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Abstract. Gender recognition from images is generally approached by extract-
ing the salient visual features of the observed subject, either focusing on the facial
appearance or by analyzing the full body. In real-world scenarios, image-based
gender recognition approaches tend to fail, providing unreliable results. Face-
based methods are compromised by environmental conditions, occlusions (pres-
ence of glasses, masks, hair), and poor resolution. Using a full-body perspective
leads to other downsides: clothing and hairstyle may not be discriminative enough
for classification, and background cluttering could be problematic. We propose a
novel approach for body-shape-based gender classification. Our contribution con-
sists in introducing the so-called Skinned Multi-Person Linear model (SMPL)
as 3D human mesh. The proposed solution is robust to poor image resolution
and the number of features for the classification is limited, making the recogni-
tion task computationally affordable, especially in the classification stage, where
less complex learning architectures can be easily trained. The obtained informa-
tion is fed to an SVM classifier, trained and tested using three different datasets,
namely (i) FVG, containing videos of walking subjects, (ii) AMASS, collected
by converting MOCAP data of people performing different activities into realistic
3D human meshes, and (iii) SURREAL, characterized by synthetic human body
models. Additionally, we demonstrate that our approach leads to reliable results
even when the parametric 3D mesh is extracted from a single image. Considering
the lack of benchmarks in this area, we trained and tested the FVG dataset with
a pre-trained Resnet50, for comparing our model-based method with an image-
based approach.
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1 Introduction

Gender recognition has a wide range of application areas, ranging from human-computer
interaction to surveillance systems, as well as commercial developments with particular
attention to retail analytics. For this task, the observation of the face is generally con-
sidered amongst the most relevant element of the body. However, there exists a large
set of additional cues, which can be analyzed so as to infer the gender information.
This includes, for example hairstyle, body shape, clothing, eyebrows, posture and gait,
as well as vocal traits, based on the voice pitch. Such additional features allow for the
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Fig. 1. Overview of the proposed pipeline. AMASS[12] and SURREAL[24] are characterized by
SMPL[11] parametric mesh; the body shapes are therefore given. The FVG[26] dataset consists
of videos of walking subjects. The parametric mesh is extracted using the SPIN[10] algorithm,
from which the SMPL body shape coefficients are extracted and fed to the SVM classifier.

recognition through a multi-modal observation, exploring different dimensions, such as
appearance, motion, and sound.

According to the information used for the classification, the existing gender recogni-
tion literature can be divided into two main categories: appearance and non-appearance-
based approaches. The former leverages the features extracted from human physical ap-
pearance. These features can be static, denoting characteristics that are always present in
an individual [6] (face, eyebrows, hand geometry), or dynamic [9], as body movement,
activity recognition, or apparel information, like the detection of clothing and jewelry.
The literature has also explored the analysis of other non-appearance-based features,
extracting for example daily social network data [4]: information such as daily activi-
ties, logging emails, blogs, and handwriting can be used as features for classification.
Such studies, however, are out of the scope of this work.

We propose a novel model-based approach for gender recognition that consists in
extracting the parametric 3D human body model. The use of a model-based solution
helps resolving the potential ambiguities that might arise when looking at aesthetic and
appearance-based features only. In fact, the key goal of our work consists of using the
SMPL[11] body-shapes parameters, which are invariant to clothing, hairstyle or other
parameters commonly associated to one particular gender. In this way, we ensure that
the model is sufficiently simple and reflects a standardized representation. In literature,
only a few works address this problem using the body-shape information and, to the
best of our knowledge, none of them use the parametric human body model SMPL[11].
In addition, most of the existing works use 3D human mesh vertices as features, sig-
nificantly increasing the computational complexity, since the feature space that needs
to be investigated is very large. In our case, the number of features is shrunk to only
ten features. We also implement a CNN for comparison purposes, to evaluate our work
against image-based methods. To do so, we use a pre-trained Resnet50[7] and we per-
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form training and testing on the FVG[26] dataset, comparing the results against the ones
obtained by the SVM, fed with the mesh parameters extracted from the video sequence.

