
Hoarding Content in M-Learning Context 
 
 

Anna Trifonova and Marco Ronchetti 
Department of Information and Communication Technologies 

University of Trento, 38050, Povo (Trento), Italy 
{Anna.Trifonova, Marco.Ronchetti}@dit.unitn.it 

 
 

Abstract 
 

With the advances in mobile technologies it is already 
possible to support learners and teachers activities on the 
move. We analyzed the functionalities that should be 
provided by a general mobile learning platform and 
identified a problem that is weakly studied by previous 
research, namely offline usage of learning material 
(hoarding of content). Hoarding can use some of the 
techniques that are used by different  caching and pre-
fetching schemas, but in most cases the goal of the last two is 
to reduce latency time, bandwidth consumption and/or 
servers workload, while in hoarding the aim is to improve 
the accuracy of set selection. Caching and pre-fetching 
content are problems that are considered widely since the 
introduction of Internet for mass usage, still hoarding is not 
so well explored. We want to study the parameters that could 
help a hoarding algorithm improvement in order to cover the 
peculiarity in m-learning scenario. Our goal is to provide an 
efficient strategy, taking into account additional parameters, 
extracted automatically by the system.  
 
1. Introduction 
 

E-learning is growing very fast and many 
Universities and companies are already supporting in 
some way an e-learning solution. There is now little 
doubt that the World Wide Web is a very successful 
educational medium. On the other hand the rush in the 
field of wireless and mobile technologies creates 
opportunity for new field of research - so called 
‘mobile learning’. The domain of mobile learning can 
include a wide variety of applications and new teaching 
and learning techniques [2]. In their tries of finding the 
best way to apply mobile devices in education people 
are experimenting with different fields. Courses 
modules were created throughout different projects for 
people with numeracy and literacy problems, for kids 
and university students, for teachers, for studying 
computer science subjects, psychology or language 
learning. 

We analyzed different ways to apply mobile devices 
for educational purposes. This led us to classifying 
services that are specific and should be provided by a 
general m-learning platform and later we concentrate 
on one of these services as a concrete problem to solve 
[3]. Namely this is the hoarding of content for offline 
usage. 

Hoarding is a technique for selecting a set of 
documents to be pre-fetched on the user device and 
used when disconnected. Related terms are caching and 
pre-fetching, though they are more often used when 
considering online conditions and Web performance. 
Caching is a technique for keeping content that has 
been requested by one user available on the nearest 
server for a certain amount of time so other requestors 
can access it faster. Pre-fetching on the other hand is a 
technique which tries to guess what will be needed to 
the client in the near future, cache it and this way 
improve the clients’ experience. Different schemes of 
caching and prefetching are proposed and the goal is to 
reducing network traffic, minimizing access latency, 
bottlenecks, servers’ workload and etc. in the WWW 
world. Although the goal of hoarding content for 
offline usage is little shifted from the one of Web 
caching, some of the techniques can be reused. 
However while in the online case one can balance 
between the accuracy of the cached set and the added 
traffic, in the situation we consider very high accuracy 
is required and the added limitation is the memory 
availability. The learning scenario has characteristics 
that expose some additional information to be 
considered and thereby possibility to improve the 
existing solutions. 

 
2. The hoarding process 
 

The hoarding process should consist of few steps 
that we can formalize as follows: 



1. Predict the ‘starting point’ – the algorithm should 
start by finding the entry point of the current user 
for the next learning session  

2. Set its hoarding priority to MAX 
3. Predict the most probable session path - the 

algorithm should discover the most probable 
sequence of LO the user will be following.  

4. Create a candidate set - all related documents 
(objects) should be found and a ‘candidate for 
caching’ set of objects should be created 

5. Prune the set - the candidate set should be pruned, 
i.e. the objects that will not be needed by the user 
should be excluded from the candidate set, thus 
making it smaller. This should be done based on 
user behavior observations and domain knowledge. 

6. Find the priority to all objects still in the hoarding 
set - when the candidate set is pruned, using all the 
knowledge available about the user and the current 
learning domain, to every object left in the hoarding 
set should be assigned a priority value. The priority 
depends on how important the object is for the next 
user session and should be higher if we suppose that 
there is a higher probability that an object will be 
used sooner. 

