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Once you find your shoulders dropping 

And your speech gets slow and hazy 

You better change your way of being 

Before you found your brain got lazy 

You can build a better future when you join the winning team 

If you desire a bright tomorrow, you must build a brighter dream 

Dare to let your dreams reach beyond you 

Know that history holds more than it seems 

We are here alive today because our ancestors dared to dream 

From Africa they lay in the bilge of slave ships 

And stood half naked on auction blocks 

From eastern-Europe they crowded in vessels overloaded with immigrants 

And were mis-named on Ellis island 

From South America and Mexico, from Asia, they labored in sweat shops 

From all over the world, they came to America 

Many shivering in rags, and still they dared to dream 

Let us dream for today and for tomorrow 

Let us dare to dream 

 

[Maya Angelou]
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Summary 

Cities represent at the same time a kaleidoscopic diversity -in terms of situations, challenges, 

morphology, people- and an ensemble of same tendency: growing. In the majority of cases, 

such growth determines on one hand a growth of the demand for resources and on the other 

hand more and more limited resources at disposal to satisfy such demand, due general trend 

and need to substitute green areas with built-up areas. 

However, if goal of any plan and policy is human wellbeing, the availability of green areas in 

city and, more general, of ecosystems is crucial. Hence, the constituents of human wellbeing 

can be summarized into four basic types of capital that are necessary to support a real, 

well-being–producing economy: built capital, human capital, social capital, and natural 

capital (Costanza, 2008a). How shall we preserve, manage or increase such capital to assure 

and increase wellbeing in cities are questions that decision-makers face every day. 

Ecosystems contribute to human wellbeing though the provisioning of goods and services, 

also known as ecosystem services (ES). These include provisioning services such as food, 

water, timber, and fiber; regulating services that affect climate, floods, disease, wastes, and 

water quality; cultural services that provide recreational, aesthetic, and spiritual benefits; and 

supporting services such as soil formation, photosynthesis, and nutrient cycling (MEA, 2005). 

However not all ecosystems provide ES to the same extent and depending on physical 

characteristics of the ecosystems or their location within the city, ES flow differently. The 

consideration of ecosystems and ES in the planning practice can play an important role in 

coping with urban challenges, aside to their potential to ameliorate quality of life. 

Urban planning represents one of the tools administrations have to influence the distribution 

of ecosystems and ES in a city, and to determine the benefits they provide and, more 

specifically, to re-determine the number, the location and type of beneficiaries reached 

(Kremer et al, 2013). Inclusion of the ES concept in the planning practice can lead to strategic 

the creation or restoration of Green Urban Infrastructures (GUI) in a city to maximize the 

provisioning of a specific ES. GUI can be described  as  hybrid infrastructures of green 

spaces and built systems, such as urban forests and wetlands, parks, green roofs and walls, 

that together can contribute to increase city resilience and human benefits through the 

provision of ES (Naumann et al., 2010; Pauleit et al., 2011; European Environment Agency, 

2012). Additionally, Ecosystem-based measures can be specifically designed to support 

cities to adapt to climate change and this approach take the name of Ecosystem-based 

Adaptation (EbA).  

Despite the awareness of environmental, social and economic advantaged coming from the 

application of the ES concept in the planning practice (through the application of 
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Ecosystem-based measures such as the creation and restoration of GUI or more specifically 

through the application of the EbA to increase urban resilience to climate change), there is 

limited evidence about the application in the planning practice. Insufficient understanding of 

ecosystems and ES functioning by planners and the lack of tools and methods for ES 

assessments at the urban scale may hamper the inclusion of Ecosystem-based measures and 

put further from reality the design of sustainable and equitable cities. 

Goal of this work of this work is to contribute to mainstream ES knowledge into practice. 

Towards the achievement of this goal, it is crucial to understand the extent to which the ES 

concept is currently included in urban planning, and to identify the type of information that 

can most effectively support decision-makers and planners in adopting ES knowledge, and 

specifically Ecosystem-based measures in their “everyday” urban planning. The work is 

organized in four specific objectives. 

 

First objective of this research is to provide an overview of the current state of the art related 

to inclusion of Ecosystem-based measures in urban planning and discuss, and use it identify 

and discuss the main shortcoming and propose possible solutions.  

ES recent scientific literature has shown a growing interest to assess climate adaptation plans 

at the urban level, but little information is available on the combination of these two issues, 

i.e., the actual inclusion of Ecosystem-based Adaptation (EbA) measures in climate 

adaptation plans at the urban level. First objective of the thesis is to address this gap by 

developing a framework for analyzing the inclusion of EbA in urban level climate planning, 

hence, apply the framework to a sample of climate adaptation plans in Europe. 

Second objective of the research is to develop an approach to estimate the cooling capacity 

provided by Green Urban Infrastructures to support urban planning. 

To provide a contribution in response to the need of ES assessment to support urban planning, 

overtly designed for ES assessments at the urban scale, we focus on one specific ES (cooling) 

and build a methodology for assessing the cooling capacity of different ecosystems in cities. 

The aim here is to propose an approach for estimating and mapping the cooling capacity 

provided by GUI to generate useful information to support planners and decision-makers in 

the design and enhancement of GUI. 

Third objective of this work is to test the application of ES assessments in two case studies. 

Because of the pivotal role of practice in this work, the third objective deals with testing the 

applicability of ES assessments and the ES concept in general to exiting urban planning 

challenges. Two case-study applications considered, each addressing a specific policy and 

planning question. In the first case study (Trento, Italy) we tested again our cooling capacity 

assessment methodology and additionally mapped the flow of ES with the intention to apply 

the results to the identification of priority brownfield for intervention, based on the best 

cooling capacity expected. In the second case study (Addis Abeba, Ethiopia) we applied a 
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multiple ES assessment and we also considered the demand for ES with the intention to apply 

the results to identify priority neighborhood for environmental actions 

Fourth and last objective of the thesis is to develop guidance to support equitable distribution 

of ES in cities.  

If wellbeing in cities depends also on natural capital, it is crucial to pursue equitable 

distribution of resources (and more specifically of ES) among citizens in a city. In the 

practice, equitable distribution is assessed through general urban standards (e.g. availability 

of green per capita) or by applying ES assessments designed for purposes different from the 

pursue of equitable distribution of resources. Thus, we developed a methodology to assess 

equitable distribution of ES within a city. The adoption of ES assessments can provide a 

powerful tool to the assessment and pursue of equitable distribution of ES. Equitable 

distribution of the natural capital, and more specifically of ecosystems and the ES they 

provide, represents one of the pillars of an equitable distributed wellbeing (Costanza, 2008b; 

UNHabitat, 2016). ES assessments can provide a support to the analysis of ES distribution to 

pursue equity, by identify location of ES supply, verifying access to such ES and mapping the 

demand to identify possible mismatches within the city. 

 

This work is result of the joint contribution from the ES theory and applications of findings to 

case studies, with interest both in the applicability of methods by users, and in the type of 

contributions that such applications can provide to planners. The ES concept more than a 

goal itself represent a tool to understand the underlying links between ecosystems, benefits 

provided and human wellbeing. Such understanding, if effectively used and mainstreamed in 

the planning practice, can be one of the keys for more livable and equitable cities.   
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1 Scope and outline of the thesis 

Chapter 1   

Scope and outline of the thesis  

1.1 Introduction and objectives 

Adapting to climate change, assuring presence of water and food and fuel, mitigating 

run-offs, managing liquid and solid waste, providing recreation and sense of identity, 

supporting the economic growth and general availability of goods that underpins it, while 

pursuing quality of life for all citizens. From a management point of view, cities represent an 

ensemble of problems to solve and needs to satisfy, in order to provide and maintain the 

wellbeing of their inhabitants. In particular, in terms of resource management,  the growth 

and development of urban environments is accompanied by a demographic growth, which 

triggers an increase in the demand for resources, and a physical growth of the built up that 

affects the potential supply of resources, from both quantity and quality sides. The situation is 

equal to a touchpaper burning from both sides. 

Costanza (2008a) summarizes the constituents of human wellbeing into four basic types of 

capital that are necessary to support a real, well-being–producing economy: built capital, 

human capital, social capital, and natural capital. Despite some disheartening trends, there is 

a general awareness about the fact that no human life can occur without the contribution of 

the natural capital. For example, in the urban planning debate the sphere of natural capital is 

gaining more and more relevance (UN Habitat, 2016). However, the environmental 

challenges faced by cities around the world are more complex now than at any other time in 

history (UNU, 2003). Additionally, nature-related issues, like coins, present two faces. On 

one hand, there is the need for conservation, need to preserve the existing natural capital from 

disasters and human-activity impacts. Thus, an optimal use of current understanding of 

ecosystems and their link with human-wellbeing represent a key to avoid environmental traps 

that would compromise quality of life in cities and instead would offer a variety of benefits 

that underpin human wellbeing (Chapin et al.). On the other hand, natural capital, which 

includes the ecosystems and all the services they provide, represents a promising source that 

only need to be unlocked, bridled and managed to provide cities the goods and services they 

need to improve quality of life. 



SCOPE AND OUTLINE OF THE THESIS 

18 

 

Ecosystem Service (ES) are all the goods and services provided by ecosystems. These 

include provisioning services such as food, water, timber, and fiber; regulating services that 

affect climate, floods, disease, wastes, and water quality; cultural services that provide 

recreational, aesthetic, and spiritual benefits; and supporting services such as soil formation, 

photosynthesis, and nutrient cycling (MEA, 2005). An ecosystem is a community of living 

organisms and nonliving components of their environment (e.g. like air, water and mineral 

soil), interacting as a system (Chapin et al., 2002). Ecosystems however are not only 

environmental and health “issues”: they also represent important economic value. The 

presence or absence of functional ecosystems and their ES have impact on the strength of the 

economy and on the wellbeing of people (e.g. air purification, noise reduction, urban cooling 

and absorbing storm/flood water runoff) (Bolund & Hunhammar, 1999) . For instance, the air 

purification performed by ecosystems in Barcelona represents economic values of over EUR 

1 million of avoided costs for the city (Gomez-Baggethun and Barton, 2013). In Chicago, the 

cooling value of each tree corresponds to USD 15 of avoided air conditioning costs and 

hospitalization expenditures due to heat-related diseases (Gomez-Baggethun and Barton, 

2013). Even higher costs and values are related to flood mitigation. Hence, the presence of 

functional urban ecosystems represents significant economic and health benefits, while their 

absence implies costs. 

 

Even though all ecosystems provide ES, different ecosystems provide different ES, 

according to their biophysical functioning that is determined by their physical characteristics, 

such as the size, the soil cover or the presence of tree (Bolund and Hunhammar, 1999; Bowler 

et al., 2010; De Groot et al, 2010). Additionally, ecosystems in a city are heterogeneously 

distributed and consequently their ES provisioning also is heterogeneously distributed 

among potential beneficiaries (Ernston, 2013).  

Urban planning represents one of the tools administrations have to influence the distribution 

of ecosystems and ES in a city, and to determine the benefits they provide and, more 

specifically, to re-determine the number, the location and type of beneficiaries reached 

(Kremer et al, 2013). Thus, through the management and spatial distribution of spaces, 

people and resources, urban planning can create (or compromise) the links between ES that 

underpin human wellbeing and potential beneficiaries, alternatively defined as supply and 

demand for ES. Ecosystem-based measures use biodiversity and ES to help people and cities 

to enhance quality of life in their environments. Ecosystem-based measures include 

management, conservation and restoration of ecosystems that deliver ES (Munang et al., 

2013a) and design and improvement of green and blue infrastructures (e.g., urban parks, 

green roofs and facades, street trees, rivers, and ponds). Among the most common 

ecosystem-based measures in cities are the creation and enhancement of Green Urban 

Infrastructures (GUI) (Munroe et al., 2012; Geneletti and Zardo, 2016). GUI can be 
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described  as  hybrid infrastructures of green spaces and built systems, such as urban forests 

and wetlands, parks, green roofs and walls, that together can contribute to increase city 

resilience and human benefits through the provision of ES (Naumann et al., 2010; Pauleit et 

al., 2011; European Environment Agency, 2012).  

 

 

The consideration of ecosystems and ES in the planning practice can play an important role 

in coping with urban challenges, aside to their potential to ameliorate quality of life. In 1999, 

Bolund and Hunhammar identified seven specific urban ecosystems and assessed their 

contribution in terms of provision of ES, and concluded that, in cities, ES have a substantial 

impact on the quality-of-life of the inhabitants and that they should be duly addressed in 

urban planning. After this seminal article, the relevance of ES consideration for urban 

planning gained more and more attention in the ES literature and in the general awareness 

(Gomez-Baggethun and Barton, 2013). In particular, Demuzere et al., (2014) presented a 

comprehensive analysis of the available empirical evidence about the contribution of 

ecosystems and the ES they provide in urban areas. Ecosystem-based measures have been 

increasingly promoted in the literature, as well as in policies and practices, for their 

environmental and socio-economic co-benefits. As an example, the European Union recent 

climate adaptation strategy (EC, 2013) explicitly encourages the adoption of 

ecosystem-based measures for climate change adaptation. The grey literature includes 

several collections of experiences, but they focus either on urban context in general, with 

little emphasis on ecosystem-based measures (EEA, 2012), or specifically on Ecosystem 

based Adaptation (EbA) with little emphasis on urban areas (Doswald and Osti, 2011; 

Naumann et al., 2011; Andrade Pérez et al., 2010). There is still limited evidence about 

application of EbA and general inclusion of the ES concept in the practice.  

 

The ultimate goal of this work is to contribute to mainstream ES knowledge into practice. 

Towards the achievement of this goal, it is crucial to understand the extent to which the ES 

concept is currently included in urban planning, and to identify the type of information that 

can most effectively support decision-makers and planners in adopting ES knowledge, and 

specifically Ecosystem-based measures in their “everyday” urban planning. To start with, 

existing approaches unfortunately lack quantitative estimates of the potential of 

Ecosystem-based measures (Jones et al., 2012). In fact, methods are needed to understand 

and quantify how ecosystems provide ES, by spatially defining the cascade relationship 

between their structure, functions, ES and the related benefits (Braat and De Groot, 2012) at 

scale that is adequate for urban planning. Yet, many of these links remain largely unknown 

and this knowledge is in high demand (Larondelle and Haase 2013). To achieve its ultimate 

goal, this work is driven by four research objectives, and related questions, illustrated.  
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Objective 1: provide an overview of the current state of the art related to inclusion of 

Ecosystem-based measures in urban planning and discuss, and use it identify and discuss the 

main shortcoming and propose possible solutions.  

 

ES recent scientific literature has shown a growing interest to assess climate adaptation plans 

at the urban level, in recognition of the important role played by urban areas in addressing 

climate change challenges. However, little information is available on the combination of 

these two issues, i.e., the actual inclusion of Ecosystem-based Adaptation (EbA) measures in 

climate adaptation plans at the urban level. First objective of the thesis is to address this gap 

by developing a framework for analyzing the inclusion of EbA in urban level climate 

planning, hence, apply the framework to a sample of climate adaptation plans in Europe. 

 

Research questions 

- What are the most common EbA considered for climate change adaptation in cities to 

respond to the variety of climate change hazards? 

- To which extent are EbA considered and described in climate adaptation plans?  

-In what parts of the planning documents are EbA measures present? Are they consistently 

included from the baseline information up to the end or are there weaknesses that may 

hamper their application? 

 

Objective 2: develop an approach to estimate the cooling capacity provided by Green Urban 

Infrastructures to support urban planning. 

To address the scares application of EbA in urban planning, by way of example, we focus on 

one specific ES (cooling) and build a methodology for assessing the cooling capacity of 

different ecosystems in cities. The aim here is to propose an approach for estimating and 

mapping the cooling capacity provided by GUI to generate useful information to support 

planners and decision-makers in the design and enhancement of GUI.  

 

Research questions 

- Which physical characteristics of a Green urban infrastructure determine its cooling 

capacity?   

- Which is the combination of physical characteristic that maximize the provisioning of 

cooling?  

- Given specific physical characteristics, what decrease of air temperature does a GUI 

provide (in °C)? 

 

Objective 3: Testing the application of ES assessments in two case studies. 
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ES research is a mission-oriented discipline, and as such it should be user-inspired and user- 

useful (Cowling et al., 2013). Therefore, because of the pivotal role of practice in this work, 

the third objective deals with testing the applicability of ES assessments and the ES concept 

in general to exiting urban planning challenges. Two case-study applications considered, 

each addressing a specific policy and planning question. In the first case study (Trento, Italy) 

we tested again our cooling capacity assessment methodology and additionally mapped the 

flow of ES with the intention to apply the results to the identification of priority brownfield 

for intervention, based on the best cooling capacity expected. In the second case study (Addis 

Abeba, Ethiopia) we applied a multiple ES assessment and we also considered the demand 

for ES with the intention to apply the results to identify priority neighborhood for 

environmental actions 

 

Research questions: 

- Is the cooling capacity assessment methodology applicable in contexts with different data 

availability? 

- How can its results be included in the simulation of an urban planning issue to address? 

- How to apply a multiple-ES assessment in a data-poor context (Addis Abeba)? 

- How to provide choose a priority neighborhood for action comparing ES supply and 

demand for ES? How should trade-offs be considered? What additional information may 

provide considering demand in the assessment?  

 

Objective 4: develop guidance to support equitable distribution of ES in cities.  

If the goal of plans and policies is to pursue human wellbeing, then average wellbeing cannot 

provide a sufficient evidence. Moreover, if wellbeing in cities depends also on natural capital, 

it is crucial to pursue equitable distribution of resources (and more specifically of ES) among 

citizens in a city. The adoption of ES assessments can provide a powerful tool to the 

assessment and pursue of equitable distribution of ES. However, in the practice, equitable 

distribution is assessed through general urban standards (e.g. availability of green per capita) 

or by applying ES assessments designed for purposes different from the pursue of equitable 

distribution of resources. Thus, we developed a methodology to assess equitable distribution 

of ES within a city.  

 

Research questions: 

- Key elements to analyze equitable distribution of ES are: ES supply, access to ES and 

demand for ES. Which criteria should be followed to properly assess the key elements 

involved in the equitable distribution of ES? 

- How to define the spatial distribution of these key elements for regulating ES  –in particular, 

carbon storage, air pollution removal, cooling and noise reduction? 
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- Which is the ratio between availability of ES and ES demand in different parts of the city? 

- To which extent this kind of ES assessment provides different information to planners and 

decision-makers compared to other ES assessments? 

 

1.2 Outline of the thesis 

The outline of the thesis is shown in Figure 1.1. and Figure 1.2 illustrates the main concepts 

driving the chapters. 

Chapter 2 describes Ecosystem-based Adaptation in cities by providing an analysis of 

European urban climate adaptation plans (Objective 1). It develops a framework for 

analysing the inclusion of EbA in urban level climate planning, and applies it to a sample of 

climate adaptation plans in Europe. The framework consists of a classification of EbA 

measures, and a scoring system to evaluate how well they are reflected in different 

components of the plans. Chapter 3 takes stock of the results and conclusion of Chapter 2 and 

addresses one of the gaps identified in terms of knowledge available to inform decision 

makers to include EbA through the creation and restoration of Green Urban Infrastructures in 

urban planning. GUI contribute to reduce temperatures in cities and the associated health 

risks, by virtue of their cooling capacity. Thus, the aim of Chapter 2 is to propose an approach 

to estimate and map the cooling capacity provided by GUI to generate useful information to 

support planners and decision-makers (Objective 2).  The approach is based on an analysis of 

the literature to identify the functions of GUI that are involved in providing cooling and the 

components of GUI that determine those functions, in order to provide an overall assessment 

of the cooling capacity of different GUI typologies. GUI. An illustrative case-study 

application in the city of Amsterdam shows the applicability of the approach. Chapter 4 

presents two application of ES assessments to the urban planning practice through cases 

study, Trento in Italy- and Addis Abeba in Ethiopia, respectively (Objective 3). Chapter 5 

represents an additional step in terms of proposing an ES assessment approaches to support 

because aims at defining how to build a ES assessments to analyse equitable distribution of 

ES in cities (Objective 4). With focus on regulating ES, Chapter 5 defines a set of criteria for 

analysing the three key elements of an equitable distribution of ES: ES supply, access to ES, 

and demand for ES. The proposed approach is applied to a case study to assess equitable 

distribution of regulating ES. In Chapter 5, to highlight differences and relevance of 

information, a comparison is made between our results and those from similar ES assessment 

approaches that however were not specifically designed to assess equitable distribution of ES.  

To conclude, Chapter 6 summarizes the results of the research, discusses the main findings, 

their strengths and weaknesses, and suggests some ways forward. 
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Figure 1.1 Outline of the thesis 
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Figure 1.2 Themes and topics of the chapters 
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2 Ecosystem-based adaptation in cities: an analysis of European urban climate 

adaptation plans 

Chapter 2   

Ecosystem-based adaptation in cities: an analysis of 

European urban climate adaptation plans  

2.1 Introduction 

Climate change adaptation includes actions undertaken in natural or human systems in 

response to actual or expected climatic stimuli or their effects, in order to reduce harm or 

exploits benefits (IPCC, 2007). Although historically adaptation to climate change has 

received less attention than mitigation (Füssel, 2007), there has been a recent surge of interest 

in adaptation interventions, which are already a necessity in many contexts, particularly until 

greenhouse gases emissions will not be stabilized (Picketts et al.,2013). 

Adaptation to climate change may be attained in different ways. One way that is attracting 

increasing attention is through ecosystem-based approaches. Ecosystem-based adaptation 

(EbA) is defined as the use of biodiversity and ecosystem services to help people to adapt to 

the adverse effects of climate change (CBD,2008). The concept of EbA was first introduced 

in the international policy arena by the United Nations Framework Conventionon Climate 

Change in 2008, and has been widely advocated by environmental organizations since then 

(Colls and Ash, 2009; TNC,2009). For example, restoring mangrove forest can contribute to 

dissipate the energy of storm surges, buffering human communities from floods and erosion 

(Erwin, 2009). Protecting groundwater recharge areas and floodplain can help to secure 

water resources and cope with droughts (TNC, 2009). Enhancing green infrastructures in 

urban areas can reduce the heat island effect, and the associated health risks (Lafortezza et al., 

2013).  

As opposed to more traditional infrastructure-based approaches (e.g., levees, sea walls, 

                                                 
 The work presented in this chapter has been published as: Geneletti and Zardo, 2016. Geneletti, D., Zardo, L. 

Ecosystem-based adaptation in cities: An analysis of European urban climate adaptation plans. Land Use Policy, 

Volume 50, Pages 38–47 (2016) 
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irrigation systems), EbA offers the advantage of promoting “no regrets” interventions, and 

potentially delivering multiple economic, social and environmental co-benefits that go 

beyond climate adaptation (Jones et al., 2012). These co-benefits include, among others, 

biodiversity conservation through enhanced habitat conditions; climate mitigation through 

increased carbon sequestration; conservation of traditional knowledge, lively-hood and 

practices of local communities; improved recreation and tourism opportunities; enhanced 

food security (Demuzere et al.,2014; Naumann et al., 2011; Vignola et al., 2009; Munang et 

al.,2013b,c). Even though EbA approaches generally lack quantitative estimates of the 

adaptation potential (Jones et al., 2012), there is increasing evidence that they can provide 

flexible, cost- effective and broadly applicable alternatives to cope with the magnitude, speed 

and uncertainty of climate change (Munang et al., 2013a). For these reasons, EbA has rapidly 

become an important aspect of the international climate policy framework. As an example, 

the European Union recent climate adaptation strategy (EC, 2013) explicitly encourages the 

adoption of green infrastructure and ecosystem-based approaches to adaptation. 

Cities are particularly vulnerable to climate change, due to the large and growing urban 

population worldwide and the complex patterns of economic assets, infrastructures and 

services that characterize them. Hence, achieving climate adaptation in urban areas is pivotal 

for sustainable development, as shown by growing actions undertaken by cities to pursue 

adaptation (Rosenzweig et al., 2010), as well as guidance documents produced to assist in 

this endeavor(e.g, ICLEI, 2010). Picketts et al. (2013) suggested that climate adaptation “is 

well suited to local levels of governments, as citizens can participate in creating targeted 

adaptation strategies that address the important regional impacts, and these strategies will 

provide tangible benefits to local residents”. Along the same lines, Meashamet al. (2011) 

consider planning at municipal level as a key avenue to mainstream adaptation actions. 

EbA can play an important role in urban contexts and help to cope with increased temperature, 

flood events and water scarcity, by reducing soil sealing, mitigating heat island effect and 

enhancing water storage capacity in urban watersheds (Muller et al., 2013;Grimsditch, 2011; 

Gill et al., 2007). EbA in cities include approaches based on the design and improvement of 

green and blue infrastructures (e.g., urban parks, green roofs and facades, tree planting, rivers, 

ponds), as well as other types of interventions that use ecosystem functions to provide some 

form of adaptation to cli-mate risks (e.g., measures to reduce soil imperviousness) (Robertset 

al., 2012; Doswald and Osti, 2011). In cities, most ecosystems are “urban ecosystems”, i.e., 

ecosystems where the built infrastructure covers a large proportion of the land surface, or 

those in which people live at high densities (Pickett et al., 2001; Savard et al., 2000).Urban 

ecosystems include all green and blue spaces in urban areas, and typically have a low level of 

naturalness, being heavily man-aged or entirely artificial (Gómez-Baggethun and Barton, 

2013).Green roofs are an example of urban ecosystems almost exclusively determined by 

humans and that require regular maintenance(Oberndorfer et al., 2007). The term EbA 
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measures is commonly used also in cities to refer to the use of urban ecosystems to pro-vide 

services that help to adapt to climate change (e.g., Zandersenet al., 2014; Doswald et al., 

2014; Munroe et al., 2012; Doswald and Osti, 2011). 

