
http://ijgt.ui.ac.ir

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669

Vol. 13 No. 1 (2024), pp. 63-95.

© 2024 University of Isfahan

www.ui.ac.ir

ORBITS CLASSIFYING EXTENSIONS OF PRIME POWER ORDER GROUPS

OIHANA GARAIALDE OCAÑA∗ AND MIMA STANOJKOVSKI

Abstract. The strong isomorphism classes of extensions of finite groups are parametrized by orbits of a

prescribed action on the second cohomology group. We study these orbits in the case of extensions of a

finite abelian p-group by a cyclic factor of order p. As an application, we compute the number and sizes of

these orbits when the initial p-group is generated by at most 3 elements.

1. Introduction

An established way of constructing finite groups is via group extensions. A group E is said to be an

extension of a group G by a group N if there exists a short exact sequence of groups

(1.1) 1 ! N−!E−!G! 1.

Every finite group can be constructed inductively in this way by iterating extensions by simple (composi-

tion) factors. In particular, if p is a prime number, then every finite p-group can be realized via consecutive

extensions with kernel N of order p and, moreover, such extensions are central (it is indeed well-known

that non-trivial p-groups have non-trivial center). An extension like (1.1) is called central if N is central

in E equivalently, if the action of G on N is trivial. Every group of order pn being a central extension of

a group of order pn−1 by Fp, one could hope to classify p-groups by classifying extensions. The famous

p-group generation algorithm of Newman and O’Brien [16] builds upon a structural refinement of this idea.
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A challenging task in the framework of classifying groups via extensions is that of determining whether

two extensions E and E′ are isomorphic as groups, in symbols E ∼= E′. Because of this, it is sometimes

worth it to start by testing isomorphism in a slightly stronger form. Two group extensions

1 ! N
ι

−! E−!G! 1 and 1 ! N
ι′

−! E′−!G! 1

of G by N are strongly isomorphic (following [8, Def. 17.20]), denoted E ∼=s E
′, if there exists an iso-

morphism ϕ : E ! E′ inducing an isomorphism ι(N) ! ι′(N). The extensions E and E′ are equivalent,

denoted E ∼ E′, if ϕ induces the identity on both ι(N) ! ι′(N) and G! G. In particular, it holds that

E ∼ E′ =⇒ E ∼=s E
′ =⇒ E ∼= E′

which in a straightforward manner implies that

#{isomorphism classes} ≤ #{strong isomorphism classes} ≤ #{equivalence classes}.

The equivalence classes of extensions of G by N are in bijection with the elements of the second cohomolo

group H2(G;N), while the strong isomorphism classes are parametrized by orbits of A = Aut(G)×Aut(N)

on H2(G;N); cf. Theorem A. If C2(G;N) denotes the collection of 2-cocycles G×G! N and composition

in Aut(G) is taken from right to left (i.e. τ ◦ σ(x) = τ(σ(x))), then the action of A on C2(G;N) is defined

from the following data:

• the right diagonal action of Aut(G) on C2(G;N) given by

C2(G;N) × Aut(G) −! C2(G;N), (c, σ) 7−! ((x, y) 7! c(σ(x), σ(y))),

• the natural left action of Aut(N) on C2(G;N) given by

Aut(N) × C2(G;N) −! C2(G;N), (λ, c) 7−! ((x, y) 7! λ(c(x, y))).

The last actions respect coboundaries and therefore, if Aut(N) is abelian, we derive the following left

action of A on H2(G;N):

A −! Sym(H2(G;N)), (σ, λ) 7! ([c] 7! [λcσ−1]),

where [c] denotes the cohomology class of c. The following result is a weaker version of [1, Thm. 4.7].

Theorem A. Let p be a prime number, G a finite group, and N a trivial FpG-module. Then the set of

strong isomorphism classes of extensions of G by N is in natural bijection with the collection of orbits of

the action of A on H2(G;N).

We have decided to state the last result only in terms of central extensions, because those are the ones

we will be concerned with. The more general version from [1] allows N to be any FpG-module (actually

the proof works for any ZG-module) and parametrizes strong isomorphism classes in terms of an action

of the compatible pairs of A (in our case, all elements of A). Compatible pairs were introduced in [17]

in the context of computing automorphism groups of extensions. A version of Theorem A for non-fixed
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module structure on N can be found in [11, Satz 1.2]. Many are the applications of Theorem A in the

literature: see for example [1],[6],[4],[5],[9]. Moreover, results similar to Theorem A are employed to count

Lie algebras by extensions; see for instance [13, Thm. 2].

Despite their relevance to the isomorphism problem for finite groups, not much is known about the sizes

of the orbits from Theorem A. In the present paper, we concern ourselves with the case in which G is an

abelian p-group and N = Fp: our goal is to determine the orbits of the action of Ã = Aut(G) × F∗
p on

H2(G;Fp). We remark that, under these last assumptions, the extensions parametrized by H2(G;Fp) are

abelian or with commutator subgroup of order p. The latter class of groups has been classified in [2] with

respect to the group order and relies on the classification of bilinear forms. Our techniques are different

and the results are difficult to compare outside of small order cases. Moreover, we hope that our approach

can be generalized to the study of extensions where N is cyclic or elementary abelian.

1.1. Summary of the main results. Let p be an odd prime number and let G be a finite abelian p-

group. In this paper we are concerned with the orbits of the action of Ã = Aut(G)×F∗
p on H2(G;Fp), where

Fp is viewed as a trivial FpG-module. In this very case, such orbits parametrize the isomorphism classes

of extensions of G by Fp, see Proposition 4.4, and we determine them completely when G is generated by

at most 3 elements. For a minimal generating set of larger size, we describe the orbits within a specific

Ã-stable subset of H2(G;Fp) as we now explain.

Under our assumptions, H2(G;Fp) is an Fp-vector space endowed with a map

∪ : Hom(G,Fp) × Hom(G,Fp) ! H2(G;Fp)

corresponding to the restriction of the cup product in the full cohomology ring of G. A distinguished

subspace of H2(G;Fp) is Ext1ZpG(G,Fp), which parametrizes the equivalence classes of abelian extensions of

G by Fp and, together with the Fp-span of the image of ∪, figures in the following convenient decomposition

as FpÃ-modules: H2(G;Fp) = Ext1ZpG(G,Fp) ⊕ ⟨Im∪⟩.
The Ã-stable subset we analyze is Ext1ZpG(G,Fp) × Im∪ and we do this “projectively”. We write

V = G/pG, d = dimFp(V ), and G(k, V ) for the collection of subspaces of dimension k of V . We show that

there is a somewhat natural bijection of Ã-sets

PExt1ZpG(G,Fp) × P Im∪ ! G(d− 1, V ) × G(d− 2, V )

which shifts the original problem to the determination of Aut(G)-orbits of pairs of subgroups of G. Our

main Theorem 6.1 gives a combinatorial description of the Ã-orbits of Ext1ZpG(G,Fp) × Im∪ in terms of

vectors of data parametrizing the Ã-orbits of such pairs and thus allows the computation of the orbit sizes.

Moreover, this result yields a lower bound on the number of isomorphism types of extensions of G by Fp

and, specifically, the number of isomorphism classes of extensions with centre of index at most p2. It is

worth mentioning that the orbit sizes are, under our assumptions, given by vectors of polynomials in p.

Though maybe not quite surprising given the “low complexity” of the groups we consider, this raises the

question of whether this is always the case.
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We remark that our results also hold true for many 2-groups; see Section 1.2.

1.2. Assumptions and notation. In this section, we set the notation that will hold throughout the

whole paper. Let p be a prime number and let G be a finite abelian p-group, written in additive notation,

of exponent exp(G) = pn and with d(G) = r + 1 ≥ 1, i.e. G is (r + 1)-generated but not r-generated. In

particular, G is non-trivial and n ≥ 1. Let, moreover, C denote a cyclic group of order pn+1 equipped

with a trivial G-action. For each subgroup K of G and nonnegative integer m, we write K[m] for the

m-th torsion subgroup of K, i.e. K[m] = {x ∈ K | mx = 0}. We now fix a decomposition of G into cyclic

summands. For this, we let

• t a positive integer,

• integers 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt = n,

• integers 1 ≤ r1, . . . , rt such that r + 1 = r1 + · · · + rt,

• for each j ∈ {1, . . . , t} and k ∈ {1, . . . , rj}, a cyclic group Ijk of order pnj ,

• for each j ∈ {1, . . . , t}, a free Z/(pnj )-module Ij of rank rj ,

be such that

G =
t⊕

j=1

Ij =
t⊕

j=1

rj⊕
k=1

Ijk with Ij =

rj⊕
k=1

Ijk.

We additionally assume that, if p = 2, then n1 > 1 holds in the above decomposition, equivalently G does

not admit cyclic factors of order 2: the reason for this choice is clarified in Remark 2.1.

We fix generators γjk of Ijk and γ̃ of C. We denote by γ the image of γ̃ under the natural projection

C ! C/pnC, and so γ generates C/pnC. Set, moreover, V = G/pG and denote by π the natural

projection G ! V . For each j ∈ {1, . . . , t} and k ∈ {1, . . . , rj}, we write vjk = π(γjk) and observe that,

as a consequence of their definition, the vjk’s form a basis of V . Denote by V̂ = Hom(V,Fp) the dual of

V of which a basis is given by the homomorphisms v∗jk : V ! Fp satisfying

v∗jk(vhl) = δ(j,k),(h,l) =

1 if (j, k) = (h, l),

0 otherwise.

Let ϕ1 : V ! V̂ denote the isomorphism of vector spaces defined by vjk 7! v∗jk. Write Aut(G) for the

automorphism group of G and, for each σ ∈ Aut(G), denote by σ the element of Aut(V ) that is induced

by σ. Write Zp for the ring of p-adic integers, Z∗
p for its group of units, and set A = Aut(G)×Z∗

p. Denote

by Fp the field of p elements, considered as a trivial ZpG-module, and by F∗
p its group of units. We now

define a series of left actions of A on sets associated to G. For K a finite ZpG-module, the group A acts

on

• Hm(G;K) via the map

(1.2) A −! Sym(Hm(G;K)) defined by (σ, λ) 7! ([c] 7! λ[c]σ−1 = [λcσ−1]);
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• V via the map

(1.3) A −! Aut(V ) defined by (σ, λ) 7! (v 7! λσ(v));

• the collection SG of subgroups of G via

(1.4) A! Sym(SG) defined by (σ, λ) 7! (H 7! σ(H));

• PH2(G;K) via the map

(1.5) A −! Sym(PH2(G;K)) defined by (σ, λ) 7! ([c] 7! [cσ−1]).

If two objects X and Y belong to the same A-orbit, we write X ∼A Y . We write AX meaning the

stabilizer of X in A and, if two elements Y,Z are in the same orbit under the induced action by AX , we

write Y ∼AX
Z. To lighten the notation, if X = [c] ∈ H2(G;Fp), we write Ac instead of A[c].

1.3. Organization and strategy. We describe here briefly the internal structure of this article and the

strategy behind the proofs of our main results.

In Section 2, we briefly describe the cohomological objects we will be dealing with and list a number

of their properties; we also provide more detailed references for the interested reader. We show in Section

2.4 that the abelian extensions of G are parametrized by the elements in the image of the higher order

Bockstein homomorphism. In Sections 2.5 and 2.6, we give two correspondences involving respectively

Ext1ZpG(G,Fp) and the image of the cup product ∪ : Hom(G,Fp)×Hom(G,Fp) ! H2(G;Fp) and interpret

the A-orbits thereof in terms of orbits of subspaces of V .

In Section 3, we define the numbers that will allow us to describe the A-orbits in H2(G;Fp) combi-

natorially and prove some compatibility results regarding the correspondences defined in the previous

section. Such numbers are called the levels of the pairs of subgroups associated to a given element of

Ext1ZpG(G,Fp) × Im∪ and tell us how the two subgroups “relatively sit in G”.

Section 4 is devoted to the analysis of the action of A on Ext1ZpG(G,Fp). Here we heavily rely on the

properties of the Bockstein homomorphism and the equivalence relation it induces on Hom(G,C/(pnC)),

which we name the Bockquivalence relation. Roughly speaking, the Bockstein homomorphism controls the

map x 7! xp on the extensions of G by Fp. In this section, we also show that in fact the strong isomorphism

classes coincide with the isomorphism classes of extensions of G by Fp.

