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Ferromagnetism is an iconic example of a first-order phase transition taking place in spatially extended
systems and is characterized by hysteresis and the formation of domain walls. We demonstrate that an
extended atomic superfluid in the presence of a coherent coupling between two internal states exhibits a
quantum phase transition from a paramagnetic to a ferromagnetic state. The nature of the transition is
experimentally assessed by looking at the phase diagram as a function of the control parameters, at
hysteresis phenomena, and at the magnetic susceptibility and the magnetization fluctuations around the
critical point. We show that the observed features are in good agreement with mean-field calculations.
Additionally, we develop experimental protocols to deterministically generate domain walls that separate
spatial regions of opposite magnetization in the ferromagnetic state. Thanks to the enhanced coherence
properties of our atomic superfluid system compared to standard condensed matter systems, our results
open the way toward the study of different aspects of the relaxation dynamics in isolated coherent many-
body quantum systems.
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I. INTRODUCTION

Superfluidity in many-body quantum systems leads
to interesting and notable transport and coherence proper-
ties [1–3]. Such properties are due to a thermal second-
order transition from a normal to a superfluid state, a
transition which is formally characterized by the sponta-
neous breaking of the U(1) symmetry related to particle
number conservation. Since such a transition is driven by
the Bose statistics, atom-atom interactions are not needed to
observe condensation. However, they play an important
role in stabilizing the superfluid phase against disturbances,
e.g., guaranteeing a finite compressibility and a finite
critical Landau velocity for superfluidity.
On top of this, superfluids can also have internal degrees

of freedom, leading to order parameters with a nontrivial
spinor or vector structure [4]. In this case, non-spin-
symmetric interactions may lead to ground states with a

very different spinor structure of the order parameter. A
natural question is therefore whether the transition between
different states can be described as a quantum phase
transition (QPT), and, if so, which universality class such
a QPT belongs to, what is the interplay between the super-
fluid nature of the system and the QPT, and whether the QPT
in these systems survives at low yet finite temperature [5].
Recent theoretical works (see review in Ref. [6]) have

anticipated that a two-component atomic Bose-Einstein
condensate (BEC), subject to an external field that coher-
ently couples the two components [7], exhibits a phase
transition in the quantum Ising universality class. In
particular, at zero temperature, mean-field theory predicts
an interaction-driven transition from a paramagnetic (PM)
to a Z2-symmetry-breaking ferromagnetic (FM) state.
The quantum Ising model [8,9] is the paradigmatic

model for (continuous) QPT, where the ferromagnetic
interactions along one spin direction of the standard Ising
model compete with a transverse magnetic field. The
dynamics of the low-energy magnetic fluctuations near
the critical point are described by a ϕ4 theory. This is
based on the Ginzburg-Landau functional for a continuous
phase transition, with its iconic single- to double-well
energy landscape transition upon the change of an external
parameter [10].
In this work, we experimentally demonstrate that a

superfluid of coherently coupled sodium atoms exhibits
such a ferromagnetic phase transition. While classical
bifurcation [11] and hysteresis phenomena [12] were
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already observed in zero-dimensional atomic systems, the
lack of a spatial extension inhibited the possibility of
describing the observed phenomena in terms of a phase
transition. This is, instead, possible in our spatially
extended ultracold cloud of coherently coupled atoms,
where the spin degree of freedom can be properly
described as a ferromagnetic order parameter with
anisotropic interactions and subject to an external field.
Taking advantage of the coexistence of different magnetic
phases within a single system, we map out the phase
diagram of the ground state and characterize the associ-
ated hysteresis phenomena. Exploiting the long coherence
time of our system and its robustness against localized
spin excitations, we demonstrate the possibility to deter-
ministically generate domain walls (DWs) between differ-
ent magnetic states.
Our results highlight the potential of a coherently

coupled BEC as a new platform, in which to explore QPTs.
As compared to usual solid-state systems, our platform
features important advantages. On the one hand, the cold
atom platform allows for a microscopic description of all
the interaction processes taking place in the system and,
therefore, is amenable to a quantitative comparison with
theory. On the other hand, the superfluid nature of the cloud
and the smoothness of the trapping potential remove all
those complications that normally stem from the unavoid-
able disorder of solid-state systems and their fast incoherent
relaxation process, hence allowing one to focus on the
intrinsic many-body properties of the stationary states. On a
longer run, we expect that this feature will be of extreme
importance, in view of applications to the experimental
study of coherent relaxation phenomena in isolated quan-
tum systems, such as the time-dependent motion of domain
walls or the quantum-induced bubble-mediated decay of
metastable states.
The structure of the article is the following. In Sec. II, we

illustrate the properties of the PM-FM phase transition and
define the relevant quantities in our atomic system. We
describe our novel atomic platform and the experimental
protocol in Sec. III. Section IV shows the experimental
results, as well as a comparison with mean-field theory, and
Sec. V is devoted to the controlled generation and obser-
vation of magnetic domain walls. Conclusions and future
perspectives are reported in Sec. VI.

II. PARAMAGNETIC TO FERROMAGNETIC
PHASE TRANSITION

In order to show that our experimental platform can be
described as a ferromagnet, in this section we first briefly
recall the semiclassical continuous description of a ferro-
magnetic system (Sec. II A) and then show how our
atomic system naturally maps onto the magnetic model
(Sec. II B). A concise summary of the mapping is given
in Table I.

A. Magnetic model

A textbook model of a FM to PM transition at zero
temperature is based on a spin chain, subject to an external
magnetic field and to internal spin-spin interactions. Within
a mean-field approach, the energy of a ferromagnetic
material can be written [13] in terms of the local spin
S ¼ ðS1; S2; S3Þ as

EðSÞ ∝ −
Z �

B · S −
1

2
S · ¯̄K · S −

1

2
j∇Sj2

�
dV: ð1Þ

In the previous expression, B is the external field, ¯̄K is a
diagonal matrix describing the anisotropic magnetic
interactions in the material due to, e.g., the sample
crystalline structure, and the last term is the exchange
energy, which accounts for the tendency of having a
spatially uniform magnetization. In the absence of
any damping, the dynamics of the local spin is given
by the (dissipationless) Landau-Lifshitz equation [14]
∂tS ¼ −Heff × S, i.e., a nonlinear precession around the
effective field Heff ¼ −δE=δS.
For the later analogy with our two-component superfluid

platform, we consider a translationally invariant ferromag-
net of spin density n ¼ jSj with uniaxial magnetic
anisotropy such that the only nonzero element of the
magnetic interactions is K33 ¼ α < 0, which sets the easy
axis along the axial direction 3. The magnetic field is
uniform and has components along the axial direction (B3)
and in the transverse plane (B1). The ground state solutions
are characterized by homogeneous profiles and a uniform
effective magnetic field Heff ¼ ðB1; 0; B3 − αS3Þ. In this
case, the energy of the system can be written as

EðZ;ϕÞ ∝ −B3Z −
jαjn
2

Z2 − B1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
cosϕ; ð2Þ

where Z ¼ S3=n is the relative magnetization and ϕ ¼
arctan ðS2=S1Þ is the angle of the spin in the plane. The
ground state is obtained by minimizing the energy EðZ;ϕÞ
with respect to Z and ϕ. AssumingB1 > 0, all ground states
have ϕ ¼ 0. The relative magnetization Z, instead, is a
function of B3=B1 and jαjn=B1, as shown in Fig. 1. The

TABLE I. Mapping between magnetic and atomic system.

