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Abstract

In real-world scenarios, speech signals are often contaminated with environmental

noises, and reverberation, which degrades speech quality and intelligibility. Lately,

the development of deep learning algorithms has marked milestones in speech-

based research fields e.g. speech recognition, spoken language understanding, etc.

As one of the crucial topics in the speech processing research area, speech enhance-

ment aims to restore clean speech signals from noisy signals. In the last decades,

many conventional speech enhancement statistical-based algorithms had been pro-

posed. However, the performance of these approaches is limited in non-stationary

noisy conditions. The raising of deep learning-based approaches for speech en-

hancement has led to revolutionary advances in their performance. In this con-

text, speech enhancement is formulated as a supervised learning problem, which

tackles the open challenges introduced by the speech enhancement conventional ap-

proaches. In general, deep learning speech enhancement approaches are categorized

into frequency-domain and time-domain approaches. In particular, we experiment

with the performance of the Wave-U-Net model, a solid and superior time-domain

approach for speech enhancement.

First, we attempt to improve the performance of back-end speech-based classifica-

tion tasks in noisy conditions. In detail, we propose a pipeline that integrates the

Wave-U-Net (later this model is modified to the Dilated Encoder Wave-U-Net) as

a pre-processing stage for noise elimination with a temporal convolution network

(TCN) for the intent classification task. Both models are trained independently from

each other. Reported experimental results showed that the modified Wave-U-Net

model not only improves the speech quality and intelligibility measured in terms of

PESQ, and STOI metrics, but also improves the back-end classification accuracy.

Later, it was observed that the dis-joint training approach often introduces signal

distortion in the output of the speech enhancement module. Thus, it can deterio-

rate the back-end performance. Motivated by this, we introduce a set of fully time-

domain joint training pipelines that combine the Wave-U-Net model with the TCN

intent classifier. The difference between these architectures is the interconnections



x

between the front-end and back-end. All architectures are trained with a loss func-

tion that combines the MSE loss as the front-end loss with the cross-entropy loss for

the classification task. Based on our observations, we claim that the JT architecture

with equally balancing both components’ contributions yields better classification

accuracy.

Lately, the release of large-scale pre-trained feature extraction models has consider-

ably simplified the development of speech classification and recognition algorithms.

However, environmental noise and reverberation still negatively affect performance,

making robustness in noisy conditions mandatory in real-world applications. One

way to mitigate the noise effect is to integrate a speech enhancement front-end that

removes artifacts from the desired speech signals. Unlike the state-of-the-art en-

hancement approaches that operate either on speech spectrogram, or directly on

time-domain signals, we study how enhancement can be applied directly on the

speech embeddings, extracted using Wav2Vec, and WavLM models. We investigate

a variety of training approaches, considering different flavors of joint and disjoint

training of the speech enhancement front-end and of the classification/recognition

back-end. We perform exhaustive experiments on the Fluent Speech Commands and

Google Speech Commands datasets, contaminated with noises from the Microsoft

Scalable Noisy Speech Dataset, as well as on LibriSpeech, contaminated with noises

from the MUSAN dataset, considering intent classification, keyword spotting, and

speech recognition tasks respectively. Results show that enhancing the speech em-

bedding is a viable and computationally effective approach, and provide insights

about the most promising training approaches.

Keywords: Deep Learning - Speech Enhancement - Speech Classification - Speech

Embeddings
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Chapter 1

Introduction

This Chapter provides an overview of this thesis overview. The speech enhance-
ment background is discussed in Section 1.1, highlighting the issues and trends of
current speech enhancement approaches. The research problem is defined in Section
1.2. Our motivations are explained in Section 1.3. The thesis contributions are sum-
marized in Section 1.4. Section 1.5 reports the datasets (i.e clean, and noise datasets)
used in this thesis. Finally, the thesis organization is given in Section 1.6.

1.1 Overview of Speech Enhancement

Speech is the most common tool used for human communication [67]. Naturally,
human speech conveys fundamental information e.g. context meaning, speaker in-
formation including speaker identity, emotion, gender, and age [96]. During the
COVID-19 pandemic, most private and working commitments were done remotely
depending on audio-visual platforms e.g. Zoom, Microsoft Teams, and Google Meet
[153].

However, in real-world scenarios, speech signals are often contaminated by either
stationary background noise mainly due to transmission equipment (electrical hum-
ming or blowing noises) or non-stationary environmental noise (public places, traffic

Mixture speech

FIGURE 1.1: Cocktail party effect.
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Speech
Enhancement 

 

Clean speech

Noise

Mixture speech Enhanced speech

FIGURE 1.2: The basic diagram of speech enhancement system.

noise, background conversation) leads to a phenomenon known as the cocktail party
effect [26, 42, 122] illustrated in Fig. 1.1.

Humans can extract the target speech signals among all interfering signals [200],
although those who suffer from hearing impairment may have difficulty with speech
quality and intelligibility under challenging noisy environments, especially when
the signal-to-noise ratio (SNR) is less than or equal to +10dB [75, 78].

In addition, the performance of speech-based applications, like automatic speech
recognition (ASR), voice activity detection, and speaker recognition degrades in
presence of these adverse noisy environments [1, 9, 125].

Hence, it is crucial to design computer algorithms to extract the target speech signal
in the cocktail party scenario. In the last decades, countless kinds of research have
been conducted to mitigate the noise effect and improve speech signal quality and
intelligibility.

This is accomplished with speech enhancement, one of the most essential speech
processing research areas [17], which aims to improve speech quality and intelligi-
bility [115]. In practice, speech enhancement is widely integrated into many real-
time applications [47] such as mobile communication [257], hearing aids [169], and
speech recognition [167]. Fig. 1.2 shows the generic pipeline of the speech enhance-
ment process.

Generally, speech enhancement approaches are categorized as unsupervised and su-
pervised [189, 191]. Unsupervised approaches, considered as classical signal pro-
cessing algorithms, (e.g. Wiener Filtering [54], spectral subtraction [162], etc.) usu-
ally depend on spectrogram transformation of speech signals and showed an accept-
able performance in eliminating additive noise. However, they introduce distortion,
especially in low SNR cases. In addition, their performance is insufficient in the case
of non-stationary noisy environments [248].

Therefore, a series of supervised approaches (e.g. Gaussian mixture model [33],
non-negative matrix factorization [93], etc.) were introduced in the past to mitigate
speech distortion and residual noise issues. Despite the effective speech representa-
tion provided by these algorithms, their performance in presence of non-stationary
noise is still a challenging task.

Recently, deep learning has shown outstanding performance in many research ar-
eas including speech enhancement [47]. Examples of deep learning architectures
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proposed for speech enhancement are: denoising autoencoder [121], convolutional
neural networks [62, 63], recurrent neural networks [241, 262], and generative adver-
sarial networks [129, 208]. All of them provide a better speech representation and
enhancement performance. For these reasons, this thesis focuses on the application
of deep learning-based approaches to speech enhancement. An extensive review of
speech enhancement approaches is presented in detail in Chapter 2.

1.2 Problem Statement

A common dilemma with speech processing is speech perception. Common speech-
based tasks are designed to work properly using clean speech. Regrettably, when
these systems are exposed to noisy conditions, their performance considerably de-
teriorates. Considering the ASR scenario, an ASR system trained on isolated word
clean speech signals achieves 100% accuracy, while in extremely noisy environments,
the performance can be dropped by 30% [136]. This difference between the recog-
nizer performance in clean and noisy environments causes a major obstacle in intro-
ducing ASR in real environments.

Speech enhancement approaches focus on retrieving clean speech signals from noisy
ones either in the waveform or as hand-crafted features of clean speech embedded
in noise. Literately, these techniques are not intended to improve the back-end per-
formance. In particular, these techniques were originally aimed to improve speech
quality. As mentioned above, this introduces signal distortion that is tolerable for
humans but degrades the recognizers’ performance.

1.3 Motivation

Deep learning-based approaches substantially alleviate the current problems intro-
duced by classical approaches. However, there are still challenging tasks to be con-
sidered:

• Effective speech representation: Recently, large amounts of data are required
to train deep learning-based models to achieve adequate performance. Thus,
learning speech representation from the available data effectively gives rise to
notable performance [39]. In specific, effective speech enhancement algorithms
require learning how to represent the data as well as exploring the latent infor-
mation [250].

• Preservation of speech information: Classical speech enhancement algorithms
ignore some crucial speech information e.g. speech phonetic characteristics,
and phase information which degrades the performance [43, 84]. Thus, it is
important to utilize all of this information for further improvement.

• Performance of speech back-end tasks: In speech-based applications that in-
volve noisy speech, speech enhancement is applied as a ”front-end” module
followed by a ”back-end” one, which addresses the actual task, e.g. classifying
speech. Often, the front-end and the back-end are trained dis-jointly. In this
case, the front-end introduces distorted output-enhanced signals that deterio-
rate the back-end performance.

• Computational complexity and resources: Deploying deep learning models
on edge devices e.g. mobile or embedded platforms is still a crucial need.
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However, typical deep-learning algorithms exhaust these devices due to a large
amount of multiply and accumulate (MAC) operations and memory access op-
erations [34]. Consequently, matching the gap between deep learning require-
ments and low-resource devices is still a challenging task.

1.4 Contributions

To address the issues mentioned in Section 1.3 our novel contributions in this thesis
are summarized below:

• For effective speech representation and utilizing speech information, we inves-
tigate the performance of a fully convolutional neural network called Wave-U-
Net. This model was first proposed in [207] for audio source separation, later
utilized for speech enhancement [146]. This approach technically sounds as it
is a time-domain approach i.e. operates directly on the noisy raw waveform.
Thus, no need for hand-crafted features, and it is effective in handling multi-
noisy environments with affordable computational resources.

• To mitigate the front-end output distortion, that deteriorates the subsequent
back-end speech classification performance. We introduce different joint train-
ing strategies in the time-domain and a novel method based on the domain of
speech embedding. In this scenario, the whole training process is guided by
the back-end model i.e. the front-end generates output signals desired for the
back-end task. Hence, it improves not only the front-end performance but also
the back-end.

• For further improvement in speech representation, we proposed using large-
scale pre-trained speech models e.g. Wav2Vec [194], and WavLM [37]. In partic-
ular, we experiment with two enhancement strategies, the first is called Wave-
Enh applies the time-domain enhancement at the beginning of the pipeline.
Then speech embeddings are extracted from the enhanced signals and used
to train the back-end. This solution makes use of the state-of-the-art model
Wave-U-Net model. Conversely, the second strategy Embeds-Enh, applies the
enhancement directly to speech embeddings and shows a positive impact both
on the back-end performance and computational resources.

1.5 Thesis Datasets

1.5.1 Datasets for Speech Enhancement

Microsoft Scalable Noisy Speech Dataset (MS-SNSD)

The MS-SNSD dataset [180] 1 provides noise clips obtained from the DEMAND
database [219] and Free Sound website 2. The clips are carefully selected to ensure
the quality of further noisy recordings. The chosen noise types are selected to be
more relevant in realistic scenarios, but these types can always be scaled to accom-
modate new types.

1https://github.com/microsoft/MS-SNSD
2https://freesound.org/

https://github.com/microsoft/MS-SNSD
https://freesound.org/
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Overall 14 different types of noise are available: air conditioner, announcements,
appliances (washer/dryer), car noise, copy machine, door shutting, eating (munch-
ing), multi-talker babble, neighbor speaking, a squeaky chair, traffic, road, typing,
and vacuum cleaner. It is worth mentioning that the dataset has a portion called
test noise that conveys different noise recordings from the training noise although
coming from similar categories. Hence, it is possible to investigate the robustness of
their approach against unseen noisy conditions.

The dataset gives a wide range of options to generate noisy speech signals based on
different selected options e.g. the number of speakers, noise types, and SNR desired
levels.

MUSAN Dataset

The MUSAN corpus [201] includes approximately 109 hours of audio formatted as
16 kHz (.wav format) files. The dataset is in the US Public Domain or under a Cre-
ative Commons license and is publicly available at OpenSLR website 3. The dataset
is partitioned into speech, music, and noise (the category we used for our further
experiments).

This noise corpus contains 929 different noise recordings, with approximately 6
hours of duration without including intelligible speech recordings. However, some
recordings are crowd noises with indistinct voices. These range from technical noises
e.g. dial tones, car idling, thunder, wind, footsteps, paper rustling, rain, animal
noises, etc. The recordings were downloaded from Free Sound 2, and Sound Bible 4

websites.

1.5.2 Datasets for Speech Classification

Fluent Speech Commands Dataset

The Fluent Speech Commands (FSC) dataset proposed in [143] includes 30,043 En-
glish utterances obtained from 97 native and non-native speakers representing an
interaction between smart-home devices or communicating with virtual assistants
(e.g. “turn on the heat”, “switch on lights”, etc.). All signals are limited to a 4-sec
duration and sampled at 16 kHz single-channel audio files.

Overall, the dataset provides 248 different utterances representing 31 different in-
tents. On average, for each intent 8 different utterances are present. As mentioned
above each intent comprise three slots: action, object, and location. For example,
"Turn off the light" is labeled as {action: "switch", object: "lights",
location: "none"}, and the combination of these three slots represents the ut-
terance intent. Totally, the dataset includes 6 different actions, 14 objects, and 4 lo-
cations. The state-of-the-art reported on the clean testing portion for this dataset is
around 99% intent classification accuracy [143, 175, 177, 220].

In order to avoid the presence of long silence in the original files, the ‘librosa.effects.trim()‘
module is employed to maintain signals duration to 4-sec long. Fig. 1.3(a) shows the
histogram of the original length of the FSC dataset, while the histogram of the cut
files is depicted in Fig. 1.3(b).

3http://www.openslr.org/17/
4https://soundbible.com/

http://www.openslr.org/17/
https://soundbible.com/
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FIGURE 1.3: Histogram representation (a) original FSC dataset. (b)
cut FSC dataset.

Google Speech Commands Dataset v.1

The Google Speech Commands Dataset (GSC) has 65,000 recordings of 1-sec long
utterances that provides 30 short words e.g. bed, three, digits from zero to nine,
and robotic commands e.g. "Up, "Yes", "No", "Up", etc., contributed by members of
the public through the AIY website. It’s released under a Creative Commons BY 4.0
license. The recordings are organized into sub-folders according to the word they
convey.

The dataset is used as a benchmark for training and evaluating keyword-spotting
models. The goal is to detect a single spoken word in audio files from a set of dif-
ferent target words with as few false positives as possible from background noise or
unrelated speech.

LibriSpeech-100 hours Dataset

LibriSpeech is a dataset specifically designed for ASR and commonly used in the re-
lated literature [163]. It features clean recordings of several different speakers read-
ing segments of audiobooks that are a part of the LibriVox project. For training, we
consider the "train-clean-100" set of the LibriSpeech corpus, containing 100 hours
of clean speech signals uttered by 251 speakers and recorded at 16 kHz sampling
frequency. For ASR validation and test we have used "dev-clean", and "test-clean"
partitions, each including 40 speakers.

This corpus also provides an n-gram language model and the corresponding texts
excerpted from the Project Gutenberg books, which contain 803M tokens and 977K
unique words.

In all of our experiments, i.e. intent classification, keyword spotting, and speech
recognition we consider the official split of the FSC, GSC, and LibriSpeech datasets
described in Table 1.1.

1.6 Thesis Organization

In Chapter 2, we extensively survey different speech enhancement approaches. In
particular, we overview both unsupervised and supervised algorithms highlighting
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TABLE 1.1: Statistics (number of utterances, and duration in hours)
of the FSC, GSC, and LibriSpeech datasets.

Data FSC GSC LibriSpeech

Duration # of utt. Duration # of utt. Duration # of utt.

Train set 14.7 23132 12.7 45931 100 28539
Validation set 1.9 3119 1.8 6799 5.4 2703
Test set 2.4 3793 1.9 6836 5.4 2620

many studies towards improving the performance of both categories. Finally, we
discuss the main limitation of each algorithm.

In Chapter 3, we experiment with a pipeline that integrates the Wave-U-Net for
speech enhancement with a back-end E2E intent classification model that operates
on the 40-Mel filter-banks features of the enhanced signals.

Chapter 4, we proposed a fully time-domain joint training pipeline that integrates
the Wave-U-Net model with the same intent classifier in this case our classifier is
directly trained on the waveform of the enhanced signal.

Chapter 5, presents the proposed pipeline that integrated the large-scale pre-trained
speech models e.g. Wav2Vec and WavLM for joint training speech enactment with
different back-end speech classification tasks e.g. intent classification, keyword spot-
ting, and speech recognition.

Finally, Chapter 6 concludes our work and discusses the possible future directions.
Fig. 1.4 shows the graphical representation of the thesis organization.

Chapter 1: Introduction
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FIGURE 1.4: Overview of this thesis.
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Chapter 2

Literature Review

This chapter surveys different speech enhancement approaches. Section 2.1, gives
an introduction to the main speech enhancement categories present in the literature.
Section 2.2, and Section 2.3 the Unsupervised and Supervised speech enhancement
approaches are reviewed respectively. At the end of each section,the main limitation
of each technique are highlighted. In Section 2.4, the most common speech enhance-
ment evaluation metrics are explained that will be used in later experiments. Finally,
Section 2.5 surveys some recent research attempts to improve speech recognition
performance using SE as a front-end.

2.1 Introduction

During the last decades, SE has received a lot of attention in the speech processing
research area. The goal of this process is to improve both speech quality and intelli-
gibility by mitigating the noise impact on the desired speech signal. In particular, the
SE algorithms estimate the noise characteristics from the noisy signals and eliminate
the undesired noise to provide clean speech signals.