In Section 5, we describe the orbits of Im∪ under the action of Ac, where [c] denotes an element in

Ext1ZpG(G,Fp). We do this by separating the cases according to the value of the c-index, which we defined

in Section 3.

Section 6 collects our main result, applications of it, and some closing remarks. In Section 6.1, we give

and prove our Main Theorem 6.1 combining the efforts from Sections 4 and 5. In Sections 6.2 and 6.3

we give respectively the orbit counts for 2-generated and 3-generated groups. In Section 6.4, we give an

example and ideas for future work.
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2. Homological algebra

The aim of this section is to set the notation that will be used in the next sections and to shortly

describe the objects we will be working with. For reasons of brevity, we work under the assumptions listed

in Section 1.2; for a more general view on the topic, we refer the reader to [3], [7], [19].

2.1. Cohomology of groups. Throughout we suppose that, for n ≥ 0, the n-th cohomology group

Hn(G;Fp) of G with coefficients in Fp is computed by applying the left-exact functor HomFpG(,̇Fp) to the

standard or bar resolution Bn(G;Z) of Z, i.e. Hn(G;Fp) = Hn(Cm(G;Fp), ∂m), where

Cm(G;Fp) = {f : Gm = G× · · · ×G︸ ︷︷ ︸
m times

! Fp functions}

and ∂m : Cm(G;Fp) ! Cm+1(G;Fp) is defined by sending f ∈ Cm(G;Fp) to

∂m(f)(g1, . . . , gm+1) =f(g2, . . . , gm+1) +
m∑
i=1

(−1)if(g1, . . . , gi + gi+1, . . . , gm+1)

+ (−1)m+1f(g1, . . . , gm).

If f ∈ Cm(G;Fp), we say that f has degree m, written |f | = m, and we denote by [f ] its cohomology class

in Hm(G;Fp). The cohomology group of G with coefficients in Fp is the graded abelian group

H∗(G;Fp) =
⊕
n≥0

Hn(G;Fp).

For all integers n,m ≥ 0, the cup product ∪ : Cn(G;Fp)×Cm(G;Fp) ! Cn+m(G;Fp) is defined by sending

the pair (c, d) ∈ Cn(G;Fp) × Cm(G;Fp) to the map Gn ×Gm ! Fp that is given by

(x, y) 7−! (c ∪ d)(x, y) = c(x)d(y).

By slight abuse of notation, we also write ∪ for the induced cup product in cohomology

∪ : Hn(G;Fp) × Hm(G;Fp) −! Hn+m(G;Fp),

i.e., for each x ∈ Gn and y ∈ Gm, the cup product of [c] ∈ Hn(G;Fp) and [d] ∈ Hm(G;Fp) is given by

[c] ∪ [d](x, y) = [c ∪ d](x, y) ∈ Hn+m(G;Fp).

For more on cup products, see for example [3, Sec. I.5, Sec. V.3]. We remark that the abelian group

H∗(G;Fp) together with the cup product is a graded-commutative ring, equivalently, for [c] ∈ Hn(G;Fp)

and [d] ∈ Hm(G;Fp), the equality [c] ∪ [d] = (−1)nm[d] ∪ [c] holds.

In this paper we will work only with the first H1(G;Fp) and the second H2(G;Fp) cohomology groups.

These have a group theoretic interpretation and are very well understood. Since the action of G on Fp

is trivial, we have H1(G;Fp) = Hom(G,Fp). Moreover, there is a one-to-one correspondence between the

cohomology classes [c] ∈ H2(G;Fp) and the equivalence classes of (central) group extensions

(2.1) 0 −! Fp
ι

−! E
ρ

−! G −! 0,
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where the equivalence is defined as follows. For a group H, let idH denote the identity map on H. Two

group extensions E and E′ are equivalent if there exists an isomorphism φ : E ! E′ making the next

diagram commutative

0 // Fp

idFp
��

// E //

φ

��

G //

idG
��

0

0 // Fp
// E′ // G // 0.

Following [3, Sec. IV. 3], we outline the aforementioned correspondence. Given an extension E of G by

Fp as in (2.1), we fix a set-theoretic map s : G ! E with ρ ◦ s = idG and define c ∈ C2(G;Fp) to be the

2-cocycle such that, for each g1, g2 ∈ G, the equality

ι(c(g1, g2)) = s(g1)s(g2)s(g1 + g2)
−1

is satisfied. It can be shown that [c] does not depend on the choice of s. Similarly, given [c] ∈ H2(G;Fp),

we construct a group extension as in (2.1). For this, we choose a representative c ∈ C2(G;Fp) and consider

the set Ec = G× Fp, endowed with the product

(g1,m1) · (g2,m2) = (g1 + g2,m1 +m2 + c(g1, g2)).

With the definition of

ι : Fp −! Ec, m 7−! ι(m) = (0,m),

ρ : Ec −! G, (g, a) 7−! ρ(g, a) = g,

we get that 0 ! Fp
ι
! Ec

ρ
! G! 0 is indeed a group extension.

2.2. Cohomology of abelian p-groups. We proceed by describing the cohomology ring structure for

finite abelian p-groups. To that aim, we observe that the cohomology ring of the cyclic p-group Z/(pk) of

order pk is given, as a graded ring, by the following:

H∗(Z/(pk);Fp) ∼= Λ(y) ⊗ Fp[x] for

k ≥ 1 if p > 2,

k > 1 if p = 2.

Here Λ(·) denotes the exterior algebra and the generators [y], [x] ∈ H∗(Z/(pk);Fp) are of degrees |y| = 1

and |x| = 2. Following the notation and assumptions in Section 1.2, using the Künneth formula for

cohomology [7, Sec. 2.5] and the fact that Fp is a field, we obtain the following isomorphism of graded

rings

(2.2) H∗(G;Fp) ∼= Λ(y1, . . . , yr+1) ⊗ Fp[x1, . . . , xr+1],

where the generators [yi] and [xi] have degrees |yi| = 1 and |xi| = 2 for i ∈ {1, . . . , r+1} (see [3, Sec. V.6]).

Moreover, for every i ∈ {1, . . . , r+ 1}, the element xi can be chosen to be β(yi), where β is an appropriate

higher order Bockstein homomorphism; see [12, Sec. 6.2, Proof of Thm. 6.21] and Section 2.4.
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Remark 2.1. If we allowed p to be 2 with not all nj’s at least 2, then the cohomology ring of G would not

be isomorphic to the tensor product in (2.2) anymore (see for instance [7, Sec. 3.3]). For this reason, we

excluded such cases from our study.

As we have seen in Section 2.1, the elements of H2(G;Fp) correspond to central extensions of G by

Fp; we denote by H2
ab(G;Fp) the subset of those that correspond to abelian extensions. We remark that

H2
ab(G;Fp) is in fact the abelian group Ext1ZpG(G,Fp) [19, Thm. 3.4.3], whose elements are the abelian

extension classes of ZpG-modules with trivial G-action and whose operation is the Baer sum; for more

detail, see for example [19, Sec. 3.4]. Moreover, H2(G;Fp) decomposes as a sum of the following Fp-vector

spaces (see [7, Sec. 3.4] or [17, 11.4.16 and 11.4.18]):

H2(G;Fp) = H2
ab(G;Fp) ⊕ ⟨Im∪⟩ ∼= H2

ab(G;Fp) ⊕ ⟨yi ∪ yj : 1 ≤ i < j ≤ r + 1⟩.

In addition, we have that

dimFp H2
ab(G;Fp) = r + 1 and dimFp Λ2(y1, . . . , yr+1) =

(
r + 1

2

)
so, in particular, if G is cyclic, then H2(G;Fp) = H2

ab(G;Fp).

2.3. Pontryagin dual. We define here the Pontryagin dual of G following [14, Ch. 3] and stress that this

notion can be extended to arbitrary locally compact groups. Let T = {z ∈ C : |z| = 1} denote the circle

group.

Definition 2.2. The Pontryagin dual of G is the abelian group Ĝ = Hom(G,T) consisting of all homo-

morphisms from G to T.

Since the exponent of G is pn, each element of Ĝ = Hom(G,T) will have image contained in T[pn], the

pn-th torsion subgroup of T, which is cyclic of order pn. Without loss of generality, we identify Ĝ with

Hom(G,C/(pnC)). As the Hom functor commutes with direct sums, we have that

Ĝ = Hom(G,C/(pnC)) = Hom(

t⊕
j=1

Ij , C/(p
nC)) ∼=

t⊕
j=1

Hom(Ij , C/(p
nC)) =

t⊕
j=1

Îj

= Hom(
t⊕

j=1

rj⊕
k=1

Ijk, C/(p
nC)) ∼=

t⊕
j=1

rj⊕
k=1

Hom(Ijk, C/(p
nC)) =

t⊕
j=1

rj⊕
k=1

Îjk ;

see for example also [14, Thm. 13]. The last series of maps induces the following isomorphism

(2.3) ϕ̂1 : G −! Ĝ = Hom(G,C/(pnC)), γjk 7! (γ∗jk : γih 7−! δ(j,k),(i,h)p
n−njγ),

which generalizes the isomorphism ϕ1 : V ! V̂ from Section 1.2.
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2.4. Higher Bockstein homomorphism. We give here another characterization of H2
ab(G;Fp). To this

end, we let A act on Hom(G,C) and on Hom(G,C/pnC) as described in (1.2) and observe that the natural

short exact sequence

0 −! C[p]−!C
π

−! C/(pnC) −! 0,

induces a long exact sequence of ZpA-modules

0 C[p] C C/(pnC)

Hom(G,C[p]) Hom(G,C) Hom(G,C/(pnC))

H2(G;C[p]) H2(G;C) H2(G;C/(pnC)) . . . ,

πB

β

where πB(f) = π◦f and β is the connecting homomorphism [19, Sec. 1.3, Add. 1.3.3]. The homomorphism

β is classically known as the (higher order) Bockstein homomorphism; see for instance [10, Sec. 5.2], [12,

Sec. 6.2, p. 197]. We write ImπB = πB(G) and stress that πB respects the action of A. Observe, moreover,

that H2(G;C[p]) is naturally isomorphic to H2(G;Fp) and so we identify them.

Lemma 2.3. The image of β is an Fp-vector space of dimension d(G) and the following equalities hold

Imβ = H2
ab(G;Fp) = Ext1ZpG(G,Fp).

Proof. We start by showing that Imβ is contained in H2
ab(G;Fp). For this, let [c] ∈ Imβ and let Ec be an

extension of G by Fp represented by [c]. By definition of β, there exists a map c̃ : G ! C such that, for

all x, y ∈ G, one has c(x, y) = c̃(x) + c̃(y) − c̃(x+ y). Then, for all g1, g2 ∈ G and m1,m2 ∈ C[p], we have

that

(g1,m1) · (g2,m2) − (g2,m2) · (g1,m1) = (0, c(g1, g2) − c(g2, g1))

= (0,−c̃(g1 + g2) + c̃(g2 + g1)) = (0, 0)

and thus Ec is abelian. This shows that Imβ ⊆ H2
ab(G;Fp). Now we show that the following holds:

(2.4) kerβ = {
t∑

j=1

rj∑
k=1

αjkγ
∗
jk | αjk ∈ pZp} = pĜ.

For this, note that β’s image is contained in the elementary abelian p-group H2(G;Fp) and so it follows

that pHom(G,C/(pnC)) ⊆ kerβ. We also have that

Ĝ

pĜ
=

Hom(G,C/(pnC))

pHom(G,C/(pnC))
∼=

G

pG

and dimFp H2
ab(G;Fp) = r + 1 thus the first isomorphism theorem yields (2.4). It follows that ϕ̂1 induces

an isomorphism V ! Ĝ/ kerβ and Imβ is an Fp-vector space of dimension dimFp V = dimFp H2
ab(G;Fp).