Physical quantity Magnetic system Atomic system

Anisotropic interactions αn κn
Axial field B3 δeff ¼ δB þ nΔ
Transverse field B1 ΩR

Spin states j↑i j2;−2i
j↓i j1;−1i

Magnetization SðjSj ¼ nÞ
Relative magnetization Z ¼ S3=n

R. COMINOTTI et al. PHYS. REV. X 13, 021037 (2023)

021037-2



energy profiles computed using Eq. (2) are shown for eight
different points in the phase diagram [see Figs. 1(A)–1(H)].
If B3 ¼ 0, the energy landscape shows a transition from a
single minimum (paramagnet) with Z¼ 0, when jαjn=B1<
1, to a symmetric double minimum (ferromagnet) with
Z ≠ 0, when jαjn=B1 > 1, corresponding to the Z2 sym-
metry breaking, Z ↔ −Z (see bottom gray panel in Fig. 1).
In the presence of a finite B3, the energy minimum is

shifted to a finite magnetization in the PM phase, while in
the FM region, an energy splitting is observed between the
two minima, corresponding to the absolute ground state and
to a metastable state, whose lifetime is expected to depend
on the height of the barrier between the two minima [15].
For very strong B3 beyond some critical value [Figs. 1(D)
and 1(H)], one of the two minima disappears leading to a
saturated ferromagnet (SFM).

B. Atomic system

The magnetic model discussed above can be used to
describe the spin sector of an atomic superfluid mixture of

two spin states j↑i and j↓i. The correspondence is based on
identifying the spin vector components with the population
difference S3 ¼ n↑ − n↓ and the intercomponent coher-
ences with S1 and S2. Given the positive intracomponent
and intercomponent scattering lengths (a↓↓, a↑↑ and a↓↑),
we focus on a mixture with a2↓↑ > a↓↓a↑↑, which, in the
absence of a coupling between the two states, undergoes
phase separation. The mixture is stabilized by the presence
of a coherent radiation (Rabi coupling) with amplitude ΩR
and detuning δB, which allows for state interconversion.
The detuning δB corresponds to the frequency difference
between the hyperfine splitting of the two internal levels
including the linear Zeeman energy shift and the frequency
of the driving microwave.
Table I illustrates how the Rabi coupling and interaction

imbalances map into the components of an effective field in
the magnetic model (more details can be found in
Appendix A). The role of the transverse field B1 is played
byΩR. The axial component of the external field B3 has two
contributions: the detuning δB and the imbalance of the

FIG. 1. Phase diagram of the magnetic model. The relative magnetization Z of the system’s stationary states is shown as a function of
the nonlinearity and of the axial magnetic field strength, both in units of the transverse field. The system can be paramagnetic
(jαjn < B1), ferromagnetic (jαjn > B1 ≫ B3), or saturated ferromagnetic (jαjn > B1 and B3 ≫ B1). Panels (A)–(H) show the
dependence of the energy [Eq. (2)] on the relative magnetization Z in several points of the phase diagram. Three gray side panels
show the value of Z at the energy minimum, as a function of jαjn=B1 for B3 ¼ 0 (bottom) and as a function of B3=B1 for jαjn=B1 ¼ 0
(left) or jαjn=B1 ¼ 3 (right). Numbered dashed yellow lines mark four different single-shot experimental realizations in the atomic
system as reported in Fig. 2. See Sec. II B and Table I for mapping from magnetic to atomic system.
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intracomponent atomic interaction energy in the two
states nΔ ∝ ða↓↓ − a↑↑Þn. The difference between intra-
component and intercomponent scattering lengths κ ∝
½ða↓↓ þ a↑↑Þ=2 − a↓↑� represents the anisotropic magnetic
interactions in the material, uniaxial along direction 3.
Therefore, the resulting effective magnetic field is

Heff ¼ ðΩR; 0; δeff − κnZÞ; ð3Þ

where δeff ¼ δB þ nΔ. In the following, we use this atomic
parameter notation to describe the phase diagram. The
precise definition of the parameters Δ and κ, which takes
into account the geometry of our sample, as well as their
experimental estimation, can be found in Appendixes A
and F.
The crucial role of superfluidity in our experiment is

encoded in the term equivalent to the exchange term in
Eq. (1) and proportional to ℏj∇Sj2=ðmnÞ in Eq. (A6),
where m is the atomic mass. In the magnetic analogy, this
term plays the role of the exchange energy between
neighboring spins in a ferromagnet. In our atomic context,
it originates from the so-called quantum pressure effect
associated to spatial inhomogeneities of the superfluid
order parameter and, therefore, appears only in the super-
fluid state. As a consequence of it, short-wavelength
fluctuations of the spin are associated to a sizable increase
of the superfluid kinetic energy and are thus inhibited,
leading to the observed long-term stability of the hysteretic
metastable states. This robustness is to be contrasted to the
case of thermal samples, where localized spin rotation
would be possible without any appreciable energy increase,
making any metastable state prone to fast relaxation.

III. EXPERIMENT

A. Atomic sample

In contrast to recent works that investigate dynamical
properties across a QPT [16,17] using a rubidium two-
component spin mixtures, we realize our two-level system,
choosing sodium atoms and selecting the hyperfine spin
states jF;mFi ¼ j2;−2i≡ j↑i and j1;−1i≡ j↓i, where F
is the total angular momentum and mF its projection. This
yet unexplored spin combination has interesting features
for our purposes.
First of all, such a mixture is stable against spin-changing

collisions and possesses intracomponent and intercompo-
nent scattering lengths (a↓↓ ¼ 54.5a0, a↑↑ ¼ 64.3a0,
a↓↑ ¼ 64.3a0, a0 being the Bohr radius) [18], that make
it immiscible in the absence of Rabi coupling. By combin-
ing the chosen spin mixture, sufficiently large peak density
n, and high magnetic field stability guaranteed by a
dedicated magnetic shield [19], we are able to investigate
the static properties of the system across the QPT. In fact, if
the typical Zeeman shift associated to the residual magnetic
field fluctuations is ΔE=ℏ ≪ jκjn, then the ratio between

spin interaction energy and the coupling energy jκjn=ΩR
can be finely tuned above and below unity, while keeping
the mixture coherent during the whole duration of the
measurement.

B. Sample preparation

We prepare condensates with typical total atom numbers
N ¼ 106 and peak densities of n ¼ 1014 atoms=cm3 in a
hybrid trap [20] inside a magnetic shield that allows for a
field stability at the few μG level [19]. We set an external
magnetic field bias of 1.3 G, necessary to split the magnetic
sublevels. A microwave radiation around 1.769 GHz is
used to coherently couple the two states (j↑i and j↓i) with
homogeneous and tunable intensity ΩR. The detuning δB is
controlled by finely tuning the external field.
The degenerate sample is trapped in an elongated optical

harmonic trap with trapping frequencies ω⊥=2π ¼ 2 kHz
and ωx=2π ¼ 20 Hz. In this configuration, the BEC is cigar
shaped and presents an inhomogeneous axial density
profile with a characteristic parabolic shape [see Figs. 2(a)
and 2(b)], typical of a harmonically trapped system in the
Thomas-Fermi (TF) regime, with a longitudinal TF radius
Rx ≈ 200 μm. Our system is fully three dimensional (3D);
therefore a mean-field description is justified [11,21,22].
However the elongated trapping geometry suppresses the
transverse spin excitations and justifies the use of an
effective one-dimensional (1D) model.
Thanks to the smooth density profile nðxÞ along the

longitudinal direction, we can make use of a local density
approximation (LDA) for the effective magnetic field Heff
through the replacement n → nðxÞ. Since the parameters
characterizing the phases of the equivalent magnetic system
are jκjnðxÞ=ΩR and δeffðxÞ ¼ δB þ nðxÞΔ, the spatial
dependence of nðxÞ allows us to observe a spatially
resolved phase diagram with different magnetic phases
coexisting in the same sample. The diagonal yellow lines in
Fig. 1 represent the regions of the phase diagram which can
be experimentally accessed in a single-shot experiment for
different choices of δB.

