DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://lwww.dit.unitn.it

IWTRUST:
IMPROVING USER TRUST IN ANSWERS FROM THE WEB

llya Zaihrayeu, Paulo Pinheiro da Silva
and Deborah L. McGuinness

December 2004

Technical Report # DI T-04-086

Note: in the proceedings of the itrust conference
(http://www.rocqg.inria.fr/arles/events/iTrust2005/).

IWTrust:
Improving User Trust in Answers from the Web

Ilya Zaihrayeu't Paulo Pinheiro da Silva? Deborah L. McGuinness?

HTC-IRST, Trento, Italy
2Stanford University, Stanford, USA

Abstract. Question answering systems users may find answers with-
out any supporting information insufficient for determining trust levels.
Once those question answering systems begin to rely on source informa-
tion that varies greatly in quality and depth, such as is typical in web
settings, users may trust answers even less. We address this problem by
augmenting answers with optional information about the sources that
were used in the answer generation process. In addition, we introduce a
trust infrastructure, IWTrust, which enables computations of trust val-
ues for answers from the Web. Users of IWTrust have access to sources
used in answer computation along with trust values for those source,
thus they are better able to judge answer trustworthiness.

1 Introduction

The number of information sources available to web applications is growing.
As information source breadth increases, so does the diversity in quality. Users
may find growing challenges in evaluating the quality of web answers, particu-
larly in settings where answers are provided without any kind of justification.
One way our work improves a user’s ability to judge answers is by including
knowledge provenance information along with answers. Knowledge provenance
includes information about the origin of knowledge and a description of the rea-
soning processes used to produce the answers [8]. This paper describes our new
work, which supports justifications that may include trust values with answers.
The computation process takes into account the user’s (stated or inferred) de-
gree of belief in the sources, question answering engines, and in other users who
provide sources and/or answering engines. Our framework allows users to de-
fine and (locally) maintain individual trust values, and use those values in their
evaluation of answers from their own trust “viewpoint”.

In recent work, we have addressed the problem of improving user’s trust
in answers by providing information about how an answer was calculated [5].
That work provides an infrastructure, called Inference Web (IW), which allows
proofs and proof fragments to be stored in a portable, distributed way on the

T A part of the work had been done when the author was affiliated with the University
of Trento, Italy

web by using the proof Interlingua called the Proof Markup Language (PML) [7].
Proofs describe information manipulation processes (i.e., information extraction,
reasoning, etc.) used to answer questions providing full support for tracking
knowledge provenance related to answers. In addition to PML, which serves as
a proof interlingua, IW provides IWBase [4], which is a distributed repository of
knowledge provenance elements. Knowledge provenance elements contain proof-
related meta-information such as information about question answering engines,
inference rules, representation languages, and sources such as ontologies or doc-
uments. PML documents can represent answers varying from a single database
lookup operation to a derivation of complex answers in a distributed fashion,
involving multiple sources, and using distinct answering engines.

Knowledge provenance alone may not provide enough information for users
to determine trust levels of answers. For example, a user may be unfamiliar with
a question answering component that was used to find (a part of) the answer. A
user may not know much about the question answering system (e.g. reasoning
method, correctness and completeness of the reasoner, reasoning assumptions,
etc.). Alternatively, a user may know something about the reasoner and would
normally expect to trust answers from the reasoner, however when answers ap-
pear to be incomplete or conflict with a user’s expectations, a user may need
more information before trusting the answer. Also, users may trust a question
answering system completely however if the system relies on information from
sources that the user does not trust, then the user may not trust the answer.
Additional considerations include situations where a source is used that is un-
known to the user but the source is known to be trusted by another user (human
or agent) who is trusted by the user.

In this paper we introduce an extension of IW, called IWTrust, which can
quantify users’ degree of trust in answers obtained from web applications and
services. IWTrust uses trust values between users as well as trust values between
users and provenance elements. Trust values for answers are computed relative
to a particular user’s perspective. The final trust value for the answer uses both
a user’s trust value of the sources used in the answer as well as a user’s trust in
other user’s trust of sources used to obtain the answer.