The main technical contributions of this work can be summarized as follows:

– We propose an effective descriptor using the SMPL body shape parameter for gen-
der recognition via a 3D human model. We prove that this type of classification is
suitable for those datasets that are composed of 3D meshes, as well as videos, ex-
hibiting the potential for the application in a wide set of use-cases, including video
surveillance, robotics, and biometrics.

– We show how our classifier, with a reduced feature space, improves the results
obtained by other model-based solutions proposed in the literature.

2 Related Work

Gender Recognition from body shapes. In literature, only a few works address the
problem of gender classification using the body shape information. In fact, while 2D
image data can be often misleading due to camera view point and image resolution, 3D
shape models offer a more comprehensible description of the observed object (subject)
at a negligible incremental cost. The authors in [21] propose a gender recognition solu-
tion based on 3D human body shapes obtained with laser scanning. The paper does not
consider the full body, and the authors use multiple features extracted from the subjects’
chest and torso. Furthermore, the authors assert in the conclusion that their approach
fails in classifying overweight or fully dressed individuals. More recently, other works
focus on the 3D mesh of the human body. The same authors present another research
on gender classification in [22], where they perform the recognition task by considering
the shape landmarks of 3D human body model. The work proposed in [25] considers
the body shape as feature, and the classification relies on the geodesic distance on the
mesh. They discover that the most relevant features are the geodesic distance between
the chest and the wrist, as well as the one between the lower back and the face. The ap-
proach proposed in [16], introduces a 2D-vertex-based gender recognition model. The
authors compare the performance of two classifiers, Support Vector Machines (SVMs)
and Extremely Randomized Trees (ERTs). They obtain the most remarkable results by
using as input feature the vertices of 3D mesh and the SVM as classifier, with an accu-
racy of 78%. Using a 3D vertex-based methods makes the feature space of the classifier
very large. Originally, their meshes contained between 67290 and 68300 vertices; this
required a re-sampling (using a uniform probability distribution), to the bottom side,
namely 67290 vertices. Since this number was still very large to be processed, they
extracted the most relevant features by using Principal Component Analysis (PCA), re-
sulting overall in 350 components.
Gender Recognition from full-body images. In computer vision, gender recognition
from whole-body images is a challenging task because the features extracted may not
be discriminative enough for the classification and because background cluttering may
be problematic. Gender classification has recently been addressed using convolutional
neural networks. In [13], a CNN is trained considering the whole person body (Global
CNN), the upper and then the lower portion of the human body (Local CNN). The Lo-
cal CNN of the upper body achieves the highest accuracy because the face of a person
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is more discriminative than the rest of the body. This is supported by a feature visu-
alization method that shows where the CNN extracts the features on the image. When
the face is not visible, features are concentrated in the rest of the body. In this case, the
information is achieved from clothing, hairstyle, and body shapes information. Some-
times these features are not enough for accurate classification. This is confirmed also
by Raza et al. in [18], where they propose an appearance gender recognition method
where a deep neural network is used to extract the silhouette of the pedestrian image.
The silhouette is then used as a binary mask to remove the background from the image.
The outcome is fed into a stacked sparse autoencoder (SSAE). The gender is classified
considering three different camera views (frontal, back, and mixed) and they obtain the
lowest accuracy score, as expected, on the back view. The mixed views obtain an accu-
racy slightly lower than the one in the front. The frontal view is in fact more distinctive,
as it contains information extracted not only from the body but also from the face. This
proves that the body features may not be discriminative enough to reach the accuracy
of face features. Ng et al. [13] show that by combining the Global and Local CNN from
the upper part of the body it is possible to obtain a better model, outperforming the
state-of-the-art methods.
Human Mesh Recovery from Natural Images. Model-based human pose estimation
can be faced following two different approaches. Optimization-based methods itera-
tively fit a parametric human body model, e.g. SMPL [11], to estimate the body pose
and shape of the 2D observations, usually 2D joints locations. This solution has been
presented as an alternative to preexisting models coming from the scans of different
bodies in a varied set of poses. With this model, Loper et al. [11] created realistic an-
imated human bodies that represent different body shapes that deform naturally with
pose and exhibit soft-tissue motions like those of real humans. In contrast, regression
based methods use a deep network to directly estimate the model parameters from pix-
els. Both methods have some pros and cons. Optimization based methods tend to be
very slow and sensitive to initialization. Regression based methods, instead of taking
only a sparse set of 2D location, take into account all pixels values; at the same time,
this leads to a mediocre image-model alignment, and a large quantity of data is usu-
ally necessary for training. Regarding the first approach, SMPLify [3] has been the first
method that automatically estimates the 3D pose and shape of human body. The most
recent works have focused on regression; in fact, since there is a deficiency of images
with full 3D shape ground truth, alternative supervision signals to train the deep net-
works are searched. The majority of the solutions uses 2D annotations including 2D
keypoints, silhouettes, or part segmentation. This information can be used as input [23],
intermediate representation [14, 17], and supervision [8, 14, 17, 20, 23]. In this context,
the SPIN algorithm [10], acronym of SMPL oPtimization IN the loop, presents a novel
way of tackling the problem, finding a way to use the two methods in a collaborative
fashion.