7. Sort the objects, based on their priority -  the 
hoarding algorithm produces an ordered list of 
objects 

8. Cache, starting from the beginning of the list (thus 
putting in the device cache those objects with 
higher priority) and continue with the ones with 
smaller weights until available memory is filled in 
 
We can see that the algorithm will heavily depend 

on system’s knowledge about the user. This knowledge 
includes user’s learning style, natural learning habits 
and abilities, the level of expertise in the studying field 
and topic. This knowledge about the user can be 
acquired in different ways – by direct assessment of the 
user, by questionnaires and quizzes, but also by 
observing and analyzing the user behavior during the 
studying with the system, thus automatically 
discovering user’s learning style, preferences, acquired 
knowledge and etc. 

For making the things clear we can consider two 
separate engines. One will deal with observing the user 
and creating user models and the other for the 
hoarding. We call the first one ‘User Behavior 
Analyzing Engine’ and it should be discussed later on. 
The hoarding algorithm should take as input the output 
from the ‘User Behavior Analyzing Engine’ (i.e. the 
user models with the similarities and the differences of 
the particular user with the common users’ behavior 
and the current user preferences and learning history) 

and additional information about the learning content 
itself (domain knowledge).  This will be also discussed 
further. 

 
Some questions appear on this stage: 

• What is the best starting point for the user’s next 
session? 

• What is a ‘session’ in the mobile learning scenario? 
• How can we predict the most probable learning 

path (sequence of LO)? 
• How do we create (formalize) a useful user model?  
• What are the important parameters of the user 

behavior which have influence on the prediction? 
• How do we use different parameters of the user 

model for predicting and/or pruning and do these 
different parameters have different significance for 
the prediction and/or pruning process? 

• How do we formalize the domain knowledge?  
• Do different domain knowledge parameters have 

different significance for the prediction (and/or) 
pruning process? 

• How do we measure the successfulness of the 
automatic hoarding and how do we improve the 
work of the algorithms, considering these 
measures? 

 
The rest of the paper attempts to answer these 
questions, starting from the last one (Section 3). In 
section 4 we look at the ways to find the student’s 
learning sequence and discuss the problem of the lack 
of initial data. Section 5 shortly argues about the 
difference between the general definition of ‘session’ in 
the WWW world and the one applicable in the mobile 
scenario. In 6 we discuss some aspects of the relations 
between learning objects (LO) and how their 
correlations can be used in the hoarding for pruning. 
Afterwards in Sec. 7 we discuss different possible ways 
to model the student and his/her behavior so we can 
‘predict’ what materials will be needed during the 
offline period. In Section 8 we talk about the additional 
data about the learning material and the studied topic 
that might be useful for the hoarding. Conclusions in 9 
are followed by references in 10. 
 
3. Measure the quality 
 

An important question is to measure the quality of 
the hoarding and to try to improve it every next time. 
An often used metric in the evaluation of caching 
proxies is the hit ratio. Hit ratio is calculated by 
dividing the number of hits by the total number of 
uploaded predictions (cache size). It is a good measure 
for hoarding systems, though a more often used 



measure is the miss ratio - a percentage of accesses for 
which the cache is ineffective. The authors in [1] 
defined a miss cost as a main difference in the 
evaluation of a caching and a hoarding system. In 
caching/prefetching systems the misses in the 
prediction reflect as a time penalty as the missing 
content should be retrieved from the web. This differs 
from the mobile case where with unavailable internet 
connection a miss in the hoard might be fatal. In order 
to quantify this measure it is possible to demand a user 
rating on every miss, using few different impact values. 
[1] also defines time to first miss measure - a simple 
count between the start of the disconnected operation 
and the first hoard miss. Note that this evaluation 
criterion can be used only on real-use of a system (and 
its hoard part). It is also strongly related to the 
hoarding size. Another possible measurement is the 
miss-free hoard size, defined as the minimum amount 
of disc space that a particular hoarding system would 
require to allow a complete disconnection period to 
take place without any misses. 