Generally, single-channel SE algorithms are classified into two main categories: Un-
supervised speech enhancement (U-SE), and Supervised speech enhancement (S-
SE), as shown in Fig. 2.1. In this Chapter, we provide a detailed review of both
categories highlighting the advantages and disadvantages of each technique.

Speech Enhancement algorithms

Unsupervised Algorithms Supervised Algorithms

Spectral
Subtraction

   CASA EMD

Statistical  
Models

Signal  
Subspace

Gaussian
Mixture Models

Support Vector
Machine

Model Based
System

Multi-layer
Percepteron 

& 
Deep Neural

Networks 

FIGURE 2.1: Classification of Speech Enhancement algorithms.
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FIGURE 2.2: Block diagram of unsupervised systems [191].

2.2 Unsupervised Speech Enhancement Algorithms

In U-SE algorithms, a statistical-based model is employed to estimate the target
speech signals from the noisy signal, while ignoring other information e.g. noise
type, and speaker identity. In the following sub-sections, we provide a review of U-
SE algorithms. Fig. 2.2 shows the block diagram of a generic unsupervised approach
for single-channel speech enhancement.

2.2.1 Spectral Subtraction

The spectral subtraction (SS) algorithm, proposed in [20], is one of the earliest and
most effective solutions to mitigate the noise effect. In this algorithm, the noise is
assumed to be additive, and the enhanced speech spectrum is obtained by subtract-
ing the noise spectrum from the mixture, as depicted in Fig. 2.3. This algorithm is
designed based on the hypothesis that the noise spectra are stationary [224]. The
enhanced speech signals are then reconstructed by computing the inverse discrete
Fourier transform of the enhanced spectrum, using however the phase of the noisy
signal. Mathematically, denoting as s[n] the clean speech signal, and as e[n] the ad-
ditive noise at time index n, the noisy speech signal z[n] can be formulated as:

z[n] = s[n] + e[n] (2.1)

Applying the short-time Fourier transform (STFT) to Eq. 2.1, we obtain the spectral

STFT

iSTFT

Phase
information

|.|2

|.|1/2

Noise
Estimation/update

Mixture Speech

Enhanced Speech

FIGURE 2.3: Block diagram of SS approach.
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formula expressed as:
Z(ω, k) = S(ω, k) + E(ω, k) (2.2)

By subtracting the noise magnitude spectrum |E(ω, k)| from the noisy magnitude
spectrum |Z(ω, k)|, we can obtain an estimate of the clean signal spectrum.

Ŝ(ω, k) = [Z(ω, k)− E(ω, k)]ejφz(ω,k) (2.3)

Finally, the inverse Fourier transform is applied to retrieve the time-domain speech
signals ŝ[n] such that:

s[n] ≈ ŝ[n] (2.4)

Since the SS algorithm assumes the noise signal as stationary or slowly time-variant,
it tends to introduce negative values in the enhanced magnitude spectrum, which
result in musical noise artifacts [58]. To mitigate the effect of musical noise, the
authors in [141, 157] proposed an improved SS algorithm using the geometric ap-
proach for SE. In this approach, the cross-terms are estimated involving the phase
differences between noisy, clean speech signals and noise. An experimental analysis
of the proposed algorithm shows that it outperforms the conventional SS approach.

Unlike the conventional approach that performs the subtraction on the magnitude
spectrum in the frequency-domain, the authors in [261] proposed to perform the
subtraction separately on the real and imaginary spectra. Exhaustive analysis showed
that fewer musical noise artifacts were observed, which improves speech quality and
intelligibility.

Finally, [12] proposed a single-channel blind dereverberation algorithm based on the
SS approach for remote-talking speech recognition applications. Subsequently, the
Viterbi-decoding method was employed on the output of the reverberation model
to find out the most likely word sequence. In [112], the authors showed that the
SS algorithm outperformed the ideal reverberant masking approach in terms of late
reflections suppression.

2.2.2 Statistical Model-based Algorithms

Similar to SS algorithms, statistical model-based algorithms assume that speech and
noise are stationary signals, hence their statistics remain constant and can be eas-
ily estimated. The noise signals are eliminated by utilizing either Finite Impulse
response (FIR) or Infinite Impulse Response (IIR) filters [22]. Typically, the filter
weighting gains are computed using the short-time power spectral density (PSD) of
the noisy mixture Z(ω, k) and an SNR estimate in the frequency-domain. As shown
in Eq. 2.5, the clean spectrum is estimated by multiplying the noisy spectrum with
the weight gain G(ω, k):

Ŝ(ω, k) = G(ω, k)Z(ω, k) (2.5)

The filter G(ω, k) is computed using particular SE algorithms as a function of short-
time noise PSD estimate P2

D(ω, k) and an estimate of the SNR. Assuming that the
PSDs of the clean speech and of the noise P2

S(ω, k) and P2
E(ω, k) are available, the

SNR can be computed as in Eq. 2.6:

ξ(ω, k) =
P2

S(ω, k)
P2

E(ω, k)
(2.6)
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FIGURE 2.4: Block diagram of the statistical filtering problem.

However, since the two quantities are not available, P2
E(ω, k) is calculated during the

non-speech and silence periods using the following recursive equation:

P̂2
E(ω, k) = βP̂2

E(ω, k− 1) + (1− β)P̂2
z (ω, k− 1) (2.7)

Where β is a smoothing factor, and P̂2
z (ω, k− 1) is the estimated noise in the previous

frame. Then, the prior SNR can be estimated using the Decision Direct approach [56],
and illustrated in [139], which linearly combines the prior and post SNRs as follows:

ξ(ω, k) = αξ(ω, k− 1) + (1− α)max
[

Pz
2(ω, k)

P̂2
E(ω, k)

− 1, 0
]

(2.8)

Where α is a weighting coefficient and ξ(ω, k − 1) is the prior SNR at the previous
iterations. Two main statistical-based model approaches are widely used namely the
Wiener filter (WF) and minimum mean square error (MMSE).

• Wiener Filter

Analogous to the conventional filtering approaches, Wiener filter [35], depicted in
Fig. 2.4, applies a linear and time-invariant system on the input noisy signals z[n] to
estimate the enhanced signals ŝ[n]. This can be done by minimizing the estimation
error between clean signals, and enhanced ones. The optimal Wiener filter gain is
formulated as follows [3]:

G(ω, k) =
ξ(ω, k)

ξ(ω, k) + 1
(2.9)

In the last decades, several contributions had been conducted to improve the Wiener
filtering performance. The approach proposed in [50], utilized a hybrid 1D and 2D
Wiener filter [205] to eliminate the noise in the speech spectrogram. Then, a post-
processor is applied to the noisy regions to remove the residual noise components.
Reported experiments showed that the hybrid filter approach is more effective than
the conventional SS, and Wiener filter approaches in terms of speech quality.

Unlike the conventional frequency-domain Wiener filter approach, the authors in
[54] proposed an adapted time-domain Wiener filtering approach. This method
considers the local statistics of the speech signal. The proposed approach results
showed performance superiority with respect to other approaches e.g. spectral sub-
traction and wavelet denoising in case of in the case of Additive White Gaussian
Noise (AWGN), and colored noise.
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In [11] a speech-distortion weighted inter-frame Wiener filter (SDW-IFWF) is pro-
posed, for single-channel noise reduction based on filter-banks features. The filter
employed a parameter µ that controls the trade-off between noise reduction, and
speech distortion. This strategy is widely used in multi-channel applications under
the term multi-channel speech-distortion weighted Wiener filter. Reported exper-
iments show, that larger values of µ provide better enhancement performance in
terms of segmental SNR metric, and it is computationally effective compared with
the conventional approaches.

Recently, the authors in [182] proposed a Wiener filter estimation based on deep
learning. In particular, the optimal parameter of the Wiener filter (i.e. SNR es-
timation, and gain function) are estimated by a deep neural network to improve
the Wiener filter performance. Reported experiments show that incorporating data-
driven approaches (i.e. deep learning approaches) for estimating the filter parame-
ters outperforms the statistical-based speech estimator algorithm.

• MMSE Estimator

As discussed in the previous part, the Wiener filter estimates the enhanced speech
signals by minimizing the error between the clean spectrum and the enhanced spec-
trum. Unfortunately, the Wiener filter is considered to be optimal for complex spec-
tral estimators but is not optimal for spectral magnitude estimators, which degrades
the SE performance [227].

Thus, the MMSE estimator exploits the performance of the short-time spectral am-
plitude (STSA) on speech quality and intelligibility. In literature, optimal MMSE
estimators proposed to minimize the MSE between the enhanced and clean magni-
tudes

E{(S(ω, k)− Ŝ(ω, k))2} −→ Min (2.10)

The authors in [100] proposed an algorithm for joint MMSE estimation of speech
coefficients using phase uncertainty to estimate the signal amplitude. Furthermore,
new phase-blind estimators are developed based on the Nagakami power spectral
density function and the generalized Gamma function for speech and noise priors.

A different approach for the MMSE estimator is presented in [65]. In contrast to the
other estimators, the MMSE approach is used to estimate the clean phase from the
noisy one. In this way, the estimated clean phase can provide additional information
that can be exploited to improve the resulting speech quality.

To improve the performance of the MMSE algorithm, the authors in [4] employed
β-order MMSE STSA. The motivation is to exploit the advantages of both Laplacian
speech modeling and β-order cost function in MMSE estimation of clean speech.
In particular, the proposed solution for β−order MMSE-STSA taking into account
Laplacian priors for clean speech DFT coefficients leads to better adaptation for the
estimators.

2.2.3 Signal Subspace-based Algorithms

Signal subspace-based algorithm proposed in [57, 80] utilizes Eigen Value Decom-
position (EVD) and Karhunen-Loeve transform (KLT) to decompose the noisy signal
into two subspaces, for clean and noise signals [137] as depicted in Fig. 2.5. Hence,
the clean signal could be estimated by removing the noise subspace.
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FIGURE 2.5: Decomposition of the noisy vector z into its orthogonal
components s, and e represents clean, and noise respectively.

Using Eq. 2.1, the noisy covariance matrix (Rz) is represented as the sum of clean,
and noise covariance matrices Rs, and Re respectively, where Rz have a higher rank
than Rs:

Rz = Rs + Re (2.11)

The EVD of Rz and Rs is given by:

Rz = UΛzUT Rs = UpΛsUT
P (2.12)

where Λz and Λs represent the eigen values diagonal matrices of Rz and Rs respec-
tively:

Λz = diag(λ1, λ2, ..., λQ) Λs = diag(λs,1, λs,2, ..., λs,P) (2.13)

Q and P are the dimensions of U and UP respectively, such that Q > P. The noise
covariance matrix is defined as

Re = σ2 I (2.14)

where σ2 is the noise variance and I is the identity matrix. Using Eq. 2.12 and Eq.
2.14, Rz can be computed as

Rz = U(Λs + σ2 I)UP (2.15)

where U = [UPUQ−P], UP = [u1u2, ..., uP] represents the signal subspace, UQ−P =
[uP+1, uP+2, ..., uQ] represents the noise subspace, ui denotes the eigen vector corre-
sponding to the eigen value λi. Finally, a linear filter ψ is designed using different
estimators (i.e LSE, Liner-MMSE, TDC, SCD, etc.) to estimate the clean subspace
from the noisy one.

ŝ = ψz (2.16)

The matrix ψ is defined as:
ψ = UpGUT

p (2.17)

where G is a gain matrix. The residual error (r) is defined as

r = ŝ− s = ψz− Is (2.18)

r = ψs− ψe− Is = (ψ− I)s + ψe = rs + re (2.19)
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Where rs and re represent the signal distortion and residual noise respectively.

rs = (ψ− I)s re = ψe (2.20)

One of the most important aspects in the subspace algorithms is dimensionality re-
duction, achieved by reducing the noise matrix rank. Furthermore, the appropriate
choice of some parameters (e.g. window size, matrix rank. etc.) shows competitive
performance with respect to classical SE algorithms [212].

In literature, obtaining an optimal estimator to retrieve clean speech signals, gained
a lot of attention in the case of colored noise, as it is a challenging task. A pioneer
work that attempted to solve the colored noise issue is proposed in [57]. The authors
suggested whitening the noisy speech. However, in this case, the performance of the
estimators significantly deteriorates. The reason is that the estimators focus on min-
imizing the whitened speech distortions rather than the clean speech distortions.
Other methods reported in [150, 181] mitigate the colored noise effect, by propos-
ing approximations of the noise covariance matrix. The approach proposed in [85]
employs a joint diagonalization of noise and speech covariance matrices that show
promising performance in colored noise conditions. However, these approaches are
highly-dependent on Lagrange multipliers that need to be carefully set to obtain
desired filter performance. One possible solution is to set the Lagrange multipli-
ers to a fixed value as proposed in [85]. Alternatively in [23], the residual power
noise spectrum is used to estimate the Lagrange multipliers accurately. Then, the es-
timated Lagrange multipliers are utilized to modify the spectral-domain-estimator.
This approach yielded high noise reduction and improved speech quality, at the cost,
however, of increased computational complexity. More recent approaches in [94]
and [212] utilized the Rayleigh quotient method. In particular, this method replaces
the noise variance with the Rayleigh quotient. This approach better shapes the noise
matrix with respect to the conventional approaches and decreases the computational
complexity [212].

2.2.4 Computational Auditory Scene Analysis (CASA) Algorithms

The Computational Auditory Scene Analysis (CASA) approaches [184, 230] have
been widely used in the SE task. These approaches employ the auditory percep-
tion mechanism without prior information about the noise. The CASA models are
trained to estimate binary or ratio masks in the time-frequency domain [206]. These
masks are used to remove the noise components from the noisy mixture.

The authors in [154] proposed an approach using the ideal binary mask (IBM) for
speech separation in the time-frequency domain. In particular, an SNR threshold on
the energy in speech and noise regions is used to define the binary masks. Finally,
an SNR transform is introduced to estimate the true broadband SNR of the noisy
signal.

The approach in [148] estimates the IBM using the amplitude modulation spectro-
gram (AMS) features and modulation filter-banks features. A spectro-temporal in-
tegration stage was employed to obtain speech activity information in neighboring
time-frequency units.

In [97], a novel feature enhancement approach based on CASA was proposed. Un-
like the other approaches, that focus on eliminating the noise from the noisy speech,
the definition of IBM includes aspects related to speech recognition performance.
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Exhaustive experiments showed an improvement in robust speech recognition, with
a definite improvement from 20% to 40% at 5 dB SNR.

The approaches reported above are based on estimating the IBM, which is computed
through thresholding with a local SNR criterion. In particular, each T-F unit is la-
beled as a target speech if the signal power is greater than the SNR threshold value.
Thus, IBM is based on a hard decision approach, labeling the T-F units as 0 or as 1.
Consequently, often the IBM approach removes the background noise in the weak
speech T-F units, with negative effects on the speech quality. An alternative solution
is to use the ideal ratio mask (IRM): a soft decision mask whose values smoothly
vary between 0, and 1. For example, the authors in [13, 14] proposed a novel IRM
in the Gammatone domain. The proposed approach is more effective in eliminating
noise while preserving the speech components using the inter-channel correlation
(ICC) between the noisy speech, clean speech, and noise power spectra. The ICC
is assigned a larger value in case of a strong correlation between noisy speech, and
noise. This means that the noise components are predominant in the noisy speech
signal with respect to the clean ones.

The authors in [119] applied the shape analysis techniques originally introduced for
image processing to CASA-based approaches. This approach extracts the desired
speech signals from the noisy signals, while the missing speech signals are comple-
mented using shape analysis techniques. This approach improves the final perfor-
mance by 22% for speech recognition contaminated with stationary noise.

2.2.5 Empirical Mode Decomposition Algorithms

Empirical Mode Decomposition (EMD) is an approach that is designed for multi-
scale decomposition and signal analysis in the time-frequency domain. [202]. In
particular, EMD employs the shifting process that decomposes an input signal into
a finite set of oscillating components called Intrinsic Mode Functions (IMFs). Dif-
ferently, from the conventional decomposition approaches (i.e. Fourier or Wavelet
Transform), the IMFs are not set analytically but are obtained using only the ana-
lyzed sequences. The estimated IMFs from the EMD have to justify two criteria [90]:

• the number of zero-crossing and IMF extrema must either be equal or differ by
one in the whole dataset.

• at any point, the envelopes mean value defined by the local maxima and local
minima is zero at any point of an IMF.

The shifting process mentioned above repeatedly subtracts the input signal from its
local mean until a zero mean is obtained. Typically a stopping criterion is applied to
stop the shifting process. This is based on the relative variation between two consec-
utive shiftings and a threshold. The following steps summarize the EMD algorithm
and are depicted in Fig. 2.6.

(i) Estimate the local maxima and minima of the input signal y[n].

(ii) Employ an interpolation method to generate the upper and lower signal enve-
lope by connecting the local maxima and minima as depicted in Fig. 2.7.

(iii) Averaging the upper and lower envelopes to determine the local mean µ[n].

(iv) Subtract the local mean from the input signal h[n] = z[n]− µ[n].
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FIGURE 2.6: Block diagram of EMD approach.

(v) If h[n] complies with the stopping criterion, the IMF is defined as (d[n] = h[n]),
otherwise, y[n] = h[n] and repeat the process.

Finally, the EMD of the signal decomposition z[n] can be formulated as:

z[n] =
m

∑
t=1

IMFt[n] + εm[n] (2.21)

Where m and εm[n] are the extracted IMFs, and the residual signal after decomposi-
tion respectively.