3 Datasets

Front View Gait Dataset (FVG). The FVG dataset [26] contains videos of 226 walking
subjects, annotated by gender. It focuses only on the frontal view with three different
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near frontal-view angles towards the camera and other variations in terms of walking,
speed, carrying, clothing, cluttered background and time. The 226 subjects walk along
a straight line of 16 meters toward the camera. The resolution of the video is full HD
and the height of the person ranges from 101 to 909 pixels. For every subject, 12 videos
have been captured, with different inclination of the camera (-45°, 0, 45°) and four vari-
ations of walking pace.
Archive of Motion Capture as Surface Shapes Dataset (AMASS). The AMASS
dataset [12] consists of a collection of 15 MoCap datasets with gender annotation, rep-
resented with a common framework and parameterization. This has been achieved by
converting the MoCap data into realistic 3D human meshes represented by a rigged
SMPL body model, via the Mosh++ method.
Synthetic hUman foR REAL Dataset (SURREAL). The SURREAL dataset [24] con-
tains 6 million frames of synthetic humans with ground truth pose, depth maps, segmen-
tation masks, and gender information. The synthetic bodies are created using the SMPL
body model. The SMPL parameters are fitted using the MoSh method from raw 3D Mo-
Cap marker data. The synthetic data has been generated rendering the following pieces
of information: (i) a 3D human body model, whose pose was estimated with a motion
capture system, (ii) a frame using background image, (iii) a texture map on the body,
together with lightning and camera position. All these data are combined together in
order to increase the diversity of the dataset.

4 Approach

The processing pipeline we propose consists of two stages: (i) extraction and prepa-
ration of the features, and (ii) classification. Since we are considering three different
datasets, the pipeline slightly differs depending on which one is being used (see Fig.1).
In particular, AMASS and SURREAL are characterized by parametric SMPL models;
therefore the body shape parameters are given. For the FVG dataset, instead, an addi-
tional processing stage for features extraction is needed. This is performed by using the
SPIN[10] algorithm, as follows:

– The parameters of the SMPL human parametric model are regressed with a deep
network.

– These regressed values are used by an iterative fitting in order to align the model to
the 2D keypoints.

– The fitted model is used as supervision for the network, closing the loop between
the regression and optimization method.

