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Abstract

In modern society, cameras on intelligent devices can generate a huge

amount of natural images, including images of the human body and face.

Therefore, there is a huge social demand for more efficient editing of images

to meet human production and life needs, including entertainment, such as

image beauty. In recent years, Generative Models with Deep Learning tech-

niques have attracted lots of attention in the Artificial Intelligence field,

and some powerful methods, such as Variational Autoencoder and Gener-

ative Adversarial Networks, can generate very high-resolution and realistic

images, especially for facial images, human body image. In this thesis,

we follow the powerful generative model to achieve image generation and

editing tasks, and we focus on human image generation and editing tasks,

including local eye and face generation and editing, global human body gen-

eration, and editing. We introduce different methods to improve previous

baselines based on different human regions. 1) Eye region of human image:

Gaze correction and redirection aim to manipulate the eye gaze to a desired

direction. Previous common gaze correction methods require annotating

training data with precise gaze and head pose information. To address this

issue, we proposed the new datasets as training data and formulated the

gaze correction task as a generative inpainting problem, addressed using

two new modules. 2) Face region of human image: Based on a powerful

generative model for face region, many papers have learned to control the

latent space to manipulate face attributes. However, they need more pre-



cise controls on 3d factors such as camera pose because they tend to ignore

the underlying 3D scene rendering process. Thus, we take the pre-trained

3D-Aware generative model as the backbone and learn to manipulate the

latent space using the attribute labels as conditional information to achieve

the 3D-Aware face generation and editing task. 3) Human Body region of

human image: 3D-Aware generative models have been shown to produce re-

alistic images representing rigid/semi-rigid objects, such as facial regions.

However, they usually struggle to generate high-quality images represent-

ing non-rigid objects, such as the human body, which greatly interests many

computer graphics applications. Thus, we introduce semantic segmentation

into the model. We split the entire generation pipeline into two stages and

use intermediate segmentation masks to bridge these two stages. Further-

more, our model can control pose, semantic, and appearance codes by using

multiple latent codes to achieve human image editing.

Keywords

Generative Model, Generative Adversarial Networks, Generative Neural

Radiance Field, Face Generation and Editing, Generative Digital Human.
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Chapter 1

Introduction

1.1 Deep Generative Models

Recently, the critical technology in Artificial Intelligence, Deep Learning,

powers many aspects of modern society. In industry, many consumer prod-

ucts, such as smartphones and web services, have widely been used to

provide better intelligent services. At the same time, in the academic com-

munity, Deep Learning has become the hottest topic and research content

in the entire artificial intelligence field and significantly promoted the de-

velopment of some fields, including computer vision and natural language

processing. Deep Learning can be regarded as one type of Machine Learn-

ing and one type of data-driven non-linear learning technology. Compared

with conventional machine-learning methods with careful feature engineer-

ing, Deep Learning with multiple-layers neural networks can directly learn

feature representation from raw data and discover intricate structures in

high-dimensional data that can better serve downstream applications, such

as detection, classification, and recognition. The mainstream neural net-

works in Deep Learning are Convolutional Neural networks and Recurrent

Neural Networks, widely used for computer vision and natural language

processing, respectively, and feed on images and text. In this thesis, we

focus on image generation and editing, and the prominent architecture in

3



1.1. DEEP GENERATIVE MODELS CHAPTER 1. INTRODUCTION

our model is multiple-layers convolutional neural networks.

Deep learning can improve photo generation and semantic editing

by introducing models, methods, and techniques that address the chal-

lenges. In modern society, intelligent devices, human production, liv-

ing, and entertainment needs make it possible to obtain a large num-

ber of natural and digital pictures through intelligent devices. At the

same time, the large-scale data also makes it possible to train the deep

model, thus obtaining a powerful image generative model and a more au-

tomatic image editing model. Most of the previous deep learning meth-

ods [47, 88, 95, 28, 27, 5, 50, 70, 228, 140, 225, 15, 57, 105] for image

generation and editing are based on Deep Generative Model which are

neural networks with many hidden layers trained to approximate compli-

cated, high-dimensional probability distributions using a large number of

samples. We give a detailed introduction to generative models below.

Generative models learn to represent and estimate the distribution of

training data pdata. The estimated distribution pmodel is trained to be close

to pdata. So, why use generative models? There are several reasons for it,

including:

1) High-dimension probability distributions are important objects in var-

ious applied math and engineering domains. A generative model could

provide some methods to represent and sample high-dimension prob-

ability distributions.

2) Generative model can be used for learning conditional distribution,

which can be applied to multiple image-to-image tasks, such as style

transfer, general image editing, face aging, and gaze correction. These

tasks have a wide of applications in AI products.

The widely used generative models are Variational AutoEncoder [88],

Generative Adversarial Networks [47], Autogressive Models [186], Normal-

4



CHAPTER 1. INTRODUCTION 1.1. DEEP GENERATIVE MODELS

izing Flows [37], and Diffusion Models [39] and lots of variants of these

models.

1) Variational AutoEncoder (VAE) [88] belongs to the families of Varia-

tional Bayesian methods which are the techniques for approximating

intractable integrals arising in Bayesian inference and provide an an-

alytical approximation to the posterior probability of the unobserved

variables. In detail, VAE learns stochastic mappings between an ob-

served x space with complicated distribution px and a latent-space z

with simple distribution, such as Gaussian distribution. Furthermore,

it consists of two coupled but independent models: the encoder and

the decoder. The encoder qθ(z|x) is an inference model, approximates

the intractable posterior pθ(z|x), and the decoder is a generative model

pθ(x|z). With the prior distribution pθ(z), the final joint distribution

is pθ(x, z) = pθ(z)pθ(x|z). Variational Autoencoder is easy to train

but tends to produce blurry results and optimizes a lower bound on

the log-likelihood of the data.

2) Autoregressive generative model [186] is a type of generative model

that learns the joint probability distribution of a sequence of variables

by decomposing it into a product of conditional probabilities. Given

n variables x1,...xn, the joint probability distribution can be expressed

as:

p(x1, ..., xn) =
∏n

i=1
p(xi|x1, x2, ..., xi−1). (1.1)

The training of autoregressive models is to maximize the likelihood

of the training data directly, and their network is used to model the

conditional probability by minimizing the negative log-likelihood. Au-

toregressive generative models are flexible, scalable, and interpretable,
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making them useful for various applications. They can generate high-

quality samples that are often indistinguishable from real data. Com-

pared with other generative models, autoregressive models generate

samples sequentially, which can be slow and computationally expen-

sive for long sequences.

3) Normalizing Flows [37]: The basic building block of a normalizing

flow is an invertible transformation that maps a simple probability

distribution (e.g., standard normal) z ∼ pθ(z) to a more complex

distribution x ∼ pθ(x). The mapping function f from random variable

z to x: x = f(z) and f must be invertible. With the chain rule, we

have:

p(x) = p(z) | detdf
−1

dx
| . (1.2)

This chain is known as a normalizing flow. Given f1, ...., fn be a set

of N bijective function, and let define f = f1 ◦ f2, ..., ◦fn, we have

xi = fi◦, ..., f2 ◦ f1(x0). Then, it can be shown that f is also bijective

and invertible. Though a chain of mapping fi, p(xi) can be represented

as:

ln pi(xi) = ln p0(x0)−
n∑

i=1

ln | det dfi
dxi−1

| . (1.3)

The main advantage of normalizing flows is interpretability because

the probability density of generated samples can be directly calcu-

lated, providing an interpretable way to understand the behavior of

the generative model.

4) Diffusion Models [63]: Recently, Diffusion models are the most popu-

lar generative model, which learns to gradually convert samples from

6
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a simple distribution into a data distribution. Three predominant for-

mulations for diffusion model research are denoising diffusion prob-

abilistic models (DDPM) [63], score-based generative models, and

stochastic differential equations, respectively. We take DDPM as an

example to introduce details about diffusion models. DDPM consist

of two Markov chains.

The forward chain q slowly removes structure from data x0 ∼ q(x)

by adding noise z to convert the data distribution into Gaussian dis-

tribution using timesteps t. We can generate a sequence of variables

x1, x2, ..., xn. And the transition q(xt|xt−1) is defined as Gaussian per-

turbation in general:

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI), (1.4)

where βt ∈ (0, 1) is a hyperparameter defined before model training.

The reverse chain p learns to convert the simple distribution into data

distribution. The reverse transition p(xt−1|xt) is learned and param-

eterized by deep neural networks. Similar to forward transition, the

reverse transition takes the form of:

p(xt−1|xt) = N (xt−1|µθ(xt, t), νθ(xt, t)), (1.5)

where µθ(xt, t), νθ(xt, t) are parameterized by deep neural networks.

Following [63], the training diffusion model simplifies to a weighted

denoising score matching objective for parameters θ:

L(θ, x0) = Et∼U(0,T ),ϵ∼N (0,I) [λt ∥ϵθ(xt, t)− ϵ∥] , (1.6)

where λt is a position weighting function. xt is computed from x0 and

ϵ ∼ N (0, I).

7
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5) Generative Adversarial Networks (GANs) [47] is a powerful implicit

generative model to produce a model distribution that mimics a given

target distribution. GANs generally consist of two networks, genera-

tor G and discriminator D. The generator G learns the mapping from

a low-dimension (noise) distribution pz to a generated high-dimension

distribution pg and meanwhile makes pg as close to the real sample

distribution pr. The discriminator D is trained to distinguish the real

samples from the samples produced by G. Both G and D are parame-

terized via neural networks, and their training process can be consid-

ered a min-max game. By iteratively training G and D using gradient

descent techniques, it is expected that GANs can find a Nash equilib-

rium of this game [154], whereby the generated distribution pg is equal

to pr, such that the discriminator D fails to differentiate between real

and generated samples, i.e. D(x) = 0.5, ∀x. In recent years, many

GANs variants have been proposed, such as StyleGAN [80], and these

models have achieved high-resolution image modeling and high-quality

image generation. Compared to Variational AutoEncoders and Autore-

gressive Models, Generative Adversarial Networks (GANs) are capable

of generating higher quality samples. Additionally, GANs have the ad-

vantage of faster inference speed than Diffusion Models. Normalizing

Flows, on the other hand, can model complex distributions and be used

for density estimation and generation tasks. However, they are com-

putationally expensive and may not be suitable for large-scale datasets.

We have reviewed multiple types of generative models. In this thesis,

all architectures and networks are based on generative adversarial net-

works. All training objective functions in our models include adversarial

loss, which is usually used to improve the clarity and quality of generated

images.

8
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1.2 Contributions and Outlines

In this thesis, we adopt a powerful generative model to achieve image

generation and editing tasks, focusing on human image generation and

editing, including local eye and face generation and editing, as well as global

human body generation and editing. Previous global or local human image

editing methods can be categorized into the following types: 1) Image-to-

image translation based on Autoencoder; 2) Disentangling the latent space

of generative models; and 3) NeRF-based 3D-Aware methods.

The first type [149, 118, 27, 91] is based on the previous image-to-image

translation method, which map input human images or parts into target

images using variants of the Autoencoder. To achieve human image editing,

some methods [118, 121] utilize additional information as guidance, such as

segmentation maps or key points. These methods generally regard input

images as the source domain and output images as the target domain. The

essence of this type of method is to use neural networks to learn domain

mapping.

The second type is based on pre-trained generative models, such as vari-

ants of StyleGAN [81]. Previous methods [5, 162, 189] learn to disentangle

the latent space of GANs using unsupervised or supervised methods. After

learning, they can control the latent code to achieve human image editing

tasks. The main advantage of this type is that it is free from training the

generative model from scratch, thus significantly improving training effi-

ciency. Furthermore, the pre-trained model can generate highly realistic

images, ensuring the quality of generated images. This type focuses on

disentangling the latent space to achieve image editing.

The third type [73, 209, 64] aims to achieve 3D-Aware human image

generation and editing tasks. Most models are based on generative neural

radiance fields, a NeRF variant. Previous 2D methods lack precise control

9
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over 3D factors such as camera pose. To solve this problem, some methods

combine 3D scene representation (e.g., NeRF) with a generative model.

However, they focus on the multiple-view generation and lack precise se-

mantic control for the human body or face.

In this thesis, we propose three methods to deal with the problems

for generation and editing tasks in eye gaze, face, and human body im-

ages. Our three methods, although dealing with different parts of the

human body, share commonalities in that they all have a latent space de-

coupling component and aim to achieve human image editing tasks more

Efficiently or Unsupervised . Our first method, GazeGAN, aims to de-

couple the latent gaze space without using an accurate gaze label and then

control it to achieve unsupervised gaze correction and redirection tasks.

Our second method, TT-GNeRF, explores a 3D-Aware face editing task

and uses supervised information to decouple the latent space but avoids

training from scratch by utilizing a trained generative model, significantly

improving training efficiency. The third method, 3D-SGAN, is a 3D-aware

human body generation and editing method that also adds multiple latent

codes to control different semantics, and the disentangling of these latent

codes also utilizes unsupervised ideas.

The contribution of our three models can be summarized into:

1) GazeGAN is the first paper to achieve unsupervised gaze correction

and animation. The model’s novelty lies in treating this task as a

self-supervised image inpainting problem, which results in highly re-

alistic gaze correction outcomes. Furthermore, we have proposed the

CelebAGaze and CelebAHQGaze datasets, which have been publicly

available for research. GazeGAN will be introduced in Chapter 2.

2) TT-GNeRF is the first paper to explore the disentanglement of la-

tent space of 3D-Aware GAN to achieve view-consistency face editing

10
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task. TTGNeRF needs the attribute labels as supervision. Compared

with 2D methods, TT-GNeRF can achieve better view-consistency

facial attribute editing. Moreover, compared with some disentangled

methods for the 3D-aware model, TT-GNeRF can achieve a better

trade-off between attribute editing and non-target region preservation.

The main contribution lies in the proposed two-stage learning, which

combines training and optimization methods. The first stage aims to

achieve attribute editing as the initial result, and the second stage

aims to preserve the non-target region of the editing results from the

first stage by optimizing the latent code of GAN space. TT-GNeRF

will be introduced in Chapter 3.

3) 3D-SGAN is the first paper to apply generative neural radiance fields

for 3D-aware human image generation. The main contribution lies

in the proposed two-stage architecture and training. We divide the

3D-aware generative model into two stages and use intermediate seg-

mentation masks to bridge these two stages. In the first stage, we train

a generative neural radiance field using segmentation maps of human

images and learn a 3D-aware semantic generative model for the geom-

etry representation. In the second stage, we pre-train a Variational

Autoencoder to learn the mapping from segmentation maps into hu-

man images. With two trained models, we construct a 3D-aware con-

trollable generative model for human images guided by segmentation

maps. 3D-SGAN will be introduced in Chapter 4.

11
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Chapter 2

Exploring Unsupervised Gaze

Correction and Animation

2.1 Introduction

The goal of the gaze correction task is to manipulate the gaze direction

of a face image with respect to a specific target direction. The main ap-

plication of this task is altering the eye appearance so that the person’s

gaze is directed into the camera. For example, shooting a good portrait is

challenging as the subjects may be too nervous to stare at the camera. An-

other scenario is videoconferencing, where eye contact is very important.

The gaze can express attributes such as attentiveness and confidence. Un-

fortunately, eye contact is frequently lost during a video conference, as the

participants look at the monitors and not directly into the camera. More-

over, some works use gaze redirection to improve few-shot gaze estimation

task [206, 207].

Early works in gaze correction relied on special hardware, such as stereo

cameras [32, 202], Kinect sensors [93] or transparent mirrors [90, 133].

Recently, a few methods based on machine learning showed a good quality

synthetic for gaze correction. For instance, Kononenko and Lempitsky [92]

propose to solve the problem of monocular gaze correction using decision

13
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Figure 2.1: Left: 256×256 images and the corresponding gaze-corrected results generated

by our method using samples of the CelebGaze dataset. Right: 512× 512 high-resolution

images and the gaze-corrected results using samples of our dataset CelebHQGaze. The

first and second rows show the original images and eye-gaze corrected results, respectively.

forests. DeepWarp [43] uses a deep network to directly predict an image-

warping flow field with a coarse-to-fine learning process. However, this

method fails in generating photo-realistic images when the gaze redirection

involves large angles. Moreover, it produces unnatural eye shapes because

of the L1 loss, which is used to learn the flow field without any geometric-

based regularization. To solve this problem, PRGAN [54] proposes to

exploit adversarial learning with a cycle-consistent loss to generate more

plausible gaze redirection results. However, these methods [92, 43, 54] fail

in obtaining high-quality gaze redirection results in the wild when there

are large variations in the head pose and the gaze angles. Recently, Marcel

et al. [17] proposed a content-consistent model for realistic eye generation.

However, their approach is based on semantic segmentation masks, which

implies a great annotation effort. Another category of works is based on

3D models without training data, such as GazeDirector [194]. The main

idea of GazeDirector is to model the eye region in 3D instead of predicting

a flow field directly from an input image. However, modeling in 3D has
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strong assumptions that do not hold in non-laboratory scenarios.

The unsupervised method can avoid expensive annotations. Moreover,

it has essential significance for image representation and semantic disentan-

glement. Thus, we proposed a novel gaze-correction method, GazeGAN.

We collected the CelebGaze dataset, which consists of two image domains:

X, with eyes staring at the camera, and Y , with eyes looking somewhere

else (see Fig. 2.1, left). Note that the CelebGaze images do not annotate

the gaze angle or the head pose. Moreover, we propose an unsupervised

learning method for gaze correction and animation, which consists of two

main modules: the Gaze Correction Module (GCM) and the Gaze Anima-

tion Module (GAM). GCM is an inpainting model, trained on a domain X,

which learns how to fill in the missing eye regions with a new content rep-

resenting the gaze-corrected eyes. GAM is another inpainting model used

for gaze animation, and it is trained on a domain Y . To generalize the

gaze redirection to various angle directions (i.e., in “animations”), we pro-

pose a training method (Synthesis-As-Training) that uses synthetic data

to train GAM and encourages the encoded features of the eye region to be

correlated with the gaze angle. Then, gaze animation can be achieved by

interpolating these features in the latent space.