C. Experimental protocol

In order to experimentally characterize the phase dia-
gram presented in Fig. 1, it is important to make sure that
the system is always in its local energy minimum. In all our
experiments, we initially prepare the system in a fully
polarized state with a large detuning δB, and then slowly
ramp δB to adiabatically rotate the state to the desired final
configuration. Although a very slow rotation would be
preferable to maintain adiabaticity in a larger detuning
range, especially in the vicinity of the transition, collisions
in the mixture reduce the coherence of the sample. The
choice of the ramp speed has to be consequently a
compromise between adiabaticity and coherence. In a first
set of experiments, we initialize the system in the j↓i state
and linearly ramp δB toward positive values with a constant
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speed of about 100 Hz=ms (forward ramp). In a second set
of experiments, a reversed procedure is performed starting
from a fully polarized state j↑i and lowering the value of δB
(backward ramp).
For all used ΩR, the forward ramp starts from an

initial detuning of −3.5 kHz leading to a full ramp time
between about 30 ms (for δB=ΩR ≈ −1) and 55 ms (for

δB=ΩR ≈þ5). The backward ramp starts from an initial
detuning of þ4 kHz leading to a full ramp time between
20 ms (for δB=ΩR ≈þ5) and 45 ms (for δB=ΩR ≈ −1).
These choices are compatible with a reasonable degree of
adiabaticity and with the expected coherence time of about
100 ms, as estimated from condensate density and colli-
sional properties [23,24].
We expect the local magnetization in the low-density

tails of the cloud, for which jκjnðxÞ < ΩR, to smoothly
change sign as a function of δB (left-hand gray panel of
Fig. 1), behaving as a PM. On the contrary, the high-density
central part of the cloud, for which jκjn > ΩR, should
remain longer in the initial state during the δB ramp, starting
from an initially SFM configuration, then entering the
proper FM phase, and eventually rotating the spin to the
other SFM state once the FM region is over (right-hand
gray panel of Fig. 1). In the FM region, the presence of a
double well allows for the magnetization to have opposite
signs depending on the preparation protocols. The bifur-
cation shown in the lower gray panel of Fig. 1 cannot be
observed in a single realization with given ΩR and δB,
because the condition δeff ¼ 0 is fulfilled only locally.
For each experimental run, information about the

spatial spin state is gathered from absorption images of
the j↑i and j↓i population, with protocols similar to those
reported in Ref. [21]. Even though the overall condensate
fraction of our samples is as low as 30%, the thermal
component is distributed over a larger volume and sits
mostly outside the condensate, because of the repulsive
exchange interactions [25–27]. Through Hartree-Fock
calculations, we estimate a condensate fraction in the
center of the trap as high as 90% and we expect the
residual thermal fraction not to play a significant role in
the magnetic behavior because of the low density and
short coherence time. In order to extract the properties
of the condensate, during the image postanalysis we
subtract the thermal component as we discuss in detail
in Appendix D.
Since the tight radial confinement suppresses the trans-

verse spin excitations, as it is clear from absorption images,
we focus on the spatial dependence of the relative mag-
netization Z along the x direction, which is obtained by
integrating the magnetization of the two-dimensional (2D)
raw pictures along the y direction (a brief discussion on the
residual effect due to the transverse dynamics is given
in Appendix C).
Examples are shown in Figs. 2(a) and 2(b). The left-right

symmetry of the system leads to the same results on the two
sides. While we use both for the statistics, here and in the
following, we show only the left part of the cloud to
highlight how Z changes in space for increasing n on the
horizontal axis. Labels 1–4 correspond to four different
configurations of the system for increasing δB, starting
from the system in the ground state j↓i with large negative
δB. The experiment is repeated also starting from the j↑i

FIG. 2. (a),(b) Absorption images of the atoms in the states j↑i
and j↓i (only the left half of the system is shown) for the
parameters marked by the yellow lines in Fig. 1, for forward
(a) and backward (b) ramps of δB. (c),(d) Bare experimental data
of the axial magnetization as a function of δB and position x for
forward (c) and backward (d) ramps at fixed ΩR=2π ¼ 400 Hz.
The solid arrows on the side of the plot indicate the direction
of the ramp on δB. The yellow dashed lines mark experimental
shots shown in (a) and (b), corresponding to number 1–4 as in
Fig. 1 (δB;1=ΩR ¼ −0.8, δB;2=ΩR ¼ þ1.2, δB;3=ΩR ¼ þ3.2,
δB;4=ΩR ¼ þ4.2). The vertical black dashed line marks the
position where jκjn ¼ ΩR and the system switches from PM
to FM. Dot-dashed black lines in (c) and (d) mark the local
resonance condition δB ¼ −nðxÞΔ. (e) Magnetization of the
central 10 μm region during a forward (dot-dashed line) and
backward (dashed line) ramp, showing the hysteretic behavior.
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state with large positive δB that is decreased toward
negative values (backward, 4–1).

IV. EXPERIMENTAL OBSERVATION
OF THE PHASE TRANSITION

As a first quantitative measurement, we employ the
experimental setup presented in the previous section to
observe and characterize the quantum phase transition from
the PM to the FM state as theoretically presented in Sec. II.
Our study here addresses the typical properties of the
system stationary state, such as the phase diagram in
Sec. IVA and the magnetic response and fluctuation
properties in Sec. IV B.

A. Phase diagram and hysteresis phenomena

Figures 2(c) and 2(d) show the experimental axial
magnetization as a function of the final applied detuning
δB for forward and backward ramps keeping a constant
Rabi frequency ΩR=2π ¼ 400 Hz. The regions where Z
changes sign are clearly different for the two protocols. The
location of the Z ¼ 0 line along a paraboliclike curve in the
(x; δB) plane is easily explained: in a fully paramagnetic
sample the zero magnetization line would coincide with the
locus of points satisfying δeffðxÞ ¼ 0, hereafter referred to
as local resonance (indicated by the dash-dotted line in
Fig. 2); with a harmonic trap in the TF regime, this curve
corresponds to a parabola, due to the density-dependent
detuning. In addition to this, the ferromagnetic nature of the
cloud shifts the Z ¼ 0 line from the local resonance and
pushes it toward the edges of the hysteresis region, the
direction of the shift depending on the sign of the slope of
the δB ramp.
At fixed δB, the interface spatially lags behind the local

resonance: toward the tail of the cloud (see 3) for a forward
ramp, and toward the center for a backward one (see 2).
Thus, along the x direction, the relative magnetization Z
zeros between the SFM region (exterior) and the FM
internal region. On the other hand, at fixed x, the interface
is pushed toward higher values of δB, with respect to the
local resonance. Figure 2(e) shows how Z changes around
x ≃ 0, in the case of a forward ramp (dot-dashed line) and
towards lower values for a backward one (dashed line), as it
is pictorially represented in the right-hand panel of Fig. 1.
This behavior marks the evidence of a hysteresis cycle,
observable as a function of both x and δB. Since the system
undergoes an abrupt discontinuous transition, spin excita-
tions are unavoidable and their presence makes the final
magnetization state not reach unitary values.
The raw data in Figs. 2(c) and 2(d) qualitatively agree

with the expected behavior. By plotting the magnetization
using the dimensionless quantities, jκjnðxÞ=ΩR and
δeffðxÞ=ΩR for the horizontal and vertical axes, respec-
tively, we obtain the phase diagram reported in Figs. 3(a)
and 3(b).