Several research were reported in the literature that employs the EMD approach for
SE task. The approach proposed in [102] investigates the performance of the EMD
algorithm combined with the Teager-Kaiser energy operator, which uses an adap-
tive threshold method. However, this approach is designed to perform in white
noisy conditions. Conversely, the approach proposed in [255] combines the EMD ap-
proach with the Hurst exponent. This approach shows a substantial improvement
in the case of highly non-stationary noise. However, it does not bring significant
improvements in white noise conditions. Towards solving this issue, the approach
presented in [32], namely the EMD-based filtering approach (EMDH) employed to
eliminate the low-frequency noise components. Despite the promising results, its
performance drastically deteriorates in presence of babble noise. Alternatively, EMD

FIGURE 2.7: Extrema, upper, and lower envelope for time-domain
signal [55].
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was combined with other filtering approaches, such as MMSE [103] or spectral sub-
traction [55]. The key idea is that the filter is used to denoise each IMF separately,
and later the enhanced IMFs are used to reconstruct the enhanced signals. These
approaches show promising performance when employed in white Gaussian noise
environments. Recently, the combination of EMD with variation mode decompo-
sition (VMD), originally introduced in [51], was proposed in [135] for fiber optic
gyroscope signals denoising and later employed in SE area [223], proving effective
in reducing both high and low-frequency noise.

2.2.6 Limitation of Unsupervised Speech Enhancement Algorithms

The U-SE algorithms bring notable improvement in terms of speech quality and
noise reduction in real-world noise sources, these algorithms have some limitations
summarized as follows:

• Performance with non-stationary noise: Despite the promising performance
of U-SE algorithms in terms of speech quality. These algorithms assume that
the noise is stationary. Thus, its performance is negatively affected in the case
of non-stationary noise. Hence, it still needs effective noise estimation for fur-
ther performance improvement.

• Speech intelligibility, and distortion: As mentioned in the previous point the
U-SE algorithms obtained high-quality enhanced speech signals. However,
these algorithms introduce signal distortions at their output, leading to low
speech intelligibility. Thus, it is still challenging to provide more effective ap-
proaches to remove the residual noise artifacts.

2.3 Supervised Speech Enhancement Algorithms

S-SE algorithms are trained using a labeled dataset (i.e pair of clean and noisy speech
samples). The goal of these algorithms is to learn the relationship between the clean
and noisy versions of the speech signals and use this knowledge to enhance the
quality of noisy speech signals. The training process can be done on appropriate
speech signals transformation (in the case of frequency-domain S-SE algorithms), or
directly on the raw waveform (in the case of time-domain S-SE algorithms).

2.3.1 Gaussian Mixture Model for Speech Enhancement

The Gaussian Mixture Model (GMM) introduced in [242] uses a probabilistic model
based on the assumption that the data points are generated from a finite number of
Gaussian distributions. The GMM for a process (N) is defined as:

f (N) =
M

∑
m=1

pmGm

(
N; λm, ∑

m

)
(2.22)

Where f represents the probability density function (PDF), Gm is the Gaussian PDF
of the mth mixture component, λm, ∑m, and pm are the mean vector, covariance
matrix, and prior probability respectively. We highlight some research papers that
study GMM for speech enhancement.

In [107], the GMM model is trained to predict the IBM mask in multi-noisy condi-
tions utilizing the AMS with its delta feature augmentation. The resulting feature
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vector is defined as:

A(τ, k) = [a(τ, k), ∆aT(τ, k), ∆aK(τ, k)] (2.23)

Where ∆aT(τ, k), and ∆aK(τ, k) denote the delta feature vectors computed across
time (τ) and frequency (k), respectively. The obtained results show a notable per-
formance in terms of speech intelligibility when the model is trained and tested on
matched noisy conditions. However, this approach lacks generalization i.e. the per-
formance deteriorates in case of unseen noisy (mismatched) conditions.

This problem has been addressed in [149] where the authors examine the sensitivity
of their speech segregation model to different noise parameters (i.e noise variations,
duration) during the training and testing phases. In addition, they consider the
complex interaction between noise variations, Gaussian component numbers, and
feature space dimensionality. Exhaustive experiments show clear robustness against
unseen noisy conditions during the testing phase.

The authors in [106], proposed an alternative algorithm to estimate the IBM tailoring
speech intelligibility. In detail, the noisy speech is decomposed into time-frequency
units and the GMM is used to take binary decisions about whether each unit belongs
to the target speech signal or noise. Based on these decisions, the target speech units
are retained, while other units are discarded.

Another contribution was done in [108] to improve GMMs performance against
noise variations. In detail, frequency-dependent masking classifiers are developed
to estimate the missing features. Finally, an adaptive approach estimates the prior
values of the mask classifiers to decide whether the T-F segment is enhanced or not.
This method showed a promising improvement in terms of WER.

Recent research was done in [147], where the noise is modeled using the GMM ap-
proach with a multi-stage process incorporated with a parametric Wiener filter. In
this way, the model estimates the noise power spectral density accurately for better
generalization, hence better speech quality and intelligibility in terms of PESQ and
STOI metrics.

2.3.2 Support Vector Machine for Speech Enhancement

Support vector machine (SVM), as depicted in Fig. 2.8, is a discriminative classifier
that uses a hyper-plane to differentiate among all classes [29, 168]. In the SE task,
this hyper-plane separates the noisy training data into two parts belonging to the
target speech and noise.

The authors in [72], proposed a classification approach to estimate IBM. The SVM
classifier is trained on a combination of AMS, and pitch-based features to classify
the time-frequency units either target speech or noise. For further improvement, a
re-thresholding method is integrated to robust classification accuracy and maximize
hit minus false alarm rates.

Furthermore, the authors in [73], addressed the problem of generalization to un-
seen noise conditions using a small training corpus for voice activity detection task.
The system employs SVM for the classification task followed by a thresholding tech-
nique to estimate the IBM. Systematic evaluation shows that the proposed approach
estimates high-quality IBM under unseen conditions.
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FIGURE 2.8: Support Vector Machine

In [36], the authors introduced new features named multi-resolution cochleagram
features (MRCC) that outperformed the complementary features proposed in [234].
The SVM classifier is utilized to classify clean and noise T-F units. Experimental
results show better speech intelligibility in the case of extreme non-stationary noisy
conditions.

2.3.3 Non-Negative Matrix Factorization

Model-based algorithms characterize the SE problem as a supervised learning task
by constructing models that estimate speech and noise characteristics. The core idea
of these algorithms is to detect the appropriate time-frequency area for signal re-
construction, thus a few time-frequency areas must be contaminated with high SNR
[113].

Non-negative matrix factorization (NMF) is a well-known model-based speech en-
hancement approach [5, 152]. In this algorithm, the input speech signals are decom-
posed into activation and basis matrices under the assumption that both matrices
and the signals are positive. Consider H ∈ RI×T

+ represents the data low dimen-
sion non-negative representation i.e. the activation matrix and W is the basis matrix.
The NMF is defined as the product of these two non-negative matrices that gives an
accurate estimate of the signal [151] as follows:

Y = HW (2.24)

Several studies investigated the NMF performance for speech enhancement and sep-
aration [120, 142, 240], we report the recent work for NMF-based SE.
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The authors in [244], proposed a novel NMF-HMM algorithm based on the Kullback-
Leibler (KL) divergence. Compared to the conventional NMF approach, the pro-
posed approach exploit the speech signal temporal dynamics to perform the en-
hancement task. In this way, the time information is considered during the enhance-
ment process. Moreover, they employ the sum of Poisson distribution as the state-
conditioned likelihood for the HMM rather than the general GMM. They motivated
this, as the sum of Poisson distribution leads to the KL divergence measure used for
NMF measurement.

The author in [88] proposed an improved semi-supervised NMF algorithm based
on the frame level. In particular, they estimated the bases coefficient matrices of
speech and noise computed using pre-trained speech, and noise bases to avoid noisy
speech variability over time. When a new noisy frame is processed the proposed
NMF approach is used to train the noise bases, hence it can maintain the dimension
reduction, and the computational complexity. Thus, the proposed algorithms can be
implemented for real-time speech-processing tasks.

In this research [44], the authors proposed an improved NMF algorithm based on
basis compensation. In the enhancement phase, extra basis vectors for clean and
noise signals are used in order to capture the features that are missed in the training
phase. Especially, the free basis vectors of the clean speech are estimated by utilizing
a priori knowledge based on Gamma distribution, Conversely, the free basis vector
of the noise relies on prior knowledge of a regularization approach respectively. In
this way, it forces the noise-free vector basis to be orthogonal to the clean speech and
noise basis vectors estimated during the training stage.

The authors in [45] proposed an algorithm for regularizing the NMF approach. In
particular, the speech and noise magnitude spectrum likelihood functions are used
as regularization parameters in the NMF cost function. Finally, to improve the
speech quality they integrate a masking model based on the human auditory mech-
anism. The final results showed a clear improvement in terms of speech quality and
noise suppression.

In this research [245], they introduced an approach for enhancing speech signals
spectrogram using NMF and sparse NMF algorithm. Unlike the traditional spec-
trograms estimated using STFT, which has a frequency resolution lacking at low
frequency. Constant Q-transform is used the provide high resolution at low fre-
quencies, while the back-end remains the sparse NMF. The proposed method out-
performed the conventional STFT approaches at low SNR values.

2.3.4 Multi-layer Perceptron Algorithms

A Multi-layer Perceptron (MLP) is a machine learning approach based on feed-
forward artificial neural network (ANN) [161, 217]. Generally, the MLP network
comprises at least three layers namely input, hidden, and output layers. Each layer
contains neurons followed by a non-linear activation function. During the training,
the MLP network uses the back-propagation algorithm as a supervised training ap-
proach. Thus, the MLP networks can distinguish non-linear data due to the multiple
layers with non-linear activation. In the following sections, we review studies that
investigate MLP applied to speech enhancement.

In [218], the AMS features are used as inputs for the MLP network to estimate the
local SNR, based on it the noise is canceled. In particular, mixture speech signals
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are represented by spectro-temporal patterns e.g. AMS features, since it carries the
information of center and modulation frequencies for the analysis frames.

The authors in [98] introduced novel features based on the pitch for MLP training
to estimate IBM. The network is trained using 128-channel Gammatone filterbank
features to separate noise signals from the voice segments with input SNR = 0, and
reverberation time extending from 0.1 sec to 0.6 sec. for each mixture. An objec-
tive cost function is used based on maximizing the input SNR during the training
showed a notable improvement in the classification process.

Another algorithm is proposed in [83] using CASA as MLP for robust pitch-tracking
and segregation. In particular, the tandem approach estimates the target speech
pitch and eliminates other segments. The calculated target speech pitch is used to
separate the target speech from the noise using temporal and harmonic continuity.
A systematic evaluation revealed that the target speech pitch is accurately extracted
without noise artifacts.

2.3.5 Deep Neural Networks Algorithms

Deep neural networks (DNN) is a kind of ANN with more hidden layers between in-
put and output layers [116, 190, 249]. Recently, DNN-based algorithms for different
research areas gain a lot of attention due to the remarkable improvement in parallel
computing resources as well as software and hardware. Regarding the software, the
powerful computing platforms introduced by NVIDIA e.g. compute unified device
architecture (CUDA) [60] and current deep learning frameworks e.g. Tensorflow
[2], and PyTorch [173]. Concerning the hardware, graphics processing units (GPUs)
and tensor processing units (TPUs) substantially improve DNN performance. DNN
algorithms emerged in many research areas e.g. computer vision [229], machine
translation [134], and automatic speech recognition [204].

In the last decades, DNN-based approaches brought a notable improvement in the
speech processing area, including speech enhancement, as it doesn’t take into ac-
count any prior assumptions for speech and noise. Additionally, it outperforms the
traditional algorithms discussed in section 2.2. However, DNN-based algorithms
show low latency processing which is critical for real-time applications [76].

Generally, DNN-based speech enhancement algorithms are categorized into two
main categories namely Frequency-domain and Time-domain according to the net-
work input. In the following, we overview the SOTA of both categories.

Frequency-Domain Approaches

Different DNN architectures including fully connected networks (FC), convolutional
neural networks, and recurrent neural networks (RNN) were investigated to analyze
2D or 3D images in the computer vision field. Contrary, speech signals are time-
domain 1D signals with correlations between successive samples. Hence, STFT is
calculated for 1D speech signals to obtain a 2D representation e.g. spectrogram in
the time-frequency (TF) representation. Thus, DNN-based approaches adopted for
computer vision can be applied without extra adjustment [160].

Typically DNNs are able to learn the complex relationship between the signal input
features, either in time or frequency domains, and the desired training target e.g.
speech spectra or spectral masks. Speech enhancement-based STFT representation
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FIGURE 2.9: Schematic diagram of frequency-domain speech en-
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is concerning either magnitude or phase enhancement as depicted in Fig 2.9. We
overview the SOTA in magnitude and phase enhancement.

• Magnitude Enhancement
The authors in [238], which is an extension of [236, 237], proposed DNN-based
SE using a masking-based framework. A fully-connected network is utilized
for sub-band classification for IBM estimation. The network parameters were
initiated using a restricted Boltzmann machine (RBM) which is a stochastic
generative neural network. The motivation behind that, during training FC
network starts with random parameters, which slows reaching the local min-
ima especially when the model consists of a large number of hidden layers
[82]. The network is trained using 64-channel Gammatone filterbank features
extracted from each TF unit to learn discriminative features. Finally, SVM
is trained using the earned features concatenated with the input to estimate
the sub-band IBM. The obtained enhancement results showed substantial im-
provement with respect to the SOTA approaches.

The mapping-based approach for speech enhancement was first introduced in
[140], where a deep auto-encoder model is used to map the noisy power spec-
trum to the clean ones. The authors reported that increasing the model com-
plexity leads to better enhancement results. Comparing the proposed model
with the MMSE approach, the proposed one shows superior performance. The
same approach is employed in [249], where an FC network is used to map the
noisy power spectrum to its clean version with RBM used for the same rea-
son explained above. During training, the dropout technique is used to avoid
over-fitting. Finally, the authors utilized the acoustic context information i.e.
full-frequency band and context frame expansion to reduce discontinuity and
achieve better speech quality. The proposed approach not only outperforms
the traditional MMSE approach and is able to eliminate non-stationary noise
but also generalizes to unseen noise.
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Other studies tried to investigate other different training targets in their DNN-
based approaches. The authors in [256] attempted to take advantage of the
masking-based approach and the mapping-based approach. In particular, their
FC network jointly estimated IBM, IRM, and the spectrogram of the clean
speech. Obtained results demonstrated that joint mask-spectrum estimation
leads to better enhancement performance. The same approach was introduced
in [249] adding a multi-input framework. This framework is able to integrate
the learned acoustic features e.g. MFCCs, mask representation, and jointly op-
timize all the parameters. An analogous approach is proposed in [155, 235],
the trained a DNN to estimate the ratio mask in the Gammatone domain. The
estimated mask is then used to obtain the enhanced signal in the time-domain.
A similar contribution is also reported in [243], while the difference is that the
estimated mask is based is the Discrete Fourier Transform (DFT) domain.

Different DNN-based based on recurrent neural networks e.g. RNN and LSTM
had been investigated in the speech enhancement area. The authors in [241]
investigated the LSTM network as a front-end SE for robust ASR in noisy con-
ditions. Precisely, employing the LSTM network as a front-end to provide en-
hanced speech signals leads to a 13.76% improvement in terms of WER. The
same approach was also applied in [133]. In [192], an RNN is trained to learn
spectral masking from the magnitude spectrograms of the noisy speech signals
integrated with an intelligibility improvement filter used to improve speech
intelligibility. Reported experimental results show a notable improvement in
speech quality and intelligibility with 17.6%, 5.22, and 19% for STOI, SDR, and
PESQ metrics over noisy scores.

The authors in [233] attempted to avoid problems of gradient disappearance
and gradient explosion using a gated recurrent network (GRU). Firstly, a DNN
network with three hidden layers is used to learn the mapping function be-
tween the logarithmic power spectrum (LPS) features of noisy and clean speech
signals. Then a GRU network is trained with a feature fusion between the LPS
features and noisy speech signals to learn the mapping relationship between
LPS features and log power spectrum features of the clean speech spectrum.
Obtained experimental results showed that the PESQ, SSNR, and STOI are im-
proved by 30.72%, 39.84%, and 5.53%, respectively, with respect to the noisy
metrics.

CNN-based architectures are widely investigated in speech enhancement areas
because the weight-sharing property leads to fewer parameters with respect to
FC and RNN architectures. The authors in [170] employed a fully CNN net-
work as the mapping-based framework. Each layer consists of a convolutional
layer followed by a batch normalization operation and ReLU activation func-
tion. The network is trained based on the noisy spectrogram, while the clean
speech spectrogram is used as the training target. Obtained results demon-
strated promising enhancement results. In [214], the authors combined the
convolutional and recurrent layers to form a novel architecture called convolu-
tional recurrent network (CRN). The motivation is to introduce a causal system
for real-time applications that is noise and speaker-independent. Experiments
showed better quality and intelligibility with fewer trainable parameters.

• Phase Enhancement
Most of the discussed approaches are concerned with enhancing the speech
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magnitude, while the phase remains noisy and deployed during signals re-
construction [6], which deteriorates the final performance. Later, it proved the
effectiveness of investigating the phase information for SE [211], where the
authors proposed that enhancing the phase spectrum along with magnitude
improves speech quality and intelligibility in terms of objective and subjective
measures.