The recent literature has addressed the potential role of EbA in cities (Müller et al., 2013; 

Bowler et al., 2010; Berndtsson, 2010).In particular, Demuzere et al., (2014) presented a 

comprehensive analysis of the available empirical evidence about the contribution of green 

infrastructures to climate change adaptation in urban areas. Nevertheless, the concept of EbA 

is still relatively new for cities, and little evidence is available on the inclusion of EbA 

measures in actual urban plans and policies (Wamsler et al., 2014).Urban planning, at least in 

more industrialized countries, has been increasingly addressing climate adaptation strategies 

and actions, as shown by recent reviews of planning documents undertaken for  undertaken 

for cities in Europe (Reckien et al., 2014), the UK (Heidrich, 2013),Australia (Baker et al., 

2012) and North America (Zimmerman and Farris, 2011). However, none of these papers 

address specifically EbA.The grey literature contains several collections of experiences, but 

they focus either on urban adaptation in general, with little emphasis on ecosystem-based 

approaches (EEA, 2012), or on EbA, with little emphasis on urban areas (Doswald and Osti, 

2011;Naumann et al., 2011; Andrade Pérez et al., 2010). The majority of the EbA case studies 

presented in the latter reports is related to natural areas, coastal zones, agriculture and forestry. 

An exception is represented by the work of Kazmierczak and Carter (2010), which compiles 

a database of case studies to showcase EbA approaches in cities. However, these case studies 

do not specifically relate to planning, but to a broader set of initiatives, including for example 

incentive schemes, physical infrastructure delivery, guidance documents, etc. In conclusion, 

the extent to which EbA approaches are actually included in planning at the urban level is 

largely notdocumented. This paper addresses this gap by developing a classification of EbA 

and a scoring system to analyze the treatment of EbA in urban climate adaptation planning, 

and apply it to a sample of plans in Europe. Specifically, the paper aims at answering 

questions related to: 

- The types of EbA measures that are included in climate adaptation plans (What are the most 

common ones? To what climate change impact do they aim to respond?) 

- The extent to which EbA measures are considered and described in climate adaptation plans 

(In what parts of the planning documents are EbA measures present? How well and how 

consistently are they treated?) 

 

The ultimate purpose of the paper is to provide an overview of the current state of the art 

related to the inclusion of EbA in urban planning, and use it to identify and discuss the main 

shortcoming and propose possible solutions. First, we describe the review framework, which 

includes the identification of EbA measures that are relevant for urban adaptation. We then 

present the sample of planning documents, and the method that was used to extract 
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information relevant to the study. Afterwards, we present the results of the evaluation. Finally, 

we discuss the main findings and conclude by providing recommendations to improve future 

practice in urban planning. 

 

2.2 Methods  

2.2.1 Classification of EbA measures 

As a first step in our study, we identified and classified possible measures for EbA that are 

relevant for urban areas. Many examples and descriptions of EbA measures are present in the 

literature (Doswald et al., 2014; Zandersen et al., 2014; Jones et al., 2012; Doswald and Osti, 

2011; TNC, 2009). However, to the best of our knowledge, a comprehensive classification of 

typologies of EbA measures that can be employed in urban areas has not been developed. 

Most studies focus on EbA in agriculture and forest areas (e.g., Vignola et al., 2009) or 

anyway do not provide a classification of different EbA typologies. The closest attempt to 

produce a list of possible EbA in urban contexts was found in EEA (2012). Here, different 

types of measures are associated to the climate change impacts they aim at reducing, i.e., heat, 

flooding and water scarcity. These three impacts reflect the expected effects of the current 

projections of average climate change: the increase in duration, frequency and/or intensity of 

heat waves, extreme precipitation events and droughts (Barriopedro et al., 2011; Giorgi et al., 

2011;Hoerling et al., 2012). 

The list proposed by EEA (2012) was revised and integrated with other typologies found in 

the literature. This resulted in the classification presented in Table 2.1, where definition, 

rationale and supporting references are provided for each measure. Measures are associated 

to the climate change impact they are meant to reduce, even though it is recognized that 

synergies occur. For example, green roofs may contribute to reduce runoff water quantity 

(Czemiel Berndtsson, 2010), in addition to building cooling. The EbA measures play at 

different spatial scales, ranging from building-scale interventions (e.g., green roofs and walls) 

to urban-scale interventions (e.g., city-wide green corridors). Despite their difference in scale, 

the identified measures are all within the scope of urban plans, hence they can be (at least 

partly) implemented by actions proposed in planning instruments. Measures such as river 

renaturalization, in most cases, cannot be handled within the border of a city alone. However, 

urban plans have the possibility to implement these interventions (at least for the urban sector 

of rivers), as well as to promote coordination with other planning levels (e.g., regional 

planning, river basin planning). For this reason, these measures have been included in the 

proposed classification of EbA measures relevant for urban areas. 
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2.2.2 Selection of the sample of plans 

There are many planning instruments that address climate change adaptation at the local level. 

We use the term ‘climate adaptation plan’ to refer in general to plans that include strategies to 

reduce vulnerability to climate change in cities, even though the actual name of the plan 

might be different. At European level, there is little information on the range of plans being 

developed under the rubric of climate action planning, and to our knowledge there is no 

central database or agency collecting this information. For this reason, we decided to focus 

on a sample of cities considered active in climate change adaptation, by referring to the 

“C-40” initiative (http://www.c40.org). The C-40 was established in 2005 as a network of 

large cities worldwide that are taking action to reduce greenhouse gas emissions and to face 

climate risks. This sample offers the advantage of providing information on different 

initiatives undertaken by cities that have been particularly active in climate adaptation 

strategies. This is consistent with the purpose of this study, which is to offer an overview of 

the extent to which EbA measures are included in planning instruments of cities engaged in 

climate actions, as opposed to evaluating the performance of different cities or geographical 

regions. Among the cities of the C-40 database, we selected the ones belonging to Member 

States of the European Union. This resulted in a sample of 14 cities, namely Amsterdam, 

Athens, Barcelona, Berlin, Copenhagen, Heidelberg, London, Madrid, Milan, Paris, Roma, 

Rotterdam, Stockholm, Venice and Warsaw. A cross-check with European-level data sets on 

heat, floods and water scarcity published by the European Environmental Agency1revealed 

an even presence of climate change challenges in the city sample: seven of the selected cities 

are located in regions affected by heat waves, seven by floods and six by water scarcity. We 

then gathered all the urban climate change responses in the form of planning documents 

approved by the relevant municipal authority, and available on the internet. This resulted in 

the list of planning documents listed in Table 2.2. As can be seen, all the selected cities have 

approved a Sustainable Energy Action Plan (SEAP). The SEAP is the key planning 

instrument provided for by the “Covenant of Mayor”, a local-level initiative supported by the 

European Commission that promotes the involvement of local authorities in responding to 

climate change. Even though originally SEAP were to address mostly measures for 

CO2emission reduction, energy efficiency and renewable energy, they have expanded their 

scope to include more broadly all climate-related measures (Zanonand Verones, 2013). As 

shown in Table 2.2, some cities approved additional plans related to climate change, which 

were also included in our analysis. 

2.2.3 Analysis of the content of the plans 

Prior to the analysis, the content of the plans was divided into four components: information 

base; vision and objectives; actions; implementation. These components represent 

thematically different parts of the plans. The information base includes the analysis of current 
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conditions and future trends (typically presented in the introductory parts of the planning 

documents), which is performed in order to provide a basis for the subsequent development 

of the plan’s objectives and actions. Vision and objectives include the statement of the 

ambition and of the general and specific objectives that a plan intends to achieve. Actions 

include all the decisions, strategies and policies that the plan propose, in order to achieve its 

objectives. Finally, implementation refer to all measures (including budget-related ones) 

proposed to ensure that actions are carried out. This classification of plan components is a 

modified version of the one proposed by Baker et al. (2012), which comprises also a fifth 

component: options and priorities, i.e., the development and prioritization of alternative 

solutions. This component was not included here because largely missing from the planning 

documents considered in this study. The proposed four-component approach is consistent 

(even though it uses a different terminology) with the one used by Heidrich et al. (2013) to 

review adaptation and mitigation plans in the UK. 

A direct content analysis (Hsieh and Shannon, 2005) was per-formed, by reading all the 

documents associated to the selected plans, and identifying – for each of the four 

components – the con-tent related to EbA measures, using the classification presented in 

Table 2.1. This approach was preferred to a keyword-based analysis, given that there is not 

yet a well-established terminology in this field, and plans use a wide range of different 

wording to refer to concepts related to EbA, and to ecosystem services in general (Braat and 

de Groot, 2012). Hence, we searched for the presence of the different measures, irrespective 

of whether the plan used the term “EbA” or not to describe them. By breaking down the 

analysis in the four plan components, it was possible to test also the overall consistency of the 

plan with respect to EbA-related issues, i.e. the extent to which the EbA-related analysis 

contained in the information base provide an appropriate factual basis for developing 

objectives, which in turn are linked to suitable actions, and implementation proposals 

(Bassett and Shandas, 2010).The content analysis followed a two-step process. First, the 

presence of the different EbA measures in each plan component was searched, by using the 

following guiding questions: 

- Information base: Does it contain data/statements/analyses that show awareness about 

EbA? 

- Vision and objectives: Are there objectives associated to the development/enhancement of 

EbA measures? 

- Actions: Are there actions aimed at developing/enhancing EbA measures? 

- Implementation: Do the implementation provisions include reference to EbA measures? 

 

Second, whenever the answer to the previous questions was positive, the content was further 

analysed in order to assess the extent to which EbA measures were addressed, by using the 

four-level scoring system presented in Table 2.3. The assigned scores were cross-checked by 
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all authors of this research. Finally, an average score was obtained for each type of EbA 

measure by computing the average value obtained by that measure in all the plans where the 

measure is found, and for all plan components. 

In this study we reviewed the English translation of the planning documents, which was 

always available except for the plans of Milan, Venice and Rome, for which we reviewed the 

original documents in Italian. Fearing that translations might be reduced versions of the 

original plans (and omit important details),we checked also the original documents, 

whenever we had the required language skills, i.e. for the plans written in Spanish and French. 

These checks showed that the translations were accurate and complete. Based on this, we 

concluded that the English translations are adequate for the purposes of this study. 

Table 2.1 The classification of EbA measures for urban areas adopted in this research 

 

2.3 Results 

2.3.1 What EbA measures are included in the plans and how well are they addressed? 

Consistently with the purpose of the study, the results are not presented and discussed in 

terms of the quality of the individual plans, but they are broken down by EbA measure and by 

plan components. A total of 44 EbA measures were found in the selected plans. Figure. 2.1 

illustrates the breakdown in the seven types described in Table 2.1. As can be seen, measures 
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c (maintaining/enhancing urban green) and f (maintaining and managing green areas for 

flood retention and water storage) are the most common ones, and are found in 85% of the 

selected plans. Examples of measures c include efforts to increase green areas and 

neighbourhood gardens (Paris),proposals for enhancing the connectivity among existing 

green areas through the design of green corridors and rings (Milan) and the use of plants to 

provide shade in new industrial estates (Amsterdam). Measures f consist, for example, in the 

creation of new wetland areas and ponds (Berlin), and the design of green spaces to store 

rainwater in the event of torrential rain (Copenhagen). 

Measure b (Promoting green walls and roofs) is found in 57%of the plans. For example, 

Paris’s plan contains provisions for the establishment of roof and wall gardens (measure b), 

including the identification of priority spots for this type of green infrastructures. Measure e 

(re-naturalizing river systems) is found in 29%of the plans. In Madrid, for example, this 

consisted in a series of bank improvements projects aimed are reducing flood hazard and 

expanding riverside public space. Measures a, d and g (respectively, ensuring ventilation, 

avoiding/reducing impervious surfaces, and promoting climate-adapted vegetation and 

sustainable watering) are less common, and found only in 14–21% of the plans. For example, 

concerning measure a, cold air networks to ensure ventilation and prevent over-heating are 

mentioned in Copenhagen’s plan, whereas Madrid’s provides for the promotion of ecobarrios 

where ventilation will be one of the factors considered in the design of greening interventions. 

Berlin’s plan attains the reduction of impervious surfaces (measure d) through renovation 

projects for buildings and school playgrounds that include interventions to improve soil 

permeability and in situ infiltration. Finally, concerning measure g, Venice’s plan promotes 

the use of autochthonous species adapted to the local climate, and Madrid’s contains detailed 

guidelines for “sustainable gardens” with recommendations for the selection of plant species 

and sustainable watering systems. The results of the application of the scoring systems 

(presented in Table 2.3) were used to compute an average score for each type of EbA measure 

(Fig. 2.2), representing the average value obtained by the measure in all the plans where the it 

is found, and for all plan components. As can be seen, the average score ranges from1.1 

(achieved by measures a and g) to 2.4 (measures e). Measures c and f, which are the most 

frequently found, are also the ones with the highest scores, together with action e. 

 

2.3.2 How are EbA measures reflected within plan components? 

Figure. 2.3 shows in which plan components (see Section 2.3) EbA measures are reflected. 

91% of the measures are present in the vision and objectives component. This means that, 

when a plan includes an EbA measure, this is very often listed as (part of) one of the 

objectives that the plan intends to achieve. For example, Paris’s plan objectives include the 

development of a multi-year scheme to pro-mote roof gardens. 91% of the EbA measures are 
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addressed in the actions component, meaning that the plans include specific policies or 

activities to attain them. For example, Milan’s plan includes a series of linear greening 

interventions along canal banks, roads, biking routes, etc. The information base component 

of the plans contains data relevant to EbA measures only in 79% of the cases. That is, 21% of 

the measures found in the plans are not supported by any baseline information or analysis. 

Even when baseline information is present, this consists mostly of general statements and 

descriptions. For example, Berlin’s plan contains descriptions of how energy efficiency of 

buildings or industry could be usefully combined with projects to support sustainable local 

water management systems, by increasing the permeability of soil and planting vegetation. 

Table 2.2 List of the planning documents reviewed in this research. 

 

Table 2.3 Scoring system used to evaluate the plan component. 

 

 

 

 

 

 

 



ECOSYSTAM-BASED ADAPTATION IN CITIES:AN ANALYSIS OF EUROPEAN URBAN CLIMATE ADAPTATION PLANS 

34 

 

The implementation component of the plans performs even more poorly: references to EbA 

measures are found in only 52% of the cases. Therefore, about half of EbA measures are not 

associated to any action to ensure that they are carried out. When information about 

implementation measures are present, this consists mainly of budget-related details, as for 

example in the case of Madrid’s plan (where each action is linked to a plan of implementation 

and budget), and Rotterdam’s, where there are indications about green roofs subsidies. In 

order to assess how well EbA measures are reflected withinthe different plan components, we 

computed the average scoreobtained by all EbA measures that are found in each of the four 

components. For example, out of the 44 EbA measures, 35 are presenting the information 

base component of the selected plans. The average score represents the average of the scores 

obtained by these35 EbA according to the scoring system presented in Table 2.3 (second 

column: information base). The results (Fig. 2.3) show that actions component scored the 

highest (average score: 2.8), followed by the implementation (2.5), the vision and objectives 

(2.2) and the information base (1.8). Concerning the good performance of actions, examples 

include London’s plan, which describes in detail the actions and associated sub-actions, 

specifies the responsible bodies and identify links with other plans and policies. Similarly, 

Madrid’s plan provides action fact-sheets, with the identification of responsible bodies and 

associated budget. The poorer scores of the visions and objectives component are due to the 

fact that their description tend to be very general. The information base typically lacks details 

on the links between measures and climate-related issues, particularly concerning the results 

expected from the apple-cation of the measure. Finally, Figure. 2.4 provides a visual 

overview of the distribution of information on the identified EbA measures across plan 

components. This figure helps to understand how consistency EbA measures are treated 

across the different plan components, and where the gaps are. The figure shows that the 44 

EbA measures identified in the plans can be grouped in six categories: 

- Measures addressed in all the four plan components, from the information base through the 

implementation. This is obviously the most desirable situation, but occurred only for 45.5% 

of the EbA measures. In all other cases, at least one component is lacking;- Measures 

addressed in the first three components of the plans, but not in the implementation part. This 

occurs for 22.7% of the EbA measures;- Measures addressed only in the vision and objectives 

and actions with no links to the information base or implementation (13.6%);- Measures 

addressed only in the information base and vision and objectives, with no follow-up in the 

rest of the plan (6.8%);- Measures addressed in the information base only, with no follow-up 

in the rest of the plan (2.3%)- Measures addressed in the vision and objectives, actions and 

implementation components, with no links to the information base (2.3%). 
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Figure 2.2 Average scores of the seven types of EbA measures 

 

 

 

Figure 2.1 Number of mentions of the seven types of EbA measures (see legend in Table 2.1) in the 

sample of plans. 
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Figure 2.3 Frequency of presence of information about the 44 EbA measures in the 

different plan component. 

 

Figure 2.4 Distribution of information on the identified EbA measures across the plan 

components (see text for further explanation). 
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2.4 Discussion  

 

The recent scientific literature has shown a growing interest in analysing the content of 

climate adaptation plans at the local level, in order to assess their quality and effectiveness 

and to formulate suggestions for future improvement (Kumar and Geneletti, 2015; Reckien et 

al., 2014; Heidrich et al., 2013; Bakeret al., 2012; Tang et al., 2010). This in recognition of 

the important role played by local administrations in addressing climate change challenges, 

being often ahead of national legislation and actions (Rosenwein et al., 2010). However, to 

the best of our knowledge, there are no published studies that address the combination of 

these two issues, i.e., the actual inclusion of EbA measures in urban climate adaptation plans. 

More in general, little evidence is avail-able on the up-take of EbA measures in urban areas, 

given that most of the published work focuses on natural areas, agriculture and forestry 

(Doswald and Osti, 2011). This research contributed to fill this gap, by shedding some light 

on what EbA measures are most commonly found in plans, how well they are addressed, and 

how consistently throughout the different plan components. 

Measures c and f are the most common ones, showing that there is strong awareness of the 

role that green areas play in addressing climate change challenges, both in terms of 

mitigating heat waves (measure c) and preventing floods (measure f). The frequency of these 

measures is perhaps not surprising giving that they resulting the enhancement of green areas, 

which is a typical objective that planners pursue to improve the urban space for a variety of 

purposes that go beyond climate change adaptation (e.g., providing recreation opportunities, 

improving air quality) (Tzoulas et al.,2007). So, their frequency could be explained by the 

fact that these measures rely on actions that are part of the standard portfolio that planners 

have been employing for decades. However, a critical issue that we detected is that the 

proposal of these EbA measures in the plans is rarely backed-up by specific information on 

the expected contribution in terms of climate change adaptation, as well as the target 

beneficiaries. That is, in the revised plans, the enhancement of green areas to reduce heat or 

to prevent floods is typically proposed as a general measure that will do some good, without 

providing details and justification for critical decisions, such as the design and the location of 

these interventions, and the distribution and vulnerability of the expected beneficiaries. 

These issues play a key role in determining the effectiveness of the measures (Kleerekoper et 

al., 2012; Kazmierczak, 2012). 

Green walls and green roofs (measure b) are found in more than half of the cities. These 

measures are well covered by the literature, which offers ample debate on the effectiveness of 

vegetated roofs and facades to improve the thermal comfort of buildings, providing data for 

different climate zones and recommendations for implementation (Santamouris, 2014; 

Cook-Patton and Bauerle, 2012).The relatively low presence of measure d is somehow 

surprising, especially considering that EbA measures to reduce impervious surfaces include 
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interventions at the local level, which are often relatively cheap and do not pose particular 

challenges in terms of coordination with other policies or plans (Carmon and Shamir,2010). 

Therefore, they are quite straightforward to include in cli-mate adaptation plans, and the fact 

that they are mentioned only in less than one third of the plans suggest that there is still need 

to increase awareness in local administration officers and planners. This finding is consistent 

with previous research (Brabec, 2009), showing that the careful design of impervious areas is 

largely over-looked. 

Measure a is the least frequently encountered measure. One reason may be that the 

effectiveness of this measure is related to the urban morphology more in general. Elements 

such as building footprint, density and height and street layout have a strong influence on 

urban ventilation corridors (Wong et al., 2010). Hence, the design of urban waterways and 

open green areas that create air circulation needs to be undertaken jointly with other actions 

related to the built environment that go beyond the content of climate adaptation plans. This 

hampers the possibility for climate adaptation plans to advance this type of EbA measures, 

requiring strong coordination with other planning instruments, such as urban plans. Measure 

g was also rarely found in plans, but this may be explained by the fact that it encompasses a 

more limited set of actions, which may be relevant only in specific climate conditions. 

Finally, the analysis revealed that all the cities affected by water scarcity included in their 

plans at least one EbA measure to cope with this climate change challenge. The same 

occurred with cities affected by floods. Concerning heat waves, all but one city proposed 

EbA measures to cope with it. This suggests that there is a general awareness about the 

portfolio of possible EbA measures, and the capability to select those that better fit the needs 

of a particular contexts. The main critical point resides in the depth of the analyses performed 

to support and design a specific measure, as described next. 

By tracking the treatment of EbA measures in the four plan components, it was possible to 

test also the overall consistency of the plan, i.e. the extent to which the EbA-related analysis 

contained in the information base provides an appropriate factual basis for developing 

objectives, which in turn are linked to suitable actions, and finally to implementation 

proposals. Our analysis reveals that the most frequent missing link involves the 

implementation component. This component is often absent, with many cases of EbA 

measures that are addressed throughout the plan, but in the implementation part. Even when 

present, this component has the poorest performance, as the content tends to be vague with 

few tangible elements that may be used to track how planners envisage to implement the 

measures. This problem was also found by other studies of climate adaptation plans, such as 

Tang et al. (2010)’which concluded that implementation provisions were associated to 

relatively few strategies. 

One final note concerning possible future developments of this research. This study proposed 

a classification for EbA measures and scoring system to assess the extent to which they are 
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included in plans. Further work can be done to refine and improve this classification, which 

could be ultimately employed as a basis for the development of EbA reference manuals and 

handbooks for planners. The relatively small size of the sample of cities, and the way it was 

selected (i.e., by looking at cities that are already active in climate adaption), do not permit to 

reach conclusions on the “state of preparedness” (Heidrich et al., 2013) of different cities or 

regions in regions in Europe, with respect to the adoption of EbA measures in their cli-mate 

adaptation plans. As acknowledged in Section 2, the choice of the sample is biased in that it 

includes cities that represent positive examples of climate adaptation, and that often have a 

consolidated past in sustainable planning. This is consistent with the objective of the study, 

which was to assess the inclusion of EbA measures in cities engaged in climate actions, in 

order to understand what are the most common measures and how they are developed in their 

planning instruments. A follow-up study could employ the same approach to investigate a 

larger sample of cities, selected in a way to be representative of the conditions in different 

geographical areas. For example, future studies could focus on individual countries, and 

select cities representative of socio-economic and demographic conditions across those 

countries. Another possible follow-up of this work could shift the focus from climate 

adaptation plans to other types of plans at the urban scale, such as particularly spatial plans. 

This will allow to evaluate and compare the level of uptake of EbA measures in different 

contexts and different planning instruments, and to provide context-specific directions and 

recommendations for future improvements. 

2.5 Conclusions and recommendations 

As Munang et al. (2013a) put it, “integrating and mainstreaming EbA into decision making 

frameworks and planning processes are imperative”. Most plans are affected by a lack of 

specificity and details that may hamper the possibility for these measures to be actually 

implemented, as well as their overall effectiveness in reducing population vulnerability. 

Based on our findings, we can formulate the following recommendations to improve the 

consideration of EbA measures in climate adaptation plans: 

1. The baseline information upon which EbA measures are pro-posed and designed needs to 

be enhanced. Methods to assess the existing stock of green/blue infrastructures, and their 

potential to provide climate adaptation services must be mainstreamed in planning practice. 

Particularly, assessments of the flow of ecosystem services at local scales are often missing, 

given that many climate change impact and vulnerability studies provide results at larger 

scales, limiting their usefulness for developing adaptation strategies at the local scale 

(Vignola et al., 2009). Abetter knowledge base, including information on spatial pat-tern of 

vulnerability, would allow to better target the design and implementation of EbA measures. 

2. Co-benefits associated to EbA need to me made more explicit. One of the strongest 

motivation for promoting EbA approaches is that they bring environmental and 
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socio-economic benefits, beyond climate adaptation. A more formal analysis of the 

magnitude of the co-benefits need to be promoted in planning, in order to provide a stronger 

rationale for decisions involving EbA. Ideally, comparisons between EbA and alternative 

adaptation measures should be performed, as advocated by Joneset al. (2012). These analyses 

can take advantage of the methodologies and findings presented in the growing literature on 

the assessment and evaluation of ecosystem services (Kareiva et al.,2011), including its 

emerging streams focused on spatial planning (McKenzie et al., 2014) and impact assessment 

(Geneletti2013, 2011). 