The paper is organized as follows. Section 2 provides an abstract view of
how trust components interact with question answering components. Section 3
provides the details of our trust model for IW. Section 4 provides an example
use of IWTrust and the final section summarizes our work.

2 Trust for Question Answering

In the Inference Web context, a question answering engine is any kind of software
system providing services able to produce answers in response to queries. From
this general definition, answering engines may vary from retrieval-based services,
such as database management systems and search engines, to reasoning-based
services such as automated theorem provers.

We assume an environment where a user interacts with a query front-end
component to formulate and ask a query ¢. The query front-end responds with
a set of answers A. The query front-end is also responsible for forwarding the
query ¢ to the answering engine, grouping answers from the answering engine
into a set of answers A, and forwarding A to the user. Optionally, the user may
provide a set S of information sources to be used by the answering engine when
retrieving information. On demand, answering engines may also provide N(A),
a set of justifications for answers in A.

Query languages for ¢ vary accordingly to the kinds of answering engines
used in the environment. For example, ¢ may be a SQL query if the answering
engine is a relational database management system or ¢ may be an OWL-QL [2]
query if the answering engine is a hybrid automated reasoner such as JTP [3].
The set of justifications N(A) is represented in PML [7].

In general, trust components are responsible for computing trust values for
resources such as users. In a question answering environment, we believe trust
components should be also able to compute trust values for trust graph resources
such as sources, told information, and derived information.

Trust
Supporting
System
5
u, n(ay)[t..1 T(u, n(a,))
4 A4
q. U, [S], [yl q,[S]
1 Query 2 "I Answering | information
user < 6 | Front-end |, 3 Engine
L [NCA)], T(u, N(A)) A, N(A)

Fig. 1. Trust component in question answering systems

The computation of trust values for answers presented in Figure 1 provides a
scenario where the trust component tries to assign trust values to every (interme-
diate) conclusion ¢, during the question answering process. Trust is user-specific
information; and, different users may trust other users and sources differently.
Trust values for answers are computed on demand in the same way that jus-
tifications are computed on demand. Thus, if positive answer trust values are
required, the answering engine should return answer justifications (step 3 in Fig-
ure 1), even if justifications are not asked by the user. From an answer and its
justifications, the trust component computes (using the underlying trust net-
work) user’s trust values T'(u;,n(ax)) for answer aj, , which are returned to the
query front-end (step 5). The query front-end consolidates available trust val-
ues for justifications of answers in A into a single set T'(u;, N(A))!. Finally, the
query front-end returns T'(u;, N(A)) to the user (step 6).

L T(ui, N(A)) is defined as {X | Var € A, T(us,n(ax)) € X}.

3 IWTrust Framework

In this section we introduce the IWTrust framework, referred to in the rest of the
paper as IWTrust. Figure 2 shows IWTrust in action where a user u;, submits
a query ¢ and obtains a set of answers {ay,...,a,} with their associated trust
values {t11,%12, ..., t1m,t21, .. tn1,...r. The user is connected by trust relations
to provenance elements (sources and answering engines in the diagram) that are
used in answering the query. The user, u1, is directly connected to some of them
such as e;. The user is connected to other provenance elements through other
users (e.g., up is connected to sq, s3 through ug and u4). Provenance elements are
connected to told assertions in proofs by provenance relations. Finally, Figure 2
identifies proof fragments, queries, IWBase and TrustNet as IW components
supporting the trust graph as discussed in this section.

proof fragments and queries IWBase TrustNet Legend
u; — user
________ st S| — source
T o s B s
1‘,/ L LI ‘ew"‘.“. e 2"} €, — answering engine
4 v A .
t by * : @ - told assertion
q(u,) - B /19-- T _ . _ _
(A0t togieid) 2 ; t" . B tse; { — information manipulation
Ny ,,,,53.-"" e s i | © - derived assertion
: e : ts : o _ i
(@t o) e e, u~eu, o7 trust relation