An MMSE phase estimator approach was proposed in [187] to estimate the
phase information for enhanced speech signals reconstruction with prior knowl-
edge of signal spectrum amplitude. In [243] the authors jointly trained a DNN
to estimate the real and imaginary part of a complex ideal ratio mask (cIRM),
which can be considered a multi-target approach.

The authors in [188], propose a SE-DNN approach combined with a phase esti-
mator to improve speech quality and intelligibility. During the training stage,
the DNN learns a mapping function from the noisy speech to estimate the IRM
for the spectral magnitude. Then, the temporal smoothing unwrapped spectral
phase estimation is employed and transformed into a structured spectral phase
during signal reconstruction. In the enhancement stage, the enhanced speech
magnitude is reconstructed with the estimated structured spectral phase.

Recently the authors in [77], reports major limitation of SE DNN-based ap-
proaches: (a) Most of these approaches discard the phase spectrum informa-
tion. (b) More computational resources and memory requirements are required
to train these models. Thus they have limited usage in real-time applications.
Towards solving these issues, they proposed a phase-aware composite deep
neural network (PACDNN) to simultaneously estimate the magnitude pro-
cessing with a spectral mask and phase reconstruction using the phase deriva-
tive approach. Exhaustive experiments yielded better enhancement perfor-
mance with respect to SOTA approaches with lower computational complex-
ity and memory consumption. A similar approach is proposed in [174], the
authors conducted a systematical study on the contribution of phase and mag-
nitude in modern SE DNN-based approach at different frame lengths. Sys-
tematical analysis showed that adequate choice of frame length is a critical pa-
rameter of designing SE STFT-based systems as it controls the system latency
needed for real-time applications. In particular, short frame length deterio-
rates the algorithm performance, while a large number of frames significantly
increases the computational complexity.

Time-Domain Approaches

Time-domain approaches are alternative algorithms that operate directly on the raw
waveform [8]. Recently, approaches operating in the time domain have emerged to
mitigate the phase estimation problem, introduced in frequency domain approaches,
which improve speech quality and intelligibility [231]. In [164], the authors pro-
posed an approach based on a fully-CNN architecture. The network input is the
noisy speech signals and the output is the corresponding enhanced ones. During
the training phase, the MSE-based frequency domain loss function was used to train
the time domain framework. In this way, they avoid the STFT phase estimation
problems leading to better enhancement performance. The same approach was uti-
lized in [166], improving the generalization as the model is trained in a speaker- and
noise-independent.
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A Dense-CNN model is proposed in [165] with a self-attention mechanism. The
model architecture is an encoder-decoder with skip connections, each layer in both
the encoder and the decoder consists of a dense block followed by an attention block
that helps in features extraction. Finally, the model is trained based on a novel loss
function based on the magnitudes of the enhanced speech and the predicted noise.

As the Convolution-augmented transformer (conformer) showed a substantial im-
provement in speech-domain applications, such as automatic speech recognition,
and speech separation. The authors in [105] exploit the Conformer performance
in the SE task, as it is able to capture both the short and long-term temporal se-
quence information by attending to the whole sequence at once with multi-head
self-attention and convolutional neural network. The experimental results showed
the proposed model outperforms other baselines (i.e. HiFi-GAN [209], DeepMMSE
[258], and DEMUCS [49]) in terms of standard SE evaluation metrics.

SEGAN proposed in [171, 172], was the first attempt that investigates the use of
generative adversarial networks (GAN) for speech enhancement. Practically, GAN
architecture has two sub-networks namely Generator (G), and Discriminator (D).
The G component is trained for mapping tasks, while the D component, which is a
binary classifier decided that the inputs are either real samples or synthetic ones. The
same approach was later developed towards UNet-GAN architecture [74], where
the G component is replaced by the U-Net model, an encoder-decoder model that
employs dilated convolution in the bottleneck of it.

2.3.6 Limitation of Supervised Speech Enhancement Algorithms

Supervised speech enhancement algorithms outperform Unsupervised algorithms
in terms of speech quality, intelligibility and generalization capability for unseen
noisy conditions especially in case of DNN-based approaches. However, they have
serious limitations discussed below:

• GMM algorithm: The model is statistically ineffective in the case of modeling
the data that is located on or located near a nonlinear manifold in the data
space. Thus, it fails in modeling the acoustics of speech signals.

• SVM algorithm: SVM can not handle large data sets. Moreover, its perfor-
mance deteriorates in case of high overlapping between speech and noise classes.
Finally, the SVM adjusts the data points, above and below the defined hyper-
plane, there is no probabilistic clarification for the classification.

• Non-Negative Matrix Factorization: These algorithms have a lack of gener-
alization capabilities, especially in presence of multi-noisy conditions. More-
over, it needs powerful computational resources.

• DNN-based algorithms: Generally, they require large datasets to obtain good
performance. In the case of speech processing applications e.g. speech recog-
nition and speech enhancement, large datasets are available online with very
few stereo data available for speech enhancement. Therefore DNNs are im-
plausible to perform better than other competing methods. Moreover, these
algorithms are extremely computationally complex, as it needs long time peri-
ods to train the model using powerful GPUs.
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FIGURE 2.10: Block diagram of PESQ measure computation [137].

2.4 Speech Enhancement Evaluation Metrics

Quality and intelligibility are two attributes used to evaluate the processed speech
signals [137, 138]. Quality is a subjective metric used to measure how utterances are
produced and involve some attributes e.g. natural, raspy, hoarse, and scratchy [95].
Unlike quality, intelligibility can be measured by giving processed speech signals
(sentences, words, etc.) to a group of listeners and asking them to identify these
spoken words. Then intelligibility is computed using the correct identified words or
phonemes [137].

Many research studies had been conducted to develop objective evaluation mea-
surements to estimate speech quality and intelligibility with high correlation. These
measurements are based on mathematical representations between clean and en-
hanced speech signals [137]. In general, most of the objective metrics are based on
the time or frequency domain features that are extracted from the clean and noisy
signals for similarity index measurement.

Frequency-weighted segmental SNR (fwsegSNR) relies on calculating the geometric
mean of the SNR for all speech frames [137]. Other types of objective metrics de-
pend on the speech features e.g. spectral distance of Linear prediction coefficients
(LPC). For example, the log-likelihood ratio (LLR) metric, is used for similarity pre-
diction between clean and processed speech signals [176] based on all-poles models
estimated from LPC coefficients. The weighted spectral slope (WSS) is used to de-
termine the difference either of formants or spectral peaks location, by searching for
the spectral slope for all bands of speech frequencies [110].

Perceptual evaluation of speech quality (PESQ), as depicted in Fig. 2.10, is a common
objective metric that is used to evaluate speech distortion, packet loss, codec distor-
tion, and speech quality [137]. This metric is recommended by the international
telecommunication union (ITU) to be used as an objective metric for speech quality
(P.862 standard), and its range lies between (-0.5 to 4.5) i.e. higher score means sig-
nals quality. This metric is based on the time alignment approach to compensate for
the delay between the clean and noisy signals. Hence, it applies a transformation to
equalize the linear filtering and gain variation to achieve the loudness spectra [179].
Despite the effectiveness of the PESQ metric, it has some limitations including lis-
tening levels, loudness loss, effects of delay in conversational tests, talker echo and
side tones [81].



28 Chapter 2. Literature Review

In [86], the authors exploit the performance of PESQ, SNR, LLR, and WSS met-
rics to measure speech signal quality obtained using spectral subtraction, subspace,
and Wiener filter algorithms. This research also proposed other objective metrics
called composite metrics (Csig, Cbak, and Covl), which is a linear combination of
the above-mentioned objective metrics to predict speech quality [87].

The short-time objective intelligibility measure (STOI) proposed in [213], uses 384
ms long blocks containing excitation spectra of the clean and processed signals. This
metric computes the average of the correlations across all 1/3-octave bands and 384-
ms blocks and uses it to predict speech intelligibility assigning a score ∈ (0, 1) i.e.
higher score means signals intelligibility. Prior to the correlation computation, the
processed envelope was normalized and clipped as follows:

y(j,m) = min
(
||x||2
||x̂||2

x̂, (1− 10−β/20x
)

(2.25)

Where β = −15dB.
x, and x̂ denote the clean and enhanced envelope vectors respectively.
||.||2 represents the vector 2-norm.

The β parameter that controls the clipping operation is effective primarily in noise-
only regions. Thus, it is employed to mitigate the impact of those regions on speech
intelligibility.

Table 2.1 summarizes the most common speech enhancement metrics, their mathe-
matical representation, and the purpose of using them.

TABLE 2.1: Common speech enhancement evaluation metrics

Metric Equation Measure

PESQ α0 − α1.Ains − α2Bins Speech quality

LLR log
−→
bx Rx

−→
bT

x−→
bx̂ Rx

−→
bT

x̂

Speech quality
&

Spectral distance

segSNR 10
M

M−1
∑

m=0
log10

(
|S(m,ωm|2

|S(m,ωm|−|Ŝ(m,ωm||2

) Speech quality
&

noise suppression

fwsegSNR 10
M

M−1
∑

m=0

( k
∑

j=1
Bj log10[

F2(m,j)
F(m,j)−F̂(m,j)

]

k
∑

j=1
Bj

) Speech intelligibility
&

Speech quality

Csig 3.093− 1.029 LLR +0.603 PESQ −0.009 WSS
Speech Distortion

&
Residual noise

Cbak 1.634 + 0.478 PESQ −0.007 WSS +0.093 segSNR

Covl 1.549 + 0.805 PESQ −0.512 LLR −0.007 WSS

STOI y(j,m) = min
(
||x||2
||x̂||2 x̂, (1− 10−β/20x

)
Speech intelligibility

SNR 10 log10
X(k,m)2

X̂(k,m)2 Speech intelligibility
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2.5 Speech Enhancement for Robust Speech Classification:
(ASR Case Study)

Most of the SOTA SE approaches are designed to improve the perceptual quality
measured using SE metrics. Nevertheless, due to the inconsistency between the
training objectives of the SE and ASR modules, these improvements do not always
have a positive impact on the ASR performance, especially in case of multi-noise
conditions. Recently, different research attempts have been made to optimize the
SE module to maximize the performance of the subsequent downstream ASR task.
Table 2.2 summarizes part of these research paper.

TABLE 2.2: Summary of research papers investigate SE for ASR in
noisy conditions

SE architecture Dataset Domain Average (WER) (CER)%

Frequency Time SSL Feat. Noisy Enhanced

CycleGAN [123] CHiME-3 X 61.46 52.80

TENET [31] DEMAND
QUT-NOISE X

23.76
82.32

6.76
26.50

6-layers DNN [198] MATBAN X 68.77 57.47

CRN (MCG) [232] Noisy AISHELL1 X 20.984 16.882

GAN [132] Noisy AISHELL1 X 51.5 49.1

Dense CRN [167] Social media English video X 17.4 11.2

DCCRN [118] Noisy Librispeech X
16.43
9.26

15.54
9.07

Dense CNN [101] Noisy Librispeech X 34.04 15.46

Conformer [111] Noisy Librispeech X 10.5 9.2

BiLSTM [193] Noisy Libri-light X 11.0 10.0

TASNet [109] CHiME-4
Aurora-4 X

12.23
8.5

8.19
6.3

MC Conv-Tas Net [259] CHiME-4 X 19.5 10.7

Residual-CNN [158] CHiME-4 X 13.44 8.56

Conv-TAS Net [30] CHiME-4 X 6.36 4.93

Attention
Wave-U-Net [66]

VCTK
Simulated Data X

11.55
34.42

10.69
26.33

CRN [128] In-house corpus X 7.43 6.19

DEMUCS [53] DNS X 7.5 5.01

CNN+LSTM [203] DNS-3 X X 24.72 15.982

2.5.1 Discussion

With the advent of deep learning, research on noise-robust ASR has increased signif-
icantly. However, improving the ASR performance in noisy conditions is still a chal-
lenging task. Multiple frequency-domain models are employed as a pre-processing
SE stage; subsequently the ASR is trained on the enhanced features. The drawbacks
of these approaches, as mentioned previously, is that they employ the noisy phase
while reconstructing the enhanced signals. Moreover, most of these SE front-end
modules are trained separately from the ASR module. For this reasons, they often
introduce speech distortions that degrade the ASR performance. A clear evidence of
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this is that the enhanced WER metric is relatively high, often approximately similar
to the noisy WER as in [111, 118, 193] .

Motivated by the unprecedented breakthroughs of time-domain SE deep learning
approaches, that showed outstanding enhancement performance, recent SE mod-
els are trained directly to map the noisy speech into its clean counterpart. The
key strength of these approaches is that they get rid of the hand-crafted features
e.g. spectrograms, F-banks features, commonly used in the frequency-domain ap-
proaches. These approaches improves the quality metrics as well as the WER com-
pared with noisy ones.

Latterly, features augmentations bring a remarkable improvement in speech pro-
cessing research as in [203], where a combination between the noisy speech embed-
dings, obtained from a large scale pre-trained WavLM model [37], with the STFT fea-
tures are fed the SE module to estimate the enhanced speech. This approach shows
promising performance even with a limited amount of training data.



31

Chapter 3

Robust Intent Classification in
Noisy environments

This Chapter gives some insights into the robustness of back-end speech classifica-
tion tasks, especially intent classification in noisy environments. Section 3.1 provides
a general overview of the intent classification task. Section 3.2 describes each mod-
ule in the proposed pipeline that integrates the speech enhancement with the intent
classifier. Experimental results are presented and analyzed in Section 3.3, followed
by the conclusion in Section 3.4. The results discussed in this chapter were reviewed
and published in the Proceedings of European Signal Processing Conference (EU-
SIPCO), 2021 [9] 1.

3.1 Overview on Intent Classification Task

Spoken Language Understanding (SLU) is a research field that has inspired the in-
terest of scientific communities referring to the natural language processing (NLP)
area for many years. Nowadays, spoken dialogue interaction, in a natural way, is
possible with several commercial products, such as the most known personal assis-
tants (Google Home, Amazon Alexa, Siri, Microsoft Cortana, etc), and can be im-
plemented with a set of toolkits, both commercial (e.g. dialog flow [186]) and open
source (e.g. Rasa, Opendial, [19, 131]).

The fundamental function of SLU systems is to understand the intents of the users,
which causes the execution of "actions" aimed to fulfill their requests. For exam-
ple, in smart home applications an utterance like "increase the sound" might cor-
respond to an intent represented with the following filled slots: action: "increase",
type: "sound", count: "None", place: "None". A survey reporting fundamentals of
SLU technology can be found in [64, 222].

The Intent Classification (IC) task is usually accomplished by applying natural lan-
guage understanding (NLU) techniques to the output of an ASR system, to produce
a semantic interpretation of the input speech as described in Fig. 3.1(a). Recently,
approaches that perform this task in an end-to-end (E2E) fashion, shown in Fig.
3.1(b), have started to be investigated and produced an excellent performance on
several datasets. The E2E paradigm uses a single neural model to map a spoken

1https://ieeexplore.ieee.org/abstract/document/9616322

https://ieeexplore.ieee.org/abstract/document/9616322
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ASR NLU

Text
{
action: increase
object: heat
location: bedroom
}

Intent

Bedroom heat up

Speech

SLU

Intent
{
action: increase
object: heat
location: bedroom
}

Speech

(a)

(b)

FIGURE 3.1: Conventional SLU pipeline versus E2E2 SLU pipeline.

input into the corresponding intents, thus optimizing directly the classification met-
rics and avoiding error propagation caused by ASR errors. Some interesting models
and related results in this direction can be found in the works reported in [71, 143,
175, 197].

Unfortunately, as in ASR systems, environmental noise deteriorates the quality and
intelligibility of speech signals, resulting in low intent classification accuracy [225].
To mitigate the impact of noise, a possible approach consists in training, or adapting,
the classification model on the noisy data [253]. This can be done either by collecting
application-specific data or through the usage of data augmentation strategies [25].
However, acquiring large sets of noisy data is costly and time-consuming while, in
general, all possible noisy conditions cannot be known a priori making unfeasible
the data augmentation-based approach. Therefore, an alternative method is to use a
speech enhancement front-end to improve classification accuracy.

To tackle the problem of IC in noisy environments, we employ a speech enhance-
ment front-end to mitigate the noise impact on the speech signals before processing
them with the IC back-end. Fig. 3.2 shows the complete pipeline of the proposed
approach.

More in detail, we use an improved version of the Wave-U-Net: a deep learning
speech enhancement front-end [146] which is an extension of the model introduced
for audio source separation in [207]. Regarding the IC task, we exploit here in after
a convolutional deep neural network with residual layers named temporal convolu-
tional network (TCN), which allows for achieving state-of-the-art performance. Fi-
nally, to make the IC task robust against out-of-vocabulary sentences, we introduce
a multi-task learning framework by predicting each intent element disjointly.

3.2 System Description

The following subsections describe each component of the pipeline depicted in Fig.
3.2.
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Speech
Enhancement

Feature
Extractor 

SLU  
System 

{
action: increase
object: heat
location: bedroom
}

IntentMixture Speech Enhanced Speech 40-Mel filter banks

FIGURE 3.2: The full pipeline of our intent classification scheme, in-
cluding speech enhancement and intent classifier.

3.2.1 Wave-U-Net for Speech Enhancement

As discussed in Chapter 2, time-domain speech enhancement approaches allow the
achievement of promising results in comparison with other techniques. Among
them, the U-Net architecture proposed in [183], later successively improved towards
Wave-U-Net [146, 164] has obtained encouraging results.