The goal of the hoarding algorithm is to maximize 
the ‘hit rate’ and at the same time to minimize the ‘miss 
rate’. In other words the ideal situation is to achieve 
hit_rate=100% and miss_rate=0%, which would mean 
than the hoarding set contains all and only the items 
that the user needs during her/his studying session as 
shown on the figure below. 

Set of LO, used by  the
student in one session

Set of LO, selected by
the hoarding algorithm

Figure 1: The ideal hoarding set 
 

Though the ideal picture is to select all and only 
those items that will be used by the user it is obvious 
that in a real system such an ideal situation is almost 
impossible to reach. Most probably we will have some 
(desirably big) overlapping between the cached by the 
hoarding algorithm LO and those LO really requested 
by the learner. 

Set of LO,
used by the student

in one session

Set of LO,
selected by the

hoarding algorithm

 
Figure 2: The expected picture 

 
If the miss cost measure mentioned before is used it 

might be better to also try to minimize the overall cost 
of all misses. 

As mentioned before the hoarding module should be 
also able to analyze how successfully the previous 
hoarding was done for improving further prediction. 
For this we should be able to check which parameters 
or combinations of parameters of the user model and/or 
domain knowledge have bigger impact on the goodness 
of the algorithm. 

By analyzing the goodness of the prediction of the 
hoarding algorithm we can try to tune its work. For 
example if a user indicates a LO miss as fatal the 
algorithm should check why this LO was not cached, 
e.g. if this entry was pruned or was given a small 
priority, and later the ‘rules’ for pruning and/or 
prioritizing should be reconsidered accordingly. 

 
4. Students’ learning sequences and the 
cold start problem 
 

Though it should be possible to extract specific 
knowledge about the user behavior and to try to predict 
students’ future steps, on the first user access to the 
system it (the system) is totally unaware of the 
properties and preferences of this specific user. 

The problem, known as ‘cold start’, can be faced by 
assessing the learner knowledge through a quiz and/or 
questionnaire and making some assumptions. 

depth level 2

depth level 1

...
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Page
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Figure 3: Browsing path over a web-based material 

 
Basically the user browsing path over a web-based 

material (and in particular on any web-based learning 
source) can be viewed as a hierarchy structure (tree or 
directed graph). The user follows the links (the edges 
on the picture) from one page to another, or can go 
back to a previously viewed page (see fig. 3). Thus 



based on the knowledge about the learning material 
structure, the system can be aware of the most possible 
starting point of the student and suppose that the user 
will be following the links in the pages in consecutive 
order. 

Also based on the observations on all previous users 
the system can estimate the average depth, in which the 
students browse during their first session. 

In the context of caching the content on the first user 
access the system should upload as much as possible 
data trying to satisfy all user’s requests. 

Set of LO,
used by the student

in one session

Set of LO,
selected by the

hoarding algorithm

Figure 4: The hoarding starting step 
 

Later the system can try to detect the user expertise 
level on the study topic (by questionnaire for example) 
and to narrow the hoarding set using some domain 
knowledge (e.g. if LOi should be proposed to advanced 
users, while current user is a beginner, the algorithm 
should exclude LOi from the hoarding set). When no 
other rules can be applied to decrease the size of the 
hoarding set the LO left might be randomly uploaded 
until the memory limit is reached. 
 
5. Defining Session Length 
 

In the Internet world a session is defined as “a 
continuous period of time during which a user's 
browser is viewing Web pages or a Web application 
within the same server or domain” (source - MSDN 
Library). It is series of transactions or clicks on the web 
pages links made by a single user. There are different 
criteria to decide if a session is over or not. Two of the 
most commonly used are the session length and the 
inactivity period of the user. For the first method the 
time limit for the session length is set to a certain value 
and the activities later than this limit (counting from the 
start of the session) are considered a new session. In 
the second method if the user activity stops for a 
certain period of time on the resumption of the activity 
by the same user a new session is considered started.  

On the other hand for hoarding in a mobile system 
the importance falls on the time between two 
possibilities of the user to synchronize with the main 
server. In this sense we find more useful in this context 
to define a session as the time between two 
synchronizations of the mobile device with the main 
online system. The default session length might be one 
day, as commonly synchronization is done once per 
day, but during the system usage other session length 
might be observed and explicitly set for every user. 
 