We derive that Imβ = H2
ab(G;Fp) = Ext1ZpG(G,Fp). □
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Remark 2.4. Observe that Imβ = H2
ab(G;Fp) = Ext1ZpG(G,Fp) is precisely the collection of equivalence

classes of symmetric 2-cocycles, i.e. cocycles c with the property that, for all g1, g2 ∈ G, the equality

c(g1, g2) = c(g2, g1) holds. Since A maps symmetric 2-cocycles to symmetric 2-cocycles, the action of A

on H2(G;Fp) induces an action of A on H2
ab(G;Fp). This can also be derived from Lemma 2.3.

2.5. Maximal subgroups. In this section we describe a map that associates each cohomology class in

H2
ab(G;Fp) to a subgroup of index at most p in G. Recall that V̂ = Hom(V,Fp) denotes the dual of V

and Ĝ = Hom(G,C/(pnC)) the Pontryagin dual of G. Let ϕ : Ĝ ! V̂ be the homomorphism defined by

γ∗jk 7! v∗jk, in other words, ϕ = ϕ1πϕ̂1
−1

. It follows that

kerϕ = {f ∈ Hom(G,C/(pnC)) | f(Ij) ⊆ (pn−nj+1C)/(pnC), 1 ≤ j ≤ t} = pHom(G,C/(pnC)) = kerβ

and thus ϕ induces an isomorphism

ϕ2 : Ĝ/ kerβ = Hom(G,C/(pnC))/ kerβ −! V̂ = Hom(V,Fp).

Let now ϕ3 be the isomorphism induced by β, i.e.

ϕ3 : Hom(G,C/(pnC))/ kerβ −! Imβ = H2
ab(G;Fp),

where the fact that Imβ = H2
ab(G;Fp) is ensured by Lemma 2.3. Now, the map ϕ4 = ϕ3 ◦ ϕ−1

2 is an

isomorphism and we obtain the following commutative diagram:

(2.5) V̂

ϕ4

��

V
ϕ1

oo G
π
oo

Ĝ/ kerβ

ϕ2

88

ϕ3
// H2

ab(G;Fp).

Lemma 2.5. The isomorphisms ϕ2, ϕ3, ϕ4 respect the action of A.

Proof. Since ϕ3 clearly respects the action of A, it suffices to show that ϕ2 is an A-isomorphism on the

generators γ∗jk ∈ Ĝ described in (2.3). Let (σ, λ) ∈ A. Since σ(kerβ) ⊆ kerβ, the following equalities hold

ϕ2((σ, λ)(γ∗jk + kerβ)) = ϕ2(λγ
∗
jkσ

−1 + kerβ) = λv∗jkσ
−1 = (σ, λ)ϕ2(γ

∗
jk + kerβ)

and thus both ϕ2 and ϕ4 = ϕ3 ◦ ϕ−1
2 are A-isomorphisms. □

We rely on the commutative diagram (2.5) to define the following function

τ : H2
ab(G;Fp) −! {subspaces of codimension at most 1 of V }

[c] 7−! ker(ϕ−1
4 ([c]))

and remark that, by construction, τ([c]) = V if and only if [c] = [0]. In particular τ induces a bijection

tV : PH2
ab(G;Fp) −! {hyperplanes of V },
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equivalently, postcomposing with π−1, a bijection

tG : PH2
ab(G;Fp) −! {subgroups of index p of G}.(2.6)

We will show in Section 3.2 that the maps tG and tV are compatible with the actions of A as given in (1.4)

and (1.5); see Corollary 3.11. In particular, it will follow that each non-trivial orbit of A in H2
ab(G;Fp) has

cardinality divisible by p− 1. This is true in higher generality. We warn the reader that in the sequel we

will often, by a slight abuse of notation, write tG([c]) meaning the image under tG of the projective class

of [c].

Lemma 2.6. Let λ ∈ Z∗
p, [c] ∈ H2(G;Fp), and [ω] ∈ ⟨Im∪⟩. Then the following hold:

(1) λ[c] = [c] if and only if [c] = 0 or λ = 1,

(2) if [c] ∈ H2
ab(G;Fp), then (λ, λ)[c] = [c] and (λ, λ)[ω] = λ−1[ω].

Moreover, every non-trivial orbit of H2(G;Fp) has cardinality divisible by p− 1.

Proof. (1) Suppose that λ[c] = [c], i.e. there exists f ∈ C1(G;Fp) such that for all x, y ∈ G,

λc(x, y) = c(x, y) + ∂1(f)(x, y) ⇐⇒ (λ− 1)c(x, y) = ∂1(f)(x, y).

If λ ̸= 1, then, for all x, y ∈ G, it holds that c(x, y) = (λ− 1)−1∂1(f)(x, y). Now define f̃ = (λ− 1)−1f to

obtain that c(x, y) = ∂1(f̃)(x, y) and thus [c] = [0]. The other implication is clear.

(2) Let c̃ ∈ Hom(G,C/(pnC)) be such that [c] = β(c̃) and note that c̃ exists by Lemma 2.3. Let,

moreover, f, g ∈ Hom(G,Fp). Then, for each x, y ∈ G, we have

(λ, λ)[c] = β(λc̃λ−1) = β(c̃) = [c],

(λ, λ)(f ∪ g)(x, y) = λf(λ−1x)g(λ−1y) = λλ−2f(x)g(y) = λ−1(f ∪ g)(x, y).

We are now done since ⟨Im∪⟩ is the linear span of elements of the form [f ∪ g]. □

Definition 2.7. Let [c] ∈ H2
ab(G;Fp) and let M be a subgroup of G. Then the

(1) kernel of [c] in G is the subgroup

Tc =

G if [c] = 0,

tG([c]) otherwise.

(2) c-index of M is the number ic(M) = dimFp((M + Tc)/Tc) ∈ {0, 1}.

We will often write T for Tc if the cohomology class [c] is clear from the context.

Example 2.8. Let j ∈ {1, . . . , t} and k ∈ {1, . . . , rj} and let β be as in Section 2.4. Set [c] = β(γ∗jk).

Then ϕ−1
4 ([c]) = v∗jk and it follows that the kernel of [c] is T = tG([c]) = π−1(ker v∗jk) = ker(γ∗jk) + pG.
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2.6. Plücker embedding. Recall the definition of the cup product ∪ : H1(G;Fp) × H1(G;Fp) −!

H2(G;Fp) as given in Section 2.1. In the present section, we construct maps on Im∪ that will allow

us to interpret Im∪ as a specific family of subgroups of G. This construction is based on the Plücker

embedding for Grassmannians; see for example [18, Sec. 1.24],[15, Ch. 5]. Until the end of the current

section, for each positive integer k and Fp-vector space W , we denote by G(k,W ) the Grassmannian of

k-dimensional linear subspaces of W . Denote, moreover, by ∧ the exterior product map W ×W ! Λ2W .

We start by remarking that the vector spaces ⟨Im∪⟩ and Λ2V̂ are naturally isomorphic. The cup

product being bilinear and alternating, the universal property of wedge products yields the surjective

homomorphism

ψG : Λ2 Hom(G,Fp) −! ⟨Im∪⟩ satisfying f ∧ g 7−! [f ∪ g].

Observe that the last map is our announced isomorphism, since Hom(G,Fp) and Hom(V,Fp) = V̂ are

naturally isomorphic and the dimensions of Λ2V̂ and ⟨Im∪⟩ are the same. Moreover, by its definition, ψG

satisfies ψG(Im∧) = Im∪ and thus induces a bijection P Im∧ ! P Im∪.

We proceed by describing the Plücker embedding s : G(2, V̂ ) ! P(Λ2V̂ ). For each 2-dimensional

subspace U of V̂ , fix an Fp-basis (fu, gu) of U and define s(U) = [fu ∧ gu]. It is not difficult to show

that s is well-defined and that its image is equal to P Im∧. We use now the map s to define a bijection

G(d(G) − 2, V ) ! P Im∪. For that, we start by identifying G(2, V̂ ) and G(d(G) − 2, V ) via

G(2, V̂ ) −! G(d(G) − 2, V ), U = Fpfu ⊕ Fpgu 7−! ker fu ∩ ker gu.

Composing maps in the obvious way, we get the following well-defined bijection

mV : P Im∪ −! G(d(G) − 2, V ), [ω] = [f ∪ g] 7−! mV ([ω]) = π(ker f ∩ ker g),

inducing the bijection

(2.7) mG : P Im∪ −! {π−1(U) | U ∈ G(d(G) − 2, V )}, [ω] = [f ∪ g] 7−! mG([ω]) = ker f ∩ ker g.

The last map identifies each element of P Im∪ with a subgroup M of G of index p2 that contains pG. We

next show that mG respects the action of A. As for the case of tG we will slightly abuse notation writing

mG([ω]) for the image of the projective class of [ω] under mG.

Lemma 2.9. Let [ω] ∈ P Im∪ and (σ, λ) ∈ A. Then the equality σ(mG([ω])) = mG((σ, λ)[ω]) holds.

Proof. Write [ω] = [f ∪ g] with f, g ∈ Hom(G;Fp). Then, for each choice of x, y ∈ G, we have

(σ, λ)(f ∪ g)(x, y) = λ(f ∪ g)(σ−1(x), σ−1(y)) = λf(σ−1(x))g(σ−1(y)).

In other words, (σ, λ)(f ∪ g) = (λfσ−1) ∪ (gσ−1) and we derive that

mG((σ, λ)[ω]) = ker(λfσ−1) ∩ ker(gσ−1) = σ(ker f) ∩ σ(ker g) = σ(ker f ∩ ker g) = σ(mG([ω])).

This concludes the proof. □
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Corollary 2.10. The map

mG : P Im∪ ! {M subgroup of G with G/M elementary abelian of rank 2}

is a bijection respecting the action of A.

Definition 2.11. Let [c] ∈ H2
ab(G;Fp) and [ω] ∈ Im∪. Then the

(1) kernel of [ω] in G is the subgroup

Mω =

G if [ω] = 0,

mG([ω]) otherwise.

(2) c-index of [ω] is the number ic([ω]) = ic(Mω).

We remark that, with the notation from Definition 2.11, it is not difficult to show that, if E is an

extension defined by [ω], then the image of Z(E) in G coincides with Mω.

Lemma 2.12. Let [ω] ∈ Im∪ and let M = Mω be the kernel of [ω] in G. Let M ⊆ H,K ⊆ G be

distinct maximal subgroups of G. Then there exist f, g ∈ Hom(G,Fp) such that H = ker f , K = ker g, and

[ω] = [f ∪ g].

Proof. Any maximal subgroup can be written as the kernel of a homomorphism G! Fp. Now, H and K

being distinct, the claim follows from the fact that the map mG from (2.7) is well-defined. □

3. Subgroup levels and compatibility

We recall briefly the notation introduced in Section 1.2 that will be relevant here. If two elements

[c], [d] ∈ H2(G;Fp) belong to the same A-orbit, we will write [c] ∼A [d]. For [c] ∈ H2(G;Fp), we will write

Ac meaning the stabilizer of [c] in A and, if two elements [d], [e] are in the same orbit under the induced

action by Ac, we will write [d] ∼Ac [e]. For a subgroup K of G, we denote by AK the stabilizer of K in A

with respect to the action from (1.4).

3.1. Subgroup levels. The aim of this section is to introduce subgroup levels and prove basic properties

about them. Subgroup levels are the key objects allowing us to describe the A-orbits on H2
ab(G;Fp)× Im∪

combinatorially.

Definition 3.1. Let M and T be subgroups of G. Then the T -levels of M are the entries of the pair

ℓLT (M) = (ℓT (M),LT (M)) where

(1) ℓT (M) = 1 + max{0 ≤ i ≤ logp exp(T ) : T [pi] ⊆M ∩ T},
(2) LT (M) = min{j ∈ Z≥0 : T [pj ] + (M ∩ T ) = T}.

If T = G, simply write ℓL(M) = (ℓ(M),L(M)) for ℓLG(M).

Example 3.2.
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(1) The G-levels vector of G is (n+ 1, 0) and its T -levels vector is (logp exp(T ) + 1, 0).