We compare our measurements to a mean-field calcu-
lation [Figs. 3(c) and 3(d)] based on two coupled 1D Gross-
Pitaevskii equations (GPEs) for the spinor superfluid order
parameter Ψ ¼ ðψ↑;ψ↓Þ⊤ (see Appendixes A and B for
more details). Within this formalism, we can properly take
into account both the trapping potentials and time sequence
used in the experimental protocols. The local spin is given
by S ¼ Trðσ⃗Ψ ⊗ Ψ†Þ, with σ⃗ the Pauli matrices. The
numerical simulations confirm the observation of a hys-
teretic region and show a good agreement with the

FIG. 3. Magnetic hysteresis. (a),(b) Experimental magnetiza-
tion data from Figs. 2(c) and 2(d), rescaled according to the
j↑i-j↓i asymmetry and to the density profile; see main text.
White regions in the bottom left-hand corner are due to a lack of
data that manifests when applying the vertical axis rescaling. (c),
(d) 1D mean-field numerical simulations for the experimental
parameters of Figs. 2(c) and 2(d). The dotted black and white
lines in (c) and (d) mark the border of the hysteresis region
calculated from theory. Yellow dashed lines mark experimental
shots shown in (a), corresponding to number 1–4, as in Fig. 1.
(e) The width of the hysteresis δhys is calculated as explained in
Appendix B. Green points are experimental data with their
uncertainties resulting from the binning procedure and systematic
errors. The dotted line stands for theory, while the purple points
are results from numerical simulations.
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experimental data also for what concerns small structures
resulting from the experimental protocol.
Figure 3(e) shows the hysteresis width δhys (see

Appendix A for definition and calculation) as a function
of jκjn=ΩR, that has been computed analytically [see
Eq. (A13)], numerically [Figs. 3(c) and 3(d), obtained
from simulations performed at 5 different values of ΩR],
and experimentally (by averaging over more than 1000
shots obtained for different ΩR). Remarkably, the ultra-
stable magnetic environment ensures that the uncertainty
on the value of δB is negligible as compared to the relevant
parameters of the system, leading to small experimental
error on the δhys=ΩR axis.
The results well capture the presence of hysteresis above

the critical point and its monotonic growth for increasing
jκjn=ΩR. We check the role of the transverse directions with
2D GPE simulations (see Appendix C) and find that they
explain the residual discrepancy between experiment and
1D GPE simulations or the uniform mean-field theory.
In Fig. 3(e), the discrepancy between the numerical

simulation (purple points) and the theoretical expectation
(dotted line), attributed to beyond-LDA effects, is reduced
by considering slower detuning ramps: if the evolution is
not truly adiabatic, spin currents, which are included in the
simulations, play a small, although observable, role.
Finally, it is worth pointing out that the hysteresis

phenomena observed in Ref. [12] referred to the completely
different case of a zero-dimensional single component
condensate with attractive interactions in a tunable dou-
ble-well potential. The crucial novelty introduced by our
setup resides on the spontaneous emergence of hysteresis
due to strong atom-atom interactions in a spatially extended
system, which opens the way to study the interplay of
hysteresis with the spatial dynamics.

B. Magnetic susceptibility and magnetic fluctuations

In the vicinity of the phase transition many quantities
characterizing the system’s response to external parameters
diverge. One of these is the magnetic susceptibility χ, which
we can extract as the variation of magnetization against
variation of δeff as

χ ¼ ∂Z
∂δeff

����
δeff¼0

: ð4Þ

Within the universality class of Landau theory, the
susceptibility has a finite value at large transverse field
where the magnetization follows the applied field, it goes to
zerowhen strong interactions fix the magnetization to j↑i or
j↓i state, and it diverges at the critical point jκjnðxÞ=ΩR ¼ 1,
where small variations of the effective field lead to strong
changes in Z.
In the homogeneous mean-field approximation [see

Eq. (2)], the susceptibility can be written as

1

χ
¼

���� ∂δeff
∂Z

����
δeff¼0

¼ jκjn
8<
:

ΩR
jκjn − 1 jκjn < ΩR�
jκjn
ΩR

�
2 − 1 jκjn > ΩR;

ð5Þ

with the typical asymmetric behavior of a Z2 phase
transition in the PM and in the FM region [9]. This
behavior is well captured by the experimentally measured
χ (see Appendix G), shown in Fig. 4 (green dots), where it
is compared with the prediction of Eq. (5) (red lines) and
with the numerical solution of noisy GPEs (purple dots),
detailed in Appendix B. To suppress spurious effects
arising from inhomogeneity, we restrict the analysis to
regions of the sample where the density is nearly constant.
Both experimental data and simulations do not show a

diverging behavior, but a peak, whose maximum value is
slightly shifted on the ferromagnetic side. The absence of a
divergence is consistent with finite size effects, while the
shift is most probably related to the presence of noise and
lack of adiabaticity. Indeed, by determining the suscep-
tibility from a GPE without any noise but with dissipation,

FIG. 4. (a) Magnetic susceptibility. Green points are exper-
imental data with their uncertainties resulting from the binning
procedure and systematic errors, red line is the theory prediction,
purple points connected by dashed line are simulation results.
(b) Magnetic fluctuations. The variance of Z is extracted in a
central region of the cloud and shows a maximum at jκjn=ΩR ≈ 1.
Error bars are standard variations resulting from averaging
different experimental realization and from different binning
procedures.
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which kills the fluctuations due to nonadiabatic processes,
we still find a peak, but centered at jκjn=ΩR ¼ 1.
We observe a very good agreement between the

numerics and the experimental data on the ferromagnetic
side, while the experimentally extracted susceptibility is
suppressed on the paramagnetic side, still preserving
the right behavior. We attribute such a discrepancy to
the experimental observation that the decoherence is
enhanced when the system is nearly unpolarized
(Z ¼ 0), hence affecting the PM side with higher impact.
This leads to smaller contrast and could explain the
smallness of the extracted value of the susceptibility. In
the FM region, where instead Z is close to �1 and the
system is observed to be more robust against decoherence,
the agreement between the experimental measurement and
the model improves.
The measured susceptibility, at least on the FM side,

strengthens the previous observation concerning the phase
diagram, that the system is well described within mean-
field theory [28].
The susceptibility was also measured in a spin-orbit

coupled BEC from the frequency of the spin-dipole mode
across the zero-momentum to plane-wave phase transition
[29,30]. There, however, the physics was fully dominated by
the single-particle Hamiltonian and, in particular, did not
originate from many-body effects, as witnessed by the fact
that the critical point did not depend on the density.
Another feature of interest in phase transition deals with

fluctuations of the order parameter, which, as for the
magnetic susceptibility χ, are also expected to diverge at
the critical point [9]. The experimental platform allows us
to measure the fluctuations of the relative magnetization Z
both in the PM and FM regions. By fixing the detuning
δeff to the local resonance in the central part of the cloud,
we measure the variance σ2 of Z. We acquire up to 100
realizations for about 20 different values of ΩR. As a first
step, we calculate jκjn=ΩR for each realization by taking
into account the measured atom number in the shot. The
calculation of magnetic fluctuations is performed by
computing the standard deviation of the axial magneti-
zation in a region wx ¼ 120 pixel ≈ 123 μm wide, where
the density profile is almost flat, to minimize density-
related effects on σ2. To suppress spurious effects due to
the limited resolution of the imaging, we perform the σ2