6. Links and correlation between LO 
 

As mentioned earlier one of the steps of the 
hoarding algorithm is to construct the ‘candidate’ set of 
objects, related (linked) to the starting point or to other 
objects that were predicted to be viewed. When using a 
web-based material the user clicks on the links of one 
page to go to another one and can either continue to 
browse further or can go back to a previously viewed 
page. The links between the pages give us the structure 
of the web site (a learning material in particular), thus 
we can extract the relation between the LO, for 
example by parsing the pages. 

...

Starting
Page

 
Figure 5: Web-based material structure 

 
The links might be either bi-directional or not. We 

can build a LO correlation table in the following way: 
 

for (every LO) { 
 create a row; 
 for (i=1, number_of_LO, i++) { 
  if current_LO contains link to LOi 
    set celli = 1; 
  else set celli=0; 
 } 
} 

 
In the table we can see that LO1 contains link to LO2 

and to LOn , but not to LO3. The link is bi-directional 
for LO2 and LO3. In this way we can easily observe the 
set of LO that the user will be possibly requesting if 



he/she decides to browse deeper in the site, i.e. to go 
one level of depth further. Those are the objects 
directly linked to a particular object. 

 LO1 LO2 LO3 … LOn 

LO1 x 1 0  1 

LO2 0 x 1  1 

LO3 1 1 x  0 

…    x  

LOn 1 0 1  x 
 
From the table above we can easily construct the 

‘candidate’ set of LO for every next level of hoarding. 
Later this candidate set will be pruned (its size can be 
decreased by dropping some of the objects that are not 
likely to be requested). 

On the other hand we can analyze the correlation 
between the objects, based on their contemporary usage 
in other user sessions. For example association rules 
can be discovered over all users’ sessions containing an 
upper level LO. We can take into account only ‘very 
strong’ connections, i.e. associations discovered with 
confidence near to 1 and big enough support value. 
Note that it is expected that not a lot of such 
associations will be found, as the common scenario is 
to have big variety of LO and also big diversity of 
students’ knowledge, interests and learning 
preferences. The rules extracted in this way will be of 
the type LOi ⇒ LOj : conf=0.99 sup>0.5 which we can 
read as “Almost every time when the LOi was viewed 
also LOj was viewed in the same session (where LOi 
can be an example problem and LOj the solution given 
by the lecturer)”.  

Example: 
 LO1 LO2 LO3 LO4 LO5 LO6 

Session1 0 0 0 1 1 1 
Session2 1 1 1 0 0 0 
Session3 0 0 0 1 1 1 
Session4 0 0 1 0 1 1 
Session5 1 1 1 0 0 0 
Session6 1 0 1 0 0 0 
Session7 1 0 0 0 1 1 

  * Where 1 means that LOi was viewed during Sessionj not 
taking care of the sequencing. 
 

Association rules algorithm discovers with 
confidence=1 the following relations: 

LO1 ⇒ LO6 ; LO2 ⇒ LO1 ; LO2 ⇒ LO3 ; 
LO4 ⇒ LO5 ; LO5 ⇒ LO6 ; LO6 ⇒ LO5 ; 
 

Association rules can be discovered also in more 
limited number of sessions (not all at a time), for 
example search for correlated objects only in the 
sessions of users that ware classified in the same group 
as the user for which the current hoarding set is being 
prepared. Considering the example above if we apply a 
clustering algorithm (for example k-means), the 
algorithm produces 2 clusters from the above shown 
data. Applying association rules only to the sessions in 
the same cluster we get some additional associations. 
The clusters and discovered associations are as follows: 

Cluster Instances Associations 
cluster0   Session1 

Session3 

Session4 

Session7 

LO1 ⇒ LO5 
LO3 ⇒ LO5 
LO3 ⇒ LO6 
LO4 ⇒ LO6 

cluster1 Session2 

Session5 

Session6 

LO1 ⇒ LO3 
LO3 ⇒ LO1 

 
The above associations (like LO1 ⇒ LO5) show that 

if the object LO1 is to be selected for the hoarding set 
there is big probability that the user will also be 
accessing the object LO5 during the same session. 
Moreover associations of the type LO5=1 & LO6=1 ⇒ 
LO2=0 can also be discovered, showing that if the user 
will be viewing objects LO5 and LO6 it is most 
probable that the object LO2 will not be viewed, thus 
can be excluded from the hoarding set or at least its 
hoarding priority can be set to much lower level. 