(2) Assume that G = Z/(p2) ⊕ Z/(p2) ⊕ Z/(p3) ⊕ Z/(p3) = ⟨γ11, γ12, γ21, γ22⟩, and define

T = ⟨γ12, γ21, γ22⟩ + pG = {(pt1, t2, t3, t4) | ti ∈ Zp} ⊆ G,

M = ⟨γ12, γ21 − γ22⟩ + pG = {(pm1,m2,m3,−m3 + pm4) | mi ∈ Zp} ⊆ G.

It follows that ℓL(M) = (2, 3) and ℓLT (M) = (3, 3). Since T is a maximal subgroup of G, we can

associate to it an element [c] ∈ H2
ab(G;Fp) \ {0} via (2.6). For such a cohomology class [c], the

c-index of M is ic(M) = 0, because M is contained in T (see Definition 2.7).

We generalize the last example in the form of the following proposition.

Proposition 3.3. Let X be a proper subgroup of G containing pG and with |G : X| = pk. Let

pα1 ≥ · · · ≥ pαr+1 and pβ1 ≥ · · · ≥ pβr+1

be the elementary divisors of G and X, respectively. Then there are indices r+ 1 ≥ i1 > · · · > ik ≥ 1 such

that the following holds:

βi − αi =

1 if i ∈ {i1, . . . , ik},

0 otherwise.

Moreover, one has ℓ(X) = αik and L(X) = αi1.

Proof. Since X contains pG and |G : X| = pk, it is clear that the sequence r + 1 ≥ i1 > . . . > ik ≥ 1 of

integers exists. From the definition of the ij ’s it is now easy to see that ℓ(X) = αik and L(X) = αi1 . □

Corollary 3.4. If T is a maximal subgroup of G, then ℓ(T ) = L(T ).

Corollary 3.5. Let X,Y be subgroups of G containing pG and satisfying |G : X| = |G : Y | ≤ p2. Then

the following are equivalent:

(1) X and Y are isomorphic,

(2) ℓL(X) = ℓL(Y ).

It would be interesting to generalize the concept of G-levels in order to get a version of Corollary 3.5

holding for all subgroups of G containing pG.

Definition 3.6. Let [c], [d] be elements of H2
ab(G;Fp) ∪ Im∪ and let K and H be the kernels of [c] resp.

[d] in G. Let T be a subgroup of G. Then the T -levels and [d]-levels of [c] are defined respectively as

ℓLT ([c]) = ℓLT (K) and ℓLd([c]) = ℓLH(K).

If T = G or [d] = 0, simply write ℓL([c]) = (ℓ([c]),L([c])) for ℓLG([c]) and ℓL0([c]).

Below, we give some properties of T -levels.

Lemma 3.7. Let M and T be subgroups of G. Then the following hold:
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(1) 1 ≤ ℓT (M) and LT (M) ≤ logp exp(T ).

(2) if z ∈ T \ (M ∩ T ), then |z| ≥ pℓT (M).

(3) if LT (M) = ℓT (M) − 1, then T = {0}.
(4) if T ̸⊆M , then ℓT (M) − 1 < LT (M).

Proof. Set lT = ℓT (M) and LT = LT (M). Items (1)-(2) are straightforward. To prove (3)-(4), we start by

observing that, when T is contained in M , then lT = logp exp(T ) + 1 and LT = 0. Assume now that M

does not contain T . Then T ̸= {0}, LT ̸= 0, and, since T [plT−1] is contained in M but T [pLT ] is not, we

have that lT − 1 ⪇ LT . □

Lemma 3.8. Let M and T be subgroups of G such that |G : T | = p and |G : M | = p2. Define ℓL(M) =

(l, L) and ℓLT (M) = (lT , LT ). Then the following inequalities hold:

l ≤ lT ≤ min{L,LT } =

L if M ̸⊆ T,

LT if M ⊆ T.

Proof. The inequality l ≤ lT follows from the fact that, for each m ∈ Z≥0, one has

G[pm] ⊆M =⇒ T [pm] = G[pm] ∩ T ⊆M ∩ T.

We now show that lT ≤ L. For a contradiction, assume that lT > L. It follows from the definition of

ℓLT (M) that T [pL] is contained in M ∩ T . In particular, since T [pL] = G[pL] ∩ T , we have that T [pL] is

contained in M ∩G[pL]. Now, since |G : T | = p, we get that |G[pL] : T [pL]| ≤ p and consequently

p2 = |G : M | = |(M +G[pL]) : M | = |G[pL] : (M ∩G[pL])| ≤ |G[pL] : T [pL]| ≤ p

providing a contradiction. So we have proven that lT ≤ L. The inequality lT ≤ LT follows from Lemma

3.7 and thus yields that lT ≤ min{L,LT }.

For the last equality, assume first that M is contained in T . Since G = M + G[pL], we have that

T ∩ G = T = M + T [pL]. By definition of LT , we have LT ≤ L. To conclude, assume that M is not

contained in T . From

T = (M ∩ T ) + T [pLT ] = (M + T [pLT ]) ∩ T

we get that G = M + T [pLT ] = M +G[pLT ]. It follows from the minimality of L that L ≤ LT . □

Example 3.9.

(1) Assume that G is a free Z/(p3)-module of rank 2. Then M = G[p2] = pG has index p2 in G

and is contained in every maximal subgroup of G. For each T maximal in G, it then holds that

3 = ℓ(M) = ℓT (M) = LT (M) = L(M).

(2) Let G = Z/(p) ⊕ Z/(p2) ⊕ Z/(p3) ⊕ Z/(p4) = ⟨γ11, γ21, γ31, γ41⟩, and define

T = ⟨γ21, γ31, γ41⟩ = {(0, t2, t3, t4) | ti ∈ Zp} ⊆ G,

M = ⟨γ11 − γ31 − γ41, γ21⟩ + pG = {(m1,m2,−m1 + pm3,−m1 + pm4) | mi ∈ Zp} ⊆ G.
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It follows that M ∩ T = ⟨γ21⟩ + pG and therefore 1 = ℓ(M) < 3 = ℓT (M) = L(M) < 4 = LT (M).

We conclude by observing that, since M is not contained in T , the c-index of M in G will be 1 for

each [c] ∈ H2
ab(G;Fp) that realizes T in the sense of (2.6).

3.2. Compatibility. The following proposition collects a number of basic properties shared by elements

belonging to the same A-orbit.

Proposition 3.10. Let [c], [d] ∈ H2
ab(G;Fp) and let Tc and Td denote respectively the kernels of [c] and

[d]. Let, moreover, a = (σ, λ) ∈ A be such that [d] = a · [c]. Let [ω] = [f ∪ g] ∈ Im∪ and let M = Mω be

the kernel of [ω]. Define

fa = λfσ−1 and ga = gσ−1

and let Ma be the kernel of [ωa] = [fa ∪ ga]. Then a · ([c] + [ω]) = [d] + [ωa] and the following hold:

(1) The following maps are inverses to each other:

ϕ : Im∪/Ac −! Im∪/Ad, Ac[ω] 7−! Ad(a · [ω]),

ψ : Im∪/Ad 7−! Im∪/Ac Ad[ω] 7! Ac(a
−1 · [ω]).

(2) Td = σ(Tc) and Ma = σ(M).

(3) ℓL(M) = ℓL(Ma), ℓLc(M) = ℓLd(Ma), ℓL(Tc) = ℓL(Td) and ic(M) = id(Ma).

Proof. To show that a · ([c] + [f ∪ g]) = [d] + [fa ∪ ga] is an easy computation.

(1) Straightforward.

(2) That σ(M) = Ma is a straight consequence of Lemma 2.9. We prove that σ(Td) = Tc. We use the

bar notation for the subspaces of V = G/pG and we refer to the notation in (2.5) and (1.3). The map σ

being an isomorphism, it follows from Lemma 2.5 that

Td = ker(ϕ−1
4 ([d])) = ker(ϕ−1

4 (a · [c]))

= ker(a · ϕ−1
4 ([c])) = ker(λϕ−1

4 ([c]) ◦ σ−1)

= ker(ϕ−1
4 ([c]) ◦ σ−1) = σ ker(ϕ−1

4 ([c]))

= σ(Tc).

Lifting everything back to G, we get Td = σ(Tc).

(3) This is a direct consequence of (2) and Definitions 2.7 and 2.11. □

In the next result, let tG and mG denote respectively the maps from (2.6) and (2.7). For each k ∈ {1, . . . , d},

we write moreover

S(k)
G = {π−1(W ) |W subspace of codimension k of V }

= {K subgroup of G with G/K elementary abelian of rank k}
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and note that the action of A given in (1.4) naturally induces an action of A on each S(k)
G and, component-

wise, on any of their products.

Corollary 3.11. The following is an isomorphism of A-sets:

(t,m)G : PH2
ab(G;Fp) × P Im∪ −! S(1)

G × S(2)
G , ([c], [ω]) 7−! (tG([c]),mG([ω])).

Moreover, for each [c] ∈ H2
ab(G;Fp) \ {0} with kernel T , the stabilizer Ac is a subgroup of AT of index

|AT : Ac| = p− 1.

Proof. The map (t,m)G is an isomorphism of A-sets as a consequence of Corollary 2.10 and Proposition

3.10(2). Therefore, we get that, for each element [c] ∈ H2
ab(G;Fp), if T = tG([c]), then Ac ⊆ AT and

|AT : Ac| = p− 1. □

We point out the connection between Corollary 3.11 and Lemma 2.6. The last corollary clearly describes

the projective nature of the orbits in terms of subgroups of G. It would be interesting to know whether

the map (t,m)G can be extended to the whole of PH2(G;Fp); see also Section 6.4.

4. Abelian extensions

In this section we classify theA-orbits of H2
ab(G;Fp) via classifying theA-orbits in Hom(G,C/pnC)/ kerβ,

where β is the homomorphism introduced in Section 2.4. We also show that, under our assumptions, strong

isomorphism classes and isomorphism types of extensions of G by Fp coincide.

Until the end of Section 4, the following assumptions will hold. For j ∈ {1, . . . , t} and k ∈ {1, . . . , nj},

let γ∗jk be the dual of γjk as defined in (2.3), within Section 2.3. For j ∈ {1, . . . , t}, define moreover

γ∗j = γ∗j1 and denote by π̂j the natural projection Ĝ =
⊕t

j=1 Îj ! Îj . The next proposition is the main

result of the current section.

Proposition 4.1. Let [c], [d] ∈ H2
ab(G;Fp). Then the following are equivalent:

(1) [c] ∼A [d];

(2) [c] = [d] = 0 or there exists i ∈ {1, . . . , t} such that [c] ∼A β(γ∗i ) ∼A [d];

(3) ℓL([c]) = ℓL([d]);

(4) ℓ([c]) = ℓ([d]);

(5) L([c]) = L([d]).

4.1. Bockquivalence relation. In this section we prove Proposition 4.1 via studying the action of A on

Ĝ = Hom(G,C/(pnC)). We recall from Section 2.4 that, since β respects the action of A, Lemma 2.3

yields that the A-orbits of H2
ab(G;Fp) are in natural bijection with the A-orbits of Ĝ/ kerβ.

Definition 4.2 (Bockquivalence relation). Two elements f, g ∈ Ĝ are Bockquivalent, written f ≈G g, if

there exist (σ, λ) ∈ A and ε ∈ πB(G) such that g = λfσ−1 + ε.
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The just defined Bockquivalence relation is clearly an equivalence relation, because it describes the A-

orbits of Hom(G,C/(pnC))/ kerβ. We will refer to the corresponding equivalence classes as Bockquivalence

classes and, if f ∈ Hom(G,C/(pnC)), we will write JfK to denote the Bockquivalence class of f . Our

immediate goal is to determine representatives for the Bockquivalence classes of G.

Proposition 4.3. Let Γ = {γ∗j : j = 1, . . . , t} ∪ {0}. Then Γ is a set of representatives for the Bockquiva-

lence classes of G and, for each j ∈ {1, . . . , t}, the following equality holds:

Jγ∗j K = {c ∈ Ĝ : | Im π̂j(c)| = pnj , | Im π̂l(c)| < pnl for l > j}.

Moreover, G has exactly t+ 1 Bockquivalence classes.

