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Abstract

When this PhD started, the translation of speech into text in a different language was mainly

tackled with a cascade of automatic speech recognition (ASR) and machine translation (MT)

models, as the emerging direct speech translation (ST) models were not yet competitive.

To close this gap, part of the PhD has been devoted to improving the quality of direct

models, both in the simplified condition of test sets where the audio is split into well-formed

sentences, and in the realistic condition in which the audio is automatically segmented.

First, we investigated how to transfer knowledge from MT models trained on large corpora.

Then, we defined encoder architectures that give different weights to the vectors in the input

sequence, reflecting the variability of the amount of information over time in speech. Finally,

we reduced the adverse effects caused by the suboptimal automatic audio segmentation in two

ways: on one side, we created models robust to this condition; on the other, we enhanced the

audio segmentation itself. The good results achieved in terms of overall translation quality

allowed us to investigate specific behaviors of direct ST systems, which are crucial to satisfy

real users’ needs. On one side, driven by the ethical goal of inclusive systems, we disclosed

that established technical choices geared toward high general performance (statistical word

segmentation of the target text, knowledge distillation from MT) cause an exacerbation of

the gender representational disparities in the training data. Along this line of work, we

proposed mitigation techniques that reduce the gender bias of ST models, and showed how

gender-specific systems can be used to control the translation of gendered words related to

the speakers, regardless of their vocal traits. On the other side, motivated by the practical

needs of interpreters and translators, we evaluated the potential of direct ST systems in

the “augmented translation” scenario, focusing on the translation and recognition of named

entities (NEs). Along this line of work, we proposed solutions to cope with the major

weakness of ST models (handling person names), and introduced direct models that jointly

perform ST and NE recognition showing their superiority over a pipeline of dedicated tools

for the two tasks. Overall, we believe that this thesis moves a step forward toward adopting

direct ST systems in real applications, increasing the awareness of their strengths and

weaknesses compared to the traditional cascade paradigm.
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Chapter 1

Introduction

1.1 The Context

We live in a globalized world, where audiovisual content is the most

widespread mean of communication. Every day millennials spend more

than 17 (overlapping) hours consuming audiovisual content,1 and American

people listen to roughly 1 hour and a half of audio content.2 As such,

the access to this huge amount of online material covers paramount im-

portance and, foreseeing its value, UNESCO promoted multilingualism to

ensure universal access since 2003.3 However, the translation of all the

speech content into any language represents a pipe dream that cannot be

addressed only through the human workforce of professionals, advocating

for automatic systems to reduce the burden of translators. From these

considerations, it is no surprise that the automatic translation of speech is

gaining increasing interest for its potential pervasiveness in our daily life,

with applications that range from subtitling (Matusov et al., 2019), travel

conversations (Takezawa et al., 1998), and lecture translation (Fügen, 2009)

1https://www.entrepreneur.com/growing-a-business/millennials-spend-18-hours-a-day-

consuming-media-and/232062
2https://www.insiderintelligence.com/chart/243762/digital-audio-average-time-spent-

us-2018-2022-minutes-per-day-among-population-change
3https://www.unesco.org/en/communication-information/multilingualism-cyberspace

1

https://www.entrepreneur.com/growing-a-business/millennials-spend-18-hours-a-day-consuming-media-and/232062
https://www.entrepreneur.com/growing-a-business/millennials-spend-18-hours-a-day-consuming-media-and/232062
https://www.insiderintelligence.com/chart/243762/digital-audio-average-time-spent-us-2018-2022-minutes-per-day-among-population-change
https://www.insiderintelligence.com/chart/243762/digital-audio-average-time-spent-us-2018-2022-minutes-per-day-among-population-change
https://www.unesco.org/en/communication-information/multilingualism-cyberspace
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to documentation of endangered languages and crisis response (Bansal et al.,

2017), or even humanitarian expeditions (Black et al., 2002).

Although researchers have been confronted with the problem since the

late 80s (Stentiford and Steer, 1988; Waibel et al., 1991), the translation

of a speech segment (or utterance) into its textual content in a different

language is still a challenging task to perform automatically. The input, in

fact, has to be converted along two dimensions: the modality (from speech

to text), and the language. Due to the complexity of the task, the problem

has been decomposed into simpler parts, among which two are fundamental:

first, an automatic speech recognition (ASR) system covers the modality

transformation (from speech to text); then, a machine translation (MT)

system translates the produced text into the target language. This solution,

known as cascade, has been the standard approach for decades, and the

deep learning revolution (LeCun et al., 2015; Sejnowski, 2018) has initially

involved only its individual components, without changing the overall

composition and the interaction among the constituent systems.

In this revolution, phrase-based statistical MT (SMT) models (Zens

et al., 2002; Koehn et al., 2003) were replaced by neural MT (NMT)

networks (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014). In

ASR, the traditional approach relied on Gaussian mixture (Juang et al.,

1986) models to estimate the acoustic probability of a word in a given

frame or set of frames, and on Hidden Markov Models (HMM) to explore

the sequence of words considered acceptable by a language model (LM)

(Lamere et al., 2003; Schiel, 1999). Similarly to MT, first, the acoustic

models have switched from Gaussian mixture (Juang et al., 1986) to deep

neural networks (DNN) (Hinton et al., 2012); then, the whole task has

been performed with a single end-to-end DNN (Graves and Jaitly, 2014;

Chorowski et al., 2014).

This PhD journey started in 2019, a few years after the introduction

2
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of the first end-to-end, or direct, speech-to-text translation (ST) models

(Bérard et al., 2016; Weiss et al., 2017). Such models do not leverage

intermediate representations to perform the task (like the transcripts of

cascade solutions) and all their parameters are jointly trained toward the

ST task. Back then (in 2019), these models were struggling in achieving the

same translation quality as their cascade counterpart (Niehues et al., 2019),

although the gap dramatically decreased from the previous year (Niehues

et al., 2018). As such, closing this gap was the main focus of research efforts

(Di Gangi et al. 2019c; Bahar et al. 2019a among others).

This thesis not only joins the endeavors to increase the quality of direct

models, but – in light of the considerable reduction of the performance gap

with cascade systems – explores ancillary challenges to assess their specific

strengths and weaknesses in different use cases, and scenarios.

1.2 The Challenges

Translation quality is essential for an automatic ST system. However, many

other factors – such as efficiency, robustness, flexibility, customizability –

are critical in determining the success of an approach, as many applications

pose specific constraints. For instance, simultaneous translation requires

low latency4 (which implies model efficiency), while subtitling/dubbing calls

for short translations to comply with space and reading speed constraints

(Diaz-Cintas and Remael, 2007). In addition, the presence of non-native

speakers or noisy conditions increase the complexity of the task (Ansari

et al., 2020) and the recent awareness of the need for inclusive technologies,

representative of all groups and individuals, constitutes a crucial theme for

every application (Hovy and Spruit, 2016; Blodgett et al., 2020). At last,

4Limits of acceptability have been set between 2s and 6s for the ear-voice span depending on different

conditions and language pairs (Yagi, 2000; Chmiel et al., 2017).

3
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the importance of user perspective and the centrality of the human are

leading to new paradigms for translation systems (Lommel, 2018), in which

the key is the information provided to the user (professional translators,

post-editors, or end users), rather than the simple fluency and overall

correctness of the translation.

In light of these considerations, and with the goal of exploring the

strengths and weaknesses of direct ST models in future production environ-

ments, this PhD was directed toward two objectives: i) closing the overall

translation quality gap with cascade systems, and ii) investigating aspects

that are neglected by the coarse-grained indication of the holistic quality

(Callison-Burch et al., 2006) provided by automatic metrics, such as BLEU

(Papineni et al., 2002), TER (Snover et al., 2006), or even neural ones like

COMET (Rei et al., 2020), which are relatively insensitive to errors on

gender inflections (Bentivogli et al., 2020) and named entities (Amrhein

and Sennrich, 2022). With respect to objective i), on one side we worked

on training procedures and architectural solutions aimed at improving the

translation quality of direct ST systems with reasonable computational

costs (§1.2.1). On the other, we focused on how to limit the quality drops

observed when the audio is not segmented according to a known reference

but has to be automatically segmented into chunks processable by ST mod-

els (§1.2.2). Regarding objective ii), we first devoted ourselves to increasing

the inclusivity of direct ST models with respect to underrepresented gender

categories (§1.2.3). Then, we studied how to integrate direct ST systems

in the “augmented translation” paradigm, which requires enhancing and

enriching the output with additional information aimed at helping users’

comprehension (§1.2.4).

4
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1.2.1 Direct ST Quality and Efficiency

The introduction of the direct approach is motivated by its theoretical and

practical advantages (Sperber and Paulik, 2020): i) during the translation

phase it has access to information present in the audio that is lost in the

transcripts (e.g. prosody), ii) there is no error propagation (Ruiz and

Federico, 2014) (in cascade systems the errors introduced by the ASR are

propagated to the MT, which has no cues to recover them), iii) the latency

is lower (as data flows through a single system instead of two), and iv)

the management is easier (as there is a single model to maintain and no

integration between separate modules is needed).

On the downside, direct ST suffers from i) the lack of large ST training

corpora, ii) the complexity of addressing the task with a single model,

and iii) problems related to managing long input sequences. Regarding

i), the biggest ST corpus currently available is MuST-C (Di Gangi et al.,

2019a), which contains ∼500 hours of recorded TED talks resulting in

∼250K triplets (audio, transcript, translation). In comparison, many ASR

corpora are available and contain twice the number of hours (Panayotov

et al., 2015), while MT corpora often have more than 50M sentence pairs

(Tiedemann, 2016), two orders of magnitude more than ST data. The issues

ii) and iii), instead, lead to a challenging trade-off between the size of an

ST model and its computational cost. Indeed, the input of the network

is a sequence of samples collected from the audio with a high frequency,

typically one sample every 10ms. The resulting sequence length is usually

one order of magnitude higher than the corresponding MT input sequence

derived from the text. For this reason, dedicated architectures are needed

to avoid prohibitive computational and memory footprint, especially in

modern architectures based on the self-attention mechanism (Vaswani et al.,

2017) that has a quadratic complexity with respect to the length of the

5
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input sequence.

In this thesis, we address these limitations in §3, with a particular focus

on computational efficiency, in line with the rising concerns about the social

and environmental impact of expensive practices (Strubell et al., 2019).

1.2.2 Audio Segmentation

Direct and cascade ST systems are usually tested on benchmarks in which

the audio has been segmented into short segments of speech corresponding

to well-formed sentences (Di Gangi et al., 2019a; Iranzo-Sánchez et al.,

2020). Indeed, these test sets split continuous speech into utterances

according to strong punctuation marks in the transcripts (which are known

in advance), reflecting linguistic criteria related to sentence well-formedness.

This (manual) segmentation is optimal, as it allows ST systems to potentially

generate correct outputs even for languages with different syntax and word

order (e.g. subject-verb-object vs subject-object-verb). However, it does

not represent a realistic condition, as production deployments expose ST

systems to long, unsegmented audio streams, whose content is totally

unknown. In this scenario, the traditional approach consists in splitting

the audio on speaker silences – considered as a proxy of clause boundaries –

with a Voice Activity Detection (VAD) tool (Sohn et al., 1999). Since the

produced segmentation is not driven by syntactic information (unlike that

of the training corpora), final performance on downstream tasks is exposed

to considerable degradation (Sinclair et al., 2014).

In cascade systems, the impact of a syntax-unaware segmentation can

be mitigated by means of dedicated components that re-segment the ASR

transcripts, so to feed the MT model with well-formed sentences (Matusov

et al., 2006). The absence of intermediate transcripts makes this solution

unfeasible for direct systems, whose performance is therefore highly sensitive

to sub-optimal audio segmentation. The thesis covers our work on this

6
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problem in §4 with a two-fold approach: on one side we improve the way

the audio is segmented; on the other, we build models that are more robust

to the mismatch between the well-formed training data and suboptimal

splits supplied at inference time.

1.2.3 Gender Bias

The term “bias” comes from cognitive sciences (Tversky and Kahneman,

1973, 1974) and is conceived as the divergence from an expected value

(Glymour and Herington, 2019; Shah et al., 2020). As such, by gender

bias in automatic translation systems we refer to the overproduction of

masculine references in their outputs (Cho et al., 2019; Bentivogli et al.,

2020), and to feminine/masculine associations perpetuating traditional

gender roles and stereotypes (Prates et al., 2020; Stanovsky et al., 2019).

This attested systemic bias can directly affect the users of such technology

by diminishing their gender identity or further exacerbating existing social

inequalities and access to opportunities for women (Barocas et al., 2017;

Crawford, 2017).

The problem is exacerbated whenever systems are required to overtly

and formally express the speaker’s gender in the target languages while

translating from languages that do not convey such information. Indeed,

languages with grammatical gender, such as French and Italian, display

a complex morphosyntactic and semantic system of gender agreement

(Hockett, 1958; Corbett, 1991) relying on feminine/masculine markings

reflecting speakers’ gender on numerous parts of speech whenever they are

talking about themselves (e.g., En: I’ve never been there – It: Non ci

sono mai stata/stato). Differently, English is a natural gender language

(Hellinger and Bußman, 2001) that mostly conveys gender via its pronoun

system, but only for third-person pronouns (he/she), thus to refer to an

entity other than the speaker. In light of the importance and the scale

7
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of the problem and as a first step towards the design of more inclusive

technology, in §5 we explore mitigation strategies designed to reduce the

gender bias in direct ST systems in the challenging condition of target

languages with grammatical gender.

1.2.4 Augmented Speech Translation

“Augmented translation” (Lommel, 2018) is an emerging approach in au-

tomatic translation that aims at tightly integrating translation systems

with humans (either professional translators and post-editors or end users).