analysis by grouping Np pixels. The variance σ2 so
obtained corresponds to

σ2 ¼
�

1

wx=Np

Xwx=Np

i

�
Zi −

Xwx=Np

j

Zj

wx=Np

�2	
Np

; ð6Þ

where Zi is the relative magnetization of the ith grouping
element and h� � �iNp

is the average over different grouping
sizes. The final results plotted in Fig. 4(b) are obtained by
binning the fluctuation data in a fixed interval of jκjn=ΩR,

where the uncertainties are taken as a combination of the
standard deviation of the fluctuation between different
shots and different binning. They clearly show how the
measured variance is maximal at the critical point and
reflects the behavior observed for the susceptibility. The
same analysis has been performed just outside the con-
densate in an area containing a thermal atom number
comparable to one present in the 120 × 20-pixel region of
interest at the center. The magnetic fluctuations in this
thermal component are one order of magnitude smaller
(< 10−3) than those of the condensate, confirming that the
fluctuations shown in Fig. 4(b) indeed originate from the
condensate. Details are given in Appendix E.
It is worth noting that, in general, for a large homo-

geneous system, due to the fluctuation-dissipation theo-
rem, the fluctuations of the magnetization of the system
and its susceptibility are strictly related. In our system,
however, the variation of the number of atoms from shot to
shot, the finiteness of the system, and its inhomogeneity
prevent us from a proper quantitative analysis of their
relation.

V. DETERMINISTIC CREATION
OF FERROMAGNETIC DOMAIN WALLS

Another fundamental feature characterizing ferromag-
netism is the possibility of forming spatial domains with
opposite magnetization. This can take place in a stochastic
way via the Kibble-Zurek mechanism during a sudden
quench across the PM to FM phase transition [31–34], or
by directly engineering the domains with suitable proto-
cols. Different FM domains are separated by domain walls,
which constitute low-energy and long-lifetime excitations
of the ferromagnet. A review of such investigations in the
field of solid-state magnetism can be found in Ref. [35].
Recently, the spontaneous and deterministic creation of
DWs in an effective ferromagnetic BEC under a periodic
driving was shown in Refs. [36,37]. In these works,
however, the ferromagnetic DW was not supported by
interactions, but was rather externally created via a spatially
varying single-particle potential.
In our system, we are able to control the size of the FM

region of the cloud and, inside it, to deterministically create
in a precise yet flexible way DWs where the magnetization
Z changes sign, and then control their position at will. To
this purpose, we exploit the dependence of the spatial
boundaries of the FM region on the applied detuning δB to
control both the position of the DWand the extension of the
FM area. Our protocol [Fig. 5(a)] consists in the following
steps: (1) ramping δB, as for the data in Fig. 2, to values δDW
for which part of the system is in the FM regime; (2) waiting
for 25 ms to let the system relax; (3) ramping back to a
fixed detuning δref ¼ 2.5ΩR with ΩR=2π ¼ 400 Hz.
Figure 5(b) shows the position of the boundaries between
the different magnetic phases along the longitudinal direc-
tion during the δB ramp.
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In Figs. 5(c) and 5(d), we present the absorption images of
the two states for the left half of the sample in case of the two
different ramps reported in Fig. 5(a). As illustrated by the
color bar between the absorption images [whichmatches the
color code used in Fig. 5(b)], the location where the PM
region ends remains fixed at the position in the BEC, where
jκjn=ΩR ¼ 1. During the ramp of δB, the interface between
SFMandFMmoves accordingly; i.e., themagnetic interface
moves to higher-density regions (step 1) and then reenlarges
going back to the initial size (step 3). However, during the
ramp in step 3, the size of the FM domain in the j↓i state
remains unchanged, and a FM domain in the j↑i state forms
in the remaining FM region. In this manner, the j↑i-j↓i
interface, that previously separated SFM from the FM,
becomes a ferromagnetic DW within the FM region, at a
position determined by the final detuning δDW.
In Fig. 5(e), we show the displacement of the DW xDW

measured experimentally from the reference position xref ,
as a function of δDW. The agreement of the experimental
results with the 1D GPE numerical simulations is a further
indication of the validity of mean-field theory to our atomic
system.
In addition, the smooth and linear dependence observed

in this figure demonstrates how the smoothness of the
confinement potential allows for the continuous and deter-
ministic control of the DW position via δDW, without it
being pinned by external disorder as often happens in
solids. This key result showcases the promise of our setup
in view of future studies of the quantum relaxation
dynamics of the domain wall.

VI. CONCLUSIONS AND OUTLOOK

In this work, we explore the zero-temperature magnetic
phase diagram of a two-component superfluid gas subject
to an external coherent Rabi coupling. In addition to the
critical region, where enhancement of both magnetic
susceptibility and fluctuations is detected, special atten-
tion is paid to the ferromagnetic state where metastability
and hysteresis features are observed, and domain walls
separating different magnetic states are deterministically
generated.
The comparison of our results (density profiles, phase

diagram, susceptibility) with a zero-temperature mean-field
theory seems to indicate that the finite temperature of the
superfluid system does not quantitatively affect the
behavior of the QPT, and that the transition is mean-
field-like [38]. On the one hand, this observation suggests
that the spin degrees are not in thermal equilibrium at the
temperature of the gas. Indeed, the sample temperature on
the order of 1 μK is extremely high for the spin sector, in
particular much larger then the spin gap. However spin-
changing collisions are expected to be very weak, leading
to a very large spin collisional time, i.e., long spin
relaxation time [23]. This preserves the coherence of the
spin sector associated to the initially strongly polarized
state. A similar situation for the Z2-symmetric mixture of
sodium (j1;�1i) was reported in Refs. [21,39].
On the other hand, although the spin physics we are

interested in is dominated by the longitudinal dynamics
(see Appendix C for the role of transverse dynamics),
the system is far from being strictly 1D and has a finite

FIG. 5. Deterministic creation of FM domain walls. (a) Experimental protocol used to create DW through a ramp on δB.
(b) Schematics of the spatial variation of the phase diagram as a result of the protocol shown in (a). Different regimes are labeled with the
same color as in (c) and (d). (c) Absorption images of the two components (left half of the system only) at the initial point (I) and after a
wait time of 25 ms (IV), when δB=2π ¼ δref=2π ¼ 1 kHz [dashed line in (a)]. (d) Absorption images of the two components
corresponding to the solid line ramp in (a), where δB reaches δDW=2π ¼ 1.13 kHz (II) and is then ramped back down to δref (III). PM,
SFM, and FM regions are illustrated in the line between the absorption images. The third (III) image in (c) shows the presence of a DW
between two FM domains with opposite magnetization. In both (c) and (d), dashed lines mark the position at which Z ¼ 0.
(e) Continuous dependence of the position xDW of the DWwith respect to the initial interface position xref (in units of Rx) as a function of
ðδDW − δrefÞ=ΩR. The red line is extracted from numerical simulations. Error bars show the experimental uncertainties (horizontal axes)
and the shot-to-shot standard deviation (vertical axes).
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size. This justifies the good agreement with a mean-field
analysis.
In the future, it will be of paramount interest to study the

same system in true one and two dimensions, so to
unambiguously pinpoint the origin of the mean-field
character. If the ferromagnetic transition of our superfluid
is in the quantum Ising universality class, a 1D system
should show strong deviations from the mean-field results.
An important shift in the critical point is expected and the
growth of the magnetization should be very different with
respect to the mean-field result, being the critical exponent
β ¼ 1=2 in the latter, while β ¼ 1=8 for the 1D quantum
Ising model [9]. It is worth mentioning that a different
spinor superfluid system, with an even more pronounced
1D character than ours, subject to quenches across the
transition [16], showed mean-field critical exponents.
Whether such a result is due to final size effects, closeness
to the critical point, or finite temperature is still an open
question.
Our studies highlight the power of the specific two-