Proof. We start by recalling that kerβ = pĜ, as given in (2.4). We will show that the images of the maps

γ∗i in the quotient Ĝ/pĜ = Ĝ/ kerβ constitute a set of representatives for the nonzero orbits of the action

of A on the last quotient. We first show that each nonzero orbit can be represented by one of the γ∗i ’s. To

this end, for every non-trivial orbit choose a representative f ∈ Ĝ \ pĜ of the form

f =

t∑
j=1

rj∑
k=1

αjkγ
∗
jk, with αjk ∈ Z∗

p ∪ {0}

and let i ∈ {1, . . . , t} be maximal such that there exists s ∈ {1, . . . , ri} with αis ∈ Z∗
p. It follows from

the maximality of i that f(G) is generated by pn−niγ and so the first isomorphism theorem yields that

G = ⟨γis⟩ ⊕ ker f . Set now H = ⟨γjk | (j, k) ̸= (i, 1)⟩ and note that G = ⟨γi1⟩ ⊕ H. Since γi1 and γis

have the same order, the elementary divisor theorem yields an automorphism σ of G sending γis to γi1

and ker f to H. As a consequence, (σ, 1)f = γ∗i and f is in the orbit of γ∗i .

We now show that any two γ∗i ’s represent distinct orbits. To this end, let i ≥ j be such that γ∗i and

γ∗j represent the same A-orbit in Ĝ/pĜ and let (σ, λ) ∈ A and g ∈ Ĝ be such that γ∗i = (σ, λ)γ∗j + pg. It

follows that

pn−niγ = γ∗i (γi1) = (σ, λ)γ∗j (γi1) + pg(γi1)

and so, by taking orders, we derive that ni = max{|γ∗j (σ−1(γi1))|, ni − 1} ≤ max{nj , ni − 1}. From the

fact that i ≥ j, that is ni ≥ nj , we conclude that i = j. □

Proof of Proposition 4.1. (1) ⇔ (2) This is Proposition 4.3.

(2) ⇔ (3) ⇔ (4) ⇔ (5) Thanks to Proposition 4.3, a set of representatives of the A-orbits of H2
ab(G;Fp)

is given by 0, β(γ∗1), . . . , β(γ∗t ). As a consequence of Example 2.8 and Proposition 3.10(2), the A-orbits are

uniquely determined by their G-levels, which are respectively (n+ 1, 0), (n1, n1), . . . , (nt, nt). □

4.2. Convenient orbit representatives. The goal of this section is to produce, for each given [c] ∈
H2

ab(G;Fp), a representative of the A-orbit of [c] that can be conveniently expressed in terms of the choice

of generators we made in Section 1.2 and is thus more suitable to computations. We essentially want to

be able to regard elements of H2
ab(G;Fp) as if they were images of the generators of Ĝ.
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Let [c] ∈ H2
ab(G;Fp) and let c̃ be an element of Ĝ such that [c] = β(c̃); recall that c̃ exists thanks to

Lemma 2.3. Then, thanks to Proposition 4.1, there exists a ∈ A and

b ∈ B = {γjk | 1 ≤ j ≤ t, 1 ≤ k ≤ nj}

such that, for {b1, . . . , br} = B \ {b}, the following hold

ker(a · c̃) =
r⊕

i=1

⟨bi⟩ and G = ⟨b⟩ ⊕ ker(a · c̃) = ⟨b⟩ ⊕
r⊕

i=1

⟨bi⟩.

Set d̃ = a · c̃ and [d] = β(d̃) = [a · c]. Let, moreover, Tc and Td denote the kernels of respectively [c] and [d].

Then, thanks to Example 2.8, we know that Td = ker d̃ + pG and so we have a very concrete description

of Td in terms of the elements of B. Moreover, if we are interested in the action of Ac on Im∪, we can as

well consider the action of Ad on Im∪, thanks to Proposition 3.10(1).

4.3. Strong isomorphism. We close Section 4 by showing that strong isomorphism classes of G by Fp

coincide with isomorphism classes of extensions of G by Fp.

Proposition 4.4. Let Ec and Ed be central extensions of G by Fp represented by the cohomology classes

[c] and [d] in H2(G;Fp), respectively. Then, Ec and Ed are isomorphic if and only if [c] ∼A [d].

Proof. If c ∼A d, then, thanks to Theorem A, the extensions Ec and Ed are strongly isomorphic, so in

particular isomorphic. Assume now that Ec and Ed are isomorphic. If Ec is nonabelian, then [Ec, Ec] has

order p and is mapped, by any isomorphism Ec ! Ed, to [Ed, Ed]. So, Ec and Ed are strongly isomorphic

and we are done by Theorem A. We conclude by observing that each isomorphism class of extensions of G

by Fp is a union of strong isomorphism classes. It is well-known that there are t+ 1 possible isomorphism

types of abelian extensions of G by Fp and now, thanks to Proposition 4.3, we know that there are exactly

t+ 1 strong isomorphism classes of such extensions. As the numbers are the same, we are done. □

5. Nonabelian extensions

Let [c] ∈ H2
ab(G;Fp) and denote by Ac the stabilizer of [c] in A. The aim of this section is to determine

the orbits of the action of Ac on the image of the cup product ∪ : Hom(G,Fp)×Hom(G,Fp) ! H2(G;Fp).

We will prove the following result.

Proposition 5.1. Let [c] ∈ H2
ab(G;Fp) and [ω], [ϑ] be elements of Im∪. The following are equivalent:

(1) [ω] ∼Ac [ϑ],

(2) (ℓL([ω]), ℓLc([ω]), ic([ω])) = (ℓL([ϑ]), ℓLc([ϑ]), ic([ϑ])).

Until the end of Section 5, the following assumptions will be satisfied. Let [c] ∈ H2
ab(G;Fp) and

[ω], [ϑ] ∈ Im∪ be fixed. As a consequence of the discussion from Section 4.2, without loss of generality,
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we will work under the following additional assumptions. Let B = {b0 = b, b1, . . . , br} be a minimal set of

generators of cardinality r + 1 such that

G = ⟨b⟩ ⊕
r⊕

i=1

⟨bi⟩.

Let c̃ ∈ Ĝ be such that [c] = β(c̃) and, if [c] ̸= 0, assume that Im c̃ ∼= ⟨b⟩ and that

ker c̃ =

r⊕
i=1

⟨bi⟩ and G = ⟨b⟩ ⊕ ker c̃.

Let T be the kernel of [c] and, if [c] ̸= 0, observe that T = ker c̃ + pG is maximal in G, analogously to

Example 2.8. Write, moreover, Mω and Mϑ respectively for the kernels of [ω] and [ϑ], respectively. The

case [c] = 0 is covered in Section 5.1. If [c] ∈ H2
ab(G;Fp) \ {0}, then we study the action of Ac on cup

products in two parts. The case where Mω + Mϑ ⊆ T is discussed in Section 5.2 and the case where

G = Mω + T = Mϑ + T is considered in Section 5.3. We remark that, the condition ic([w]) = ic([ϑ])

imposed in (2) prevents the existence of any other case. We last let M be a subgroup of index p2 of G

containing pG and observe that M is the kernel of some element of Im∪ \ {0}; see Section 2.6.

Lemma 5.2. Write ℓL(M) = (l, L). Let, moreover, M̃ be a subgroup of M and C ⊆ B such that G =

⟨C⟩ ⊕ M̃ . Then there exist x, y ∈ C such that |x| = pl, |y| = pL, and G = ⟨x, y⟩ +M .

Proof. We start by showing that there exists x ∈ C such that |x| = pl and x /∈ M . For a contradiction,

assume this is not true and write C = ⟨C⟩. Then G[pl] = C[pl] + M̃ [pl] ⊆ C[pl−1] + M = M , which is a

contradiction to the maximality of l. Fix now such an element x and define H̃ = ⟨x⟩ ⊕ M̃ , which satisfies

G = ⟨C \ {x}⟩ ⊕ H̃. Note that H̃ is a subgroup of the maximal subgroup H = ⟨x⟩ + M of G. We now

claim that there exists y ∈ C \ {x} of order pL. If this is not the case and D = ⟨C \ {x}⟩, then

G[pL] = D[pL] + H̃[pL] ⊆ D[pL−1] +H ⊆ G[pL−1] +H

from which it follows that

G = G[pL] +M = G[pL−1] +H = G[pL−1] + ⟨x⟩ +M.

The minimality of L yields that l = L and so that G = ⟨x⟩ +M . In particular, |G : M | = |⟨x⟩ : ⟨px⟩| = p.

Contradiction. □

Theorem 5.3. Write ℓL(M) = (l, L) and let x, y ∈ B be such that G = ⟨x, y⟩+M and (|x|, |y|) = (pl, pL).

Let, moreover, H be a subgroup of G such that x, y ∈ H. Then there exists a subgroup M̃ ⊆ H ∩M such

that H = ⟨x⟩ ⊕ ⟨y⟩ ⊕ M̃ .

Proof. Let J be a subgroup of G such that G = ⟨x⟩ ⊕ ⟨y⟩ ⊕ J and note that J exists because x, y ∈ B.

Moreover, thanks to Dedekind’s Law, we also have that H = ⟨x⟩⊕⟨y⟩⊕ (H ∩J). Write now I = ⟨x⟩⊕⟨y⟩.
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We will show that H ∩ J can be replaced by a complement of I in H that is contained in M . For this, we

consider all decompositions of H of the form

H = I ⊕ ⟨z1⟩ ⊕ · · · ⊕ ⟨zs⟩

and we choose one such that m = |{i | zi /∈ M}| is minimal. We will prove that m = 0, in other words

that C = ⟨z1⟩ ⊕ · · · ⊕ ⟨zs⟩ is the desired complement. We argue by contradiction, assuming that z1 /∈ M .

It follows that |z1| ≥ pl and, from G = ⟨x, y⟩ +M and pG ⊆M , that z1 can be expressed as

(5.1) z1 = ηx+ κy + z′1 with η, κ ∈ {0, . . . , p− 1}, z′1 ∈ H ∩M.

We claim that C ′ = ⟨z′1⟩ ⊕ ⟨z2⟩ ⊕ · · · ⊕ ⟨zs⟩ is a complement of I in H. We will show this by means of

proving that I ⊕ ⟨z1⟩ = I ⊕ ⟨z′1⟩. Since the equality I + ⟨z1⟩ = I + ⟨z′1⟩ is clear, it suffices to verify that

I ∩ ⟨z′1⟩ = 0 holds. For this, let λ, µ, ν ∈ Zp be such that λx+ µy + νz′1 = 0. It follows that

(λ− νη)x+ (µ− νκ)y + νz1 = 0,

from which we derive that (λ− νη)x = (µ− νκ)y = νz1 = 0. Then ν ≥ |z1| ≥ pl and, the order of x being

pl yields that 0 = (λ− νη)x = λx. If, additionally |z1| ≥ pL or κ = 0, in a similar fashion we obtain that

µy = 0. We assume now that |z1| < pL and that κ ̸= 0. Then |x| is also smaller than pL. Moreover, κ is

invertible modulo p and so (5.1) yields that y belongs to ⟨x, z1⟩ +M . We deduce that

G = ⟨x, y⟩ +M = ⟨x, z1⟩ +M = G[pL−1] +M,

which contradicts the definition of L = L(M). This concludes the proof that I ⊕ ⟨z1⟩ = I ⊕ ⟨z′1⟩.
We have shown that C ′ is a complement of I in H with a smaller number of generators outside of M ;

contradiction to the minimality of m. □

5.1. Full stabilizer. Until the end of Section 5.1, we work under the assumption that [c] = [0] ∈
H2

ab(G;Fp); then A = Ac and we are simply studying the action of A on the cup product. In this

section we prove thus Proposition 5.1 under these assumptions and in the following form.

Proposition 5.4. One has [ω] ∼A [ϑ] if and only ℓL([ω]) = ℓL([ϑ]).

To that aim, we prove the following lemma, which will be used in the next section, too.

Lemma 5.5. Write ℓL(M) = (l, L). Then there exist f, g ∈ Hom(G,Fp), x, y ∈ B of orders respectively

pl and pL, and M̃ ⊆M such that the following hold:

(1) M = ker f ∩ ker g,

(2) f(x) = 1, g(x) = 0, f(y) = 0, and g(y) = 1,

(3) G = ⟨x⟩ ⊕ ⟨y⟩ ⊕ M̃.

