described in UML, and the transformation is performed in accordance with the
set of rules, called mapping. Transformation could be manual, or automatic, or mixed.
Among the proposals on automating a software design process the one of Gamma et
al. on design patterns [12] has been widely accepted. A design pattern is a solution
(commonly observed from practice) to the certain problem in the certain context, so
it may be thought as a problem-context-solution triple. Several design patterns can be
combined to form a solution. Notice that it is still the designer who makes the key
decision on what pattern to apply to the given situation.

The field of AI planning have been making advances during the last decades, and has
found a number of applications (robotics, process planning, autonomous agents, Web
services, etc.). There are two basic approaches to the solution of planning problems
[33]. One is graph-based planning algorithms [2] in which a compact structure called
a Planning Graph is constructed and analyzed. While in the other approach [18] the
planning problem is transformed into a SAT problem and a SAT solver is used.

An application of the planning approach to requirements engineering is proposed by
Gans et al. [13]. Essentially, they propose to map trust, confidence and distrust described
in terms of i* models [35] to delegation patterns in a workflow model. Their approach
is inspired by and implemented in ConGolog [7], a logic-based planning language.
In this setting, tasks are implemented as ConGolog procedures where preconditions
correspond to conditionals and interrupts. Also monitors are mapped into ConGolog
procedures. They run concurrently to the other agent tasks waiting for some events

such as task completion and certificate expiration. However, the focus of this work is
on modeling and reasoning about trust in social networks, rather than on secure design.

8 Conclusions

We have shown that in our extended Secure Tropos framework it is possible to automat-
ically support the designer of secure and trusted systems also in the automatic selection
of design alternatives. Our enhanced methodology allows one to:

1. Capture through a graphical notation the requirements for the organization and the
system-to-be;

2. Verify the correctness and consistency of functional and security requirements by
– completion of the model drawn by the designer with axioms (a process hidden

to the designer),
– checking the model for the satisfaction of formal properties corresponding to

specific security or design patterns;
3. Automatically select alternative solutions for the fulfillment of functional and se-

curity requirements by
– transformation of the model drawn by the designer into a planning problem (a

process hidden to the designer),
– automatic identification of an alternative satisficing the goals of the various

actors by means of a planner.

In this paper we show that this is possible with the use of an off-the-shelf planner
to generate possible designs for not trivial security requirements. Of course, we assume
that the designer remains in the design loop, so the designs generated by the planner
are seen as suggestions to be refined, amended and approved by the designer. In other
words, the planner is a(nother) support tool intended to facilitate the design process.

Our future work includes extending the application of this idea to other phases of
the design and towards progressively larger industrial case studies to see how far can
we go without using specialized solvers.

References

1. R. Axelrod.The Evolution of Cooperation. Basic Books, 1984.
2. A. Blum and M. L. Furst. Fast Planning Through Planning Graph Analysis.Artif. Intell.,

90(1-2):281–300, 1997.
3. V. Bryl, P. Giorgini, and J. Mylopoulos. Requirements Analysis for Socio-technical Systems:

Exploring and Evaluating Alternatives. Technical Report DIT-06-006, University of Trento,
2006.

4. J. Caldwell. Moving Proofs-as-Programs into Practice. InProc. of ASE’97, pages 10–17.
IEEE Press, 1997.

5. M. Carman, L. Serafini, and P. Traverso. Web service composition as planning. InProc. of
the 2003 Workshop on Planning for Web Services, 2003.

6. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven Information Systems
Engineering: The Tropos Project.Inform. Sys., 27(6):365–389, 2002.

7. G. de Giacomo, Y. Lesṕerance, and H. J. Levesque. ConGolog, a concurrent programming
language based on the situation calculus.Artif. Intell., 121(1-2):109–169, 2000.

8. P. Drucker.Managing the Non-Profit Organization: Principles and Practices. HapperCollins
Publishers, 1990.

9. S. Edelkamp and J. Hoffmann. Pddl2.2: The language for the classical part of the 4th inter-
national planning competition. Technical Report 195, University of Freiburg, 2004.

10. T. Ellman. Specification and Synthesis of Hybrid Automata for Physics-Based Animation.
In Proc. of ASE’03, pages 80–93, 2003.

11. M. J. Gallivan. Striking a balance between trust and control in a virtual organization: a
content analysis of open source software case studies.ISJ, 11(2):277, 2001.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

13. G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Modeling the Impact of Trust and Distrust
in Agent Networks. InProc. of AOIS’01, pages 45–58, 2001.

14. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL – The Planning Domain Definition Language. InProc. of AIPS’98,
1998.

15. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling Security Requirements
Through Ownership, Permission and Delegation. InProc. of RE’05, pages 167–176. IEEE
Press, 2005.

16. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modelling Social and Individual
Trust in Requirements Engineering Methodologies. InProc. of iTrust’05, volume 3477 of
LNCS, pages 161–176. Springer-Verlag, 2005.

17. C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh. Using Trust Assumptions with
Security Requirements.Requirements Eng. J., 11:138–151, 2006.

18. H. Kautz and B. Selman. Planning as satisfiability. InProc. of ECAI’92, pages 359–363.
John Wiley & Sons, Inc., 1992.

19. E. Letier and A. van Lamsweerde. Reasoning about partial goal satisfaction for requirements
and design engineering.ACM SIGSOFT Software Eng. Notes, 29(6):53–62, 2004.

20. N. Luhmann.Trust and Power. Wisley, 1979.
21. Z. Manna and R. Waldinger. A Deductive Approach to Program Synthesis.TOPLAS,

2(1):90–121, 1980.
22. F. Massacci, M. Prest, and N. Zannone. Using a Security Requirements Engineering Method-

ology in Practice: The compliance with the Italian Data Protection Legislation.Comp. Stan-
dards & Interfaces, 27(5):445–455, 2005.

23. F. Massacci and N. Zannone. Detecting Conflicts between Functional and Security Re-
quirements with Secure Tropos: John Rusnak and the Allied Irish Bank. Technical Report
DIT-06-002, University of Trento, 2006.

24. M. Matskin and E. Tyugu. Strategies of Structural Synthesis of Programs and Its Extensions.
Comp. and Informatics, 20:1–25, 2001.

25. J. McDermott and C. Fox. Using Abuse Case Models for Security Requirements Analysis.
In Proc. of ACSAC’99, pages 55–66. IEEE Press, 1999.

26. Object Management Group. Model Driven Architecture (MDA).
http://www.omg.org/docs/ormsc/01-07-01.pdf, July 2001.

27. J. Peer. Web Service Composition as AI Planning - a Survey. Technical report, University
of St. Gallen, 2005.

28. S. Roach and J. Baalen. Automated Procedure Construction for Deductive Synthesis.ASE,
12(4):393–414, 2005.

29. R. K. Runde and K. Stølen. What is model driven architecture? Technical Report UIO-IFI-
RR304, Department of Informatics, University of Oslo, March 2003.

30. H. A. Simon.The Science of the Artificial. MIT Press, 1969.
31. G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse cases.Requirements

Eng. J., 10(1):34–44, 2005.
32. A. van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens. From System Goals to

Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineer-
ing. In Proc. of RHAS’03, pages 49–56, 2003.

33. D. S. Weld. Recent Advances in AI Planning.AI Magazine, 20(2):93–123, 1999.
34. R. K. Woolthuis, B. Hillebrand, and B. Nooteboom. Trust, Contract and Relationship Devel-

opment.Organization Studies, 26(6):813–840, 2005.
35. E. S. K. Yu and L. Liu. Modelling Trust for System Design Using the i* Strategic Actors

Framework. InProc. of the Workshop on Deception, Fraud, and Trust in Agent Societies,
volume 2246 ofLNCS, pages 175–194. Springer-Verlag, 2001.

A Case study

This section describes in detail the case study used as a running example in this paper.
The corresponding graphical model is presented in Figure 1.

TheHealth Care Authority (HCA) is the “owner” of goalprovide medical care,
that is, it is the only one that can decide how medical care can be provided. On the
other hand, thePatient wants this goal fulfilled and trusts theHealthcare Provider
for its fulfillment. This goal can be AND decomposed into two sub-goals:provisioning
of medical care andpayment for medical care. TheHealthcare Provider has the
capability for theprovisioning of medical care, but it should wait for the authorization
of theHCA before providing it. Once theHealthcare Provider has delivered medical
care, it requires thepayment for medical care and trusts that theHCA will achieve
this goal.

TheHCA must choose between different providers for management of the health-
care welfare management for the manager of a public institution. Indeed since they have
a special private-law contract they can qualify for both theINPDAP andINPDAI7 wel-
fare schemes. These alternatives are represented through two trust relations outcoming
from theHCA for payment for medical care: one toINPDAP and another one to
INPDAI. Next, we analyze in detail theINPDAP andINPDAI welfare schemes.