component atomic superfluid platform employed here, for a
number of key open problems. As a natural first step, one
can take advantage of the nonconservation of magnetiza-
tion in the system and the subsequent reinforced quantum
fluctuations to analyze their scaling as a function of the
subsystem size in the critical region.
Besides the investigation of the static properties of the

system in its ground or metastable state immediately after
the preparation, the challenge is now to extend the study to
the quantum many-body dynamics. The superfluid nature
of the atomic gas suggests the possibility to investigate
magnetism in a novel dissipationless and collisionless
regime where the coherence of the two-component super-
fluid is not affected on the timescale of the experiment by
thermal collisions nor by the trap imperfections [40,41].
The combination of robust isolation from the environment
and long-lasting quantum coherence in the system will pave
the way to explorations of the quantum relaxation dynamics
in metastable spinor superfluid.
For instance, in the initial presence of domain walls

separating ferromagnetic domains in different states, spin
current may develop through the domain wall, so to push
the metastable state toward its ground state. The under-
lying microscopic process may include dissipating the
extra energy into the collective excitations of the super-
fluid, such as spin or density phonons [6,22]. In the
absence of initial ferromagnetic domains, on the other
hand, relaxation of the metastable spin superfluid
involves, as a preliminary step, a stochastic local spin
rotation under the effect of quantum fluctuations and
the subsequent spontaneous formation of ground state
bubbles. The latter should grow, then, according to the
previous mechanism, eventually bringing the whole sys-
tem to its ground state. Beyond its intrinsic interest for
quantum statistical mechanics, observing this mechanism

will pave the way to the experimental study of false
vacuum decay phenomena [15,42] and will shine light on
processes of crucial cosmological interest [43–45].
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APPENDIX A: THEORETICAL FRAMEWORK

At the mean-field level, a 1D superfluid spin mixture is
described by two coupled GPEs for the two order param-
eters ψ↓;ψ↑:

iℏ∂tψ↓ ¼
�
−
ℏ2∇2

2m
þVþg↓↓n↓þg↓↑n↑

�
ψ↓−

ℏΩR

2
ψ↑;

ðA1Þ

iℏ∂tψ↑ ¼
�
−
ℏ2∇2

2m
þ V − ℏδBðtÞ þ g↑↑n↑ þ g↓↑n↓

�
ψ↑

−
ℏΩR

2
ψ↓; ðA2Þ

where m is the sodium mass, and g↑↑, g↓↓ and g↓↑ are
intracomponent and intercomponent interactions, linked to
the s-wave scattering lengths by

gij ¼
4πℏ2

m
aij: ðA3Þ

Strength and detuning of the coherent coupling are indi-
cated with ΩR and δB, while V is the external harmonic
potential, trapping the atoms.
In view of analyzing the magnetic properties of the

mixture, it is convenient to define the spinor Ψ ¼
ðψ↑;ψ↓ÞT and the density matrix ρ ¼ Ψ ⊗ Ψ†. The state
of the mixture can then be represented on a Bloch sphere of
radius n ¼ TrðρÞ and encoded in a spin vector,
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S¼ Trðσ⃗ρÞ ¼ nð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Z2

p
cosϕ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Z2

p
sinϕ;ZÞ; ðA4Þ

where σ⃗ is the Pauli matrices vector, ϕ the relative phase of
the two components. and the relative magnetization Z is
defined as nZ ¼ n↑ − n↓. The equation governing the
dynamics of the spin vector can be derived directly from
Eqs. (A4), (A1), and (A2). Imposing that the density is
uniform and the total (density) current is zero, one
obtains [6,23]

∂tS ¼ −HeffðSÞ × S: ðA5Þ

The state-dependent nonlinear external field,

HeffðSÞ ¼ ðΩR; 0; δB þ nΔ − κnZÞ þ ℏ
2mn

∇2S; ðA6Þ

depends on the interaction constants as

Δ≡ g↓↓ − g↑↑
2ℏ

< 0; ðA7Þ

κ ≡ g↓↓ þ g↑↑
2ℏ

−
g↓↑
ℏ

< 0; ðA8Þ

and from a density-dependent effective detuning,

δeff ≡ δB þ nΔ: ðA9Þ

In the special case of uniform systems, kinetic contri-
butions, which can be ascribed to quantum mechanical
currents, can be neglected. Hence, the stationary condition
HeffðSÞ × S ¼ 0 translates to

ðδeff − κnZÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
− ΩRZ cosϕ ¼ 0;

sinϕ ¼ 0 ðA10Þ

and coincides with the minimization of the energy of the
system with respect to both the relative phase and the
polarization:

EðZ;ϕÞ ∝ −δeffZ þ κn
2
Z2 −ΩR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
cosϕ: ðA11Þ

This formula, with the constraint ϕ ¼ 0, is used to calculate
the energy profiles shown in the different insets in Fig. 1,
and the corresponding minimizing polarization in the main
panel of Fig. 1. The function EðZ;ϕ ¼ 0Þ is symmetric
with respect to polarization only at resonance δeff ¼ 0.
Moreover, it shows a single minimum at Z ¼ 0 if
jκjn < ΩR, whereas it shows two degenerate minima at
Z ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΩR=κnÞ2

p
in the opposite regime, jκjn > ΩR.

At the critical point jκjn ¼ ΩR, a ferromagnetic QPT takes
place, as witnessed by the nonzero value of the polariza-
tion, which plays the role of the order parameter for
such a transition.

The criticality of the point ðδeff ; jκjnÞ ¼ ð0;ΩRÞ is also
confirmed by the divergence of measurable physical
quantities, such as the magnetic susceptibility χ, given
by Eq. (5). At finite detuning δeff , the energy profile
Eq. (A11) may show two nondegenerate minima: the
absolute one describes the ground state of the system,
while the local one is associated to a metastable excited
state. A hysteresis cycle can therefore be observed by
slowly varying the effective detuning from positive to
negative values and vice versa. The width of the hysteresis
region can be computed as follows: according to Eq. (A10),
stationary states are characterized by

δeff
ΩR

¼ Z

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z2
p −

jκjn
ΩR

�
: ðA12Þ

In order for the system to be stable, the derivative
of this quantity with respect to Z (which is inversely
proportional to the magnetic susceptibility) must be pos-
itive; if the system is ferromagnetic, the derivative
of Eq. (A12) vanishes when the magnetization satisfiesffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
¼ ðjκjn=ΩRÞ−1=3. The boundaries of the hyste-

resis region are therefore given by the detuning values
associated to such magnetization:

δhys ¼ 2ΩR


�jκjn
ΩR

�
2=3

− 1

�
3=2

: ðA13Þ

As already mentioned in the main text, the experimental
system is confined in a harmonic trap, and consequently
has a nonuniform density profile. Since the gas is tightly
confined along two out of three spatial directions, it is
legitimate to integrate out these 2 degrees of freedom in
order to focus on the dynamics along the longitudinal axis,
hereafter indicated as x axis. Assuming that Z is only a
function of x and integrating Eq. (A5) in the yz plane, one
obtains a 1D equation, formally identical to Eq. (A5) with
an effective density profile (see, for instance, Ref. [39]):

nðxÞ ¼ 2

3
n3D0

�
1 −

x2

R2
x

�
; ðA14Þ

with n3D0 and Rx being the 3D density in the center
of the trap and the longitudinal Thomas-Fermi radius,
respectively.
Because of the nonuniformity of the system, the ferro-

magnetic condition jκjnðxÞ > ΩR is only verified at specific
real-space positions: there is always a PM region close to
the edges of the trap, where the density is smaller. The same
holds for the resonant condition δeffðxÞ ¼ δB þ nðxÞΔ ¼ 0,
due to the Z2-symmetry-breaking term, Δ ≠ 0. More
specifically, the locus of resonant points is a parabola in
the plane ðδB; xÞ, shown as a black dashed line in Fig. 2.
When a detuning ramp is applied to the superfluid

mixture, the system does not adiabatically follow the global

FERROMAGNETISM IN AN EXTENDED COHERENTLY COUPLED … PHYS. REV. X 13, 021037 (2023)

021037-11



ground state in the ferromagnetic region, but rather stays in
the local metastable minimum until the edge of the
hysteresis cycle. In other words, the jump in polarization
takes place when δeffðxÞ ¼ �δhysðxÞ=2, the sign depending
on the direction of the ramp, as shown in Fig. 2.

