
Hoarding Content in M-Learning Context

Anna Trifonova and Marco Ronchetti
Department of Information and Communication Technologies

University of Trento, 38050, Povo (Trento), Italy
{Anna.Trifonova, Marco.Ronchetti}@dit.unitn.it

Abstract

With the advances in mobile technologies it is already
possible to support learners and teachers activities on the
move. We analyzed the functionalities that should be
provided by a general mobile learning platform and
identified a problem that is weakly studied by previous
research, namely offline usage of learning material
(hoarding of content). Hoarding can use some of the
techniques that are used by different caching and pre-
fetching schemas, but in most cases the goal of the last two is
to reduce latency time, bandwidth consumption and/or
servers workload, while in hoarding the aim is to improve
the accuracy of set selection. Caching and pre-fetching
content are problems that are considered widely since the
introduction of Internet for mass usage, still hoarding is not
so well explored. We want to study the parameters that could
help a hoarding algorithm improvement in order to cover the
peculiarity in m-learning scenario. Our goal is to provide an
efficient strategy, taking into account additional parameters,
extracted automatically by the system.

1. Introduction

E-learning is growing very fast and many
Universities and companies are already supporting in
some way an e-learning solution. There is now little
doubt that the World Wide Web is a very successful
educational medium. On the other hand the rush in the
field of wireless and mobile technologies creates
opportunity for new field of research - so called
‘mobile learning’. The domain of mobile learning can
include a wide variety of applications and new teaching
and learning techniques [2]. In their tries of finding the
best way to apply mobile devices in education people
are experimenting with different fields. Courses
modules were created throughout different projects for
people with numeracy and literacy problems, for kids
and university students, for teachers, for studying
computer science subjects, psychology or language
learning.

We analyzed different ways to apply mobile devices
for educational purposes. This led us to classifying
services that are specific and should be provided by a
general m-learning platform and later we concentrate
on one of these services as a concrete problem to solve
[3]. Namely this is the hoarding of content for offline
usage.

Hoarding is a technique for selecting a set of
documents to be pre-fetched on the user device and
used when disconnected. Related terms are caching and
pre-fetching, though they are more often used when
considering online conditions and Web performance.
Caching is a technique for keeping content that has
been requested by one user available on the nearest
server for a certain amount of time so other requestors
can access it faster. Pre-fetching on the other hand is a
technique which tries to guess what will be needed to
the client in the near future, cache it and this way
improve the clients’ experience. Different schemes of
caching and prefetching are proposed and the goal is to
reducing network traffic, minimizing access latency,
bottlenecks, servers’ workload and etc. in the WWW
world. Although the goal of hoarding content for
offline usage is little shifted from the one of Web
caching, some of the techniques can be reused.
However while in the online case one can balance
between the accuracy of the cached set and the added
traffic, in the situation we consider very high accuracy
is required and the added limitation is the memory
availability. The learning scenario has characteristics
that expose some additional information to be
considered and thereby possibility to improve the
existing solutions.

2. The hoarding process

The hoarding process should consist of few steps
that we can formalize as follows:

1. Predict the ‘starting point’ – the algorithm should
start by finding the entry point of the current user
for the next learning session

2. Set its hoarding priority to MAX
3. Predict the most probable session path - the

algorithm should discover the most probable
sequence of LO the user will be following.

4. Create a candidate set - all related documents
(objects) should be found and a ‘candidate for
caching’ set of objects should be created

5. Prune the set - the candidate set should be pruned,
i.e. the objects that will not be needed by the user
should be excluded from the candidate set, thus
making it smaller. This should be done based on
user behavior observations and domain knowledge.

6. Find the priority to all objects still in the hoarding
set - when the candidate set is pruned, using all the
knowledge available about the user and the current
learning domain, to every object left in the hoarding
set should be assigned a priority value. The priority
depends on how important the object is for the next
user session and should be higher if we suppose that
there is a higher probability that an object will be
used sooner.