– The INPDAP welfare scheme requires that thePatient partially pays for medical
care (in the form of ticket) and the main cost is directly covered by theHCA. Essen-
tially, INPDAP AND decomposes goalpayment for medical care into subgoals
payment of ticket by patient andpayment of the main cost by HCA. INPDAP
trust that theHCA will achieve the goalpayment of the main cost by HCA. On
the contrary, two alternatives can be adopted for achieving the goalpayment of
ticket by patient:
• thePatient pays the ticket at theINPDAP office. In this case,INPDAP has the

capability to achieve the goal by itself, but it should be authorized by theHCA
for collecting money from thePatient;

• thePatient pays the ticket at the point of healthcare delivery. In this case,IN-
PDAP trusts that theHealthcare Provider who has provided the service, will
collect the money. However, theHealthcare Provider needs the authorization
of theHCA to achieve this goal.

– TheINPDAI welfare scheme requires that thePatient pays in advance the full cost
of the medical care and then he will get a reimbursement of expensive. Essentially,
INPDAI AND decomposes goalpayment for medical care into subgoalspay-
ment of the full cost by patient and reimbursement of patient. The designer
has different solutions to achieve goalpayment of the full cost by patient:
• the collection of money is performed at theINPDAI office. In this case,IN-

PDAP has the capability to achieve the goal by itself, but it should be autho-
rized by theHCA for collecting money from thePatient;

7 INPDAP (Istituto Nazionale di Previdenza per i Dipendenti dell’Amministrazione Pubblica)
and INPDAI (Istituto Nazionale di Previdenza per i Dirigenti di Aziende Industriali) are two
Italian national welfare institutes.

Table 5.Scalability w.r.t. number of actors

actors search timeparsing time
10 0.02 0.04
20 0.03 0.13
40 0.01 2.11
60 0.02 2.97
80 0.02 3.5

100 0.02 4.08
120 0.02 6.08

• the collection of money is performed at the point of healthcare delivery. In
this case,INPDAI trusts that theHealthcare Provider who has provided the
service, will collect the money. However, theHealthcare Provider needs the
authorization of theHCA to achieve this goal.

The designer has also alternatives for achieving goalreimbursement of patient:
• the reimbursement of patient is paid byINPDAI. In this case,INPDAI has the

capability to achieve the goal by itself, but it should be authorized by theHCA;
• the reimbursement of patient is paid by theHealthcare Provider who has pro-

vided the service. In this case theINPDAI trusts that theHealthcare Provider
will achieve its duty. However, theHCA does not trust that theHealthcare
Provider will reimburse patient fairly. Therefore, if this alternative is chosen,
theHCA will want to introduce some form of control to verify that theHealth-
care Provider will pay only authorized (and existing)Patient.

Once an institution has decided the scheme, this will be part of the requirements
to be passed onto the next stages of system development. Obviously, the choice of the
alternative may have significant impacts on other parts of the design.

B Planning Problem

The PDDL 2.2 specification of the planning problem presented in Figure 1 is given in
Figure 5.

C Experimental set up

Figure 6 shows the solution proposed by the planner. The first choice of the planner is
one of the two sub-optimal alternatives. Enforcing the planner for further search, we get
the optimal plan from it.

We have run some experiments to test the scalability of our approach using LPG-td
planner. A simple problem was considered, with three actorsA, B andC and two goals,
G1 andG2. A requires both of the goals to be achieved, andB andC can provide them.
Then, actors with trust dependencies among them were added to the problem. Those
actors do not requireG1 and G2, and cannot provide them. In the experiments we

: objects
Pat HCA HP INPDAP INPDAI− actor

ProvideMC ProvisioningMC PaymentMC− goal

PaymentTicket PaymentHCA− goal

PaymentTicketHP PaymentTicketINPDAP− goal

PaymentFullCost Reimbursement− goal

CollectionINPDAI CollectionHP− goal

ReimbursementINPDAI ReimbursementHP− goal

: goal
(done ProvideMC)