Drawing inspiration from augmented reality, where real-world vision is

complemented with relevant information, in augmented translation the

output is enriched and linked with information about useful concepts and

named entities (NEs) to help users’ understanding.5 On one side, this

can ease, speed up, and improve the generation of fluent and high-quality

translations by professional translators and post-editors; on the other, it

provides end users with additional information that may be needed to fully

understand a sentence, especially in highly specialized domains. Augmented

ST hence requires not only an accurate translation of the source speech,

but paramount importance is given to the accurate rendering of the NEs

involved, and to their recognition in the output text as well as, possibly,

their linking to external knowledge bases.

Motivated by the practical relevance of the problem, in §6 the ability

of direct ST models to properly handle NEs is first assessed, compared to

that of cascade systems, and then improved, together with their capability

to recognize which words belong to NE and which do not.

5https://intelligent-information.blog/en/augmented-translation-puts-translators-

back-in-the-center/

8
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1.3 Contributions

Following the partition into four pillars outlined in the previous section,

the main contributions of this thesis are listed below.6

1.3.1 Direct ST Quality and Efficiency

• The study of solutions to transfer the knowledge learned by MT models

trained on large amounts of parallel textual data into direct ST models.

– Gaido, M., Di Gangi, M. A., Negri, M., Turchi, M. (2020). End-

to-End Speech-Translation with Knowledge Distillation: FBK@

IWSLT2020. In Proceedings of the 17th International Conference

on Spoken Language Translation, IWSLT 2020 (pp. 80-88).

– Gaido, M., Di Gangi, M. A., Negri, M., Turchi, M. (2020). On

Knowledge Distillation for Direct Speech Translation. In Seventh

Italian Conference on Computational Linguistics, CLiC-it 2020

(Vol. 2769). Best Paper Award.

– Gaido, M., Negri, M., Turchi, M. (2022). Direct Speech-to-Text

Translation Models as Students of Text-to-Text Models. Italian

Journal of Computational Linguistics, IJCoL 8(8-1).

• The proposal of architectural solutions to compress the input audio

sequence, limiting the information loss, with the twofold goal of im-

proving the translation quality and reducing the computational cost.

– Gaido, M., Cettolo, M., Negri, M., Turchi, M. (2021). CTC-based

Compression for Direct Speech Translation. In Proceedings of the
6All the referenced papers are the results of a collaborative effort with the co-authors. For most of the

works, I am the first author, meaning that I was responsible for the research ideas, the implementations,

the experiments, the evaluation, the result discussion, and the writing, with the support and feedback of

the other authors. For the works marked with *, I am first co-author with equal contributions. For all

works where I am not the first author, a description of my contributions is provided.
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16th Conference of the European Chapter of the Association for

Computational Linguistics: Main Volume, EACL (pp. 690-696).

– Papi, S.*, Gaido, M.*, Negri, M., Turchi, M. (2021). Speechformer:

Reducing Information Loss in Direct Speech Translation. In Pro-

ceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2021 (pp. 1698-1706).

My contributions: equal contribution to research ideas, implementation, experi-

ments, and writing.

– Gaido, M.*, Papi, S.*, Fucci, D., Fiameni, G., Negri, M., Turchi,

M. (2022). Efficient yet Competitive Speech Translation: FBK@

IWSLT2022. In Proceedings of the 19th International Conference

on Spoken Language Translation, IWSLT 2022 (pp. 177-189).

My contributions: the work on offline speech translation systems.

1.3.2 Audio Segmentation

• The proposal of methods to build direct ST models that are robust to

imperfect automatic audio segmentation.

– Gaido, M., Di Gangi, M. A., Negri, M., Cettolo, M., Turchi, M.

(2020). Contextualized Translation of Automatically Segmented

Speech. Proceedings of Interspeech 2020, 1471-1475.

– Papi, S., Gaido, M., Negri, M., Turchi, M. (2021). Dealing with

training and test segmentation mismatch: FBK@ IWSLT2021.

In Proceedings of the 18th International Conference on Spoken

Language Translation, IWSLT 2021 (pp. 84-91).

My contributions: system design, guidance on implementation and experiments.

• The proposal of automatic audio segmentation approaches that limit

the translation quality degradation with respect to manual audio

10
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segmentation and are applicable efficiently to audio streams.

– Gaido, M., Negri, M., Cettolo, M., Turchi, M. (2021). Beyond

Voice Activity Detection: Hybrid Audio Segmentation for Direct

Speech Translation. In Proceedings of The Fourth International

Conference on Natural Language and Speech Processing, ICNLSP

2021 (pp. 55-62).

1.3.3 Gender Bias

• A survey on gender bias in the related field of MT, where my particular

focus was directed on the technical solutions proposed as mitigation

strategies.

– Savoldi, B., Gaido, M., Bentivogli, L., Negri, M., Turchi, M.

(2021). Gender Bias in Machine Translation. Transactions of the

Association for Computational Linguistics, TACL 9, 845-874.

My contributions: literature review of the technical solutions and contribution to

writing.

• The study of different solutions to integrate and control the information

of the speaker’s preferred gender in direct ST systems.

– Gaido, M.*, Savoldi, B.*, Bentivogli, L., Negri, M., Turchi, M.

(2020). Breeding Gender-aware Direct Speech Translation Sys-

tems. In Proceedings of the 28th International Conference on

Computational Linguistics, COLING 2020 (pp. 3951-3964). Out-

standing Paper.

My contributions: implementation, experiments, and automatic evaluation.

• An analysis of the effect of different word segmentation methods on

gender bias in direct ST with the definition of a mitigation strategy that

11
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takes account of both translation quality and gender translation, and

the creation of a benchmark extending MuST-SHE (Bentivogli et al.,

2020) – a test set made of TED talks focused on gender evaluation – for

fine-grained evaluation of morphosyntactic capabilities of ST systems.

– Gaido, M.*, Savoldi, B.*, Bentivogli, L., Negri, M., Turchi, M.

(2021). How to Split: the Effect of Word Segmentation on Gender

Bias in Speech Translation. In Findings of the Association for

Computational Linguistics: ACL-IJCNLP 2021 (pp. 3576-3589).

My contributions: research idea, implementation, experiments, and automatic

evaluation.

– Savoldi, B., Gaido, M., Bentivogli, L., Negri, M., Turchi, M. (2022).

Under the Morphosyntactic Lens: A Multifaceted Evaluation of

Gender Bias in Speech Translation. In Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), ACL 2022 (pp. 1807-1824).

My contributions: implementation, experiments, and automatic evaluation of the

systems.

– Savoldi, B., Gaido, M., Bentivogli, L., Negri, M., Turchi, M. (2022).

On the Dynamics of Gender Learning in Speech Translation. In

Proceedings of the 4th Workshop on Gender Bias in Natural

Language Processing, GeBNLP 2022 (pp. 94-111).

My contributions: implementation, experiments, and automatic evaluation.

1.3.4 Augmented Speech Translation

• A systematic analysis of the behavior of state-of-the-art ST systems in

translating NEs and terminology, with the release of a novel benchmark

built from European Parliament speeches annotated with NEs and

terminology.
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– Gaido, M., Rodŕıguez, S., Negri, M., Bentivogli, L., Turchi, M.

(2021). Is “moby dick” a Whale or a Bird? Named Entities and

Terminology in Speech Translation. In Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing,

EMNLP 2021 (pp. 1707-1716).

• The proposal of different methods to improve the quality of the trans-

lation of NEs, in particular of person names, both with and without

exploiting contextual information.

– Gaido, M., Negri, M., Turchi, M. (2022). Who Are We Talking

About? Handling Person Names in Speech Translation. In Pro-

ceedings of the 19th International Conference on Spoken Language

Translation, IWSLT 2022 (pp. 62-73). Best Paper Award.

– Gaido, M., Tang, Y., Kulikov, I., Huang, R., Gong, H., Inaguma,

H. (2022). Named Entity Detection and Injection for Direct Speech

Translation. Accepted at ICASSP 2023. © 2023 IEEE.

• The introduction of direct models that jointly perform ST and NEs,

with an extensive comparison among them accounting for both quality

and efficiency.

– Gaido, M., Papi, S., Negri, M., Turchi, M. (2022). Joint Speech

Translation and Named Entity Recognition. Under review at

Interspeech 2023.

1.3.5 Other contributions

Open Source Codebase. On account of my previous working experience

in software engineering and of my deep belief in open source developed

working in the Apache community, I would like to highlight an initiative I

advocated since my first day as a PhD student, which was supported by my
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advisors and the other people of the MT unit at FBK: the release of the

code for most of the works presented in this thesis (and for the other recent

works of the group) with MIT license in an open-source codebase7 derived

from a fork of the fairseq (Ott et al., 2019) repository. The repository

is built following software engineering practices to enforce the quality of

the software: i) unit tests (UTs) are added and executed for every new

commit with standard continuous integration (CI) pipeline enforcing that

new contributions do not break existing features and cause regressions;

ii) templates for merge requests (MRs) are required to provide context

and documentation regarding the code added, and these descriptions are

included in commit messages; iii) all contributions are internally peer-

reviewed by another member of the group to improve the readability of

the code and style coherence of the codebase. The adoption of these

practices is a guarantee of the functionality, code quality, and stability of

the codebase, both for the MT unit at FBK and for people interested in

using and/or contributing to our repository, and distinguish it from the

original fairseq repository where breaking changes are frequently introduced

without notification and documentation, due to the lack of working and

complete UTs and CI. Unfortunately, this initiative started in 2021, and

not all the code of previous works – developed for an older fairseq version

– has been migrated. For this reason, the code for papers from 2020 and

part of 2021 can be found in a previous repository.8

Other Works. Lastly, I have been involved in collaboration with other

PhD students and researches within the MT unit that contributed to my

personal, professional, and scientific growth. These works led to publications

in which my contribution was not prevalent and/or on topics related with

7https://github.com/hlt-mt/fbk-fairseq
8https://github.com/mgaido91/FBK-fairseq-ST
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this thesis, but not strictly part of it. As such, they have not been included

in the discussion, but, to acknowledge their importance as part of my PhD

experience, I list them here:

– Di Gangi, M. A., Gaido, M., Negri, M., Turchi, M. (2020). On Target

Segmentation for Direct Speech Translation. In Proceedings of the

14th Conference of the Association for Machine Translation in the

Americas, AMTA 2020 (Volume 1: Research Track) (pp. 137-150).

– Karakanta, A., Gaido, M., Negri, M., Turchi, M. (2021). Between

Flexibility and Consistency: Joint Generation of Captions and Subti-

tles. In Proceedings of the 18th International Conference on Spoken

Language Translation, IWSLT 2021 (pp. 215-225).

– Bentivogli, L., Cettolo, M., Gaido, M., Karakanta, A., Martinelli, A.,

Negri, M., Turchi, M. (2021). Cascade versus Direct Speech Transla-

tion: Do the Differences Still Make a Difference?. In Proceedings of the

59th Annual Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), ACL 2021 (pp. 2873-2887).

– Bentivogli, L., Cettolo, M., Gaido, M., Karakanta, A., Negri, M.,

Turchi, M. (2022). Extending the MuST-C Corpus for a Comparative

Evaluation of Speech Translation Technology. In Proceedings of the

23rd Annual Conference of the European Association for Machine

Translation, EAMT 2022 (pp. 359-360).

– Papi, S., Gaido, M., Negri, M., Turchi, M. (2022). Over-Generation

Cannot Be Rewarded: Length-Adaptive Average Lagging for Simulta-

neous Speech Translation. In Proceedings of the Third Workshop on

Automatic Simultaneous Translation, AutoSimTrans 2022 (pp. 12-17).
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– Papi, S., Gaido, M., Negri, M., Turchi, M. (2022). Does Simultaneous

Speech Translation need Simultaneous Models?. In Findings of the

Association for Computational Linguistics: EMNLP 2022.

1.4 Structure of the Thesis

The structure of the thesis reflects the challenges and contributions listed in

the previous sections. Specifically, after a background chapter (§2) involving

the fundamental concepts useful for the understanding of the thesis content,

the thesis continues with a chapter for each of the four pillars (direct ST

quality and efficiency in §3, audio segmentation in §4, gender bias in §5,

and augmented ST in §6), describing the corresponding contributions. The

conclusions chapter (§7) closes the thesis with remarks from the work carried

out in these three years, the limitations, and future research directions.
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Chapter 2

Background

The chapter contains a brief description of the technical concepts useful to

understand the content of the thesis. Complementary to the content of this

chapter, each of the four following chapters (§3, §4, §5, §6) has dedicated

realted works with the details specific to the topic.

As it would be impossible to include all the required technical concepts

in the thesis, a preliminary knowledge of the basics of neural networks and

deep learning is assumed. The reader can refer to the literature thoroughly

describing the topics they are not familiar with: for instance, (Goodfellow

et al., 2016) is a detailed resource meant for beginners that covers all basic

theory – including the mathematical and statistical theory – and more

advanced topics.

2.1 Deep Learning

Deep learning is the field of the artificial intelligence (AI) that studies

neural networks, which “are composed of multiple processing layers to learn

representations of data with multiple levels of abstraction” (LeCun et al.,

2015). The multiple layers are made of a set of parameters (usually referred

as θ in literature) that have to be “learned”, i.e. optimized for a specific

task. The task is defined by means of an objective function (or criterion)
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that can be either maximized or minimized. In the second case – the most

common in deep learning1 – they take the name of loss function (Wald,

1949).