We extend GazeGAN to work also with higher resolution portrait im-

ages. Specifically, we first create a new dataset, CelebHQGaze, containing

512×512 high-resolution portrait images, as shown in Fig. 2.1 (right). Sec-

ond, we propose a novel GCM and GAM integrated with a coarse-to-fine

module (CFM). In more detail, CFM first allows the inpainting model to

be trained using low-resolution images for coarse-grained image generation.

Then it uses a global nonparametric model, Laplacian Reconstruction, and

a local parametric model, Local-Refinement Autoencoder, to compensate

for the high-frequency information loss and to remove possible artifacts for

the eye region. Utilizing this new architecture, we can avoid training each
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   GCM
(Training)

   GCM
(Inference)

GAM

hx ˆhx

hy xhy

ˆ hy ˆ xhy

xhy

Animation
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Figure 2.2: Overview of the proposed architecture. We have two main modules: Gaze

Correction Module for performing gaze correction (GCM) and Gaze Animation Module

for performing gaze animation (GAM). Moreover, we propose to use the gaze-corrected

samples from GCM to train GAM (Synthesis-as-Training). The trained GAM can achieve

gaze animation by interpolating the latent feature. The white boxes are the eye mask to

remove the eye region. The gray boxes represent the cropping of eye region

module using high-resolution images. CFM speeds up both the training

and the inference process while obtaining high-quality results, comparable

with directly training with high-resolution images.

In our architecture, an autoencoder is pretrained using self-supervised

mirror learning (PAM), where the bottleneck features are used as an extra

input to the dual inpainting model to preserve the identity of the corrected

results. Moreover, global and local discriminators are used to improve

the visual quality of the generated samples. Finally, our qualitative and

quantitative evaluations show that our method generates higher-quality

results with respect to the state-of-the-arts in both the gaze correction and

the gaze animation tasks.
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Figure 2.3: Overview of the architecture for Gaze Correction Module (GCM) integrated

with Coarse-to-Fine Module (CFM) which consists of one laplacian reconstruction and one

local-refinement module. CFM first allows the inpainting network Gx trained using low-

resolution images to attain coarse-grained inpainted results, then attains high-resolution

results by the global nonparametric Laplacian reconstruction, and finally exploits a para-

metric local-refinement module (LRM) to compensate for high-frequency information and

remove artifacts for the eye region. We use 2× scales for downsampling and upsampling.

We summarize below our main contributions:

1) We introduce an unsupervised inpainting architecture for high-

resolution gaze correction and animation.

2) We propose a novel CFM module that can alleviate both the memory

and the computational costs in the training and the inference stage

while achieving high-quality results comparable with training with

high-resolution facial images.

3) We propose a gaze animation module and a Synthesis-As-Training

method to generate gaze-correction results with variable angles.

4) We make publicly available the CelebGaze and CelebHQGaze dataset

for the research community interested in gaze correction and anima-

tion: https://github.com/zhangqianhui/GazeAnimationV2.
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2.2 Background

Generative Adversarial Networks. As mentioned above, Generative

Adversarial Networks (GANs) [47] are powerful generative models which

learn a distribution that mimics a given target distribution. They have

been applied to many fields, such as low-level image processing tasks (e.g.,

image inpainting [143, 68], image super-resolution [98, 100, 191]), semantic

and style transfer (e.g., image translation [71, 183, 226, 106, 182, 139,

120], image attribute manipulation [211, 57, 56, 105, 22, 29], person image

synthesis [180, 181, 167, 210, 212], image manipulation [141]).

Image Inpainting. Image Inpainting is an important task in computer

vision and computer graphics, and it aims to fill in the missed/masked pix-

els of an image utilizing plausible synthesized content. Most of the previous

methods can be split into two classes. The first is based on diffusion or

patch-based approaches, which rely on handcrafted low-level features. For

example, PatchMatch [12] is a fast nearest-neighbor field algorithm, which

can perform real-time image inpainting. Generally speaking, this class

of methods is based on low-level features. They are usually ineffective

in filling in the missing part of an image when the underlying semantic

structure is not trivial and cannot generate novel objects that cannot be

found in other non-masked parts of the source image. The second class

of methods is based on learning approaches. Recently, CNN-based and

GAN-based methods have shown promising performance on image inpaint-

ing [142, 69, 104, 208]. For instance, inpainting can be used for facial at-

tributes manipulation such as hair, mouth, and eyes [75, 38, 134]. We also

adopt an inpainting approach, differently from previous work, our method

does not require the data to be labeled with additional information, such

as semantic labels, sketches, or reference images.

Gaze Correction. Previous work for gaze correction can be split into

three main classes: 1) hardware-driven, 2) rendering and synthesis, 3)
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learning-based.

The hardware support was indispensable in early research. Kollarits et

al. [90] use half-silvered mirrors to place the camera on the optical path

of the display. Yang et al. [202] address the eye contact problem with a

view synthesis, and they use a pair of calibrated stereo cameras jointly

with a face model to track the head pose in 3D. Generally speaking, these

hardware-based methods are expensive.

The second class of approaches typically renders the eye region based on

a 3D fitting model, which replaces the original eyes with synthetic eyeballs.

Banf et al. [11] use an example-based approach for deforming the eyelids

and sliding the iris across the model surface with a texture-coordinate

interpolation. To fix the limitations caused by the use of a mesh, where

the face and eyes are mixed, GazeDirector [194] separately deals with the

face and eyeballs, synthesizing more high-quality images, especially for

large redirection angles. These methods usually struggle in realistically

rendering the corrected eyes. Additionally, modeling methods have strong

assumptions that usually do not hold in practice.

Concerning the third class of methods, the core idea for most of the

learning-based approaches is to use a large paired training dataset to train

a statistical model [92, 91, 206, 138, 21]. Some methods [92, 91] learn to

generate the flow field, which is then used to relocate the eye pixels in

the original image. For instance, Ganin et al. [43] use a CNN to learn

the flow field, which warps the input image and redirects the gaze to the

target angle. However, [43] fails to generate photo-realistic and natural

shapes because it uses only pixel-wise differences between the input and

the ground truth as the training loss. To address this problem, He et

al. [54] use adversarial learning, jointly with a cycle-consistent loss, which

can improve the visual quality and the redirection precision. However,

these methods can hardly generate plausible results in the wild, i.e., in
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Figure 2.4: An overview of the proposed Gaze Animation Module (GAM) integrated

with Coarse-to-Fine Module (CFM). In the left, Gy uses the sample y ∈ Y for training.

Compared to Gx, the decoder of Gy has an extra input r which is provided by the encoder

Er. In the right, we use GCM to generate the gaze-corrected image yhx , which is then

used for training Gy (Synthesis-as-Training). With the paired samples yh and yhx for

training Gy, the feature from Er would be correlated with gaze angle, and gaze animation

can be achieved by interpolating the feature.

a scenario with large variations in the head pose, the gaze angle, or the

illumination conditions. In contrast, we propose to use dual inpainting

modules (GCM and GAM) to correct the gaze angle and achieve high-

resolution and high-quality gaze redirection in the wild.

2.3 GazeGAN

The overview of our method is shown in Fig. 2.2 and our model consists of

two main modules: Gaze Correction Module and Gaze Animation Module.

Specifically, Fig. 2.3 illustrates Gaze Correction Module (GCM), integrat-

ing with Coarse-to-Fine Module (CFM), which is trained using the sample

x from domain X. Fig. 2.4 illustrates Gaze Animation module (GAM),

integrating with CFM, which are trained using the sample y from do-

main Y , and GAM exploits the corrected samples for training to make the

eye feature correlate with the gaze angle (Synthesis-as-Training method).

Additionally, Fig. 2.5 shows the pretrained autoencoder (PAM), which ex-
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tracts the angle-invariant content feature as the additional input of GCM

and GAM. We here clarify the adopted notations.

• x ∈ Rm×n×3 is an image instance, where m and n are the image height

and width, and 3 is the number of RGB channels.

• The training set is split into two domains: X, containing images with

a gaze staring at the camera, and Y , containing images with a gaze staring

somewhere else. Xh and Y h correspond to the higher-resolution sets of X

and Y , respectively.

• M ∈ Rm×n×3 denotes a binary mask function of the eye region and

M
′
defines the operation of extracting a rectangular sub-image (the eye

region).

• Px and Py denote the data distributions in X and Y , respectively. Pm

indicates the distribution of the masked data M(x), where the eye region

is removed from x. If x ∈ X and y ∈ Y , both M(x) and M(y) have the

same distribution, because the only difference between x and y is in the

eye region. Thus, M(x) ∼ Pm and M(y) ∼ Pm.

• r ∈ R128 and c ∈ R256 denote the angle, the content features (being the

latter angle invariant), respectively and different encoders extract them.

• F denotes the image horizontal flipping operation (mirroring).

We first introduce the details of our coarse-to-fine module (CFM).

2.3.1 Coarse-to-Fine Module

In order to alleviate the memory costs and reduce the number of over-

all training parameters while simultaneously being able to generate high-

resolution facial images, we propose a CFM for GCM and GAM. This

module consists of a global nonparametric Laplacian Reconstruction for

the inpainting process and a local parametric Local Refinement Module

(LRM) which will be introduced with details, taking GCM as an example.
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Global Nonparametric Laplacian Reconstruction

As shown in Fig. 2.3, the high-resolution image xh is downsampled by a fac-

tor of 2, obtaining x, where the latter is as input to the inpainting networks

of GCM. The generated image is x̃. Let u(.) be an upsampling operator

which smooths and expands x to the original size (i.e., the resolution of

xh). The single-level Laplacian pyramid p can be obtained by:

p = xh − u(x). (2.1)

Then, the reconstruction process for the high-resolution image x̃h is:

x̃h = u(x̃) +M(p), (2.2)

where we use M to remove the eye region from p which is replaced by the

zero. Then we introduce the local refinement process to improve the visual

quality and remove the artifacts of the eye regions.

Local Parametric LRM

We use M
′
(x̃h) to extract the local eye region x̃hl . Then, we utilize one

autoencoder Gh together with residual image learning, to refine x̃hl and

get x̂hl . Finally, the high-resolution complete image x̂h can be obtained by

replacing the local eye region x̃hl with x̂hl .

2.3.2 Gaze Correction Module

As shown in Fig. 2.3, we first downsample xh to attain the low-resolution

x, and then take x as the input of inpainting network Gx whose goal is to

fill in the masked eye region of xm = M(x) by generating the missing eyes.

This can be formulated as:

cx = Ec(M
′
(x)), x̃ = Gx(M(x), cx), (2.3)

22



CHAPTER 2. EXPLORING...GAZE... 2.3. GAZEGAN

where cx are the content (angle-invariant) features encoded using only the

eye regions as input (M
′
(x)) of the content encoder Ec. Ec is the encoder

of Gpre which will be introduced in Sec. 2.3.4.

In principle, Gx can learn the mapping from M(x) ∼ Pm to x ∼ Px by

training. Given one sample y ∼ Py, then, we remove the eye region to get

M(y) ∼ Pm, because x and y have different distributions only in the eye

region. Thus Gx can be used to map M(y) into the Gx(M(y)) ∼ Px which

is the intuitive basis of our correction module. This can be formulated as:

cy = Ec(M
′
(y)), yx = Gx(M(y), cy), (2.4)

where cy are the content (angle-invariant) features encoded using only the

eye regions as input M
′
(y) of the content encoder Ec.

We train the GCM using high-resolution face images based on the CFM

module. At the inference time, for the corrected result yx, we get a high-

resolution result yhx by compensating for the high-frequency details using

the laplacian reconstruction and LRM. Note that the corrected result yhx

is also used for training GAM. More details can be found below.

2.3.3 Gaze Animation Module

Besides correcting the gaze to stare at the camera, a more general task is

gaze animation, where the gaze direction should be modified. As shown in

Fig. 2.4, another generator Gy is used to in-paint the face image without

the eye region by performing the reconstruction learning. Moreover, we

extend a new eye encoder Er for the eye region to extract the angle-specific

feature, guiding the gaze redirection generation of the Gy. To achieve

the disentanglement of the features, we propose a Synthesis-As-Training

method, in which we use the gaze-corrected generated images as training

data for training GAM. In detail, our GAM is split into two stages. In

the first stage (Left of Fig. 2.4), we downsample yh to get y, and train the
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Figure 2.5: The overview of pretrained autoencoder module with generator Gpre (PAM).

PAM is trained by a self-supervised learning strategy. In detail, we crop y to both left

eye yll and right eye yrl , then, flip yll by F to attain the pairs F (yll) and yrl which have

similar identity, but different gaze angle. Then, the pairs would be used to train Gpre by

reconstructing yrl .

generator Gy to fill-in the missing eye regions of an image (ym = M(y))

and produce ỹ. Gy encodes the eye region with the latent code ry ∈ R128

by means of the encoder Er. Moreover, ry is used as an extra input for the

decoder in Gy. In this way, we can condition Gy using the gaze-dependent

feature ry.

ry = Er(M
′
(y)), cy = Ec(M

′
(y))

ỹ = Gy(M(y), ry, cy).
(2.5)

In the second stage (Right of Fig. 2.4), we use GCM to correct the gaze

of yh, and it produces the synthetic sample yhx. Then, yhx is downsampled

to yx which is used for training Gy, just like y does. With the paired

samples (y, yx), which have the same masked region M(y) but different

eye regions, we train GAM to ensure that the encoded feature from Er has

a high correlation with the gaze angle:

ryx = Er(M
′
(yx)), cyx = Ec(M

′
(yx))

ỹx = Gy(M(yx), ryx, cyx).
(2.6)
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Then, we can attain high-resolution results ŷh and ŷhx by compensating

for the high-frequency details using the laplacian reconstruction and LRM.

2.3.4 Pretraining using Self-Supervised Learning

Preserving the consistency of the person’s identity (e.g., the iris color, the

eye shape) is difficult with the inpainting-based method described. To

mitigate this problem, we propose to use the third generator Gpre, which

is trained (PAM) to learn a latent representation of the content features

(c), conditioning both Gx and Gy to preserve the identity information of

the generated results consistent with the input.

Gpre is pre-trained using a self-supervised learning framework. Although

our training dataset is collected from the Internet, most images have a

roughly frontal pose. As shown in Fig. 2.5, we can easily collect paired eye-

region images: The right eye yrl is paired with the mirrored version F (yll) of

the left eye yll . Note that y
r
l and F (yll) have different gaze angles, but they

have a similar eye shape and iris color. Because they belong to the same

person. The same holds for yll and F (yrl ). Note that the only information

we need to collect these pairs is the eye region position (i.e., M(x)). At the

same time, the mirroring operation (F (·)) is a data augmentation technique

commonly used in other self-supervised learning approaches. We use these

paired samples to pretrain Gpre using the following objective function:

Lpre = ∥yll −Gpre(y
l
l)∥1 + ∥yll −Gpre(F (yrl )∥1

+ ∥yrl −Gpre(y
r
l )∥1 + ∥yrl −Gpre(F (yll))∥1.

(2.7)

After training, the bottleneck features c of Gpre are almost angle-

invariant, representing only the content information (e.g., iris color, eye

shape). Thus, we use the encoder network Ec of Gpre to provide extra

input to Gx and Gy by means of its content features (see Sec. 2.3.2 and

2.3.3). Conditioning the generation process of Gx and Gy using these con-
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tent features, the inpainted results are more consistent with respect to the

input identity information.

2.3.5 Loss Functions

Reconstruction Losses. We use a standard pixel-wise loss (L1) for train-

ing GCM. It is defined as:

Lx
re = ∥x− x̃∥1 + ∥xhl − x̂hl ∥1, (2.8)

where xhl and x̂hl are the eye regions of xh and x̂h, respectively.

And, the reconstruction loss for GAM is defined as:

Ly
re = ∥y − ỹ∥1 + ∥yhl − ŷhl ∥1. (2.9)

The reconstruction loss of GAM for the synthesis-as-training method is

defined as:

Lyx

re = ∥yx − ỹx∥1 + ∥yhx

l − ŷhx

l ∥1. (2.10)

We use Ly
re + Lyx

re as the objective function to train Gy.

Global and Local Discriminators for Adversarial Learning.

Since the L1 loss tends to produce blurry results [71], we use three dif-

ferent discriminators Dx, Dy and Dh, adversarially trained together with

Gx, Gy and Gh, respectively. Moreover, inspired by [69], our discriminators

Dx and Dy are composed of a global part, taking the whole face as input,

and a local part with taking only the local eye region as input. The global

part is used to coherent the entire image as a whole, while the local part

makes the local region more realistic and sharper. We concatenate the fi-

nal fully-connected feature maps of both parts, which are fed to a sigmoid

function to predict the probability of the image being real.

Different from Dx and Dy, Dh consists of only a local discriminator,

which uses the eye regions x̂hl and ŷhl as fake inputs. In practice, we use

crops slightly larger than the eye region as the input of the discriminator
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to alleviate the boundary mismatch problem. The objective function of Dx

and Gx is defined as:

min
Gx

max
Dx

Lx
adv = Ex[logDx(x,M

′
(x))]

+ Ex̃[log(1−Dx(x̃,M
′
(x̃)))] (2.11)

+ Eỹx[log(1−Dx(ỹ
x,M

′
(ỹx)))].