The SMPL body model provides a function M
(
β⃗, θ⃗

)
, that takes as input the body

shape parameters β⃗ and the pose parameters θ⃗, and gives as output the body mesh
M ∈ R3N with N = 6890 the number of vertices. The body pose is defined by a
standard skeletal rig, composed by K = 23 joints; the pose is then defined by |θ| =
3× 23 + 3 = 72 parameters (3 for each joint plus 3 for the root orientation). The body
shapes of different people are represented by the function:
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Fig. 2. Classification Pipeline. The training data are scaled and split in folds. On the training
data the SVM Hyper-parameters are tuned. If the training and testing set belong to the same
dataset, the accuracy of the model is the average accuracy over splits. Otherwise, the accuracy is
calculated on the new testing set.

BS

(
β⃗;S

)
=

|β⃗|∑
n=1

βnSn (1)

where β⃗ = [β1, ..., β|β⃗|]
T , |β⃗| is the number of linear shape coefficients, and the Sn ∈

R3N represents the orthonormal principal components of shape displacements. In the
end, the body shape parameters are only ten and they can be defined as the principal
components of the shape variation learned from 3D scans of thousands of people.

In summary, the main steps of the proposed methodology are listed hereafter:

1. The image is cropped, extracting the bounding box around the person using YOLO
[19] as a detector. A bounding box is required by the SPIN algorithm, as it assumes
that the person is centered in the image;

2. The cropped image is passed to the SPIN algorithm that extracts the body shape
and pose coefficients;

3. The ten body shape coefficients are used as features for the classification, and split
into training and test samples, following a cross-validation approach;

4. The training data is scaled and the tuning of hyper-parameters is performed;
5. Finally, the trained model accuracy is calculated.

4.1 Model Selection

In machine learning, we know that tuning the hyper-parameters is a key step, which
allows building a robust and accurate model, preventing over/underfitting. In our im-
plementation, we use the Grid Search method. We tune two grids: simple linear kernel,
⟨x, x′⟩ with five possible values of the regularization parameter, C and a RBF kernel
with five different values of γ and four values of C. Since the chosen datasets exhibit
a severe class imbalance we divide the data following a stratified k-fold cross val-
idation; it consists of a variation of the k-fold method, where each fold is composed
approximately by the same percentage of samples belonging to both classes. This allows
us to mitigate the possible effects of gender classification, due to the gender unbalance.
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The tuning of the parameters has been done in two steps. First, we calculate the most
suitable number of splits dividing each dataset in a range of 3 to 10, and, for each of
them, performing a model fitting. The final choice has been done by considering the
number of splits that returns the highest accuracy. The second step consists in tuning
the hyper-parameters and we choose the combination of parameters with the highest
accuracy obtained from the confusion matrix. Finally, we proceed with model training
over our different datasets with the hyper-parameters found. The accuracy of the model
is calculated by averaging the accuracy of each split if the training and testing set be-
long to the same dataset, while with cross testing among different datasets the accuracy
is calculated on the new testing set. The classification pipeline is illustrated in Fig.2.
All the experiments have been conducted on a NVIDIA RTX 3090, using Pytorch for
the network implementation and Scikit-Learn for the SVM implementation.

Table 1. Cross Validation Results. The experiments are conducted with different data splits: for
example [FVG + A] - [A] means that the classifier has been trained on FVG and AMASS, and
tested on AMASS. We also tested the algorithm adding progressively a larger amount of synthetic
samples to AMASS and FVG. For example, [A + Sn] - [A]: n is the ID of the training set
(n = {1, 2, 3, 4}); [A + Sn] -[A] means training on AMASS and SURREAL, and testing on
AMASS. A larger ID number corresponds to a larger amount of SURREAL data.