In the traditional scenario of supervised learning, loss functions take

as input the probability distribution generated by the neural network and

a reference probability distribution, defined by a training set, which is

considered the ground truth. In particular, the most widespread loss

function is the cross entropy, which can be seen as a particular case of

the KL-divergence (Kullback and Leibler, 1951) that is a measure of the

distance between the two probability distributions. The KL-divergence is

formally defined as:

KL(p||q) =
∑

p(x)∗ logp(x)

q(x)
=

∑
x∈X

(
p(x)∗ logp(x)−p(x)∗ logq(x)

)
(2.1)

which measures the closeness of q to p, i.e. how much information is lost

when using q to approximate p. As, in the considered case of supervised

learning, we are interested in how likely is an output y among all the

possible Y outputs given an input x that is part of the training set X, the

above equation can be rewritten as:

L(X) =
∑
x∈X

∑
y∈Y

p(y|x) ∗ p(y|x)

q(y|x)

=
∑
x∈X

∑
y∈Y

p(y|x) ∗ log(p(y|x))−
∑
x∈X

∑
y∈Y

p(y|x) ∗ log(q(y|x))
(2.2)

where q is the probability distribution generated by the model and p

is the reference distribution. Since the first term does not depend on the

model probability, we can omit it in the optimization. In addition, we can

1Functions that should be maximized are commonly negated to obtain a function that has to be

minimized.
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replace p with the reference distribution, which takes the value 1 for the

correct target label y′x and 0 for all the other target labels. Hence, we finally

obtain the cross entropy loss over the X training set:

L(X) = −
∑
x∈X

log(q(y′x|x)) (2.3)

which represents the negative log-likelihood of the training set. This

means that minimizing the cross entropy loss corresponds to maximizing

the likelihood of the observation in the training set.

Minimizing (or optimizing) a loss in deep learning means finding the

optimal parameters θ′ that minimize it:

θ′ = arg min
θ∈Θ

L(X;θ) (2.4)

As in most of the cases the problem is intractable, in practice the

optimization consists in repeatedly computing the derivative of the loss

function with respect to the model parameters ∂L(X;θ)
∂θ , and updating the

parameters by moving in the opposite sign of the derivative by a small step

ϵ, known as learning rate:

θ ← θ − ϵ
∂L(X;θ)

∂θ
(2.5)

This procedure is operated for a fixed number of times N to obtain the

final estimate parameters (where N and ϵ are hyperparameters), and takes

the name of gradient descent (Cauchy, 1847).

In reality, as the amount of training data is huge, a plain application of

the gradient descent is not effective because every small step requires huge

computational costs (and time). For this reason, the gradient is estimated

only on small subsets of the training set, known as batches. We refer to this

practice as stochastic gradient descent (SGD, Bottou 1999), which is also

motivated by its regularization effect (Wilson and Martinez, 2003).
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The main issue of SGD is its lack of stability, as different batches may

lead to contrasting movements and slow-down the overall descent. To

face this problem, the concept of momentum (Polyak, 1964) has been

introduced, averaging the contribution of the gradient on a batch with

gradients previously computed on other batches, with different proposal

on how to do so that lead to a plethora of similar optimizers (Duchi et al.,

2011; Kingma and Ba, 2015; Ruder, 2016).

2.2 Deep Learning and Speech Processing

While the previous section described general concepts on neural networks,

in this section we turn to its application to speech processing tasks, such

as ASR and ST. First, we describe how audio and text are modeled (or

represented), i.e. in which form they are described in deep learning applica-

tions (§2.2.1). Then, we introduce on sequence-to-sequence architectures

(§2.2.2), with a particular focus on the widespread Transformer (§2.2.3),

its adaptation for speech tasks (§2.2.4), and on the recent state-of-the-art

Conformer architecture (§2.2.5).

2.2.1 Speech and Text Representation

In signal processing, audio is commonly represented as a sequence of over-

lapping frames with a 25ms window size and 10ms shift (Oppenheim et al.,

1999). For each of the frames, a set (or vector) of features, named mel-scaled

cepstral coefficients (Davis and Mermelstein, 1980), are extracted through

a multistep process from the speech signal. As a result, the input to speech

processing systems is a sequence of features of considerable and variable

length (e.g. 10s of audio lead to a sequence of ∼1,000 vectors, one every

10ms, while for 11s the length is ∼1,100). The features are usually 40-

or 80- dimensional vectors that represent the spectral envelope, which is
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associated with the vocal tract characteristics (Furui, 2010).

The text, instead, has been historically represented with a fixed vo-

cabulary of known words (Sutskever et al., 2014; Bahdanau et al., 2015),

typically the most frequent 30k-80k words (Collobert et al., 2011; Jean et al.,

2015). This was motivated both by the intuition that words constitute a

basic semantic unit (Jackendoff, 1990), and by the difficulty in effectively

handling long-range dependencies with the longer sequences produced by

character-level segmentation of the text, which required architectural adap-

tation to achieve competitive results (Costa-jussà and Fonollosa, 2016; Lee

et al., 2017). Nowadays, Byte-Pair Encoding (BPE, Sennrich et al. 2016)

has become the de-facto standard in MT (Koehn, 2017). By representing

the input text as a sequence of subword units, it enables open-vocabulary

translation while keeping reasonable the sequence length, achieving state-of-

the-art results. The size of the vocabulary obtained with BPE is controlled

by a parameter that represents the number of merge rules to define. The

algorithm starts from the characters in the training set, then it iteratively

adds a rule merging the two tokens that occur more frequently together.

At the end of this process, the vocabulary is obtained as the set of possible

subword units obtained by applying the learned merge rules.

2.2.2 Sequence-to-sequence Models

As we have just seen, both audio and text are represented as sequences

(respectively, of vectors and subword units) with variable length. The first

type of neural network capable of handling sequences of variable length has

been introduced by Rumelhart et al. (1986) and takes the name of recurrent

neural network (RNN).2 An RNN can convert i) a sequence of vectors into a

2In this thesis, we do not cover the internal functioning of RNNs, as nowadays they have been superseded

by the Transformer architecture (Vaswani et al., 2017) for most natural language processing (NLP) and

speech processing tasks (Dong et al., 2018; Di Gangi et al., 2019c) and we never employ them. Please

refer to (Goodfellow et al., 2016) for a thorough explanation of RNNs.
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single vector, ii) a sequence of vectors into another sequence of the same size,

or iii) a single vector into a sequence of vectors (Goodfellow et al., 2016).

However, in text-to-text translation and speech-to-text applications the

input sequence (of variable length) has to be converted into a sequence of a

different and variable length. For this reason, encoder-decoder architectures

(also known as sequence-to-sequence) were introduced (Sutskever et al.,

2014; Cho et al., 2014).

In their simplest form, both the encoder and the decoder are composed

by a single RNN and the information flows from the encoder to the decoder

by means of a single vector (usually called context vector). Specifically,

the encoder RNN maps the input sequence into the context vector, which

represents the content of the input. The context vector is then passed to

the decoder RNN that converts it into the output sequence. Formally, the

decoder (D) predicts the probability distribution over all the tokens of the

target vocabulary (V ) given the context vector (C ) and the previously

generated tokens:

pV (yt) = softmax(D(C;ht−1)) (2.6)

where ht−1 is a hidden representation that summarizes the previously

generated tokens y0, ..., yt−1. Abstracting from the RNN case, the definition

can be generalized as:

pV (yt) = softmax(D(E(X); y0, ..., yt−1)) (2.7)

where E is the encoder, and X is the input sequence. This property of

relying on the previously generated tokens is what characterizes autoregres-

sive models.3 At training time, the previous tokens are drawn from the

3Although non-autoregressive (NAR) models have been recently proposed (Gu et al., 2018), they are

not yet competitive with the autoregressive ones and, consequently, not widespread. As such, they are not

covered in the thesis. For an overview of NAR solutions, the reader can refer to (Gu and Tan, 2022).
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reference to parallelize the computation over the sequence (teacher forcing

– Kremer and Kolen 2001), while at inference time they are taken from the

most likely predictions according to the network. The generation process

continues until it reaches a special symbol added to the target vocabulary

(Schmidhuber, 2012), known as end of sentence (eos).

The main well-known limitation of RNNs is their difficulty in mod-

eling long-term dependencies, due to vanishing and exploding gradient

issues (Bengio et al., 1993, 1994; Kolen and Kremer, 2001). Indeed, RNNs

process the input sequence step-by-step and each time step has access to

the previous ones only through a single accumulated vector (hidden state).

As the hidden state is updated at each time step, the gradient diminishes

(up to vanishing) as the distance between two vectors increases, making it

impossible for distant elements to have a significant contribution.

2.2.3 Transformer

To overcome the above-mentioned limitation of RNNs, the Transformer

(Vaswani et al., 2017) architecture has been introduced. The Transformer

relies on the attention mechanism (Bahdanau et al., 2015) that allows

any vector of a sequence to “look at” (or “pay attention to”) any vector

of another sequence, regardless of their position. The specific attention

mechanism adopted is a variant of the dot-product attention (Luong et al.,

2015), that is formulated as follows:

Attn(Q,K, V ) = softmax
(QKT

√
dk

)
V (2.8)

where Q is the query, K is the key, V is the value, and dk is the size of

the dimension of the key (and query) vector. In particular, in Transformer

models there are two types of attention: the self-attention, and the cross-

attention (or encoder-decoder attention). In the first case, Q, K, and V
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are all derived from the same input sequence X – which, in our case, can

be either the sequence representing the speech signal or the sequence of

previously generated tokens fed into the decoder – transformed by three

different linear projections with learned weights WQ, WK , and WV :

SelfAttn(X) = softmax
(WQX(WKX)T√

dk

)
WVX (2.9)

In the second case, instead, the attention is computed by looking at the

encoder output E(X), to find the information relevant for the decoding

embeddings HD:

CrossAttn(X,HD) = softmax
(WQE(X)(WKHD)T√

dk

)
WVE(X) (2.10)

In practice, Vaswani et al. (2017) found that it is more effective to

divide the input Q, K, and V into h chunks – called heads – of equal size,

transform each head with a dedicated weight matrix, compute the attention

separately on these heads, and then concatenate the results. This operation

takes the name of multi-head attention, and can be formulated as follows:

MultiHead(Q,K, V ) = Concat(Attn(q0, k0, v0), ...,Attn(qh, kh, vh))WO

(2.11)

where WO ∈ R(dk,dk) is a learned matrix. Since the multi-head attention

is always used, hereinafter the term attention indicates the multi-head

variant.

Figure 2.1 depicts the whole architecture. The encoder is made of a stack

of Transformer encoder layers, each of them composed of two sublayers:

a self-attention, and a feed-forward network (FFN).4 Both the sublayers

are followed by a layer normalization (Ba et al., 2016), and are wrapped

4Also known as multi-layer perceptron (MLP), it is a stack of linear layers (2 in this case).
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Figure 2.1: Transformer architecture. Image taken from (Vaswani et al., 2017).

by residual connections (He et al., 2016), which means that the input of

the sublayer is added to its output. Similarly, the decoder is a stack of

Transformer decoder layers, which are analogous to the encoder ones, but

have an additional sublayer placed between the self-attention and the FFN:

a cross attention that allows the decoder embeddings to look at the encoder

outputs.

2.2.4 Transformer for Speech

The success of the Transformer architecture in MT, LM, and NLP (Radford

et al., 2018; Devlin et al., 2019) has led to its adoption also for ASR (Dong

et al., 2018). However, applying the Transformer architecture directly to

speech input is not feasible, as it would require a prohibitive amount of

memory. Indeed, self-attention layers have a quadratic memory complexity
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Figure 2.2: 2D self-attention. X is the input tensor representing an audio sequence (see

§2.2.1 for more details), andT is the transpose operation.

in the length of the input sequence,5 and the speech input of the network

is a sequence of samples collected from a high frequency (typically one

sample every 10ms, as seen in §2.2.1), usually one order of magnitude longer

than the corresponding MT input sequence derived from the text. For

this reason, Dong et al. (2018) reduce the length of the input sequence by

a factor of 4 by means of two 2D convolutional neural networks (CNNs,

LeCun 1989).6

In addition, Dong et al. (2018) also introduce the concept of 2D self-

attention. Their hypothesis is that the network architecture should model

the varying correlations between different frequencies and time, as these

are useful for humans. Figure 2.2 depicts the 2D self-attention mechanism.

5Q and K are tensors of size B × T × C, where B is the batch size, T is the length of the input

sequence, and C is the number of features. So the product QKT is a B × T × T attention matrix.
6Convolutions apply the same operation (the multiplication with a learned tensor, named kernel) to a

moving window of the input. The parameters that control its functions are: the size of the kernel, the

stride (i.e. how much the window over the input shifts left/down each time), and the padding size. Setting

the stride equal to 2 halves the shape of the input tensor over that dimension: in this way, two consecutive

CNN layers with stride 2 lead to a 4 (2 · 2) times reduction of the input size over that dimension.
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Differently from the attention introduced in §2.2.3, the input (X ∈ RT×C)

is transformed with 2D convolutions instead of linear projections to obtain

Q, K, and V . Then, Q, K, and V are passed to two different attentions:

one on the time axis, and the other on the frequency axis (in this case, Q,

K, and V are transposed before being fed to the attention mechanism and

then the result is transposed back).

The tensors resulting from the two attention operations are concatenated

on the frequency axis. The concatenated tensor has shape T × 2C before

being processed by the last 2D convolution, which has stride 2 on the

frequency dimension, hence producing an output with the same shape of

X.

To sum up, their encoder architecture is made of 2 CNNs that down-

sample the input by a factor of 4 over the time dimension, and 2 2D

self-attentions followed by a Transformer encoder. The decoder is instead a

plain Transformer decoder.

2.2.5 Conformer

The success of the Transformer architecture for speech processing tasks,

in particular for ASR, has motivated research to encode further inductive

biases7 to improve the generalization – and in turn the performance – of

the models. To date, the most fruitful of such efforts (contemporaneous to

this thesis) is the introduction of the Conformer architecture (Gulati et al.,

2020), which modifies the structure of the encoder layers with respect to

the Transformer.

The changes introduced in the Conformer encoder layer can be summa-

rized as follows: i) relative sinusoidal positional encoding (Dai et al., 2019)

are introduced in the self-attention for improved generalization with respect

to varying input lengths; ii) the FFN sublayer is replaced by two FFNs that

7Priors or assumptions related to how the information should be processed (Mitchell, 1980).

27



Chapter 2 2.3. DIRECT SPEECH-TO-TEXT TRANSLATION

Figure 2.3: Convolutional module in the Conformer encoder layer. All convolutional blocks

are 1D convolutions.

wrap the self-attention, inspired by the Macaron-Net (Lu et al., 2019a);

iii) a convolutional module (depicted in Figure 2.3) is added immediately

after the self-attention, before the last FFN module.