/"~ provenance relation
rd
7 —answer to query

IWTrust Framework
Fig. 2. IWTrust Framework

3.1 Proof Fragments and Queries

PML is used to build OWL documents representing proof fragments and queries.
A PML NodeSet is the primary building block of proofs and is used to represent
information manipulation from queries to answers and from answers to sources. A
PML Query is used to represent user queries; it identifies the node sets containing
conclusions used in answering the query. PML is an ontology written in W3C’s
OWL Semantic Web representation language [6] allowing justifications to be
exchanged between Semantic Web services and clients using XML/RDF/OWL.

A node set n(c) represents a step in a proof whose conclusion c is justified by
a set of inference steps associated with the node set. The conclusion ¢ represents
the expression concluded by the proof step. Every node set has one conclusion
which is the element in the trust network that requires a trust value. Each
inference step of a node set represents an application of an inference rule that
justifies the node set’s conclusion. The antecedents of an inference step form a
sequence of node sets each of whose conclusion is a premise of the application
of the inference step’s rule. Each source of an inference step refers to an entity
representing original statements from which the conclusion was obtained. An

inference step’s source supports the justification of the node set conclusion when
the step’s rule is a DirectAssertion.

3.2 TrustNet

TrustNet is a trust network, where users may define trust values w.r.t. other
users, answering engines, and sources. In addition to these trust relations, the
TrustNet trust graph represents provenance relations between sources. An edge
in the graph may connect a source node to a created source node, provided that
the source is the author (publisher or submitter) of the created source. Using the
information in these edges, we can compute trust for a created source based on
the trust of the source that created it. All edges in the graph are associated with
two values: length and trust value. Intuitively, the length of an edge represents
the trust “distance” between the origin (i.e., users or sources) and destination
nodes.

Trust values are defined in the range [0,1], and are given a probabilistic
interpretation. A trust value means the probability that: (1) a source contains
relevant and correct information; (2) an answering engine correctly applies rules
to derive statements (as conclusions of node sets); (3) a user provides a reference
to a source that meets the requirements from (1), and/or to an answering engine
that meets the requirements from (2); (4) a user recommends other user(s) who
can provide trustworthy references to source(s) and/or to answering engine(s).

Edges connecting sources have length values equal to 0 and trust values equal
to 1. These values represent the connection between created sources and their
associated sources. All other edges have length 1 and may have an arbitrary trust
value, which is computed as follows: each statement, used in query answering,
and originated from some source, may be evaluated by the user either as correct
or as incorrect. Users aggregate this information, and define their trust value of a
source as the ratio of correct statements w.r.t. all evaluated statements from the
source. The general formula for computing trust values follows: ¢t = %,
where n; is the number of interactions evaluated as trustworthy; n,, is the number
of interactions evaluated as untrustworthy; ¢, is the level of prejudice; and n,, is
a hypothetical number of interactions. ¢, predetermines the starting trust level;
and n, defines the level of confidence of the user that ¢, is correct — the higher
np, the slower ¢ changes its value, while “recording” actual interactions of the
user, from the value of ¢,. This approach is not absolutely new, and used in a
similar form, for instance in [9].

4 Trusting Answers: An Example

IWTrust’s typical use of trust values is for comparison and ordering of answers.
We do not expect that typical users will be interested in looking at raw trust
values such as 0.234 but we do expect that they will be interested in knowing
that some answers were trusted more than others. In this section, we present an

example showing how trust values can be used to rank both answers and justifi-
cations, as well as briefly discussing the algorithms used for trust computation?.