3. Interaction between climate adaptation plans and other planning instruments at the local 

level needs to be strengthen. Many EbA measures require space, hence compete with other 

land uses and needs in areas (urban settlements) where land resources are often scarce. A 

strong coordination with urban plans and other actions and policies is required to ensure that 

the proposed EbA measures are both feasible and desirable. The issue of integration between 

climate adaptation actions and other planning efforts has been raised by Preston et al. (2011), 

but has not received the required level of attention, even by the scientific literature. 
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3 Estimating the cooling capacity of green infrastructures: A methodological 

proposal 

Chapter 3   

Estimating the cooling capacity of green infrastructures: 

A methodological proposal 

3.1 Introduction 

Heatwaves have caused the most human fatalities among the natural disasters that occur in 

post-industrial societies: nearly 95% of recorded human deaths from natural hazards 

(Poumadere et al., 2005). During the summer of 2003, for example, the heatwave in Central 

and Western Europe was estimated to have caused up to 70 000 excess deaths over a 

four-month period (EEA, 2012). A study in Germany (Hubler et al., 2008)  showed evidence 

of the fact that heat-related hospitalization costs increased six-fold in that period, not 

including the cost of ambulance treatment, and that heat also reduced the work performance, 

resulting in an estimated output loss of between 0.1% and 0.5% of GDP. Climate change is 

expected to increase heat island effect and the consequent rise of temperatures in cities during 

the summer in many regions of the world (Koomen and Diogo, 2015).  

Ecosystem-based adaptation is defined as the use of biodiversity and ecosystem services to 

help people to adapt to the adverse effects of climate change (CBD, 2008). It represents an 

alternative approach to more traditional grey infrastructures and often proved to be 

cost-effective and able to provide a range of co-benefits, such as opportunities for recreation, 

biodiversity conservation and water regulation (Demuzere et al., 2014; Naumann et al., 2011; 

Vignola et al., 2009; Munang et al., 2013b, c). Among the most common ecosystem-based 

adaptation measures in cities are the creation and enhancement of Green Urban 

Infrastructures (GUI) (Munroe et al., 2012; Geneletti and Zardo, 2016). GUI contribute to 

reduce high temperatures in cities and the associated health risks, by virtue of their cooling 

capacity (Lafortezza et al., 2013; Escobedo et al., 2015). This ecosystem service, which 

                                                 
 The work presented in this chapter has been published as: Zardo et al. (in review).Estimating the cooling 

capacity pf green infrastructures: A methodological proposal. Ecosystem Services (in review). 
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belongs to the “micro and regional climate regulation” class of the CICES classification 

system (CICES v. 4.3, Potschin & Haines-Young, 2016) refers to the capacity of ecosystems 

to modify temperature, humidity and wind fields. Smith (2013) defines micro and regional 

climate regulation as the capacity of GUI to provide shelter from extreme weather, either cold 

or hot weather. In this paper, we focus on the cooling capacity of GUI, i.e. their capacity to 

mitigate high temperature in the summer (McPherson et al., 1997). GUI can lower 

temperatures in cities by almost 6°C (Souch and Souch 1993). In particular, the creation and 

restoration of GUI aimed at maximizing their cooling capacity can reduce energy costs in 

summer and limits the exposure of city dwellers to increased mortality induced by higher 

temperatures (Koomen and Diogo, 2015). 

Urban plans are among the most important governance tools that can help to design and 

enhance GUI in cities (Kremer et al, 2013). However, a recent review showed that, even 

though there is in general good awareness of the potential role of GUI to address climate 

change challenges, their treatment in plans at the urban level often lacks sufficient baseline 

information (Geneletti and Zardo, 2016). The review concluded that a better knowledge base, 

including information on spatial pattern of ecosystem services flow at the local scale would 

allow to better target the design and implementation of GUI. Assessments of the flow of 

ecosystem services at local scales are often missing, given that many climate change impact 

and vulnerability studies provide results at larger scales, limiting their usefulness for 

developing adaptation strategies at the urban scale (Vignola et al., 2009).  In addition, in the 

ecosystem services literature, the services provided by GUI are mostly assessed at large 

spatial scales (regional or national), which cannot capture the differences in different types 

and structures of GUI (Norton et al., 2015), since they mainly rely on coarser land use 

information (De Groot et al., 2010) . GUI may be very different in nature, including 

typologies such as parks, gardens, forests, green roofs and walls, and rivers (Naumann et al., 

2010; Pauleit et al., 2011 and EEA, 2012). These typologies may differ in key components, 

such as soil cover, tree canopy cover, size and shape. Hence, they provide different 

ecosystem services, with different capacity (Bolund and Hunhammar, 1999; Bowler et al., 

2010; De Groot et al, 2010; Chang et al., 2007). There is lack of information on GUI relevant 

for planning and decision-making at the urban scale (Larondelle and Haase, 2013), which 

requires more research in this area (Munang, 2013a; Braat and De Groot, 2012).  

The aim of this study is to contribute to fill this gap by proposing an approach to estimate the 

cooling capacity provided by GUI that can be used to support urban planning. Evidence 

exists about the need for urban planners to effectively include the design and enhancement 

GUI into the planning practice as a measure to cool cities and combat urban heat islands. Yet, 

to our knowledge, no study specifically addressed this need by providing guidance for GUI 

planning and design. This paper aims at adds an important missing piece to the whole of the 

urban ecosystem services discussion. 
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Section 2 presents the rationale of the proposed approach and describes its four main steps. 

This is followed by our results, consisting in the assessment of the cooling capacity of 

different typologies of GUI (Section 3), and in an illustrative case-study application in the 

city of Amsterdam (Section 4). In Section 5, we discuss the approach and the case study 

findings, and then draw some conclusions on the approach and its potential contribution to 

urban planning in Section 6. 

3.2 Methods 

Ecosystem functions, defined as the ‘‘capacity of ecosystems to provide goods and services 

that satisfy human needs, directly and indirectly’’ (De Groot et al., 2010), are determined by 

the structure of an ecosystem, i.e., the architecture of its components (e.g., land cover, size, 

geometry, tree species) (De Groot et al. 2010). Following the cascade model (Haines-Young 

& Potschin, 2009), in our approach, we first identify the ecosystem functions of GUI 

involved in the cooling capacity (Section 2.1). Then, we identify the components associated 

to the functions, and we assess their contribution to cooling capacity (Section 2.2 and 2.3). 

Finally, we aggregate the results to determine the overall cooling capacity of GUI (Section 

2.4). In Section 2.5, we assess the cooling capacity, and the associated change in temperature, 

for  a set of  GUI typologies, obtained by combining  different components. The approach is 

based on an extensive analysis of the literature, covering mainly the fields of ES and urban 

forests, which was used to determine the cooling capacity of GUI in three different climatic 

regions: Atlantic region, Continental region and Mediterranean region. We classified 

climatic regions (adopting the classification scheme for climate regions by ETC/BD (2006) 

into three categories- namely, cool temperate moist (Atlantic), warm temperate moist 

(Continental), warm temperate dry (Mediterranean). The regions are defined by a set of rules 

based on: annual mean daily temperature, total annual precipitation, total annual potential 

evapotranspiration (PET), and elevation. 

3.2.1 Identification of ecosystem functions and components  

Shading, evapotranspiration (ETA) and wind are the three ecosystem functions that 

determine the cooling capacity of GUI (Oke, 1988; Taha et al., 1991; Akbari et al., 1992; Mc 

Phearson, 1997; Bolund and Hunhammar, 1999; Oke, 1988; Taha et l., 1991; Bolund and 

Hunhammar, 1999; Dobb et al., 2011; EEA, 2012; Smith, et al., 2013; Gomez and Barton, 

2013; Mc Phearson et al., 2013; Larondelle and Haase, 2013). More specifically, vegetation 

regulates the urban microclimate in three ways: (i) by intercepting incoming solar radiation 

(shading); (ii) through the process of evapotranspiration and (iii) by altering air movement 

and heat exchange. Shading and evapotranspiration contribute most to the cooling effect 

(Skelhorn, Lindley & Levermore 2014). Additionally, considering the contribution of wind 
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to cooling capacity assessments is particularly complex because it largely depends upon very 

local conditions that are not dependent on ecosystem functions and the components of GUI 

(e.g. presence of buildings, directions of streets, …) which require analysis at micro-scale of 

the shape of the open space and buildings (Bowler et al., 2010). For these reasons, this study 

did not address the wind factor in determining the cooling capacity of an area. 

The components of GUI associated to shading and evapotranspiration were identified in: tree 

canopy coverage (Taha et al., 1991; Akbari et al., 1992; Bowler et al., 2010; Schwarz et al., 

2011; Larondelle and Haase, 2013), soil cover (Akbari 1992; Souch and Souch 1993; 

Schwarz 2011; Larondelle and Haase 2013) and size (Chang 2007; Bowler 2010; Cao 2010). 

Our approach assesses the cooling capacity of different combination of these three 

components, for three different climatic regions, and assigns to the assessed GUI a cooling 

capacity score from 0 to 100 (where 100 indicates the best cooling capacity score) that can be 

associated to a potential decrease of the air temperature (°C) (Figure 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flowchart of the proposed approach 
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3.2.2 Shading assessment 

Several studies show evidence of cooler air temperature beneath individual or clusters of 

trees, highlighting the amount of shading as an important factor affecting temperatures (Taha 

et al., 1991; Akbari et al., 1992; Bowler et al., 2010; Schwarz et al., 2011; Larondelle and 

Haase, 2013). To represent this phenomenon, many indicators have been proposed. We 

adopted the “tree canopy coverage” which is expressed as the percentage of the ground area 

shaded by tree canopies relative to the total open area (Stronbach and Haase, 2012; Potcher 

2006). There is a linear relationship between the presence of tree covers and shading (Potcher 

et al., 2006). Hence, our assessment was based on a linear scale applied by Visual estimation 

(e.g., Dethier and Duggins, 1984): the technique views the system as essentially 2-D from the 

sky, with a maximum of 100% of area covered by trees. Hence, we assigned a shading score 

equal to of “x” to GUI with a x% tree canopy coverage. In our analysis we only consider the 

contribution given by trees with canopy equal or higher than two meters, assuming that lower 

cover does not provide shade that is useful for human beneficiaries. Nevertheless, such 

vegetation has a significant contribution in terms of evapotranspiration, which we discuss 

next. 

3.2.3 Evapotranspiration assessment 

The literature identifies as components that affect evapotranspiration: tree canopy coverage, 

soil cover and tree species. Tree canopy cover of a GUI is an important component to 

consider because trees do evapotranspirate, so according to their capacity they contribute to 

total ETA (Taha 1988; Taha 1991; Akbari 1992; Bowler 2010; Schwarz 2011; Larondelle and 

Haase 2013). Similarly, soil cover shall be taken into account because different types of soil 

evapotranspirate differently according to their capacity (Kc) (Akbari 1992; Souch and Souch 

1993; Schwarz 2011; Larondelle and Haase 2013). To conclude, tree species is mentioned by 

the literature because different types of trees have different evapotranspiration capacity (FAO 

1998; Larondelle and Haase 2013). 

Additionally, given a specific combination of these three components, their 

evapotranspiration differs according to the climatic region (Taha 1991; Akbari 1992; Mc 

Phearson 1997; Bowler 2010). In warm and dry areas evapotranpiration is more effective 

(higher values) than in humid or cool climates (Taha, 1991; Akbari, 1992; Mc Phearson, 

1997; Bowler, 2010). In this study we disregarded tree species because this information that 

is hardly available at city scale. Additionally, differences across species in terms of 

evapotranspiration are found to be negligible for the scale of our assessment (Souch and 

Souch, 1993).  

Evapotranspiration values were derived using the equation (FAO, 1998): 

 

ETc= Kc ET0                                  (1) 
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where ETc is the tree or soil cover evapotranspiration (ETA) under conditions of unlimited 

presence of water in the ground (irrigated), Kc is the tree or soil cover coefficient and ET0 is 

the reference  evapotranspiration.  

The equation shows that evapotranspiration depends not only on specific characteristics of 

the surface (Kc coefficient), be it soil cover or tree, but also relies on climate: ET0 represents 

the climatic region implications. 

To estimate the evapotranspiration potential of a GUI we need to consider its soil cover and 

tree canopy coverage to obtain the soil and trees Kc coefficient. ETA can be estimated by 

multiplying its specific Kc coefficient for the climate-specific value ET0 (Larondelle and 

Haase, 2013; Schwarz et al., 2011; Kremer et al., 2013) by considering the ET0 

corresponding to the specific climatic region considered for the analysis. The ETA of a given 

GUI is obtained by summing the ETA related to trees in that climatic region multiplied by the 

tree canopy coverage (e.g. 0.3 if the tree canopy coverage category is 30%) and the ETA 

related to the soil cover in that climatic region multiplied by the  surface area not covered by 

trees (e.g. 0.7, if in  case of 30% tree canopy coverage). The ETA values (expressed in mm 

d^-1) obtained through the application of  equation (1) were  converted into a ETA score in 

the  0-100 range. 

3.2.4 Cooling capacity assessment 

The relative contribution of shading and evapotranspiration to the overall cooling capacity is 

determined by the third component, i.e. the size of the GUI (Chang et al., 2007; Bowler et al., 

2010; Cao et al., 2010). Evapotranspiration and shading jointly reduce the air temperature, 

but the impact of evapotranspiration becomes predominant as the area gets larger (Akbari et 

al., 1992). Unfortunately, only limited information is available in the literature on how to 

combine the contribution of evapotranspiration and shading, and the relationship between 

size and cooling capacity is non-linear (Chang et al., 2007). According to Chang et al. (2007), 

green areas larger than 2-3 hectares are much cooler than their surroundings (Chang et al. 

2007). Additionally, parks between 3 and 12 hectares are cooler than most surrounding 

measurements; whereas parks smaller than 2 hectares have a limited effect. Many studies 

identify the threshold between "small" parks and "large" parks around a value of 2 hectares 

(e.g. Shashuabar and Hoffman, 2000; Chang et al., 2007; Cao et al, 2010; Bowler et al., 2010).  

Cao et al. (2010) showed that green areas smaller than two hectares are on average 1°C 

cooler than surrounding areas while above the threshold the temperature decreases rapidly 

(from 2°C to 4°C) drawing a curve which flattens around the eight hectares. Akbari et al. 

(1992) analyses the effects of shading and ETA on surroundings of trees (measurements were 

taken at 12 m and five m from trees). They concluded that the cooling capacity depends 

mainly on ETA for large areas, reaching a distance as far as five times the tree. Akbari et al. 
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(1992) found that shading contributes up to 95% when directly under the canopy, but its 

contribution in the decrease of temperature and consequently of energy consumption for air 

conditioning for the 40% for large areas (larger than two hectares). Chang et al. (2007) found 

that size contributes to 60% of the cooling capacity, and directly affects the contribution of 

ETA. In areas smaller than two hectares, empirical studies determined the contribution of 

shading to be around 80% of the total cooling capacity, with the remaining 20% determined 

by ETA (Shashuabar and Hoffman, 2000). 

These findings suggested to assess the overall cooling capacity of GUI through a weighted 

summation of their ETA and shading scores, using different weights according to size. 

Particularly, in areas smaller than two hectares ETA was assigned a weight of 0.2 and shading 

of 0.8. In areas larger than two hectares the weights were changed to 0.6 and 0.4, for ETA and 

shading respectively. Results are standardized in a scale from 0 to 100.  However, Chang 

(2007) shows that areas with less than 50% tree canopy coverage risk to become warm 

islands instead of cool islands during some part of the day in very hot summer. To consider 

this remark, we calculated the cooling capacity of all areas as described above, but we 

highlight with a “*” cooling capacity scores for all areas below 50% tree canopy coverage to 

underline that even if they may present generally good cooling capacity scores, in some 

circumstances they can also work the other way round. 

3.2.5 Cooling capacity of GUI typologies and expected temperature change 

GUI typologies were identified by combining the components previously described. To this 

purpose, tree canopy coverage was classified five classes: 0 - 20%, 21-40%, 41 - 60%, 61 - 

80% and 81 - 100%. Soil cover was classified into the following classes (based on the 

HERCULES soil-cover taxonomy, Cadenasso et al. (2007): sealed (all impervious surfaces), 

bare soil, heterogeneous cover (mixed cover of bare-soil and shrubs, typical of vegetable 

gardens or inner courts or some vacant lots), grass (fine vegetation) and water.  Size was 

classified into two classes (see rationale in Section 2.3): below and above two hectares. By 

combining these classes, we obtained 50 typologies of GUI, which were considered in the 

three climatic regions.  

To assess the cooling capacity of each GUI typology in each climatic region, we collected on  

ET0 and  Kc. ET0 data for the three climatic region were obtained from the CGMS database 

of the Mars Crop Yield Forecasting System 

(https://ec.europa.eu/jrc/en/research-topic/crop-yield-forecasting). For E0, we considered 

the E0 values for six different cities located in the three different climate regions (Amsterdam 

and Rotterdam for the Atlantic, Milan and Venice for the Continental, Madrid and Barcelona 

for the Mediterranean. From the same database, we obtained Kc values for the five different 

soil cover categories. We found an average Kc for trees by referring to FAO (1998), taking 

into consideration Citrus and Conifers –which represent respectively the highest and lowest 
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values in the table- values during the summertime. For Kc, we consider conditions with 

unlimited water in the ground assuming urban ecosystems can be easily irrigated. 

 

As a last step, the cooling capacity scores were associated to expected changes in temperature 

through a literature review. The conversion of  cooling capacity scores (expressed in scores 

from 0 to 100) into changes in air temperature  depends heavily on the climatic region: GUI 

can lower daily maximum near-surface temperature more in hot and dry conditions than in 

cooler and damper conditions (Taha et al., 1991). Table 3.1presents the literature that was 

used to estimate the changes in temperature.  These studies refer to air temperature decrease 

in urban contexts, due to the presence of GUI. The studies were clustered according to their 

climatic region (applying the Koppen classification, Peel et al. 2007), and used to identify a 

minimum and a maximum values of temperature variation for cities belonging to the three 

three climatic regions recorded by the articles.  

We matched the data that emerged from the literature review (see Table 3.1) with the 0-100 

cooling capacity scores. More specifically, first we assigned the maximum cooling value 

expressed in °C to the highest cooling capacity scores (100) for each of the three climatic 

regions (e.g. GUI with a cooling capacity of 100 might lower the temperature of 3.5°C in the 

Atlantic region, 4.8°C in the Continental region and 6°C in the Mediterranean region. Then, 

we divided the maximum cooling value for each region in five, assuming the temperature 

decrease provided would decrease linearly with the decrease of the cooling capacity. For 

example, in the Atlantic region, to any 20 points of cooling capacity corresponds a decrease 

of °C of 0.7: GUI with cooling capacity from 0 to 20 can lower the temperature up to 0.7°C, 

from 21 to 40 up to 1.4°C, from 41 to 60 up to 2.1°C, from 61 to 80 up to 2.8°C, from 81 to 

100 up to 3.5°C. 

Table 3.1 Literature review for cooling capacity (delta T°C) 

Climatic area Min cooling (°C) Max cooling (°C) Reference 

Atlantic 
(Koppen:Cfb) 

1.0 3.5 Larondelle and Haase, 2012; 
Schwarz et al.,  2011; Watkins, 
2002; Authority, G. L. 2006 

Continental 
(Koppen: Cfa) 

1.0 4.8 Chang et al., 2007; Potcher et al., 
2006 

Mediterranean 
(Koppen: Csa) 

1.7 6.0  Taha et al., 1991; Souch and 
Souch, 1993; Shashua-Bar and 
Hoffman, 2000; Potcher et al., 
2006 
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3.3 Results 

Figure 3.2 summarizes the cooling capacity of the 50  GUI typologies for the three climatic 

regions. From our analysis, 26% of the GUI typologies show the highest scores (from 81 to 

100), 17% of GUI from 61 to 80, 23% from 41 to 60, 23% from 21 to 40, 12% from 0 to 20. 

These findings reveal a ranking among the four components in terms of their influence on the 

overall cooling capacity of a GUI (see Figure 3.2). Thus, all GUI showing scores above 60 

present a size above the two hectares and only 3% of the GUI above the two hectares show 

scores from 60 below, exhibiting that size is the most influent component among the three. A 

group of six GUI represents the exception: they are characterized by the best size category 

(above two hectares) but show the worst conditions in terms of soil cover and tree canopy 

coverage. Furthermore, no GUI with size smaller than two hectares show scores above 60. 

This can be seen reading the right colon of GUI inside each of the three colon corresponding 

to a climatic region. 

Scores between 41 and 60 comprise mainly areas smaller than two hectares (91%). This 

includes all the GUI with 100% of tree canopy coverage, and most of GUI with 80% of tree 

canopy coverage. The GUI with scores between 21 and 40 are smaller than two hectares and 

have tree canopy coverage between 20 and 60%. We can observe that, the second most 

influential component, after the size, is the tree canopy coverage. Soil cover follows tree 

canopy coverage (in the ranking by importance). Thus GUI with low cooling capacity (scores 

below 40) represent GUI with size smaller  than two hectares, tree canopy coverage below 

the 60% and slightly distinguish themselves according to the soil cover. 
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Figure 3.2. Overall cooling capacity for the 50 GUI considered for three different 

climatic regions 

 

 

 

 

 

Figure 3.2 Overall cooling capacity for the 50 GUI considered for three different climatic 

regions 
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In terms of expected temperature changes, the Mediterranean region is where larger changes 

occur, followed by the Continental area and the Atlantic region (Figure. 3). For example a 

GUI with a score of 100 for the cooling capacity in the Atlantic region can provide a 

temperature decrease up to 3.5°C. The same GUI in the Mediterranean region can provide a 

temperature decrease of up to 6 °C. Additionally, each score implies a different temperature 

decrease, according to the climatic region. Consequently investing on a GUI to improve its 

cooling capacity from 60 to 80 a region, implies a different jump in terms of temperature 

decrease. For example between two GUI with a cooling capacity of  60 and 80 respectively  

in the Atlantic region implies a shift around 0.7°C, while in the Mediterranean around 1.2°C. 

This means that if we would aim for a decrease of one Celsius degree, in the Atlantic we 

would need to upgrade the GUI score of almost 40 points (out of 100), while in the 

Mediterranean region it would be sufficient to upgrade the Gus score  of only 20 points (out 

of 100). This can be observed in Figure 3, where the grey rectangle represents a shift of one 

Celsius degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Figure 3 shows the delta Temperature variation (in Celsius degrees) for the 

same classes in the three different climatic regions. 

3.4 Application to the city of Amsterdam 

The approach was empirically applied to a 10X10 km portion of the city of Amsterdam, by 

analyzing existing GUI, and assessing their cooling capacity.  Amsterdam belongs to the cold 

temperate moist zone, which correspond to the Atlantic climatic region. Tree canopy 

coverage was mapped using spatial information data from the "Actuel Hoogtebestand 

Netherland" (height map for the Netherlands, http://www.ahn.nl/index.html )  and applying 
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the  NDVI index (Normalized Difference Vegetation Index) to remove non-vegetated objects 

from the digital terrain model such as buildings or trucks. Soil cover and GUI size were 

mapped using the topographic map of the Netherlands (LGN map  for the Netherlands from 

the Alterra Research Centre, 2014). From the land use map, streets were identified as large 

surfaces (far beyond two hectares), because the whole network was drawn as a unique 

polygon. Since the network shape relies to a final large area in terms of surface but its 

biophysical behavior does not relate to the real large areas one (because it is not enough 

compact), we applied a shape index formula ( LSI: perimeter/(2*square root of (Pi*Area)) 

utilizing “6” as minimum threshold to avoid networks . All GIS operations were conducted 

using QUICKScan (Verweij et al., 2012). 74653 GUI, covering 8477 hectares, were mapped. 

The GUI tree canopy coverage, soil cover and size maps are  shown in Figures 3.4., 3.5 and 

3.6 respectively. 

Most GUI consisting of water or have a tree canopy coverage below  20%. The remaining  

GUI represent less than 10% of the overall GUI area and are characterized by a 

heterogeneous soil cover and tree canopy coverage below 20% (17% of overall GUI  area), 

sealed patches with tree canopy coverage below the 20% (11%), sealed patches with tree  

canopy coverage between 20 and 40% (10%) and grass soil cover with tree canopy coverage 

below 20% (10% ).  

Figure 3.7 presents the results of the cooling capacity assessment. In particular, Figure 3.7 

presents the overall cooling capacity of GUI in the city, with scores from 0 to 100. Most GUI 

have a low cooling capacity (the 34% of total GUI present cooling capacity scores below 25). 

The 13% of GUI present scores from 25 to 30, the 22% of GUI present scores from 30 to 60 

and only the 1%of GUI present scores above 60. Linking the cooling capacity scores with the 

potential decrease of temperature analyzed in the previous paragraph, we can assume that the 

22% of GUI between 60 and 30 may lower the temperature during the summer days up to 

2.1°C. 