The convolutional module is wrapped in a residual connection. After a

layer normalization, a pointwise convolution transforms each feature vector

representing a time step in the same way and doubles the size of the features.

The feature dimension is brought to the original size by the Gated Linear

Unit (GLU) activation function (Dauphin et al., 2017). Then, a depthwise

convolution with 31 kernel size is applied before a batch normalization (Ioffe

and Szegedy, 2015), the Swish activation function (Ramachandran et al.,

2017), and another pointwise convolution similar to the first one. At last, a

dropout module (Srivastava et al., 2014) randomly masks (i.e. zeroes out)

a percentage of the values to prevent the network from overfitting.

To the best of the knowledge of the author, at the time of writing this

thesis the Conformer architecture represents the state of the art for speech

processing, and in particular for the ASR task.

2.3 Direct Speech-to-text Translation

2.3.1 Architectures for Speech Translation

The research on direct ST systems moved its first steps with architectures

based on RNNs (Bérard et al., 2016; Weiss et al., 2017). Later on, (Di Gangi

et al., 2019c) demonstrated the competitiveness of the Transformer archi-

tecture for speech described in §2.2.4 also for the ST task.
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Drawing on this finding, several works attempted to further improve

the effectiveness of the Transformer architecture by biasing the model to

attend to the local context (i.e. close vectors on the time dimension) in

the self-attention of the Transformer encoder layers. (Povey et al., 2018)

proposed a hard masking to restrict the span of “visible” frames only to

those nearby, (Sperber et al., 2018) introduced a Gaussian distance penalty,

and (Di Gangi et al., 2019b) presented a logarithmic distance penalty, which

does not require any hyperparameter (the Gaussian penalty is sensitive

to the initial value set for its variance) and is more effective than the

Gaussian counterpart. All these works subtract the penalty to the attention

weights, before the softmax computation, thus promoting an attention

matrix with high values only around the diagonal. In mathematical terms,

the self-attention mechanism in these works can be described as follows:

SelfAttn(X) = softmax
(WQX(WKX)T√

dk
− π(D)

)
WVX (2.12)

where D is a matrix whose cells contain the distance from the diagonal

cell of that row, and π is the distance penalty function.

The evolution of the architectures has moved forward during this PhD

as well. To date, the initial 2D convolutions have been replaced with 1D

convolutions (Wang et al., 2020b), and recent works (Inaguma et al., 2021;

Vyas et al., 2021) demonstrated the superiority of the Conformer architec-

ture in ST as well. The architectural improvements in ST contemporaneous

to this PhD will be described in more details in §3, pointing out to which

enhancements the work described in the thesis has contributed.

2.3.2 Overcoming Data Scarcity

Since the scarcity of available training data is one of the main issues for

direct ST (as mentioned in §1.2.1), the topic has been broadly studied.
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Apart from creating larger corpora (Di Gangi et al., 2019a; Wang et al.,

2020a), the problem has been tackled mainly with data augmentation and

knowledge transfer techniques.

Data Augmentation

The most widespread data augmentation techniques are SpecAugment,

time stretch (speed perturbation), and the generation of synthetic data by

augmenting the ASR corpora with translations produced by an MT system

fed with the known transcripts.

SpecAugment This data augmentation technique was originally introduced

for ASR (Park et al., 2019), but its effectiveness has also been demonstrated

for ST (Bahar et al., 2019b). The idea is to alter the audio features that

represent the speech to increase the variability of the training data and

lead to more robust systems. It operates on the input features, and it

consists in masking consecutive portions of the input in both the frequency

and time dimensions. On every input, at each iteration, SpecAugment is

applied with probability p. In case of application, it generates frequency

masking num masks on the frequency axis and time masking num masks

on the time axis. Each mask has a starting index, which is sampled from a

uniform distribution, and a number of consecutive items to mask, which is

a random number between 0 and respectively frequency masking pars and

time masking pars. Masked items are set to 0.

Time stretch Nguyen et al. (2020) propose to operate directly on the

features as well, with similar intents. In particular, it aims at generating the

same effect of speed perturbation (Ko et al., 2015) to increase the robustness

of the systems with respect to variations in speech rate. Its implementation

consists in dividing the input sequence in windows of w features and re-
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samples each of them by a random factor s drawn by a uniform distribution

(usually in the range [0.8, 1.25]). Another hyperparameter is the probability

of perturbing each sample.

Synthetic translation To leverage the availability of large ASR datasets

while training an ST model, parallel audio-translation pairs are created by

translating the transcript of each audio sample with an MT model (Jia

et al., 2019). As we discuss in §3, this method can also be considered as a

knowledge transfer technique: indeed, it transfers (or distills) the knowledge

of the MT model into the ST model.

Knowledge Transfer

The concept of knowledge transfer in neural networks is very similar to

that of humans. Indeed, it consists in “passing” information learned by a

neural network trained on a task to another neural network, addressing

either the same or a different task (Gutstein et al., 2008). In direct ST,

knowledge transfer from high resource tasks has been performed with model

pre-training, multitask learning, and knowledge distillation (KD).

Pre-training Regarding pre-training, several studies (Bérard et al., 2018;

Bansal et al., 2019) demonstrated the effectiveness of initializing the ST

model encoder with that of an ASR model trained on the large ASR corpora

available. Whether pre-training the decoder with that of an MT model is

beneficial, instead, is controversial. In (Bahar et al., 2019a), for instance, it

proved effective only with the addition of an adapter layer.

Multitask learning In the case of multitask learning, typically there is a

single, shared encoder whose outputs are used by two separate decoders ded-

icated to producing respectively the transcripts (ASR) and the translations
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(ST) (Weiss et al., 2017). In (Anastasopoulos and Chiang, 2018), each of

these two decoders can also attend to the representations generated by the

other. A slightly different approach is introduced by (Bahar et al., 2019a),

which does not add an ASR decoder but relies on an auxiliary Connectionist

Temporal Classification (CTC, Graves et al. 2006) loss in order to predict

the transcriptions from the encoder outputs (Kim et al., 2017). The CTC

algorithm enables producing an output sequence of variable length that is

shorter than the input one, as in this case (the input is a long sequence

of audio samples, while the output is the sequence of uttered symbols –

characters, sub-words – which is significantly shorter). In particular, for

each time step, the CTC produces a probability distribution over the possi-

ble target labels augmented with a dedicated <blank> symbol representing

the absence of a target value. These distributions are then exploited to

compute the probabilities of different sequences, in which consecutive equal

predictions are collapsed and <blank> symbols are removed. Finally, the

resulting sequences are compared with the target sequence.

Knowledge Distillation KD has been introduced to transfer knowledge from

a big model into a small, compressed one (Hinton et al., 2015). The goal

is to have a small model – named student in the KD learning procedure

– that performs similarly to its big counterpart – named teacher – while

being usable on low-resource devices (e.g. mobile phones). Specifically,

the student is trained to learn to mimic the probability distribution of the

teacher when processing the same input. This is obtained by using the

probabilities generated by the teacher as reference when training the student,

instead of the usual reference distribution, in which the correct label is

assigned probability 1 and all the others 0. In practice, this means that

the student is not trained to optimize the cross entropy loss function, but

to minimize the distance between its probability distribution and the one
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generated by the teacher. KD has been applied to direct ST for motivations

different from the original model compression. Liu et al. (2019) indeed

aimed at improving the quality of an ST student model by transferring

knowledge from an MT teacher, able to obtain better scores8.

8Compared to MT, ST is a more complex task with lower scores, as it does not only involve translating

from a source to a target language, but also recognising the speech content.
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Chapter 3

Direct ST Quality and Efficiency

3.1 Introduction

When this PhD started, in 2019, the performance gap between direct and

cascade systems was still large, although rapidly closing. This trend was

mirrored by the findings of the International Workshop on Spoken Language

Translation (IWSLT),1 a yearly evaluation campaign where direct systems

made their first appearance in 2018. On English-German, for instance,

the BLEU difference between the best cascade and direct models was still

substantial (1.6 points, Niehues et al. 2019), although it dropped from

the 7.4 points in 2018 (Niehues et al., 2018). Such difference was even

higher if we consider only the academic participants, with a 5.9 BLEU gap

between the KIT cascade system and the FBK direct one. For this reason,

a significant part of the PhD has been devoted to improving the overall

translation quality of direct systems, so as to reach the level of performance

of their cascaded counterparts.

As seen in §2.3.2, a well-known reason for the difference between the

two paradigms is the limited amount of parallel corpora available for direct

ST. Moreover, training a direct ST system is more difficult because the

task is more complex, since it deals with understanding the content of the

1http://iwslt.org
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input audio, and directly translating it into a different language without

recurring to intermediate representations. This led us to focus, in the first

part of the PhD, on transferring knowledge from the MT task and corpora

into direct ST models (§3.3).

After this strand of activities, we focused on improving the architecture

of direct ST models in terms of both efficiency and quality. Specifically, we

dedicated to the design of solutions accounting for the variability over time

of the amount of linguistic and phonetic information present in audio signals

(e.g. due to pauses and speaking rate variations). We first introduced a

dynamic content-based input compression of the audio representation based

on the integration of a CTC module in the encoder (§3.4). This module

aims at improving translation quality while reducing computational costs

and hardware requirements both at training and inference time. Then, we

worked on avoiding the initial fixed downsampling performed by state-of-

the-art architectures (see §2.2 and §2.3) by proposing a new architecture

(§3.5) built on an attention mechanism with reduced computational and

memory requirements and complemented by the previously mentioned CTC-

compression module. After the discussion of these two strands of activities,

we conclude the chapter by integrating our proposals with the most recent

advancements from the research community, aiming to further increase the

quality and efficiency of ST models by avoiding expensive pre-trainings and

filtering the training data (§3.6).

In light of the above, the contributions of this chapter include: i) the

comparison of the sequence KD methods where an ST student learns from

an MT teacher, with analysis of the problems introduced and how to solve

them; ii) the proposal of the first dynamic sequence-length reduction for

direct ST, which improves both translation quality and computational

efficiency; iii) the first architecture for direct ST that avoids an initial fixed

compression and improves audio understanding; iv) the demonstration that
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ASR pre-training can be avoided without significant quality drops, and that

a simple data filtering method based on the transcript/translation length

ratio increase quality and reduces training times.

As we will see throughout this chapter, we were not alone in this chase of

higher translation quality for direct – as well as for cascade – ST models. The

huge amount and quality of the contributions produced by the whole research

community over these three years have led to impressive results, outdating

at a fast pace previous architectures, techniques, and even experimental

settings, such as training parameters. For this reason, to avoid building our

research on obsolete – and potentially even misleading – settings, the works

we present in this chapter do not have a homogeneous setup, but each of

them is represented with the best baselines and hyperparameters available

at the time it was performed. This practice enforces the soundness of our

overall conclusions and offers at the end of the chapter a vision of the state

of the art at the time of writing this thesis. Indeed, in §3.6.4 we report

the current highest result – to the best of our knowledge – obtained by a

direct ST model on the popular English-German MuST-C test set without

leveraging external training data (in addition to the MuST-C training set).

The score (26.7) was only a pipe dream at the start of the PhD, when the

best-reported result in the same condition was 17.2 (Indurthi et al., 2020).

3.2 Related Works

In this section, we provide an overview of the concepts and techniques

relevant to the topics discussed in the next sections. First, we introduce the

available knowledge distillation methods for sequence-to-sequence applica-

tions (§3.2.1), which we study in the context of direct ST in §3.3. Then, we

discuss proposals related to the compression of the input sequences based on

the amount of information brought by each item (§3.2.2), also including so-
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lutions contemporary to ours, presented in §3.4. At last, we briefly describe

efficient attention mechanisms that approximate the original algorithm

reducing its computational complexity (§3.2.2), as they enable processing

longer input sequences, thus inspiring our architecture introduced in §3.5,

the first one avoiding fixed input downsampling.

3.2.1 Sequence-to-sequence Knowledge Distillation

As seen in §2.3.2, KD has been proposed in the context of classification,

where one label has to be predicted for every input. However, ST is a

sequence-to-sequence task, so the output is not a single label but a sequence

of variable length. Therefore, KD cannot be applied in its original form. For

sequence-to-sequence tasks, Kim and Rush (2016) proposed three different

techniques to distill knowledge at sequence level: i) word-level KD, ii)

sequence-level KD, and iii) sequence interpolation.

Word-level KD (henceforth Word-KD) is the most similar method to the

original KD definition formulated by Hinton et al. (2015) for classification.

In this case, the KL divergence (see §2.1) between the teacher and student

outputs is computed for every element (time-step) of the target sequence

and the final distance is the sum of the divergences over all the elements

(time-steps) of the sequence. Hence, the loss function is:

L(X) = −
∑
x∈X

∑
t∈[1,len(X)]

∑
y∈Y

p(yt|x, y0, ..., yt−1) ∗ log(q(yt|x, y0, ..., yt−1))

(3.1)

Sequence-level KD (henceforth Seq-KD) consists in replacing the target

reference (in our case the translation provided in the training corpora) with

the sequence of tokens (in our case the automatic translation) generated by

the teacher model. The loss function can be either the cross entropy or one

of its variants, as the label smoothed cross entropy (Szegedy et al., 2016).
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Sequence interpolation (henceforth Seq-Inter) relies as well on the

predictions of the teacher model. In this case, though, the N most likely

sequences resulting from the beam search are re-scored and the one with

the highest similarity with the ground truth is chosen as surrogate reference.

In the case of textual outputs, such as in MT and ST, the similarity with

the ground truth is computed with the BLEU score (Papineni et al., 2002).

Finally, Word-KD can be combined with the other two methods, resulting

in two additional alternatives: Word-KD+Seq-KD and Word-KD+Seq-Inter.