Proof. Let x, y be as in Lemma 5.2, where C is taken to be B. Now (1)-(2) are direct consequences of

Lemma 2.12 while (3) follows from Theorem 5.3 to H = G. □
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Proof of Proposition 5.4. Assume first that [ω] ∼A [ϑ]. If [ω] = [ϑ] = 0, then we are clearly done. If [ω], [ϑ]

are non-trivial elements of Im∪, then Proposition 3.10(3) yields that ℓL(Mω) = ℓL(Mϑ).

For the other implication, we start by observing that ℓL([ω]) = (n + 1, 0) if and only if Mω = G. In

particular, the trivial class is determined by its G-levels. We assume now that [ω], [ϑ] are non-trivial and

write ℓL([ω]) = ℓL([ϑ]) = (l, L). We will construct (σ, λ) ∈ A such that [ϑ] = (σ, λ)[ω]. To this end,

we let xω, yω ∈ G, fω, gω ∈ Hom(G;Fp), and M̃ω ≤ Mω be equivalents of x, y, f, g, M̃ in Lemma 5.5 for

Mω. Analogously, we let xϑ, yϑ, fϑ, gϑ, and M̃ϑ be associated with Mϑ. Observe that [ω] = [fω ∪ gω]

and [ϑ] = [fϑ ∪ gϑ]. We now choose an isomorphism M̃ω ! M̃ϑ and extend it to an automorphism

σ ∈ Aut(G) satisfying σ(xω) = xϑ and σ(yω) = yϑ. It is now a straightforward calculation to show that

(σ, 1)[ω] = [ϑ]. □

5.2. Inclusion of the kernels. Until the end of Section 5.2, we work under the assumption that [c] ̸= 0;

then T = ker c̃ + pG is maximal in G. We additionally assume that M + Mω + Mϑ ⊆ T and observe

that [ω], [ϑ] ̸= 0 and ic([ω]) = ic([ϑ]) = 0. In this section we prove Proposition 5.6, which coincides with

Proposition 5.1 under the last assumptions.

Proposition 5.6. One has [ω] ∼Ac [ϑ] if and only if ℓL([ω]) = ℓL([ϑ]).

The next result explains why the values ℓLc([ω]) and ℓLc([ϑ]) do not appear in Proposition 5.6.

Proposition 5.7. Write ℓL(M) = (l, L) and ℓLT (M) = (lc, Lc). Then the following hold:

(1) G[pl] ⊆ T is equivalent to l = lc = Lc < L,

(2) G[pl] ̸⊆ T is equivalent to l ≤ lc = Lc = L.

Proof. By Lemma 3.8, we have l ≤ lc ≤ Lc ≤ L and, since T is maximal, Corollary 3.4 yields lc = Lc.

(1) Assume, for a start, that G[pl] ⊆ T . Since G[pl] is not contained in M , we have that

T = G[pl] +M = T [pl] +M = T [pl] + (M ∩ T )

so the minimality of Lc yields l = Lc. Moreover, since G = G[pL] +M , we also have that L > l.

Assume now that l = lc = Lc < L and, for a contradiction, that G[pl] is not contained in T . We then

have that

G = G[pl] + T = G[pl] +M + T [pLc ] = G[pl] +M,

contradicting the minimality of L.

(2) Assume first that G[pl] is not contained in T . Then we have

G = T +G[pl] = M + T [pLc ] +G[pl] = M +G[pLc ]

and so the minimality of L yields L = Lc. The other implication follows from (1). □

The rest of the section is devoted to proving Proposition 5.6.
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Lemma 5.8. Write ℓL(M) = (l, L). Then there exist y ∈ B and M̃ ⊆ M such that G = ⟨b⟩ ⊕ ⟨y⟩ ⊕ M̃

and

(|b|, |y|) =

(pl, pL) if G[pl] ̸⊆ T,

(pL, pl) if G[pl] ⊆ T.

Proof. Let x, y, and M̃ be as in Lemma 5.5: since T/M is cyclic of order p, we have that x = b or y = b.

By renaming y to be the element of {x, y} that is not equal to b, we get the claim. □

Proof of Proposition 5.6. The implication from left to right follows in a straightforward way from Proposi-

tion 3.10. We now show that the other direction also holds true. For this, write ℓL([ω]) = ℓL([ϑ]) = (l, L).

Let (yω, M̃ω) and (yϑ, M̃ϑ) be the equivalents of the pair (y, M̃) from Lemma 5.8 respectively for Mω and

Mϑ. It follows that |yω| = |yϑ| and M̃ω
∼= M̃ϑ. We now let σ ∈ Aut(G) be such that

σ(b) = b, σ(yω) = yϑ, σ(M̃ω) = M̃ϑ.

By construction, (σ, 1) stabilizes T and satisfies (σ, 1) ·Mϑ = Mω. Let λ ∈ Z∗
p be such that (σ, λ) ∈ Ac,

the existence of λ being guaranteed by Corollary 3.11. Set a = (σ, λ). Then we have that a ∈ Ac satisfies

a(T,Mϑ) = (T,Mω) and thus, as a consequence of Corollary 3.11, the elements [ω] and [ϑ] are conjugate

under Ac up to a scalar. Lemma 2.6(2) yields the claim. □

5.3. Incomparable kernels. Until the end of Section 5.3, we work under the following additional as-

sumptions. Assume that [c] ̸= 0 and thus that T = ker c̃ + pG is a maximal subgroup of G. We assume,

moreover, that M,Mω,Mϑ are not contained in T and that [ω], [ϑ] ̸= 0. In particular, we have that

ic([ω]) = ic([ϑ]) = 1 and that G = M +T = Mω +T = Mϑ +T . The goal of the present section is to prove

Proposition 5.9, which coincides with Proposition 5.1 under the last assumptions.

Proposition 5.9. One has [ω] ∼Ac [ϑ] if and only if (ℓL([ω]), ℓLc([ω])) = (ℓL([ϑ]), ℓLc([ϑ])).

The proof of Proposition 5.9 is divided into cases depending on the relations between G-levels and T -levels.

Lemma 5.10. Write ℓL(M) = (l, L) and ℓLT (M) = (lc, Lc). Then there exist f, g ∈ Hom(G,Fp),

x, y ∈ {b1, . . . , br} of orders respectively plc and pLc, and M̃ ⊆ ker c̃ ∩M such that the following hold:

(1) M = ker f ∩ ker g,

(2) f(x) = 1, g(x) = 0, f(y) = 0, and g(y) = 1,

(3) G = ⟨b⟩ ⊕ ⟨x⟩ ⊕ ⟨y⟩ ⊕ M̃ .

Moreover, there exist two distinct elements in {b, x, y} of orders respectively pl and pL.

Proof. Let x, y be as in Lemma 5.2, where C is taken to be B. Then (1) and (2) follow directly from

Lemma 2.12. We now prove (3). To this end, define B′ = {pb, b1, . . . , br+1} and let M ′ = M ∩T , which has

index p2 in T and contains pG. Then, with T , B′ and M ′ in the roles of G, C and M , Lemma 5.2 yields

x, y ∈ B′ such that T = ⟨x, y⟩ +M ′ and (|x|, |y|) = (plc , pLc). Since pb ∈M ′, we derive that x, y ∈ B \ {b}
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and in particular x, y ∈ ker c̃. Now applying Theorem 5.3 to T , M ′ and H = ker c̃, we get a subgroup

M̃ ⊆M ′ ∩ ker c̃ such that ker c̃ = ⟨x⟩ ⊕ ⟨y⟩ ⊕ M̃ . Thanks to Lemma 5.2, two elements out of C = {b, x, y}
have orders pl and pL and so we are done. □

Recall that, by Lemma 3.8, we have that ℓ(M) ≤ ℓT (M) ≤ L(M) ≤ LT (M) and so, from the last result,

we derive the following corollary in a straightforward way.

Corollary 5.11. One has ℓ(M) = ℓT (M) or ℓT (M) = L(M) or L(M) = LT (M).

Until the end of Section 5.3, we let x, y, and M̃ be as in Lemma 5.10. We also write ℓL(M) = (l, L) and

ℓLT (M) = (lc, Lc).

Lemma 5.12. There exist α, δ ∈ Zp such that bM = b− αx− δy ∈M \ (M ∩ T ) and

(α, δ) ∈


Zp × Zp if l = lc ≤ L = Lc,

Z∗
p × {0} if l < lc < L = Lc,

Zp × Z∗
p otherwise.

Moreover, if l = lc ≤ L = Lc, then bM and b have the same order.

Proof. We start by recalling that G = ⟨x, y⟩ + M and M contains pG and has index p2 in G. As a

consequence there exist uniquely determined α, δ ∈ {0, . . . , p − 1} and bM ∈ M with the property that

b = αx+ δy+ bM . Fix such triple and note that bM /∈M ∩ T because b /∈ T while x, y ∈ T . We will prove

the following:

(i) if l = lc ≤ L = Lc, then |b| = |bM |,
(ii) if l < lc < L = Lc, then α ̸= 0 and δ = 0,

(iii) in all other cases δ ̸= 0.

We start by assuming that l = lc ≤ L = Lc. If |b| ≥ pL, then clearly |b| = |bM | and, if |b| < pl, then

b ∈ M and thus again |b| = |bM |. We assume in conclusion that pl ≤ |b| < pL. In this case δ = 0 because

otherwise y ∈ ⟨b, x⟩ + M yielding to the contradiction G = ⟨b, x⟩ + M = G[pL−1] + M . Since δ = 0, we

readily derive |b| = |bM |.
Assume now that l < lc < L = Lc. As one of b, x, y has order pl, we have that |b| = pl. Thus, if δ were

nonzero, we would get a similar contradiction as the one from the previous case. Note that, δ being zero,

α cannot be otherwise we would have b ∈ M . This would yield a contradiction because, in such case, we

would have that

G[pl] = ⟨xplc−l⟩ ⊕ ⟨ypLc−l⟩ ⊕ ⟨b⟩ ⊕ M̃ [pl] ⊆ pG+M = M,

contradicting the minimality of l.

We conclude by looking at the remaining cases. Assume first that L < Lc. Since two of the elements

b, x, y have order pl and pL, we have |b|, |x| ≤ pL < pLc . If, for a contradiction, δ were zero, we would have
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|bM | < pLc and consequently

G = M +G[pL] = (M ∩ T ) + ⟨bM ⟩ +G[pL] = (M ∩ T ) +G[pLc−1].

In particular, this would imply that T = (M ∩ T ) + T [pLc−1], contradicting the definition of Lc. We are

now left with considering the case l < lc = L = Lc. It follows from Lemma 5.10 that |b| = pl and, in

particular, b is not contained in M . Now, the elements x and y having the same orders, we assume without

loss of generality that δ is invertible. □

Lemma 5.13. Assume that (ℓL([ω]), ℓLc([ω])) = (ℓL([ϑ]), ℓLc([ϑ])) = (l, L, lc, Lc) and, additionally, that

l = lc ≤ L = Lc. Then one has [ω] ∼Ac [ϑ].

Proof. Let fω, gω, fϑ, gϑ play the roles of f and g from Lemma 5.10 respectively for Mω and Mϑ. Let,

analogously xω, yω, xϑ, yϑ ∈ ker c̃ play the roles of x and y and let moreover M̃ω and M̃ϑ play the roles

of M̃ . Write bω and bϑ for the equivalents of bM , which we know have the same order thanks to the case

l = lc ≤ L = Lc in Lemma 5.12. We have that

G = ⟨bω⟩ ⊕ ⟨xω⟩ ⊕ ⟨yω⟩ ⊕ M̃ω = ⟨bϑ⟩ ⊕ ⟨xϑ⟩ ⊕ ⟨yϑ⟩ ⊕ M̃ϑ.

Let now λ ∈ Zp be such that c̃(bϑ) = λc̃(bω) and note that such λ exists by the definition of bM . Let,

moreover, σ : G! G be an isomorphism satisfying

xω 7! xϑ, yω 7! λyϑ, bω 7! bϑ, σ(M̃ω) = M̃ϑ.