APPENDIX B: 1D NUMERICAL SIMULATIONS

Numerical simulations are performed by exactly
solving the 1D GPEs Eqs. (A1) and (A2) in the external
harmonic trapping potential. The parameters are chosen
to reproduce those of the experiment, taking into
account the geometrical renormalization; in particular,
ð2=3Þjκjn3D0 =h ∼ ð2=3ÞjΔjn3D0 =h ∼ 1.1 kHz, ΩR=2π ¼
400 Hz, and L∼200μm. The detuning is linearly increased
in time at a rate of 100 Hz=ms.
The ground state is first found through imaginary-time

evolution via the Euler algorithm. We then build the initial
state by adding random noise on top of it. The real-time
dynamics of this noisy configuration is obtained via a split-
step algorithm. We finally average over 100 simulations
obtained with different initial noise. The noise amplitude,
which is finally set to ∼2% of the peak density, is used as a
free parameter to best reproduce the experimental data.
Each simulation produces the magnetization profile in

space and time, Zðx; tÞ, which can be straightforwardly
interpreted in terms of the local effective detuning:
Z½δBðtÞ þ nðxÞΔ�. The calculation of hysteresis width
and magnetic susceptibility is performed as follows:
the analysis is applied only to the central half of the
cloud x ∈ ½−Rx=2; Rx=2�, to avoid regions with small
density. The magnetization and total density are averaged
over 12-μm-wide windows. Given a window with average
density n�, we perform an arctan fit on the function
Zðδ�effÞ, where δ�eff ¼ δBðtÞ þ n�Δ. The hysteresis width is
given by the shift of the sigmoid center with respect to
δ�eff ¼ 0, while the susceptibility is found as the sigmoid
derivative at δ�eff ¼ 0. See the gray panels in Fig. 1 at
jαjn=B1 ¼ 0, 3 for illustrative examples of sigmoid
functions.
In order to probe both the paramagnetic and ferromag-

netic regions, we perform forward and backward ramps
with several values of the Rabi frequency, ΩR=2π ¼ 0.4,
0.6, 0.9, 1.2, 1.5 kHz, roughly obtaining 130 numerical
values for susceptibility and hysteresis width. The points
appearing in Figs. 3(e) and 4(a) are the result of a final
binning procedure.
It is worth pointing out that the value of the critical

detuning n1D0 jΔj is slightly different for forward and
backward ramps, due to the different TF radii for the
two components (g↑↑ ≠ g↓↓). In particular, for forward
ramps we find n1D0 jΔj=2π ≃ 1.08 kHz, while for backward
ramps we have n1D0 jΔj=2π ≃ 1 kHz. This is taken into
account in the computation of the effective detuning, that is

used to plot Figs. 3(c) and 3(d), as well as in the calculation
of hysteresis width and magnetic susceptibility.

APPENDIX C: EFFECTS OF TRANSVERSE
DIRECTIONS

In order to further address the discrepancies with the 1D
model discussed in the main text, we decided to perform 2D
GPE simulations, which allow us to investigate the role of
the transverse direction in the dynamics.
The numerical code is structured as follows: we first

obtain the ground state of the mixture through a conjugate
gradient algorithm [46] and then perform a split-step
procedure to determine the real-time evolution of the
system. Including fluctuations in a two-dimensional sim-
ulation is a computationally expensive task: hence we
decided to neglect the effect of noise, which has already
been addressed in 1D. Moreover, in order to let the system
relax to the ground state after crossing the critical point, we
introduce a dissipation term in the simulations: this is
realized through a single imaginary-time evolution step of
size dτ ¼ γdt every real-time step of size dt, with γ ¼ 0.1.
The parameters of the simulation are the same as in the

experiment. A comparison between the 2D numerical
results and the same experimental data of Figs. 3(a)
and 3(b) is presented in Fig. 6. The relative 1D magneti-
zation ZðxÞ has been extracted with the procedure we
discuss in Appendix D for both experimental and simulated
data. The inclusion of an additional dimension is sufficient
to obtain quantitative agreement between the numerical and
experimental hysteresis width [see Fig. 6(e)]. In particular,
the critical point appears to be shifted toward jκjn=ΩR < 1
and the hysteresis region gets larger, as a result of the
nonperfect 1D nature of the cloud.
The much better contrast visible in Figs. 6(c) and 6(d)

with respect to Figs. 6(a) and 6(b) is due to the presence of
losses and absence of decoherence in the 2D numerical
simulations. Decoherence does not significantly affect the
value of δhys, since the FM region of the cloud is almost
always fully polarized in either the j↑i or j↓i state. We also
verify that the value of γ does not modify the relevant
properties of the phase transition, but rather has only the
effect of damping the spin oscillations excited by the
magnetization jump.

APPENDIX D: IMAGE ANALYSIS

1. Radial rescaling

The images of the atomic distributions in the two spin
states are taken following a protocol, similar to the one
explained in Ref. [21]. After a time of flight of 1 ms, state
j↑i is imaged by standard resonant absorption imaging.
Residual atoms in j↑i are blasted away with a short
resonant light pulse. After an additional 1 ms, j↓i atoms
are transferred to j↑i by using repumping light and then
imaged as before. To calibrate the spin-selective imaging,
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we ensure that the total atom number remains constant
during the transfer between the states. We also radially
rescale the image of state j↑i to match the extension of the
image of state j↓i, by taking into account the extra
expansion time. The differential expansion time does not
introduce relevant changes along the axial direction, thanks
to the large trap frequency difference (ωx ≪ ω⊥) and the
small time of flight; therefore, no axial rescaling is needed.