Experiment #Train #Test #Female #Male Accuracy(%)
[A]-[A] 317 159 68 91 84.23
[S]-[S] 3800 1900 977 923 99.94

[FVG]-[FVG] 5650 1130 415 715 87.38
[FVG + A] - [FVG] 214 79 22 57 83.5

[FVG + A] - [A] 214 104 58 46 95.2
[FVG + S1] - [FVG] 154 79 22 57 83.5
[FVG + S2] - [FVG] 183 79 22 57 86.1
[FVG + S3] - [FVG] 220 79 22 57 83.5
[FVG + S4] - [FVG] 294 79 22 57 84.8

[A + S1] - [A] 383 111 61 50 81.1
[A + S2] - [A] 455 111 61 50 82.9
[A + S3] - [A] 547 111 61 50 84.7
[A + S4] - [A] 730 111 61 50 86.5

5 Results

In this section, we describe the conducted experiments and the corresponding results,
to validate the effectiveness of our classifier using the SMPL body shapes parameters
for gender classification. We perform cross training and testing on three different types
of dataset: synstetic, real and registration scans. In this way we want to demonstrate the
effectiveness of the classifier on different type of data. We investigate the accuracy of
the model when combining real and synthetic data from different datasets. The experi-
mental results are listed in Table 1. The highest accuracy is obtained by the SURREAL
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dataset, as we expected; SURREAL is a synthetic dataset and the body shape parame-
ters have a perfect distribution between -5 and 5, making it a rather simple dataset to
work with. As far as the FVG dataset is concerned, the returned accuracy is 87.38%.
When we train and test on the AMASS dataset, the accuracy of classification decreases;
so, even if this dataset is made of real registration scans, it consists of subject with a
strong diversity in body shape. Instead the FVG dataset consists of real data, but its ac-
curacy is higher than the AMASS dataset because it is characterized by subjects that do
not strongly vary their body shapes. As far as the wrongly classified samples in AMASS
is concerned, we assume that the performance decreases because the subjects are char-
acterized by a sparse diversity in body shape.The failures in FVG occur generally when
the subject is very far from the camera, namely exhibiting a reduced number of relevant
pixels. This makes the extraction of the SMPL parameters with SPIN not sufficiently re-
liable. We then train and test the AMASS and FVG dataset adding in the training phase
a progressively larger amount of synthetic data (from SURREAL): as we expected the
accuracy increases when the synthetic data grow. As mentioned previously this is mo-
tivated by the fact that the synthetic samples are less subject to variations, making the
classification easier and less prone to be adopted as substitutes for the real ones in this
specific task.

5.1 Comparison with previous body shape-based methods

Since the novelty of our work consists in using the SMPL meshes, we could not find
in the literature other works for a straightforward comparison. The available state-of-
the-art papers [22, 25, 21] use the CAESAR dataset [2] characterized by meshes ex-
tracted through a laser scanner. We could not apply our method to these datasets be-
cause they are not characterized by SMPL mesh. Nevertheless, we still try to provide
a fair comparison, although the differences between the meshes affect the features ex-
tracted for the classification. These features consist of the Geodesic Distances (GD)
[25] between landmarks, which corresponds to the length of shortest path between two
points constrained on the shapes, Normal Distributions (ND)[21] on the chest region,
mesh Vertices Coordinates (VC) [16] and Landmarks Positions [22] (LP). Looking at

Table 2. Comparison with previous body shape-based methods. The term RegS stands for Regis-
tration Scans, S for Synthetic Shapes and RealD are Real Data (i.e. video data). Dataset indicates
the train/test data, Method and Features the method and features used for the classification re-
spectively. The results of our solution are listed in the last four rows.

Dataset Type Method Features Train Test Accuracy(%) Pre-processing Feature Space Landmarks
CAESAR RegS [25] GD 500 500 96.1 ✗ 11 ✓
CAESAR RegS [21] ND 1224 1224 96 ✓ 100 ✗