The results can be used in urban planning to identify possible actions to enhance the cooling 

capacity of least performing GUI. For example, Figure 3.8 shows a possible set of 

interventions to upgrade a GUI with a current cooling capacity score of 11, characterized by 

size below two hectares, 20% of tree canopy coverage and sealed soil. The best results are 

provided by a combination of actions targeted at increasing the size and the tree canopy 

coverage, and improving soil cover).
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Figure 3.4.b. Tree canopy coverage map 

 

 

 

 

 

 

 

 

Figure 3.4 Soil cover map 

 

 

 

 

 

 

 

Figure 3.4.c. Size map 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Tree canopy coverage map 
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Figure 3.6 Size map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Overall cooling capacity map 
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Figure 3.8 Alternative actions to upgrade an hypothetical GUI with a cooling capacity 

scores below 20 (characterized by a size < two hectares, soil cover sealed and tree 

canopy coverage of 20%) and the cooling capacity reached according to the action or 

combination of actions applied (i.e. by increasing the soil cover and the tree canopy 

coverage the GUI is upgraded). 

3.5 Discussions 

GUI represents a potential for cities to adapt to multiple challenges. In particular, the  

potential that GUI represent in terms of ES provisioning, determines the relevance and need 

to take into account the design of GUI and their ES provisioning in decision-making and 

planning processes (Munang et al., 2013).Lack of data may hamper the application of 

ecosystem-based actions such as creation or restoration of GUI. On the other hand, too 

complex and specific tools also present a possible barrier for improving the design of GUI  in 

urban planning practice.  

In this paper, we focused on a single ecosystem service, cooling, out of the bundle of services 

provided by GUI. Our approach links the components that constitute of the structure of a GUI 

to its capacity to provide cooling, distinguishing among typologies of GUI, which larger 

scale assessments are not able to do.. Thus, results show the differences in the expected 

cooling capacity from one GUI typology to another.  

The results show that the three GUI components do not influence equally the cooling 

capacity. Additionally, the performance of different typologies of GUI relatively to one 

another is constant across climate regions (i.e. a GUI x is better than GUI y in all climatic 
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regions). The impact of the climatic region becomes important in decrease of the air 

temperature (°C) provided by a GUI, as Section 3.2 shows. Generally, the most important 

component is size, followed by tree canopy coverage and lastly soil cover. Additionally, 

highlighted that among categories of one component (for example “soil cover”) some 

thresholds emerge to be more significant than others (e.g. the major difference is between 

“sealed” and the other four categories, namely bare soil, heterogeneous, grass and water). 

In Section 3.2, we showed that a specific GUI, with a specific class of cooling capacity, 

implies a different decrease of the air temperature depending on the climatic region. More 

specifically, in the Mediterranean region the same GUI can lower the temperature more 

effectively than in Atlantic or Continental regions. Apart from this, results from Section 3.2 

also showed that in Mediterranean regions greater cooling can be reached. Concluding, to 

obtain a decrease the air temperature of 1°C, Atlantic regions need a switch of some classes 

of cooling capacity while in the Mediterranean a switch from one cooling capacity class to 

another is sufficient: from a practical point of view this has different investment implications. 

The Amsterdam case study showed that our approach requires only a limited set of input-data, 

generally easy to obtain, to provide an overall cooling capacity assessment of GUI. From the 

case study, several practical insights emerge related to the different effects of the components 

in different cases. For example for small areas shading is much more determining than for 

large areas, making the increase of tree canopy coverage particularly interesting for small 

spaces, especially compared to soil cover interventions. In general, soil cover investments are 

more indicated for large areas, while for small areas promising cooling capacity can be 

obtained just by increasing the tree canopy cover, with exceptions in the Mediterranean 

region where again trees are more preferable than soil cover interventions, but with less 

difference between the two. On the contrary, for large areas soil cover changes can provide 

much more interesting results in all three climatic regions, especially in the Mediterranean. 

However, a good balance in terms of tree-canopy coverage, soil cover type and size, as 

mentioned in the previous paragraph, is the strategy providing the best cooling capacity. 

The approach, as it stands now, has three main limitations discussed hereafter.  

i)The computations of shading, evapotranspiration and overall cooling capacity are based on 

a review of the available literature and on expert opinion. However, the need for a 

cross-disciplinary approach to enhance an ecosystem-service oriented planning as 

propagated by Norton et al. (2015) may imply methodological difficulties such as comparing 

similar but different variables from diverse studies, selecting values and data from similar 

contexts (climatic regions), and accepting the lack of true replications of some empirical 

studies (see also Bowler 2010). 

ii) Variables such as wind flowing, city morphology, , tree species were not considered due to 

the choice for simplicity and synthesis, looking for a fair trade-off between accuracy of the 

assessment and a complexity in computations and data. Thus, cooling capacity of a green 
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area in a city may be due to infinite combinations of different urban geometries and climate 

variables (Oke, 1988), but planning and design can make a difference in choosing between 

alternatives. Therefore we have restricted the analysis to the most influencing factors, but 

flexible enough to provide site-specific solutions. Additionally, among the infinite variables 

contributing to cooling capacity, wind was not included in our approach also because we 

found conflict in the literature about the positive or negative role of wind, as mentioned in 

section 2. Similarly, for tree species, the literature provides evidence about the fact that 

different tree species differently contribute to cooling due to different evapotranspiration 

functioning (captured in equation 1 in the Kc value). However, the consideration of tree 

species in the approach represents a type of data challenging to obtain at city level and on the 

other hand, the difference between species in terms of evapotranspiration was found to be 

negligible for the scale of our assessment (Souch and Souch, 1993), as mentioned in Section 

2. Additionally, we computed the ETc difference of a same area between considering or 

avoiding “tree species” as component for evapotranspiration assessment. We computed the 

potential effect of this component taking into account different species and their respective 

Kc values, including the average value of 0.8 for trees, the lowest value of 0.4 for fruit trees at 

the beginning of the season and the highest values of around 1 for conifers (Fao, 1998). 

Multiplying these Kc values by the E0 related to the different climatic areas, we found the 

variation to be negligible, which is consistent with the conclusions of a study of Souch and 

Souch (1993). For the difference to be appreciated the whole area had to be covered by 

specific species of tree, in which case the shading effect would have outweighed the 

evapotranspiration effect anyway. Thus, the choice to keep the average value of Kc 0.8 

without adding further complexity at this level. 

iii) It considers only the cooling capacity within the GUI, without addressing the effects 

outside its boundaries. Clearly, knowing the spatial extent of the cooling capacity beyond 

GUI boundaries would be interesting for urban planning, and for an analysis of the expected 

beneficiaries of different GUI interventions. 

3.6 Conclusions 

Scientific knowledge from different fields, such as ecology, planning, urban forestry and 

climate-related studies, can improve GUI assessment tools, but an effort in terms of 

converting it into guidance that can improve urban planning processes is still needed (Norton 

et al., 2015) Our approach is the result of an effort to combine knowledge and data from 

different disciplines to contribute to this purpose. The approach presented in this paper and 

the information it provides are designed to fit the urban scale and to work with input-data sets 

that are sufficient to differentiate among the cooling capacity provided by different types of 

GUI, but still easily available during urban planning processes. 

Further research will be needed to link this approach and the insights it provides for assessing 
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cooling capacity with an explicit assessment of beneficiaries. Comprehensive and accurate 

analyses of beneficiaries are needed as a tool to design and assess ecosystem-based measures. 

Moreover, identification, quantification and mapping of beneficiaries are essential steps to 

highlight and face equity issues in the provision of ES, spatial mismatches between ES 

supply and demand, trade-offs between different categories of beneficiaries. 
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4 Testing the application of ES assessments in two case studies 

Chapter 4   

Testing the application of Ecosystem Service assessments 

in two case studies  

4.1 Introduction 

The assessment of ecosystem services aims at the quantification of benefits derived from 

ecosystems to inform planners and politicians, who develop plans and strategies for the 

protection of the environment and the provision of socially requested services (BMU, 2007; 

Farley and Costanza, 2010). Many issues remain to be resolved to fully integrate the concept 

of ES into everyday planning, management and decision-making (De Groot et al., 2010). One 

of the major barrier to the application of ES is the gap between a dramatically growing 

literature (see Haase et al. 2014; Luederitz et al. 2015 on urban ecosystem services) and the 

planning and management practice (Geneletti and Zardo, 2016). Hence, practitioners face 

many challenges, from the conflict between lack of data availability and the high number of 

data required as input for ES models, to the need for synthetic results that contrasts the high 

complexity of adaptive systems such as cities and social-ecological systems in general.  

 

ES assessments and the variety of methods and tools to support urban planning in the 

consideration of urban ecosystems can support planners in creating and restore ecosystems 

that effectively enhance human well-being and ameliorate quality of life in cities. I the last 

years, research from the ES field is putting evident effort to deliver proper methods and tools 

with the specific purpose of supporting urban planners. However, since purposes and 

challenges that urban planning faces are many, also the information required cannot be 

delivered by one single tool or methodology (UNU, 2003). Depending on the scale and 

purpose of the planning question, different types of ES assessment are required.  

 

The availability of ES assessment tools for urban applications is still scarce, especially 

compared to larger scales, as shown in Chapter 2 and Chapter 3. A coherent and integrated 

approach to come to practical application of the concept of ecosystem and landscape 
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functions in planning, management and decision-making is still lacking (ICSU et al., 2008). 

Additionally, methodologies and tools for the assessment of the ecosystem services provided 

by green urban infrastructures (GUI) tend to be too data demanding for being routinely 

adopted in urban planning processes. To transfer the concept of ecosystem services to urban 

planning, integrated and easily applicable assessment approaches are needed (Burkhard et al., 

2010; de Groot, 2006; Frank et al., 2010b; Lautenbach et al., 2010; Rannow et al., 2010). 

Moreover, information on successful and cost-effective Ecosystem-based measures such as 

the creation of GUI is lacking and needed especially at the city scale (Norton, 2015; 

Larondelle and Haase, 2013). ES assessments at the city scale should be specific enough to 

distinguish among different types of GUI as different ES providing units.Indicators that 

consider urban ecosystems as a homogenous category cannot guide planning actions in the 

choice and implementation of different GUI. 

To conclude, to mainstream the use of ES assessments and their results to answer to planning 

questions, there is need to provide evidence about the relevance/contribution.  

 

Goal of this chapter is applying ES assessments to two different contexts test and discuss the 

applicability of methods to support the planning practice. Focusing specifically on the 

application of scientific findings in everyday planning practices, this chapter provides some 

insights on the applicability of ES assessments to support urban planning decisions, 

particularly by:  

-applying the methodology to assess the cooling capacity of GUI (Chapter 3) to evaluate 

urban development opportunities regulated by the existing urban plan in the city of Trento 

(Italy); 

-applying a multiple-ES assessment to identify priority neighborhoods for interventions 

based on the mismatch between ES supply and demand in Addis Abeba (Ethiopia);  

-drawing some conclusions about the capability of ES assessments to inform real-world 

planning processes. 

4.2 Trento case study 

The Trento case study is based on: Geneletti D., Zardo L., Cortinovis C. (2016), Promoting 

nature-based solutions for climate adaptation in cities through impact assessment, in D. 

Geneletti (Ed.), Handbook on Biodiversity and Ecosystem Services in Impact Assessment, 

Elgar Publishing.  

The city of Trento is located in an alpine region in Northeastern Italy. Trento is a city of 

                                                 
 The Trento case study is based on: Geneletti D., Zardo L., Cortinovis C. (2016), Promoting nature-based 

solutions for climate adaptation in cities through impact assessment, in D. Geneletti (Ed.), Handbook on 

Biodiversity and Ecosystem Services in Impact Assessment, Elgar Publishing. 
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around 100 000 people that sprawls about 10 km across the Adige valley floor (Figure 4.1). 

This section shows how the results of the cooling capacity assessment performed on the GUI 

of Trento can be applied to support urban planning and associated impact assessment 

processes. More in detail, the application refers to the re-development of brownfields as one 

of the strategies envisioned by the current urban plan of the city. Different greening 

interventions are simulated for each brownfield, and the associated cooling capacity is 

assessed to identify the sites, and the types of intervention, that provide the highest benefits to 

citizens, considering also their differentiated vulnerability to heat waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 City of Trento 

4.2.1 Methods 

To assess the cooling capacity provided by all GUI in Trento, we adopted the methodology 

presented in chapter 3.  We simulated for each brownfield two different greening 

interventions (scenario A and scenario B) resulting in different cooling performances, and we 

measured the number of people that would benefit from the transformation based on the 

comparison with the existing situation (baseline). This enables us to understand how and 
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where it is more cost-effective to intervene through ecosystem-based measures and to 

understand which area can be more effectively transformed through greening actions, which 

level of performance is required to increase the well-being of the surrounding inhabitants, 

and in which area  the same investment is expected to obtain the biggest gain. 

 

The GUI of Trento were mapped and classified according to the key components considered 

in the methodology, namely tree canopy coverage, soil cover and size. This information was 

then aggregated using the cooling capacity values for the Mediterranean climatic area (see 

details in chapter 3), obtaining the map presented in Figure 4.2 (left). The spatial decay 

functions mentioned above allowed mapping the flow of the ES outside the boundaries of 

GUI (Figure 4.2, right). 

 

 

Figure 4.2 Assessment o 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Assessment of the cooling capacity of the GUI of Trento. Left. Cooling 

classes within GUI. Right: Cooling classes also outside GUI. 

For each area, we simulated two transformation scenarios applying different greening 
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interventions, and modeled the expected cooling capacity. Scenario A refers to the ‘best 

cooling performance’ that can be reached depending on the size of the brownfield (cooling 

capacity score above 80 in Figure 3.2). Scenario B simulates a ‘medium-level cooling 

performance (cooling capacity score between 31 and 50). The same class of cooling capacity 

can be obtained through different combinations of land cover and tree coverage. Scenario A, 

for example, can be obtained through a homogeneous grassy area with tree coverage higher 

than 80 percent (e.g., an urban forest or an intensely planted urban park). Scenario B 

corresponds to a high tree coverage over a sealed surface (> 40 percent for the bigger areas 

and > 60 percent for the smaller ones), such as an intensely-planted parking area. We 

considered all the transformations independently and computed for each scenario the map of 

the cooling capacity inside the maximum area of influence of each brownfield. Through an 

overlay between this map and the census data, we determined the number of people living 

within each cooling class under the different scenarios.. To assess the benefits provided by 

each scenario, we performed a spatial comparison with the baseline condition. We computed 

a map of the expected differences in class: positive values stand for changes from lower to 

upper classes, negative values for changes from upper to lower classes. The overlay between 

this map and the census data allowed us to estimate the number of people affected by positive 

or negative changes. 

We considered both total population and specific vulnerable groups. To define vulnerable 

groups, we referred to the analyses by Kabisch and Haase (2014) and Kazmierczak (2012) 

and identified elderly people (above 65 years old), children (under 5 years old), and 

foreigners as the most sensitive and less adaptive to heat stresses. Census data provided by 

the municipality about total number of residents, age group distribution, and presence of 

foreigners for each census block were collected and linked to the spatial map. To be as 

accurate as possible in the spatial definition of the population, we identified the residential 

buildings inside each census block and distributed the residents only in the surface covered 

by their footprint.  

The analysis was performed on 13 brownfields identified by the Urban Plan as areas for 

future re-development. Most of them are former industrial sites or partially abandoned 

residential areas (see Figure 4.3, right). Their dimension ranges from 0.5 to 9.9 ha. Among 

them, seven are larger than 2 ha, thus the maximum distance that can be reached by their 

cooling effect on the surroundings is around 250 m. For the smaller ones, the maximum 

buffer of effect is 100 m from the boundary. 
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Figure 4.3 The sites classified by the Trento Urban Plan as vacant lots for residential 

development (left) and as brownfields for future re-development (right) that have 

been considered in this study 

4.2.2 Results 

Figure 4.4 and Tables 4.1, 4.2 and 4.3 present the results obtained for one of the 

re-development sites, while Figure 4.5 summarizes and compares the performance of all 

brownfields under the two different greening scenarios with respect to the existing condition. 
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Figure 4.4 Cooling capacity classes modeled for one of the re-development sites (Site 11) 

in the baseline conditions and under the two transformation scenarios. 

 

Table 4.1 Number of beneficiaries within each cooling capacity class (Site 11, baseline 

conditions). 

cooling 

capacity score 

(0-100) 

overall 

population 

vulnerable population 

foreigners children elderly people 

61-100 0 0 0 0 

51-60 255 40 11 73 

31-50 376 53 16 108 

21-30 725 104 29 201 

15-20 938 127 38 263 

<15 250 31 11 72 
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Table 4.2 Number of beneficiaries within each cooling capacity class (Site 11, scenario 

A). 

cooling 

capacity score 

(0-100) 

overall 

population 

vulnerable population 

foreigners children elderly people 

61-100 0 0 0 0 

51-60 788 126 30 225 

31-50 582 82 23 165 

21-30 758 107 32 211 

15-20 402 38 19 113 

<15 14 2 1 4 

 

Table 4.3 Number of beneficiaries within each cooling capacity class (Site 11, scenario 

B). 

cooling 

capacity score 

(0-100) 

overall 

population 

vulnerable population 

foreigners children elderly people 

61-100 0 0 0 0 

51-60 255 40 11 73 

31-50 337 45 14 97 

21-30 1031 149 40 287 

15-20 765 98 33 215 

<15 157 22 8 45 

 

As an overall indicator, we used the population and the vulnerable population (i.e., elderly + 

children + foreigners) affected by the transformation: positive values in the graph indicate a 

net positive change, negative values indicate a net negative change. The lower graph in 

Figure 4.5 shows the results normalized by the area of the brownfield, thus providing an 

estimation of the expected number of beneficiaries per unit of area of intervention.  
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Figure 4.5 Population and vulnerable population affected by the transformation 

scenarios in each re-development site. Positive values indicate a net positive change, 

negative values indicate a net negative change in cooling capacity class. 

 

The results of scenario A, which simulates a green area almost totally covered by trees, 

demonstrate that even a land cover change in a limited area can bring significant benefit to 

the citizens. Quite the opposite,  medium-level interventions (scenario B) are not expected to 

produce remarkable changes, except for specific re-development sites located inside urban 

areas with low cooling capacity. Indeed, most of the transformations modeled in scenario B 

do not generate any benefit for the surrounding inhabitants, whose thermal conditions are 

mostly determined by other factors (e.g., proximity to other green areas). Only two areas over 

2 ha bring some limited thermal benefits to the surrounding residential areas. This is a 
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consequence of the general good conditions of the study area (see Figure 4.2). 

 

Moreover, the comparison permits to identify what interventions are more cost-effective. For 

example, considering scenario A, re-development site no. 11 produces the best results both in 

absolute and relative terms, being a potentially large green area inside a heavily built-up and 

densely populated part of the city. On the other hand, the second rank depends on the 

indicator: the greening intervention on re-development site no. 12 has a positive effect on the 

highest number of residents, but the same intervention on re-development site no. 5  performs 

relatively better, in particular when the number of vulnerable people is considered. This 

means that, depending on the present conditions of the urban environment and the density 

and vulnerability characteristics of the resident population, the same investment for greening 

interventions can be more cost-effective when directed to a small area, even if it results in a 

lower cooling capacity compared to the one that can be obtained in larger sites. 

 

4.3 Addis Abeba case-study**** 

The booming growth of Addis Abeba simultaneously corresponds to a demographic growth, 

which trigger an increase in the demand for resources, and a physical growth of the built up 

that affects the potential supply of resources, from both quantity and quality sides.  

“Growing” does not only mean getting bigger, but also getting better. Thus, Addis Abeba 

plays an important role in promoting the well-being of the country and economic prosperity 

in the region. For Addis Abeba, efforts to promote greater resilience must be closely aligned 

with the city’s vision to be a safe and livable city, ensure the national goal of becoming a 

middle-income country by 2025, and become Africa’s diplomatic capital implying an 

enhancement of the quality of life. Among the many factors determining the quality of life 

and wellbeing of citizens, the chance to benefit from a healthy environment plays a crucial 

role.  

Environment in Addis Abeba does not show its best shape. On the one hand, as mentioned, 

the growing built-up area is substituting the natural capital at a speed of 4 km2 per year. On 

the other hand, the state of existing green and blue areas in the city is threatened by many 

drivers, mainly related to the management of resources and basic services such as water and 

sanitation, drainage and solid waste managements, transportation. 

The present state of the environment in Addis Abeba call for major and urgent measures. 

However, what counts is the trend. The city administration is moving important attempts to 

address a more environmental-friendly growth. Under the umbrella of the Addis Abeba City 

                                                 
**** The Addis Abeba case study presented in this section is based on: UN-Habitat (in print), Addis Abeba City 

Report. 
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Report, together with UN Habitat we operated an analysis of the city to provide an overall 

picture of the state of the environment, with the aim of providing recommendations to the 

city administration and, in particular, to the panning section.  

One of the issues analyzed and presented in the report is the assessments of ES provided by 

GUI in the city. The analysis aims at identifying priority neighborhoods for action. The 

criteria of such prioritization combine a fragile state of the environment (poor ES supply) and 

a high demand for natural resources (high ES demand). 

 

 

 

4.3.1 Methods 

To assess the supply of multiple ES for the city of Addis Abeba, we adopted a method based 

on land cover as indicator for ES provisioning (McPhearson et al., 2013). We focused on 

regulating services to cover an often-neglected topic (Frank et al., 2012)). In fact, usually 

only marketable and tradable ecosystem services (i.e., provisioning services) are considered 

in decision-making concerning planning and management of resources. We applied the 

methodology to five ES crucial for the urban environment (Bolund and Hunhammar 1999). 

More specifically, we mapped the supply for carbon sequestration, carbon storage, air 

pollution removal (PM10), air temperature regulation, and runoff mitigation (according to 

the definition of these services provide by McPhearson et al. (2013)).  

The ES supply assessment was based on land-cover data. We simplified the HERCULES 

classification (McPhearson et al. 2013) into four major categories: i) built-up, ii) bare soil, iii) 

grass and shrubs, iv) trees and forests. We used a land cover map produced by the Civil 

Service University.  

Figure 4.6 The city of Addis Abeba. In red, the built up. Built up area in 1999, 134km2 (left) and 

built up area in 2014, 201 km2 (right). 
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We assigned to each land-cover class an ES supply score from 0 to 10, where 10 corresponds 

to the best supply possible of that specific ES for the context of Addis Abeba. We applied 

values adopted by McPhearson et al. (2013) to all ES except for air temperature regulation, 

which heavily depends on the climatic area. Values for air temperature regulation in Addis 

were taken from a study by Legese Feyisa et al. (2014). Table 4.4 summarizes the 

standardized values assigned to each land-use class. 

We obtained five maps showing the supply of each of the five ES. We produced a sixth map 

with the total ES supply in the city considering the average of the 5 ES. Finally, we 

aggregated values computing the average on a subcity basis to measure the total ES supply in 

each subcity. 

Table 4.4 Standardized values of ES provisioning per soil cover type 

Built-up Bare soil Tree and woodland Grass and shrubs

carbon sequestration (McPhearson et al., 2013) 0 0 10 0

carbon storage (McPhearson et al., 2013) 0 5 10 5

air pollution removal (McPhearson et al., 2013) 0 0 10 4

local climate mitigation (Legese et al,., 2014) 0 0 10 0

run-off mitigation (McPhearson et al., 2013) 0 3 10 6

tot ES provisioning 0 1,6 10 3  

 

The analysis of ES demand was also broken down at the subcity level. We assumed 

population density as a proxy of ES demand, to avoid the simplistic application of per-capita 

thresholds that can provide a broad assessment of ES supply for a total city (Larondelle & 

Haase, 2013) but do not indicate how ES are distributed across different groups of the society. 

To pursue equitable distribution of ES in the city, we adopted for equity the need-based 

definition (McDermott et al. 2013): assuming that the people who most need the benefits 

deriving from an ES are the real beneficiaries of such ES. For the kind of ES we assessed 

(mainly regulating services), Wolff et al. (2015) affirms that the demand or most needing 

people are represented by vulnerable individuals and communities. We based our 

vulnerability indicators on the study of Kazmierczak and Cavan (2011), where they identify 

four major components of vulnerability among individuals and communities: poverty, 

children, elderly and foreigners. These four groups are in general more sensitive and present 

less adaptive capacity in case of stresses or shocks. We excluded “foreigners” since their 

study was conducted in Europe, while for Addis being “foreigner” does not necessarily 

represent a disadvantaged socio-economic condition. We mapped the average expenditure 

per household as a proxy for poverty, and counted the number of people under 5 years old and 

above 65 years old as children and elderlies. The mapping was done per subcity, by using as 

source the Poverty Level Assessment of Addis Abeba 2015 for the income and data from the 

Central Statistical Agency of Ethiopia for the age (Table 4.5). 
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To obtain an overall demand value per subcity we used the population density value for that 

subcity and the absolute number of vulnerable individuals per subcity, assigning the same 

weight to the two factors. 