In the context of direct ST, as anticipated in §2.3.2, Liu et al. (2019)

train a direct ST model with Word-KD to transfer knowledge from the easier

MT task,2 in which models obtain better performance, and hence improve

the quality of the resulting ST student model. Jia et al. (2019), instead,

generate synthetic data by translating the transcripts of ASR corpora with

an MT model. Although presented as a data augmentation method, this can

also be interpreted as an application of the Seq-KD method, even though

the benefits of KD cannot be isolated from those due to the additional

data. However, no work investigated which is the best method to transfer

knowledge from MT to ST, nor compared the above-mentioned methods,

as we do in §3.3.

3.2.2 Content-based Input Compression

The information variability in speech inputs motivated the research commu-

nity to find alternatives to methods that perform an initial fixed compression

of the input (Sak et al., 2015; Bérard et al., 2016; Dong et al., 2018).

In the related field of ASR, Zhang et al. (2019); Na et al. (2019) propose

to leverage SkipRNN (Campos et al., 2018) to dynamically decide which

time steps have to be passed to the next encoder layer and which have

2ST does not only involve translating from a source to a target language, but also recognizing the

speech content.
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not. SkipRNNs determine whether a hidden state hi, representing the time

step i, should be passed to the next layer by computing an associated

probability pi of keeping it. The probability pi is obtained by summing

the cumulated probability of the previous steps ci with an increment of

probability of the current time step ∆pi, estimated from the current hidden

state by means of an FFN. When pi surpasses a threshold (0.5 in Campos

et al. 2018), the hidden state hi is passed to the next layer and ci is reset to

0; otherwise, hi is discarded. This method is hardly applicable, though, to

Transformer architectures. Indeed, replacing the initial convolutions with a

SkipRNN has two main problems: i) the network optimization is extremely

challenging due to vanishing/exploding gradient, preventing the successful

convergence of such architecture in our experiments; ii) as the computation

in RNNs is not parallelizable, the architecture training is extremely slow.

In ST, Salesky et al. (2019) demonstrated that a phoneme-based com-

pression of the input frames yields significant gains compared to fixed

length reduction. Phone-based and linguistically-informed compression

also proved useful in the context of visually grounded speech (Havard

et al., 2020). Zhang et al. (2020), instead, showed that selecting a small

percentage (∼16%) of the hidden states produced by a pre-trained ASR

encoder according to their informativeness improves ST quality. However,

these approaches respectively necessitate of a separate model to perform

phoneme classification and of a pre-trained adaptive feature selection layer

on top of a pre-trained ASR encoder. So, they: i) are affected by error

propagation (Salesky and Black 2020 show in fact that lower quality in

phone recognition significantly degrades final ST performance), ii) have a

more complex architecture, and iii) at least in the case of (Salesky et al.,

2019) require longer inference time, i.e. higher latency.

In contemporaneity and similarly to our work (see §3.4), Liu et al. (2020)

conceptually divide the encoder of the ST model into two parts: an acoustic
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and a semantic encoder. On top of the first part, the acoustic encoder,

a CTC loss predicts the audio transcript. This loss is not only used as

an auxiliary loss to help model convergence (see §2.3.2); its predictions

also determine which hidden states are passed to the semantic encoder,

and which should be discarded. Namely, all hidden states corresponding

to <blank> predictions are ignored, as well as those corresponding to a

prediction equal to the previous one. The remaining hidden states are

passed to the semantic encoder, which therefore receives a shorter sequence,

of similar length to that of the textual representation of the utterance. The

main difference between this solution and ours, as we will see in §3.4, lies

in how the CTC predictions are leveraged to compress the sequence.

3.2.3 Efficient Attention

Another strand of research focused on improving the efficiency of Transformer-

based architectures by reducing the computational complexity of the self-

attention (Tay et al., 2020). Among others, Beltagy et al. (2020); Choroman-

ski et al. (2021); Wang et al. (2020c); Katharopoulos et al. (2020); Zheng

et al. (2022) proposed approximated attention computations with linear

complexity on the length of the input sequence. Most of them, though, are

complex to adopt in a scenario in which the variability of the length of

the input sequence is high. For instance, low-rank approximations of the

attention matrix (Wang et al., 2020c) map the K and V matrices obtained

from each input sequence of any length into a fixed-length sequence by

applying a linear projection. On one side, mapping those sequences to a

fixed dimension can cause an excessive information loss, with a consequent

performance drop. On the other, it poses technical issues: the linear pro-

jection matrix has size n× k, where n is the maximum input length and k

is the fixed dimension. If the input has a length n′ shorter than n, which

is a common case in ST and ASR due to the high variability in length of
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audio sequences, only the first n′ weights of the matrix are updated. This

results in gradients of different dimensions across GPUs, leading to training

failures due to inconsistencies.

In ASR, Burchi and Vielzeuf (2021); Kim et al. (2022); Andrusenko et al.

(2022) instead do not operate directly on the self-attention mechanism,

but insert pooling layers to reduce the sequence length at different layers

of their revisited Conformer encoders. These recent works aim at both

increasing efficiency and overall quality. Their effectiveness in ST, though,

has not been investigated yet.

In ST, Alastruey et al. (2021) applied the Longformer (Beltagy et al.,

2020) – an architecture that features a local attention, in which each time

step can attend only to those within a fixed window size – but obtained a

degradation in translation quality. Alastruey et al. (2022) avoid the quality

drop by computing the full self-attention in the first three layers and by

applying a local attention with variable window size according to the layer

and language pair. None of the above-mentioned solutions (in ASR and ST)

avoid the initial sequence-length reduction performed by the convolutional

layers pre-pended to Transformer/Conformer encoders for speech (see §2.2)

or substitute it with a content-based compression as we do in §3.5 and §3.6.

To the best of our knowledge, the only other attempt to do so is a recent

work by Tsiamas et al. (2022a), in which the authors show that a Perceiver

encoder (Jaegle et al., 2021) fed with the full-length input sequence scores

results similar to a Transformer baseline with reduced computational cost.

3.3 Knowledge Distillation in ST

As anticipated in §3.1, the beginning of the PhD was dedicated to the

study of KD, which represents one of the most promising approaches to

transfer knowledge from MT to ST models. Indeed, Liu et al. (2019) showed
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that using an MT system as teacher brings significant improvements to

direct ST models. However, as mentioned in §3.2.1, they consider only the

Word-KD method, disregarding the other solutions to distill knowledge in a

sequence-to-sequence task like ST.

In addition to filling this gap by studying which KD method is more

effective in ST (§3.3.3), in this section we explore methods to improve the

computation of Word-KD both in terms of computational efficiency and

quality (§3.3.1). Lastly, we investigate the negative effects of KD and the

relationship between the quality of the teacher and that of the resulting

student (§3.3.4). Altogether, this investigation leads to the following overall

findings: i) the best training recipe involves a word-level KD training

followed by a fine-tuning step on the ST task, ii) word-level KD from

MT can lead to the omission of all the sentences after the first one in

multi-sentential utterances (though these problems are alleviated by the

fine-tuning on the ST task), and iii) the quality of the ST student model

strongly depends on the quality of the MT teacher model, although the

correlation is not linear.

3.3.1 Efficient Word-level KD

The definition of the Word-KD method exposed in §3.2.1 implies that the

whole output distribution of the teacher model is compared with the whole

output distribution of the student at each decoding step. In practice, this is

highly inefficient since pre-computing and storing the output probabilities

for each token of each sequence requires huge storage capacity (e.g. with

∼100,000 samples of average length 100 and 8,000 labels in the output

distribution, we would need to store 80,000,000,000 floats, corresponding

to more than ∼320 GB of storage). On the other hand, re-computing

the teacher target label at every iteration entails a forward pass on the

teacher network for every input batch, leading to a significant increase in

43



Chapter 3 3.3. KNOWLEDGE DISTILLATION IN ST

the training time.

Considering that the softmax operation produces peaky outputs that

tend to concentrate most of the probability distribution across up to 3-4

tokens, we hypothesize that truncating the probability distribution and

reducing the loss computation to only the K most likely labels can speed

up the training without compromising the quality of the resulting model.

Moreover, as mentioned in §3.2.1, KD has been proposed with a hyper-

parameter, the temperature, that controls the smoothness of the output

distribution and increases/decreases the importance of the so-called dark

knowledge. As previous work on the topic (Liu et al., 2019) disregarded

this aspect, we fill the gap by exploring whether favoring the learning of

such dark knowledge leads to better results.

3.3.2 Experimental Settings

In this section, we provide a comprehensive description of the data, archi-

tectures, and parameters utilized in our experiments for the MT teachers,

the ST models, and the ASR models employed for pre-training the encoder

of ST systems.

Data and Evaluation

For the initial comparisons, we train and evaluate systems in a controlled

setting, using only the data from Librispeech (Panayotov et al., 2015),

which contains 132, 553 (audio, transcript, translation) triplets for the

English→French language direction.

When validating our findings in high-resource conditions, instead, we

use the following MT, ASR, and ST corpora for three language pairs:

English→{French, German, Italian}. The MT data is a selection of the

OPUS corpora (Tiedemann, 2016), filtered using the cleaning utilities
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of ModernMT (Bertoldi et al., 2017). OPUS contains parallel sentences

automatically extracted from the web. As such, their nature is very different

from the ASR and ST data, which is based on recorded sessions (TED or

European Parliament talks) or book/manual readings and whose utterances

can contain more than one sentence. The ASR data include How2 (Sanabria

et al., 2018), Librispeech (Panayotov et al., 2015), Mozilla Common Voice,3

TED-LIUM 3 (Hernandez et al., 2018), and MuST-C (Di Gangi et al.,

2019a), which also constitutes our ST corpus with Europarl-ST (Iranzo-

Sánchez et al., 2020).

The input audio is pre-processed by extracting 40 features using Mel filter

bank with overlapping windows of 25 ms and 10 ms step size. The extracted

features are then normalized per speaker. This pre-processing is performed

with XNMT (Neubig et al., 2018). Samples resulting in more than 2,000

vectors (i.e. longer than 20s) are discarded to avoid excessive memory

requirements at training time. Both ASR and ST trainings augment source

audio with SpecAugment, using 0.5 as probability, 13 as frequency masking

pars, 20 as time masking pars, 2 as frequency masking num, and 2 as time

masking num. Text, instead, is tokenized after punctuation normalization

with Moses (Koehn et al., 2007) and segmented into sub-word units using

8,000 BPE merge rules (Di Gangi et al., 2020a) jointly learned on the two

languages of the MT dataset.

We evaluate the systems on the MuST-C test sets. The translation

quality of the systems is assessed with BLEU, using the multi-bleu.pl

script.

Architectures

Our MT models are Transformer models with 6 encoder layers and 6 decoder

layers. We use a small model with 512 hidden features and 8 attention

3https://voice.mozilla.org/
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2D Self-Attention Encoder Decoder BLEU

2 6 6 16.50

0 8 6 16.90

2 9 6 17.08

2 9 4 17.06

2 12 4 17.31

Table 3.1: Results on Librispeech with Word KD varying the number of layers.

heads in all attention layers and 1,024 hidden features in the FFNs of the

Transformer layers. In the experiments involving a larger amount of data,

all these hyperparameters are doubled.

In ASR and ST, the input features are processed with two 2D convo-

lutions, each having stride 2, that reduce the sequence length by a factor

of four. This sequence is then fed to the Transformer encoder, whose

self-attention layers are modified by biasing the attention matrix toward

close elements with a logarithmic distance penalty. We use a small model,

with 256 hidden features and 4 attention heads in all attention layers and

1,024 hidden features in the FFNs of Transformer layers. The number of

Transformer encoder layers is 8 and the number of Transformer decoder

layers is 6. In the high-resource experiments, we use 11 Transformer en-

coder layers and 4 Transformer decoder layers for our ST models, while the

ASR models used for the pre-training have 8 Transformer encoder layers

and 6 Transformer decoder layers. When loading the pre-trained encoder

layers, the additional 3 layers of the ST model are randomly initialized and

behave as adapter layers (Jia et al., 2019; Bahar et al., 2019a). Moreover,

we increase the size of the models that have 512 hidden features and 8

attention heads in the attention layers, and 2,048 hidden features in the

FFNs.

These choices are motivated by preliminary experiments on Librispeech

(Panayotov et al., 2015) reported in Table 3.1, in which we observed that
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replacing 2D self-attention layers with additional Transformer encoder layers

was beneficial to the final score. Moreover, we noticed that the addition

of encoder layers improves the results, while the removal of two decoder

layers does not significantly degrade the performance.

Training Details

In all our trainings we choose Adam using betas (0.9, 0.98) as optimizer

and, in case the loss is not the KL-divergence, we use label smoothing

with smoothing factor 0.1. For ASR, the objective function also includes

CTC loss, which is summed to the cross entropy. The CTC is computed on

the encoder output (with the transcripts as target), and its role is only to

aid model convergence and improve the final quality of the model. In all

trainings, the learning rate is increased linearly for 4, 000 updates, up to

the value of 5 ∗ 10−3, and then decays with the inverse square root policy.

In the fine-tunings, instead, the learning rate is kept fixed and is 1 ∗ 10−4.

The dropout is set to 0.2.

Each mini-batch contains 8 samples and we train on 8 K80 GPUs, but

parameter updates are delayed after 8 mini-batches to reach an overall

batch size of 512.

3.3.3 Results

First of all, we report preliminary experiments to define the best values for

the K elements to keep from the teacher distribution, and the temperature

T when performing Word-KD, as per §3.3.1. Then, we compare the three

KD methods described in §3.2.1 on the Librispeech corpus. Within this

controlled setting, the benefits brought by KD to the ST students are not

due to the indirect exposure to additional MT data, but to the easiness to

learn by extracting knowledge from the better-performing MT teacher. At
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Top K BLEU

4 16.43

8 16.50

64 16.37

1024 16.34

Table 3.2: Results on Librispeech with different K values, where K is the number of tokens

considered for Word-KD.

last, we validate the effectiveness of the best method in the more realistic

high-resource conditions.