Figure 3 shows a proof tree supporting the answer to a question concerning
the type of Tony’s specialty (TonysSpeciality in Figure 3). This particular
proof tree encodes information justifying that Tony’s specialty is a shellfish dish.
In this example, Source 2 states that Tony’s specialty is a CRAB dish, and Source
1 states that the type is transitive (thus if a dish is of type crab and crab is a
kind of shellfish, then the dish is of type shellfish). Thus, using generalized modus
ponens (GMP), the proof concludes that Tony’s specialty has the type of all of
the superclasses of CRAB. Further, Sources 2 and 3 state that SHELLFISH is a
superclass of CRAB. Thus, using GMP again, the proof concludes that Tony’s
specialty is a SHELLFISH dish.

{<= (type %inst ?x) (and (ty?e Tinst 7c) {subClassOf 7c ¥x))) (iype TonysSpecialty CRAB)
i | et Hide |Path

Hid:

Source | @ 5 Source 2
t,=0.9 \ / 1,=0.7
1, =3 =2
[TF- K S Java Theorem Prover] TP~ KSL Jawa Thearem Prover]
(== (type TonysSpecialty ?x) (subClassOf CRAB 7z)) subClassOf CRAB SHELLFISH
ilco_rr[;péned] ‘ [Fice TFadf])
4= —
L —0.62 Source 2 | Source 3
]“ _ t;=0.7 |t;=0.6
- 3 ;=2 ;=2
(computed)
105:00.9 es [JTF- KSL Jawa Theorem Frover
=0. =0. type TonysSpecialty SHELLFISH
;r;‘sz3 ;r;‘s:3 ityp ys3p y)

Fig. 3. Trust Composition Algorithm: an example

The proof shows that the question has at least two answers: one that Tony’s
specialty is a SHELLFISH dish, and also that it is a CRAB dish. The proof
also shows that the SHELLFISH answer has two justifications: one based on
statements from Sources 1, 2 and 3; and the other based on statements from
Sources 1 and 2 only.

Trust rankings may be valuable for ranking of justifications and their com-
ponents. For instance, if the user asks for a list of sources for the SHELLFISH
answer, we may not include Source 3 since the justification based on Source 3 has
a trust value (t=0.55) lower than the justification without it (t=0.60). Source
4, also stating that SHELLFISH is a superclass of CRAB, could be listed if its
trust value was high enough to make a justification (based on its statement)
with trust value higher than 0.60. The trust composition algorithm (see Algo-
rithm 1) is used to compute these values. Thus, starting from the last step of the
proof, i.e., node 1 in Figure 3, and proceeding through the set of antecedents of

2 See the full version of the paper for comprehensive details of the algorithms.
Link: http://www.ksl.stanford.edu/people/pp/papers/Zaihrayeu_iTrust_2005.pdf

node 1, i.e., nodes 2 and 3, the algorithm computes t. and [, recursively (lines
6, 12 and 13 in Algorithm 1). The algorithm terminates when conclusions inside
a proof have no antecedents (C' = (), i.e., when it reaches nodes 2, 4 and 5
in our example. In this case, we assume an implicit trust relation with value
1.0 and length 1 between the conclusion and its source s; whereas t. and [, for
the resulting tuple are inferred as the trust and length values for s (line 3).
We adopt Agrawal’s generalized version of the semi-naive algorithm to compute
trust values between users and from users to sources [1]. In our case, the algo-
rithm computes the transitive closure of a (trust) relation in an iterative manner,
producing at each iteration a set of new transitively held relations.