The objective function of Dy and Gy is defined as:

min
Gy

max
Dy

Ly
adv = Ey[logDy(y,M

′
(y))]

+ Eỹ[log(1−Dy(ỹ,M
′
(ỹ)))]. (2.12)

Finally, the objective function of Dh and Gh is:

min
Gh

max
Dh

Lh
adv = Exh[logDh(M

′
(xh))]

+ Ex̂h
l
[log(1−Dh(x̂

h
l ))]

+ Eyh[logDh(M
′
(yh))]

+ Eŷhl
[log(1−Dh(ŷ

h
l ))]. (2.13)

2.3.6 Overall Objective Function

Inspired by [67], we use a latent-space reconstruction loss (lfp) for the con-

tent features in the latent space to preserve further the identity information

between the input image and the gaze-corrected result:

Lfp = ∥cy − Ec(M
′
(ỹ))∥1 + ∥cyx − Ec(M

′
(ỹx))∥1. (2.14)

We use −ℓxadv, −ℓyadv to train Dx and Dy, respectively. Concerning Gx,

its overall loss is defined as:

Lx
all = Lx

adv + Lh
adv + λ1Lx

re. (2.15)
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For Gy and Er, the overall loss is defined as:

Ly
all = Ly

adv + Lh
adv + λ2Lx

adv

+ λ3Ly
re + λ4Lyx

re + λ5Lfp. (2.16)

λ1, λ2, λ3, λ4 and λ5 are hyper-parameters controlling the contribution

of each loss term.

2.3.7 Gaze Correction and Animation at Inference Time

At inference time, given an image sample yh, we first downsample it to

attain y, then obtain the gaze-corrected result yx using Gx, and finally

output high-resolution results yhx by using CFM, which can compensate

for high-frequency texture details. In the case of gaze animation, as shown

in Fig. 2.4, we modify the angle representation r by interpolating between

ry and ryx, where both features correspond to the encoded angle features

of the eye region yl and the eye region yxl , respectively. The interpolated

angle representation can be fed to Gy to obtain an intermediate result. We

can produce high-resolution gaze animation results using CFM.

2.4 Experiments

This section introduces the details of our datasets, our network training,

and baseline models. Then, we compare the proposed method with the

state-of-the-art methods of gaze correction in the wild using both qualita-

tive and quantitative evaluations. Next, we demonstrate the effectiveness of

the proposed method on gaze animation with various outputs by interpolat-

ing and extrapolating in the latent space. Finally, we present detailed abla-

tion studies to validate the effect of each component of our model, i.e., the

Synthesis-As-Training method, the Pretrained Autoencoder (PAM) with

self-supervised mirror learning, the Latent Reconstruction Loss, and the
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Figure 2.6: Qualitative comparison for the gaze correction task on the CelebGaze dataset.

The first row shows the input images, and the following rows show the gaze correction

results of StarGAN [27], CycleGAN [226], PRGAN [54], GazeGAN and GazeGANV2.

Magnified left eyes are shown in the last column. Zoom in for the best of view.

Coarse-to-Fine Module (CFM). For brevity, we refer to the low-resolution

version as GazeGAN and the extended high-resolution version as Gaze-

GANV2. Note that we do not use any post-processing step for GazeGAN

and GazeGANV2.

2.4.1 Datasets

Most of the existing benchmarks [40, 171, 218, 216] do not contain enough

image variability (e.g., a wide gaze-direction range, various head poses,

and different illumination conditions) for our gaze correction task in the

wild. Recently, [83] presented a large-scale gaze tracking dataset, called

Gaze360, for robust 3D gaze estimation in unconstrained images. Although
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Figure 2.7: Qualitative comparison for the gaze correction task on CelebHQGaze dataset.

The first row shows the input images, and the following rows show the gaze correction

results of StarGAN [27], CycleGAN [226], PRGAN [54], GazeGAN and GazeGANV2.

Magnified left eyes are shown in the last column. Zoom in for the best of view.

this dataset has been labeled with a 3D gaze direction with a wide range

of angles and head poses, it still lacks high-resolution images for face and

eye regions. Moreover, this dataset does not provide annotations of the eye

gaze staring at the camera, which is required in our domain set X. More

recently, [217] proposed a large scale (over 1 million samples) of high-

resolution images for gaze estimation. However, these images are collected

in laboratory conditions and are not suitable for our gaze correction task

in the wild. To remedy this problem, we propose collecting new datasets
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consisting of lots of high-resolution portraits without labelling head poses

and gaze information. In detail, five volunteers are asked to divide the row

data (face) into two domains according to whether the face eyes are staring

at the camera. The gaze and head estimation model can automate ‘Staring

at the camera’ annotation. However, the existing methods [83, 18] cannot

achieve accurate gaze estimation for CelebHQGaze, as an overlarge domain

shift exists between training data and test data. More details about our

datasets can be found below.

CelebGaze. CelebGaze consists of 25,283 celebrity images, most of

which have been collected from CelebA [111] and a minority from the

Internet. Specifically, there are 21,832 face images with the eyes staring at

the camera and 3,451 face images with the eyes looking somewhere else.

We crop all the images to 256 × 256 and compute the eye mask region

using Dlib [85]. Specifically, we use Dlib to extract 68 facial landmarks,

and we compute the mean of 6 points near the eye region, which is the

center point of the mask. The size of the mask is fixed to 30 × 50. We

randomly select 300 samples from domain Y and 100 samples from domain

X as their corresponding test sets, and we use the remaining images for

the training set. Note that this dataset is unpaired and not labeled with

the specific eye angle or the head pose information. We show some samples

of the CelebGaze dataset in Fig. 2.1.

CelebHQGaze. CelebHQGaze consists of 29,255 high-resolution celeb-

rity images that are collected from CelebA-HQ [99]. It consists of 21,005

face images with the eyes staring at the camera and 8,250 face images with

eyes looking somewhere else. Similarly to CelebGaze, we extract facial

landmarks and generate the mask. All images are cropped to 512 × 512,

and the mask size is fixed to 46×80. Similar to the CelebGaze dataset, also

for the CelebHQGaze, we randomly select 300 samples from domain Y and

100 samples from domain X for the test set, and we use all the remaining
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Figure 2.8: More gaze correction results to show that our model can handle diverse head

poses.

images for the training set. We show two samples of the CelebHQGaze

dataset in Fig. 2.1.

2.4.2 Training Details

We first train the PAM module. Then, the discriminators Dx, Dy and Dh

and the generators Gx and Gy and Gh are jointly optimized. We use the

Adam optimizer [86] with β1 = 0.5 and β2 = 0.999. The batch size is 16 for

CelebGaze and 8 for CelebHQGaze. The initial learning rate is 0.0005 for

PAM, 0.0004 for Gh, and 0.0001 for the three discriminators and the two

generators in the first 20,000 iterations. The learning rate is linearly de-

cayed to 0 over the remaining iterations. The loss coefficients λ1, λ2, λ3, λ4

are all set to 1, while λ5 is 0.1. To stabilize the network training in the

adversarial learning, we use spectral normalization [124] for all the conv-
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Figure 2.9: Gaze animation results using the interpolation of the latent features r on

the CelebGaze dataset. The top two rows show the images generated by GazeGAN and

GazeGANV2, respectively, jointly with the eye regions. The other rows show the gaze

animation results of GazeGANV2. The first and the last columns show the input images

and the gaze-corrected results, respectively. The middle columns show the interpolated

images.

layers of the three discriminators, but not for the generators. Our method

is implemented in Tensorflow and trained with a single NVIDIA Titan X

GPU.

2.4.3 Baseline Models

Gaze Correction. PRGAN [54] achieved state-of-the-art gaze redirec-

tion results on the Columbia gaze dataset [171] based on a single encoder-

decoder network with adversarial learning, similarly to the StarGAN archi-

tecture [27]. The original PRGAN is trained on paired samples with labeled
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Figure 2.10: Gaze animation results using the interpolation of the latent features r on

the CelebHQGaze dataset. The top two rows show the images generated by GazeGAN

and GazeGANV2, respectively, jointly with the eye regions. The other rows show the

gaze animation results of GazeGANV2. The first and the last columns show the input

images and gaze-corrected results, respectively. The middle columns show the interpolated

images.

angles. To train PRGAN on the proposed CelebGaze and CelebHQGaze

datasets, we remove the VGG perceptual loss of PRGAN, and learn the

gaze redirection task between domain X and Y . We train PRGAN only

with the local eye region, the same way as the original paper.

Facial Attribute Manipulation. Gaze correction and animation can

be regarded as a sub-task of facial attribute manipulation. Recently, Star-

GAN [27] achieved very high-quality results in facial attribute manipula-

tion. We train StarGAN on the CelebGaze dataset to learn the translation

mapping between domain X and domain Y .

Moreover, gaze correction can be considered as an image translation
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Figure 2.11: A qualitative comparison between GazeGANV2 (4th row), GazeGANV2

W/O A (3rd row), and GazeGANV2 W/O D (2nd row). The first row shows the input

images, and the bottom of every row shows the zoom-in eye regions.

Input Correction
Extra ExtraIntra

Figure 2.12: Gaze animation examples are obtained by both interpolation and extrapo-

lation of the latent features r. Extra: extrapolation; Intra: interpolation.

task. Thus, we adopt CycleGAN as another baseline for our experiments.

Note that we do not compare GazeGAN with AttGAN [57], STGAN [105],
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Table 2.1: Quantitative results on both the CelebGaze and the CelebHQGaze dataset.

The higher is better for MSSSIM and the user study; the lower is better for LPIPS and

FID. The columns Params and FPS report the corresponding network parameters and

frame per second at test time, respectively. US: user studies.

Method
CelebGaze CelebHQGaze

MSSSIM ↑ LPIPS ↓ FID ↓ US ↑ Params ↓ FPS ↓ MSSSIM ↑ LPIPS ↓ FID ↓ US ↑ Params ↓ FPS ↓

Other - - - 24.20% - - - - - 23.20% - -

StarGAN [27] 0.96 0.073 82.49 3.400% - - 0.94 0.084 185.47 4.400% - -

CycleGAN [226] 0.99 0.026 70.12 15.00% - - 0.98 0.028 53.690 8.670% - -

PRGAN [54] 1.00 0.000 84.61 8.330% - - 1.00 0.000 106.79 22.40% - -

GazeGAN 1.00 0.000 62.12 22.40% 73.26M 30.29 1.00 0.000 60.520 25.50% 183.2M 23.20

GazeGANV2 1.00 0.000 56.37 32.40% 47.20M 38.40 1.00 0.000 63.590 27.30% 84.18M 27.70

GT 1.00 0.000 - 100% - - 1.00 0.000 - 100% - -

RelGAN [196], CAFE-GAN [46], SSCGAN [29] as they have a performance

very close to StarGAN in the facial attribute manipulation task. We use

the public code of StarGAN 1, CycleGAN 2 and PRGAN 3.

2.4.4 Gaze Correction

This section qualitatively and quantitatively compares the proposed

method with state-of-the-arts on both CelebGaze and CelebHQGaze

datasets for the gaze correction task.

Qualitative Results. As shown in the last row of Fig. 2.6 and Fig. 2.7,

GazeGANV2 can correct the eyes to look at the camera while preserving

the identity information such as the eye shape and the iris color, validating

the effectiveness of the proposed method. The 2nd row of the figure shows

the results of StarGAN [27]. We note that StarGAN could not produce

precise gazes staring at the camera, and it suffers from a low-quality gen-

eration with lots of artifacts (Zoom in for the best of view). The results of

CycleGAN are shown in the 3th row. Although the results of CycleGAN are

very realistic and with few artifacts in the eye region, this method does not

1https://github.com/yunjey/StarGAN
2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
3https://github.com/HzDmS/gaze_redirection
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produce a precise correction of the gaze direction (e.g., see the magnified

eye regions of Fig. 2.6 and Fig. 2.7). We explain that both StarGAN and

CycleGAN use the cycle-consistency loss, which requires that the mapping

between X and Y be continuous and invertible. According to the invari-

ance of the Domain Theorem4, the intrinsic dimensions of the two domains

should be the same. However, the intrinsic dimension of Y is much larger

than X, as Y has more variations for the gaze angle than X. Moreover, we

compare GazeGANV2 with PRGAN [54]. PRGAN is trained using only

local eye regions (same as in the original paper), which may help focus

on the translation of the eye region. The results of PRGAN are shown

in the 4th row of Fig. 2.6. Compared with GazeGANV2, PRGAN does

not produce precise and realistic correction results. Additionally, PRGAN

suffers from the boundary mismatch problem between the local eye region

and the global face (see the last column of Fig. 2.7).

Finally, as shown in the last rows of both Fig. 2.6 and Fig. 2.7, com-

paring GazeGANV2 with GazeGAN, we observe that both models can

produce realistic and faithfully results. Additionally, we show more results

of portraits with a diverse head pose. Fig. 2.8 shows that our model can

achieve acceptable gaze-correction results for portraits with different head

poses.

Quantitative Evaluation Protocol. The qualitative evaluation has

validated the effectiveness and the superiority of our proposed GazeGANV2

in the gaze correction task. To further support the previous evaluation

with quantitative results, we use the MSSSIM [192] and the LPIPS [214]

metrics to measure the preservation ability of the irrelevant regions, i.e.,,

the whole image except the eye region (M(yh)). Specifically, we compute

the mean MSSSIM and LPIPS scores between M(yh) and M(ŷh) across all

the test data of Y h. Moreover, the Fréchet Inception Distance (FID) [62]

4https://en.wikipedia.org/wiki/Invariance_of_domain
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has been shown to correlate well with the human judgment and has become

a popular metric for GAN-based methods. We use it to evaluate the quality

of the generated eye region for the gaze correction and the gaze animation

tasks.

In addition to the aforementioned automatic metrics, we conduct a user

study to compare the results of the gaze correction task of different models.

In detail, given an input face image of the CelebGaze or CelebHQGaze test

dataset (extracted from Y ), we show the gaze-corrected results produced by

different models to 30 respondents, who were asked to select the best image

based on the perceptual realism and the precision of the gaze correction.

They also can select “Other”, which means that the results of all the models

are not satisfactory enough. This study is based on 50 questions (i.e., 50

randomly sampled images) for each respondent.

Quantitative Results. The first two columns of the left part (Cele-

bGaze) and the right part (CelebHQGaze) of Table 2.1 show the MSSSIM

and LPIPS scores evaluating the preservation ability of the corrected im-

ages using different methods. GazeGANV2 and PRGAN obtain the best

results, with 1.0 for MSSSIM and 0.0 for LPIPS. The original irrelevant

regions are integrated with the generated eye region in both models using

binary masks. StarGAN and CycleGAN get the worse irrelevant region

preservation scores. The FID scores of the eye regions are reported in the

3rd column. In the CelebGaze dataset, GazeGANV2 and GazeGAN out-

perform all the other methods, reaching comparable scores on the Celeb-

HQGaze dataset. Though CycleGAN has the best FID scores, it fails to

generate precise gaze correction results. The penultimate column of both

parts in Table 2.1 shows the evaluation results of the user study. For the

CelebGaze dataset, the average vote for GazeGANV2 is 32.40%, which is

higher than all the other methods, i.e., 3.40% for StarGAN, 15.00% for Cy-

cleGAN, 8.33% for PRGAN. The same conclusions can be drawn with the
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Table 2.2: A comparison on the gaze animation task between GazeGAN and GazeGANV2

with respect to the generation quality.

Method
CelebGaze CelebHQGaze

GazeGAN GazeGANV2 GazeGAN GazeGANV2

FID ↓ 80.31 53.32 70.56 71.37

CelebHQGaze dataset. Importantly, GazeGANV2 achieves a performance

very close to GazeGAN. However, it has fewer parameters and higher FPS,

as shown in the last two columns of Table 2.1.

Overall, the qualitative and quantitative evaluations demonstrate the

effectiveness and superiority of the proposed approach.

2.4.5 Gaze Animation

The bottom of Fig. 2.9 and 2.10 show gaze animation results using input

images with various gaze directions. The latent-space interpolation results

are smooth and plausible in each row. Each column has a different gaze

direction angle, but the identity information is overall preserved (e.g., the

eye shape, the iris color, etc.).

The top rows of Fig. 2.9 and 2.10 show a gaze animation comparison be-

tween GazeGAN and GazeGANV2. GazeGANV2 can produce more realis-

tic images with fewer artifacts than GazeGAN on the CelebGaze dataset,

while they have comparable performance on the CelebHQGaze dataset.

The quantitative result confirms it in Table 2.2.

Finally, we show gaze animation results obtained by extrapolating the

features r, in addition to using interpolation methods. With “extrapola-

tion,” we mean that we use values of r which lie in the line connecting ry

with ryx, but they are outside these two points. As shown in Fig. 2.12, our

method not only achieves high-quality interpolation results but is also able
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Table 2.3: Comparison between GazeGANV2 and GazeGANV2 W/O A, where the latter

denotes removing the content representation extracted from Ec. The scores are measured

between the input image x and inpainted result x̃ across the test data from X. Note that

evaluation samples are from CelebHQGaze.

Metrics GazeGANV2 GazeGANV2 W/O A

MSSSIM ↑ 0.6080 0.5230

LPIPS ↓ 0.1680 0.2646

Table 2.4: Comparison with GazeGAN W/O C, which denotes removing the latent re-

construction loss Lfp. The scores are measured between the input image y and the

reconstruction result ỹ across all the test data of domain Y . The evaluation is based on

the CelebHQGaze dataset.

Metrics GazeGANV2 GazeGANV2 W/O C

MSSSIM ↑ 0.6290 0.6100

LPIPS ↓ 0.2328 0.2372

to produce plausible gaze animations when the gaze angles are outside the

range between the input and the gaze-corrected output.

2.4.6 Ablation Study

In this section, we conduct extensive ablation studies to investigate the

contribution of each of four critical components of our proposed Gaze-

GANV2, i.e., the Pretrained Autoencoder for content feature extraction,

the Synthesis-As-Training method, the Latent Reconstruction Loss Lfp and

the Coarse-to-Fine Module. We refer to these components as A, B, C, and

D, respectively.