Word-KD Computation

Table 3.2 reports the results for different K values. As the output is required

to be a valid probability distribution, after the truncation the probabilities

are re-scaled to sum up to 1. As per the formulated hypothesis based on

the softmax behavior, limiting the KL-divergence computation to a small

number of labels does not impact performance. On the contrary, the best

result is obtained with 8 labels, in line with similar findings for MT (Tan

et al., 2019). Indeed, predictions with very low probabilities are likely to

be uninformative and noisy and do not carry useful information about the

internal knowledge of the teacher. In light of these results, hereinafter all

experiments with Word-KD assume that the KL-divergence is only computed

by setting K = 8, i.e. on the top 8 output labels of the teacher distribution.

Moving to the assessment of the best value to use for the temperature,

instead, Table 3.3 shows that the best BLEU score is achieved by setting

the temperature to 1.0, which means by training without any smoothing

factor. This finding suggests that ST models – as they need to learn a

more complex task – have a limited capacity with respect to MT models,

and therefore focusing only on the mode of the MT model distributions

is more convenient. Accordingly, in the following experiments we do not
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T BLEU

1.0 16.50

4.0 16.11

8.0 14.27

Table 3.3: Results on Librispeech with different temperatures (T ). All differences are

statistically significant with p = 0.05.

BLEU

Baseline 9.4

Word-KD 16.5

Seq-KD 13.4

Seq-Inter 13.3

Seq-KD + Word-KD 15.7

Word-KD + FT Seq-KD 16.7†

Seq-KD + FT Word-KD 16.8†

Word-KD + FT w/o KD 16.8†

Table 3.4: Results of the small model on Librispeech with different KD methods and

combining them in a single training or in consecutive trainings through a fine-tuning (FT).

“†” indicates that improvements over Word-KD are statistically significant with p = 0.05.

apply smoothing, by setting the temperature hyperparameter to 1.0.

Word-KD, Seq-KD, Seq-Inter and their Combination

We now compare the standard cross entropy loss – which we consider

our baseline – with the KD methods. The comparison is also carried out

by considering different combinations of such techniques. These can be

performed in two ways: by applying both techniques together in the same

training, or by first training with one technique and then fine-tuning the

resulting ST model with the other. We also experimented with fine-tuning

(FT) without KD after the application of a KD method. The results are

reported in Table 3.4.

Looking at the Baseline and the three KD techniques, we can conclude

that all KD methods improve significantly over the Baseline, with gains
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that range from 3.9 to 7.1 BLEU points. Moreover, Word-KD is a clear

winner among them, with a 3.1 BLEU margin over Seq-KD. Combining

Word-KD and Seq-KD in a single training (Seq-KD + Word-KD) does not

bring advantages; conversely, the result is worse (-0.8 BLEU) than the

training with only Word-KD. The quality of the resulting model is instead

improved when Word-KD and Seq-KD are applied sequentially, i.e. when a

first training with either of them is followed by a fine-tuning with the other

(see Word-KD + FT Seq-KD and Seq-KD + FT Word-KD). Both solutions

yield small gains of 0.2-0.3 BLEU points over the Word-KD method alone.

The same result is also obtained when training on Word-KD and fine-tuning

on the ground truth references with label smoothed cross entropy, i.e.

without KD (Word-KD + FT w/o KD).

Although they are in line with previous work on KD for ST from MT

(Liu et al., 2019), our results do not confirm the trends shown in (Kim and

Rush, 2016), where KD is used to compress MT models. Indeed, in our case

Word-KD is a clear winner. This suggests that the effectiveness of different

KD methods in a sequence-to-sequence scenario varies depending on the

peculiarities of the task.

High Resource Conditions

Once defined the best KD practice in controlled settings with the above

experiments, we validate its effects in the more realistic high-resource

scenario, in which large parallel MT corpora are available, together with

a considerable amount of speech hours with the corresponding transcripts

(ASR data).4 The ST training is carried out in three phases: i) a training

with Word-KD on the ASR corpora, whose transcripts are translated into

the target language with the MT model (i.e., a Word-KD + Seq-KD training

4Although large ST corpora are not available, plenty of ASR and MT data can be collected to build

models for real use cases.
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Language Pair MT Teacher ST after Word-KD (step ii)) ST after fine-tuning (step iii))

en-de 32.1 25.8 27.6

en-fr 46.0 36.5 40.3

en-it 32.7 22.8 27.7

Table 3.5: Scores of the MT teachers and ST students on the MuST-C tst-COMMON set

for en→{fr,de,it}.

on the ASR data); ii) a fine-tuning with Word-KD on the ST corpora; iii) a

fine-tuning without KD, as per the best training method in our previous

experiments. The ST encoder is initialized with that of an ASR model

trained on the above-listed corpora and scoring 10.2 WER on the MuST-C

test set.

Table 3.5 reports the scores of the MT teachers, the ST students after

the first two training steps (those including Word-KD), and the final ST

score after the last fine-tuning without KD. These results emphasize the

importance of the last fine-tuning without KD to obtain state-of-the-art

results. Indeed, we can see that in the real scenario, where there is a

significant domain mismatch between the MT and the ST training data

(web-crawled pairs vs TED talks, see §3.3.2), distilling the MT knowledge

brings information and benefits that mostly emerge in the overall scores

after the final fine-tuning. Our hypothesis is that the additional useful

knowledge is counterbalanced by the negative effect of learning patterns

that are valid only for the MT training data. In the following, we study

what these spurious patterns and negative effects are.

3.3.4 Analysis

In this section, we first investigate which are the possible negative effects in-

troduced by learning from an MT teacher. Then, we explore how important

is the quality of the MT teacher for the ST student.
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KD Negative Effects

We conducted a manual analysis on the en-it outputs, as en-it shows

the highest gain (+4.9 BLEU, while en-fr has a +3.8 BLEU and en-de a

+1.8 BLEU improvement – see Table 3.5). In particular, we selected and

inspected the samples with the highest TER (Snover et al., 2006) gains after

fine-tuning. This analysis revealed two main types of output improvements.

Avoid Sentence Omissions. The ST student often generates only the first

sentence of an utterance and terminates the generation after it, regardless

of whether the utterance really contains a single sentence or more than one.

In this second case, hence, the output turns out to be truncated. Most

likely, the root cause can be attributed to the nature of the data the MT

teacher is trained on: indeed, MT corpora contain mostly parallel sentences

and rarely a sample contains more than one sentence. As such, the MT

teacher (and, in turn, its ST student) learn to terminate the sentence after

the full stop. Fine-tuning on the ST task, however, solves the issue: upon

manual inspection, none of the outputs of the fine-tuned model is affected

by omissions.

Verbal Tense and Lexical Choices. The ST student often chooses verbal

tenses that are more common and less accurate. For instance, “That meant

I was going to be on television” has been translated by the ST student as

“Questo significava che stavo andando in tv”. Although it might be con-

sidered acceptable in a colloquial scenario, this translation is grammatically

wrong as the imperfect indicative verbal tense (stavo andando) should not

be used in objective prepositions referring to past events. The fine-tuned

model, instead, produces the correct translation with the grammatically-

correct verbal tense “Questo significava che sarei andata in televisione”.

Similarly, in some cases the ST student prefers common, generic words. For

52



Chapter 3 3.3. KNOWLEDGE DISTILLATION IN ST

instance, “She has taken a course in a business school, and she has

become a veterinary doctor” should be translated as “Ha seguito un corso

in una scuola di business, ed è diventata una veterinaria”. However,

the ST student produces lezione (lesson) instead of corso and economia

(economics) instead of scuola di business. After fine-tuning, the model uses

the correct terms corso and business school. Though important in terms of

final score, these improvements may be also considered as an adaptation to

a different domain and linguistic style (less colloquial), mostly due to the

domain mismatch between the MT training data (web-crawled sentence

pairs) and the ST data (TED talks).

As mentioned, the fine-tuning enhancements are mostly adaptations to

the ST data and domain, which have peculiarities that differentiate them

for the MT corpus used to train the MT teacher. This explains also the

reason why the gains obtained with the fine-tuning are smaller in §3.3.3,

where the MT and ST data coincide.

The Importance of Teacher Quality

So far, we analyzed what the ST student learns from the MT teacher.

However, we have not yet addressed the question: how much does the

ST student learn from the MT teacher? How important is the quality of

the MT teacher for the ST student quality? To answer these questions,

we experimented using MT teachers of different quality (controlled by

adding/removing data) to train ST students on the MuST-C en-it section,

the same used in our previous analysis. We tested both Word-KD and

Seq-KD to understand whether the quality of the teacher is a factor to

be considered when choosing the KD method, e.g. whether with low-

performing teachers one method is preferable, while with strong teachers

the other one is superior.

We consider four teachers with different quality levels and the resulting
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Figure 3.1: ST student performance (y axis – BLEU score) according to the MT teacher

quality (x axis – BLEU score), when using Word-KD and Seq-KD, on MuST-C en-it.

teacher quality is controlled by sampling the training data. In particular,

the best teacher (scoring 32.7 BLEU) is trained on the whole OPUS corpus

(60M sentence pairs). Then 10M, 1M and 250K (the size of the MuST-C

dataset) sentences are sampled to define the training sets for the other three

teachers, ensuring that all the sentences included in one training set are

also present in the bigger datasets. The teachers trained on these smaller

datasets score respectively 30.1, 26.1, and 20.3 BLEU. Unsurprisingly, the

score of the MT system trained on the MuST-C dataset (28 BLEU) is

significantly higher than the results of the MT models trained on a similar

amount of out-of-domain data. Indeed, we need to increase by 40 times

the size of the training data to obtain better scores. Although the scores

are relatively low, this represents a normal working condition when using

KD as a source of potentially useful external knowledge, as MT models are

usually trained on large generic training corpora.

Looking at Figure 3.1, we can confirm the intuition that a better teacher

leads to a better student, although the students’ training set is the same

and the margin with the teacher is huge even with the worst teacher (+3.7

BLEU). In addition, we can notice that the student is able to only partially

learn the additional knowledge of the teacher: the gap between the MT

teacher and the ST student’s quality increases with the teacher quality and
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the ST student BLEU score has not a linear dependency with the teacher

BLEU, as the benefits become smaller at higher BLEU scores (the Word-KD

student gains only 0.3 BLEU when the teacher improves from 30.1 to 32.7).

We can conclude that the student is able to learn only part of the teacher

knowledge and the lower scores are not only due to a lower capacity of the

student model, since the student has a large margin of improvement even

with bad teachers, but improves significantly with a better teacher.

Finally, the comparison of Word-KD and Seq-KD results in similar trends

and scores. The two methods behave similarly both with low and high-

quality teachers and they show the same performance. Indeed, the very

small BLEU differences can be ascribed to statistical fluctuations and one

method is not always better than the other. These results do not confirm the

superiority of Word-KD shown in §3.3.3, but the difference can be explained

with the different setting and scenario: in §3.3.3 the training set of the MT

teacher is the same set on which the ST student is trained, while here the

MT teacher is trained on different, out-of-domain corpora.

All in all, this analysis indicates that only part of the knowledge of the

teacher can be learned by the student. Future research might try to explain

which information can be learned by the student to provide insights on

methods to create models that are better teachers as they focus on what

can be learned by student models or to understand how to inject into the

student the knowledge of the teacher that current KD methods do not allow

learning.

3.3.5 Summary

Our quest for high-quality direct ST systems started from a systematic

analysis of the application of KD techniques to transfer the knowledge of an

MT model into an ST system. First, we compared the methods proposed

in literature to distill knowledge in sequence-to-sequence models, as MT
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and ST systems are. Our experiments, besides confirming the benefits

brought by KD, have shown the superiority of the Word-KD technique and

the importance of fine-tuning the resulting ST student on the ST data

without KD. Second, we individuated the main limitations introduced by

distilling knowledge from an MT teacher: sentence truncation and omission

in multi-sentential utterances. We also showed that these issues can be

overcome with a simple fine-tuning without KD. Third, we demonstrated

that the quality of the MT teacher is essential and that a better MT teacher

leads to a better ST student, although the student gains tend to saturate

when the teacher scores are high. Overall, our results show that distilling

knowledge from MT is a good knowledge transfer technique, which enables

benefiting from the abundance of parallel textual data in the ST task.

However, it requires some adroitness, as shown by the importance of a

KD-independent fine-tuning to solve the undesirable side effect of learning

behaviors of the MT teacher that can be harmful to the task at hand. The

rest of the chapter is dedicated to improving the quality of ST systems

focusing on a different aspect. Specifically, it describes our proposal of

encoder architectures that account for the variability of the amount of

information in the audio signal by compressing the input sequence with a

dynamic, content-based method.

3.4 CTC Compression

As seen in §3.2.2, previous studies have demonstrated that a dynamic phone-

informed compression of the input audio is beneficial for ST. However, none

of them tested this solution in a direct ST system, in which a single model

translates the input audio into the target language without intermediate

representations. Here, we propose the first method able to perform a

dynamic compression of the input in direct ST models (§3.4.1). In particular,
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we exploit the CTC to compress the input sequence according to its phonetic

characteristics, i.e. the corresponding phones obtained from a phonetic

conversion of the transcripts (§3.4.2). As we will see, our experiments

(§3.4.4) demonstrate that our solution yields an improvement of up to 1.5

BLEU over a strong baseline on two language pairs (English-Italian and

English-German), contextually reducing the memory footprint by more

than 10%.

3.4.1 Architecture

The CTC algorithm (see §2.3.2) is usually employed for training a model

to predict an output sequence of variable length that is shorter than the

input one. This is the case of speech/phone recognition, as the input is

a long sequence of audio samples, while the output is the sequence of

uttered symbols (e.g. phones, sub-words), which is significantly shorter. In

particular, for each time step, the CTC produces a probability distribution

over the possible target labels augmented with a dedicated <blank> symbol

representing the absence of a target value. These distributions are then

exploited to compute the probabilities of different sequences, in which con-

secutive equal predictions are collapsed and <blank> symbols are removed.