Wave-U-Net comprises 3 components [6] as depicted in Fig. 3.3: (a) an encoder net-
work consisting of multiple 1-D fully convolutional down-sampling blocks; (b) a
bottleneck 1-D convolutional layer; and (c) a decoder network made by a stack of
1-D fully convolutional up-sampling blocks. Note that skip connections are used be-
tween each down-sampling block and its corresponding up-sampling counterpart.

In detail, the network input is a vector of noisy speech signals z[n] ∈ [−1, 1]L×C,
n = 0, ..., L− 1, where L represents the number of samples and C is the number of
input channels. During training, low-dimensional high-level features are computed
at different time scales through a series of down-sampling blocks. These features
are then concatenated with their corresponding local, and high-resolution features
extracted through the up-sampling blocks. In the case of monaural speech enhance-
ment, the network is trained to map noisy signals z[n] to its enhanced counterpart
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FIGURE 3.3: Schematic diagram of the Wave-U-Net model for speech
enhancement.
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ŝ[n] using clean signals s[n] as the training target. The model attempts to minimize
the MSE loss between ŝ[n] and s[n] i.e.:

LSE = ∑
n
‖s[n]− ŝ[n]‖2 (3.1)

3.2.2 Dilated Encoder Wave-U-Net

The proposed modified model follows the basic Wave-U-Net architecture. Recently,
using dilated convolutional layer achieves promising performance on time-series
data as it captures long-term information without increasing the computational com-
plexity [24, 251].

In particular, the model comprises four downsampling and four upsampling blocks.
Each downsampling block consists of three 1D convolutional layers with "kernel size
= 15", and "stride = 1". While in the original Wave-U-Net architecture the padding
value is fixed and equal to 7, in the modified model the padding value is doubled
successively i.e " padding = 7, 14, 28".

The key difference between the original and the adopted architecture is that the orig-
inal Wave-U-Net architecture uses a constant dilation factor i.e. "dilation = 1", while
in the modified architecture the dilation factor is increased exponentially from layer
to layer i.e. "dilation = 1, 2, 4" respectively.

In both architectures, each convolutional layer is followed by a 1D-Batch normaliza-
tion layer and the Leaky ReLU activation function with a negative slope "α = 0.1".
The bottleneck layer is a 1D convolutional layer with "kernel size = 15", "stride = 1",
and "padding = 7". The network’s right side consists of the same number of blocks
i.e up-sampling blocks with the same number of non-dilated convolutional layers.
Finally, a 1-D convolutional layer with "kernel size = 1", and "stride = 1" is set on
top of the model followed by the Tanh activation function to produce the enhanced
speech signals.

3.2.3 Temporal Convolutional Network for Intent Classification

For intent classification, we propose to use a multi-class architecture to directly map
the enhanced input features into the corresponding intents. Our proposed model is
based on the separation part of Conv-TAS-Net, originally introduced for the speech
separation task [145].

The model depicted in Fig. 3.4, processes 40-Mel filter banks computed on a 20 ms
window size, with a 10 ms step. It applied a global layer normalization (gln)(see Eq.
3.2) and a 1-D convolutional layer (Conv 1× 1 as depicted in Fig. 3.4(a)) that maps
the input features into 64 bottleneck channels.

gln(F) =
F− E[F]√
Var[F] + ε

� γ + β (3.2)

Where F ∈ RN×T is the tensor of features, β, γ ∈ RN×1 are trainable parameters,
E[F] represents the mean feature vector, Var[F] is the related variance, and ε is a
small constant added for numerical stability.

This layer is followed by two repetitions (R = 2) of five consecutive 1-D dilated con-
volutional residual blocks (B = 5) with skip connections. Each residual block as
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FIGURE 3.4: (a) Block diagram of the TCN classifier. (b) of a single
1-D dilated convolutional block.

shown in Fig. 3.4(b) consists of two symmetrical pipelines with a depth-wise sep-
arable convolutional layer that maps the 64 bottleneck channels into 128 channels.
Each pipeline has a pointwise convolution (1x1 Conv block) followed by a gLN with
Parametric Rectified Linear Unit (PReLU) activation function. A pointwise convolu-
tion is applied at the input and as a final operation. A residual branch connects the
original input to the output. Mean pooling is applied to the output of the last block,
followed by gLN and a linear layer. It is worth mentioning that, the dilation factor
is increased exponentially in every successive residual block.

The IC classifier is trained to estimate the target intent by minimizing the cross en-
tropy loss between the predicted and actual labels as illustrated in Eq. 3.3.

LIC = − 1
T ∑

t
log(pt) (3.3)

where T is the number of training samples and pt is the probability of the tth target
sample.

We consider two different training strategies: joint and dis-joint classification. In
the joint classification task, shown in Fig. 3.5(a), the model estimates the whole
components associated with the desired intent simultaneously. In the case of a dis-
joint classification strategy, the three components of each intent (i.e. action, object,
location) are classified independently [61]. The latter strategy can be considered as
a multi-task learning approach since the final classification layer is split into three
distinct tasks as depicted in Fig. 3.5(b). During inference, the three predicted parts
are combined to form the predicted intent. On one hand, this is a more difficult
task as it allows the prediction of non-existing intents when joining the three parts.
On the other hand, it is supposed to be more robust in case of out-of-vocabulary
utterances (e.g. ways to express intents that are not available in the training dataset)
or in case of unseen intents are present in the test dataset.
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FIGURE 3.5: The intent classification strategies: (a) Dis-joint strategy.
(b) Joint strategy.

3.3 Experimental Results

The speech enhancement front-end is trained using a noisy version of the Librispeech-
100 dataset described in Section 1.5. Randomly, 10 hours of clean speech are selected,
and contaminated by adding noise from the MS-SNSD dataset described in Section
1.5.

The noisy Librispeech is generated by randomly selecting a random noise file avail-
able in the MS-SNSD dataset and is added to the clean signal with one out of five
SNRs: 5 dB, 7.5 dB, 10 dB, 12.5 dB, and 15 dB. The dataset was split into three por-
tions: 6 hours, 2 hours, and 2 hours for training, validation, and testing respectively.
The FSC dataset, described in Section 1.5, is also contaminated with similar proce-
dures using the MS-SNSD library with the same SNR ranges plus two more levels -5
dB, and 0 dB.

Both the original Wave-U-Net 2 and the modified model are trained using the noisy
Librispeech dataset. To handle signal length variation, the network is designed to
process fixed-length input signals taking 16384 continuous samples randomly se-
lected from the noisy and clean speech signals. Both models are trained using Adam
optimizer with learning rate =10-4, decay rates β1 = 0.9, and β2 = 0.999, "batch size
= 10", and as previously mentioned the MSE is used as loss function. Finally, to in-
vestigate the generalization capability of the trained models to out-of-domain noisy
data, we utilize the Librispeech-trained Wave-U-Net models to denoise the noisy
FSC dataset.

2https://github.com/haoxiangsnr/Wave-U-Net-for-Speech-Enhancement

https://github.com/haoxiangsnr/Wave-U-Net-for-Speech-Enhancement
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Algorithm 1 Pseudo-code for training models

Require: Wave-U-Net initialization.
Require: Number of Epochs = 500.

for i ∈ Number of Epochs do
Forward Pass:
Starting from the input layer do a forward pass.
(with batch normalization) through DNNs.
Compute the speech enhancement loss function LSE.
LSE = ∑n ‖x[n]− x̂[n]‖2 . MSE loss based on the waveform
Backward Pass:
Compute the gradient of the enhancement loss ∇LSE and backpropagate it.
Parameter Update:
ΘSE ←− ΘSE − λ1[α∇LSE]

end for
Require: Evaluate the front-end with Enhancement metrics
Require: Generate the Enhanced signals.
Require: Intent classifier initialization.
Require: Number of Epochs = 100.

for i ∈ Number of Epochs do
Forward Pass:
Extract 40-Mel Filter banks features.
Compute the intent classifier loss function Lcl .
LIC = − 1

T ∑t log(pt) . Cross-entropy loss
Backward Pass:
Compute the gradient of the classifier loss ∇LIC and backpropagate it.
Parameter Update:
ΘIC ←− ΘIC − [(1− α)λ2∇LIC]

end for
Compute the accuracy on the validation dataset.
if {acci+1

dev } > {acci
dev} then

Save the back-end model.
end if
i+ = 1

3.3.1 Speech Enhancement Results

The performance of the enhancement process is evaluated using a set of quality and
intelligibility metrics: PESQ, STOI, and SNR discussed in Section 2.4.

First, we experiment with the performance of both Wave-U-Net models (Basic and
Dilated), results are reported in Table 3.1. We trained both models with MSE loss, L1
loss, and a combination of them using α = 0.2 and, 0.8 to control the weight of each
loss as follows:

Lcomb = αLMSE + (1− α)LL1 (3.4)

As shown in Table 3.1, for both models, the MSE loss function outperforms the L1
norm loss, especially in terms of the PESQ metric. Despite the noticeable improve-
ment in the PESQ score, both STOI and SNR metrics don’t exhibit large differences
between the two losses.

The use of the combined loss function does not improve with respect to the MSE loss,
especially in the PESQ and SNR metrics. We can conclude that the highest scores are
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TABLE 3.1: PESQ, STOI, and SNR for both Wave-U-Net models using
MSE, L1 and combined Loss Functions

Model loss PESQ STOI SNR

Unproc. 1.30 0.70 11.52

Basic Wave-U-Net

L1 1.93 0.74 12.89
MSE 2.13 0.76 13.42

α = 0.8 1.95 0.76 12.95
α = 0.2 1.94 0.74 12.91

Dilated Wave-U-Net

L1 2.48 0.78 13.86
MSE 2.37 0.78 13.95

α = 0.8 2.38 0.78 13.72
α = 0.2 2.24 0.78 12.93

TABLE 3.2: PESQ, STOI, and SNR for the Wave-U-Net models using
Librispeech and FSC datasets based on MSE loss

Data sets PESQ STOI SNR

Unproc. 1.30 0.70 11.52

Librispeech
SE-GAN [171] 1.85 0.72 11.71
Wave-U-Net 2.13 0.76 13.42

Dilated Wave-U-Net 2.37 0.78 13.95

Unproc. 1.79 0.62 8.68

FSC
SE-GAN [171] 2.15 0.64 11.35
Wave-U-Net 2.68 0.67 11.06

Dilated Wave-U-Net 3.09 0.73 11.30

obtained using the MSE loss function.

Table 3.2 reports the enhancement metrics on the contaminated Librispeech-100 and
FSC datasets using both the original Wave-U-Net model and our proposed dilated
encoder Wave-U-Net, considering SEGAN approach [171] as the baseline. For Lib-
rispeech, evaluation metrics are computed on the 2-hours official testing partition.
Conversely, for the FSC dataset, the metrics are reported considering the whole
dataset (as the models are trained on the noisy Librispeech-100 training set).

The dilated encoder Wave-U-Net clearly outperforms the conventional Wave-U-Net
model as well as the SEGAN model in all three metrics. Despite the clear improve-
ment achieved in terms of PESQ, and STOI metrics especially in the case of the FSC
dataset. This improvement points out that the dilated encoder Wave-U-Net model
not only removes noise but also preserves the spectro-temporal properties of the
signals.

3.3.2 Intent Classification Results

We evaluate the impact of speech enhancement on the intent classifier performance
using IC accuracy, which measures the actual match between the predicted and the
ground-truth intent slots.
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TABLE 3.3: Intent classification accuracy on FSC, using clean, noisy,
and enhanced signals. Models are trained on clean data

Full Data 50% out of voc.

Evaluation Data Disjoint Joint Disjoint Joint

Clean 98.3% 98.8% 88.1% 84.8%
Noisy 63.2% 61.1% 42.3% 41.6%

Wave-U-Net 61.6% 64.2% 50.4% 47.7%
Dilated Wave-U-Net 75.3% 77.7% 65.1% 62.5%

Table 3.3 reports the classification accuracy when applying the model trained on the
clean FSC dataset and evaluated on clean, noisy, and enhanced signals in the FSC
test dataset.

First of all, we highlight the solidity of our back-end model as the performance on
the FSC clean dataset is 98.8%, which is in line with the state-of-the-art. Although
the conventional Wave-U-Net model brings significant improvement in terms of the
signal quality metrics as reported in Table 3.2, the same trend is not observed in the
intent classification in the case of noisy data.

Contrary, the proposed dilated Wave-U-Net model shows a substantial improve-
ment, lifting the classification accuracy from 61.1% to 77.7%. Considering the two
training strategies, the "joint" one is in general better, as expected, but the gap with
the "disjoint" approach is not so wide.

To evaluate the generalization capabilities of the proposed classifier, we consider an
experimental training setup where 50% of the utterances for each intent are removed
from the training set. Therefore, for each intent, an average of 4 utterances out of 8 in
the test set haven’t been seen in training. This 50% is randomly selected and results
are averaged on the two halves. Results are reported in the right part of Table 3.3.

As expected in this case, we observe a performance deterioration with respect to us-
ing the full dataset. Speech enhancement provides similar improvements to the full
data case. Note that the disjoint classification strategy provides a small but consis-
tent improvement with respect to the joint approach. This supports our hypothesis
based on the fact that predicting the intent components disjointly helps in the case
of unseen utterances.

3.4 Concluding Remarks

In this chapter, we propose a pipeline that integrates a speech enhancement front-
end based on a modified version of Wave-U-net called dilated encoder Wave-U-
Net. Both front-end models i.e. the conventional Wave-U-Net and the modified
architecture are used as a pre-processing stage to robust the intent classification task
in noisy environments.

Exhaustive experiments reported that our proposed speech enhancement not only
improves the speech quality and intelligibility metrics but also it improves the final
intent classification accuracy calculated based on a noisy version of the FSC dataset.
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A natural extension of the proposed approach is to investigate the joint training
strategy of speech enhancement and intent classification models. The key idea is
to concatenate both modules and jointly optimize their parameters. In this way, the
intent classification model can guide the enhancement front-end to provide more
suitable and more discriminative enhanced signals.
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Chapter 4

Time-Domain Joint Training
Approaches

This Chapter gives some insights into how can joint training approach mitigate the
conventional dis-joint training approach as illustrated in Section 4.1. Section 4.2
overviews the recent contributions on joint training SE with different speech-based
tasks. The proposed joint training approach is explained in detail in Section 4.3. fi-
nally, the experimental results are presented, discussed, and concluded in Section
4.4 and Section 4.5, respectively. The results discussed in this chapter were reviewed
and published in MDPI, Sensors Journal [8] 1.

4.1 Introduction

Building upon our work discussed in Chapter 3, we continue to address the IC task
in noisy environments. In detail, we propose a pipeline that integrates both time-
domain approaches: Wave-U-Net, for SE, and the TCN for IC as depicted in Fig.
4.1. In detail, we investigate different configurations to jointly optimize end-to-end
neural models for both SE and IC in the time domain.

This Chapter extends our previous published research in [9] and discussed in Chap-
ter 3, where we investigated the impact of employing pre-trained SE models on the
intent classifier performance in noisy conditions. The key difference is the exper-
iments presented in Chapter 3 did not consider joint training of the two models.
Moreover, the back-end is trained based on the 40-Mel filter banks features.

4.2 Overview on Jointly Training SE with Speech Tasks

In the literature, three approaches have been considered to jointly optimize a SE
front-end with different speech-based applications. The first approach requires to
train the back-end component (i.e. IC task in the case of this work) on clean speech
signals, while at the inference phase a SE front-end is employed to mitigate the noise
effect [156]. The main limitation of this approach is that the SE introduces signal dis-
tortion that is unseen in the training phase. However, this approach is still effective
in robust speech-based applications in noisy environments.

1https://www.mdpi.com/1424-8220/22/1/374

https://www.mdpi.com/1424-8220/22/1/374
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FIGURE 4.1: The full pipeline of our IC scheme, including SE and
intent classifier.

To tackle this issue, the second approach firstly enhances the noisy features, which
are then used to train the back-end component. Although it was demonstrated
somehow effective [195], it was found that it is better to train the back-end on noisy
datasets if they contain enough samples of the noise present in the operating field
conditions.

In the third approach, the back-end component is trained on the noisy speech fea-
tures, while at the inference the noisy features are either enhanced first using the
enhancement module or fed directly to the back-end. Despite some promising per-
formance achieved with this approach [228], it exhibits poor performance in un-
matched conditions [124]. In summary, each approach has its own strengths and
weaknesses, depending on the desired application domain.

The joint training approach proposed in this thesis attempts to jointly optimize the
parameters of the neural (front-end) of a SE task and of the neural (back-end) model
designed for a speech classification task (e.g., ASR, keyword spotting, or IC). In this
way, the back-end model guides the whole process and forces the SE front-end to
provide a more discriminative “enhanced speech“ desired by the back-end.

Fig. 4.2 shows the conventional joint training schematic diagram. The two losses
introduced for the front-end and the back-end will be combined in a total loss, as
explained later in Section 4.3. To the best of our knowledge, most joint training
approaches use ASR, voice activity detection, or keyword spotting as back-ends.
In the following subsections, we overview the recent research that addresses joint
training SE with these back-ends.
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FIGURE 4.2: Block diagram of the conventional joint training ap-
proach including SE with generic back-end speech-based task.

4.2.1 Jointly training SE for Voice Activity Detection

Recently, improving the performance of voice activity detection (VAD) systems in
noisy conditions gain a lot of attention, typically by employing a SE front-end as a
pre-processing stage to eliminate the noise [260].