7. Sort the objects, based on their priority - the
hoarding algorithm produces an ordered list of
objects

8. Cache, starting from the beginning of the list (thus
putting in the device cache those objects with
higher priority) and continue with the ones with
smaller weights until available memory is filled in

We can see that the algorithm will heavily depend

on system’s knowledge about the user. This knowledge
includes user’s learning style, natural learning habits
and abilities, the level of expertise in the studying field
and topic. This knowledge about the user can be
acquired in different ways – by direct assessment of the
user, by questionnaires and quizzes, but also by
observing and analyzing the user behavior during the
studying with the system, thus automatically
discovering user’s learning style, preferences, acquired
knowledge and etc.

For making the things clear we can consider two
separate engines. One will deal with observing the user
and creating user models and the other for the
hoarding. We call the first one ‘User Behavior
Analyzing Engine’ and it should be discussed later on.
The hoarding algorithm should take as input the output
from the ‘User Behavior Analyzing Engine’ (i.e. the
user models with the similarities and the differences of
the particular user with the common users’ behavior
and the current user preferences and learning history)

and additional information about the learning content
itself (domain knowledge). This will be also discussed
further.

Some questions appear on this stage:

• What is the best starting point for the user’s next
session?

• What is a ‘session’ in the mobile learning scenario?
• How can we predict the most probable learning

path (sequence of LO)?
• How do we create (formalize) a useful user model?
• What are the important parameters of the user

behavior which have influence on the prediction?
• How do we use different parameters of the user

model for predicting and/or pruning and do these
different parameters have different significance for
the prediction and/or pruning process?

• How do we formalize the domain knowledge?
• Do different domain knowledge parameters have

different significance for the prediction (and/or)
pruning process?

• How do we measure the successfulness of the
automatic hoarding and how do we improve the
work of the algorithms, considering these
measures?

The rest of the paper attempts to answer these
questions, starting from the last one (Section 3). In
section 4 we look at the ways to find the student’s
learning sequence and discuss the problem of the lack
of initial data. Section 5 shortly argues about the
difference between the general definition of ‘session’ in
the WWW world and the one applicable in the mobile
scenario. In 6 we discuss some aspects of the relations
between learning objects (LO) and how their
correlations can be used in the hoarding for pruning.
Afterwards in Sec. 7 we discuss different possible ways
to model the student and his/her behavior so we can
‘predict’ what materials will be needed during the
offline period. In Section 8 we talk about the additional
data about the learning material and the studied topic
that might be useful for the hoarding. Conclusions in 9
are followed by references in 10.

3. Measure the quality

An important question is to measure the quality of
the hoarding and to try to improve it every next time.
An often used metric in the evaluation of caching
proxies is the hit ratio. Hit ratio is calculated by
dividing the number of hits by the total number of
uploaded predictions (cache size). It is a good measure
for hoarding systems, though a more often used

measure is the miss ratio - a percentage of accesses for
which the cache is ineffective. The authors in [1]
defined a miss cost as a main difference in the
evaluation of a caching and a hoarding system. In
caching/prefetching systems the misses in the
prediction reflect as a time penalty as the missing
content should be retrieved from the web. This differs
from the mobile case where with unavailable internet
connection a miss in the hoard might be fatal. In order
to quantify this measure it is possible to demand a user
rating on every miss, using few different impact values.
[1] also defines time to first miss measure - a simple
count between the start of the disconnected operation
and the first hoard miss. Note that this evaluation
criterion can be used only on real-use of a system (and
its hoard part). It is also strongly related to the
hoarding size. Another possible measurement is the
miss-free hoard size, defined as the minimum amount
of disc space that a particular hoarding system would
require to allow a complete disconnection period to
take place without any misses.

The goal of the hoarding algorithm is to maximize
the ‘hit rate’ and at the same time to minimize the ‘miss
rate’. In other words the ideal situation is to achieve
hit_rate=100% and miss_rate=0%, which would mean
than the hoarding set contains all and only the items
that the user needs during her/his studying session as
shown on the figure below.