CAESAR RegS [22] LP 1224 1224 98.9 ✗ 219 ✓
POSER[1] RegS - S [16] VC 450 140 75 ✗ 350 ✗

AMASS RegS Ours SMPL 317 159 84.23 ✗ 10 ✗

FVG RealD Ours SMPL 5650 1130 87.38 ✗ 10 ✗

AMASS - SURREAL RegS-S Ours SMPL 5146 1030 97.8 ✗ 10 ✗

FVG - SURREAL RealD-S Ours SMPL 8987 1123 92 ✗ 10 ✗
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the methodology more in detail (see Table 2), the previous solutions require landmark
detection or a pre-alignment process. They also have a much larger feature space. In-
stead, our method does not need any landmark or pre-processing step; furthermore, it
has a much smaller feature space, resulting in a much faster computation. It is worth
mentioning that our method can be effective also when using small datasets for training
and testing, when compared to the ones used by the competing solutions. In addition,
the proposed method uses a SMPL mesh that can also be extracted from a single image,
thus it can be applied even when a laser scanner [25, 22, 21] is not available (e.g. surveil-
lance), giving the solution generalization and scalability properties A fairer comparison
can be conducted looking at the 3D vertex-based method presented in [16]. The authors
achieve an accuracy of 75% using a very large number of features, even after feature
reduction. With this respect, our method attains an accuracy of 87.38%, avoiding any
feature reduction processes (e.g. PCA) since the SMPL mesh shrinks the feature space
to only ten parameters.

5.2 Comparison with image-based methods

In order to prove the effectiveness of our solution, also when compared to image-based
methods, we use a pre-trained Resnet50 and we train and test the architecture on the
FVG dataset. The comparison is summarized in Table 3. The CNN reaches an average
accuracy of 80% in the validation phase. When using the same dataset, our proposed
method reaches 87%. This proves the peculiarity of the body-shape features used in
this work with respect to the common features used by a simple CNN. This is also
proved in [13], where the highest results is obtained when the face of the subject is vis-
ible (80.8%). In [18] they obtained an accuracy of 82.9% on frontal views and 82.4%
on mixed views. In Fig.3 we can see examples of misclassified subjects by the CNN
but correctly classified by our method considering the body shape parameters extracted
from the 3D mesh. In fact, our solution does not rely on visual features and only con-
siders the body shape information for gender classification, thus making it robust to
camera pose changes, face appearance, and clothing. The last three columns report er-
ror in classification for both CNN and our method, possibly due to light conditions.
For this reason, we made a use of a neutral body model for the incorrect classification
samples only for visualization purpose, since the body model does not alter the values
of body shape parameters.

6 Conclusions

We propose a novel approach for gender classification using SMPL body shapes pa-
rameters. This is suitable for all those datasets that are characterized by 3D meshes, as
well as videos, exhibiting the potential for the application in a wide set of use-cases,
as video surveillance, robotics, biometrics. Considering the low-dimensionality of the
feature space that allows for fast computation, the proposed approach obtains satisfac-
tory results, yet adding desirable properties, such as the use of a parametric mesh that
provides a simple and a standard representation, with a number of vertices that is lower
than the one used by competing methods. Our approach outperforms also the results of
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Table 3. Comparison with image-based methods. We compare our proposed method against pre-
vious image-based works, as well as against the benchmark CNN we have implemented.

Method Dataset View Accuracy(%)
Ng. et al.[13] MIT[15]+APiS[27] Upper frontal body Part 80.8
Ng. et al.[13] MIT+APiS Global + Upper frontal Parts 82.5

Raza et al.[18] MIT+PETA[5] Frontal 82.9
Raza et al.[18] MIT+PETA[5] Mixed 82.4

Our CNN FVG Frontal all body 80
Our Method FVG Frontal all body 87.38

Fig. 3. Examples of classification output. The first row is characterized by subjects misclassified
by the CNN. The second and third rows represent the classification output of our method. The red
and green borders indicate respectively wrong and good classification output. The correct gender
is indicated by the color of meshes in the third row.

image-based competing methods, since the features we adopt do not depend on camera
view, and they are robust to face occlusion. In the future, our goal is to create a new
dataset characterized by SMPL parametric shapes for gender recognition, as well as
the recognition of additional attributes as, for example, age. We plan to use the DMPL
[11] model, that has the same advantages of SMPL model but it considers the body
deformations produced by the body movements and impact forces with the ground.
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