Pretrained Autoencoder (PAM). Sec. 2.3.4 shows how self-

supervised learning is used to pretrain a content encoder. This encoder

produces identity-specific features which condition the generation process

of Gx and Gy. Here we analyze this aspect of our method.

Fig. 2.11 shows that our full-model (GazeGANV2) can better preserve
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Figure 2.13: The visualization for the results of PAM with taking yll , y
r
l , F (yll) and F (yrl )

as inputs, respectively. The arrows point to the generated sample.

identity information with respect to GazeGANV2 W/O A. To quantify

this, we use Gx to reconstruct test image samples x (x ∈ X), and we

measure the difference between the input image and the gaze-corrected

result in local eye regions employing both MSSSIM and LPIPS metrics.

Table 2.3 shows that GazeGANV2 gets better scores than GazeGANV2

W/O A, confirming our design motivation.

A shown in Fig. 2.13, we visualize the outputs of autoencoder with

taking yll , y
r
l , F (yll) and yrl as inputs after training. We can observe that

the model can attain the similar reconstruction results for yll and F (yrl )

as inputs, and can also attain the similar reconstruction results for yrl and

F (yll) as inputs which validates the effectiveness of the objective loss.

Synthesis-As-Training Method. The gaze animation results in

Fig. 2.9 and 2.10 show the effectiveness of our method in disentangling

the angle representation. Fig. 2.16 (top) shows a t-SNE visualization of

points interpolated in the latent space. In more detail, following the proce-

dure explained in Sec. 2.3.7, we uniformly interpolate the line connecting

ry with ryx in the angle latent space using 5 interpolation points (I1, ...I5)

for each sample y. Fig. 2.16 (top) shows that for each specific sample y,

these five interpolation points are different from each other but strongly
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Input Bilinear ESRGAN GazeGANV2

Figure 2.14: Qualitative comparison between GazeGANV2 with Bilinear and super-

resolution model ESRGAN [191]. Note that the input image would be downsampled

2× as input of the inpainting model.

Table 2.5: Comparison between GazeGANV2 and GazeGANV2 W/O D with respect to

the generation quality in gaze animation.

Method
CelebGaze CelebHQGaze

GazeGANV2 W/O D GazeGANV2 W/O D

FID ↓ 53.32 78.32 71.37 74.04

clustered together, which illustrates the disentanglement of the angle latent

space.

Latent Reconstruction Loss Lfp. We use Gy to fill in the eye region

of test images y (y ∈ Y ), and we measure the difference between the in-

put images and the generated results employing MSSSIM and LPIPS. In

Table 2.4, GazeGANV2 obtains better scores than GazeGANV2 W/O C,

which shows that Lfp further improves the ability to preserve identity in-

formation. Moreover, we visualize the content features cy and cỹ extracted

from real samples y and reconstructed samples ỹ across all the Y test data.

As shown in Fig. 2.16 (bottom), we observe that using our full model Gaze-
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Figure 2.15: A qualitative comparison between the gaze-correction results produced by

GazeGANV2 (3rd column) and GazeGANV2 W/O D (2nd column). The 1st column

shows the input image, and the final column is a heatmap of the difference between the

3rd column and 2nd column. This residual image clearly shows semantic and texture

information.

Table 2.6: Quantitative comparison between CFM of GazeGANV2 with Bilinear and

super-resolution model ESRGAN [191].

Metrics Bilinear ESRGAN CFM

MSSSIM ↑ 0.9563 0.9595 0.9827

LPIPS ↓ 0.2393 0.1476 0.1039

FPS ↓ 30.600 4.3000 27.700

Params ↓ 48.88M 80.88M 49.23M

GANV2, cy and cỹ usually lie closer to each other to what happens when

using GazeGANV2 W/O C, and it shows that this loss helps to represent

content information consistently.

Coarse-to-Fine Module (CFM). The previous experiments validate

the effectiveness of CFM. As shown in the 2nd and the 4th row of Fig. 2.11,

the gaze correction results of GazeGANV2 are more realistic than those

produced by GazeGANV2 W/O D. In Table 2.5, the quantitative compar-

ison between GazeGAN and GazeGAN W/O D confirms the effectiveness

of CFM. Then, Fig. 2.15 shows the differences in the gaze correction re-

sults obtained with GazeGAN and GazeGAN W/O D. The heatmap of

the difference between the two generated images shows that CFM can

compensate for the high-frequency information loss of the coarse output.

Finally, we compare our CFM with some upsampling methods, such as
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Figure 2.16: Top: a t-SNE based visualization of the latent space r which represents the

gaze angle (Sec. 2.3.3).We show the corresponding latent spaces of GazeGAN (top-left)

and GazeGANV2 (top-right). We plot 5 interpolated points (I1 − I5) for each image

and we use 50 images. Bottom: t-SNE visualization of the content features cy (orange)

and cỹ (blue) extracted from y and ỹ, respectively. Bottom-Left: GazeGANV2 W/O C;

Bottom-Right: GazeGANV2.

Bilinear and super-resolution method, ESRGAN [191]. By taking all sam-

ples yh from domain Y h, we attain all low-resolution reconstructed results

ỹ. Then, three different methods are used for upsampling them to at-

tain high-resolution results. Fig. 2.14 shows our method achieves better

reconstruction with fewer artifacts, such as eye regions. Quantitative ex-

periments of Table 2.6 show our CFM achieves better MSSSIM and LPIPS

scores and has higher FPS and fewer parameters than ESRGAN.
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2.5 Conclusion

In this paper, we introduce two new gaze dataset in the wild, CelebAGaze

and CelebHQGaze, which is characterized by a large diversity in head poses

and gaze angles. Moreover, we propose a novel unsupervised method, Gaze-

GAN, and extend it into high-resolution version GazeGANV2 for gaze-

direction correction and animation. GazeGAN and GazeGANV2 formu-

late the gaze correction problem as an inpainting task and use a coarse-

to-fine learning strategy to generate high-resolution images. Moreover,

self-supervised learning and Synthesis-As-Training methods are used to

disentangle the content and angle-specific features, which can condition

the generation process. The qualitative and quantitative results demon-

strate the method’s effectiveness and its superiority to the state of the

arts. In the next Chapter 3, we will introduce our method, TT-GNeRF for

high-quality 3D-Aware face editing.

45





Chapter 3

Exploring 3D-Aware Face Attribute

Editing

3.1 Introduction

High-quality image generation and semantic disentanglement are long-

standing goals in the fields of computer vision and computer graphics.

In the past few years, Generative Adversarial Networks (GANs) [47] and

their variants have garnered significant attention for their ability to produce

high-quality image generation and editing. These methods have greatly im-

proved visual fidelity, rendering speed, and interactive controls compared

to traditional computer graphics pipelines.

Numerous prior works [27, 6, 184, 165] have focused on realistic face

editing. These approaches either rely on image-to-image translation mod-

els [27, 105] or leverage the disentanglement abilities [6, 184, 165] of Style-

GAN [81, 82]. These methods can be broadly classified into supervised

and unsupervised categories. Unsupervised methods typically search for

interpretable directions using PCA [53] or introduce soft orthogonality con-

straints [55, 189] in the latent space. However, these approaches provide

only coarse controls. Supervised methods [27, 6], on the other hand, utilize

specific attribute labels as conditions. However, these methods lack precise
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control over 3D factors such as camera pose because they tend to overlook

the underlying 3D scene rendering process. To address this issue, some

works [184, 34] have integrated 3D Morphable Face Models (3DMM) [144]

to enable control over 3D face pose and facial expression. Nonetheless,

these approaches still suffer from significant challenges such as view in-

consistency and unrealistic texture distortion when poses are drastically

varied.

Recently, neural radiance fields (NeRF) [123] have attracted booming

attention because of their impressive results in novel view-rendering tasks.

Specifically, NeRF represents a scene using a continuous function parame-

terized by a multi-layer perceptron (MLP) that maps a 3D position and a

viewing direction to density and radiance values. Since then, many works

have been proposed to improve NeRF [213, 125] and apply it to various

downstream tasks, such as human body modeling [147] and large scene

modeling [179].

Some 3D-aware image generation methods [203, 19] combine NeRF with

generative models by extending neural radiance fields with latent condition-

ing, called Generative Neural Radiance Fields (GNeRF). 3D coordinates

are sampled from random camera poses and used as input to an implicit

function with latent codes. This function predicts density and RGB color.

However, these methods are compute-intensive and memory inefficient due

to sampling many rays in the entire 3D-Volume space and requiring a

feed-forward process for each point. They are limited to low-resolution

and low-quality generation. GIRAFFE [132] addresses this by generating

low-resolution feature fields and using a convolution-based neural rendering

module to map rendered features into high-resolution output. However, it

suffers from serious view-inconsistency problems. To improve generation

quality and view-consistency, many approaches [135, 20, 215] borrow ideas

from StyleGAN and integrate the ‘Style-modules’ into the implicit func-
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tion (e.g., SIREN [19]) or neural rendering module. Additionally, some

novel algorithms and losses have been carefully designed for 3D-aware gen-

eration, such as tri-planes [20] or multiple-view warping loss [215]. While

these models create high-quality and view-consistent images, they lack con-

trol and disentangling abilities. As explained in VolumeGAN [200], some

models are limited to local receptive fields with MLPs, and it is hard to

extract global structures from their internal representation. Thus, Vol-

umeGAN utilizes a 3D feature volume module for querying coordinate

descriptors, enabling independent controls on the texture and structure

factors. However, VolumeGAN still faces challenges in terms of quality

and view-consistency and does not support attribute controls for face ma-

nipulation.

We have developed an attribute-conditional 3D-aware generative model

that can control facial attributes and address the aforementioned issues.

Our model differs from NeRF-based Head-Avatar models [232, 65] in two

significant ways. Firstly, our model does not rely on 3DMM priors and

does not require modeling of 3DMM coefficients. Secondly, we use a pre-

trained 3D-Aware GNeRF as the backbone of our model, eliminating the

need for retraining. We have also proposed a Dual-Branches Attribute

Editing Module (DAEM) that can edit latent codes in specific and inter-

pretable directions (see Fig. 3.1). To train our DAEM module, we keep

our pre-trained GNeRF fixed and only train the DAEM module by sam-

pling the training triplets: the latent codes from the GNeRF, the cor-

responding generated face images, and the labels obtained by the classi-

fiers. Note that a similar triplet sampling strategy was also utilized in

StyleFlow [6] which learns to edit the latent space for 2D-GAN models.

To improve our results and better preserve the non-target regions in im-

ages, we propose a novel “Training-as-Init, Optimizing-for-Tuning” method

(TRIOT) (See the left of Fig. 3.2). In the proposed TRIOT, we use the
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edited latent vector for target attributes as initialization and then opti-

mize this latent vector with the proposed semantic-guided texture and

geometry consistency losses while fixing the rest of the model. Finally,

we present an unsupervised optimization method for editing the geome-

try of the face (See the right of Fig. 4.3). We have released the code at

https://github.com/zhangqianhui/TT-GNeRF.

In summary, the main contributions of this work are:

1) We propose a Dual Branches Attribute-Editing Module (DAEM) that

enhances the controllability and disentanglement of 3D-aware gen-

erative models and a novel optimization strategy, ‘Training-as-Init,

Optimizing-for-Tuning’ (TRIOT), combining the module-training and

latent-optimization method for the attribute-editing task.

2) Our method is flexible, general and can be easily integrated into most

3D-Aware GAN backbones.

3) Compared to baseline models, our model achieves high-quality editing

with improved view consistency while preserving non-target regions.

4) We propose an unsupervised optimization method for reference-based

geometry editing.

3.2 Background

Generative Neural Radiance Fields for 3D-Aware Face Genera-

tion. Neural radiance fields (NeRF) [123], a continuous neural mapping

from a 3D position and a 2D viewing direction to the RGB value and

density that allows 3D scene modeling and high-quality novel view syn-

thesis. Recently, several NeRF-based methods were proposed to improve
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Figure 3.1: The architecture of our backbone StyleSDF (Left) [135]. The overview of the

pretrained StyleSDF with double branches attribute-editing module (DAEM) (Right).

One branch (AEM) performs the reconstruction using a zero label residual (A − A = 0)

as input, while the other branch performs the editing using an label residual (Ae −A) as

input. Ae is a randomly generated target label.

rendering speed [148, 13, 125] and rendering quality [130, 14, 188]. More-

over, NeRF also promotes the development of many computer-graphics

applications, such as human body modeling [147, 146], 3D-aware face gen-

eration [132, 135, 50, 200, 20, 117, 1], large scene modeling [179], and pose

estimation [203].

Generative neural radiance fields (GNeRF) are a conditional variant

of NeRF, which combines NeRF with GANs to condition the render-

ing process on a latent code that governs the object’s appearance and

shape [203, 19, 132]. For example, GRAF [160] achieves this goal by in-

corporating shape and appearance codes as input. GRAF [160] achieves

better visual fidelity and view consistency than the previous voxel- and

feature-based methods [59, 127]. Michael et al. [132] propose the com-
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positional neural feature fields (GIRAFFE) that extend GRAF into 3D-

aware multiple-object scene representations. Although GRAF and GI-

RAFFE can control texture and camera pose, they are limited to low-

resolution results and fail to preserve multi-view consistency. Many

works [19, 220, 35, 137, 50, 135, 20, 215, 201, 161, 170, 197] are trying

to address these problems, and most of them inherit the “image-as-style”

idea from StyleGAN [82]. Yang et al. [201] extend the GIRAFFE to work

with high-resolution data. However, this model still suffers from the view-

inconsistency problems. Pi-GAN [19] proposes a SIREN module with peri-

odic activation functions. It conditions the style code by feature-wise linear

modulation (FILM). The SIREN modules significantly boost image qual-

ity and view consistency. To reduce the high computational costs of the

volume rendering in Pi-GAN, some models, such as StyleSDF [135], MVC-

GAN [215] and EG3D [20] propose a hybrid rendering approach. Specifi-

cally, they learn a coarse feature field, render it into a low-resolution fea-

ture map, and then utilize a style-based 2D network as a “super-resolution”

module to refine the features for a final high-resolution image. In order to

improve view consistency, StyleSDF models signed distance fields, while

MVCGAN uses explicit multi-view consistency loss. On the other hand,

ED3D proposes a hybrid 3D tri-plane representation. Unlike the men-

tioned works, CIPS-3D [220] keeps the resolution of intermediate feature

fields same as resolution of the final images. Though these models can

achieve incredible quality generation with strong view consistency, they

cannot edit structures and textures.

Recently, some research has focused on the disentangling abilities of the

3D-aware models, VolumeGAN [200] tries to separate shape from texture,

while ShadeGAN [137] disentangles the light from the albedo. However,

they only focus on global factors, such as illumination and textures, and

cannot handle more specific attributes, such as hair color and gender. Some
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Figure 3.2: Left: The pipeline of TRIOT with geometry consistency loss and texture

consistency loss for the expression editing. Right: the reference-based geometry edit-

ing pipeline. It minimizes difference between normals (geometry loss) and the differences

between texture images (texture loss) in perceptual space to search for a better we. Mean-

while, partial parameters p of generator G will be tuned.

of the concurrent methods [174, 177] provide high-quality expression con-

trol but are limited in their ability to handle diverse attributes, and require

the model to be trained from scratch. To address this problem, we pro-

pose an attribute-conditional 3D-aware GAN model that inputs specific at-

tribute labels. Compared to the methods exploiting 3DMM prior [232, 65],

this model leverages a pretrained GNeRF and integrates a double-branches

attribute-editing module (DAEM) that takes specific attributes as input.

Moreover, we propose a novel “Training-as-init, Optimized-for-Turning”

method (TRIOT) to train and optimize attribute-editing modules (AEM),

that helps to achieve better 3D-aware face generation and editing while

preserving non-target regions.

Image-to-Image Translation Architectures for Face Editing.

Image-to-Image translation models, i.e., Pix2Pix [70] and CycleGAN [228],

utilize the autoencoder as a generator that has been widely adopted for a

variety of different tasks, including face attribute editing [27, 57, 105, 196,

29, 56, 44, 23, 109]. Specifically, StarGAN [27] is the early work for learn-

ing multiple-domain face translation, it takes multiple attributes as input,

and transfer one face image from one domain to other domains. During the

training, StarGAN exploits a reconstruction and cycle-consistency loss to
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preserve the content of the input face. After that, many works have been

improving StarGAN, such as AttGAN [57], STGAN [105], SSCGAN [29]

and HifaFace [44]. However, these models operate on a low-resolution data,

they cannot manipulate 3D factors, such as camera poses.

Interpreting Latent Space of StyleGAN for Face Editing An al-

ternative line of works explores the disentanglement of StyleGAN’s la-

tent space for face editing. These approaches can be roughly classified

into two types based on whether they use semantic labels: unsupervised

methods and attribute-conditional methods. The former learns to discover

interpretable directions in latent space by leveraging techniques such as

Principal Component Analysis (PCA) [53], closed-form factorization [163],

learnable orthogonal matrices [55, 189], and regularization losses [145, 193].

GANSpace [53] shows that PCA in the latent space of StyleGAN can find

important interpretable directions that can be used to control image gen-

eration. To compute the PCA of the style codes, GANSpace samples mul-

tiple random vectors (i.e., z space) and computes the corresponding style

codes (i.e., W space). To avoid the extensive data sampling of GANSpace,

SeFa [163] directly decomposes the model weights with a closed-form so-

lution. Similarly, recent works [55, 189] propose to obtain a disentangled

latent space by learning an orthogonal matrix for editing latent code.