2. Removal of the thermal distribution

Our 2D images result from the integration of the full
atomic density (condensate plus thermal) along the line of
sight z [see Fig. 7(a)]. In order to obtain the densities
of the two condensate components, we remove the
thermal component in postanalysis. In the following,
we assume that the shape of the thermal distribution does
not change significantly, while expanding during the
small time of flight.
The in situ atomic distribution of a harmonically trapped

bosonic gas is characterized by a dense condensate fraction
(dark green) which expels the thermal component (light
green) from the center of the trap. Hartree-Fock calcula-
tions [25–27] for an ultracold sample with a condensate
fraction of 30% (evaluated against the total trapped atom
number) predict a thermal fraction of only 10% in the
central region, as is visible in the middle density profile
nð0; 0; zÞ shown in Fig. 7(b). By numerically integrating
only the thermal component density along the line of sight,
we obtain an almost flat distribution from one end (A) of
the condensate to the other (C) [see Fig. 7(c)]. By assuming
that the thermal atoms located inside the condensate behave
in the same way as the ones located outside, we fit the
thermal tails for each state with a Gaussian profile. We
remove the contribution of the thermal component from
each image by subtracting the fitting Gaussian profile
(outside the condensate) and flattop (inside). The flattop
level is set at a value extracted from the mean value of the

FIG. 6. Magnetic hysteresis. As in Fig. 3, but now the
comparison is with numerical simulations including transversal
direction. (a),(b) Experimental magnetization data from Figs. 2(c)
and 2(d), rescaled according to the j↑i-j↓i asymmetry and to the
density profile; see main text. White regions in the bottom left-
hand corner are due to a lack of data that manifests when applying
the vertical axis rescaling. (c),(d) 1D mean-field numerical
simulations for the experimental parameters of Figs. 2(c) and
2(d). The dotted black and white lines in (c) and (d) mark the
border of the hysteresis region calculated from theory. Yellow
dashed lines mark experimental shots shown in (a), correspond-
ing to number 1–4, as in Fig. 1. (e) The width of the hysteresis
δhys is calculated as explained in Appendix B. Green points are
experimental data with their uncertainties resulting from the
binning procedure and systematic errors. The dotted line stands
for theory, while the purple points are results from numerical
simulations.

FIG. 7. Thermal and condensate atomic distribution. (a) Sche-
matic three-dimensional view of the condensate (dark green) and
thermal (light green) distribution. A, B, and C cylinders highlight
the lines of sight of the central atoms and of the thermal atoms
just outside Rx. (b) Line density profiles along the imaging
direction for x ¼ −Rx; 0;þRx, calculated using Hartree-Fock
theory for our partially condensed (30%) gas. (c) The integrated
density for the thermal component

R
nðx; 0; zÞdz has an almost

flat distribution in region occupied by the condensate.
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thermal component at ðx; yÞ ¼ ð�Rx; 0Þ and ðx; yÞ ¼
ð0;�RyÞ. We do not consider the effects of the asymmetric
scattering length on the Hartree-Fock simulations, which
would result only in a minor correction [26].
The obtained condensate distribution is then integrated

along y. The two populations n↑ and n↓ are used to
calculate the relative magnetization along x:

ZðxÞ ¼ n↑ðxÞ − n↓ðxÞ
n↑ðxÞ þ n↓ðxÞ

: ðD1Þ

To verify that the assumption of a flattop distribution of
the thermal atoms in the center of the cloud does not
introduce notable effects in the analysis presented in the
text, we apply the same methods with four different profiles
to remove the contribution of the thermal component: a full
Gaussian profile constructed from the Gaussian fit per-
formed on the thermal tails outside the condensate; a linear
plane, with a nonzero slope along the x direction extracted
from the two values of the thermal component at the edge

of the BEC, x ¼ �Rx (in order to account for spatial
asymmetries); the flattop explained just before; an inverse
paraboloid, to account for the residual in-site depletion of
the BEC. We extract the hysteresis width and susceptibility,
as is done in the main text, for the four different profiles.
The results, shown in Figs. 8(a) and 8(b), indicate that the
key ferromagnetic features associated with the phase
transition, namely, the presence of hysteresis and the
divergent susceptibility, are not qualitatively affected by
the choice of the thermal profile being subtracted.

APPENDIX E: BEHAVIOR OF THE THERMAL
COMPONENT

1. Magnetization of the thermal component

Figure 9(a) (forward ramp) and Fig. 9(b) (backward
ramp) show the unprocessed magnetization corresponding
to the data presented in Figs. 2(c) and 2(d). Outside Rx, the
relative magnetization passes from blue to red around zero
detuning without showing any x dependence. This corre-
sponds to the expectation that the thermal fraction follows
the external detuning δB behaving as a gas of noninteract-
ing particles. As expected for a paramagnet, the behavior
does not change between forward and backward ramps and,
in particular, does not show any sign of hysteresis. The
weaker contrast of the relative magnetization Z seen in
Figs. 9(a) and 9(b) is understood as the thermal fraction
being more sensitive to decoherence process during the
ramp preparation. Note that the coherence time of the
thermal fraction is further limited by the additional uncer-
tainty of the effective mean-field spin interaction seen by
thermal atoms stemming from the variety of available
trajectories through the high-density central part of the
sample.

FIG. 8. Effects of removing the thermal component. Panel
(a) shows the hysteresis width obtained through the four different
methods of thermal subtraction, as explained in the text. Corre-
spondingly, panel (b) presents the same comparison performed on
the susceptibility. In both panels blue empty symbols correspond
to paraboloid, orange to flattop, green to linear, and red to
Gaussian. Both panels show good agreement between the four
methods. Black dotted lines are the theory predictions. Error bars
are standard variations resulting from averaging different exper-
imental realization and from systematic errors.

FIG. 9. Unprocessed experimental data for forward (a) and
backward (b) ramp as in Figs. 2(c) and 2(d) before applying the
thermal removal procedure. Dot-dashed black lines mark the
local resonance condition δB ¼ −nðxÞΔ.
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2. Fluctuations of the thermal contribution

The fluctuations of the thermal component in the
central region are not removed by simply subtracting
the flattop profile of the average density. Their contribu-
tion has been analyzed based on the spatial distributions in
Fig. 7(a). We select the area corresponding to Aþ C in the
figure, having a number of thermal atoms equal to the one
present in the central 120 × 20 pixel region of interest
used in Fig. 4(b) and evaluate the corresponding fluctua-
tions of the magnetization. The variance has then been
obtained with Eq. (6) and results in a value σ2 < 10−3

much smaller than the one shown in Fig. 4 for the
condensate.

APPENDIX F: EXPERIMENTAL
CALIBRATION OF n

The determination of jκjn and nΔ is critical to determine
the parameter jκjn=ΩR and, more important, to locate the
resonance δeff ¼ 0. Because of a fortunate coincidence in
collisional parameters of our mixture, Δ and κ differ only at
the 10−3 level. For the two involved hyperfine states,
coupled channel calculations provide a11 ¼ 54.5a0,
a22 ¼ 64.3a0, and a12 ¼ 64.3a0 [18]. The quantity nΔ
can be experimentally determined either through spectro-
scopic protocols [21] or by locating the resonance position
δeff ¼ 0 at the center of the cloud in the PM regime, with
large ΩR, so that hysteresis is absent. We verify the
consistency between the two methods and the direct
determination of jκjn from the experimentally measured
atom number and trap frequencies together with geomet-
rical consideration [39].

APPENDIX G: EXPERIMENTAL
SUSCEPTIBILITY

In our measurement of χ, we use thousands of exper-
imental scans performed for different values of ΩR
with either forward or backward ramps, as the ones
presented in Figs. 2(c) and 2(d). To evaluate χ, we make
use of the fact that the derivative of the magnetization
with respect to δeff is equivalent to the derivative with
respect to δB:

χ ¼ 1

n
∂sz
∂δeff

����
δeff¼0

¼ 1

n
∂sz
∂δB

����
δeff¼0

∂δB
∂δeff|ffl{zffl}

1

����
δeff¼0

: ðG1Þ

As a first step, for noise reduction, we spatially average
the magnetization Z as well as the total density within a
series of 10-pixel-wide windows. For each window, we
obtain the value of the magnetization as a function of δB
and we perform an arctan plus linear model fit. The
estimate for χ is then extracted as the value of the
derivative of the arctan-lin fit at δeff ¼ 0. Associated
jκjn is obtained from an averaged density profile of the

experimental shot with δeff closest to zero. This procedure
results in significant uncertainties for points in the tails of
the cloud where the density gradient is large. For this
reason, we choose to exclude the outer points from the
final binning.
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