Table 4.5 Demographic data for the city of Addis Abeba, broken down per subcity 

subcity tot population age (under 5 or above 65) total expenditure per household

Akaki kality 181270 20064 13448

Nefas silk lafto 316283 34043 10264

Kolfe keraniyo 428895 49361 11059

Gulele 267624 28775 11009

Lideta 201713 20266 8448

Kirkos 221234 21839 12265

Arada 211501 20405 8100

Addis ketema 255372 24739 7227

Yeka 346664 38164 12146

Bole 308995 32294 15550  

 

 

The supply and demand for ES were calculated independently, then we overlapped supply 

and demand information to identify where there is high demand and high supply, low demand 

and low supply, low demand and high supply, and high demand and low supply. This 

provides a classification of locally determined social needs and the result has the potential to 

serve as indicator of socio-environmental inequality across the city to identify priority areas 

for action. 

 

4.3.2 Results 

Figure 4.7, 4.8, 4.9, 4.10 and 4.11 shows the maps of the supply of the five ES, namely, 

carbon sequestration (4.7), carbon storage (4.8), air pollution removal (4.9), runoff 

mitigation (4.10) and local climate mitigation (4.11). From these maps, it is evident that the 

major ES supply takes place far from the city center. Thus, it is mainly located outside the city, 

where the largest and the healthiest ecosystems are located: around the edges, mainly in the 

North, South-East and a few in the West. Additionally, comparing carbon sequestration (4.87, 

air pollution removal (4.9) and local climate mitigation (4.11) to carbon storage (4.8) and 

runoff mitigation (4.10) it emerges that not all ecosystems are warranty of ES supply to the 

same extent. While the first group pf ES is mainly supplied in the North, the second group of 

ES is supply in a more homogeneous way within the city boundaries.  

Figure 4.12 shows the overall ES supply in the city, obtained by computing an average value 

among the five ES supply maps of Figure 4.7, 4.8, 4.9, 4.10 and 4.11. 
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Figure 4.7 Carbon sequestration map for Addis Abeba 

 

Figure 4.8 Carbon storage map for Addis Abeba 

 

Figure 4.9 Air pollution removal map for Addis Abeba 
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Figure 4.10 Run-off mitigation map for Addis Abeba 

 

Figure 4.11 Local climate mitigation map for Addis Abeba 

 

Figure 4.12 Average ES supply in the city 
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Figure 4.14 shows the demand of ES per subcity. From the map we can observe that the 

highest demand for ES is required by Addis Ketema –because of high vulnerability and high 

population density-, followed by Arada and Lideta. Middle scores are shown by 

Nifassilklafto, Colfe and Gulele. Better situations are represented by Yeka, Kirkos and Akaki 

Kality, while Bole has the lowest demand score because of the low vulnerability of the 

population. 

The overall supply and demand per subcity scores, standardized in scale from 0 to 10, are 

summarized in Table 4.6. 

 

Table 4.6 Overall supply and demand 

subcity supply (0-10) demand (0-10)

Akaki kality 4,5 6,6

Nefas silk lafto 2,0 8,5

Kolfe keraniyo 3,7 8,4

Gulele 10,0 8,0

Lideta 0,6 9,4

Kirkos 0,1 6,8

Arada 0,4 9,4

Addis ketema 0,0 10,0

Yeka 7,9 7,4

Bole 2,9 4,9  

 

 

Figure 4.13 shows the overall supply of ES per subcity, summarizing the results of Figure 

4.12 and making them comparable with Figure 4.14 –overall demand of ES per subcity-. It is 

crucial to highlight that the subcity with the lowest supply is Addis Ketema that also shows 

the highest demand in Figure 4.14: this implies urgent need for action. Kirkos follows Addis 

Ketema for its low ES supply, followed by Arada, Lideta, Colfe Keranio, Nifassilklafto, 

Akaki kality and Bole. Best situations are showed by Gulele and Yeka.  

The comparison of demand and supply calls for urgent intervention in Addis Ketema, as 

mentioned, followed by Arada and Lideta, Kirkos. 
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Figure 4.13 Ecosystem service supply per subcity 

 

Figure 4.14 Ecosystem service demand per subcity 
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4.4 Concluding remarks for future research and practice 

The application of results from ES assessments to urban planning issues presented in this 

chapter represents a step in the direction of enhancing the knowledge basis that planners have 

at disposal to design and implement nature-based solutions that enhance wellbeing in cities. 

To this aim, urban planning processes can contribute by proposing solutions that maximize 

the benefits provided by GUI, and by supporting them with an explicit analysis of the 

expected benefits and beneficiaries. 

In the application to the case study of Trento, the explicit consideration of ecosystem service 

beneficiaries increases the added value provided by ES assessments to decision-making. 

Additionally, accounting for beneficiaries promotes more integrated forms of urban planning, 

given that biophysical analyses need to be coupled with socio-economic ones.  

Another key area that requires improvement with respect to current practice concerns the 

analysis of the co-benefits associated with nature-based solutions. While application for 

Trento focuses only on cooling, the multiple ES assessment applied to Addis Abeba 

highlights how actions to maximize one ES might trigger synergies or trade-offs with other 

ES. For example, actions to maximize carbon storage may not correspond to the best 

interventions to maximize run-off mitigation or air pollution removal (see Table 4.4 and 

Figure 4.8, 4.9 and 4.10). One of the strongest motivations for promoting nature-based 

solutions is that they bring environmental and socio-economic benefits, beyond the specific 

purpose for which they are implemented. On the other hand, they could also compromise the 

provisioning of other ES, and the presence of such conflicts represent a crucial information 

for decision-makers.  

A more formal analysis of the magnitude of the co-benefits needs to be promoted in impact 

assessment, in order to provide a stronger rationale for decisions involving the design and 

implementation of nature-based solutions. Ideally, comparisons between ecosystem-based 

and more traditional adaptation solutions should be performed, as advocated by Jones et al. 

(2012). These analyses can take advantage of the methodologies and findings presented in 

the growing literature on the assessment and evaluation of ecosystem services (Kareiva et al., 

2011), including its emerging streams focused on spatial-planning (McKenzie et al., 2014) 

and impact assessment. 

Additionally, the multiple-ES assessment highlighted once more the fact that not all 

ecosystems provide the same ES and to the same extent. To enhance integration of 

nature-based solution in urban planning and, more in general, to support urban planning in 

working with nature, there is need to mainstream information on which ecosystems better 

provide which ES. Consequently, priority for cities need to be clear during the planning 

process. The ES literature already moved crucial steps concerning this issue (Figure 4.15): 

the imperative remains to bridge such understanding with the practice. 

In terms of capability of the methods to be applied for planning in real case studies, results 
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from the application were basis for a constructive discussion with the administrations. 

Specifically in the case of Addis Abeba, the added value of this ES assessment in the process 

of identification of priority-neighborhoods for environmental actions was crucial. 

 

 

Figure 4.15 Ecosystem-based measures and GUI 

Last issue emerging from these two applications refers to proper assessments to analyze the 

distribution of benefits provided by ecosystems among the citizens. While the application to 

Trento considers the ES flow in the mapping, the multiple ES assessment for Addis Abeba 

considers supply areas as proxy for ES. This conception of mapping completely ignores the 

concept of access. Even though inclusion of information about beneficiaries and demand for 

ES represents a turning point in the ES assessments, access to ES represents a key element of 

ES assessments, together with demand and supply, to identify actual and potential 

beneficiaries. Further research is needed to integrate these three side of the same triangle, and 

next steps of our work will try to provide a contribution to this aspect of ES assessments.
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5 Towards an equitable distribution of Ecosystem Services in cities 

Chapter 5   

Towards an equitable distribution of Ecosystem Services 

in cities***** 

5.1 Introduction 

The ultimate goal of all plans, programs and policies is human wellbeing. Yet, focusing on 

the average wellbeing, while overlooking its equitable distribution among different 

population groups, may result in such plans, programs and policies missing opportunities to 

effectively address the many challenges facing urban areas. In this respect, the last WCR (UN 

Habitat, 2016) identified “providing public services in an equitable manner” as one of the 

major environmental challenges for cities. As Erntson (2013) puts is, the lack of 

disaggregation in considering distribution of resources provided by the environment 

obscures the understanding of the multiple dimensions of equitable wellbeing and 

consequently it avoids equity to happen. 

A human rights-based approach to the urban environment emphasizes our universal 

dependence on healthy ecosystems and abundance of natural resources (UN Habitat, 2016). 

Thus, among many important factors that determine human wellbeing, ecosystems and their 

services play a crucial role. In particular, urban ecosystems provide important goods and 

services that benefit urban residents including habitat for biodiversity, primary productivity, 

stormwater retention, air pollution removal and heat mitigation (Bolund and Hunhammar, 

1999; Gomez- Baggethun and Barton, 2013). However, ecosystems in a city are 

heterogeneously distributed over space and so do the ES they provide, implying a potential 

lack of equality in the distribution of benefits among citizens (Ernston, 2013).  

Urban planning represents one of the tools administrations have to influence the distribution 

of ecosystems and ES in a city, to determine the benefits they provide and, more specifically, 

to re-determine the number, location and type of beneficiaries they reach (Kremer et al, 2013). 

                                                 
***** The work presented in this chapter is based on a manuscript in preparation to be submitted to Ecosystem 

Services 
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Besides such promising perspective, a majority of present planning practices still apply broad 

standards, such as per capita green areas threshold values, which can provide a broad 

assessment of the total ES supply for a city (Larondelle and Haase, 2013), however, failing to 

indicate the distribution of ES across different population groups. 

In fact, if the goal is to achieve an equitably distributed wellbeing, information on the average 

availability or demand for ES is no longer sufficient. Instead, a proper understanding of the 

key elements that determine an equitable distribution of ES and their benefits within a city is 

crucial. This ought to include a level of disaggregation of information that highlights 

differences within the urban environment. Nevertheless, although equitable distribution of 

wellbeing, and more specifically of resources –such as ES- in sustainable development and 

planning is gaining relevance and attention (UN Habitat, 2016), and past research has made 

progress in mapping important dimensions of equity (Lamorgese and Geneletti, 2015), there 

are many important gaps still to be addressed. For example, distributive aspects of 

availability and access to ES are not yet discussed in a sufficient way (Kabish and Haase, 

2014). Moreover, we still lack a comprehensive framework that identifies and brings together 

various dimensions of equity in an integrated, systematic and rigorous way (Mc Dermott). 

Without a clear definition of which aspects of equity are being pursued and how, it is difficult 

to evaluate the impact of policies and programs on equity, and impossible to plan for it 

effectively (mc Dermott). Last, further research is required to clarify equity concerns and 

operationalize it (Lamorgese and Geneletti, 2015) 

A viable approach to overcome the abovementioned barriers would consist of an ES analysis 

properly designed to bring to surface information that has the nature and accuracy to support 

equitable distribution of ES. In fact, ES analysis has a huge unlocked potential to support 

inclusion of equity consideration in the planning practice. Accordingly, the aim of this 

chapter to contribute to this branch of ES research, by identifying criteria for an ES analysis 

to provide useful information to pursue an equitable distributed wellbeing, in a real-life 

practice context.. The chapter unpacks and analyzes three key elements of a complex topic 

such equitable distribution of ES, namely, i) ES supply, ii) access to ES and iii) ES demand. 

Starting from the latter, as Wolff et al. (2015) put it, there is no way to assess equitable 

distribution of ES in a city without having cleared whatthe demand is, and who should get 

priority in benefitting from ES.ecause ES benefits depend so critically on the spatial 

configuration of both ecosystems and people, a spatially explicit approach to ES assessment 

is essential to achieving the benefits of an ES framework (Mandle and Tallis, 2016). Thirdly, 

having identified and assessed the demand side, to assess whether equitable distribution is 

pursued, we need to quantify the supply of the ES both in terms of their biophysical supply 

and in terms of accessibility. As put by Tallis and Polasky, (2009), in fact, without ES supply 

nor access to it there can be no benefit and no beneficiaries  
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Yet, equitable distribution of ES represents only one of the multiple dimensions of equity in 

the environmental and planning context. The broad concept of environmental equity calls in 

fact for equal access to clean environment and equal protection from possible environmental 

harm irrespective of race, income, class (Schwarte & Adebowale, 2007). Equity is not just a 

general principle but a comparative concept: it is principally concerned with relationships 

between people, and with their relative circumstances” (Grasso, 2007). In general, three 

dimensions define the essence of equity: distributive equity focusing on fair allocation of 

ecosystems and the ES they provide, procedural equity relating to fair integration in planning 

and decision processes of all social groups, and interactional equity dealing with the quality 

of interpersonal relations in a specific place (Low, 2013).). In this chapter, we focus on the 

distributive dimension of equity and pursue equitable distribution of ES, assuming that 

sustainable planning can contribute to investigating the distributional dimension of equal 

provisioning of ES. More specifically, we opt for an “equitable distribution of ES”, which is 

a  need-based definition, shared by a diverse set of theorists from John Rawls (1971) to Karl 

Marx. Operationally, to pursue equitable distribution of ES in a city, we assume that the 

people who most need the benefits deriving from such ES are the real beneficiaries of such 

ES. As a final remark, in this chapter we focus on regulating ES, which – despite their 

importance for  climate change adaptation in cities and, in general, for urban wellbeing,  still 

remain to be poorly investigated (Haase et al., 2014; Luedeitz et al. 2015). 

The remainder of this chapter is organized in x sections. Section x.2 investigates the existing 

literature to identify criteria for supply, access and demand analysis to be proper support for 

an equitable distribution of ES. Section x.3 presents the case study and the here proposed 

methods assessing disaggregated supply, access and demand analysis; hence, for aggregating 

the results to explore ES distribution in the city. Section x.4 presents the results from the 

supply, access and demand analysis as well as results of the overall distribution of ES 

analysis. Further, we compare our results with those form alternative assessment framework 

that do not explicitly account for an equitable distribution. . Finally, Section x.5 and x.6 

present critical discussions about our findings and draw some general conclusions, 

respectively. 

 

5.2 Criteria for analysing functional to equitable distributon of ES 

An outstanding advantage of the ES approach is that it shows the conditions under which 

nature creates benefits. Scope of this section is to highlight declared gaps in existing analysis 

of ES supply, access to ES and demand for ES to properly support the equitable distribution 

of ES in urban context. Thus, the leading question of this section is “how should this analysis 

be designed to support equitable distribution of ES in a city?”  

The criteria identified in each of these subsections are summarized in Table 5.1. 
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5.2.1 Criteria for a supply analysis 

When environmental equity mentions the right of all people to a clean environment, this right 

goes beyond the simple requirement of an amount of green per capita. Even though nor the 

ES supply concept expressed by De Groot et al. (2002) and not even the majority of planning 

policies describe how spatial relations between supply side and demand side are taken into 

account, it is crucial that ES analysis addressing equity identifies where ES are supplied 

(Burkhard et al. 2012).  

To address such supply spatial distribution, many studies assess equitable distribution of 

green areas and the ES they provide in urban context, adopting the spatial distribution of 

green areas as proxy of the spatial distribution of the ES they provide. When taking into 

account and mapping areas providing ES, the use of public green areas as proxy of ES supply, 

unfortunately, overlooks the accounting of all ES provided by other ecosystems in a city such 

as private gardens, street tress . Additionally, all ecosystems in a city have shown to provide 

environmental benefits such as ES, but according to their structure and physical 

characteristics, any ecosystem provides different types of ES and with different extent of 

effectiveness (De Groot et al., 2010). This is crucial when addressing equitable distribution 

of ES human wellbeing, because different ES contribute to different aspects of wellbeing 

(Daw et al., 2011). Furthermore, due to lack of data, ES supply is often described in an 

aggregated form; however, such aggregated quantification of ES does not elucidate 

implication of having a park instead of street trees, for example. Considering all green areas 

as equal black boxes providing ES -without being able to determine which ES and to which 

level of effectiveness is each ES supplied-, represents a poor starting point to address issues 

of equity (Daw et al., 2011).  

In this respect, the ES assessment literature can indeed provide a substantial contribution to 

overcome this gap. Several studies provided tools for better capturing ES supply by different 

kind of green area, applying synthetic proxies such as land cover to consider 

multiple-indicators per each ES (e.g. Dobbs et al., 2011; Burkhard et al., 2012; Kremer et al., 

2013; Derkzen et al., 2015). It is crucial to remember here that, despite data availability may 

represents a key issue, ES indicators should relate to pertinent scale resolution. For example, 

when performing an equity assessment of ES distribution in a city, using regional land cover 

maps to map the ES supply may lead to misleading results. 

To conclude, to effectively capture ES supply to provide useful information for equitable 

distribution of ES, the assessment should consider all ecosystems in the city, not only public 

green spaces. Additionally, the assessment should be able to provide a disaggregated 

information about the extent to which different ES are provided by ecosystems, instead of 

providing one total ES amount value or not to specify which kind of performance different 

areas can present in ES provisioning. Goal of an ES supply analysis to support distributive 

equity should be to identify where the variety of ES services are generated, what the 
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underlying spatial structures are, and to which extent? 

 

5.2.2 Criteria for an access analysis 

The direct comparison of ES supply and demand in spatially explicit maps is rather rare in 

spite of the wide agreement about the importance of including demand side into ES 

assessments (Burkhard et al., 2012). Still, when this kind of studies are carried out, they 

assume that the demand is satisfied if overlaying demand and supply analysis there is a match, 

without considering if the demand can access such supply (e.g Burkhard et al., 2012). Syrbe 

and Wal, 2012  .). Assessing the access to ES provisioning is crucial to determine who are the 

beneficiaries of the ES (Tallis and Polasky, 2009) and if institutions restrict the ability of 

beneficiaries to access the ES supply, then there is no benefit. If people cannot physically 

access ES that require such access then no human benefits can accrue either (Tallis and 

Polasky, 2009). 

While Tallis and Polasky (2009) explicitly refer to access to ES supply, in the planning 

practice, the tendency however is to apply access to green public spaces or green areas as a 

proxy of ES supply. Access to ES is different from access to ecosystems or, even more 

limitative, access to green public spaces. Such approaches do not take into account the fact 

that some ES are transportable or can reach areas outside the area of ES generation itself 

(Syrbe and Wal, 2012) up to some hundreds meters (e.g. local climate regulation, Zardo et al., 

submitted). This is particularly true for regulating ES (Fisher et al., 2009) for which the 

mismatch between the spatial distribution of green areas and the spatial distribution of ES 

supply can trigger misleading analysis and consequently negatively affect decision-making.  

Even in recent literature, despite access to ecosystems and the ES they provide has become 

recognized as an environmental equity issue (Dai, 2011; Jennings et al., 2012) there is no 

consensus among scholars about how to measure such access (Wolch et al., 2014). The 

literature has mainly focused on how to measure access to green public spaces, primarily 

parks. Most studies have used Geographic Information Systems (GIS) to measure 

accessibility (Oh and Jeong, 2007; Sister et al., 2010; Talen, 1997). The metrics used include 

presence vs absence of a park or recreation facility near residential areas, density of facilities, 

or total park acreage within a given radius from houses (Mota et al., 2005; Norman et al., 

2006; Roenmich et al., 2006). 

However, geographic access alone may not fully capture the access to such ecosystems 

(Wolch et al., 2014). As mentioned earlier, also institutional access should be considered, 

given that if formal (laws, regulations) or informal (social norms, cultural practices) 

institutions restrict the ability of beneficiaries to access the ES supply, then there is no benefit. 

In this respect, it is highly challenging to capture and quantify informal institutional barriers 

to access, while formal access to green areas have been assessed using property rights as 
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proxies (private VS public green space). Furthermore, such information still is not enough to 

capture the real access to the ES supply; in fact, regulating services can go beyond the 

physical limits of their supply area (e.g. cooling) (Fisher et al., 2009). There is thus a need  to 

assess the access by first to expliciting the spatial distribution of the ES supply, which in turn 

varies depending on the type of ES.  

A highlighted in Syrbe and Wa (2012), demand and supply of ES might spatially overlap to 

some degree, with the possibility of having some gaps. Defining whether access to ES occurs 

or not, requires in fact considerations of the flows of ES, as well as the physical and 

institutional ability of people to access those benefits. In this chapter, to define the flow of the 

four illustrative ES, we refer to the concept of “benefitting area” introduced by Syrbe and 

Wal (2012). Benefitting area is the real area of influence of the ES supply, and as such, it 

provides a better basis to access assessments (Syrbe and Wal (2012). Yet, the ES supply flows 

across the landscape (Fisher et al., 2009), so that we need spatial characteristics of ES (e.g. 

their scale, direction of flow, if benefit depends on the proximity to the ES etc.) to describe 

relationships between the supply of ES and where the benefits are realized (Fisher et al., 

2009).  In other words, there is need to map the ES itself instead of the area providing it. 

In conclusion, if the goal is to assess the access to the ES, and not just the access to 

ecosystems that supply the ES, first, it is crucial to define the flow of the ES. This implies 

spatial consideration in terms of scale and direction of ES (Fisher et al., 2009). More 

specifically, there is need to characterize how the flow of each ES occurs and whether the 

benefits depend on the proximity of beneficiaries to the ES flow. Eventually, it would be 

crucial to understand the role of the scale and direction of the flow as well as that of possible 

physical or institutional barriers to access such flow. 

 

5.2.3 Criteria for a demand analysis 

The analysis of the demand is equally crucial to inform decision-making and planning, thus 

the importance of research aiming at a better understanding of the concept of demand itself 

and its many implications (Wolff et al., 2015). Despite this, while several ES studies analyzed 

the supply side, only a few values the demand side (Larondelle and Lauf, 2016). At the same 

time, call for  holistic accounts of people and nature is coming from both governmental and 

health organizations (Tallis and Polasky, 2009); yet,  in the most common conceptual 

frameworks of ES, demand is not explicitly indicated (e.g. Haines-Young and Potschin, 2013; 

MEA, 2003). When included, a common practice to consider demand as equally distributed 

among all citizens, fixing a standard threshold of “urban green area per capita” (Kabish and 

Haase, 2014) or relying on population density as proxy for demand, with no consideration of 

socio-economics differences among individuals in a city. Equity does not require everybody 

accessing the same types, and amount of ES, nor can be addressed by considering all people 
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as a whole (Mc Dermott et al., 2015).  

Indeed, some good examples of ES demand assessments do exist including the review on 

demand by Wolff et al. (2015) or the mapping and assessments by Stürck et al. (2014), Schulp 

et al. (2014), Paracchini et al. (2014)., and Baró et al. (2015). However, most of these studies 

aggregate the perspective of humans and their wellbeing, which can be misleading in terms 

of pursue of equal wellbeing. In fact, different groups derive wellbeing from different ES, 

individuals or groups present different needs for a same ES and not all people need the same 

ES (Rodriguez et al. 2006). There is need of disaggregated view to inform decision-making, 

explicating who derives benefits from what. On the other hand, hundreds thousands options 

do exist for targets, which makes the design or a demand assessment challenging. 

Additionally, in a recent study van der Biest et al. (2015) research the accuracy of different 

approaches using a coarse thematic resolution, and “while these methods are powerful 

awareness-raising instruments, applying them on the level of decision-making may have 

adverse effects” (Van der Biest et al., 2015) as the spatial resolution often proves to be not 

fine enough. 

Setting criteria to operationalize a demand analysis functional to pursue equitable 

distribution of ES becomes methodologically important (Wolff et al., 2015). As mentioned 

above, Mc Dermott et al. (2015) states that the criteria to target the demand should be the 

need for ES. More specifically, the target, the “who counts for equity”, needs to uncover 

which social groups or individuals need ES and such assessments will involve comparing 

capabilities of individuals, costs, benefits, risk, opportunities, and factoring variables like 

gender (Sen, 2009).  

To consider demand for equity, it is equally crucial to identify the “who” –the target for 

demand-, and where such demand is located (Mc Dermot). This means we need to account 

for the fact that not only the supply of ES but also the needs of people are heterogeneously 

distibuted over space. To consider this is methodologically important because there is need to 

explain spatial relations, consider them in the valuation process; adopting indicators with 

pertinent spatial resolution. 
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Table 5.1 Criteria for supply, access and demand analysis 

 Supply Access Demand 

The 
analysis 
should 
satisfy 
these 
CRITERIA: 

i)Consider all ecosystems in 
the city, not only public 
green spaces. 
ii)Provide disaggregated 
information about ES supply, 
instead of providing one 
total ES amount value 
iii)Specify to which extent 
different ES are provided by 
ecosystems,  
Specify where the variety of 
ES services are generated 

i)Consider access to ES, not 
to ecosystems or public 
green spaces 
ii)Identify the flow of the ES 
If benefitting from that ES 
depends on proximity, 
identify scale and direction 
of the flow 
iii)If benefitting from that ES 
depends on proximity, 
identify if there are physical 
or institutional barrier to 
access the ES flow. 

i)Consider the 
“who” –the target 
for demand 
ii)Consider where 
such demand is 
located 

5.3 Methods 

5.3.1 Case study: Trento 

The study area is in of Trento, a city located in an alpine region in Northeastern Italy. Trento 

is a middle-size city that sprawls about 10 km across the Adige Valley floor. Despite its 

limited size and the presence of big surfaces of forests outside the city, being located in valley, 

Trento suffers of high temperature in the summer and air pollution and noise can represent a 

problem due to the presence of the train rail, the motorway and other important roads.  

For our analysis, we selected four sample areas (500m per 500m size) representative of 

different condition within the city (see Figure 5.1). Our aim here is to score and compare the 

differences between the sample areas in term of supply, demand, access and equitable ES 

distribution. The size of the sample areas is following by McPhearson et al. (2013), who 

assume 500m to be the average size of a neighborhood. Whereas the selection of the four 

samples, this is based on two criteria. First, all areas have to belong to the residential tissue of 

the city; in fact, all four sample areas belong to the central part of the city, where population 

density is higher and presence of public green spaces and ecosystems in general is limited. 