As far as we know, the attribute conditions can be of different types,

including global-level (e.g., label vectors) and local-level (e.g., semantic

segmentation maps) modalities. The first type [6, 108, 101] usually utilizes

off-the-shelf attribute classifier networks to obtain the attribute vectors

of training images and then uses these vectors as input. For example,

StyleFlow [6] proposes to utilize conditional normalizing flow (CNF) to

model the mapping from conditional labels and latent codes (z space) to

intermediate vectors (W space). StyleFlow trains the flow model (CNF)

with triplets consisting of vectors sampled from W space, corresponding
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faces and predicted face attributes. Though StyleFlow can produce facial

pose transformation, it suffers from serious view inconsistency as it lacks

an understanding of the underlining 3D world. The second type utilizes

the coarse masks [223] or predicts face semantics [31] with k-means.

Additionally, some methods [94, 199, 166, 84] also explore the semantic

disentanglement of the model, but they redesign the StyleGAN; thus, they

need to retrain the generator. For example, TransEditor [199] presents

a transformer-based module for dual space interactions where one latent

code is used as the key and value and the other as the query. This dual

space interaction helps disentangle the style and the content representa-

tions. Some works focus on local facial controls by integrating face parsing

into generation [166] or by adding spatial information for styles code with

the conv-based module [84].

Overall, these StyleGAN-based models have demonstrated the ability to

produce high-quality images and perform precise editing. However, they

fail to change the facial pose and preserve view consistency due to a lack

of 3D modeling abilities.

3DMM-Guided Face Generation and Editing. Recently, some

works [45, 34, 184, 165, 103] demonstrate high-quality control over GAN

generation via a 3DMM [144]. 3DMM is the 3D Morphable Face Model pa-

rameterized by the face shape, expression, and texture. For example, Geng

et al. [45] utilizes 3DMM to guide fine-grained face manipulation for arbi-

trary expression transfer. First, they extract texture and shape coefficients

by fitting 3DMM to each real face in the dataset. Then they utilize the

texture generator to create the target textures with the source texture and

the target expression and utilize the shape predictor to produce the target

shape with the source shape coefficients and the target expression as input.

Finally, the global generator utilizes rendered faces and the target expres-

sion to produce the final faces. StyleRig [184] and DiscoFaceGAN [34]
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use 3DMM to manipulate the latent space of StyleGAN. While StyleRig

is based on pretrained StyleGAN models and only tunes a DFR module

that learns the mapping from latent code to the coefficients of 3DMM. On

the other hand, DiscoFaceGAN re-trains the entire model. It exploits mul-

tiple VAE to model the distribution of 3DMM coefficients and introduces

self-supervised losses to disentangle different factors. Compared to these

models, our model does not require a 3DMM prior and still achieves better

multi-view consistency. Additionally, our models can achieve more variable

face editing, such as hair color and age.

Finally, Shi et al. [165] presents a LiftedGAN model, which lifts the

pretrained StyleGAN2 in 3D. This model is free of 3DMM prior. However

this model cannot achieve attribute-conditional control.

GAN Inversion for Real Face Editing. GAN inversion aims to find

an optimal latent code corresponding to a given real image and has been

widely used for real image editing tasks. The previous methods can be di-

vided into two broad categories: optimization-based [2, 4, 152] and encoder-

based [224, 151, 185, 7]. For example, Roich et al. [152] presents a novel

optimization-based method called Pivotal Tuning Inversion (PTI). In PTI,

they first obtain the optimized latent code as the pivot by fixing the pa-

rameters of the generator then fix this pivot and finetune the generator

parameters to obtain better reconstruction while preserving the editing

abilities of the latent code. After the inversion step, they utilize the pop-

ular latent-disentanglement method, such as InterfaceGAN or GANSpace,

for face editing. In this paper, we use the PTI for GAN inversion. Concur-

rent with our work, some methods [176, 173, 26] employ 3D-aware GAN

as basic model instead of StyleGAN to achieve multi-view consistent face

editing guided by the segmentation masks. They also apply GAN inversion

to project real images into latent space for editing. Different from these

methods with segmentation masks, we use attribute labels to guide face
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editing.

3.3 TT-GNeRF

We start with the introduction of the 3D-aware GAN with generative neu-

ral radiance fields (GNeRF) (Section 3.3.1). Our method can potentially

work with most of GNeRF backbones and we showcase it with the two

most recent ones StyleSDF [135] and EG3D [20]. Since they have sim-

ilar architecture, we only describe StyleSDF [135]. Then, we detail the

proposed double branches attribute editing module (DAEM) which con-

sists of two branches, i.e., reconstruction branch and editing branch (Sec-

tion 3.3.2). Each contains an Attribute Editing Module (AEM). Next,

we introduce ‘Training-As-Init, Optimizing-for-Tuning’ (TRIOT) method

with attribute-specific consistency loss to search for better latent codes

that preserve non-target regions and provide more meaningful target-

region editing (Section 3.3.3). Finally, we introduce a new method for

the reference-based geometry editing. (Section 3.3.4)

3.3.1 Generative Neural Radiance Fields (GNeRF)

NeRF [123] is a continuous neural mapping M that maps a 3D position xxx

and a 2D viewing direction vvv to the rgb color ccc and density σ:

(ccc, σ) = M(γ(xxx), γ(vvv)), (3.1)

where γ indicates the positional encoding mapping function.

GNeRF, such as GRAF [160] is a conditional variant of NeRF. Unlike

NeRF, it requires multiple views of a single scene with estimated camera

poses. Notably, GNeRF can be trained with unposed 2D images from dif-

ferent scenes. In Pi-GAN [19], GNeRF is trained with adversarial learning
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and conditioned on a latent code z:

(ccc, σ) = M(γ(xxx), γ(vvv), zzz), (3.2)

where the latent code z with following MLP layers aims to infer frequencies

α and shifts β of a SIREN layer [19].

StyleSDF. As shown in Fig. 3.1, StyleSDF also adopts the SIREN

layers inside GNeRF. However, it utilizes Signed Distance Fields (SDF) to

improve the GNeRF and add a 2D StyleGAN generator as a second stage

rendering. In the first stage, the GNeRF is trained separately. It produces

a feature vector fff , RGB color ccc and SDF values ddd:

(fff, ccc,ddd) = M(γ(xxx), γ(vvv),www), (3.3)

where the learned SDF values define the object surface and thus allow

to extract of the mesh via Marching Cubes [114]. Moreover, ddd will be

converted into the density σ for volume rendering.

The RGB color ccc is later rendered into the low-resolution face image

using the classical volume rendering. The output image is then used as

input for the discriminator.

In the second stage, all GNeRF parameters are fixed. The feature vec-

tor fff is volume-rendered into low-resolution feature map FFF which is then

mapped into a high-resolution result using Style-based convolutional mod-

ules. This high-resolution image is passed to another discriminator.

3.3.2 Double Branches Attribute Editing Module (DAEM)

The pre-trained StyleSDF (or EG3D) is used as the backbone of our model.

Training triplets are sampled from the pretained StyleSDF model: la-

tent vector www, the corresponding generated sample III along with its low-

resolution IIIL version and attribute labels AAA predicted by the off-the-shelf

attribute classifiers. The pretrained StyleSDF is then extended with the
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proposed Double-Branch Attribute Editing Module (DAEM), which ma-

nipulates the latent code for 3D-aware attribute editing. The DAEM con-

sists of a reconstruction branch and an editing branch. Both branches

share same networks, but take different labels as input to perform different

optimization. We use two branches to perform both the reconstruction and

editing operation to achieve a better trade-off of the editing-preservation.

In detail, the network for the branches contains an Attribute Editing Mod-

ule (AEM). The AEM uses Latent Transfer Unit (LTU) blocks, a variant

of the Gated Recurrent Unit (GRU) [30], in order to improve the quality

of the transfer.

Latent Transfer Unit (LTU). Facial editing involves balancing trade-off

between attribute editing and preservation. To accurately edit the target

region while preserving non-target regions, it is necessary to manipulate

some components of the latent code while keeping others unchanged. Fol-

lowing the idea of the Gated Recurrent Unit (GRU), which has reset- and

update-gates to control how much information is forgotten and updated,

the Latent Transfer Unit (LTU) is specifically designed to model editing

and preservation of the different latent code components.

As shown in the right of Fig. 3.1, we take the label AAA as a condition for

our LTU and one latent code wwwI as the latent input. First, we obtain the

values of the gate:

GGGr = σ(FC(FC(AAA) + FC(wwwI)))

GGGu = σ(FC(FC(AAA) + FC(wwwI))),
(3.4)

whereGGGr andGGGu are reset gate and update gate, σ is the Sigmoid function,

and FC is some fully-connected layers. Then, the candidate latent with new

information can be defined as:

w̃̃w̃wI = FC(FC(AAA) + FC(GGGr ⊙wwwI)). (3.5)
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Table 3.1: Quantitative results on the attributes editing results using four metrics: FID,

Classification Accuracy (CA), Average Matching Point (aMP), Face Recognition Similar-

ity (FRS), and Local Preservation (LP).

Method
Expression Gender Age

FID ↓ CA ↑ aMP ↑ FRS ↑ LP ↓ FID ↓ CA ↑ aMP ↑ FRS ↑ FID ↓ CA ↑ aMP ↑ FRS ↑

DiscoFaceGAN [34] 77.84 55.00 1347.4 0.587 7.280 - - - - - - - -

LiftedGAN [165] 95.25 - 1484.0 0.464 - - - - - - - - -

StyleFlow [6] 78.98 99.24 1089.7 0.586 19.36 82.80 79.90 1088.4 0.588 95.61 89.9 1090.8 0.586

TransEditor [199] 55.97 90.23 1075.6 0.564 40.23 56.60 76.73 964.30 0.575 78.32 99.5 959.82 0.490

TT-GNeRF (E) 64.83 93.20 1527.5 0.852 18.20 65.84 86.00 1528.6 0.825 63.09 79.2 1554.5 0.864

TT-GNeRF (S) 56.37 88.70 1899.6 0.812 5.870 55.74 73.40 1825.1 0.822 55.43 81.7 1982.8 0.850

The updated latent code can be obtained using the following equation:

wwwO = GGGu ⊙ w̃̃w̃wI + (1−GGGu)⊙wwwI , (3.6)

where we do not use Tanh function for w̃̃w̃wI to preserve the same range of

value between w̃̃w̃wI and wwwI , compared to the typical GRU.

In the following part, we introduce the details of our reconstruction and

editing branches.

Reconstruction branch. As shown in the right of Fig. 3.1, the single

Attribute-Editing Module (AEM) AEMr consists of a one-layer LTU that

takes the latent code www and the label residual AAA − AAA = 0 as input, and

outputs new latent vector wwwr:

wwwr = AEMr(www,AAA−AAA). (3.7)

The learnedwwwr is mapped into frequencies α and shifts β by several fully-

connected layers and used as input of the SIREN module. This produces

a reconstructed face image IIIr and normal map IIInr using the pretrained

StyleSDF. In order to estimate the normal map, we calculate the weights

by the integration along the ray, then, multiply these weights with z values

to obtain the depth map which is then converted into a normal map using

the cross product of neighboring pixels.

Editing branch. Similar to the reconstruction branch, our editing branch

AEMe is:
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Figure 3.3: Visual results of face attribute editing and multi-view renderings from our

TT-GNeRF (E) and TT-GNeRF (S). We use attributes “Hair Color”, “Gender”, “Age”,

“Expresssion”, “Bangs” as example (Zoom in for best view.). TT-GNeRF (S) and TT-

GNeRF (E) mean our method with different backbones: StyleSDF and EG3D, respec-

tively.
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StyleFlow

Lifte
dGAN

DiscoFaceGAN

Novel Views Novel Views

TransEditor

TT-GNeRF (E)

TT-GNeRF (S)

Input             Expression Input              Expression

Figure 3.4: Qualitative comparisons between our method and the baselines, i.e., Disco-

FaceGAN [34], LiftedGAN [165], StyeFlow [6], and TransEditor [199] on “Expression”

attribute and the corresponding multiple-view renderings.

Input Novel Views Novel Views

StyleFlow

TT-GNeRF (E)

TT-GNeRF (S)

TransEditor

Gender Input Age

Figure 3.5: Qualitative comparisons between our method and the baselines, i.e., Stye-

Flow [6], and TransEditor [199] on “Gender” and “Age” attributes and the corresponding

multiple-view renderings. Note that DiscoFaceGAN and LiftedGAN cannot deal with

these two attributes.
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StyleFLOW

TT-GNeRF

Input Gender Age Expression Input Gender Hair Color Expression

Figure 3.6: Qualitative comparisons between our method and Styleflow based on 3D-

Aware model StyleSDF (Left) and EG3D (Right).

wwwe = AEMe(www,AAAe −AAA), (3.8)

where AAAe is a random target label. With the pretrained StyleSDF, we can

obtain an editing face image IIIe and a normal map IIIne .

Loss Functions. The overall objective function for training DAEM con-

sists of three components: adversarial loss Ladv, classification loss Lcls and

reconstruction loss Lrecon, and it is defined as follows:

LDAEM = Ladv + λ1Lcls + λ2Lrecon. (3.9)

where λ1 and λ2 are hyper-parameters that control the contribution of the

corresponding loss terms.

Unlike other 3D-aware models [220, 135], our discriminator D takes

the image III and normal map IIIn as input to learn consistent texture and

geometry. The adversarial loss Ladv is defined as:

min
DAEM

max
D

Ladv = EIII,IIIn[logDadv(III, III
n)]

+ EIIIe,IIIne [log(1−Dadv(IIIe, III
n
e ))]. (3.10)

The classification loss Lcls is defined as:

Lcls = EIII,AAA[−logDcls(AAA|III)]

+ EIIIe,AAAe
[−log(Dcls(AAAe|IIIe))]. (3.11)
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Finally, the reconstruction loss Lrecon is defined as:

Lrecon = ∥IIIr − III∥1 + ∥wwwr −www∥1. (3.12)

Note that Dadv and Dcls mean the adversarial branch and the classification

branch, respectively. Reconstruction loss only guides the reconstructed

image IIIr, while the adversarial and classification loss only guides the edited

image IIIe.

3.3.3 Training-as-Init, Optimizing-for-Tuning with Attribute-

Specific Consistency Losses

After training, our DAEM can edit attributes to generate view consistent

images with modified attributes. However, we observe that editing of some

attributes can affect unrelated attributes, especially the local ones. For ex-

ample, converting a “No-Smile” face into a “Smile” can modify the identity.

We believe this is due to the entanglement of latent codes for some of the

attributes. To alleviate this problem, we propose a novel method called

‘Training-as-Init, Optimizing-for-Tuning’ (TRIOT), which search for bet-

ter latent codes. These latent codes preserve non-target regions and provide

more meaningful target-region editing. We use an off-the-shelf face pars-

ing model [205] to obtain an attribute-specific mask MMM . Given this mask,

we select the non-target region MMM and target region 1 −MMM . As shown in

the left of Fig. 3.2, we obtain: IIIr, III
n
r , IIIe III

n
e , and an initial latent code wwwe.

Given the corresponding optimization objective function, we aim to find

an optimal latent code ŵ̂ŵwe, and corresponding image Î̂ÎIeand normal map Î̂ÎIne .

Specifically, our objective functions are attribute-specific and consist

of two parts: geometry consistency loss and texture consistency loss. As

shown in the left of Fig. 3.2, our texture and geometry consistency opti-

64



CHAPTER 3. EXPLORING...FACE... 3.3. TT-GNERF

mization objective function is defined as follows:

ŵ̂ŵwe = argmin
ŵ̂ŵwe

∥MMM ⊙ (Î̂ÎIe − IIIr)∥1 + ∥(1−MMM)⊙ (Î̂ÎIe − IIIe)∥1,

+ ∥MMM ⊙ (Î̂ÎIne − IIInr )∥1 + ∥(1−MMM)⊙ (Î̂ÎIne − IIIne )∥1. (3.13)

This texture loss reduces differences between the reconstructed texture IIIr

and the optimized texture Î̂ÎIe in the non-target region while keeping Î̂ÎIe

the same as IIIe in the target region for attribute-editing. The geometry

consistency loss has the same objective function as the texture loss.

By optimizing consistency losses as the objective function, we can

achieve better editing results and preserve non-target regions in less than

1,000 iterations. However, we only apply this method to certain attributes

where the first step does not achieve acceptable results. This allow us to

balance training speed and editing quality which is not allowed for the

training or optimization-only methods.

3.3.4 Reference-Based Geometry Editing

Our model can achieve reference-based geometry editing by transferring

the geometry from a reference face into a target face while preserving the

target face’s appearance. Similar to TRIOT, the optimization objective

function includes two parts: the geometry consistency loss and the texture

consistency loss. Given a reference image and corresponding normal map,

we minimize the differences between reference normals and target normals

(geometry loss) as well as the differences between input image and target

image (texture loss) in perceptual space. To fully utilize NeRF networks’

disentanglement of geometry and textures, we also optimize NeRF’s RGB-

branches parameters p in addition to the latent code we. We observe that

tuning of partial networks can achieve more accurate transfer of geometry.

As shown in the right of Fig. 3.2, given the original latent code wewewe

and reference code wrwrwr, the corresponding face image and normal pairs are
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w/  T
RIOT

w/o TRIOT

w/ TRIOT-

ExpressionInput Heatmap Novel Views ExpressionInput Heatmap Novel Views

Figure 3.7: Ablation study for our TRIOT method. The results are from TT-GNeRF

(S) with “Expression” as the target attribute. We visualize the differences between input

and edited images using a coolworm heatmap. TRIOT- means the proposed optimization

objective excludes geometry consistency loss.