Set of LO, used by the
student in one session

Set of LO, selected by
the hoarding algorithm

Figure 1: The ideal hoarding set

Though the ideal picture is to select all and only
those items that will be used by the user it is obvious
that in a real system such an ideal situation is almost
impossible to reach. Most probably we will have some
(desirably big) overlapping between the cached by the
hoarding algorithm LO and those LO really requested
by the learner.

Set of LO,
used by the student

in one session

Set of LO,
selected by the

hoarding algorithm

Figure 2: The expected picture

If the miss cost measure mentioned before is used it

might be better to also try to minimize the overall cost
of all misses.

As mentioned before the hoarding module should be
also able to analyze how successfully the previous
hoarding was done for improving further prediction.
For this we should be able to check which parameters
or combinations of parameters of the user model and/or
domain knowledge have bigger impact on the goodness
of the algorithm.

By analyzing the goodness of the prediction of the
hoarding algorithm we can try to tune its work. For
example if a user indicates a LO miss as fatal the
algorithm should check why this LO was not cached,
e.g. if this entry was pruned or was given a small
priority, and later the ‘rules’ for pruning and/or
prioritizing should be reconsidered accordingly.

4. Students’ learning sequences and the
cold start problem

Though it should be possible to extract specific
knowledge about the user behavior and to try to predict
students’ future steps, on the first user access to the
system it (the system) is totally unaware of the
properties and preferences of this specific user.

The problem, known as ‘cold start’, can be faced by
assessing the learner knowledge through a quiz and/or
questionnaire and making some assumptions.

depth level 2

depth level 1

...

Starting
Page

1

2

3 4

5 6 7

8 9

Figure 3: Browsing path over a web-based material

Basically the user browsing path over a web-based

material (and in particular on any web-based learning
source) can be viewed as a hierarchy structure (tree or
directed graph). The user follows the links (the edges
on the picture) from one page to another, or can go
back to a previously viewed page (see fig. 3). Thus

based on the knowledge about the learning material
structure, the system can be aware of the most possible
starting point of the student and suppose that the user
will be following the links in the pages in consecutive
order.

Also based on the observations on all previous users
the system can estimate the average depth, in which the
students browse during their first session.

In the context of caching the content on the first user
access the system should upload as much as possible
data trying to satisfy all user’s requests.

Set of LO,
used by the student

in one session

Set of LO,
selected by the

hoarding algorithm

Figure 4: The hoarding starting step

Later the system can try to detect the user expertise
level on the study topic (by questionnaire for example)
and to narrow the hoarding set using some domain
knowledge (e.g. if LOi should be proposed to advanced
users, while current user is a beginner, the algorithm
should exclude LOi from the hoarding set). When no
other rules can be applied to decrease the size of the
hoarding set the LO left might be randomly uploaded
until the memory limit is reached.

5. Defining Session Length

In the Internet world a session is defined as “a
continuous period of time during which a user's
browser is viewing Web pages or a Web application
within the same server or domain” (source - MSDN
Library). It is series of transactions or clicks on the web
pages links made by a single user. There are different
criteria to decide if a session is over or not. Two of the
most commonly used are the session length and the
inactivity period of the user. For the first method the
time limit for the session length is set to a certain value
and the activities later than this limit (counting from the
start of the session) are considered a new session. In
the second method if the user activity stops for a
certain period of time on the resumption of the activity
by the same user a new session is considered started.

On the other hand for hoarding in a mobile system
the importance falls on the time between two
possibilities of the user to synchronize with the main
server. In this sense we find more useful in this context
to define a session as the time between two
synchronizations of the mobile device with the main
online system. The default session length might be one
day, as commonly synchronization is done once per
day, but during the system usage other session length
might be observed and explicitly set for every user.

6. Links and correlation between LO

As mentioned earlier one of the steps of the
hoarding algorithm is to construct the ‘candidate’ set of
objects, related (linked) to the starting point or to other
objects that were predicted to be viewed. When using a
web-based material the user clicks on the links of one
page to go to another one and can either continue to
browse further or can go back to a previously viewed
page. The links between the pages give us the structure
of the web site (a learning material in particular), thus
we can extract the relation between the LO, for
example by parsing the pages.