By construction, a = (σ, λ) belongs to Ac and satisfies a[ω] = [ϑ]. □

Lemma 5.14. Assume that (ℓL([ω]), ℓLc([ω])) = (ℓL([ϑ]), ℓLc([ϑ])) = (l, L, lc, Lc) and, additionally, that

l < lc < L = Lc. Then one has [ω] ∼Ac [ϑ].

Proof. Let fω, gω, fϑ, gϑ play the roles of f and g from Lemma 5.10 respectively for Mω and Mϑ. Let,

analogously xω, yω, xϑ, yϑ ∈ ker c̃ play the roles of x and y and let moreover M̃ω and M̃ϑ play the roles of

M̃ . Write bω = b− αωxω and bϑ = b− αϑxϑ for the equivalents of bM from Lemma 5.12; then bω ∈ ker gω

and bϑ ∈ ker gϑ. Let now λ = αϑα
−1
ω and let σ : G! G be an isomorphism satisfying

xω 7! λxϑ, yω 7! λ−1yϑ, b 7! b, σ(M̃ω) = M̃ϑ.

By construction we have (σ, 1)c̃ = c̃ and (σ, 1)[ω] = [ϑ]. □

Lemma 5.15. Assume that (ℓL([ω]), ℓLc([ω])) = (ℓL([ϑ]), ℓLc([ϑ])) = (l, L, lc, Lc) and, additionally, that

l < lc = L = Lc or L < Lc. Then one has [ω] ∼Ac [ϑ].

Proof. Let fω, gω, fϑ, gϑ play the roles of f and g from Lemma 5.10 respectively for Mω and Mϑ. Let,

analogously xω, yω, xϑ, yϑ ∈ ker c̃ play the roles of x and y and let moreover M̃ω and M̃ϑ play the roles of
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M̃ . Write bω = b − αωxω − δωyω and bϑ = b − αϑxϑ − δϑyϑ for the equivalents of bM from Lemma 5.12.

Let now λ = δϑδ
−1
ω and let σ : G! G be an isomorphism satisfying

xω 7! xϑ, yω 7! λyϑ − δ−1
ω (αω − αϑ)xϑ, b 7! b, σ(M̃ω) = M̃ϑ.

We start by observing that by construction (σ, 1)c̃ = c̃; moreover, σ(Mω) = Mϑ and σ(T ) = T . It follows

from Corollary 3.11 that, up to a scalar, the elements [ω] and [ϑ] are conjugate under Ac. Lemma 2.6(2)

yields the claim. □

Proof of Proposition 5.9. The implication from left to right follows in a straightforward way from Propo-

sition 3.10. We show the opposite one holds, too. Assume that ℓL([ω]) = ℓL([ϑ]) = (l, L) and ℓLc([ω]) =

ℓLc([ϑ]) = (lc, Lc). By Lemma 3.8 we have that l ≤ lc ≤ L ≤ Lc. In case (l, L) = (lc, Lc), we are done

by Lemma 5.13. Morover, if l < lc < L, then we apply Lemma 5.14. The leftover cases are L < Lc and

l < lc = L = Lc, which we resolve using Lemma 5.15. □

Proof of Proposition 5.1. The implication (1) ⇒ (2) is given by Proposition 3.10(3). We now prove that

(2) ⇒ (1). For this, we assume that (ℓL([ω]), ℓLc([ω]), ic([ω])) = (ℓL([ϑ]), ℓLc([ϑ]), ic([ϑ])). If [c] = 0, then

ic([ω]) = ic([ϑ]) = 0 and ℓLc([ω]) = ℓL([ω]) = ℓL([ϑ]) = ℓLc([ϑ]); we conclude by applying Proposition 5.4.

Assume now that [c] ̸= 0. We note that ℓL([ω]) = (n+1, 0) if and only if Mω = G, equivalently [ω] = 0. In

particular, if ℓL([ω]) = ℓL([ϑ]) = (n+ 1, 0), then [ω] = [ϑ]. Assume now that ℓL([ω]) = ℓL([ϑ]) ̸= (n+ 1, 0)

and so [ω] and [ϑ] are non-trivial. We finish by applying Propositions 5.6 and 5.9. □

6. Main result and applications

We devote the present section to the proof of our main Theorem 6.1 and to presenting some of its

applications. In Sections 6.2 and 6.3 we explicitly compute the orbit sizes of the action of A on H2(G;Fp)

respectively in the cases of 2-generated and 3-generated abelian p-groups, equivalently the cases when

r = 1 resp. r = 2. We remark that in such cases the sizes of orbits are polynomial in p. We do not discuss

the case of cyclic G, i.e. r = 0, as in such case H2(G;Fp) = H2
ab(G;Fp); see Section 2.2. In Section 6.4, we

collect some general remarks regarding the computability of the A-orbits in H2(G;Fp). Until the end of

Section 6, we denote by O the collection of orbits of the action of A on H2(G;Fp) and by S = (|o|)o∈O the

vector of the orbit sizes. For a more informative presentation of the data, the vector S will be decorated

by vertical bars to isolate

• the vector o of orbits associated to elements of H2
ab(G;Fp),

• each vector of orbits derived from a fixed orbit choice in H2
ab(G;Fp), following the order in o.

Redundant brackets are ignored in the display of S.

6.1. The main theorem. The following is our main result, which gives a combinatorial description of

the A-orbits of the A-stable subset H2
ab(G;Fp) × Im∪ of H2(G;Fp).

Theorem 6.1. Let [c], [d] ∈ H2
ab(G;Fp) and [ω], [ϑ] ∈ Im∪. Then the following are equivalent:
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(1) [c] + [ω] ∼A [d] + [ϑ], and

(2) (ℓL([c]), ℓL([ω]), ℓLc([ω]), ic([ω])) = (ℓL([d]), ℓL([ϑ]), ℓLd([ϑ]), id([ϑ])).

Proof. (1) ⇒ (2) Assume that [c] + [ω] ∼A [d] + [ϑ] and let a = (σ, λ) ∈ A be such that a · [c] + a · [ω] =

a · ([c] + [ω]) = [d] + [ϑ]. With the notation from Proposition 3.10, we then have that [ϑ] = a · [ω] = [ωa]

and thus ℓL([ω]) = ℓL([ϑ]), ℓLc([ω]) = ℓLd([ϑ]), ℓL([c]) = ℓL([d]), and ic([ω]) = id([ϑ]).

(2) ⇒ (1) Assume that ℓL([ω]) = ℓL([ϑ]), ℓLc([ω]) = ℓLd([ϑ]), ℓL([c]) = ℓL([d]), and ic([ω]) = id([ϑ]).

Then, thanks to Proposition 4.1, there exists a ∈ A such that a · [c] = [d]. Fix such a. Then, by

Proposition 3.10, we have that a · ([c]+[ω]) = [d]+[ωa] and, as a consequence, also that ℓL([ϑ]) = ℓL([ωa]),

ℓLd([ϑ]) = ℓLd([ωa]), and id([ϑ]) = id([ωa]). Now, Proposition 5.1 yields that there exists a′ ∈ Ad such

that a′ · [ωa] = [ϑ] and thus such that a′a · ([c] + [ω]) = [d] + [ϑ]. □

We remark that, in view of Proposition 4.1, one could replace ℓL([c]) in Theorem 6.1 with any of ℓ([c]) or

L([c]) and, symmetrically, ℓL([d]) with ℓ([d]) or L([d]). We explicitly compute the vectors in Theorem 6.1(2)

in Sections 6.2 and 6.3, in the case when G has a minimal generating set of 2 or 3 elements, respectively.

It would be interesting to understand the combinatorial nature of the collection of such vectors for an

arbitrary number of generators.

6.2. The case of 2-generated groups. Assume that G = Z/(pm1) ⊕ Z/(pm2) for positive integers

m1 ≤ m2 and, in the case that p = 2, assume that m1 > 1. We will show that the following hold:

|O| =

4 if m1 = m2,

6 otherwise ,

and

S =

(1, p2 − 1 | p− 1, (p− 1)(p2 − 1)) if m1 = m2,

(1, p− 1, p2 − p | p− 1, (p− 1)2, (p− 1)(p2 − p)) otherwise.

Thanks to Proposition 4.1, the subspace H2
ab(G;Fp) consists of 2 or 3 orbits under A respectively when

m1 = m2 or m1 ̸= m2. Let now [ω] ∈ Im∪. Then we have that

Mω =

G if [ω] = 0,

pG otherwise,

and, in particular, ic([ω]) = 1 if and only if [c] ̸= 0 and [ω] = 0. Since both G and pG are characteristic in

G, it follows from Lemma 2.6 that, for each [c] ∈ H2
ab(G;Fp), the set Im∪ is the union of two orbits under

Ac with cardinalities 1 and p− 1. Now, the cup product being surjective (see Section 2.6) onto ⟨Im∪⟩, it

follows that the number of orbits is twice the number of orbits in H2
ab(G;Fp) and their sizes are

S =

(1, p2 − 1 | p− 1, (p− 1)(p2 − 1)) if m1 = m2,

(1, p− 1, p2 − p | p− 1, (p− 1)2, (p− 1)(p2 − p)) otherwise.

For completeness, we include the levels-indices vectors from Theorem 6.1(2). If m1 = m2 , then we have
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[ω] = 0 [ω] ̸= 0

[c] = 0 (m1 + 1, 0 | m1 + 1, 0 | m1 + 1, 0 | 0) (m1 + 1, 0 | m1,m1 | m1,m1 | 0)

[c] ̸= 0 (m1,m1 | m1 + 1, 0 | m1 + 1, 0 | 1) (m1,m1 | m1,m1 | m1,m1 | 0)

while, if m1 ̸= m2 , the vectors are

[ω] = 0 [ω] ̸= 0

[c] = 0 (m2 + 1, 0 | m2 + 1, 0 | m2 + 1, 0 | 0) (m2 + 1, 0 | m2,m2 | m2,m2 | 0)

[c] = β(γ∗1) (m1,m1 | m2 + 1, 0 | m2 + 1, 0 | 1) (m1,m1 | m1,m2 | m2,m2 | 0)

[c] = β(γ∗2) (m2,m2 | m2 + 1, 0 | m2, 0 | 1) (m2,m2 | m1,m2 | m1,m1 | 0)

6.3. The case of 3-generated groups. Assume that G = Z/(pm1) ⊕ Z/(pm2) ⊕ Z/(pm3) where m1 ≤
m2 ≤ m3 are positive integers with the additional condition that, if p = 2, then m1 > 1. We will show

that the following hold:

| O |=



5 if m1 = m2 = m3,

11 if m1 < m2 = m3,

11 if m1 = m2 < m3,

19 if m1 < m2 < m3.

We will, additionally, give the orbit sizes in each of the listed cases. For this, note that, as a consequence

of Proposition 4.1, the sizes of the A-orbits of H2
ab(G;Fp) are

Sab =



(1, p3 − 1) if m1 = m2 = m3,

(1, p− 1, p3 − p) if m1 < m2 = m3,

(1, p2 − 1, p3 − p2) if m1 = m2 < m3,

(1, p− 1, p2 − p, p3 − p2) if m1 < m2 < m3.

We proceed by looking at the specific cases, one by one. For this, observe that Im∪ = ⟨Im∪⟩ and

dimFp Im∪ = 3; see Sections 2.2 and 2.6.

We start by assuming that m1 = m2 = m3 . Let [c] ∈ {0, β(γ∗1)} and write [ω] for a generic element in Im∪.

Then, following the notation in Theorem 6.1(2), we obtain the following possible values parametrizing the

A-orbits in H2(G;Fp):

[0] [ω] ̸= 0

[c] = 0 (m1 + 1, 0 | m1 + 1, 0 | m1 + 1, 0 | 0) (m1 + 1, 0 | m1,m1 | m1 + 1, 0 | 0)

[c] ̸= 0 (m1,m1 | m1 + 1, 0 | m1 + 1, 0 | 1) (m1,m1 | m1,m1 | m1,m1 | 0)

(m1,m1 | m1,m1 | m1,m1 | 1)

In particular, Im∪ \ {0} consists of a unique A-orbit of cardinality p3 − 1. Assume now that [c] = β(γ∗1).