(IIIe,III
n
e ) (IIIr,III

n
r ), respectively. We use ŵeŵeŵe as the target code of the optimiza-

tion pipeline with corresponding face image and normal pairs (Î̂ÎIe,Î̂ÎI
n
e ). The

optimization objective is defined as:

ŵeŵeŵe, p = argmin
(ŵe(ŵe(ŵe,p)

LPIPS(IeIeIe, ÎêIêIe) + ∥(IIInr − Î̂ÎIne )∥1. (3.14)

This optimization stage can efficiently find a latent code for accurate

reference-based geometry editing within hundreds of steps.

3.4 Experiments

We name our method TT-GNeRF (Training and Tuning Generative

Neural Radiance Field) and use TT-GNeRF (S) and TT-GNeRF (E) to

refer to our method with two different backbones: StyleSDF [135] and

EG3D [20], respectively.

3.4.1 Setting

Dataset. Given that the two backbones (i.e., StyleSDF and EG3D) are

pretrained on the FFHQ dataset [81], we train our model using sampled

images and their corresponding latent codes. We use 100,000 images for
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Input w/ MLP 1-LTU 2-LTU 3-LTU

Figure 3.8: Ablation study for Attribute editing module (AEM). We visualize the “Ex-

pression” editing results corresponding to the difference heatmaps between each edited

image and the input image.

training StyleSDF and 40,000 for EG3D. We employ off-the-shelf attribute-

classifiers [82] to obtain several attribute labels, including Hair Color, Gen-

der, Bangs, Age, Expression (Smile), and Beard. We use all generated

triplets to train our models.

Implementation Details. In order to speed up the training and re-

duce memory consumption, we compute the reconstruction and adversar-

ial losses using the low-resolution images rendered from RGB values ccc.

We set λ1 = 10, λ2 = 1.0 for the classification and reconstruction losses.

DAEM is trained with the Adam optimizer [86] β1=0.0, β2=0.99, and a

learning rate=1e − 4 for 50,000 steps. We also use the Adam optimizer

with β1=0.9, β2=0.99, and learning rate=5e−4. In this stage, we train for

1000 optimization steps. Our discriminator has an architecture similar to

StyleGAN2 [82], but with an additional classification branch. To improve

adversarial training stability, we adopt the non-saturating logistic loss [47]

and R1 regularization [122].

Compared Baselines. Since our method is an attribute-conditioned gen-

erative model, the most similar supervised method is StyleFlow [6], which
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can be used for face attribute editing tasks and multiple-view generation.

To ensure a fair comparison, we extend the original Styleflow, which ma-

nipulates the latent space of a 2D generator, to work with 3D-Aware gen-

erators such as EG3D and StyleSDF. Moreover, we adopt the state-of-

the-art generative model, TransEditor [199] as our baseline for comparing

face semantic disentanglement with multiple-view generation results. We

also compare with the 3DMM-guided model, DiscoFaceGAN [34]. Note

that this model can only edit some expression-related attributes, such as

“Smile”. Finally, we also adopt a 3D-aware LiftedGAN [165] to compare

multiple-view generation. However, LiftedGAN cannot control individual

attributes.

Evaluation Metrics. Five metrics are used for evaluation: FID (Fréchet

Inception Distance) score [61] to evaluate the quality and diversity of

edited images; Classification Accuracy (CA) to evaluate the correctness of

edited attributes; average Matching points (aMP) [210] and Face Recog-

nition Similarity (FRS) [108] to quantitatively evaluate the consistency of

multiple-view generation results; and Local Preservation (LP) to evaluate

the preservation of non-target regions in editing results.

To evaluate the quality and diversity of the edited results, we calculate

the FID score [61] by using samples from FFHQ as the real distribution

and the original image and its edited results as the fake distribution. We

sample 5000 real and fake samples from all models for each attribute to

calculate FID scores. A lower FID score indicates a lower discrepancy

between the image quality of the real and generated images.

To evaluate the accuracy of the attribute transfer, we use the off-the-

shelf classifiers [82] to classify the edited samples and compute the accuracy

by comparing the predicted and the target labels. We refer to this metric

as Classification Accuracy (CA). We calculate the CA using 1000 edited

samples from all models for each attribute. Higher CA indicate better
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accuracy.

Evaluating view consistency without ground truth is a challenging task.

To address this challenge, we use proxy metrics such as the average

Matched Points metric [210]. This metric involves computing a point-wise

matching between two images (I1, I2) generated from the same identity but

with different viewpoints using Patch2Pix [221], and counting the number

of Matched Points MP (I1, I2). We calculate the mean of MP across all

pairs of samples for 100 random identities with ten views each to obtain a

final average MP (aMP) score.

Additionally, we use Face Recognition Similarity (FRS) [108] to evalu-

ate identity preservation across different views. Specifically, we use Arc-

Face [33], a state-of-the-art face recognition method, to estimate feature

similarity between two facial images and compute the average score across

1000 samples with ten different views and 100 identities. Higher aMP and

FRS scores indicate that synthesized images with different viewpoints have

more similar identities to input faces.

We use 1000 input-edited paired samples to evaluate the Local Preser-

vation score (LP) for local attributes, such as “Expression”. For every

paired sample, we use an off-the-shelf face parsing network [205] to collect

the corresponding mask. We then measure the differences between each

paired sample using L1 distance and average them across all pairs.

We found that LiftedGAN and DiscoFaceGAN are unable to directly

perform editing tasks for attributes, such as “Gender” and “Age”. As a

result, we do not provide scores for these methods. Instead, we provide

the FID, aMP, and FRS scores for LiftedGAN using randomly generated

samples rather than the attribute-edited samples.
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Table 3.2: Quantitative evaluation of the editing and preservation trade-off between our

method and StyleFlow, based on the backbone StyleSDF. We use two metrics: CA and

LP to evaluate the editing of three attributes: Expression, Gender and Age. Note that

we define the background as non-target region using semantic masks to compute LP for

attribute “Gender” and “Age”.

Method
Expression Gender Age

CA ↑ LP ↓ CA ↑ LP ↓ CA ↑ LP ↓

StyleFlow [6] 86.30 12.45 78.29 17.49 87.60 19.42

TT-GNeRF (S) 88.70 5.870 73.40 6.270 81.70 5.820

Table 3.3: Ablation study for our TRIOT.

Method CA ↑ aMP ↑ FRS ↑ LP ↓

w/o TRIOT 85.0 1645.1 0.869 11.3

w/ TRIOT- 83.4 1766.9 0.832 10.8

w/ TRIOT 82.0 1706.3 0.854 7.56

Input Reference Geometry Input Reference Geometry Input Reference Geometry

Figure 3.9: Visual results of reference-based geometry editing from TT-GNeRF (S).

3.4.2 State-of-the-Art Comparison

Fig. 3.3 shows that our method can achieve high-quality face editing re-

sults with accurate attribute transfer and preservation of non-target region

. For example, the first row of Fig. 3.3 demonstrates hair-color transfer

from brown to black while maintaining facial identity and expression. Ad-
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Table 3.4: Ablation study for Attribute editing module (AEM). We use the attribute

“Expression” for this comparison.

Method FID ↓ CA ↑ LP ↓

w/ MLP 57.99 86.80 6.62

1-LTU 56.37 88.70 5.87

2-LTU 58.63 93.20 6.87

3-LTU 57.71 88.70 13.33

EInput E+A E+A+H

Figure 3.10: Multiple-attribute editing results from our TT-GNeRF (S) method. E:

expression, A: Age, H: Hair Color.

ditionally, 3-8 columns show multiple-view generation of edited results,

indicating strong 3D consistency in our results. When comparing TT-

GNeRF (S) to TT-GNeRF (E), the latter tends to learn a wider variety in

appearance for global attributes, such as “Gender”.

We compare our method to baselines on facial attribute editing with

multiple-view generation in Fig. 3.4 and Fig. 3.5. As aforementioned, we

use “Expression”, “Gender” and “Age” attributes as examples since most

baselines can directly edit these three attributes. Fig. 3.4 shows the results

for “Expression” editing. We can observe that most models can achieve

accurate transfer from “Smile” to “No-Smile” while preserving non-target
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Figure 3.11: Ablation study for double-branches attribute editing branches (DAEM).

We changed the attribute ‘Hair Color’ using four inputs (shown in the first row). The

2nd and 3rd rows show the results from DAEM w/o reconstruction branch and DAEM,

respectively.

region well. However, TransEditor [199] fails to preserve non-target region,

as shown in the 4-th rows of Fig. 3.4. Moreover, our method outperforms all

baselines in the 3D consistency for novel-view generation of edited results.

For example, DiscoFaceGAN cannot maintain hair color when changing

pose, and expression changes compared to the original view when zoom-

ing in on the mouth. StyleFlow and TransEditor struggle with large pose

variations and suffer from severe view-inconsistency problems, resulting in

significant identity changes such as beard growth on zoomed-in mouths.

LiftedGAN has improved 3D consistency but has limited quality and can-

not perform facial attribute editing. Fig. 3.5 shows our method’s supe-

riority in 3D consistency compared to other methods for “Gender” and

“Age” editing results; please see the zoomed-in hair region for detailed

comparisons.

Table 3.1 shows the quantitative evaluation results of “Expression”,
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-1.0 -0.77 -0.55 -0.33 -0.11 0 0.11 0.33 0.55 0.77 1.0

Figure 3.12: Label interpolation from -1 to 1 for face attribute editing. The results are

obtained using TT-GNeRF (S) with “Expression” as the target attribute.

Real Inversion Gender AgeExpression

Figure 3.13: GAN Inversion for real image editing and corresponding multiple-view gen-

eration. The results are obtained using TT-GNeRF (E) with “Expression’, “Age” and

“Gender” as the target attributes.

“Gender”, and “Age” attributes editing. Our models achieve compara-

ble performance to baselines for all three attributes in terms of FID scores.

Specifically, our TT-GNeRF (S) achieves the best FID scores for both the

“Gender” and “Age” attributes and a comparable score to TransEditor for

the “Expression” attribute. Our models are also competitive with the base-

lines in terms of CA; for example, TT-GNeRF (E) achieves a score of 86.00

compared to 79.90 of StyleFlow and 76.73 of TransEditor for the “Gender”

attribute. However, both models performs worse than the previous base-

lines for the “Age” attribute. We suspect this is due to 3D-Aware GAN

having worse disentanglement than 2D methods, particularly for the “Age”

attribute. Table 3.1 shows that our models outperform previous methods

on both aMP and FRS metrics for all three attributes; specifically, our
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TT-GNeRF (S) model achieves an aMP score of 1899.6 and an FRS score

of 0.812 for the “Expression” attribute, better than LiftedGAN’s scores

of 1484.0 aMP and 0.464 FRS and DiscoFaceGAN’s scores of 1347.4 aMP

and 0.587 FRS.

Fig. 3.6 compares the attribute editing results between TT-GNeRF and

StyleFlow using the same 3D-Aware generator. Our TT-GNeRF achieves

a better trade-off between editing and preservation compared to StyleFlow.

For example, in expression transfer, both models accurately edit the ex-

pression, but StyleFlow results in significant changes to the identity. This

conclusion is supported by the quantitative results in Table 3.2.

3.4.3 Ablation Study

Latent Transfer Unit (LTU). In our Attribute Editing Module (AEM),

we use LTU for more accurate editing of the target region. Alternatively

one can use simple MLP layers for this task. To better understand the

effect of LTU on performance, we compare four variants of the model: w/

MLP, 1-LTU, 2-LTU, 3-LTU. The w/ MLP variants uses a two-layer MLP

instead of LTU while the 1-LTU, 2-LTU, 3-LTU variants have one, two

or three LTU layers respectively. As shown in Fig. 3.8, LTU variants edit

the expression of the input while better preserving non-target region than

the w/ MLP variant. Table 3.4 shows that the 1-LTU variant achieves the

best scores in terms of FID and LP metrics and performs better than w/

MLP in CA metric. However, using multiple LTU layers can harm model

performance, especially in preserving non-target regions.

Training-As-Init, Optimizing for Tuning (TRIOT). Our proposed

TRIOT can further improve the identity preservation after face attribute

editing, especially for local attributes. We compare the TRIOT with two

ablation baselines: w/o TRIOT, and w/ TRIOT-. The w/o TRIOT elimi-

nates the optimization stage, and w/TRIOT- excludes the geometry consis-
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tency loss from the optimization objective. As shown in Fig. 3.7, our model

can change the attribute “Expression” from “Smile” to “No-Smile” and the

variant with TRIOT shows better preservation of non-target regions than

the variant w/o TRIOT. This can be seen from the styles of bangs and

corresponding heatmaps. Compared to w/ TRIOT-, w/TRIOT achieves a

better balance between editing and preservation while w/TRIOT- suffers

from inaccurate editing in geometry. Quantitative results from 100 test

samples are presented in Table 3.3. The variant with TRIOT shows the

best LP score, consistent with visual results in Fig. 3.7. All three variants

achieve similar scores in other metrics (CA, aMP and FRS), demonstrating

that our TRIOT does not harm editing ability or view consistency of the

model.

Double branches Attribute Editing Module (DAEM). We discard

the reconstruction branches with the corresponding loss to compare our

original double branches attribute editing module (DAEM). Fig. 3.11 shows

our DAEM is better at preserving the non-target attribute and regions than

it without reconstruction branches.

3.4.4 Applications

Multiple-attribute Editing. In addition to the previous single-attribute

edits shown in Fig. 3.3, our model can also perform sequential editing of

multiple attributes. Fig. 3.10 shows high-quality edits for the sequence

“Expression + Age + Hair color”. Multiple-view results for these edits

are presented at the bottom of each row, demonstrating that our model

maintains strong 3D-view consistency in these cases.

Reference-based Geometry Editing. Disentangling geometry and tex-

tures is not easy to achieve in previous methods. We propose a simple opti-

mization method for reference-based geometry editing. Fig. 3.9 shows our

geometry editing results, corresponding multiple-view results and meshes.
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In the middle case, we can see that the face has been enlarged in size to

match the geometry of the reference image while preserving appearance

(e.g., identity and hair color).

Label Interpolation. We show the attribute transfer results by continu-

ously interpolating the attribute label. We take the attribute “Expression”

as an example. Fig. 3.12 shows the interpolation results corresponding to

the labels ranging from -1 to 1. We can observe that the facial expression

has been changed gradually from “Smile” to “No-Smile”, while the iden-

tity (including the geometry) has minor changes. As mentioned above, the

proposed TRIOT method can be used to alleviate this problem.

GAN Inversion for Real Image Editing. We utilize the state-of-

the-art GAN Inversion method (PTI) to project real images into the la-

tent space of our 3D-GAN. Then, we perform real image editing with our

proposed DAEM and TRIOT methods. We show the results of the PTI

method for TT-GeNRF (E). PTI for TT-GNeRF (S) suffers from low-

quality generation and editing. We observe that tuning step of PTI can

harm the geometry of StyleSDF. In detail for TT-GNeRF (E), we follow

two steps of PTI: 1) optimizing the latent code to obtain the correspond-

ing projected latent of the real image while fixing the generator parameters

(including DAEM); 2) fixing the optimized latent code and the parameters

of DAEM while finetuning the remaining parameters of the generator. Af-

terward, we perform image editing using DAEM for the projected latent

code.

Fig. 3.13 shows real image inversion and editing results for “Expres-

sion”, “Gender” and “Age” attributes. The 2nd column shows that we can

produce almost perfect reconstruction for the real images. After that, our

model can achieve attribute editing. Moreover, the non-target region is

well preserved. Finally, our model’s multiple-view results also show strong

3D consistency.
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We refer to the demo video for more results about multiple-view at-

tribute editing, reference-based geometry editing, and GAN inversion for

real image editing.

3.5 Conclusion

In this work, we propose an attribute-conditional 3D-aware face generation

and editing model, which shows the disentangling abilities of the genera-

tive neural radiance field with attributes as inputs. Moreover, we integrate

the training method for the proposed DAEM and the optimization method

(TRIOT) into the 3D-aware face editing task to balance the best trade-off

between quality and efficiency. Our model can achieve higher-quality 3D-

aware face attribute editing compared to previous methods while better

preserving the 3D consistency for different view generations. The qualita-

tive and quantitative results demonstrate the superiority of our method.

Additionally, our model achieves geometry editing with the simple opti-

mization method while preserving the appearance.

However, there still exist some limitations. First, our model fails in

editing the facial attribute in some cases. For example, the age column of

Table 3.1 shows that our CA score is worse than some methods. Future

work could alleviate this by learning a better classifier in the discriminator.

Second, our proposed TRIOT still costs some minutes for single attribute

editing; thus, it is unacceptable for some real application scenarios. Finally,

as shown in Fig. 3.13, our model can achieve the single image 3D model

and perform attribute editing. However, compared to video-based head

avatars [42, 219], the identity is not well preserved between real images and

projected images. Proposing better GAN inversion techniques adapted for

3D-Aware GAN can further alleviate this problem. In the Chapter 4, we

introduce our method, 3DSGAN for 3D-aware human image editing.
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Chapter 4

Exploring 3D-Aware Human Image

Editing

4.1 Introduction

Recent deep generative models can generate and manipulate high-quality

images. For instance, Generative Adversarial Networks (GANs) [47], have

been applied to different tasks, such as image-to-image translation [227, 27,

67], portrait editing [5, 162, 185, 164], and semantic image synthesis [140],

to mention a few. However, most state-of-the-art GAN models [52, 76,

80, 82, 77, 55, 78] are trained using 2D images only, operate in the 2D

domain, and ignore the 3D nature of the world. Thus, they often struggle

to disentangle the underlying 3D factors of the represented objects.

Recently, different 3D-aware generative models [128, 129, 195] have

been proposed to solve this problem. Since most of these methods do

not need 3D annotations, they can create 3D content while reducing the

hardware costs of common computer graphics alternatives. Differently

from generating 3D untextured shapes [195, 41], some of these meth-

ods [229, 24, 128, 102, 129] focus on 3D-aware realistic image generation

and controllability. Generally speaking, these models mimic the traditional

computer graphics rendering pipeline: they first model the 3D structure,
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then they use a (differentiable) projection module to project the 3D struc-

ture into 2D images. The latter may be a depth map [24], a sketch [229] or

a feature map [128] which is finally mapped into the real image by a ren-

dering module. During training, some methods require 3D data [229, 24],

and some [128, 102, 129] can learn a 3D representation directly from raw

images.