...

Starting
Page

Figure 5: Web-based material structure

The links might be either bi-directional or not. We

can build a LO correlation table in the following way:

for (every LO) {
 create a row;
 for (i=1, number_of_LO, i++) {
 if current_LO contains link to LOi
 set celli = 1;
 else set celli=0;
 }
}

In the table we can see that LO1 contains link to LO2

and to LOn , but not to LO3. The link is bi-directional
for LO2 and LO3. In this way we can easily observe the
set of LO that the user will be possibly requesting if

he/she decides to browse deeper in the site, i.e. to go
one level of depth further. Those are the objects
directly linked to a particular object.

 LO1 LO2 LO3 … LOn

LO1 x 1 0 1

LO2 0 x 1 1

LO3 1 1 x 0

… x

LOn 1 0 1 x

From the table above we can easily construct the

‘candidate’ set of LO for every next level of hoarding.
Later this candidate set will be pruned (its size can be
decreased by dropping some of the objects that are not
likely to be requested).

On the other hand we can analyze the correlation
between the objects, based on their contemporary usage
in other user sessions. For example association rules
can be discovered over all users’ sessions containing an
upper level LO. We can take into account only ‘very
strong’ connections, i.e. associations discovered with
confidence near to 1 and big enough support value.
Note that it is expected that not a lot of such
associations will be found, as the common scenario is
to have big variety of LO and also big diversity of
students’ knowledge, interests and learning
preferences. The rules extracted in this way will be of
the type LOi ⇒ LOj : conf=0.99 sup>0.5 which we can
read as “Almost every time when the LOi was viewed
also LOj was viewed in the same session (where LOi
can be an example problem and LOj the solution given
by the lecturer)”.

Example:
 LO1 LO2 LO3 LO4 LO5 LO6

Session1 0 0 0 1 1 1
Session2 1 1 1 0 0 0
Session3 0 0 0 1 1 1
Session4 0 0 1 0 1 1
Session5 1 1 1 0 0 0
Session6 1 0 1 0 0 0
Session7 1 0 0 0 1 1

 * Where 1 means that LOi was viewed during Sessionj not
taking care of the sequencing.

Association rules algorithm discovers with
confidence=1 the following relations:

LO1 ⇒ LO6 ; LO2 ⇒ LO1 ; LO2 ⇒ LO3 ;
LO4 ⇒ LO5 ; LO5 ⇒ LO6 ; LO6 ⇒ LO5 ;

Association rules can be discovered also in more
limited number of sessions (not all at a time), for
example search for correlated objects only in the
sessions of users that ware classified in the same group
as the user for which the current hoarding set is being
prepared. Considering the example above if we apply a
clustering algorithm (for example k-means), the
algorithm produces 2 clusters from the above shown
data. Applying association rules only to the sessions in
the same cluster we get some additional associations.
The clusters and discovered associations are as follows:

Cluster Instances Associations
cluster0 Session1

Session3

Session4

Session7

LO1 ⇒ LO5
LO3 ⇒ LO5
LO3 ⇒ LO6
LO4 ⇒ LO6

cluster1 Session2

Session5

Session6

LO1 ⇒ LO3
LO3 ⇒ LO1

The above associations (like LO1 ⇒ LO5) show that

if the object LO1 is to be selected for the hoarding set
there is big probability that the user will also be
accessing the object LO5 during the same session.
Moreover associations of the type LO5=1 & LO6=1 ⇒
LO2=0 can also be discovered, showing that if the user
will be viewing objects LO5 and LO6 it is most
probable that the object LO2 will not be viewed, thus
can be excluded from the hoarding set or at least its
hoarding priority can be set to much lower level.

For the example above we considered only
associations with confidence=1 and any support greater
than 0, but in a real situations the best values for these
parameters should be discovered experimentally.