Algorithm 1 Trust Composition

input: u;, R, j; output: < u;,c,te,l. >
note: ¢ is the conclusion of proof j; s is the source of ¢, if any; e and C are
the engine and set of antecedents for the last step in j deriving ¢
1: if C = () then
te,le — Rg(ug, 8);
else
watv, wl, length < 0;
for all ¢; € C' do
tj,l; — trustCompositionAlgorithm(u;, ¢j, Ra, tmin);
watv — watv + (¢;/15);
wl — wl+ (1/1;);
length « total + l;;
end for
teyle — Ra(ug,€)
te «— (watv/wl) * t.;
13: I, « INT(length/|C|) + 1
14: end if

— =
o

For a conclusion ¢ from a proof step with one or more antecedents, the
algorithm works as follows: it first computes a weighted average over t; for all
¢;j € C, whereas the weights are inversely proportional to the path lengths of
nodes in C. watv and wl are used to compute the answer weighted average trust
value. By computing a trust value for the answering engine input as the ratio
between watv and wl we are fully trusting the answering engine. However, we
may have reasons for not trusting an engine that much. For instance, the engine
may not be sound for some kind of questions. Thus, we “weigh” the input trust
values against path lengths as shorter paths are likely to be more “credible”
than longer ones. Then, we compute the trust value for ¢, ., by multiplying the
weighted average trust value (watv/wt) by t. (line 12). We compute the path
length to ¢ as the integer part of the average of all ¢;, incremented by 1 (line
13).

5 Conclusions

In this paper, we have introduced IWTrust as a solution supporting trust in ques-
tion answering environments. IWTrust leverages the Inference Web infrastruc-
ture to provide explanations from many question answering environments rang-
ing from retrieval-intensive systems, such as database management systems and
search engines, to reasoning-intensive systems such as theorem provers. It then
enhances these explanations with user-customized trust values, which can then
be used to determine trust of answers, sources, and answer justifications.

We present two primary contributions. First we provide an implemented so-
lution infrastructure that can generate explanations for a wide range of question
answering systems that has been integrated with a trust network. Second, we
provide a design and prototype of a trust network with trust functionalities
supporting trust computation in a distributed question answering environment
such as the web. While others have provided trust algebras previously, and im-
plemented explanation solutions exist for different types of question answering
paradigms, our work is the first we know of that provides explanations with
integrated trust values for a wide range of question answering systems and si-
multaneously provides an extensible architecture (allowing integration of other
trust algorithms). Our primary contributions in the trust area include our design
in the TrustNet layer presented in Section 3.2 and the answer trust computation
algorithms used in Section 4.

References

1. R. Agrawal, S. Dar, and H. Jagadish. Direct transitive closure algorithms: Design
and performance evaluation. ACM Transactions on Database Systems., 15(3):427—
458, September 1990.

2. Richard Fikes, Pat Hayes, and Ian Horrocks. DAML Query Language (DQL) Ab-
stract Specification. Technical report, W3C, 2002.

3. Richard Fikes, Jessica Jenkins, and Gleb Frank. JTP: A System Architecture and
Component Library for Hybrid Reasoning. Technical Report KSL-03-01, Knowledge
Systems Laboratory, Stanford University, Stanford, CA, USA, 2003.

4. Deborah L. McGuinness and Paulo Pinheiro da Silva. Registry-based support for
information integration. In S. Kambhampati and C. Knoblock, editors, In Proceed-
ings of IJCAI-2003’s Workshop on Information Integration on the Web (IIWeb-03),
pages 117-122; Acapulco, Mexico, August 2003.

5. Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining Answers from the
Semantic Web. Journal of Web Semantics, 1(4):397-413, October 2004.

6. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. Technical report, World Wide Web Consortium (W3C), February 10
2004. Recommendation.

7. Paulo Pinheiro da Silva, Deborah L. McGuinness, and Richard E. Fikes. A Proof
Markup Language for Semantic Web Services. Information Systems, 2005. (to
appear).

8. Paulo l)F’inheiro da Silva, Deborah L. McGuinness, and Rob McCool. Knowledge
Provenance Infrastructure. In Data Engineering Bulletin Vol.26 No./, pages 26—32,
December 2003.

9. Wang Y. and Vassileva J. Trust-based community formation in peer-to-peer file
sharing networks. Proc. of IEEE/WIC/ACM International Conference on Web
Intelligence (WI 2004), Beijing, China, September 2004.