In [130, 231] the enhanced speech signals obtained from the front-end SE are used
to train the VAD network in which both components are jointly optimized and fine-
tuned. Further analysis shows that the poor performance of the enhancement mod-
ule deteriorates the VAD performance [246]. Later the authors in [216] employ an
advanced SE module to provide more enhanced features for VAD training.

Motivated by the performance of the U-Net model, the authors in [117] employed a
frequency-domain SE based on U-Net to estimate both enhanced and noise spectra
simultaneously, while the VAD is trained directly on the enhanced spectrum.

In [99], the authors exploit a variational auto-encoder (VAE) architecture for SE,
while the VAD model is trained on VAE latent representations. Conversely, the au-
thors in [246] train the VAD models on noisy acoustic features concatenated with the
enhanced features estimated from a convolutional recurrent neural network.

A multi-objective approach is proposed in [215, 263] to jointly train SE and VAD
modules to boost their performance. In particular, the same network is shared for
both tasks with different loss functions. Unfortunately, this approach weakens the
performance of the VAD model.

4.2.2 Jointly training SE for Keyword Spotting

Like other speech-based applications, keyword spotting performance can be nega-
tively affected in the presence of noise. In [91], the authors addressed the problem of
noise reduction for KWS by employing a microphone-array SE front-end working in
the frequency-domain. The front-end is trained to optimize a KWS loss, leading to
an approximately 32% improvement over their baseline. A similar contribution was
conducted in [70], where the authors propose to jointly train a pre-trained SE model
with a CNN-based KWS classifier.

In [21, 27], the authors addressed the "wake-up" word detection task in noisy condi-
tions by using a linear combination of a reconstruction-based loss computed either
on the log-mel filter-banks or directly on the raw waveform. Exhaustive experiments
with different classifiers show that joint training improves overall performance.
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The contribution in [254] addresses the KWS task in multi-speaker environments. In
particular, the authors propose a joint training approach incorporating a multi-look
enhancement front-end that combines spectral, inter-channel phase difference, and
directions associated features with a back-end KWS.

It is worth noting that the direct enhancement speech embedding representations is
still an open issue, will be investigated in detail in Chapter 5, barely investigated in
literature so far. To our knowledge, the only work addressing SE with direct usage
of speech embeddings is the one reported in [221]. In this work, the loss function,
i.e. MSE loss is computed between the enhanced and clean speech embeddings.
Recently, in [92] speech embeddings were utilized to predict the T-F masks to be
applied to the noisy spectrogram. However, they are not employed in successive
speech recognition or classification tasks.

4.2.3 Jointly training SE for ASR

An early contribution for jointly training SE with ASR was proposed in [52], where
a feature extraction front-end module was jointly trained with an ASR based on
Hidden Markov Model. Both modules were optimized with the maximum mutual
information criterion.

To overcome the distortion issue introduced in conventional approaches, the au-
thors in [239] proposed a novel joint training approach that concatenates a speech
separation DNN, a filterbank feature extractor followed by an acoustic model. To
strengthen their approach, linguistic information was also used. In addition, multi-
ple features are used (e.g. log Mel-spectrogram, multi-resolution cochleagram (MRCG),
etc.) to increase the acoustic model performance.

In [178], the authors observed that the front-end output distribution changes dra-
matically during joint training optimization, causing a negative effect on the ASR
performance. Thus, they proposed a joint-training approach based on a fully batch-
normalized architecture.

Motivated by the adversarial training technique, the authors in [132] proposed a
joint training scheme including a mask-based enhancement module, an ASR-based
encoder-decoder architecture employing the attention mechanism, and a discrimi-
nating network. The motivation behind the usage of the discriminator module is to
produce features that allow better distinction between the clean and the enhanced
features. A similar approach was proposed in [126] by replacing the front-end with
a self-attention GAN network.

More recent research was done in [132], where a pre-trained SE module is jointly
trained with a self-supervised ASR back-end. In the pre-training stage, the output
waveform of the SE module is used to train a self-supervised model to learn the
contextual representation using clean speech signals as the training target. Then the
enhanced and noisy features are fused using a dual-attention fusion mechanism to
balance the information loss.

Recently, research works in [118, 199] address a more complicated task i.e speech
separation, and how can jointly train speech separation models to robust ASR sys-
tems in noisy environments using similar surveyed approaches.
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4.3 Time-Domain Joint Training Architectures

As mentioned above training a front-end SE module independently from the back-
end task (IC as in our case) often introduces signal distortion that deteriorates the
final performance. Hence, jointly training both two components has the capability
to alleviate this issue. [99, 215].

Therefore in this Chapter, we have investigated different joint training architectures
based on the Wave-U-Net for SE and the TCN for IC. The key difference between
these architectures is varying the interconnection between both the SE and the intent
classifier modules as shown in Fig. 4.3.

The Joint Training (JT) approach, shown in Fig. 4.3(a), is the most straightforward
combination strategy where the intent classifier is trained on the enhanced speech
signals. An alternative connection is depicted in Fig. 4.3(b) called the Bottleneck
approach (BN), where the back-end intent classifier is trained on the SE bottleneck
features. Finally, a more articulated combination called Bottleneck-Mix (BN-Mix),
as depicted in Fig. 4.3(c), concatenates the mixture waveforms with the bottleneck
representations.

All these three end-to-end joint training approaches were trained using the following
total loss (LTOT):

LTOT = αLSE + (1− α)LIC (4.1)

Where LSE and LIC are the MSE loss for the SE and the cross-entropy loss for the
IC defined in Eq. 3.1 and Eq. 3.3, respectively. The weight coefficient α ∈ (0, 1) is a
hyper-parameter that determines the weight of each loss. In all of our experiments,
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Algorithm 2 Pseudo-code for joint training

Require: DNNs initialization.
Require: Number of Epochs = 100.

for i ∈ Number of Epochs do
Forward Pass:
Starting from the input layer do a forward pass.
(with batch normalization) through DNNs.
Compute the SE loss function LSE.
LSE = ∑n ‖x[n]− x̂[n]‖2 . MSE loss based on the waveform
Compute the intent classifier loss function Lcl .
LIC = − 1

T ∑t log(pt) . Cross-entropy loss
Compute total loss LTOT
LTOT = αLSE + (1− α)LIC . α ∈ (0, 1)
Backward Pass:
Compute the gradient of the enhancement loss ∇LSE and backpropagate it.
Compute the gradient of the classifier loss ∇LIC and backpropagate it.
Parameter Update:
ΘSE ←− ΘSE − λ1[α∇LSE + (1− α)∇LIC]
ΘIC ←− ΘIC − [(1− α)λ2∇LIC]

end for
Compute the accuracy on the validation dataset.
if {acci+1

dev } > {acci
dev} then

Save the front-end and Back-end models.
end if
i+ = 1

we investigate the impact of this coefficient (α) using a grid of values α ∈ (0, 0.1, 0.5,
0.9).

Although these architectures are trained using the same loss functions, their compo-
nents (i.e., LSE and LIC) affect differently the model parameters depending on the
architecture interconnections and giving different performance trends for both SE,
and IC tasks, as will be discussed later in Section 4.4.

The SE model parameters ΘSE are updated as follows:

ΘSE ←− ΘSE − λ1[α∇LSE + (1− α)∇LIC] (4.2)

Where ∇LSE and ∇LIC represent the gradients of SE and IC respectively, and λ1 is
the learning rate for the SE model.

Hence, the SE module is supposed to provide enhanced signals that match the target
clean signals and maximize the intent classifier performance. Conversely, in BN and
BN-Mix architectures, the LIC does not affect the SE decoder part. Unlike the front-
end, the IC model is optimized using its own loss function and its parameters are
updated as:

ΘIC ←− ΘIC − [(1− α)λ2∇LIC] (4.3)

where ΘIC denotes the IC parameters, and λ2 is the IC learning rate.
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4.4 Experimental Analysis

4.4.1 Dataset

For our experimental analysis, we have used the FSC dataset, described in Section
1.5. To emulate the noisy conditions in realistic scenarios where the presence of
environmental noise deteriorates the classification performance, the FSC dataset is
contaminated by 6 different types of noise (air conditioner, airport announcement,
traffic, neighbor speaking, shutting a door, and restaurant) obtained from the MS-
SNSD dataset (see Section 1.5 for more details). The clean FSC dataset is contami-
nated using the “maracas“ library 2 by superimposing each clean signal with a noise
signal using a random SNR value selected from 3 possible values: -5 dB, 0 dB, and
5 dB. Thus, the resulting noisy FSC dataset includes a uniformly distributed variety
of conditions in terms of noise types and values.

4.4.2 Model Hyper-parameters

Following the same architecture of the Wave-U-Net explained in Section 3.2.1, the
model is designed to process a fixed length chunk with length 16384, concatenated
once enhanced. The encoder part uses 12 1-D convolutional layers with kernelsize =
15, stride = 1, and padding = 7, while the decoder has the same number of layers
with kernelsize = 5, stride = 1, and padding = 2. The model is trained to minimize
MSE loss (LSE) with learning rate λ1 = 10−4.

For the intent classifier, the TCN model explained in Section 3.2.3 is trained using the
cross-entropy loss LIC with learning rate λ2 = 10−3. For the BN-MIX architecture,
the first layer is a 1-D convolutional layer with kernelsize = 1. Both models are
trained with ADAM optimizer with decay rates are β1 = 0.9 and β2 = 0.999, and
batch size 2.

4.4.3 Experimental Results

Although our final goal is to improve the classification accuracy, we also evaluate
the performance of the enhancement component in terms of PESQ, STOI, and MSE
metrics illustrated in Section 2.4.

Table 4.1 reports the classification accuracy obtained from the different joint-training
strategies described in Fig. 4.3, considering different values of α in Eq. 4.1. The table
also reports the JT-Clean approach applied to the clean FSC dataset considering it as
the upper bound, while the lower bound accuracy is reported in the “noisy“ column
obtained when the back-end is trained on the noisy dataset.

The JT architecture evidently brings a notable improvement in the back-end perfor-
mance. The best accuracy is obtained with α = 0.5, indicating that LSE, and LIC are
equally contribute.

Note that a value of α = 0 corresponds to updating the SE model parameters con-
sidering only the classification loss LIC, i.e. both models are considered as a larger
classifier model. In this case, we achieve relative improvement in the classifier per-
formance with respect to the noisy case as the classifier is actually deeper.

2https://github.com/jfsantos/maracas

https://github.com/jfsantos/maracas
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TABLE 4.1: Classification acc. for different architectures with differ-
ent α.

Noisy Jt-Clean Jt BN BN-Mix

53.2%

α = 0 73.37% 72.80% 72.39% -
α = 0.1 91.53% 80.50% 77.80% 58.02%
α = 0.5 92.77% 86.02% 77.53% 54.99%
α = 0.9 - 82.52% 77.90% 66.67%

Giving more importance to the front-end module, i.e. α = 0.9, tends to improve
the output signal quality and intelligibility rather than making it suitable for the
classifier module. Thus, as we expected we note in this case a performance drop.

A similar trend is also observed in the Jt-Clean approach, injecting the intermediate
loss i.e. LSE helps to improve the classifier performance. In detail, when α = 0 we
notice a small improvement with respect to the noisy case, while larger values of α
improve the performance lifting the accuracy from 73.37% to 92.77%.

Conversely, the other two architectures BN, and BN-Mix show different behavior.
Regarding the BN architecture, the performance is quite similar to the JT approach
with α = 0. The reasons behind that are: (a) the Wave-U-Net decoder does not
interact with the classifier which leads to a negligible effect of LSE, (b) the bottleneck
is a signal compact representation that does not convey enough information for the
classifier. For the BN-Mix architecture, the performance limitation is back to the
dimensionality gap between the combined features i.e. the bottleneck representation
and the output of the 1-D convolutional layer. This leads to a limited contribution
of the bottleneck representation. We also observe that in this interconnection giving
more weight to the enhancement module, i.e. α = 0.9, has a positive influence on
the performance.

Tables 4.2, 4.3, and 4.4 show the enhancement performance achieved with the pro-
posed three architectures. As discussed above in both architectures BN and BN-Mix
the Wave-U-Net decoder is optimized independently based on the LSE loss. Thus,
it is not strange if we notice a substantial improvement in the intelligibility metrics
with respect to the Jt architecture. However, the enhancement performance does not
dependent on the value of α except α = 0. Basically, the decoder is capable of re-
constructing the signal counterbalancing the impact of the classifier on the encoder.
Concerning the JT architecture, we observe a direct relation between α and intelli-
gibility metrics. Finally, it is remarkable to observe that reconstruction quality and
classification accuracy are in contrast with each other and it is not possible to effec-
tively optimize both. Finally, for better interpretation, we report all the evaluation
metrics in graphical representation as shown in Fig. 4.4.

TABLE 4.2: PESQ metric for different architectures with different α.

Noisy JT BN BN-Mix

1.28

α = 0 1.14 1.16 -
α = 0.1 1.18 1.71 1.81
α = 0.5 1.15 1.76 1.67
α = 0.9 1.14 1.79 1.83
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TABLE 4.3: STOI metric for different architectures with different α.

Noisy JT BN BN-Mix

0.84

α = 0 0.46 0.60 -
α = 0.1 0.48 0.83 0.85
α = 0.5 0.47 0.84 0.85
α = 0.9 0.58 0.85 0.86

TABLE 4.4: MSE metric for different architectures with different α.

Noisy JT BN BN-Mix

3.5× 10−3

α = 0 7.6× 10−1 1.4× 10−1 -
α = 0.1 2.7× 10−2 1.7× 10−3 1.8× 10−3

α = 0.5 9× 10−3 1.7× 10−3 1.8× 10−3

α = 0.9 6× 10−3 1.7× 10−3 1.8× 10−3
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FIGURE 4.4: Graphical representation for (a) the classification accu-
racy. (b) PESQ metric. (c) STOI metric. against α values for all experi-

ments.
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4.5 Concluding Remarks

In this chapter, we proposed three end-to-end time-domain joint training approaches
namely JT, BN, and BN-Mix to robust the IC task in multi-noisy conditions. The joint
training scheme integrates a neural-based SE front-end (i.e. Wave-U -Net) with a
back-end intent classifier (i.e. TCN-based model). The key difference between these
proposed architectures is the interconnections that combine the two components.

All experiments were conducted on a noisy version of the FSC dataset contami-
nated with different a set of noises obtained from the MS-SNSD dataset. Contrary
to what was observed in the other speech-based classification tasks, exhaustive ex-
periments showed the efficacy of the proposed joint training approach, in which the
pre-processing enhancement stage has a positive influence on the classifier perfor-
mance, especially in the case of matched noisy conditions.

Moreover, we observe that at α = 0.5 (i.e. equally balancing both components’ loss
contribution) gives the best classification accuracy. In addition, we can claim that
injecting an intermediate loss is always beneficial, as observed in the case of JT-
clean experiments. The motivation could be the deeper model with a relatively small
amount of training material the intermediate loss guides the network toward its
optimal configuration. Finally, we also observed that the sequential nature of JT is
better than the multi-task structure used in BN and BN-mix.
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Chapter 5

Pre-trained Models for Speech
Enhancement & Classification

This Chapter sheds light on directly enhancing and classification speech embed-
dings using large-scale pre-trained models. Section 5.1 highlights our contribution to
this task. Section 5.2 discusses the utilized pre-trained models Wav2Vec and WavLm.
In Section 5.3 and Section 5.4, we explain in detail our joint training approaches,
giving more details on our system. In Section 5.5 and Section 5.6 our experimental
results are presented and concluded, respectively. The first part of the results dis-
cussed in this Chapter was reviewed and published in the Proceedings of INTER-
SPEECH conference, 2022 [7] 1. While the remaining part is accepted for publication
in the Computer Speech & Language journal 2.

5.1 Introduction

Recently, the use of large-scale pre-trained models that embed speech information
has become extremely popular, due to: (a) easiness and effectiveness of fine-tuning
towards a specific task [41, 104, 114, 196] (b) possibility to use them as a feature
extractor for successive processing [196].

In the first part of this Chapter, we extend the work in Chapter 4, by employing
pre-trained speech embeddings (as Wav2Vec [194]) for different speech classification
tasks in noisy environments, as depicted in Fig. 5.1.

Moreover, unlike the SOTA approaches, that use either frequency-domain or time-
domain speech processing, we propose an approach that directly enhances speech
embeddings. To do this and similarly to what shown in in Chapter 4, we employ
different CNN architectures inside a joint training framework. More in detail, we
compare two different joint training strategies summarized below and discussed in
Section 5.3:

1. Wave-Enh: speech embeddings are extracted using Wav2Vec (see Section 5.2.1
for more details) on enhanced waveforms on top of the enhancement network
(i.e. Wave-U-Net).

1https://www.isca-speech.org/archive/pdfs/interspeech_2022/ali22_interspeech.pdf
2https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4222034

https://www.isca-speech.org/archive/pdfs/interspeech_2022/ali22_interspeech.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4222034
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FIGURE 5.1: Speech classification based on pre-trained speech em-
beddings.

2. Embeds-Enh: speech embeddings are extracted from noisy waveforms and we
directly enhance these noisy embeddings.

In the second part of this Chapter, we further investigate and consolidate our ap-
proach aimed to directly enhance speech embeddings, particularly:

1. We extend experiments, by employing more recent pre-trained embeddings,
i.e. WavLM [37] (see Section 5.2.2 for more details), which are more robust to
noise.

2. Besides the keyword spotting and intent classification tasks reported in the
first part, we apply the proposed approach to an ASR task employing recurrent
models and a connectionist temporal classification (CTC) loss [69].