The confidence value of the discovered associations
LO can help us also in placing the items of the
‘candidate set’ in an ordered list.

Also other data mining and/or machine learning
algorithms should be considered and tested to see their
appropriateness for the hoarding process and how they
can be combined best.

7. User modeling

In the literature one can find lots of different ways
to model a user and/or her behavior depending on the
application and its needs. In the context of hoarding we
recognize two groups of characteristics that will be
used differently by the algorithm. We schematically
call the first ‘user behavior’ and the second ‘user
knowledge’. Depending on the mobile learning system
it is possible that not all the parameters can be
discovered or they might be discovered through

different techniques. The data about the user might be
obtained by (any combination of) questionnaires, tests
and quizzes or automatically by tracking the user and
analyzing the log files. The process for retrieving
automatically the user patterns consists of few steps,
shown in the figure below. The first step is the
preparation of the data for analyzing. For this step the
log files should be preprocessed and integrated into a
database. Afterwards different data mining algorithms
can be applied to extract interesting relations.

Transaction
Data

Preprocessing
& Integration

Data Mining

Algorithms

Log Files

Metadata

User
Profiles

Usage
Patterns

 Figure 6: Architecture for deriving user profiles

The user behavior can be described in terms of
browsing styles (e.g. consecutive, random, interest
driven, etc.); preferred type of educational media (e.g.
prefers video to combination of text and pictures); …
Based on the user behavior we can group the learners
and analyze the similarities and differences between the
groups and between the members of the same group.
This should help us to predict what will be needed, i.e.
this data will be used to fill-in the hoarding set.

On the other hand the user knowledge profile should
consist of everything that the system knows about what
the user already knows. Example is the system
awareness of the user’s competence in a certain subject
(i.e. beginner, intermediate, advanced) or a list of all
the topics already covered by the user previously. In
contrast of the user behavior the profile of the user
knowledge will be user for pruning the entries from the
hoarding set, i.e. for excluding objects in order to
decrease the size of the hoard.

We can distinguish static data about the user and
dynamically changing data. The static data is for
example the user age, gender, mother tongue and etc.
On the other hand the dynamic data is our current
knowledge about the changeable over time user
parameters and should be reviewed in certain periods
of time. For example the user browsing pattern might
change drastically few days before an exam date, thus
the hoarding system should be able to quickly
recognize such changes and react accordingly.

8. Metadata | Domain Knowledge

The metadata represents specific domain knowledge

or knowledge about the specific learning material.
Metadata is in general provided by the educator or the
learning material creator. It will generally vary from
one application to another, but can be used by the
hoarding algorithm to improve it work.

One direction is to help in solving the ‘cold start’
problem by providing specific knowledge about the
learning material structure, like ‘initial point’,
provisioned common learning path, or connections
between individual LO. The relationships between LO
can also influence different weights of the parameters
that are forming the priorities of the LO while
hoarding.

9. Conclusions

In this paper we have described the hoarding
problem for a mobile user without connection. The
problem is how to support work on a mobile device
when it is impossible to load on the mobile device all
the data that comprise the full knowledge.

We have outlined a general algorithm, and we have
posed a number of questions that need to be answered
in order to solve the problem. We have also attemped
to give some first answers to these questions. Our work
is still in progress.

10. References

[1] Kuenning, G.H., Popek, G.J., “Automated Hoarding for
Mobile Computers”, Proc. of 16th ACM Symposium on
Operating Systems Principles, St. Malo, France, Oct. 1997.

[2] Trifonova A., Ronchetti M., “Where is Mobile Learning
Going?”, Proc. The World Conference on E-learning in
Corporate, Government, Healthcare, & Higher Education (E-
Learn 2003), Phoenix, Arizona, USA, November 7-11, 2003.

[3] Trifonova A., Ronchetti M., “A General Architecture to
Support Mobility in Learning”, Proc. of the 4th IEEE
International Conference on Advanced Learning
Technologies (ICALT 2004 - "Crafting Learning within
Context”), August 30 - September 1, 2004, Joensuu, Finland.