An important class of implicit 3D representations are the Neural Radi-

ance Fields (NeRFs), which can generate high-quality unseen views of com-

plex scenes [123, 72, 36, 147, 146, 148, 19]. Generative NeRFs (GNeRFs)

combine NeRFs with GANs in order to condition the generation process

with a latent code governing the object’s appearance or shape [160, 19, 132].

However, these methods [160, 19, 132, 137, 220] focus on relatively simple

and “rigid” objects, such as cars and faces, and they usually struggle to gen-

erate highly non-rigid objects such as the human body (e.g., see Fig. 4.1).

This is likely due to the fact that the human body appearance is highly

variable because of both its articulated poses and the variability of the

clothes texture, being these two factors entangled with each other. Thus,

adversarially learning the data distribution modeling all these factors, is a

hard task, especially when the training set is relatively small.

To mitigate this problem, we propose to split the human generation

process in two separate steps and use intermediate segmentation masks

as the bridge of these two stages. Specifically, our 3D-aware Semantic-

Guided Generative model (3D-SGAN) is composed of two generators: a

GNeRF model and a texture generator. The GNeRF model learns the 3D

structure of the human body and generates a semantic segmentation of the

main body components, which is largely invariant to the surface texture.

The texture generator translates the previous segmentation output into a

photo-realistic image. To control the texture style, a Variational AutoEn-

coder (VAE [89]) approach with a StyleGAN-like [82] decoder is used to
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modulate the final decoding process. The similar idea has been used in

[97], but their semantic generator is 2D, and it cannot perform 3D manip-

ulations. We empirically show that splitting the human generation process

into these two stages brings the following three advantages. First, the GN-

eRF model is able to learn the intrinsic 3D geometry of the human body,

even when trained with a small dataset. Second, the texture generator can

successfully translate semantic information into a textured object. Third,

both generators can be controlled by explicitly varying their respective

conditioning latent codes. Moreover, we propose two consistency losses to

further disentangle the latent codes representing the garment type (which

we call the “semantic” code) and the human pose. Finally, since there is no

general metric which can be used to evaluate the 3D consistency of image

generation with multiple viewpoints, we propose a point matching-based

metric which we name average Matched Points (aMP). Experiments con-

ducted on the DeepFashion dataset [110] show that 3D-SGAN can generate

high-quality person images significantly outperforming state-of-the-art ap-

proaches. In summary, the main contributions of this work are:

1) We propose 3D-SGAN, which combines a GNeRF with a VAE-

conditioned texture generator for human-image synthesis. And

our code has been released at https://github.com/zhangqianhui/

3DSGAN

2) We propose two consistency losses to increase the disentanglement

between semantic information (e.g., garment type) and the human

pose.

3) We show that 3D-SGAN generates high-quality human images, signif-

icantly outperforming the previous controllable state-of-the-art meth-

ods.

4) We propose a new metric (aMP) to evaluate the 3D-view consistency.
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GRAF GIRAFFE 3D-SGANpi-GAN ShadeGAN RealCIPS-3D

Figure 4.1: A qualitative comparison between different generation methods: GRAF [160],

pi-GAN [19], GIRAFFE [132], ShadeGAN [137] CIPS-3D [220], and 3D-SGAN (Ours).

4.2 Background

3D-aware image synthesis is based on generative models which incor-

porate a 3D scene representation. This allows rendering photo-realistic

images from different viewpoints. Early methods use GAN-based architec-

tures for building 3D voxel [195, 41, 115, 60] or mesh [150, 58] representa-

tions. However, they mostly focus on learning untextured 3D structures.

More recently, different methods learn textured representations directly

from 2D images [190, 229, 128, 160, 36, 131, 132]. The resulting control-

lable 3D scene representation can be used for image synthesis. Some of

these methods [229, 24] require extra 3D data for disentangling shape from

texture. The main idea is to generate an internal 3D shape and then project

this shape into 2D sketches [229] or depth maps [24], which are finally ren-

dered in a realistic image. Other methods are directly trained on 2D images

without using 3D data [128, 160, 129, 132, 198, 175]. For instance, inspired

by StyleGAN2 [82], Thu et al. [128] propose HoloGAN, which predicts 3D

abstract features using 3D convolutions, and then projects these features

into a 2D representation which is finally decoded into an image. However,

the learnable projection function, e.g., the decoder, results in an entan-

gled representation, thus the view-consistency of the generated images is
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degraded. Katja et al. [160] use a NeRF to represent the 3D scene and a

volume rendering technique to render the final image. However, this model

works at relatively low image resolutions and it is restricted to single-object

scenes. To tackle these issues, some works propose object-aware scene rep-

resentations. For example, Liao et al. [102] combine a 2D generator and a

projection module with a 3D generator which outputs multiple abstract 3D

primitives. Every stage in this model outputs multiple terms to separately

represent each object. Instead of abstract 3D primitives, Phuoc et al. [129]

use a voxel feature grid as the 3D representation, but their method fails

to generate consistent images at high-resolution. Michael et al. [132] re-

cently introduced GIRAFFE, a multiple-object scene representation based

on NeRFs, jointly with an object composition operator. GIRAFFE is

the state-of-the-art 3D-aware approach for both single and multiple object

generation tasks. A few very recent papers [137, 178] propose to learn an

accurate object geometry by introducing a relighting module into the ren-

dering process. Xu et al. [200], explicitly learn a structural and a textural

representation (a feature volume), which is used jointly with the implicit

NeRF mechanism. Chan et al. [20], propose to replace the 3D volume

with three projection feature planes. Finally, 3D-consistency is addressed

in [50, 220, 135], where, e.g., StyleGAN-based networks are used for neural

rendering. However, most of these works fail to disentangle the semantic

attributes.

While previous methods can achieve impressive rigid-object generation

and manipulation results, they usually struggle to deal with non-rigid ob-

jects with complex pose and texture variations. For instance, the human

body is a non-rigid object which is very important in many generative

applications.

GANs for human generation. GANs [47] have been widely used for

different object categories, for instance, faces [79, 76, 80, 16], cars [79, 80,
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Figure 4.2: An overview of the proposed 3D-SGAN architecture, composed of two main

generators. G3D (on the left) follows a GNeRF structure, with a NeRF kernel used to

represent implicit 3D information, latent codes governing different appearance variations

and a discriminator (Ds) which is used for adversarial training. The output of G3D is

the semantic masks Ĩs (middle). The second generator (Gt, right) translates the semantic

masks into a photo-realistic image Ĩ. Also Gt is trained adversarially (see top right, the

second discriminator Dt). The human generation process can be controlled by interpolat-

ing different latent codes: the semantics zzzs, the pose zzzp, the camera zzzc, and the texture

code zzzt. The bottom of the figure shows the GAN inversion scheme.

160, 129], and churches [132]. However, GANs still struggle to produce

high-quality full-human body images, because of the complex pose varia-

tions. Very recently, Sarkar et al. [158] proposed a VAE-GAN model for

the pose transfer and the part sampling tasks. In more detail, this model

extracts an UV texture map from the input image using DensePose [8], and

then encodes the texture into a Gaussian distribution. Then, it samples

from this distribution and warps the sample into the target pose space.

Finally, the warped latent code is used as input to the decoder. Compared

to Sarkar et al. [158], our method does not use an SMPL nor DensePose

to extract the point correspondences as additional supervised information.

Despite that, 3D-SGAN can learn 3D representations of the human body

and control the generation process (e.g., by changing the input camera

parameters).

StylePeople [49] is based on a full-body human avatar, which combines
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StyleGANv2 [82] with neural dressing. The StyleGANv2 module samples

neural textures, and these textures are superimposed on the meshes of an

SMPL. The textured meshes are finally rendered into an image. In contrast,

our 3D-SGAN can perform semantic disentanglement and manipulation

using semantic codes.

Pose transfer aims to synthesize person images in a novel view or in a

new pose. This is a very challenging task, since it requires very complicated

spatial transformations to account for different poses. Most works in this

field can be categorized by the way in which the human pose is represented.

Early works are based on keypoints [118, 168, 231, 149, 180, 119, 121, 66,

10, 116, 74, 169, 222, 155, 172, 204, 156]. More recent methods [48, 126,

159, 157, 107] use correspondences between pixel location in 2D images and

points in SMPL [112] (usually estimated using DensePose [51]). However,

these approaches usually struggle to simultaneously provide a realistic and

a 3D controllable person generation.

4.3 Preliminaries

NeRF [123] is an implicit model which represents a 3D scene using the

weights of a multilayer perceptron (MLP). This MLP (h) takes as input a

3D coordinate xxx ∈ R3 and a view direction ddd ∈ R2, and outputs the density

(or “opacity”, o) and the view-dependent RGB color value ccc:

(ccc, o) = h(γ(xxx), γ(ddd)), (4.1)

where γ is a positional encoding function [187]. On the other hand, Gen-

erative NeRF (GNeRF) [160] is a NeRF conditioned on the latent codes

zzzg and zzza, respectively representing the geometric shape and the object

appearance, and drawn from a priori distributions. GNeRFs [160, 132] are

trained using an adversarial approach. In GIRAFFE [132], the color value
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(ccc in Eq. 4.1) is replaced by an intermediate feature vector fff :

(fff, o) = h(γ(xxx), γ(ddd), zzzg, zzza). (4.2)

fff is mapped into a photo-realistic image using a volume and neural

rendering module R and fed to a discriminator (more details in [160, 132]).

Our 3D generator (see Sec. 4.4) is inspired by GIRAFFE [132]. However,

it learns to produce a segmentation image, a simpler task with respect to

directly generating a photo-realistic image.

4.4 3D-SGAN

Fig. 4.2 shows the proposed 3D-SGAN architecture, composed of two main

modules: a 3D-based segmentation mask generator and a texture gener-

ator. The former (G3D) generates semantic segmentation masks of the

human body which correspond to the main body parts and depend on

the type of clothes, the camera viewpoint and the human pose. On the

other hand, the texture generator (Gt) takes as input these segmentation

masks and translates them into a photo-realistic image, adding a texture

style randomly drawn from a pre-learned marginal distribution. The two

modules are trained separately.

4.4.1 3D Generator for Semantic Mask Rendering

Given a set of 2D human image samples {I i}Ni=1, we first use an off-the-shelf

human parsing tool [9] to obtain the corresponding ground-truth semantic

segmentation masks {I is}Ni=1. Using T = {(I i, I is)}Ni=1 as our training set,

the goal is to train a two-step generative model:

Ĩ = G(zzzc, zzzs, zzzp, zzzt) = Gt(G3D(zzzc, zzzs, zzzp), zzzt), (4.3)

where Ĩ is the final generated image. The latent codes zzzc ∼ Pc (see Sec.4.5),

zzzs ∼ N (0, III), zzzp ∼ N (0, III), and zzzt ∼ N (0, III) represent, respectively: the
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camera viewpoint, the semantics (i.e., the garment type), the body pose

and the human texture.

The structure of our 3D Generator G3D is inspired by GIRAFFE [132]

(Sec. 4.3). However, differently from [160, 132], which learn to generate a

textured object, in our case, h learns to generate a semantically segmented

image. Specifically, we use a latent semantic code (zzzs) to condition the

final segmentation output on the type of garment. As shown in Fig. 4.2,

zzzs does not influence the opacity generation branch, and it is injected into

the direction-dependent branch, which finally outputs a feature vector fff ,

representing a point-wise semantic content. Formally, we have:

(fff, o) = h(γ(xxx), γ(ddd), zzzc, zzzs, zzzp). (4.4)

Following [160, 132], we generate a set of pairs {(fff, o)} which are finally

projected into the 2D plane using a rendering module R [123, 132] (see

section 4.3), and represented by the segmentation masks Ĩs. Specifically,

Ĩs is a tensor composed of ns channels, where each channel represents a

segmentation mask of the same spatial resolution of the real images in T

(Fig. 4.2).

G3D is trained jointly with a discriminator Ds, which learns to discrim-

inate between real (Is) and fake (Ĩs) segmentation masks (more details in

Sec. 4.4.4).

4.4.2 VAE-Conditioned Texture Generator

The goal of our texture generator Gt is twofold: (1) mapping the segmen-

tation masks Ĩs generated by G3D into a textured human image and (2)

learning a marginal distribution of the human texture using the dataset

T . The latter is obtained using a Variational AutoEncoder (VAE [89])

framework, which we use to learn how to modulate the texture style of the

decoder. Specifically, as shown in Fig. 4.3, Gt is composed of a semantic
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encoder Es, a texture encoder Et, and a decoder De. De is based on a

StyleGANv2 architecture [82], in which a style code is used to “demodu-

late” the weights of each convolutional layer. We modify this architecture

using a variational approach, in which the style code, at inference time,

is extracted from a learned marginal distribution. In more detail, given a

segmentation tensor Is, we use Es to extract the semantic content which

is decoded into the final image using De and a texture code zzzt. The latter

is sampled using the VAE encoder Et, which converts a real input im-

age I into a latent-space normal distribution (N (µµµ,σσσ)), from which zzzt is

randomly chosen:

(µµµ,σσσ) = Et(I), zzzt ∼ N (µµµ,σσσ), Ĩ = De(Es(Is), zzzt). (4.5)

Gt is trained using the pairs in T . Specifically, given a pair of samples

(I i, I is), we use an adversarial loss Lt
adv (and a dedicated discriminator

Dt), jointly with a reconstruction loss Lr, and a standard Kullback-Leibler

divergence (Dkl) loss (Lkl) [89]:

Lr = ||Gt(I
i
s, zzzt)− I i||1, ℓkl = Dkl(N (µµµ,σσσ)||N (000, III)). (4.6)

Note that, in the reconstruction process, Gt cannot ignore the segmentation

tensor (I is) and its corresponding encoder Es. In fact, the information

extracted from the real image I, and encoded using Et, is not enough for

the decoder to represent the image content, since zzzt is used only as a style

modulator in De.

4.4.3 Consistency Losses for Semantics and Pose Disentangle-

ment

InG3D, the opacity value (o), computed by h, does not depend on the latent

code zzzs. Despite that, we have empirically observed that the semantics (zzzs)

and the pose (zzzp) representations are highly entangled. We presume this
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cz

cz

1sz

2sz

pz

pz

cz

cz

ssL

sum

sum

sz

sz

1pz

2pz psL

（a） （b）

3DG

3DG

3DG

3DG

B

B

1ps

2ps

Figure 4.4: A schematic representation of our consistency losses ℓss (a) and ℓps (b).

is due to the convolutional filters in R (section 4.3), where the two latent

factors are implicitly merged. In order to increase the disentanglement of

these factors, we propose two self-supervised consistency losses.

Silhouette-based geometric consistency. This loss is based on the

idea that two different body segmentations (e.g., long-sleeve vs. short-

sleeve, etc.), produced using two different semantic codes zzzs1 and zzzs2, but

keeping fixed the pose and the camera codes, once they are binarized, should

correspond to roughly the same silhouette (see Fig. 4.4 (a)). Formally, the

proposed geometric consistency loss Lss is defined as:

Lss =∥B(G3D(zzzc, zzzs1, zzzp))−B(G3D(zzzc, zzzs2, zzzp))∥1, (4.7)

where B(Ĩs) maps the segmentation masks Ĩs into a binary silhouette im-

age.
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Pose-based semantic consistency. Analogously to Lss, the proposed

pose-based semantic consistency loss is based on the idea that two different

pose codes should produce a similar body segmentation. However, as shown

in Fig. 4.4 (b), despite the body being partitioned in similar semantic

segments (e.g., because the clothes have not changed), when the human

pose changes, the overall spatial layout of these segments can also change

(e.g., see the two different arm positions in Fig. 4.4 (b)). For this reason,

we formulate a semantic consistency loss (Lps) which is spatial-invariant,

and it is based on the channel-by-channel comparison of two segmentation

masks. In more detail, given two different pose codes zzzp1 and zzzp2, and fixing

the semantics and the camera code, we first produce two corresponding

segmentation tensors Ĩ1s and Ĩ2s . Then, for each tensor and each channel,

we sum all the channel-specific mask values over the spatial dimension and

we get two spatial invariant vectors sssp1, sssp2 ∈ Rns. Finally, Lps is given by:

Lps =
∑ns

i=1
[max(

| sssp1[i]− sssp2[i] |
sssp1[i] + ϵ

, ρ)− ρ], (4.8)

where sss[i] is the i-th channel value of vector sss, ϵ is a small value used for

numerical stability, and ρ is a margin representing the tolerable channel-

wise difference.

4.4.4 Training and inference

G3D is trained using an adversarial loss (Ls
adv) jointly with Lss and Lps

(Sec. 4.4.3):

L3D = Ls
adv + λ1Lss + λ2Lps, (4.9)

where λ1 and λ2 are hyper-parameters controlling the contribution of each

loss term.

Gt is trained using a variational-adversarial approach (VAE-GAN [96]):

Ltr = Lt
adv + λ3Lr + λ4Lkl, (4.10)
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Figure 4.5: A qualitative comparison. ‘Random’ means that the results are generated

by randomly sampling the latent codes from the corresponding learned marginal distri-

butions. The other 3 columns show controllable person generations with respect to the

rotation, the human pose, and the texture attribute. The lack of the ’Object Pose’ and

the ’Texture’ results for both pi-GAN and ShadeGAN is due to the fact that both meth-

ods use a single latent code to model both the texture and the geometry.

where λ3 and λ4 are hyper-parameters, and Ltr is the overall objective

function of Gt.