3. We provide a more comprehensive analysis, considering different training strate-
gies and different architectures of the embedding enhancement network.

5.2 Pre-trained Speech Models

5.2.1 Wav2Vec: Unsupervised Pre-trained Model for Speech Recognition

The Wav2Vec model proposed in [194] is a pre-trained unsupervised fashion to learn
the speech representation from the waveform speech signals. The model, depicted in
Fig. 5.2(a), consists of two networks: (a) An encoder that embeds the raw waveform
speech signals (X ) to a latent space (Z), (b) A context network that combines encoder
output at multiple time-steps to estimate the contextualized speech representations
(C).

The model is trained to differentiate between k-steps future elements (zk) and other
elements (ẑ) belonging to some distribution (pn). This can be achieved by minimiz-
ing the contrastive loss function defined as:

Lk = −
T−k

∑
i=1

(log σ(zT
i+khk(ci)) + λEẑ∼pn [log σ(−ẑThk(ci))]) (5.1)

Where σ represents the sigmoid function, σ(zT
i+khk(ci)) is the probability that zi+k is

a true sample and hk is the affine function used at step k (hk(ci) = Wkci + bk).
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FIGURE 5.2: Block diagram of: (a) Wav2Vec. (b) WavLM models. [37,
194].

5.2.2 WavLM: Self-Supervised Pre-Trained Model for Speech Processing

The WavLM is a large-scale model pre-trained with a self-supervised approach [37],
and similarly to Wav2vec it has been experimented on different speech processing
tasks (e.g. speech recognition, speech enhancement, and separation) [38, 40, 203].
The model architecture, depicted in Fig 5.2(b), comprises two main networks a CNN
encoder and a Transformer [226] with L blocks. During training, some output frames
of the CNN encoder (x) are masked (M) and used as Transformer input. The Trans-
former is trained to estimate the target discrete sequence (z), where z ∈ Z . The
classes distribution is calculated as follows:

p(z | ht) =
exp(sim(WPhL

t , ez/τ)
Z
∑

z=1
exp(sim(WPhL

t , ez/τ)

(5.2)

Where WP represents a projection matrix, hL
t is the hidden state output at step t, ez is

the estimated embedding for class z, sim denotes the cosine similarity between two
vectors, and τ = 0.1 is a parameter the scales the logit. Finally, the mask prediction
loss is applied on the masked frames that allows the model to learn a combination
between acoustic and language models over continuous output [203].

5.3 Joint Training Schemes

As mentioned in Section 5.1, we investigate two different neural architectures, shown
in Fig. 5.3, for speech classification in noisy environments. Both architectures in-
clude a stack of front-end and back-end modules for SE, and speech classification
(i.e. intent classification, keywords spotting, and ASR) respectively.

The difference between the two architectures is where speech embeddings are com-
puted. As depicted in Fig. 5.3(a) the Wav2Vec module is applied on top of the en-
hancement network, we refer to this approach as Wave-Enh. In the other approach,
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shown in Fig. 5.3(b), the Wav2Vec model is applied before (i.e. on bottom of) the SE
module, we denote this solution as Embeds-Enh. Note that in this case, the enhance-
ment stage operates directly on the embedding representation. Both architectures
are trained by optimizing a joint loss function that combines the SE loss (LSE) with
the classification loss in (Lcl) defined in Eq. 3.1, and Eq. 3.3 respectively. Moreover,
when extending our experiments to the ASR task in the Embeds-Enh pipeline, we
adopt the CTC loss (LCTC) [68].

Similarly to what was discussed in Chapter 4, we adopt a coefficient α ∈ (0, 1) as a
hyper-parameter that adjusts the weight of each component in the joint loss. In this
research, we experiment with a grid of values for α, i.e. (0.1, 0.5, 0.9).

5.4 System Description

The computation of the speech embeddings as shown in Fig. 5.1 is carried out with
the pre-trained Wav2Vec [194] 3 and WavLM [37] 4 models discussed in Section 5.2.1,

3https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
4https://github.com/microsoft/unilm/tree/master/wavlm

https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
https://github.com/microsoft/unilm/tree/master/wavlm
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Algorithm 3 Pseudo-code for joint training (Wave-Enh)

Require: DNNs initialization.
Require: Number of Epochs = 100.

for i ∈ Number of Epochs do
Forward Pass:
Starting from the input layer do a forward pass.
(with batch normalization) through DNNs.
Compute the speech enhancement loss function LSE.
LSE = ∑n ‖x[n]− x̂[n]‖2 . MSE loss based on the waveform
Extract embeddings from enhanced signals using Wav2Vec.
Compute the intent /keyword classifier loss function LCL.
LCL = LIC = − 1

T ∑t log(pt) . Cross-entropy loss
Compute total loss LTOT.
LTOT = αLSE + (1− α)LCL . α ∈ (0, 1)
Backward Pass:
Compute the gradient of the enhancement loss ∇LSE and backpropagate it.
Compute the gradient of the classifier loss ∇LCL and backpropagate it.
Parameter Update:
ΘSE ←− ΘSE − λ1[α∇LSE + (1− α)∇LCL]
ΘCL ←− ΘCL − [(1− α)λ2∇LCL]

end for
Compute the accuracy on the validation dataset.
if {acci+1

dev } > {acci
dev} then

Save the front-end and Back-end models.
end if
i+ = 1

and Section 5.2.2. Recently, these models have been demonstrated effective for tack-
ling ASR tasks, even when few supervised data are available 5 for fine-tuning.

5.4.1 Datasets

We have evaluated our proposed enhancing strategies on: a) an intent classification
task using the FSC dataset, b) a keyword spotting task, using the GSC dataset v.1,
and c) a speech recognition task using the LibriSpeech corpus (mainly investigated
with the Embeds-Enh approach).

To emulate a realistic scenario, equivalent noisy versions of the three datasets are
generated. Both FSC, and GSC datasets are contaminated with 6 types of noise (i.e.
"air conditioner", "airport announcements", "traffic", "neighbor speaking", "shutting
doors", and "restaurant") obtained from the MS-SNSD [180] dataset, while in the
case of LibriSpeech we use 3 types of noise (i.e. noise-free-sound-0836.wav, noise-
free-sound-0304.wav, and noise-free-sound-0131.wav) obtained from the MUSAN
[201] dataset. More in detail, each clean signal in train, validation, and test datasets
is selected and contaminated by a noise signal with an SNR randomly selected from
3 possible values: -5dB, 0dB, and 5dB using the "maracas" 6 library. For more details
related to these datasets see Section 1.5.

5https://huggingface.co/blog/fine-tune-xlsr-wav2vec2
6https://github.com/jfsantos/maracas

https://huggingface.co/blog/fine-tune-xlsr-wav2vec2
https://github.com/jfsantos/maracas
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Algorithm 4 Pseudo-code for joint training (Embeds-Enh)

Require: Extract embeddings from noisy, and clean waveform signals using
Wave2Vec or WavLM.

Require: DNNs initialization.
Require: Number of Epochs = 100.

for i ∈ Number of Epochs do
Forward Pass:
Starting from the input layer do a forward pass.
(with batch normalization) through DNNs.
Compute the speech enhancement loss function LSE.
LSE = ∑n ‖χ[n]− χ̂[n]‖2 . MSE loss based on embeddings
Compute the classifier loss function LCL.
LCL = LIC = − 1

T ∑t log(pt) . Cross-entropy loss
LCL = LCTC = −∑êx∈T log(p[sx | êx]) . CTC loss for ASR task
Compute total loss LTOT.
LTOT = αLSE + (1− α)LIC . α ∈ (0, 1)
Backward Pass:
Compute the gradient of the enhancement loss ∇LSE and backpropagate it.
Compute the gradient of the classifier loss ∇LIC and backpropagate it.
Parameter Update:
ΘSE ←− ΘSE − λ1[α∇LSE + (1− α)∇LCL]
ΘCL ←− ΘCL − [(1− α)λ2∇LCL]

end for
Compute the accuracy on the validation dataset.
if {acci+1

dev } > {acci
dev} then

Save the front-end and Back-end models.
end if
i+ = 1

5.4.2 Enhancement

Similar to experiments presented in Chapter 3, and Chapter 4, we employ the Wave-
U-Net model as the SE front-end module in the Wave-Enh strategy.

While mentioned in Chapter 2, many approaches had been proposed that can achieve
competitive performance either in the frequency-domain or the time-domain, there
are no established approaches for directly enhancing speech embeddings. There-
fore for the Embeds-Enh strategy, we have investigated different architectures for
enhancing the speech embedding in the pipeline of Fig. 5.3(b).

The U-Net architecture follows the model proposed in [183]. Similar to the Wave-U-
Net model, U-Net is a fully CNN network with three main parts: encoding network
(contracting path), bottleneck layer, and decoding network (expansive path). The
encoder consists of a stack of 1D-convolutional blocks followed by ReLU activation
functions and a max-pooling operation. In our implementation, we use the same
configuration proposed in [183] with four downsampling blocks in the encoder net-
work followed by the same number of blocks in the decoder network, with one
bottleneck block between the encoder and the decoder networks.

Building upon the U-Net model, the U-Net-2 model follows the same architecture,
but without skip connections. In addition, the encoder has 4 1D-convolutional layers
where the output feature channels are successively doubled from layer to layer. The
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FIGURE 5.4: Graphical representation of architectures used for em-
bedding enhancement (Embeds-Enh): (a) U-Net architecture. (b)

CNN-K architecture, K = 2, 4, 6.

decoder has the same architecture as the encoder, but the output feature channels
are halved sequentially.

The U-Net architecture was specifically designed to handle high dimensional and
correlated feature vectors, as the samples of speech waveforms. However, in our
case, speech embeddings are already low-dimensional and compact representations
of the speech signal. Thus, both U-Net-based architectures may not be suitable for
embedding enhancement.

Therefore, we have investigated simpler architectures for mapping embeddings.
CNN-2 consists of a stack of 2 1D-convolutional layers: the first 1D-convolutional
layer has an input size κ = 512, or κ = 1024 for Wav2Vec or WavLM, respectively,
while the output size is κ/2. The subsequent layer is a transposed 1D-convolutional
layer with input size κ/2, and output size κ. Both layers use "kernel size" = 3, with
"stride" = 1, and "padding" = 1.

In order to extend CNN-2, we define CNN-4, a model with 4 1D-convolutional lay-
ers, instead of 2. Finally, given the higher dimension of embeddings extracted with
WavLM, we also consider CNN-6, which feature two further 1D-convolutional lay-
ers, at both the beginning and end of the network with input size κ = 1024 and
output size κ/2.

Fig. 5.4 shows the generic architectures of the used SE front-end. All the models
employ batch normalization and either leaky ReLU or ReLU activation functions
after each convolutional layer. They are trained with the ADAM optimizer, with
learning rate λ1 = 10−4.

5.4.3 Speech Classifier

As mentioned above, we investigate three speech classification tasks: intent classifi-
cation, keyword spotting, and ASR (only the Embeds-Enh strategy is applied to the
latter).
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For both intent classification and keyword spotting, we use the TCN classifier illus-
trated in Section 3.2.3 to map each utterance to its corresponding 31 possible intents,
or 30 keywords, respectively. The classifier processes the embeddings of size 512, or
1024, depending on whether Wav2Vec or WavLM models are employed respectively.

For the ASR scenario, we consider a character classification task. We employ a model
based on Deep Speech2 [10]. It has two main parts: a series of stacked residual CNN
networks (ResCNN) with GELU activation function, and layer normalization oper-
ation, followed by a set of bidirectional recurrent neural networks (BiRNN) to lever-
age the learned output features from the ResCNN module. Finally, a fully connected
layer is inserted on top of the model having a number of units equal to the number of
characters to recognize. The model is trained in order to minimize the CTC loss func-
tion [69]. Given the sequence of enhanced embeddings êx = {êx[0], . . . , êx[T− 1]} of
a training utterance and the corresponding sequence of target characters sx, the CTC
loss is defined over the whole training set T as:

LCL = LCTC = − log ∑
êx∈T

Pπ(sx | êx) (5.3)

Pπ(sx | êx) ≈ Π0≤t≤T Pt(π[t] | êx) (5.4)

Where the posterior probability P(sx | êx) is the sum of posterior probabilities of
all possible paths π that align sx with êx, and can be computed with the forward-
backward algorithm.

The learning rate adopted for intent classification, and keyword spotting tasks is
λ2 = 10−3, while for the speech recognition task it is set to λ2 = 5e−4. The opti-
mization is carried out with the ADAM optimizer with decay rates: β1 = 0.9 and
β2 = 0.999.

5.5 Experimental Analysis

We evaluate our proposed enhancement approaches considering two training strate-
gies, i.e. dis-joint and joint training. In the dis-joint training, the speech enhancement
module is trained individually and then the classifier is trained on the enhanced em-
beddings. For joint training, both modules are trained simultaneously with three
possible values of parameter α: 0.1, 0.5, and 0.9. All experiments use 100 training
epochs. For the Wave-Enh strategy the batch size is set to 4, and 10 for FSC and
GSC, respectively. While for Embeds-Enh the batch size is set to 10, and 20 for FSC
and GSC, respectively.

TABLE 5.1: Classification accuracy using dis-joint training on FSC for
different embedding enhancing models (no. of model parameters are
also reported). The performance using Wave-Enh is reported as a

reference.

Wave-Enh Embeds-Enh

Wave-U-Net U-Net U-Net-2 CNN-2 CNN-4

Acc 93.40% 79.88% 81.07% 92.51% 92.96%

#. of Para. 10 M 1 M 38 M 788 K 986 K
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5.5.1 Results Part 1 (Wave-Enh vs. Embeds-Enh)

First of all, since an established solution for directly enhancing the speech embed-
dings is not yet available in the literature, we compare in Table 5.1 the performance
achieved with the different architectures described in section 5.4.2 on the FSC dataset,
applying dis-joint training. The best performance is obtained with the CNN-4 topol-
ogy, therefore it will be used in the next experiments.

Table 5.2 gives the classification accuracies on the two classification tasks for both
Wave-Enh and Embeds-Enh approaches. First, the rows "clean", and "noisy" report
the upper, and lower bounds performance on clean and noisy data respectively. We
point out that, our classifier is in-line with the SOTA. The other rows of the table
show the performance on the noisy data considering both dis-joint and joint training.

It is worth observing the substantial improvement obtained by employing speech
enhancement, especially with the joint training strategy. Interestingly, the Embeds-
Enh approach shows a competitive performance with respect to the Wave-Enh coun-
terpart not only in terms of the classification accuracy but also considering the com-
putational complexity. In particular, the Embeds-Enh strategy remarkably reduces
the computational complexity, being the total number of parameters of the CNN-4
model much lower (≈ 1

10 ) than that of Wave-U-Net. The motivation behind that
is the smaller dimensionality of the speech embeddings with respect to the audio
waveforms.

The Wave-Enh approach obtains the highest classification accuracy when α = 0.5
i.e both loss components LSE, and Lcl equally contribute to the joint loss. A similar
trend is also observed in the Embeds-Enh strategy only on the GSC dataset. Con-
versely, for the FSC dataset, the optimal value is α = 0.9 i.e. the LSE is the predomi-
nant component in the joint loss optimization. Nevertheless, the difference between
the corresponding accuracies is very small.

TABLE 5.2: Accuracy for the two speech classification tasks using dif-
ferent enhancement strategies. The enhancement based on embed-

dings uses the CNN-4 model.

Data Acc - FSC Acc - GSC

Clean 98.94% 96.22%
Noisy 89.63% 88.00%

Wave-Enh

Dis-joint training 93.40% 89.42%

Joint training

α = 0.1 90.95% 89.78%
α = 0.5 94.88% 90.13%
α = 0.9 93.30% 89.52%

Embeds-Enh

Dis-joint training 92.96% 89.20%

Joint training

α = 0.1 92.32% 89.08%
α = 0.5 93.25% 90.28%
α = 0.9 93.30% 89.81%
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TABLE 5.3: Speech enhancement evaluation metrics on FSC dataset
using Wave-Enh strategy.

PESQ STOI

Noisy 1.28 0.840

Dis-Joint training 2.26 0.890

Joint training
α = 0.1 3.50 0.95
α = 0.5 2.34 0.894
α = 0.9 3.94 0.970

Finally, in Table 5.3, we report the enhancement performance obtained with the
Wave-Enh pipeline, in terms of PESQ and STOI metrics defined in Section 2.4, on
the FSC dataset. Noting that, the joint approach, compared with the dis-joint one not
only improves the final classification accuracy but it also, improves as a by-product
the SE metrics. Also in this case the optimal value is α = 0.9, as in this case the LSE
component is the predominant loss.

5.5.2 Results Part 2 (Dive into Embeds-Enh Strategy)

Motivated by the performance of the Embeds-Enh strategy in this section, we give
an in-depth experimental analysis considering a more recent pre-trained model i.e.
WavLM for embedding extraction, and apply it to an ASR task. We use the character
error rate as the performance metric.

We evaluate the Embeds-Enh strategy using the previously mentioned approaches
i.e.: dis-joint training, as shown in Fig. 5.5(a), joint training, depicted in Fig 5.5(b),
and warm-up denoted as the green-dash line in Fig. 5.5. In the warm-up training
approach, firstly, the front-end module is trained individually and then fine-tuned
jointly with the back-end. Note that this approach is different from that reported in
[70] because we use the same training set for the front-end pre-training.