Second, each sample area should represent a different demographic environment. 

Accordingly, sample area 4 is an area mainly populated by elderly, while sample area 3 is an 

area for relatively low-income households and with a higher percentage of immigrants 

compared to the average for the center of the city. Sample area 2 belongs to the historical part 

of the city, where houses are expensive, while sample area 1 is a newly built neighborhood 

with no specific demographic connotation yet. 
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For all the three analysis presented is section 3.2 (ES supply analysis), 3.3 (Access to ES 

analysis) and 3.4 (Demand analysis) we adopted exiting methods or merged pieces of 

existing methods to obtain analysis that satisfy criteria mentioned in Table 5.1. 

 

Figure 5.1. The four sample areas 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Supply analysis 

We selected four regulating ES based on the benefits they potentially provide in terms of 

human health and well-being in cities: carbon storage, air pollution removal, local 

temperature regulation, noise mitigation. We consider carbon storage ES as gross 

aboveground carbon storage and consider the amount of carbon stored rather than its 

dynamics in time. We consider air pollution removal as the lowering of background air 

pollution concentrations; we focus on PM10 because it is most harmful to citizens’ health and 

most effectively captured by urban green. (Derkzen et al., 2015). We consider cooling as the 

capacity vegetation to lower air temperature though shading and evapotranspiration. We 

consider noise mitigation as the physical capacity of vegetation to attenuate environmental 

noise. 

To assess each of the four ES, we mutuated indicators from the works by McPhearson et al. 

(2013) and Derkzen et al. 2015. Both these works did a review of the literature to identify 

indicators to quantify ES supply of different ES in urban areas (see Table 5.2A). More 

specifically, to quantify carbon storage indicators supply by ecosystems in the city we 

adopted carbon storage indicators provided by McPhearson et al. (2013) for the city of New 

York. To quantify air pollution removal, again we adopted indicators provided by 

McPhearson et al. (2013), focusing only on PM10 removal indicators. For cooling we 

adopted values from a study that investigate the cooling capacity of ecosystems based on 

Figure 5.1 Sample areas 
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multiple indicators and considering different climatic regions (Zardo et al., submitted): in this 

way we could provide values more accurate for Trento (we took cooling values for Csa 

region –Koppen Classification- provided by ecosystems below 2 hectares). To quantify noise 

reduction we adopted indicators provided by Derkzen et al. (2015) for Rotterdam.  

All indicators were harmonized according to four land cover types–namely, i) built-up and 

sealed, ii) bare soil, iii) grass and fine vegetation, iv) trees and woodland-. Table 5.2A shows 

the collection of indicators. Then, all indicators were rescaled from their organic unit into a 

standard scale of 0–10, where 10 is the highest occurring value of an ES, and all other values 

normalized to a 0–10 scale (see Table 5.2B). 

 

AA 

 Table 5.2A Built-up Bare soil Tree and woodland Grass and shrubs 

carbon storage (McPhearson et al., 2013) - 8.2 kg/m2 15.5 kg/m2 8,4 Kg/m2 

air pollution removal (McPhearson et al., 2013) - - 2.73 g/m2/year 1.12 g/m2/year 

local climate mitigation (Zardo et al,., submitted) - 1.2°C 3.6°C 1.2°C 

noise (Derkzen et al., 2015) - - 2Db (A) 100 m^-2 0.375 (A) 100m ^ -2 

 

 Table 5.2B Built-up Bare soil Tree and woodland Grass and shrubs 

carbon storage  0 5,3 10 5,4 

air pollution removal  0 0 10 4 

local climate mitigation  0 3,3 10 3,3 

noise 0 0 10 1,8 

 

The land cover types of our sample areas were collected by visually inspecting the orto-photo 

of the sample areas and by manually mapping the four land cover types with QGIS. The 

land-cover information for the sample areas was combined with values from table 2b to 

obtain the supply map of each of the four ES.  

To conclude, to obtain an overall score of ES supply, for sample area and for each ES, we 

multiplied the surface (m2) of each specific land-cover for its supply score (0-10) from table 

2b. For air pollution only, considering that the literature assigns double effect, a double 

air-pollution removal supply score, to urban green located in a distance of 50m buffer from 

the streets compared to the urban green out of this distance-buffer, we assigner to the green 

areas inside a 50m buffer from streets the values in Table 5.2B and to urban green outside 

such buffer have the scores (e.g. a tree next to the streets has a air pollution removal supply of 

10/10, while if it I more far than 50m its score is 5/10). We summed the four results and 

divided them by the overall surface of the sample area (250000 m2). The result is a ES supply 

score from 0 to 10 for each ES for each of the four sample areas. 

 

Table 5.2 Soil cover indicators for ES supply 
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5.3.3  Access analysis 

To assess whether access to an ES occurs or not, firstly, we need to define the flow of the ES 

and, secondly, in case the benefit of the ES depends on the proximity to the ES itself, we need 

to define how access to the ES occurs. 

In the remainder of this section, I illustrate the methodology applied for mapping the the flow 

of the four ES considered in this work, starting from their spatial characteristics as described 

in the literature: 

•Carbon storage. Costanza (2008b) defines carbon storage as “global-non proximal” ES, 

meaning that the benefit of the service does not depend on proximity, since the spatial 

location of carbon storage does not matter. Thus, for carbon storage the supply is usually 

assessed not locally but rather regionally or globally (Derkzen et al. 2015). However, 

although the contribution of ecosystems in cities in overall carbon storage is relatively small 

and undervalued in national assessments, its potential as a carbon reservoir is significant 

(Hostetler and Escobedo, 2010). Cities can act as carbon sinks and thus contribute to global 

carbon storage in a small but considerable amount (Strohbach et al., 2012). For these reasons, 

the spatial distribution of carbon storage is here considered as equally distributed through 

space in the city, as average value resulting from the contribution of the different ecosystems 

in the whole city. In this specific case, we will keep as average value the one resulting from 

all green areas in the four sample areas.  

•Air pollution removal. When defining scale of relevance of ES, Demuzere et al. (2014) 

consider scale of air pollution removal to be the most unclear of the benefits studied. Air 

purification services can vary significantly depending on specific characteristics of green 

spaces such as tree type and the location of vegetation in relation to buildings, and effects of 

this service have been demonstrated only on a site/block scale. However, the evidence is not 

particularly strong as it is dependent on case-specific local characteristics and general 

conclusions are difficult to justify. Thus, for this reason, air pollution removal assessments in 

cities have mostly been based on mean values for an entire city (Escobedo and Nowak, 2009), 

considering that, when dealing with background pollution, air pollution removal’s effect is 

considered to be non-dependent on proximity (Derkzen et al., 2015). On the other hand, 

Escobedo adds that air pollution removal function by urban vegetation should vary because 

of this spatial heterogeneity and shows with his studies about Santiago (Escobedo et al. 2008; 

Escobedo and Nowak, 2009) that even dealing with background concentration, the variation 

can be perceived at district/neighborhood scale (100-10000 m). For these reasons, the spatial 

distribution of air pollution removal is here considered as equally distributed through space 

in the neighborhood, as average value resulting from the contribution of the different 

ecosystems. In this work, for neighborhood we consider the sample area-size (500m x 500m), 

coherent with the neighborhood size defined by McPhearson et al. (2013). 

•Cooling. The work by Demuzere et al. (2014) shows the influence of such ES to belong to 
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the site-block scale, with uncertainties about the district-neighborhood scale. Costanza 

(2008b) defines cooling as a local and proximal ES, while in terms of spatial distribution its 

behavior can be considered omnidirectional, meaning that the effect of cooling determined 

by a green area can reach a distance of some hundred meters all around the green area itself. 

Urban green has a cooling effect that lessens with increasing distance and depends on surface 

area, vegetation type and spatial conjunction (Xie et al. 2013); consequently, it is hard to 

assign a fix buffer of influence to it. However, the cooling effect estimated for areas smaller 

than 2 hectares is perceivable up to about 100 m out from the site (Shashuabar and Hoffmann, 

2000). To conclude, considering that Trento is a small city, with the high majority of green 

areas smaller than 2 hectares, in this work we map the cooling effect of green areas with a 

buffer of 100 m, assigning it half the cooling supply score of the area that determines it. Such 

effect is mainly due to evapotranspiration. Additionally, to consider the local contribution of 

shading by trees mentioned by Taha el al. (1991) and Akbari et al. (1992), we add a buffer of 

5 meters to the canopies with the cooling supply score of trees.  

•Noise Reduction. Urban ecosystems provide noise reduction services by serving as natural 

sound buffers (Van Renterghem et al., 2012). Vegetation provides both a direct and an 

indirect barrier to environmental noise (Derkzen et al., 2015). Applying the ES classification 

given by Costanza (2008b) into categories according to their spatial characteristics, we can 

define noise reduction as proximal (it depends on proximity) and directional flow related, 

meaning that the direction of the ES spatial distribution depends on the location of the source 

of noise (in these case, streets). According to the results of a research by Samara and Tsitsoni 

(2010) the largest reduction, 6 dB, was seen in 60 m away from the road. Of course, as 

mentioned in the methods, both the intensity of noise reduction and spatial extension of the 

ES depend on the structure of the trees and on how big the row or belts are (e.g. spatial 

visibility, typology of trees, age of trees, …) (Fang and Ling, 2003). Derkzen et al. (2015) 

also confirm that most noise reductions are measured up to a distance of 50 m from the road. 

For these reasons, we consider the spatial distribution of noise reduction with a buffer of 50m 

from the ecosystem, with direction opposite from the source of noise (roads) and with a 

noise-reduction supply score that is half compared to the noise reduction supply score of the 

area determining it.  

At this point, the flow of all four ES are mapped. When considering “access to green space” 

(Barò et al., 2015), and equity of access, many studies introduce the dimension of property, 

distinguishing among public, common and private spaces. For this analysis, we only consider 

non-private areas of each ES flow. 

Thus, this work consider wants to assess the availability of services for all residents living in 

the sample area. For this reason, we use property (public vs private) as proxy of both physical 

and institutional access to the ES flow. Additionally, we assume that being the sample area of 

500m x 500 m all benefits are physically accessible meaning that they are at a walkable 
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distance (Kabish and Haase, 2014).  

Given that only two services (cooling and noise reduction) depend on proximity, we here 

analyze the physical and institutional access through property only for these ES, while for the 

other two ES (carbon storage and air pollution removal) we consider them to be equally 

accessible within a sample area. Finally, to obtain an overall score of ES access, for sample 

area and for each ES, we multiplied the surface (m2) of flow for its supply score (0-10), 

avoiding m2 of benefitting areas in private areas for cooling and noise reduction. We 

summed the results for each ES and sample area and divided them by the overall surface of 

the sample area (250000 m2). The result is an ES access score from 0 to 10 for each ES for 

each of the four sample areas. 

5.3.4 Demand analysis 

With respect to identification of groups and individuals that most need ES, there are two 

options. Depending on the type of ES, the need can be assessed based on either the direct use 

of an ES in the past or on the desirable supply of an ES (Wolff et al., 2015). When considering 

regulating service, the assessment is usually done by using desirable ES supply and, more 

specifically, the indicator to identify such demand is vulnerability (Wolff et al., 2015). Thus, 

demand for regulating services is represented by vulnerable individuals (Wolff et al. 2015). 

Kazmierczak and Cavan (2013), investigating the vulnerability of individuals and 

communities to hazards, state that vulnerability of people is function of characteristics of 

people, which influence their access to information, their ability to prepare for, respond to 

and recover after hazards. The indicator they used to assess vulnerable groups are: poverty, 

diversity (presence of foreigners), children (0-4 years old) and elderly (above 65 years old) 

(Kazmierczak, 2012). 

For the vulnerability analysis in this chapter, I adopt three out of the four indicators suggested 

by Kazmierczak, (2012). The poverty indicator is left out mainly because the related data (e.g. 

income or household’s expenditure) is publically available only in terms of average values 

for the whole city. On the other hand, socio-economic spatial-localized data for children, 

elderly and foreigners was obtained from the public administration at the resolution of data 

per census cell. Census data provided by the municipality about total number of residents, 

age group distribution, and presence of foreigners for each census block have been collected 

and linked to the spatial map. To be as accurate as possible in the spatial definition of the 

population, we identified the residential buildings inside each census block and distributed 

the residents only in the surface covered by their footprint.  

From this process, we obtained the total number of vulnerable per each of the four sample 

areas. We could not know whenever there was overlapping between vulnerabilities (e.g. an 

old person can also be a foreigner), but we just counted any vulnerable as one unit, 

considering that an individual both old and foreigner or the presence of one old and one 
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foreigner would equally raise the vulnerability of the neighborhood. 

To conclude, to assign an overall score of ES demand, we just normalized the absolute 

numbers of vulnerables of each sample areas to obtain a score from 0 to 10. 

 

5.3.5 Analysis of equitable distribution of ES 

This section illustrates how the results from the supply analysis, access analysis and demand 

analysis are combined to gain an overall idea about distribution of resources and need for 

them and equity of such distribution among sample areas. Starting from the supply, access 

and demand scores, the results are aggregated to analyze the equitable distribution of ES. 

More specifically, I only consider scores from the access analysis and the demand analysis 

because in my approach the access analysis and its scores already include supply scores. 

To aggregate them, I divide the access score by the demand score per sample area, per ES. 

The higher the score is, the better it is. However, high or neutral score do not imply that the 

demand for ES is satisfied. This is an analysis about the distribution of ES, access to such ES 

and demand for them in the city. For this reason, this final score allows the user to create a 

ranking among demand present in different areas of the city and access to ES, in relative and 

standardized way. So high scores for demand means that demand of the city is particularly 

located there, same for supply and access. This represent a powerful tool to highlight 

mismatches in terms of supply and demand distribution. 

As a last exercise, I compare scores for equitable distribution of ES obtained through this last 

subsection of the methods, with alternative analysis of equitable distribution of ES that do not 

follow all the criteria we listed in Table 5.1. More specifically, I hypothesize alternative 

analysis that: 

- Avoid to consider access. So only compare demand and supply (alternative 1); 

-        Avoid to consider demand, so only highlights equitable distribution of resources 

(alternative 2); 

-         Avoid to disaggregate among ES, considering only the total ES supply (alternative 3); 

-         Considers population density instead of vulnerable individuals as demand, per sample 

area (alternative 4). 

5.4 Results 

5.4.1 Supply, demand and access analysis 

Mapping ecosystems in the four sample areas, I found a total amount of almost 300.000 m2 

of ecosystems, considering trees, grass and shrubs, and bare soil (this is between one third 

and one fourth of the total surface). More specifically, the sample area with the largest 
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surface covered by green is sample area 1 (almost 100.000 m2), followed by sample area 3 

(83.220 m2), sample area 4 (55523 m2) and sample area 2 (55021 m2).  

However, if we consider the total amount of population in the four sample areas, the result is 

around 50 m2 of green per person, which is far above the standard suggested by World Health 

Organization (WHO) of 9m2 per person. To this concern, it is crucial to say we selected four 

sample areas from the most central and densely inhabited parts of the city, but sample area 1 

contains a big urban park and the values of green per capita of sample area 1 increases 

consistently the average green per capita value. In terms of total green per person in the four 

sample areas, the best case is represented by sample area 1, as mentioned (118 m2 per person), 

followed by sample area 2 and 3 (around 34 m2 per person), and sample area 4 (19 m2 per 

person). 

5.4.1.1 Supply 

Based on the assumptions and methods outlined above, we estimated the supply of carbon 

storage, air pollution removal, cooling and noise reduction for the four sample area (see 

Figure 5.2). All scores are expressed in a scale from 0 to 10, where 10 represent the best 

performance possible. 

The average score for carbon storage supply among the four sample areas is 2.1. More 

specifically, sample area 1 presents the best score (2.7), followed by sample area 3 (2.5), 

sample rea 4 (1.7) and sample area 2 (1.6). In this case the best score (sample area 1) 

compared to the lowest (sample areas 2) implies a 50% better performance, which 

corresponds to 0.7 Kg/m2 stored more.  

For air pollution removal, the average score of supply considering the four sample areas is 

1.5. More specifically, sample area 3 presents the best score (2.2), followed by sample area 1 

(1.6), sample area 2 (1.4) and sample area 4 (0.9). The difference in implications if we 

compare scores for sample area 3 and 4, is that sample area 3 can remove double quantity of 

pollution compared to sample area 4 (0.6g/m2/year compared to 0.3g/m2/year). 

For cooling, the average cooling supply score considering the four sample areas is 1.8. The 

best performance shown by sample area 3 (2.2), followed by sample area 1 (2.1), sample area 

2 (1.6) and sample area 4 (1.5). The difference of cooling provided between sample area 3 

and 4 is around half a Celsius degree.  

For noise reduction, the average score among the four sample areas is 1.6, with the best 

performance shown by sample area 3 (1.9), followed by sample area 1 (1.5) and sample areas 

2 and 4, both with 1.4. In this case, the difference in decibel considering the performance of 

the best sample area and the sample area with scares noise reduction supply is negligible (0.1 

decibel). 

To summarize, sample area 3 shows the best ES supply for three of the fours analyzed ES, 

namely: air pollution removal, cooling and noise reduction. For carbon storage, the best 
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performance is presented by sample area 1. Considering that the total amount of green of 

sample area 1 is higher than the total amount of sample area 3 (100.000m2 compared to 

80.000 m2 c.a.) it is evident that the typology of green is crucial when we talk about supply. 

In general, sample areas 1 and 3 have the best scores for ES supply, while sample area 4 the 

lowest, even though its green is more than the green of sample area 2. 

 

 

Figure 5.2 Supply analysis 
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5.4.1.2 Access 

Results from the access analysis can be grouped into two different types of results. The 

distinction is due to the nature of the analyzed ES, previously distinguished between those ES 

depending on proximity (cooling and noise reduction) and those that don’t  (carbon storage 

and air pollution removal). 

Access analysis results from the first type of ES provides an average score homogenously 

distributed within the sample area. For these ES, no physical or institutional barrier to access 

them was considered. More specifically, for carbon storage, the ES can be considered equally 

distributed in the whole city and as score of its performance the average sum of all green area 

is considered. For this reason, access to carbon storage does not differ among the four sample 

areas (with a score of 2.1). Similarly, air pollution removal do not depend on proximity, but 

can vary from neighborhood to neighborhood. For this reason, the score for air pollution 

removal for each sample area corresponds to the sum of all air pollution supply of ecosystems 

within the sample area, divided by the surface of the sample area. Results show that best 

access to this service is present in sample area 3 (2,2/10), followed by sample area 1 with a 

score of 1,6/10, sample area 2 with 1,4/10 and sample area 4 with 0,9/10. 

 

 

Figure 5.2. Access analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3Access analysis 

 

Access analysis results for the second type of ES, which depend on proximity and 

consequently are heterogeneously distributed, considers the flow of ES and only m2 of flow 
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in non-private areas was accounted (Figure 5.3). Access to cooling is maximum in sample 

area 2 (3), followed by sample area 1 (2.8), sample area 3 (2.6) and access to cooling in 

minimum in sample area 4  (2). Access to noise reduction is maximum again in sample area 2 

(0.8), followed by sample area 4 (0.5) and lastly by sample area 1 and 3, both with an access 

score of 0.3. 

5.4.1.3 Demand 

The total amount of population considering the four sample areas is of 7878 people. About 

42% of these (3314) are vulnerable individuals. Concerning the distribution of population 

among the four sample areas, the most populated one is sample area 4, with 2942 people, 

followed by sample area 3 (2484 people), 2 (1604 people) and 1 (850 people). In our areas of 

study, the distribution of vulnerable individuals is almost proportional with the distribution of 

the population density, meaning that the area with the highest population density is also the 

area with highest amount of vulnerable individuals. Thus, vulnerable individuals in sample 

area 4 are 1230 people, vulnerable individuals in sample area 3 are 983, vulnerable 

individuals in sample area 2 are 661 and in sample area 1 are 440 individuals. In relative 

terms, the highest percentage of vulnerable individuals among the population is in sample 

area 1 (52%), followed by sample area 4 (42%), sample area 2 (41%) and sample area 3 

(39%). 

Coherently with supply and access analysis, to assign an overall score for demand to the four 

sample areas, we considered the absolute numbers of vulnerable individuals for sample area 

and we normalized it from 0 to 10. For this reason, the area with the highest demand is 

sample area 4 (score 10), followed by sample area 3 (8), sample area 2 (5) and sample area 1 

(4). 

5.4.2 Results for equitable distribution of ES 

Given that access analysis already includes information related to the supply, we aggregated 

the results from the access analysis together with the results from the demand analysis to 

obtain an overall equity assessment.  

As shown in Figure 5.4, our Equitable Distribution of ES score recognizes that the best 

sample area for carbon storage is sample area 1, followed by sample area 3, sample area 2 and 

sample area 4, relatively with scores of 0.6, 0.4, 0.3 and 0.2. The highest scores is for the best 

situations –where there is high access to ES and low concentration of demand. The equity 

score for air pollution removal is maximum for sample area 1 (0.5), followed by sample area 

2 and 3 (both with an equity score of 0.3) and minimum for sample area 4, with an equity 

score of 0.1. The equity score for cooling is again maximum for sample area 1 (0.8), followed 

by sample area 2 (0.6), 3 (0.3) and 4 (0.2). The score for noise reduction sees at the best 

position sample area 2 (0.2), followed by sample area 1 (0.1), sample area 4 (0.1) and the 
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worst score is for sample area 3, around 0.  Figure 5.4 summarizes the equity results.  

 

 

 

 

 

By comparing such results coming from the equitable distribution of ES obtained with our 

analysis, with the alternative analysis listed in subsection 3.5 that do not follow all the criteria 

of Table 5.1, we can observe most relevant differences in results (see Figure 5.5) 

By comparing our results with alternatives 1, 2, 3 and 4, we can observe that for carbon 

storage and cooling, alternative 4 is the one providing the most similar results to our equity 

assessment. Alternative 4 is the one that considers the population density instead of 

vulnerable individuals as demand indicator. However, this is a coincidence to the fact that in 

our sample areas the area with highest poplutation density is also the area with highest 

number of vulnerable individuals. For air pollution removal and noise reduction the 

alternatives that provide most similar results to our assessment’s results are alternative 1 and 

alternative 3, that are respectively the alterternative that do not consider the access to the ES 

and the one that considers the average ES provisioning instead of diaggregating per ES. It is 

easy to understand that air pollution removal assessments does not change if we consider 

access or supply, since it does not depend on proximity and access becomes less relevant.  

To conclude, the alternative that always provide results with the biggest difference compare 

to our assessment is alternative 2, telling us that if we do not consider the demand, but only 

the access to Es, the preferabilty of areas would be completely misleading. 

 

 

Figure 5.4 Equity scores for each ES among sample areas 
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Figure 5.5 Comparisons among ES assessment alternatives 

 

To summarize, compared to our equity assessment, avoiding to consider access (alternative 1) 

would have it major effects on noise reduction assessments, followed by cooling, carbon 

storage and the less impacted ES assessment would be the one related to air pollution 

removal. Avoiding to consider demand (alternative 2) would have big aberrations on all ES 

assessments. Avoding to consider ES separatly and using and average supply and access 

assessments for all of them (alternative 3) would mainly impact results for carbon storage 

and cooling, where we have the biggest range of different in results from the best sample area 

to the worst sample area. Substituting indicator for demand with popultation density instead 

of number of vulnerable individuals in this case would mainly affect results for air pollution 

removal and noise reduction, but in difference is trivial. In case the distribution of vulnerable 

individuals would be less parallel with distribution of population among the areas, such 

results would show a relevant change. 

5.5 Discussion 

The effectiveness of any assessment relies on the coherence between the goal that determines 

its design and the goal that underpins its application. In other words, if an ES assessment it is 

not designed to investigate distribution of ES, it will hardly provide complete and fitting 

information for the purpose. The lack of ES assessments intentionally conceived to support 

planning in pursuing equitable distribution of ES might provide misleading information, 

through ignoring some key elements or investigating them through too aggregate data. 

Our work provides an ES assessment overtly designed to investigate equitable distribution of 

ES. Thus, it analyzes all three key elements of distributive equity: the supply the access and 



  CHAPTER 5 

 

99 

 

the demand. Additionally, all three elements are investigated following criteria suggested 

from the literature to properly address the purpose (see section 2).  

The first step of our methods focuses on the choice of four sample areas. The shift from 

average scores for the whole city to the same scores computed for each of the sample areas 

already highlights existing un-equalities and provides useful information in terms of priority 

for action. For example, just by disaggregating the average score for the city in scores for 

each sample area, we discovered that the most disadvantaged area in terms of presence of 

green per capita is sample area 4, followed by sample area 3, sample area 2 and the best 

situation takes place in sample area 1.  

Results show that adopting this general and unique indicator for equitable distribution of 

resources (m2 green per capita) might be misleading in describing equitable distribution of 

ES. Most disadvantaged sample areas in terms of presence of green per capita do not match 

with most disadvantaged areas according to our results for the equitable distribution of ES. 