: init
(owns HCA ProvideMC)
(requests Pat ProvideMC)
(provides HP ProvisioningMC)
(provides HCA PaymentHCA)
(provides INPDAP PaymentTicketINPDAP)
(provides HP PaymentTicketHP)
(provides INPDAI CollectionHCA)
(provides INPDAI ReimbursementINPDAI)
(provides HP CollectionHP)
(provides HP ReimbursementHP)
(trustexe Pat HP ProvideMC)
(trustper HCA HP ProvisioningMC)
(trustexe HP HCA PaymentMC)
(trustexe HCA INPDAP PaymentMC)
(trustexe HCA INPDAI PaymentMC)
(trustexe INPDAP HCA PaymentHCA)
(trustper HCA INPDAP PaymentTicketINPDAP)
(trustexe INPDAP HP PaymentTicketHP)
(trustper HCA HP PaymentTicketHP)
(trustper HCA INPDAI CollectionINPDAI)
(trustexe INPDAI HP CollectionHP)
(trustper HCA HP CollectionHP)
(trustper HCA INPDAI ReimbursementINPDAI)
(trustexe INPDAI HP ReimbursementHP)
(AND decomposition2 ProvideMC ProvisioningMC PaymentMC)
(AND decomposition2 PaymentMC PaymentTicket PaymentHCA)
(AND decomposition2 PaymentMC PaymentFullCost Reimbursement)
(OR decomposition2 PaymentTicket PaymentTicketINPDAP PaymentTicketHP)
(OR decomposition2 PaymentFullCost CollectionINPDAI CollectionHP)
(OR decomposition2 Reimbursement ReimbursementINPDAI ReimbursementHP)

Fig. 5. The planning problem in PDDL 2.2

wanted to check whether the search time of the plan to achieveG1 andG2 depends on
the number of “additional” actors and dependencies occurring in the model.

Optimal Plan
DelegateExecution Pat HP ProvideMC
AND Refine HP ProvideMC ProvisioningMC PaymentMC
DelegatePermission HCA HP ProvisioningMC
Satisfy HP ProvisioningMC
DelegateExecution HP HCA PaymentMC
DelegateExecution HCA INPDAP PaymentMC
AND Refine INPDAP PaymentMC PaymentTicket PaymentHCA
DelegateExecution HCA INPDAP PaymentHCA
Satisfy HCA PaymentHCA
OR Refine INPDAP PaymentTicket PaymentTicketINPDAP PaymentTicketHP
DelegatePermission HCA INPDAP PaymentTicketINPDAP
Satisfy INPDAP PaymentTicketINPDAP

Sub-optimal Plan 1
DelegateExecution Pat HP ProvideMC
AND Refine HP ProvideMC ProvisioningMC PaymentMC
DelegatePermission HCA HP ProvisioningMC
Satisfy HP ProvisioningMC
DelegateExecution HP HCA PaymentMC
DelegateExecution HCA INPDAI PaymentMC
AND Refine INPDAI PaymentMC PaymentFullCost Reimbursement
OR Refine INPDAI PaymentFullCost CollectionINPDAI CollectionHP
DelegatePermission HCA INPDAI CollectionINPDAI
Satisfy HCA CollectionINPDAI
OR Refine INPDAI Reimbursement ReimbursementINPDAI ReimbursementHP
DelegatePermission HCA INPDAI ReimbursementINPDAI
Satisfy INPDAI ReimbursementINPDAI

Sub-optimal Plan 2
DelegateExecution Pat HP ProvideMC
AND Refine HP ProvideMC ProvisioningMC PaymentMC
DelegatePermission HCA HP ProvisioningMC
Satisfy HP ProvisioningMC
DelegateExecution HP HCA PaymentMC
DelegateExecution HCA INPDAP PaymentMC
AND Refine INPDAP PaymentMC PaymentTicket PaymentHCA
DelegateExecution HCA INPDAP PaymentHCA
Satisfy HCA PaymentHCA
OR Refine INPDAP PaymentTicket PaymentTicketINPDAP PaymentTicketHP
DelegateExecution INPDAP HP PaymentTicketHP
DelegatePermission HCA HP PaymentTicketHP
Satisfy HP PaymentTicketHP

Fig. 6.The chosen design alternative

The experiments have shown that, at least with respect to this example, the approach
is scalable. Basically, the search time for the problem with 10 and with 120 actors is the
same (around 0.5 seconds), only the parsing time increases insignificantly (Table 5). At
the same time, search time for the plan with trusted delegation chains of more than 30

Table 6.Scalability w.r.t. delegation chain length

chain length search timeparsing time
25 0.06 6.14
26 0.06 6.03
27 0.06 6.02
28 0.06 6.4
29 8.17 6.02
30 13.17 6.06
32 19.63 6.03

steps is much greater (more than 15 seconds) (Table 6). However, it is very unlikely that
chains of such a length can occur in a “good” requirements model.

Of course, the scalability issue should be explored much more carefully, but still,
the preliminary results reported above are promising.