Front-end  
Speech Enhancement

Back-end 
Speech Classifier

Mixture signal

Enhanced
signal

Enhancement
loss

Back
propagation

Back-end
loss

Back
propagation

(a)

Front-end  
Speech Enhancement

Back-end 
Speech Classifier

Mixture signal

Enhanced
signal

Joint loss 
Back

propagation

(b)

Warm-up Strategy

FIGURE 5.5: Graphical representation of the training strategies
adopted in our experimental analysis. (a) Dis-joint training; (b) E2E
joint training. The green dash line indicates that we used a front-end
warmed-up with a dis-joint approach in the Joint-training approach

(warm-up strategy).
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TABLE 5.4: Performance achieved with different sizes of WavLM
model on clean, noisy, enhanced FSC dataset and using CNN-4

model.

Model WavLM Base WavLM Base+ WavLM Large

# of Params. 94.70 M 94.70 M 316.62 M
# of Features 768 768 1024

Clean 99.13% 98.99% 99.44%
Noisy 58.15% 65.70% 94.77%

Dis-Joint training 74.55% 74.87% 95.70%
Joint training (α = 0.9) 58.76% 68.78% 95.67%

Warm-up Training 68.25% 76.64% 96.22%

We introduced the warm-up approach because we observed that the front-end train-
ing was heavily penalized in the case of large back-end models. All experiments are
done with a batch size equal to 10 and early stopping on the accuracy of the valida-
tion set. The maximum number of epochs is 100.

To understand how the proposed training schemes behave on different speech em-
bedding models, besides comparing Wav2Vec with WavLM, Table 5.4 also reports the
performance achieved with different WavLM models sizes [37] 7 on the FSC dataset.
Despite using the same feature dimension as WavLM Base, WavLM Base+, shows bet-
ter performance, especially in the noisy case. This is due to the fact that WavLM
Base+ is trained on a larger dataset (i.e. the same used to train WavLM Large). Note
that, despite the different behavior on noisy data and different performance in abso-
lute terms, we can observe the same trends in how our proposed scheme improves
the performance. Note also the large improvements on noisy data achieved with
WavLM Large, at the cost of tripling the number of parameters of the model.) Since
the goal of our work is not to minimize the model size but instead to maximize the
performance, we consider WavLM Large for our successive experiments.

Table 5.5 reports the classification accuracy considering dis-joint, joint, and warm-
up training strategies on FSC. Analogously to what we reported in our previous
experiments, we show the upper and lower bound accuracy in the rows "clean", and
noisy (note that the performance on clean is in line with the current state-of-the-art:
99.70% in [18] and 99.30% in [28]).

First of all, we observe a substantial improvement when the enhancement front-end
is applied prior to the back-end classifier on the noisy model in both dis-joint and
joint training approaches. This gain is clearly evident when WavLM is employed
instead of Wav2Vec, as the first trained using data covered by environmental noise.
Nevertheless, enhancing the WavLM embeddings still provides a significative per-
formance improvement, from 94.77% accuracy to ≈ 96%.

Exhaustive experiments in Table 5.5 show that applying SE allows significantly im-
proving the accuracy with respect to noisy embeddings (89.63% and 94.77%) in dis-
joint training, except in cases where U-Net and CNN-6 models are used. The reason
could be due to the fact that these models have much more training parameters with
respect to other models. Therefore, they tend to "overfit" the enhancement task, in-
troducing critical artifacts that cannot be learned by the subsequent classifier model.

7https://github.com/microsoft/unilm/tree/master/wavlm

https://github.com/microsoft/unilm/tree/master/wavlm
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TABLE 5.5: Classification accuracy on the FSC dataset using Wav2Vec
and WavLM embeddings and the enhancement networks depicted in

Figure 5.4.

Wav2Vec WavLM Large

Clean 98.94% 99.44%
Noisy 89.63% 94.77%

U-Net CNN-2 CNN-4 CNN-2 CNN-4 CNN-6

Dis-joint training 79.88% 92.51% 92.96% 96.50% 95.70% 93.48%

Joint
training

α = 0.1 92.64% 92.24% 92.32% 95.01% 95.83% 95.04%
α = 0.5 93.03% 93.09% 93.25% 95.30% 95.33% 95.14%
α = 0.9 93.00% 93.11% 93.30% 95.93% 95.67% 95.25%

Warm-up training - 93.25% 93.43% 96.07% 96.22% 90.20%

A clear performance gap between dis-joint and joint training approaches is not ob-
servable, although joint training always allows increasing accuracy compared with
noisy embeddings. Going more in detail, joint training provides a notable improve-
ment in terms of classification accuracy when α = 0.9, either using Wav2Vec or
WavLM, meaning that the enhancement loss largely predominates over the classi-
fication loss.

We have observed that, in general, joint training first brings the front-end to con-
vergence, and then it adapts the back-end. Using larger values of α tends to force
this behavior. Conversely, smaller values of α let the training switch earlier, without
bringing the front-end to full convergence.

Based on these observations, we experiment with the warm-up training approach
where the front-end is firstly trained independently, and then, differently from the
dis-joint approach, the model is jointly trained with the back-end. Results reported
in the bottom row of Table 5.5, demonstrate that warm-up improves the final per-
formance with respect to the conventional joint-training approaches. Finally, it is
important to observe that enhancing embeddings is effective when the largest pre-
trained model, i.e. WavLM, is employed. The fact behind this is that WavLM was
trained over large sets of noisy data. The best accuracy is above 96.0% which is
remarkable given the extremely low SNR conditions considered here.

The experimental results for the keyword spotting task, are reported in Table 5.6.
First of all, let us point out that our back-end model achieves the SOTA performance
on clean data (95.5 %[48] and 97.2% [185]), therefore it can be considered a solid
baseline. As in the previous case, we report results using both clean, and noisy
embeddings followed by Embeds-Enh results. We experiment only with a subset
of the enhancement architectures depicted in Fig. 5.4, considering only the most
performing ones, given the results obtained on FSC.

We observe a similar performance trend to the intent classification task. The WavLM
pre-trained model improves the classification accuracy, in particular in noisy con-
ditions, with respect to Wav2Vec: 92.90% versus 88.00%. For Embeds-Enh strategy,
conclusions similar to those of the FSC task can be drawn. Also in this case, an opti-
mal value of α = 0.9 can be noticed. Again, the warm-up approach always improves
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TABLE 5.6: Classification accuracy on GSC dataset applying different
enhancement strategies to embeddings obtained using Wav2Vec and

WavLM.

Wav2Vec WavLM Large

Clean 96.22% 96.85%
Noisy 88.00% 92.90%

Dis-Joint training
CNN-4 CNN-2 CNN-6

89.20% 93.75% 93.40%

Joint training
α = 0.1 89.08% 93.37% 93.01%
α = 0.5 90.28% 93.12% 93.03%
α = 0.9 89.81% 93.77% 93.66%

Warm-up training 90.32% 94.16% 94.13%

the joint-training results, providing the best accuracy of 94.16%, which is equivalent
for both architectures.

To further investigate our proposed approach and to better consolidate our conclu-
sions, we also consider an ASR task. With respect to the tasks investigated so far,
ASR involves a more complex back-end model based on a sequence-to-sequence ar-
chitecture. To do this, we have used the DeepSpeech2 model [10], trained to optimize
the CTC loss (see section 5.4.3), and a beam search decoder [68].

Table 5.7 reports the performance in terms of CER, obtained on the noisy version
of the "test-clean" set of LibriSpeech corpus. As a matter of fact, the higher com-
plexity of the model and the larger amount of training data make this experimental
analysis much more time and computation-demanding than the previous ones. As a
consequence, we limited our experiments to the sole use of the CNN-6 architecture.

Results reported in the row "clean" show that the achieved performance is in line
with the SOTA, confirming also in this case the solidity of the employed back-end
model. Concerning enhancement, we observe trends similar to those of Table 5.5
and Table 5.6.

However, could be, joint training fails to converge in this case. The reason as men-
tioned above, is the high complexity of the model and the employment of the CTC
loss, which takes into account many alignment paths with the input sequence, prob-
ably moving too early the focus of the training from the front-end to the back-end.

TABLE 5.7: CER on the "test-clean" set using different embeddings
and enhancement strategies based on CNN-6.

Wav2Vec WavLM Large

Clean 6.8% 2.5%
Noisy 19.0% 7.5%

Dis-Joint training 12.5% 4.3%
Joint training α = 0.9 14.0% 14.8%

Warm-Up training 13.0% 3.4%
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TABLE 5.8: CER under unseen noisy data using "test-other" of Lib-
riSpeech using WavLM Large.

Model Clean Noisy Dis-Joint Warm-up

WavLM 5.1 8.4 4.8 3.8

Note however how the warm-up strategy, which trains the front-end alone at the
beginning, substantially improves the performance of WavLM, reaching a very low
3.4% CER on test-clean.

Finally, to further affirm the ASR performance, we report the recognition perfor-
mance on "test-other" in Table 5.8 using the pre-trained models from the previous
experiments. This test set is characterized by higher noise and lower recognition per-
formance. Note, in fact, that the CER using the clean model increases from 2.5% to
5.1%. In this way, we can explore the behavior of the proposed approach in presence
of mild, unseen noise. To do this, we have used the warm-up approach. Although
the model is trained on different and stronger noises, only a very minor deterioration
is observed (i.e. from 3.4% to 3.8%), demonstrating that the proposed Embeds-Enh
approach exhibits good generalization capabilities.

5.6 Concluding Remarks

In this Chapter, we proposed two joint training approaches namely Wave-Enh, and
Embeds-Enh to robust intent, keywords classification, and speech recognition based
on character level in noisy conditions. The difference between the two approaches is
where the speech embeddings are computed. The jointly compositional scheme con-
sists of a neural speech enhancement front-end based on the Wave-U-Net model, and
a CNN model for Wave-Enh, and Embeds-Enh respectively combined with intent,
keywords, and speech classifier. Note that the speech recognition task is addressed
only in the Embeds-Enh strategy, as it is a time-consuming experiment.

All the experiments are conducted on noisy versions of FSC, GSC datasets (con-
taminated with noises from MS-SNSD), and the LibriSpeech dataset (contaminated
with noises from MUSAN) for intent/keywords classification, and speech recog-
nition tasks respectively. Exhaustive experiments prove the efficacy of embedding
enhancement. In particular, the embedding enhancement approach shows a compet-
itive performance not only in terms of classification accuracy or character error rate
metrics but also in terms of computational complexity. The proposed CNN enhance-
ment reduces the computational resources being the total number of parameters are
reduced by (≈ 1

10 ) with respect to the state-of-the-art models (e.g. Wave-U-Net used
in Wave-Enh strategy. Finally, we observe that giving more weight to the front-end
loss i.e. α = 0.9 tends to improve the back-end performance as in the case of in-
tent/keyword classification tasks.

In addition, we observe that the warm-up strategy brings notable improvements in
terms of the back-end performance as it can mitigate the effects of distortions, often
introduce by dis-joint training strategies, or of incomplete convergence of the front-
end, that can occur in joint training as observed in our speech recognition task.
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Chapter 6

Conclusion & Future Work

In this Chapter, our work is concluded in Section 6.1, followed by future research
direction in Section 6.2.

6.1 Conclusion

Speech enhancement is an essential pre-processing stage for different speech-based
applications such as intent classification, keyword spotting, and ASR (the tasks we
addressed in this dissertation) to robust their performance in noisy conditions. In
this dissertation, we have investigated different joint training strategies that com-
bine a neural-based speech enhancement front-end utilizing the Wave-U-Net model
or CNN-based architectures with a neural-based back-end speech classifier either
using a Temporal convolutional network as in the case of intent classification, and
keyword spotting tasks or a convolutional recurrent architecture for ASR task.

In Chapter 2, we gave an extensive overview of different speech enhancement al-
gorithms i.e unsupervised and supervised approaches highlighting the advantages
and disadvantages of both categories. Among them, time-domain deep learning ap-
proaches showed a substantial improvement concerning other algorithms. Finally,
we gave more details on the commonly used speech enhancement evaluation met-
rics that could be used to evaluate speech quality and intelligibility.

In Chapter 3, we employed a well-known time-domain approach called Wave-U-Net
and an improved version based on this model namely Dilated Encoder Wave-U-Net.
The motivation behind this modified model is the dilation factor is increased expo-
nentially successfully from layer to layer. Thus, it allows for increasing the receptive
field for exploiting the contextual signal representation effectively. We evaluate the
performance of both Wave-U-Net models on a back-end intent classifier based on
TCN architecture. In, particular the back-end classifier is trained on the 40-Mel filter
banks features extracted from the enhanced speech signals. Exhaustive experiments
shed light that integrating a speech enhancement module has a positive effect on the
back-end performance.

In Chapter 4, as the dis-joint training approach often introduces signal distortion at
the output of the speech enhancement module, which deteriorates the back-end per-
formance. Thus, we proposed different fully time-domain joint training strategies
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namely JT, BN, and BN-Mix that combine a front-end speech enhancement (Wave-
U-Net) with a back-end intent classifier (TCN classifier). The key difference be-
tween these strategies is the interconnections between both models. Both models
are trained to optimize a loss function that combines both front-end and back-end
loss functions with a hyper-parameter α that controls the weight of each loss. Ex-
haustive experiments based on a noisy version of the FSC dataset showed that the
speech enhancement robust the classifier performance in multi-noisy conditions, es-
pecially in the case of matched noisy conditions.

In Chapter 5, we investigated the performance of large-scale pre-trained models in
the robustness of several speech classification tasks. In detail, we proposed two joint
training strategies namely Wave-Enh, and Embeds-Enh. The difference between the
two strategies is where speech embeddings are computed. In the Wave-Enh strategy,
the pre-trained speech model is applied on top of the enhancement module, while
in Embeds-Enh, the pre-trained model is applied the Wav2Vec model is on the bot-
tom of the speech enhancement module in this case speech embeddings are directly
enhanced. In the first part of our experimental analysis, we investigate the perfor-
mance of Wav2vec model applied with both strategies. Experimental results showed
that pre-trained models bring substantial improvement not only in terms of the clas-
sification accuracy addressed based on intent classification and keyword spotting
tasks but also the computational complexity, especially the Embeds-Enh strategy. In
the second part, we investigated a recent pre-trained speech representation model
WavLM employing the model in the Embeds-Enh strategy. Moreover, besides the in-
tent/keyword classification tasks, we addressed a more complicated task e.g. ASR-
based on character level. Experimental results supported our claim that directly
enhancing speech embeddings improve the back-end speech tasks. Additionally,
the utilized model for embedding enhancement has fewer trainable parameters con-
cerning conventional time-domain approaches (Wave-U-Net as in our case).

6.2 Future Works

In this section, we propose some future work for speech enhancement toward im-
proving downstream tasks performance in noisy conditions.

• Enlarge experiments scale: We will further conduct experiments with suffi-
cient speech data including more realistic scenarios to evaluate the effective-
ness and robustness of our methods. The training data should consider as
many scenarios as possible to reflect the realistic environments and improve
the adaptability of the speech enhancement model. Moreover, we aim to eval-
uate the proposed approach on different more complex datasets for intent clas-
sification and slot-filling tasks e.g. the ATIS corpus [79], the Almawave-SLU
corpus [16], the SLURP corpus [15].

• Features fusion for speech representation learning: Multiple feature fusion
approaches can provide multiple hierarchies of data representation for model
training and mapping learning. Recently, feature fusion methods are used to
achieve a more robust and effective model [89, 233, 247, 252]. Thus, further
exploration of multiple-feature fusion in speech enhancement will be one of
our future projects.

• Powerful neural networks for speech enhancement: The models we investi-
gated for embedding enhancement are stacked with 1D convolutional layers,
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so the future direction is to utilize more articulated models to further improve
the performance. In particular, several novel architectures were proposed and
made a breakthrough in many research areas such as attention-based trans-
former architecture [59, 127, 159]. Those models show revolutionary perfor-
mance by eliminating recurrent or convolutional portions to improve informa-
tion learning.

• Multi-channel Speech Enhancement: In this dissertation, we mainly focus
on single-channel speech enhancement algorithms. However, microphone ar-
rays are widely used in many modern speech-processing systems, including
smartphones, personal assistants, and other smart devices. With multiple mi-
crophones, spatial information can be exploited to complement spectral infor-
mation for better de-noising and dereverberation. Thus, how incorporating
this information into the proposed systems could be an interesting research
direction.

• Real-time speech enhancement: The proposed speech enhancement technolo-
gies perform offline, which does not consider causal setting and latency pro-
cessing. However, real-world applications require processing in real time. For
example, a delay of 3 ms is noticeable in real-time applications, and delays the
time of over 10 ms are unacceptable. To meet real-time applications, we need
to adapt the proposed systems to causal systems and reduce the processing la-
tency for inference, while keeping the performance at a high level. This could
be a useful direction to explore.

• Language models to robust ASR performance: Our Embeds-Enh experiments
for speech recognition task didn’t consider a language model while training
the ASR, which may degrade the performance in terms of WER. Thus, a pos-
sible direction to robust its performance is to include a language model. In
detail, the classifier’s output is fed into the decoder integrated with the lan-
guage model. Thus, it helps to generate top words, which are then passed to
language models to predict the correct sentence.

• Directly separate speech embeddings: Finally, we plan to extend our ap-
proach for embedding enhancement to embedding separation. In detail, we
intend to adopt SOTA models for speech separation i.e. Conv-TAS-Net model
[145], Dual-path-RNN [144] to directly separate speech embeddings. For this
task, several benchmark datasets can be utilized i.e. LibriMix [46], WSJ2Mix
investigated in this research [210].
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