To start with, there is not a most preferable sample areas for all situations: it depends on the 

ES we are interested in. For carbon storage, best situation is represented by sample area 1, but 

for noise reduction sample area 2 has the highest scores.  

More specifically, the supply analysis highlights the importance of distinguishing among 

what we generally call “green”. Different types of green, or different ecosystems, provide 

different ES and to a different extent. To summarize, sample area 3 –that is not the area with 

the highest presence of green per capita- shows the best ES supply for three of the fours 

analyzed ES, namely: air pollution removal, cooling and noise reduction. For carbon storage, 

the best performance is presented by sample area 1. 

What emerges for the access analysis if that this type of analysis is not equally important for 

all ES. For example, for ES non-depending on proximity the addition of access information 

to the equitable distribution of ES analysis does not change the results. On the contrary, for 

cooling and noise reduction, the areas with the best supply do not correspond to the areas 

with the best access to the ES: best cooling supply is provided by sample area 3, while best 

access to cooling is provided by sample area 2. Best noise reduction supply is provided by 

sample area 3, but best access to noise reduction takes place in sample area 2.  

Results concerning the demand analysis in this study might be misleading if used to 

determine the relevance of demand information in the analysis of equitable distribution of ES 

and, more specifically, the relevance of how to capture and assess the demand. In our case, 

adopting population density as proxy for the demand instead of adopting the number of 

vulnerable individuals does not modify the results: in any case, the sample area showing 

highest demand is sample area 4. However, our four sample areas represent a specific case 

where population density and vulnerable individuals are proportionally distributed.  If it 

would not be the case (e.g. the area with highest population density would not correspond to 

the area with the highest number of vulnerable individuals), the incidence of adopting 
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population density or number of vulnerable individuals would lead to assign priority for 

action to different areas.  

From the comparison between our equitable distribution of ES analysis and the alternative 

analysis that do not follow the criteria set in section 2, we can deduce two main 

considerations. First, that the adoption of our analysis compared to the alternatives impacts 

more on the analysis of equitable distribution of noise reduction and cooling, while impact 

less on the analysis of equitable distribution of air pollution removal and almost does not 

impact on the analysis of equitable distribution of carbon storage. This can be explained 

though the relevance of access in the analysis of such ES. In fact, access is especially 

important for proximal ES and alternative analysis that do not consider it in their 

computations alter the results. Second, if we would need to simplify our analysis and adopt 

one of the alternatives, the alternative providing the most similar results to our equitable 

distribution of ES analysis is alternative 4, which uses population density instead of number 

of vulnerable individuals. We already explained above in this section the reasons for this. The 

alternative that provides most different results compared to our analysis is alternative 2 that 

avoids considering the demand. Thus, if we only assess the availability of ES (in terms of 

supply and access) ignoring the demand, the ranking of most disadvantaged sample area 

would be completely different. Between these two extreme points, we have results from 

alternative 1 and 3, that avoid to consider access and that avoid disaggregation among ES. In 

the case of access, results change in particular for the cooling and noise reduction analysis. In 

the case of aggregated ES supply, differences impact on all ES except for carbon storage.  

The work presents some limitations to be improved. First, ES access analysis in general is 

still in its pioneering stage and in spite of the small contribution made her, there is still need 

to go deeper in determining how to properly assess access to ES. Second, for the demand 

analysis, I adopted one unique category of vulnerable individuals. It is true that some people 

are more susceptible to harm more than others due to their different capacity to deal with the 

hazards (Kazmierczak, 2012). However, vulnerability differs from hazard to hazard. There is 

chance to zoom in the complexity of regulating services demand and distinguish among 

different groups of demand, specifically for each ES. Third, the supply analysis is based on 

one single indicator per ES, while the adoption of multiple indicators would lead to more 

detailed results.  

The cited limitations are due to the present state of the knowledge for the access analysis, 

while also rely on a choice for the demand and supply analysis. Thus, for the demand and 

supply analysis we tried to adopt analysis that would become too complex, costly and 

time-consuming to be replicate for other contexts. As a matter of fact, the analysis of 

equitable distribution of ES provided by this paper, provides a synthetic overall picture about 

the distribution of ES (in terms of supply and access) and the need for them. Such 

quantitative and spatial explicit overall picture, already capture where more advantaged and 
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less advantaged areas are in the city and represent a tool to set and identify priorities for urban 

planning to enhance an equitable distribution of ES in their cities. 

5.6 Conclusion 

Equitable distribution of resources –and more specifically of ES- is one of the structuring 

elements involved in the pursue of general equity. ES assessments can provide a decisive 

support to the investigation of the distribution of ES to better address equity in the planning 

practice. The ES concept, more than an objective of study or the goal of some policies, can 

represent a tool itself. In fact, the ES concept underpins the understanding and quantification 

of how ecosystems provide services and spatially define the relationship between their 

structure, functions, ES and the related benefits (Braat and De Groot, 2012) at the proper 

scale. For this reason, ES assessments represent a powerful tool for planners to design cities 

that are more equitable. 

We borrowed, combined and adopted methods from existing ES knowledge to capture 

distribution of regulating ES in a city and demand for benefits coming from such ES. The 

entire work was driven by criteria set from the ES field and environmental equity field to 

assure the match between the design of the analysis –the methods- and the purpose of the 

analysis: provide useful information to planners to support them in pursuing equitable 

distribution of regulating services in cities.  

There a big challenges in data availability and in the definition of the scale at which to 

disaggregate. Although a comprehensive consideration of ES would be ideal, data and 

resources limitations will ultimate with restrict number of data and information considered in 

the assessment (Tallis and Polasky, 2009). However, the potential of applying such a holistic 

approach to the investigation of distribution of ES, involving a spectrum that goes from 

merely biophysical issues to socio-economic considerations cannot be ignored. Even though 

such kind of holistic analysis, implying the use of disaggregated data and complex 

assessments, can be costly and time-consuming (Gomez-Baggethun and Barton, 2013), there 

is need to keep on walking this path and to go further. Firstly, more research is needed to 

better address access analysis. Secondly, more research is needed to provide more detailed 

demand analysis for regulating services.  

Human-environment systems are complex adaptive systems and despite the numerous efforts 

and studies about phenomena and biophysics functioning of ecosystems and their ES 

provisioning, “we presently have only the beginnings of an understanding of the 

vulnerability and resilience of coupled human-environment systems” (Levin and Clark, 

2010). No simple assessment can properly describe and capture the essential feature of such a 

complex picture. To pursue equitable distribution of ES the challenge is in going deeper and 

more detailed in the analysis of all elements, while keeping methods and results the most 

synthetic possible. 
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6 Conclusions 

Chapter 6   

Conclusions  

The main goal of this thesis was to contribute to bridge the research field of ES with urban 

planning, in order to mainstream ES knowledge into practice and operationalize it in 

“everyday” urban planning. The work was driven by four specific objectives:  

1) Providing an overview of the current state of the art related to the inclusion of 

Ecosystem-based measures in urban planning, identifying and discussing the main 

shortcomings and advancing possible solutions. 

2) Developing an operative approach to estimate the cooling capacity provided by Green 

Urban Infrastructures to support urban planning. 

3) Testing the application of ES assessments to answer real planning questions in two urban 

case studies. 

4)  Developing guidance to support equitable distribution of ES in cities. 

This chapter presents and discusses the main findings of the research and draws some overall 

conclusions. 

 

 

In response to the research questions related to the first objective, we found that the most 

common EbA measures included in climate adaptation plans are related to the generic 

creation of new green areas, which is not surprising given that the enhancement of green 

areas is a typical objective pursued by planners. Least frequent EbA are those related to wind 

circulation, most likely because the effectiveness of these measures is related to the 

morphology of the city. More surprising is the scarce care devoted to the design of 

impervious surfaces and to measures aimed at mitigating stormwater run-off thus preventing 

urban flooding. 

By tracking the inclusion of EbA in the different components of plans, we identified in the 

implementation component the most frequent missing link between the acknowledgement of 

EbA and their actual operationalization. 

In general, the results of the review show that EbA are finding their way in climate adaptation 

plans. However, based on our findings, we can formulate three main recommendations to 
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improve the inclusion of EbA in climate adaptation plans: 

i) there is an evident need to enhance baseline information upon which EbA are proposed and 

designed, in both quantitative and quantitative terms, to better inform decision-makers about 

costs and benefits related to EbA. Particular attention should be paid to the assessment stock 

and flow of ES in and from Green Urban Infrastructure; 

ii) Co-benefits triggered by EbA beyond climate adaptation need to be more explicitly taken 

into account; 

iii) further efforts should address the interaction between climate plans and other planning 

instruments.  

 

In response to the research questions raised accordingly to the second objective, results show 

that the components that mainly determine the cooling capacity of a GUI are: tree canopy 

coverage, soil cover, and size. These features do not equally affect the cooling capacity. 

Generally, the most important component is size, followed by tree canopy coverage and soil 

cover. Additionally, a GUI with a higher cooling capacity assures better performance in any 

climatic region. On the other hand, depending on the climatic region where it is located, the 

same cooling capacity score implies different air temperature reductions (e.g. a GUI with a 

cooling capacity score of 80 out of 100 produces around one more Celsius degree of 

temperature reduction in a city in the Mediterranean climate region compared to a city in the 

continental climate region). 

The Amsterdam case study was used to validate and test the developed methodology. 

Furthermore, the application provided some practical insights on the effectiveness of 

possible planning actions addressing the different components of the cooling capacity. For 

example, it emerged that in the case of a small area, it is more worthwhile to increase the tree 

canopy coverage than to change the soil cover.  

This methodology contributes to the set of ES assessment tools designed for the urban scale, 

addressing one of the major gaps highlighted in our review (chapter 2, objective 1). The 

methodology is easily applicable and, using limited input data, it provides some information 

that can guide planners in understanding: i) which are the physical characteristics of a GUI 

involved in the provision of cooling; ii) how a GUI should be designed to maximize its 

cooling capacity; iii) which is the state of things in the city in terms of cooling capacity 

provided by the existing GUI. However, to provide a complete picture, there is need to 

include the analysis of the flow of ES and an analysis of its beneficiaries. 

 

In responses to the research questions deriving from the third objective, we first succeeded in 

applying the cooling capacity methodology to another city (Trento) with different data 

availability compared to Amsterdam.  

For Trento, additionally to testing again the methodology, we mapped the flow of ES. The 
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methodology was applied to help design and assess one of the strategies envisioned by the 

current urban plan of the city, identifying which of the potential greening interventions on the 

existing brownfields would maximize the provision of cooling and reach the highest number 

of beneficiaries.  

For Addis Abeba, we applied a multiple ES assessment based on land-cover classes. We 

assessed five ES, namely carbon sequestration, carbon storage, run-off mitigation, local 

climate regulation and air pollution reduction. The average sum of the five ES was computed 

and results were aggregated per subcity. Similarly, we computed demand of regulating 

services for each subcity, considering population density and number of vulnerable 

individuals per subcity as proxy of eventual beneficiaries. The comparison of demand and 

supply allowed defining a priority ranking for intervention in the different areas.  

The two applications provide evidence of the applicability of ES assessments in context with 

different data availability and in different climatic regions. Moreover, they were useful to 

show to decision-makers the utility of ES assessments to support planning decisions and 

interventions. In the two case studies, we started to address the issue of the flow of ES and of 

the demand for ES (potential beneficiaries), and to assess multiple ES with the aim of 

providing insights about possible trade-offs and synergies. Given the utility of these 

information to support urban administration to effectively include the ES concept in their 

planning practice, these issues were more systematically addressed in the following chapter.  

 

The research activity built on the fourth objective tackled all research questions raised at the 

beginning of the thesis (chapter 1). We identified criteria to analyze ES supply, access to ES 

and ES demand in order to assess equitable distribution of ES. The main principles that we 

derived can be summarized as follow: i) ES supply analysis should identify where the variety 

of ES services are generated, to which extent, and what the underlying spatial structures are. 

ii) for an access analysis there is need to define first how the flow of each ES works and 

whether the benefits depend on the proximity of beneficiaries to the ES flow. If this is the 

case, it becomes crucial to understand scale and direction of the flow and if there are physical 

or institutional barriers to access such flow. iii) To consider demand for equity, it is equally 

crucial to identify the “who” – the ES target that expresses the demand -, and where such 

demand is located. 

By applying the three analyses to four sample areas in the city of Trento, results show that 

most disadvantaged areas in terms of presence of green do not necessarily correspond with 

most disadvantaged areas in terms of equitable distribution of ES. Moreover, it emerged that 

it is not possible to identify a best performing area for all the ES at the same time. The best 

performing area for a specific ES, for example carbon storage, do not correspond to the best 

performing area of another ES, e.g. noise reduction. This finding highlights that GUI provide 

ES differently according to their physical characteristics and location, which raises the 
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question of the scale and accuracy of information to provide to planners. This issue, already 

emerging in chapter 3, here reaches a higher relevance. Additionally, analyzing the flow of 

ES and the access to such flow represents an important step compared to chapter 3 and 4, and 

to the recommendations and needs that they raised.  

Moreover, our score for equitable distribution of ES explicitly considers the demand. This 

point was also a major issue included in the conclusions of chapter 3 and addressed by 

chapter 4 but still in its early steps. The final comparison among results from different 

approaches to ES assessment shows the difference in terms of results between considering 

demand or not in the assessment.  

As Stiglitz (2012) stated, wellbeing in the world is not a matter of availability but distribution 

of resources. This thesis started from the biophysical side of the ES concept and went through 

all the Cascade model (Braat and De Groot, 2012) to reach the socio-economic side where 

beneficiaries are represented.  

There should be no effort to avoid complexity: human-environment systems are complex and 

they can be neither investigated nor managed through simple questions and answers. 

However, research can provide its contribution in looking for the right trade-off between 

complete and synthetic information to support planning and reducing step by step the 

distance between theory and practice, to build more sustainable and equitable cities, together. 

 





REFERENCES 

 

107 

 

7 References 

Bibliography 

Akbari, H., Davis, S., Dorsano, S., Huang, J., & Winnett, S., 1992. Cooling our Communities. 

A Guidebook on Tree Planting and Light-Colored Surfacing; EPA, Washington D.C. 

20460 (1992). 

Alterra Reserach Centre, 2014. 

http://www.wur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/Environmental-

Research/Faciliteiten-Producten/Kaarten-en-GIS-bestanden/Landelijk-Grondgebruik-N

ederland.htm. 

Andrade Pérez, A., Herrera Fernandez, B. and Cazzolla Gatti, R., 2010. Building Resilience 

to Climate Change: Ecosystem-based adaptation and lessons from the field. Gland, 

Switzerland: IUCN. 164pp. 

Authority, G. L., 2006. London’s urban heat island: a summary for decision makers. London: 

Greater London Authority. 

Baker, I., Peterson, A., Brown, G., & McAlpine, C, 2012. Local government response to the 

impacts of climate change: An evaluation of local climate adaptation plans. Landscape 

and Urban Planning, 107(2), 127–136. 

Baró, F., Haase, D., Gómez-Baggethun, E., & Frantzeskaki, N., 2015. Mismatches between 

ecosystem services supply and demand in urban areas: A quantitative assessment in five 

European cities. Ecological Indicators, 55, 146-158. 

Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. and Garcia‑Herrera, R., 2011. 

The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 

332(6026) 220–224. 

Bassett, E., &Shandas, V., 2010. Innovation and climate action planning: Perspectives from 

municipal plans. Journal of the American Planning Association, 76(4), 435-450. 

Berndtsson, J., 2010. Green roof performance towards management of runoff water quantity 

and quality: a review. Ecological Engineering, 36, 351-360. 

BMU, 2007. National Strategy on Biological Diversity. Adopted by the Federal Cabinet on 7 

November 2007. Federal Ministry for the Environment, Nature Conversation and 

Nuclear Safety, Bonn (2007) 

BNatSchG, 2010. Bundesnaturschutzgesetz. Gesetz über Naturschutz und Landschaftspflege, 

first version 14.05.1967, actualized 01.03.2010, Bundesgesetzblatt 1/2010 

Bolund, P., Hunhammar, S., 1999. Ecosystem services in urban areas. Ecological Economics, 

29, 293–301 (1999) 

Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S., 2010. Urban greening to cool 

towns and cities: A systematic review of the empirical evidence. Landscape and Urban 



REFERENCES  

108 

 

Planning, 97(3), 147–155.  

Braat, L., C., De Groot, R., S., 2012. The ecosystem services agenda: bridging the worlds of 

natural science and economics, conservation and development, and public and private 

policy, Ecosystem Services, Volume 1, Issue 1, Pages 4–15. 

Brabec, E. A., 2009. Imperviousness and land-use policy: Toward an effective approach to 

watershed planning. Journal of hydrologic engineering, 14(4), 425-433. 

Burkhard, B., Petrosillo, I., & Costanza, R.,2010. Ecosystem services–bridging ecology, 

economy and social sciences. 

Burkhard, B., Kroll, F., Nedkov, S., & Müller, F. (2012). Mapping ecosystem service supply, 

demand and budgets. Ecological Indicators, 21, 17-29. 

Burns, M. J., Fletcher, T. D., Walsh, C. J., Ladson, A. R., & Hatt, B. E., 2012. Hydrologic 

shortcomings of conventional urban stormwater management and opportunities for 

reform. Landscape and Urban Planning, 105(3), 230-240. 

Cadenasso, M. L., Pickett, S. T. A., & Schwarz, K., 2007. Spatial heterogeneity in urban 

ecosystems: Reconceptualizing land cover and a framework for classification, Frontiers 

in Ecology and the Environment, Volume 5(2), Pages 80–88. 

Cameron, R. W. F., Blanuša, T., Taylor, J. E., Salisbury, A., Halstead, A. J., Henricot, B., & 

Thompson, K., 2012. The domestic garden - Its contribution to urban green infrastructure. 

Urban Forestry and Urban Greening, 11, 129–137.  

Cao, X., Onishib, A., Chena, J., Imura, H., 2010. Quantifying the cool island intensity of 

urban parks using ASTER and IKONOS data. Landscape and Urban Planning, Volume 

96, Pages 224–231. 

Carmon, N., & Shamir, U., 2010. Water‑sensitive planning: integrating water considerations 

into urban and regional planning. Water and Environment Journal, 24(3), 181-191. 

Castleton, H., Stovin, V., Beck, S., Davison, J., 2010. Green roofs: building energy savings 

and the potential for retrofit. Energy Build. 42 (10), 1582e1591. 

CBD, 2008. Report of the first meeting of the second ad hoc technical expert group on 

biodiversity and climate change. Convention on Biological Diversity: 17–21 November 

2008; London, UK.  

Chang, C., Li, M., Chang, S., 2007. A preliminary study on the local cool-island intensity of 

Taipei city parks. Landscape and Urban Planning, Volume 80, Pages 386–395. 

Chapin III, F. S., Matson, P. A., & Vitousek, P., 2011. Principles of terrestrial ecosystem 

ecology. Springer Science & Business Media. 

A. Colls, N. Ash, N. Ikkala, 2009. Ecosystem-based Adaptation: a natural response to 

climate change. Gland, Switzerland: IUCN. 16pp. 

Cook-Patton, S., Bauerle, T., 2012. Potential benefits of plant diversity on vegetated roofs: a 

literature review. J. Environ. Manag. 106, 85-92. 

Costanza, R., 2008a. Stewardship for a “full” world. Current History, 107(705), 30-35. 

Costanza, R., 2008b. Ecosystem services: Multiple classification systems are needed. 

Biological Conservation, 141, 350-352. 



REFERENCES 

 

109 

 

Cowling, R. M., Egoh, B., Knight, A. T., O'Farrell, P. J., Reyers, B., Rouget, M., ... & 

Wilhelm-Rechman, A., 2008. An operational model for mainstreaming ecosystem 

services for implementation. Proceedings of the National Academy of Sciences, 105(28), 

9483-9488. 

Czemiel Berndtsson, J., 2010. Green roof performance towards management of runoff water 

quantity and quality: A review. Ecological Engineering 36(4), 351-360. 

Dai, D., 2011. Racial/ethnic and socioeconomic disparities in urban green space accessibility: 

Where to intervene? Landscape and Urban Planning, 102(4),234–244. 

Daw, T., Brown, K., Rosendo, S., & Pomeroy, R., 2011. Applying the ecosystem services 

concept to poverty alleviation: the need to disaggregate human well-being. 

Environmental Conservation, 38(04), 370-379. 

De Groot, R. S., Wilson, M. A., & Boumans, R. M., 2002. A typology for the classification, 

description and valuation of ecosystem functions, goods and services. Ecological 

economics, 41(3), 393-408. 

De Groot, R., 2006. Function-analysis and valuation as a tool to assess land use conflicts in 

planning for sustainable, multi-functional landscapes. Landscape and urban planning, 

75(3), 175-186. 

De Groot, R., S., Alkemade, R., Braat, L., C., Hein L., Willemen L., 2010. Challenges in 

integrating the concept of ecosystem services and values in landscape planning, 

management and decision making. Ecological Complexity, Volume 7, Pages 260–272. 

Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A. G., 

Mittal, N., Feliu, E., Faehnle, M., 2014. Mitigating and adapting to climate change: 

Multi-functional and multi-scale assessment of green urban infrastructure. Journal of 

Environmental Management 146 (2014): 107-115. 

Derkzen, M. L., Teeffelen, A. J., & Verburg, P. H., 2015. REVIEW: Quantifying urban 

ecosystem services based on high‑resolution data of urban green space: an assessment for 

Rotterdam, the Netherlands. Journal of Applied Ecology, 52(4), 1020-1032. 

Dethier, M. N., & Duggins, D. O., 1984. An" indirect commensalism" between marine 

herbivores and the importance of competitive hierarchies. American Naturalist, 205-219. 

Dobbs, C., Escobedo, F., J., Zipperer, W., C., 2011. A framework for developing urban forest 

ecosystem services and goods indicators. Landscape and Urban Planning, Volume 99, 

Pages 196–206. 

Doswald, N., Munroe, R., Roe, D., Giuliani, A., Castelli, I., Stephens, J., Reid, H., 2014. 

Effectiveness of ecosystem-based approaches for adaptation: review of the 

evidence-base. Climate and Development, 6(2), 185-201. 

Doswald, N., & Osti, M., 2011. Ecosystem-based Approaches to Adaptation and Mitigation: 

Good Practice Examples and Lessons Learned in Europe. BfN, Federal Agency for 

Nature Conservation. 

EEA, 2012. Urban adaptation to climate change in Europe Challenges and opportunities for 

cities together with supportive national and European policies.   European Environmental 

Agency. EEA Technical report No 2/2012— 143 pp. 



REFERENCES  

110 

 

Ernstson, H., 2013. The social production of ecosystem services: A framework for studying 

environmental justice and ecological complexity in urbanized landscapes. Landscape and 

Urban Planning, 109(1), 7–17. http://dx.doi.org/10.1016/j.landurbplan.2012.10.005. 

Escobedo, F. J., & Nowak, D. J., 2009. Spatial heterogeneity and air pollution removal by an 

urban forest. Landscape and urban planning, 90(3), 102-110. 

Escobedo, F. J., Wagner, J. E., Nowak, D. J., De la Maza, C. L., Rodriguez, M., & Crane, D. 

E., 2008. Analyzing the cost effectiveness of Santiago, Chile's policy of using urban 

forests to improve air quality. Journal of environmental management, 86(1), 148-157. 

Escobedo, F. J., Adams, D. C., & Timilsina, 2015. Urban forest structure effects on property 

value. Ecosystem Services, 12, 209-217. 

European Commission, 2006. Green Infrastructure Strategy, to promote the development of 

green infrastructure in the EU in urban and rural areas. COM(2006) 231. Brussels 

European Commission, 2013. COMMUNICATION FROM THE COMMISSION TO THE 

EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND 

SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS. An EU Strategy 

on adaptation to climate change. COM (2013) 216. Brussels. 

Erwin, K. L., 2009. Wetlands and global climate change: The role of wetland restoration in a 

changing world. Wetlands Ecology and Management, 17, 71–84.  

ETC/BD, 2006. ETC/BD. The Indicative Map of European Biogeographical Regions. 

EUROPEAN TOPIC CENTRE ON BIOLOGICAL DIVERSITY, Paris, February 2006. 

Available at http://bd.eionet.europa.eu/activities/Natura_2000/chapter1. 

Fang, C. F., & Ling, D. L., 2003. Investigation of the noise reduction provided by tree belts. 

Landscape and urban planning, 63(4), 187-195. 

FAO, 1998. Crop evapotranspiration - Guidelines for computing crop water requirements, 

FAO Irrigation and drainage paper 56, FAO, Rome. 

Farley, J., & Costanza, R., 2010. Payments for ecosystem services: from local to global. 

Ecological Economics, 69(11), 2060-2068. 

Farrugia, S., Hudson, M., McCulloch, L., 2013. An evaluation of flood control and urban 

cooling ecosystem services delivered by urban green infrastructure. Int. J. Biodivers. Sci. 

Ecosyst. Serv. Manag. 9 (2), 136e145. 

Feyisa, G. L., Dons, K., & Meilby, H., 2014. Efficiency of parks in mitigating urban heat 

island effect: An example from Addis Ababa. Landscape and Urban Planning, 123, 

87-95. 