Finally, the resulting sequences are compared with the target sequence.

As seen in §2.3.2, adding an auxiliary CTC loss to the training of direct

ST and acoustic ASR models has been shown to improve performance. In

(Kim et al., 2017; Bahar et al., 2019a), the CTC loss is computed against the

transcripts on the encoder output to favor model convergence. Generally,

the CTC loss can be added to the output of any encoder layer, as shown in

Figure 3.2, where the hyperparameter NCTC indicates the number of the

layer at which the CTC is computed. Formally, the final loss function is:

λ = CTC(ENCTC
) + CE(DND

) (3.2)
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Figure 3.2: Encoder architecture with CTC loss.

where Ex is the output of the x-th encoder layer, DND
is the decoder output,

CTC is the CTC function, and CE is the label smoothed cross entropy. If

NCTC is equal to the number of encoder layers (NE), the CTC input is the

encoder output. In our experiments (§3.4.4), we consider this solution as

our baseline and we also test it with phones as target.

As shown in Figure 3.2, we use as model a Transformer, whose encoder

layers are preceded by two 2D convolutional layers that reduce the input

size by a factor of 4. Therefore, the CTC produces a prediction every 4

input time frames. The sequence length reduction is necessary both because

it makes possible the training (otherwise out-of-memory errors would occur)

and to have a fair comparison with modern state-of-the-art models. A

logarithmic distance penalty is added to all the Transformer encoder layers.

Our proposed architecture is represented in Figure 3.3. The difference

with the baseline is the addition of a block (Collapse same predictions)

that exploits the CTC predictions to compress the input elements (vectors).

Therefore, in this case the CTC does not only help model convergence, but

it also identifies variable-length segments representing the same content.

In this way, dense audio portions can be given more importance, while

redundant/uninformative vectors can be compressed. This allows the
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Figure 3.3: Encoder architecture with CTC compression.

following encoder layers and the decoder to attend to useful information

without being “distracted” by noisy elements. The architecture is a direct

ST solution as there is a single model whose parameters are optimized

together without intermediate representations. At inference time, the only

input is the audio and the model produces the translation into the target

language (contextually generating the transcripts/phones with the CTC).

We compare three techniques to compress the consecutive vectors with

the same CTC prediction:

• Average. The vectors to be collapsed together are averaged. As there

is only a linear layer between the CTC inputs and its predictions, the

vectors in each group are likely to be similar, so the compression should

not remove much information.

• Weighted. The vectors are averaged, but the weight of each vector

depends on the confidence (i.e. the predicted probability) of the CTC

prediction. This solution is meant to give less importance to vectors

whose phone/transcript is not certain.

• Softmax. In this case, the weight of each vector is obtained by
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computing the softmax of the CTC predicted probabilities. The idea

is to propagate information (nearly) only through a single input vector

(the more confident one) for each group.

3.4.2 Data

We experiment on the English-Italian (465 hours) and English-German (408

hours) sections of MuST-C. For each set (train, validation, test), it contains

the audio files, the transcripts, the translations and a YAML file with the

start time and duration of the segments.

In addition, we extract the phones using Gentle.5 Besides aligning the

transcripts with the audio, Gentle returns the start and end time for each

recognized word, together with the corresponding phones. For the words not

recognized in the audio, Gentle does not provide the phones, so we lookup

their phonetic transcription on the VoxForge6 dictionary. For each sample

in the corpus, we rely on the YAML file and the alignments generated by

Gentle to get all the words (and phones) belonging to it. The phones have a

suffix indicating the position in a word (at the end, at the beginning, in the

middle or standalone). We also generated a version without the suffix (we

refer to it as PH W/O POS). The resulting dictionaries contain respectively

144 and 48 symbols.

3.4.3 Experimental Settings

We evaluate performance on MuST-C with WER for ASR and with BLEU

(Papineni et al., 2002) computed with multi-bleu.pl7 and SacreBLEU

(Post, 2018)8 for ST.

5https://lowerquality.com/gentle/
6http://www.voxforge.org/home
7To be comparable with previous works.
8The version signature is: BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.3.
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WER (↓) RAM (MB)

Baseline - 8L EN 16.0 6929 (1.00)

8L PH 15.6 6661 (0.96)

2L PH AVG 21.2 3375 (0.49)

4L PH AVG 17.5 4542 (0.66)

8L PH AVG 16.3 6286 (0.91)

8L PH W/O POS. AVG 16.4 6565 (0.95)

8L EN AVG 16.3 6068 (0.88)

Table 3.6: Results on ASR using the CTC loss with transcripts and phones as target.

AVG indicates that sequence is compressed by averaging the vectors.

The ST and ASR architectures have the same hyper-parameters of the

big models described in §3.3.2. We use 8 Transformer encoder layers and 6

decoder layers for ASR and 11 encoder and 4 decoder layers for ST unless

stated otherwise. Training details are also similar, including the batch size,

the GPUs, and the preprocessing steps used to extract the features from

the input audio. We change only the policy of the learning rate, which

linearly increases from 3e-4 to 5e-3 for 4,000 updates, then decays with the

inverse square root. The text is tokenized into subwords with 1,000 BPE

merge rules. We train until the model does not improve on the validation

set for 5 epochs and we average the last 5 checkpoints.

3.4.4 Results

As our CTC-compression mechanism is applicable in all tasks where the

source is speech, we evaluate its effectiveness both in the ASR and direct

ST tasks.

ASR

We first tested whether ASR benefits from the usage of phones and se-

quence compression. Table 3.6 shows that having phones instead of English

transcripts (Baseline - 8L EN) as target of the CTC loss (8L PH) without
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en-it en-de

BLEU SacreBLEU RAM (MB) BLEU SacreBLEU RAM (MB)

1. Di Gangi et al. (2020a) 20.1 - - 19.1 - -

2. Baseline - 8L EN 22.1 21.8 9624 (1.00) 20.4 20.5 9166 (1.00)

3. 8L PH 22.6* 22.3* 9567 (0.99) 21.6* 21.6* 9190 (1.00)

4. 2L PH AVG 20.2 20.0 5804 (0.60) 17.8 17.8 4484 (0.49)

5. 4L PH AVG 21.6 21.3 6193 (0.64) 20.1 20.2 5186 (0.57)

6. 8L PH AVG 23.2† 22.8† 8554 (0.89) 21.8* 21.9* 7348 (0.80)

7. 8L PH WEIGHTED 22.7* 22.5* 7636 (0.79) 21.7* 21.8* 7380 (0.81)

8. 8L PH SOFTMAX 22.6* 22.3* 7892 (0.82) 21.8* 21.9* 7436 (0.81)

9. 8L PH W/O POS. AVG 22.2 22.0 7451 (0.77) 21.5* 21.6* 7274 (0.79)

10. 8L EN AVG 22.2 21.9 8287 (0.86) 20.6 20.7 7143 (0.78)

11. 8L PH AVG (14+6L) 23.4† 23.2† 8658 (0.90) 21.9† 22.0† 7719 (0.84)

Table 3.7: Results using the CTC loss with transcripts and phones as target. AVG,

WEIGHTED and SOFTMAX indicate the compression method. BLEU refers to scores computes

with multi-bleu.pl for the sake of comparison with previous work. If none is specified, no

compression is performed. The symbol “*” indicates statistically significant gains with

respect to the baseline. “†” indicates statistically significant gains with respect to 8L PH.

Statistical significance is computed according to (Koehn, 2004) with α = 0.05. Scores in

italic indicate the best models among those with equal number of layers.

compression is beneficial. When compressing the sequence, there is little

difference according to the target used (8L PH AVG, 8L PH W/O POS. AVG,

8L EN AVG). However, the compression causes a 0.3-0.5 WER performance

degradation and a 12-5% saving of RAM. Moving the compression to pre-

vious layers (4L PH AVG, 2L PH AVG) further decreases the output quality

and the RAM usage. We can conclude that compressing the input sequence

harms ASR performance, but might be useful if RAM usage is critical and

should be traded off with performance.

Direct ST

In early experiments, we pre-trained the first 8 layers of the ST encoder with

that of the ASR model, adding three adapter layers (Bahar et al., 2019a).

We realized that ASR pre-training was not useful (probably because ASR
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and ST data are the same), so we report results without pre-training.

As we want to ensure that our results are not biased by a poor baseline, we

compare with (Di Gangi et al., 2020a), which uses the same framework and

similar settings. As shown in Table 3.7, our baseline (8L EN) outperforms

(Di Gangi et al., 2020a) by 2 BLEU on en-it and 1.3 BLEU on en-de.

As in ASR, replacing the transcripts with phones as the target for the

CTC loss (8L PH) further improves respectively by 0.5 and 1.2 BLEU

(see rows 2-3). We first explore the introduction of the compression at

different layers (rows 4-6). Adding it to the 8th layer (8L PH AVG) enhances

the translation quality by 0.6 (en-it) and 0.2 (en-de) BLEU, with the

improvement on en-it being statistically significant over the version without

CTC compression. Moving it to previous layers (4L PH AVG, 2L PH AVG)

causes performance drops, suggesting that many layers are needed to extract

useful phonetic information.

Then, we compare the different compression policies (rows 6-8): AVG

outperforms (or matches) WEIGHTED and SOFTMAX on both languages. In-

deed, the small weight these two methods assign to some vectors likely

causes an information loss and prevents proper gradient propagation for

the corresponding input elements.

Finally, we experiment with different CTC targets (rows 9-10), but

both the phones without the position suffix (8L PH W/O POS. AVG) and

the transcripts (8L EN AVG) lead to lower scores.

The different results between ASR and ST can be explained by the

nature of the two tasks: extracting content knowledge is critical for ST but

not for ASR, in which a compression can hide details that are not relevant

to extrapolate meaning, but needed to generate precise transcripts. The

RAM savings are higher in ST than in ASR as there are 3 more layers. On

the 8th layer, they range from 11% to 23% for en-it, 16% to 22% for en-de.

By moving the compression to previous layers, we can trade performance
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for RAM requirements, saving up to 50% of the memory.

We also tested whether we can use the saved RAM to add more layers

and improve the translation quality. We added 3 encoder and 2 decoder

layers: this (8L PH AVG (14+6L)) results in small gains (0.2 on en-it and

0.1 on en-de), but the additional memory required is also small (the RAM

usage is still 10-16% lower than the Baseline). The improvements are

statistically significant with respect to the models without compression (8L

PH) on both language pairs. As such, we can conclude that the proposed

CTC compression produces performance improvements and computational

savings, leading to higher-quality and more efficient direct ST models.

3.4.5 Summary

After the work on knowledge transfer from MT (§3.3), we subsequently

directed our efforts toward enhancing the quality and computational effi-

ciency of direct ST models. This second strand of activities specifically

focused on accounting for the different informativeness of the vectors rep-

resenting the input sequence. Toward this goal, this section introduced a

dynamic length reduction of the sequence representing the input audio in

the encoder of direct ST models. Our experiments showed that our dynamic

compression of the input improves the translation quality and reduces the

memory footprint, allowing for training deeper models. In particular, the

best approach consisted in averaging the vectors corresponding to the same

phone prediction according to the CTC. The best model with such com-

pression is able to outperform a strong baseline, which uses transcripts in a

multi-task training, by 1.3 (en-it) and 1.5 (en-de) BLEU, reducing memory

usage by 10-16%. These experiments demonstrated that accounting for the

information variability in audio signals is a promising direction. In the next

section, we exploit this CTC compression mechanism to propose a more

complex architecture that avoids any fixed downsampling of the input.
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3.5 Speechformer

Based on the promising results presented in the previous section, we intro-

duce the first architecture for ST that does not reduce the length of the

input audio sequence by means of an initial fixed downsampling. In this

way, we prevent the loss of potentially useful linguistic information. Our

architecture, which we named Speechformer, exploits a novel attention layer

with reduced memory requirements (§3.5.1) and aggregates information only

at a higher encoding level according to more informed linguistic criteria.

Such compression reduces the redundancy of the more informative but

longer resulting sequences, and enables the application of the traditional

attention (§3.5.2). As we will see in §3.5.4, experiments on three language

pairs (en→de/es/nl) show the efficacy of our solution, with gains of up

to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in

a low resource scenario. We conclude the section with a manual analysis

unveiling the main reasons for the gains, ascribable to a better audio and

prosody understanding (§3.5.5).

3.5.1 ConvAttention layer

State-of-the-art ST models employ convolutional neural networks to sample

the feature sequence to a lower dimension (typically by a factor of 4),

enabling the use of Transformer layers otherwise impossible given their

memory consumption. As described in §3.2.3, many works proposed meth-

ods to reduce the quadratic complexity of the product between the attention

matrix, but they are hard to directly apply to ST. In the case of Linformer

(Wang et al., 2020c), the main problem is the gradient inconsistency among

the different GPUs as different subset of parameters of the introduced linear

projection are updated.

To avoid this issue, we propose the adoption of ConvAttention (Figure
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Figure 3.4: Attention mechanism with the proposed convolutional compression of K and

V.

3.4), in which the linear projections of the Linformer architecture are

substituted, both in K and V , with a single 1D convolutional layer. Hence,

the length of the sequences used in the scaled dot-product attention depends

on the stride of the convolution, a hyper-parameter we named compression

factor (χ), which controls the memory complexity of the ConvAttention.

Namely, being n the temporal dimension of K and V, the convolution

output length is n
χ and the complexity of the ConvAttention is O((nχ)2), i.e.

a 1
χ2 factor lower than a vanilla Transformer self-attention. For instance,

setting χ to 4 leads to the same memory consumption as standard ST

models with an initial ×4 subsampling (i.e. with two initial convolutional

layers with stride 2).

Notice that the output sequence length is still equal to the input sequence

length as it depends on the length of Q that is not modified.