For the example above we considered only 
associations with confidence=1 and any support greater 
than 0, but in a real situations the best values for these 
parameters should be discovered experimentally. 

The confidence value of the discovered associations 
LO can help us also in placing the items of the 
‘candidate set’ in an ordered list. 

Also other data mining and/or machine learning 
algorithms should be considered and tested to see their 
appropriateness for the hoarding process and how they 
can be combined best. 

 
7. User modeling 
 

In the literature one can find lots of different ways 
to model a user and/or her behavior depending on the 
application and its needs. In the context of hoarding we 
recognize two groups of characteristics that will be 
used differently by the algorithm. We schematically 
call the first ‘user behavior’ and the second ‘user 
knowledge’. Depending on the mobile learning system 
it is possible that not all the parameters can be 
discovered or they might be discovered through 



different techniques. The data about the user might be 
obtained by (any combination of) questionnaires, tests 
and quizzes or automatically by tracking the user and 
analyzing the log files. The process for retrieving 
automatically the user patterns consists of few steps, 
shown in the figure below. The first step is the 
preparation of the data for analyzing. For this step the 
log files should be preprocessed and integrated into a 
database. Afterwards different data mining algorithms 
can be applied to extract interesting relations. 
 

Transaction
Data

Preprocessing
& Integration

Data Mining

Algorithms

Log Files

Metadata

User
Profiles

Usage
Patterns

 Figure 6: Architecture for deriving user profiles 
 

The user behavior can be described in terms of 
browsing styles (e.g. consecutive, random, interest 
driven, etc.); preferred type of educational media (e.g. 
prefers video to combination of text and pictures); … 
Based on the user behavior we can group the learners 
and analyze the similarities and differences between the 
groups and between the members of the same group. 
This should help us to predict what will be needed, i.e. 
this data will be used to fill-in the hoarding set. 

On the other hand the user knowledge profile should 
consist of everything that the system knows about what 
the user already knows. Example is the system 
awareness of the user’s competence in a certain subject 
(i.e. beginner, intermediate, advanced) or a list of all 
the topics already covered by the user previously. In 
contrast of the user behavior the profile of the user 
knowledge will be user for pruning the entries from the 
hoarding set, i.e. for excluding objects in order to 
decrease the size of the hoard. 

We can distinguish static data about the user and 
dynamically changing data. The static data is for 
example the user age, gender, mother tongue and etc. 
On the other hand the dynamic data is our current 
knowledge about the changeable over time user 
parameters and should be reviewed in certain periods 
of time. For example the user browsing pattern might 
change drastically few days before an exam date, thus 
the hoarding system should be able to quickly 
recognize such changes and react accordingly. 
 

8. Metadata | Domain Knowledge 
 
The metadata represents specific domain knowledge 

or knowledge about the specific learning material. 
Metadata is in general provided by the educator or the 
learning material creator. It will generally vary from 
one application to another, but can be used by the 
hoarding algorithm to improve it work.  

One direction is to help in solving the ‘cold start’ 
problem by providing specific knowledge about the 
learning material structure, like ‘initial point’,  
provisioned common learning path, or connections 
between individual LO. The relationships between LO 
can also influence different weights of the parameters 
that are forming the priorities of the LO while 
hoarding. 
 
 
9. Conclusions 
 

In this paper we have described the hoarding 
problem for a mobile user without connection. The 
problem is how to support work on a mobile device 
when it is impossible to load on the mobile device all 
the data that comprise the full knowledge.  

We have outlined a general algorithm, and we have 
posed a number of questions that need to be answered 
in order to solve the problem. We have also attemped 
to give some first answers to these questions. Our work 
is still in progress. 
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