In this case, we obtain

• I0 = {[ω] ∈ Im∪ \ {0} : ic([ω]) = 0} = {λ1[v∗11 ∪ v∗21] + λ2[v
∗
11 ∪ v∗31] : λi ∈ Fp, (λ1, λ2) ̸= (0, 0)},
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• I1 = {[ω] ∈ Im∪\{0} : ic([ω]) = 1} = {λ1[v∗11∪v∗21]+λ2[v
∗
11∪v∗31]+λ3[v

∗
21∪v∗31] : λi ∈ Fp, λ3 ̸= 0}.

It follows that |I0| = p2 − 1 and |I1| = p3 − p2 and thus Proposition 5.1 yields that

S = (1, p3 − 1 | p3 − 1 | (p3 − 1)(p2 − 1), (p3 − 1)(p3 − p2)).

Assume now that m1 < m2 = m3 . Define [c1] = β(γ∗1) and [c2] = β(γ∗2). Write, moreover, [ω] for a

generic element in Im∪. Then, following the notation in Theorem 6.1(2), the values parametrizing the

A-orbits in H2(G;Fp) are collected below:

[ω] = 0 [ω] ̸= 0

[c] = 0 (m2 + 1, 0 | m2 + 1, 0 | m2 + 1, 0 | 0) (m2 + 1, 0 | m1,m2 | m1,m2 | 0)

(m2 + 1, 0 | m2,m2 | m2,m2 | 0)

[c1] = β(γ∗1) (m1,m1 | m2 + 1, 0 | m2 + 1, 0 | 1) (m1,m1 | m1,m2 | m2,m2 | 0)

(m1,m1 | m1,m2 | m2,m2 | 1)

(m1,m1 | m2,m2 | m2,m2 | 1)

[c2] = β(γ∗2) (m2,m2 | m2 + 1, 0 | m2 + 1, 0 | 1) (m2,m2 | m1,m2 | m1,m1 | 0)

(m2,m2 | m1,m2 | m1,m2 | 1)

(m2,m2 | m2,m2 | m2,m2 | 0)

Note also that the two A-orbits in Im∪ \ {0} are represented by [v∗11 ∪ v∗21] and [v∗21 ∪ v∗22] and correspond

respectively to the G-levels (m1,m2) and (m2,m2). It is a straightforward computation to show that the

following hold:

I1
0 (m1,m2) = {[ω] ∈ Im∪ \ {0} : ℓL([ω]) = (m1,m2), ic1([ω]) = 0}

= {λ1[v∗11 ∪ v∗21] + λ2[v
∗
11 ∪ v∗22] : λi ∈ Fp, (λ1, λ2) ̸= (0, 0)},

I1
1 (m1,m2) = {[ω] ∈ Im∪ \ {0} : ℓL([ω]) = (m1,m2), ic1([ω]) = 1}

= {λ1[v∗11 ∪ v∗21] + λ2[v
∗
11 ∪ v∗22] + λ3[v

∗
21 ∪ v∗22] : λi ∈ Fp, (λ1, λ2) ̸= (0, 0), λ3 ̸= 0},

I1
1 (m2,m2) = {[ω] ∈ Im∪ \ {0} : ℓL([ω]) = (m2,m2), ic1([ω]) = 1}

= {λ3[v∗21 ∪ v∗22] : λ3 ∈ Fp, λ3 ̸= 0},

I2
0 (m1,m2) = {[ω] ∈ Im∪ \ {0} : ℓL([ω]) = (m1,m2), ic2([ω]) = 0}

= {λ1[v∗11 ∪ v∗21] + λ2[v
∗
21 ∪ v∗22] : λi ∈ Fp, λ1 ̸= 0},

I2
0 (m2,m2) = {[ω] ∈ Im∪ \ {0} : ℓL([ω]) = (m2,m2), ic2([ω]) = 0}

= {λ2[v∗21 ∪ v∗22] : λ2 ∈ Fp, λ2 ̸= 0},

I2
1 (m1,m2) = {[ω] ∈ Im∪ \ {0} : ℓL([ω]) = (m1,m2), ic2([ω]) = 1}

= {λ1[v∗11 ∪ v∗21] + λ2[v
∗
21 ∪ v∗22] + λ3[v

∗
11 ∪ v∗22] : λi ∈ Fp, λ3 ̸= 0}.
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It follows that

|I1
0 (m1,m2)| = p2 − 1, |I1

1 (m2,m2)|= p− 1, |I1
1 (m1,m2)| = p3 − p2 − p+ 1,

|I2
0 (m1,m2)| = p2 − p, |I2

0 (m2,m2)|= p− 1, |I2
1 (m1,m2)| = p3 − p2,

and so we derive from our table of possibilities and Theorem 6.1 that

S = (1, p− 1, p3 − p | p3 − p, p− 1 |

(p− 1)(p2 − 1), (p− 1)2, (p− 1)(p3 − p2 − p+ 1) |

(p3 − p)(p2 − p), (p3 − p)(p− 1), (p3 − p)(p3 − p2)).

We have developed the current case in full detail to show how Theorem 6.1 yields the orbit count. One can

compute the orbit sizes in the remaining cases in a similar manner and so we present them in a slightly

more synthetic way.

Assume that m1 = m2 < m3 . Write [c1] = β(γ∗1) and [c2] = β(γ∗2). We also write [ω] for a generic

element in Im∪. Then, following the notation in Theorem 6.1(2), the values parametrizing the A-orbits

in H2(G;Fp) are listed in the next table:

[ω] = 0 [ω] ̸= 0

[c] = 0 (m3 + 1, 0 | m3 + 1, 0 | m3 + 1 | 0) (m3 + 1, 0 | m1,m1 | m1,m1 | 0)

(m3 + 1, 0 | m1,m3 | m1,m3 | 0)

[c1] = β(γ∗1) (m1,m1 | m3 + 1, 0 | m3 + 1, 0 | 1) (m1,m1 | m1,m1 | m1,m1 | 0)

(m1,m1 | m1,m1 | m1,m3 | 1)

(m1,m1 | m1,m3 | m3,m3 | 0)

(m1,m1 | m1,m3 | m1,m3 | 1)

[c2] = β(γ∗2) (m3,m3 | m3 + 1, 0 | m3, 0 | 1) (m3,m3 | m1,m1 | m1,m1 | 1)

(m3,m3 | m1,m3 | m1,m1 | 0)

We observe that the two A-orbits in Im∪\{0} are represented by [v∗11∪v∗12] and [v∗11∪v∗21] and correspond

respectively to the G-levels (m1,m1) and (m1,m3): these orbits have sizes respectively p2− 1 and p3− p2.

Analogously to the previous case, one can compute that

S = (1, p2 − 1, p3 − p2 | p3 − p2, p2 − 1 |

(p2 − 1)(p2 − p), (p2 − 1)(p3 − 2p2 + p), (p2 − 1)(p− 1), (p2 − 1)(p2 − p) |

(p3 − p2)2, (p3 − p2)(p2 − 1)).

We conclude with the case m1 < m2 < m3 . Write [c1] = β(γ∗1), [c2] = β(γ∗2), and [c3] = β(γ∗3). Analo-

gously to the previous cases, we collect the possible levels-indices vectors from Theorem 6.1(2) in the next

table:
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[ω] = 0 [ω] ̸= 0

[c] = 0 (m3 + 1, 0 | m3 + 1, 0 | m3 + 1 | 0) (m3 + 1, 0 | m1,m2 | m1,m2 | 0)

(m3 + 1, 0 | m1,m3 | m1,m3 | 0)

(m3 + 1, 0 | m2,m3 | m2,m3 | 0)

[c1] = β(γ∗1) (m1,m1 | m3 + 1, 0 | m3 + 1, 0 | 1) (m1,m1 | m1,m2 | m2,m2 | 0)

(m1,m1 | m1,m2 | m2,m3 | 1)

(m1,m1 | m1,m3 | m3,m3 | 0)

(m1,m1 | m1,m3 | m2,m3 | 1)

(m1,m1 | m2,m3 | m2,m3 | 1)

[c2] = β(γ∗2) (m2,m2 | m3 + 1, 0 | m3 + 1, 0 | 1) (m2,m2 | m1,m2 | m1,m1 | 0)

(m2,m2 | m1,m2 | m1,m3 | 1)

(m2,m2 | m1,m3 | m1,m3 | 1)

(m2,m2 | m2,m3 | m3,m3 | 0)

[c3] = β(γ∗3) (m3,m3 | m3 + 1, 0 | m3, 0 | 1) (m3,m3 | m1,m2 | m1,m2 | 1)

(m3,m3 | m1,m3 | m1,m1 | 0)

(m3,m3 | m2,m3 | m2,m2 | 0)

Representatives of the A-orbits of Im∪ \ {0} are [v∗11 ∪ v∗21], [v∗11 ∪ v∗31], and [v∗21 ∪ v∗31] corresponding

respectively to the levels (m1,m2), (m1,m3), and (m2,m3). As a consequence, one computes that

S = (1, p− 1, p2 − p, p3 − p2 | p3 − p2, p2 − p, p− 1 |

(p− 1)2p, (p− 1)3p, (p− 1)2, (p− 1)3, (p− 1)2 |

(p2 − p)2, (p2 − p)(p3 − 2p2 + p), (p2 − p)2, (p2 − p)(p− 1) |

(p3 − p2)2, (p3 − p2)(p2 − p), (p3 − p2)(p− 1)).

6.4. Higher number of generators. In Sections 6.2 and 6.3, we have made use of Theorem 6.1 to

compute the orbit sizes of the action of A on H2(G;Fp). As the careful reader might have observed,

however, we did not need the full information from the vectors in Theorem 6.1(2) to exploit the cases of 2-

and 3-generated groups. In the case of 2-generated groups, the c-levels and c-index can always be derived

from the knowledge of ℓL([c]) and ℓL([ω]) because V has dimension 2. In the case of 3-generated groups,

the knowledge of the vector (ℓL([c]), ℓL([ω]), ic([ω])) suffices for the computation of ℓLc([ω]) because V has

only dimension 3. When G requires a generating set of larger cardinality, the full information carried by

the vectors described in Theorem 6.1(2) is needed, as the following example shows.

Example 6.2. Assume p is odd and G is given by

G = Z/(p) ⊕ (Z/(p2))2 ⊕ Z/(p3) ⊕ (Z/(p4))2 = ⟨γ11, γ21, γ22, γ31, γ41, γ42⟩.
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Let moreover T,M,M ′ be subgroups of G given by

T = ⟨γ11, γ22, γ31, γ41, γ42⟩ + pG,

M = ⟨γ11, γ21 − γ31, γ22, γ42⟩ + pG,

M ′ = ⟨γ11, γ21, γ31, γ41⟩ + pG,

and observe that T is maximal in G, while G/M and G/M ′ are elementary abelian of rank 2. Additionally,

we have that ℓL(M) = (2, 4) = ℓL(M ′) and

M ∩ T = ⟨γ11, γ22, γ42⟩ + pG and M ′ ∩ T = ⟨γ11, γ31, γ41⟩ + pG

and so, in particular, M and M ′ are not contained in T . Equivalently, if [c] ∈ H2
ab(G;Fp) represents T

via (2.6), then ic(M) = ic(M
′) = 1. Nevertheless, the T -levels of M and M ′ do not coincide: indeed one

can compute ℓLT (M) = (3, 4) ̸= (2, 4) = ℓLT (M ′).

We close the current section and the paper with some observations concerning the determination of the

A-orbits in H2(G;Fp) for arbitrary G. Our main theorem allows us to compute the orbits contained in

H2
ab(G;Fp)× Im∪, which is – for d(G) ≥ 4 – a proper subset of H2(G;Fp). A key ingredient in the proof of

Theorem 6.1 is Corollary 3.11 and we are confident that a generalization of it to elements of higher rank

in P⟨Im∪⟩ will yield a description of the orbits of H2(G;Fp). Such a generalization will most likely build

upon the geometry of P(Λ2V ), which is very well-understood, via identifying its elements with equivalence

classes of tuples of subspaces of V . We hope to come back to this interesting problem in a future paper.
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