Fisher, B., Turner, R. K., & Morling, P., 2009. Defining and classifying ecosystem services 

for decision making. Ecological economics, 68(3), 643-653. 

Foster, J., Lowe, A., & Winkelman, S., 2011. The value of green infrastructure for urban 

climate adaptation. Center for Clean Air Policy, February. 

Frank, S., et al., 2010. Landschaftsbewertung zur Unterstützung regionaler Planung: 

Landschaftsstrukturmaße als Indikatoren ökologischer Intaktheit. In: Korn, H., et al. 

(Eds.), Biodiversität und Klima - Vernetzung der Akteure in Deutschland 



REFERENCES 

 

111 

 

VII—Ergebnisse und Dokumentation des 7, Workshops, vol. 282. Bundesamt für 

Naturschutz (BfN), Insel Vilm, pp. 49–52. 

Frank, S., Fürst, C., Koschke, L., & Makeschin, F., 2012. A contribution towards a transfer of 

the ecosystem service concept to landscape planning using landscape metrics. Ecological 

Indicators, 21, 30-38. 

Füssel, H.M., 2007. Adaptation planning for climate change: concepts, 

assessmentapproaches, and key lessons. Sustain. Sci. 2, 265–275. // Füssel 2006. Füssel, 

H.M. Adaptation planning for climate change: concepts, assessmentapproaches, and key 

lessons. Sustain. Sci. 2, 265–275. 

Geneletti, D., 2011. Reasons and options for integrating ecosystem services in strategic 

environmental assessment of spatial planning. International Journal of Biodiversity 

Science, Ecosystem Services & Management 7(3), 143-149. 

Geneletti, D., 2013. Ecosystem services in Environmental Impact Assessment and Strategic 

Environmental Assessment. Environmental Impact Assessment Review 40, 1-2. 

Geneletti and Zardo, 2016. Geneletti, D., Zardo, L. Ecosystem-based adaptation in cities: An 

analysis of European urban climate adaptation plans. Land Use Policy, Volume 50, Pages 

38–47 (2016) 

Geneletti et al. 2016 Geneletti, D., Zardo, L., & Cortinovis, C. (2016). Promoting 

nature-based solutions for climate adaptation in cities through impact assessment. 

Handbook on Biodiversity and Ecosystem Services in Impact Assessment, 428-452. 

Gill, S. E., Handley, J. F., Ennos, a R., Pauleit, S., 2007. Adapting cities for climate change: 

The role of the green infrastructure. Built Environment, 33, 115–133. 

Giorgi, F., Im, E. S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L. and Shi, Y., 

2011. Higher hydroclimatic intensity with global warming.  Journal of Climate, 24(20) 5 

309–5 324. 

Gómez-Baggethun, E., & Barton, D. N., 2013. Classifying and valuing ecosystem services 

for urban planning. Ecological Economics, 86, 235-245. 

Grasso, M. , 2007. A normative ethical framework in climate change. Climatic Change, 81(3), 

223-246. 

Grimsditch, G., 2011. Ecosystem-Based Adaptation in the  Urban Environment. In K. 

Otto-Zimmermann (ed) Resilient Cities: Cities and Adaptation to Climate Change - 

Proceedings of the Global Forum 2010 . Dordrecht: Springer Netherlands. 

Haase, D., Larondelle, N., Andersson, E., Artmann, M., Borgström, S., Breuste, J., ... & 

Kabisch, N., 2014. A quantitative review of urban ecosystem service assessments: 

concepts, models, and implementation. Ambio, 43(4), 413-433. 

Haines-Young and Pottschin, 2010. Haines-Young, R., Potschin, M. The links between 

biodiversity, ecosystem services and human well-being. Ecosystem Ecology: a new 

synthesis, 110-139 (2010) 

Haines-Young, R., Potschin, M. (2013). Common International Classification of Ecosys-tem 

Services (CICES): Consultation on version 4, August–December 2012. Reportto the 

European Environment Agency, Nottingham, UK. 



REFERENCES  

112 

 

Heidrich, O., Dawson, R. J., Reckien, D., & Walsh, C. L., 2013. Assessment of the climate 

preparedness of 30 urban areas in the UK. Climatic Change, 120, 771–784.  

Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T. and Pegion, P., 2012, On the 

increased frequency of Mediterranean drought. Journal of Climate, 25(6) 2 146–2 161. 

Hostetler, M. & Escobedo, F., 2010. What Types of Urban Greenspace Are Better for Carbon 

Dioxide Sequestration?. University of Florida, Gainesville. 

Hsieh, H. F., & Shannon, S. E., 2005. Three approaches to qualitative content analysis. 

Qualitative health research, 15(9), 1277-1288. 

ICLEI (International Council for Local Environmental Initiatives), 2010. Changing Climate, 

Changing Communities: Guide and Workbook for Municipal Climate Adaptation. 

Toronto: ICLEI Canada. 

ICSU, UNESCO, UNU, 2008. Ecosystem Change and Human Wellbeing. Research and 

Monitoring. Report, ICSU, UNESCO and UNU, Paris. 

IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of 

Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change, eds Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson 

CE. Cambridge Univ Press, Cambridge, UK. 

ISTAT, 2014. Il verde urbano. Available at: 

http://www.istat.it/it/files/2016/05/VERDE-URBANO.pdf?title=Verde+urbano+-+24/m

ag/2016+-+Testo+integrale+e+nota+metodologica.pdf 

Jacobson, C.R., 2011. Identification and quantification of the hydrological impacts of 

imperviousness in urban catchments: a review. J. Environ. Manag. 92 (6),1438e1448. 

Jennings, V., Johnson-Gaither, C., & Gragg, R. S., 2012. Promoting environmentaljustice 

through urban green space access: A synopsis. Environmental Justice, 5(1),1–7. 

Jones, H. P., Hole, D. G., & Zavaleta, E. S., 2012. Harnessing nature to help people adapt to 

climate change. Nature Climate Change, 2(7), 504–509. 

Kabisch, N., & Haase, D., 2014. Green justice or just green? Provision of urban green spaces 

in Berlin, Germany. Landscape and Urban Planning, 122, 129-139. 

Kareiva,P., Tallis,H., Ricketts,T.H., Daily,G.C., Polasky,S., 2011. Natural Capital: Theory 

and Practice of Mapping Ecosystem Services. Oxford University Press, Oxford. 

Kazmierczak, A., 2012. Heat and social vulnerability in Greater Manchester : a risk-response 

case study. EcoCities, The University of Manchester. 

Kaźmierczak, A., & Cavan, G., 2011. Surface water flooding risk to urban communities: 

Analysis of vulnerability, hazard and exposure. Landscape and Urban Planning, 103(2), 

185-197. 

Kazmierczak, A., & Carter, J., 2010. Adaptation to climate change using green and blue 

infrastructure. A database of case studies. University of Manchester, GRaBS project, 

182. 

Kleerekoper, L., van Esch, M., & Salcedo, T. B., 2012. How to make a city climate-proof, 

addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 



REFERENCES 

 

113 

 

30-38. 

Koomen, E., & Diogo, V., 2015. Koomen, Eric, and Vasco Diogo. "Assessing potential 

future urban heat island patterns following climate scenarios, socio-economic 

developments and spatial planning strategies." Mitigation and Adaptation Strategies for 

Global Change (2015): 1-20. 

Kremer, P., Hamstead, Z., A., McPhearson, T., 2013. A social–ecological assessment of 

vacant lots in New York City. Landscape and Urban Planning, Volume 120, Pages 218– 

233 

Kumar, P., Geneletti, D., 2015. How are climate change concerns addressed by spatial plans? 

An evaluation framework, and an application to Indian cities. Land Use Policy, 42, 

210–226.  

Lafortezza, R., Davies, C., Sanesi, G., & Konijnendijk, C. C. C., 2013. Green Infrastructure 

as a tool to support spatial planning in European urban regions. iForest - Biogeosciences 

& Forestry, 6, 102–108. 

Lamorgese, L., & Geneletti, D., 2015. Equity in sustainability assessment: a conceptual 

framework. In Handbook of Sustainability Assessment. Edgar Elgar Publishing Ltd.. 

Larondelle, N., & Haase, D., 2013. Urban ecosystem services assessment along a rural-urban 

gradient: A cross-analysis of European cities. Ecological Indicators, 29, 179–190.  

Larondelle, N., & Lauf, S., 2016. Balancing demand and supply of multiple urban ecosystem 

services on different spatial scales. Ecosystem Services, 22, 18-31. 

Lautenbach, S., Kugel, C., Lausch, A., & Seppelt, R., 2011. Analysis of historic changes in 

regional ecosystem service provisioning using land use data. Ecological Indicators, 11(2), 

676-687. 

Levin, S. A., & Clark, W. C., 2010. Toward a science of sustainability. 

Low, S., 2013. Public space and diversity: Distributive, procedural and interactional justice 

for parks. In G. Young, & D. Stevenson (Eds.), The Ashgate research companion to 

planning and culture (pp. 295–310). Surrey: Ashgate Publishing. 

Luederitz, C., Brink, E., Gralla, F., Hermelingmeier, V., Meyer, M., Niven, L., ... & Abson, 

D. J., 2015. A review of urban ecosystem services: six key challenges for future research. 

Ecosystem Services, 14, 98-112. 

Mandle, L., & Tallis, H., 2016. 2. Spatial ecosystem service analysis for Environmental 

Impact Assessment of projects. Handbook on Biodiversity and Ecosystem Services in 

Impact Assessment, 15. 

McCarthy, 2001. McCarthy, J.J. Climate change 2001: impacts, adaptation, and vulnerability: 

contribution of Working Group II to the third assessment report of the Intergovernmental 

Panel on Climate Change. Cambridge University Press. 

McDermott, M., Mahanty, S., & Schreckenberg, K., 2013. Examining equity: a 

multidimensional framework for assessing equity in payments for ecosystem services. 

Environmental Science & Policy, 33, 416-427. 

McKenzie, E., Posner, S., Tillmann, P., Bernhardt, J. R., Howard, K., & Rosenthal, A., 2014. 



REFERENCES  

114 

 

Understanding the use of ecosystem service knowledge in decision making: lessons from 

international experiences of spatial planning. Environment and Planning C: Government 

and Policy, 32(2), 320-340. 

McPhearson, E. G., 1997. Quantifying urban forest structure, function, and value: the 

Chicago Urban Forest Climate Project; Urban Ecosystems, 1997, 1, 49–61. 

McPhearson, T., Kremer, P., Hamstead, Z. A., 2013. Mapping ecosystem services in New 

York City: Applying a social-ecological approach in urban vacant land. Ecosystem 

Services, 5, 11–26. 

MEA, 2003. Ecosystems and human well-being: a framework for assessment. Millenium 

Ecosystem Assessment, Island Press, Washington. 

Measham, T. G., Preston, B. L., Smith, T. F., Brooke, C., Gorddard, R., Withycombe, G., 

Morrison, C., 2011. Adapting to climate change through local municipal planning : 

barriers and challenges, 889–909. 

Mota, J., Almeida, M., Santos, P., & Ribiero, J. C., 2005. Perceived neighborhood 

envi-ronments and physical activity in adolescents. American Journal of 

PreventiveMedicine, 41, 834–836. 

Müller, N., Kuttler, W., & Barlag, A.-B., 2013. Counteracting urban climate change: 

adaptation measures and their effect on thermal comfort. Theoretical and Applied 

Climatology, 115, 243–257. 

Munang, R., Thiaw, I., Alverson, K., Goumandakoye, M., Mebratu, D., & Liu, J., 2013. 

Using ecosystem-based adaptation actions to tackle food insecurity. Environment: 

Science and Policy for Sustainable Development, 55, 29–35. 

Munang, R., Thiaw, I., Alverson, K., Liu, J., & Han, Z., 2013. The role of ecosystem services 

in climate change adaptation and disaster risk reduction. Current Opinion in 

Environmental Sustainability, 5(1), 47–52. 

Munang, R., Thiaw, I., Alverson, K., Mumba, M., Liu, J., & Rivington, M., 2013. Climate 

change and Ecosystem-based Adaptation: A new pragmatic approach to buffering 

climate change impacts. Current Opinion in Environmental Sustainability, 5, 67–71. 

Munroe, R., Roe, D., Doswald, N., Spencer, T., Möller, I., Vira, B., Stephens, J., 2012. 

Review of the evidence base for ecosystem-based approaches for adaptation to climate 

change. Environmental Evidence, 1(1), 13. 

Naumann, S., Anzaldua, G., Berry, P., Burch, S., McKenna, D., Frelih-Larsen, A., Gerdes, H., 

Sanders, M., 2011. Assessment of the potential of ecosystem-based approaches to 

climate change adaptation and mitigation in Europe. Final report to the European 

Commission, DG Environment, Contract no. 070307/2010/580412/SER/B2, Ecologic 

institute and Environmental Change Institute, Oxford University Centre for the 

Environment 

Norman, G. J., Nutter, S. K., Ryan, S., Sallis, J. F., Calfas, K. J., & Patrick, K., 2006. 

Com-munity design and access to recreational facilities as correlates of 

adolescentphysical activity and body-mass index. Journal of Physical Activity and 

Health, 3,118–128. 



REFERENCES 

 

115 

 

Norton, B., A., Coutts, A., M., Livesley, S., J., Harris, R., J., Huntera, A., M., Williams N., S., 

G., 2015. Planning for cooler cities: A framework to prioritise green infrastructure to 

mitigate high temperatures in urban landscapes. Landscape and Urban Planning, Volume, 

134, Pages 127–138. 

Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N., ... & Rowe, 

B., 2007. Green roofs as urban ecosystems: ecological structures, functions, and services. 

BioScience, 57(10), 823-833. 

Oke, T. R., 1988. Street design and urban canopy layer climate. Energy and Buildings, 11, 

103–113. 

Oh, K., & Jeong, S., 2007. Assessing the spatial distribution of urban parks using 

GIS.Landscape and Urban Planning, 82(1/2), 25–32. 

Palmer, M. A., Lettenmaier, D. P., Poff, N. L., Postel, S. L., Richter, B., & Warner, R., 2009. 

Climate change and river ecosystems: Protection and adaptation options. Environmental 

Management, 44, 1053–1068. 

Paracchini, M. L., Zulian, G., Kopperoinen, L., Maes, J., Schägner, J. P., Termansen, M., ... 

& Bidoglio, G., 2014. Mapping cultural ecosystem services: A framework to assess the 

potential for outdoor recreation across the EU. Ecological Indicators, 45, 371-385. 

Pauleit, S., Liu, L., Ahern, J., & Kazmierczak, A., 2011. Multifunctional green infrastructure 

planning to promote ecological services in the city. Urban ecology. Oxford University 

Press, Oxford, 272-286. 

Peel, M. C. and Finlayson, B. L. and McMahon, T. A., 2007. Updated world map of the 

Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11: 1633–1644. 

Pickett, M.L. Cadenasso, J.M. Grove, C.H. Nilon, R.V. Pouyat, W.C. Zipperer, R. Costanza, 

2011. Urban ecological systems: linking terrestrial ecological, physical, and 

socioeconomic components of metropolitan areas. Annual Review of Ecology and 

Systematics, 32 (2001), pp. 127–157. 

Picketts, I. M., Déry, S. J., & Curry, J. A., 2013. Incorporating climate change adaptation into 

local plans. Journal of Environmental Planning, 37–41. 

Potcher, O., Cohen, P., Bitan, A., 2006. Climatic behavior of various urban parks during hot 

and humid summer in the mediterranean city of Tel Aviv, Israel. International Journal of 

Climatology. Vol. 26: 1695–1711. 

Potschin, M., Haines-Young, R., Fish, R., Turner, RK, 2016. Defining and measuring 

ecosystem services. (Eds.), Routledge Handbook of Ecosystem Services. Routledge, 

London and New York, 25-44. 

Poumadere, M., Mays, C., Le Mer, S., Blong, R., 2005. The 2003 Heatwave in France : 

Dangerous Climate Change Here and Now. Risk Analysis. 25 (6), 1483-1494. 

Preston, B. L., Westaway, R. M., & Yuen, E. J., 2011. Climate adaptation planning in 

practice : an evaluation of adaptation plans from three developed nations, 407–438. 

Rannow, S., Loibl, W., Greiving, S., Gruehn, D., & Meyer, B. C., 2010. Potential impacts of 

climate change in Germany—identifying regional priorities for adaptation activities in 

spatial planning. Landscape and Urban Planning, 98(3), 160-171. 



REFERENCES  

116 

 

Rawls, J., 1971. A Theory of Justice. Harvard University Press, Cambridge, MA. 

Reckien, D., Flacke, J., Dawson, R. J., Heidrich, O., Olazabal, M., Foley, A., ... & 

Pietrapertosa, F., 2014. Climate change response in Europe: what’s the reality? Analysis 

of adaptation and mitigation plans from 200 urban areas in 11 countries. Climatic Change, 

122(1-2), 331-340. 

Roberts, D., Boon, R., Diederichs, N., Douwes, E., Govender, N., McInnes, A., ... & Spires, 

M., 2012. Exploring ecosystem-based adaptation in Durban, South Africa: 

“learning-by-doing” at the local government coal face. Environment and Urbanization, 

24(1), 167-195. 

Rodriguez, J.P., Beard Jr, T.D., Bennett, E.M., Cumming, G.S., Cork, S., Agard, J.,Dobson, 

A.P. & Peterson, G.D., 2006 Tradeoffs across space, time, and ecosystem services. 

Ecology and Society 11: 28. 

Roenmich, J. N., Epstein, L. H., Raja, S., Yin, L., Robinson, J., & Winiewicz, J., 2006. 

Association of access to parks and recreational facilities with the phys-ical activity of 

young children. American Journal of Preventive Medicine, 43,437–441. 

Rosenzweig, C., Solecki, W., Hammer, S.A., Mehrotra, S., 2010. Cities lead the way in 

climate-change action. Nature, 467(7318):909–911 

Samara, T., & Tsitsoni, T., 2010. The effects of vegetation on screening road traffic noise 

from a city ring road. Noise Control Engineering Journal, 59(1), 68-74. 

Santamouris, M., 2014. Cooling the cities e a review of reflective and green roof mitigation 

technologies to fight heat island and improve comfort in urban environments. Sol. 

Energy 103, 682-703. 

Savard, J. P. L., Clergeau, P., & Mennechez, G., 2000. Biodiversity concepts and urban 

ecosystems. Landscape and urban planning, 48(3), 131-142. 

Schulp, C. J. E., Lautenbach, S., & Verburg, P. H., 2014. Quantifying and mapping 

ecosystem services: demand and supply of pollination in the European Union. Ecological 

Indicators, 36, 131-141. 

Schwarte, C., & Adebowale, M., 2007. Environmental justice and race equality in the 

European Union, London. 

Schwarz, N., Bauer, A., & Haase, D., 2011. Assessing climate impacts of planning 

policies—an estimation for the urban region of Leipzig (Germany). Environmental 

impact assessment review, 31(2), 97-111. 

Sen, A., 2009. The idea of justice (pp. 2-6). Penguin Books. 

Shashua-Bar, L., Hoffman, M. E., 2000. Vegetation as a climatic component in the design of 

an urban street: An empirical model for predicting the cooling effect of urban green areas 

with trees. Energy and Buildings, 31(3), 221-235. 

Skelhorn, C., Lindley, S., Levermore, G., 2014. The impact of vegetation types on air and 

surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. 

Landscape and Urban Planning, 121, 129–140. 

Smith, P., Ashmore, M., R., Black, H., I., J., Burgess, P., J., Evans, C., D., Quine, T., A., 



REFERENCES 

 

117 

 

Thomson, A., M., Hicks, K., Orr, H., G., 2013. The role of ecosystems and their 

management in regulating climate, and soil, water and air quality; Journal of Applied 

Ecology 2013, 50, 812–829. 

Souch, C. A., Souch, C., 1993. The effect of trees on summertime below canopy urban 

climates. Journal of Arboriculture, 19, 303-303. 

Stiglitz K., 2012. The price of inequality. W. W. Norton & Company. 

Stronbach, M., W., Haase, D., 2012. Above-ground carbon storage by urban trees in Leipzig, 

Germany: Analysis of patterns in a European city, Landscape and Urban Planning, 

104(1), 95-104. 

Stürck, J., Poortinga, A., & Verburg, P. H., 2014. Mapping ecosystem services: The supply 

and demand of flood regulation services in Europe. Ecological Indicators, 38, 198-211. 

Sister, C., Wolch, J., & Wilson, J., 2010. Got green? Addressing environmental justicein park 

provision. GeoJournal, 75(3), 229–248. 

Syrbe, R. U., & Walz, U., 2012. Spatial indicators for the assessment of ecosystem services: 

providing, benefiting and connecting areas and landscape metrics. Ecological indicators, 

21, 80-88. 

Taha, H., Akbari, H., Rosenfeld, A., 1991. Heat Island and Oasis Effects of Vegetative 

Canopies: Micro-Meteorological Field-Measurements; Theor. Appl. Climatol. 44, 

123-138. 

Talen, E., 1997. The social equity of urban service distribution: An exploration ofpark access 

in Pueblo, Colorado, and Macon, Georgia. Urban Geography, 18(6),521–541. 

Tallis, H., & Polasky, S., 2009. Mapping and valuing ecosystem services as an approach for 

conservation and natural‑resource management. Annals of the New York Academy of 

Sciences, 1162(1), 265-283. 

Tang, Z., Brody, S. D., Quinn, C., Chang, L., & Wei, T., 2010. Moving from agenda to action: 

evaluating local climate change action plans. Journal of environmental planning and 

management, 53(1), 41-62. 

TNC, 2009. Adapting to Climate Change: Ecosystem-based Approaches for People and 

Nature. The Nature Conservancy. 2009 (Internet). 

Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, 

P., 2007. Promoting ecosystem and human health in urban areas using Green 

Infrastructure: A literature review. Landscape and Urban Planning, 81, 167–178.  

UNHabitat, 2016. World city report: urbanization and development. Available at: 

https://unhabitat.org/books/world-cities-report/ 

UNHabitat, in print. The state of Addis Abeba city report. 

UNU, 2003. Urban Ecosystem Analysis. Identifying Tools and Methods. UNU, Japan. 

Van der Biest, K., Vrebos, D., Staes, J., Boerema, A., Bodí, M. B., Fransen, E., & Meire, P., 

2015. Evaluation of the accuracy of land-use based ecosystem service assessments for 

different thematic resolutions. Journal of environmental management, 156, 41-51. 

Van Renterghem, T., Botteldooren, D., & Verheyen, K., 2012. Road traffic noise shielding 



REFERENCES  

118 

 

by vegetation belts of limited depth. Journal of Sound and Vibration, 331(10), 

2404-2425. 

Verweij et al., 2012. Verweij, P. J. F. M., Winograd, M., Perez-Soba, M., Knapen, R., & van 

Randen, Y. QUICKScan: a pragmatic approach to decision support. In International 

Congress on Environmental Modelling and Software, Leipzig. 

Vignola, R., Locatelli, B., Martinez, C., Imbach, P., 2009. Ecosystem-based adaptation to 

climate change: What role for policy-makers, society and scientists? Mitigation and 

Adaptation Strategies for Global Change, 14, 691–696. 

Wamsler, C., Luederitz, C., & Brink, E., 2014. Local levers for change: Mainstreaming 

ecosystem-based adaptation into municipal planning to foster sustainability transitions. 

Global Environmental Change, 29, 189-201. 

Watkins, R., 2002. The impact of the urban environment on the energy used for cooling 

buildings (Doctoral dissertation, Brunel University School of Engineering and Design 

PhD Theses). 

Wolch, J. R., Byrne, J., & Newell, J. P., 2014. Urban green space, public health, and 

environmental justice: The challenge of making cities ‘just green enough’. Landscape 

and Urban Planning, 125, 234-244. 

Wolff, S., Schulp, C. J. E., & Verburg, P. H., 2015. Mapping ecosystem services demand: A 

review of current research and future perspectives. Ecological Indicators, 55, 159-171. 

Wong, M. S., Nichol, J. E., To, P. H., Wang, J., 2010. A simple method for designation of 

urban ventilation corridors and its application to urban heat island analysis. Building and 

Environment, 45(8), 1880-1889. 

Xie, M., Wang, Y., Chang, Q., Fu, M. & Ye, M., 2013. Assessment of landscape patterns 

affecting land surface temperature in different biophysical gradients in Shenzhen, China. 

Urban Ecosystems, 16, 871–886. 

Yu, C., Hien,W., 2006. Thermal benefits of city parks. Energy Build. 38 (2), 105-120. 

Zandersen et al., 2014. Ecosystem based approaches to climate adaptation. Urban prospects 

and barriers. Scientific Report from DCE – Danish Centre for Environment and Energy, 

no. 83. 

Zanon, B., & Verones, S., 2013. Climate change, urban energy and planning practices: Italian 

experiences of innovation in land management tools. Land Use Policy, 32, 343–355. 

Zardo, L., Geneletti, D., Perez-Soba, M., Van Eupen, M., in review. Estimating the cooling 

capacity of green infrastructures to support urban planning. Ecosystem Services Journal. 

Zimmerman, R., & Faris, C., 2011. Climate change mitigation and adaptation in North 

American cities. Current Opinion in Environmental Sustainability, 3(3), 181-187. 

 