G3D and Gt are trained separately. However, at inference time, the

tensor Ĩs, generated by G3D, is fed to Gt, along with a texture code zzzt,

randomly drawn from a standard normal distribution:

zzzt ∼ N (000, III), Ĩ = De(Es(Ĩs), zzzt). (4.11)

4.4.5 Real Image Editing using GAN Inversion

The variational method proposed in section 4.4.2 cannot completely re-

construct the input image. For real image editing, we use a GAN inver-

sion technique [3] to optimize the values of the latent codes corresponding

to a real input image I. Since we have two separate generators (G3D
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Table 4.1: A quantitative comparison using the FID (↓) and the aMP (↑) scores.

Method
FID ↓ aMP ↑

Random Rotation Object-Pose Texture Rotation

GRAF [160] 52.68 176.9 57.76 220.9 64.0

pi-GAN [19] 137.6 213.7 - - 58.0

GIRAFFE [132] 42.73 123.4 82.61 98.41 51.0

ShadeGAN [137] 134.7 232.4 - - 89.0

CIPS-3D [220] 69.45 156.9 233.6 36.16 60.0

3D-SGAN 8.240 117.3 54.00 60.63 81.0

and Gt), the optimization process is based on two steps (see Fig. 4.2,

bottom). Specifically, given a pair of real image and its corresponding

segmentation masks (extracted using [9], see Sec. 4.4.1) (I, Is), we first

generate Ĩs = G3D(zzzc, zzzs, zzzp) and we optimize ||Ĩs − Is||1 with respect

to zzzc, zzzs and zzzp. Let zzz∗c, zzz
∗
s and zzz∗p be the optimal values so found, and

let Ĩ∗s = G3D(zzz
∗
c, zzz

∗
s, zzz

∗
p). Then, we use Ĩ = Gt(Ĩ

∗
s , zzzt) and we optimize

||Ĩ − I||1 + τLPIPS(Ĩ , I) with respect to zzzt, where LPIPS(I1, I2) is the

LPIPS distance between two images [214] and we use τ = 10.

Once obtained the latent codes (zzz∗c, zzz
∗
s, zzz

∗
p, zzz

∗
t ) corresponding to a real

image, editing can be easily done by changing these codes.

4.5 Experiments

Datasets. We use the DeepFashion In-shop Clothes Retrieval bench-

mark [110], which consists of 52,712 high-resolution (1101×750 pixels)

person images with various appearances and poses. This dataset has been

widely used in pose transfer tasks. We use the following preprocessing.

First, we remove overly cropped images, such as incomplete images of

humans. Then, the remaining 42,977 images are resized into a 256×256

resolution, and are divided into 41,001 training and 1,976 testing images.
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GRAF  pi-GAN GIRAFFE 

3D-SGAN  ShadeGAN CIPS-3D 

: 73MP : 43MP : 50MP

: 94MP : 65MP :86MP

Figure 4.6: ComputingMP between pairs of generated images with 2 different viewpoints.

Training details. Following GIRAFFE [132], the camera distribution Pc

can be implemented by first sampling the camera code from a uniform

distribution over the dataset-dependent camera elevation angles, and then

applying an object affine transformation to sample 3D points and rays.

Both Gt and G3D are trained using the RMSprop optimizer [88]. The

learning rate for both the discriminator and the generator is set to 10−4.

For the loss weights, we use: λ1=0.01, λ2=0.01, λ3=1, and λ4=1. For GAN

inversion, we use the Adam optimizer [87] with a learning rate of 10−2.

Baselines. We compare 3D-SGAN with five state-of-the-art 3D-aware

generative approaches, i.e., GRAF [160], pi-GAN [19], GIRAFFE [132],

ShadeGAN [137] and CIPS-3D [220]. For each baseline, we use the cor-

responding publicly available code with a few minor adaptations for the

DeepFashion dataset. Note that some concurrent methods, such as StyleN-

eRF [50], GRAM [35], Tri-plane [20], StyleSDF [136] achieve a performance

very similar to CIPS-3D. Moreover, for some of them there is no released

code yet, thus, a direct comparison is not possible.

Metrics. We adopt the widely used FID [61] scores to evaluate the quality

of the generated human images, following common protocols (e.g., using

5,000 fake samples, etc.). And we propose the average Matched Points
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Figure 4.7: Controllable person generation by interpolating latent codes (Rows 1-4). The

fifth row shows texture generation results obtained randomly sampling zzzt.

(aMP) to evaluate the 3D-view consistency of the generated images.

4.5.1 Comparisons with State-Of-the-Art Methods

Unconditioned human generation. Fig. 4.5 (“Random” column) shows

a qualitative comparison between image samples generated by all the mod-

els. GRAF [160], pi-GAN [19] and ShadeGAN [137] fail to generate realistic

human images. GIRAFFE [132] and CIPS-3D [220] generate reasonable

human images, but they suffer from visual artifacts and texture blurs.

In contrast, 3D-SGAN synthesizes much better and more photo-realistic

images. This qualitative analysis is confirmed in Tab. 4.1, where the cor-

responding FID scores show that 3D-SGAN significantly outperforms all

the other baselines.

Controllable human generation. We analyse the representation con-

trollability of all the models, which reflects the ability to disentangle differ-

ent attributes from each other. We do this by manipulating a single latent
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code while fixing the others. Fig. 4.5 (columns “Rotation”, “Object Pose”

and “Texture”) shows a qualitative comparison by varying only a single

latent code. We observe that all the models can rotate the camera view-

point. However, GRAF and CIPS-3D fail to disentangle the object pose

and the texture. Moreover, pi-GAN and ShadeGAN also suffer from the

same problem, since they use one single latent code to model both texture

and geometry. On the other hand, both GIRAFFE [132] and 3D-SGAN can

effectively disentangle the different variation factors, but GIRAFFE [132]

suffers from multi-view inconsistencies and mode collapse for the texture

generation. In Table 4.1, we use FID scores to evaluate the realistic degree

of each attribute (e.g., “Rotation”, etc.). This is done computing FIDs us-

ing only the manipulated (e.g., rotated) fake images, which are compared

with all the real images in the dataset. Note that this protocol cannot mea-

sure the attribute-based consistency. In most cases, 3D-SGAN has better

FID scores than the other baselines.

In order to evaluate the 3D-view consistency, we use our proposed aMP

metric (section 4.5). Table 4.1 shows that 3D-SGAN gets the best aMP

scores with respect to all the other methods except from ShadeGAN, which

however generates much less realistic images, as testified by the very high

FIDs (134.7 vs. our 8.24, Table 4.1, first column) and qualitatively shown

in Fig. 4.6.

Fig. 4.7 shows additional controllable human image generation results

obtained with 3D-SGAN. The generated images are realistic and, in most

cases, the attributes are effectively disentangled. Specifically, Fig. 4.7 (1-st

row) shows camera rotation results. The images generated by interpolating

the camera pose parameter are consistent, and the transition from one

image to the next is smooth, while simultaneously preserving the other

attributes such as the texture and the pose. On the other hand, the second

row shows images generated by interpolating the pose code. We again
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Figure 4.8: A qualitative analysis of ℓss (a), ℓps (b), and G3D (c). (a) and (c) show

interpolation results between semantics codes zzzs1 and zzzs2. (b) shows interpolation results

between pose codes zzzp1 and zzzp2.

Table 4.2: A quantitative analysis of ℓss (left) and ℓps (right). In the latter case, we use

LPIPS to measure the diversity of sample pairs generated by interpolating zzzp.

Metrics w/o ℓss w/ ℓss Metrics w/o ℓps w/ ℓps

L1 ↓ 5.2489 3.9614 LPIPS ↓ 0.1132 0.0393

observe that human identity has been well preserved. Similarly, the other

rows show that the non-target attributes have been well preserved. Finally,

the third row shows that the head poses from left to right undergo only

minor changes (“face frontalization”). This is likely due to both the limited

training data and the data bias of the typical fashion images, where people

have a frontal face.

4.5.2 Ablation study

The consistency losses. Fig. 4.8 (a) shows a comparison between the

results generated by 3D-SGAN with and without ℓss. The effectiveness

of ℓss is shown by observing that, when removed, the generation process

suffers from serious geometric inconsistencies. Specifically, the segmenta-

tion masks in Fig. 4.8 (a1) have undesirable pose variations, while Fig. 4.8

(a2) shows that ℓss can largely alleviate this problem. To quantitatively
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Semantic Masks

Semantic Masks VAE

VAE

(a)

(a)

(b)
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w/o w/o

w/ w/

Figure 4.9: An analysis of the impact of the semantic masks (a) and the VAE-conditioned

texture generator (b).

Table 4.3: A quantitative analysis of the 3D generator G3D, the semantic masks (SMs)

and the VAE in our 3D-SGAN.

Metrics w/ G2D w/o SMs w/o VAE full

FID ↓ 13.24 66.79 14.35 8.240

evaluate this effect, we randomly sample two different semantic codes and

we compute the L1 distance between the silhouettes of the corresponding

generated segmentations. We average the scores over 500 different samples.

The results reported in Table 4.2 (left) validate the effectiveness of this loss

for improving the geometric consistency.

Analogously, Fig. 4.8 (b) qualitatively evaluates the impact of ℓps with

respect to the semantic consistency over different pose codes. For instance,

in Fig. 4.8 (b1) there is no “red” region in the segmentation masks in the

first and in the second column. However, this region is present in columns

3 and 4. Conversely, Fig. 4.8 (a2) shows that ℓps can alleviate this phe-

nomenon. To quantitatively evaluate lps, we use LPIPS [214], and we

measure the average pairwise diversity of the sample pairs generated by

interpolating zp (the lower the diversity, the higher the intra-pair consis-

tency). Tab. 4.2 (right) shows that the full model achieves a lower diversity

than the variant without ℓps.

The 3D generator. To evaluate the benefit of using a GNeRF based

generator, we replace it with a vanilla GAN (G2D), which takes the pose
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and the semantics code as inputs. In this experiment, we keep all the other

modules fixed. Note that G2D cannot manipulate the camera parameters

and, thus, it cannot generate images from multiple viewpoints. Moreover,

G3D can better disentangle the semantics and the pose factors with respect

to G2D, as demonstrated by Fig. 4.8 (c), where we show interpolation

results between two different semantic codes. Tab. 4.3 shows the G3D (the

full model) achieves significantly better FID scores than G2D.

The semantic masks and the texture generator. Existing methods

such as GRAF [160] and GIRAFFE [132] do not use an additional texture

generator which translates semantic masks into textured images. In con-

trast, the effectiveness of our semantic-based approach is shown in Fig. 4.5

and Table 4.1. However, to provide an apple-to-apple comparison and fur-

ther verify the effectiveness of the semantic masks, we use an additional

baseline. Specifically, in this baseline, we render the 3D representation

of G3D into features rather than semantic masks and we use the texture

generator to map these features into the final image. Fig. 4.9 (a) shows

the comparison of our full model with this baseline. We observe that the

baseline (w/o semantic masks) fails to generate high-quality human im-

ages. Tab. 4.3 shows that the full model quantitatively outperforms this

baseline in terms of FID scores.

The Variational Autoencoder. We evaluate the effect of conditioning

Gt using a VAE (section 4.4.2). This is done by removing the texture

encoder Et jointly with ℓkl and ℓr from eq. (4.10). Fig. 4.9 (b) shows the

comparison between the VAE-based approach and this variant. Both mod-

els generate human images with a high texture variability. However, the

variant w/o VAE fails to preserve semantic information, i.e., the coherence

between the semantic masks, describing the clothes layout, and the final

generated clothes. This shows that our VAE-based Gt learns to effectively

map the semantic tensors to human images while modeling the texture
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Real Inversion *
sz

Figure 4.10: Real data semantic editing results using GAN inversion.

distribution with the latent code zzzt. Tab. 4.3 shows that this variant is

significantly outperformed by the proposed VAE-based encoder.

4.5.3 Real Human Image Editing

In this section, we use GAN inversion for real data editing tasks. The sec-

ond column of Fig. 4.10 shows that the optimal code values (zzz∗c, zzz
∗
s, zzz

∗
p, zzz

∗
t ),

obtained using the procedure described in Sec. 4.4.5, lead to an effective

reconstruction of the real input data (first column). In the other columns,

we linearly manipulate the semantic code zzz∗s while keeping fixed the other

codes. Specifically, the second row of Fig. 4.10 shows the generated im-

ages corresponding to the semantic masks in the first row. These results

demonstrates the effectiveness of the GAN inversion mechanism and the

possibility to apply our model to a wide range of human image editing

tasks. We computed the average LPIPS and MS-SSIM scores between

real and inversion images, respectively obtaining 0.0301 and 0.912, which

confirms the high reconstruction quality of our inversion.
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4.6 Conclusion

We proposed a 3D-aware Semantic-Guided Generative model (3D-SGAN)

for human synthesis. We use a generative NeRF to implicitly represent the

3D human body and we render the 3D representation into 2D segmenta-

tion masks. Then, these masks are mapped into the final images using a

VAE-conditioned texture generator. Moreover, we propose two consistency

losses further disentangle the pose and the semantics factors. Our exper-

iments show that the proposed approach generates human images which

are significantly more realistic and more controllable than state-of-the-art

methods.
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Chapter 5

Conclusion and Future Work

In this thesis, we have presented three methods focusing on global or local

human image generation and editing tasks: local gaze editing, local face

attribute editing, and global human image generation and editing.

In Chapter 2, we propose a novel unsupervised method, GazeGAN, and

extend it to a high-resolution version, GazeGANV2, for gaze-direction cor-

rection and animation tasks. GazeGAN and GazeGANV2 formulate the

gaze correction problem as an inpainting task and employ a coarse-to-fine

learning strategy to generate high-resolution images. Additionally, we in-

troduce a gaze animation module and a Synthesis-As-Training method to

generate gaze-correction results with variable angles. Compared to previ-

ous methods, GazeGAN is free of gaze labels and can achieve high-quality

gaze correction and animation in an unsupervised manner.

In Chapter 3, we have developed an attribute-conditional 3D-aware gen-

erative model, TT-GNeRF, which enables the control of multiple facial

attributes. Our approach builds upon a pre-trained 3D-aware model and

integrates a Dual-Branches Attribute-Editing Module to enable attribute-

based generation control. To achieve a better trade-off between attribute

editing and non-target region preservation, we fixed the training model,

used attribute editing results as initial results, and optimized the latent
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vector to search for better results following the proposed objective func-

tion. Compared to previous 2D methods, our approach achieves 3D-aware

facial attribute editing with better view consistency and non-target region

preservation than previous latent-space disentangled methods.

In Chapter 4, we propose a 3D-Aware generative model for semantic-

guided human image generation and editing (3D-SGAN). Based on the

generative neural radiance field, we split the previous pipeline into two

stages using segmentation maps as a bridge. Firstly, we pre-train a Vari-

ational Autoencoder to learn the mapping from semantic segmentation

to human images. Then, we use semantic segmentation to train a 3D-

Aware generative model that can control semantics using 3D factors, such

as camera pose. Based on these two modules, we can attain a 3D-aware

controllable human generative model that supports view-consistent human

attributes and semantic editing tasks. Compared to previous 2D methods,

our model can generate more realistic human images and disentangle more

factors for controllable generation, such as camera pose.

We have conducted an in-depth exploration and development of human

generation and editing tasks using the proposed three models. However,

these models still have several limitations that need to be solved in future

research and development.

1) All of the models are based on generative adversarial networks

(GANs), which suffer from training instability and low-quality gen-

eration. Recently, Diffusion model [63] has outperformed GANs in

most image generation tasks, and it can produce more realistic re-

sults, especially for complex content such as scenes and human im-

ages [230, 153]. Therefore, we can consider using the diffusion model

instead of adversarial loss to improve the quality of generation results.

2) GazeGAN and GazeGANV2 are categorized as generative inpainting
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models, which provide a novel approach to achieving gaze correction

and redirection unsupervised. However, they are not general gaze

redirection models that can redirect eye gaze to a target angle. In

comparison, the latter has more outstanding research and application

value. Furthermore, our model focuses on 2D gaze editing and cannot

perform 3D-aware gaze redirection task. Therefore, we plan to inte-

grate the generative radiance field into the GazeGAN model to extend

GazeGAN into a 3D-aware gaze model capable of gaze editing with

multi-view generation.

3) TT-GNeRF incorporates a double-branch attribute editing module

trained with labels to disentangle the latent space of the generative

neural radiance field. To further enhance the performance of this

module, we propose utilizing the diffusion model to model the label-

conditional distribution of the latent space. We anticipate achieving

more precise attribute editing by employing a conditional diffusion

model for disentangling the latent code.

4) 3D-SGAN is a 3D-aware controllable human generative model with

several limitations. Firstly, it suffers from view inconsistency due to

the neural rendering module that renders the radiance feature field to

the semantics, which is implemented using convolution networks as

the renderer. To address this issue, we propose removing or replac-

ing the neural rendering module with a super-resolution module, as

demonstrated in EG3D [20].

Secondly, 3D-SGAN fails to disentangle the pose, shape, and texture

factors. To overcome this limitation, we suggest integrating the hu-

man mesh from the SMPL model [113] to learn a controllable neural

radiance field. This approach can help disentangle the pose and shape

factors.
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Lastly, to disentangle the texture from geometry, we can follow the

UV-VOLUME [25] and utilize UV to train a generative UV-Volume

and a generative SMPL-Texture. By incorporating the SMPL model

and UV as guidances, we can disentangle the pose, shape, and texture

factors, enabling us to control them independently.
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[167] Aliaksandr Siarohin, Stéphane Lathuilière, Enver Sangineto, and

Nicu Sebe. Appearance and Pose-Conditioned Human Image Gener-

ation using Deformable GANs. TPAMI, 2020.
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