3.5.2 Encoder Architecture

The introduction of ConvAttention layers allows us to avoid suboptimal fixed

compressions that disregard the variability over time in the amount of audio

information. However, since an encoder consisting only of ConvAttention

layers does not compress the length of the original input sequence, the

decoder would be fed with long and redundant sequences that are difficult
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Figure 3.5: Speechformer architecture with EL ConvAttention Layers and ET Transformer

Encoder Layers.

to attend, leading to potential performance degradation.

To overcome this problem, we apply the CTC compression described in

the previous section, using as reference the sequence of subwords represent-

ing the transcript of the input utterance. After this operation, the sequence

is reduced to a representation dimensionally closer to its textual content,

which can be processed by the original attention mechanism without the

need of approximations.

Speechformer (see Figure 3.5), is composed of EL ConvAttention layers

up to a CTC compression layer, after which there are ET Transformer

encoder layers. The EL ConvAttention layers are meant to learn the

linguistic content of the input audio while the ET Transformer encoder

layers are in charge of learning higher-level semantic representations, i.e.

the encoder outputs, which the decoder has to convert into a text in the

target language. We also maintain the two 1D convolutional layers before

the ConvAttention layers but without striding, so that no sub-sampling

is applied to the input. We make this choice both to keep the number of

parameters comparable to the existing architectures, and to let the model

67



Chapter 3 3.5. SPEECHFORMER

kernel 16 16 8 8 4

χ 16 8 8 4 4

BLEU 19.7 20.6 20.5 21.3 20.2

Table 3.8: BLEU on MuST-C en-de dev set varying the compression factor χ and 1D

convolutional kernel size. The scores are obtained without label smoothing.

learn a better representation of the input before feeding it to the attention

mechanism.

3.5.3 Experimental Settings

Data and Evaluation

We experiment on three languages of MuST-C: English-German (en-de),

English-Spanish (en-es), and English-Dutch (en-nl). Differently from the

previous sections, we extract 80 features from the input audio. The text

is segmented in sub-word units with transcript and target Sentencepiece

(Kudo and Richardson, 2018) unigram language models (Kudo, 2018) with

size 5,000 and 8,000 respectively.

We evaluate the systems on the MuST-C test sets with SacreBLEU9.

Architectures and Training Details

All our models are composed of 12 encoder layers and 6 decoder layers with

8 attention heads, 512 features for the attention layers, and 2,048 hidden

units in the feed-forward layers. They are trained using label-smoothed

cross entropy with the auxiliary CTC loss and Adam optimizer.

Following (Wang et al., 2020c), we share the convolution parameters of

the ConvAttention layers both among K and V and among the attention

heads. We select the compression factor and the 1D convolution kernel

size with a set of preliminary experiments on the en-de validation set. The

9BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0
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compression factor (χ) is chosen among 4, 8, and 16, since 4 is the minimum

value that avoids out-of-memory issues. The kernel size is set either equal

to or twice as the value of χ. Table 3.8 shows that the combination of a

compression factor of 4 and a kernel size of 8 leads to better performance

compared to the other combinations. Consequently, we use this setting in

all our experiments.

We initialize the ConvAttention weights of Speechformer with those of

a pre-trained ST model having only ConvAttention layers in the encoder,

since, in the initial random state, the CTC-based compression might not

properly reduce the input sequence, leading to out-of-memory issues in the

following Transformer encoder layers.

The CTC is computed at the 8th encoder layer and its role is to predict

the source transcription (lowercased and without punctuation), as in (Liu

et al., 2020). The learning rate is set to 1e-3 with an inverse square-

root scheduler and 10,000 warm-up updates. Mini-batches contain up to

5,000 tokens, and we update gradients every 16 mini-batches. We apply

SpecAugment and utterance-level cepstral mean and variance normalization.

We filter out samples with duration exceeding 30s. We average 7 checkpoints

around the best on the validation loss. Trainings were performed with 4

K80 GPUs.

3.5.4 Results

After the comparison of the Speechformer architecture with the baselines,

the section proceeds with an investigation of the behavior varying the

amount of training data, and an analysis of the computational cost at

inference time.

We compare the Speechformer architecture to a strong Baseline rep-

resented by a Transformer-based model with initial fixed sub-sampling

(Wang et al., 2020b) and its Baseline+compression variant that includes the
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Model en-de en-es en-nl Inference

Timedev tst-COMMON dev tst-COMMON dev tst-COMMON

Inaguma et al. (2020) - 22.9 - 28.0 - 27.4 -

Wang et al. (2020b) - 22.7 - 27.2 - 27.3 -

Our Baseline 22.5 22.8 31.2 27.9 24.2 27.2 1.0x

+ compression 22.3 -0.2 22.8 +0.0 31.1 -0.1 27.9 +0.0 24.2 +0.0 27.0 -0.2 0.9x

Plain ConvAttention 23.1∗ +0.6 23.2 +0.4 31.5 +0.3 27.7 -0.2 24.8∗ +0.6 26.9 -0.3 1.8x

Speechformer 23.3∗ +0.8 23.6∗ +0.8 31.8∗ +0.6 28.5∗ +0.6 24.9∗ +0.7 27.7∗ +0.5 1.3x

Table 3.9: BLEU score (average over 3 runs) on English→Dutch (en-nl), English→German

(en-de), and English→Spanish (en-es) of MuST-C tst-COMMON and dev set. The ∗ symbol

indicates statistically significant improvements over the baseline. Statistical significance is

computed with a t-test (Student, 1908), whose null hypothesis is that the mean of the

considered experiment is not higher than the mean of the baseline. We consider the result

statistically significant if we can reject the null hypothesis with 95% confidence.

average CTC compression strategy (see §3.4). We choose to also develop

the second baseline to make the comparison with Speechformer fair, since

they both use the CTC compression strategy. Table 3.9 reports the results.

For each experiment, we report the average over 3 runs to ensure that

performance differences do not depend on the fluctuations of particularly

good or bad runs.

First, it can be noticed that our Baseline is in line with state-of-the-

art architectures trained only on MuST-C (Wang et al., 2020b; Inaguma

et al., 2020). Second, the addition of CTC compression to the Baseline

model does not bring benefits. This confirms the findings of the previous

section, which showed that applying CTC compression using transcripts

produces differences in scores that are not statistically significant. In

these experiments, using phonemes did not bring significant improvements

either, most likely due to the different experimental settings, so we do not

include the results with them. Speechformer, instead, results in statistically

significant improvements over the baseline in all language directions, with

BLEU gains ranging from 0.5 (for en-nl) to 0.8 (for en-de). As the CTC

compression is not helpful for the baseline, we also evaluate a model (Plain

ConvAttention) whose encoder is a stack of ConvAttention layers, i.e.
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without vanilla Transformer-encoder layers and any form of compression.

The drop in performance with respect to Speechformer varies between 0.4

and 0.8 BLEU on all language pairs, supporting our hypothesis that a

non-compressed encoder output is too redundant to be effectively attended

by the decoder.

Low-Resource Settings. We suppose that the higher gains on en-de may

be related to the size of the training data. Indeed, the en-de section of

MuST-C used for training is the smallest one, containing 20% fewer data

than the en-es section and 10% less than the en-nl one. Thus, we study the

performance of Speechformer in different data conditions by progressively

reducing the amount of training data. For this analysis, we select the en-es

section of MuST-C as it contains the highest number of hours (478h) among

the three languages, and we experiment with three subsets, respectively

containing 385h (corresponding to the amount of training data for en-de),

200h, and 100h (which can be considered a limited quantity given that the

number of hours is respectively less than half and one fourth of the available

data). Figure 3.6 shows that the gains obtained by Speechformer over

the Baseline do not vary significantly between 385h and 478h (0.5 vs 0.6

BLEU). We can then conclude that the gain variation between en-de and

en-es does not depend on the smaller size of the en-de training set. However,

in the low resource settings (200h and 100h), the gains obtained by the

Speechformer are much larger, amounting to 1.1 BLEU with 200h and

4.0 BLEU with 100h. To validate the robustness of these results, we also

experimented on the en-de language pair and obtained consistent results:

Speechformer outperforms the Baseline by 1.5 BLEU (19.6 vs 18.1 BLEU)

with 200h of training data and by 1.9 BLEU (9.7 vs 7.8 BLEU) with 100h of

training data, achieving a considerable relative improvement of more than

24%. Although it brings consistent and significant gains in higher resource
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Figure 3.6: Architecture comparison varying the amount of en-es training data (478h,

385h, 200h, and 100h).

scenarios, these experiments show that Speechformer is particularly fruitful

in low-resource settings.

Inference Time. The ConvAttention layers process the whole input se-

quences, which are 4 times larger than those elaborated by the baseline

attention mechanism. Thereby, a slow-down at inference time is expected,

especially for the Plain ConvAttention, whose encoder layers are all Con-

vAttention layers. The last column of Table 3.9 confirms that the Plain

ConvAttention architecture is 1.8 times slower than the Baseline, i.e. the

inference time is nearly twice. Speechformer is also slower than the Base-

line, but the overhead amounts to only 30% instead of 80%. Moreover, it

can be noticed that the size of the attention matrix – and therefore the

corresponding computational cost – can be controlled in the Speechformer

with the compression factor (χ) hyperparameter.

3.5.5 Analysis

Lastly, we inspected the Baseline and Speechformer outputs to better

understand the reason behind the improvements brought by our architecture.
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(a) Word ordering

Audio It was a way that parents could figure out which were the right public schools for their kids.

Reference Es ging um eine Methode, mit der Eltern herausfinden können, welche die richtigen öffentlichen

Schulen für ihre Kinder sind.

Baseline Es war eine Möglichkeit, dass Eltern herausfinden konnten, welche für ihre Kinder die richtige

öffentliche Schule war.

It was an opportunity for the parents to find out which were for their children the right public

schools.

Speechformer Es war eine Methode, mit der Eltern herausfinden konnten, welche die richtigen öffentlichen Schulen

für ihre Kinder waren.

It was a method with which the parents could find out which were the right public schools for their

children.

(b) Punctuation handling

Audio So, sir, can you help me? I need help.

Reference Also, mein Herr, können Sie mir helfen? Ich brauche Hilfe.

Baseline Es ist also möglich, mir zu helfen.

So it is possible to help me.

Speechformer Also, können Sie mir helfen? Ich habe keine Hilfe.

So can you help me? I have no help.

(c) Audio misunderstanding

Audio You see Aluminum was the most valuable metal on the Planet, worth more than Gold and Platinum.

Reference Aluminium war zu dieser Zeit das wertvollste Metall auf dem Planeten, wertvoller als Gold und

Platin.

Baseline Aluminium war die wertvollste Metallart auf dem Planeten, mehr als Gold und Pflanzen.

Aluminum was the most valuable type of metal on the planet, more than gold and plants.

Speechformer Aluminium war das wertvollste Metall auf dem Planeten, mehr als Gold und Platin.

Aluminum was the most valuable metal on the planet, more than gold and platinum.

(d) Omission

Audio But the amazing thing about cities is they’re worth so much more than it costs to build them.

Reference Aber das Erstaunliche an Städten ist, dass sie so viel mehr wert sind, als es kostet sie zu bauen.

Baseline Aber das Faszinierende an Städten ist, dass es viel mehr wert ist, als es zu bauen.

But the fascinating thing about cities is that it’s worth a lot more than building it.

Speechformer Aber das Erstaunliche an Städten ist, dass sie viel mehr wert sind als sie es kostet, sie zu bauen.

But the amazing thing about cities is that they are worth a lot more than it costs to build them.

Table 3.10: Examples of translation problems – (a), (b), (c) – and omissions – (d) – that

Speechformer does not suffer from while Baseline does.

This qualitative analysis was conducted on a sample of 200 sentences of the

en-de test set – the language direction showing the largest gap between the

systems (+0.8) – by a professional linguist with C2 German level.

It emerged that Speechformer tends to have better word ordering, a

typical problem arising when translating from an SVO language like English

to an SOV language like German. Furthermore, Speechformer outputs

display a better punctuation positioning – attributable to improved han-

dling of pauses and prosody – and a reduction of the number of audio
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misunderstandings and omissions. Table 3.10 provides examples of the

German translations generated by the Baseline and by Speechformer for

four utterances of the MuST-C test set, selected to highlight the specific

aspects that are better handled by our architecture.

Example (a) exhibits a wrong word ordering present in the Baseline

output, i.e. it anticipates “für ihre Kinder” (for their kids) with respect to

“die richtigen öffentlichen Schulen” (the right public schools). Speechformer,

instead, translates the sentence in the correct order, making the translation

easier to read and understand. Also, punctuation handling is improved by

our model that, by leveraging the prosody present in the audio, is capable

of detecting a question (i.e. So can you help me? ) and translating it, as

shown in example (b). On the contrary, the Baseline does not capture these

audio characteristics and does not translate the input in question form,

besides omitting the last part of the reference sentence. The improved

encoding of audio features by the Speechformer is also reflected in its

superior understanding of audio content. This emerges from example (c),

where the word Platinum is correctly recognized and translated by our

system, while the Baseline misunderstands and translates it in another

word, “Pflanzen” (plants), with a completely different meaning. The better

audio understanding of the Speechformer is present in example (d) as well.

Indeed, the Baseline omits part of the original sentence (i.e. it costs), with

a huge impact on the meaning of the resulting sentence, while Speechformer

does not lose audio details and produces a complete translation. In this

example, we can also notice that our system better handles pronominal

references as it chooses sie, which follows the grammatical gender and

number of Staedten (i.e. plural feminine), while the Baseline uses es, which

wrongly agrees with das Faszinierende (i.e. singular neuter).

All in all, the manual inspection of the outputs indicates that Speech-

former better captures the information present in the audio, and this
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improvement is reflected in more accurate outputs.

3.5.6 Summary

In the wake of previous results (§3.4) showing the benefits of a content-

informed compression, we presented Speechformer: the first ST Transformer-

based model able to encode the whole raw audio features without any

suboptimal initial subsampling typical of current state-of-the-art models.

Our solution is made possible by the introduction of a modified attention

mechanism – the ConvAttention – that reduces the memory complexity to

O((nχ)2). The redundant sequences produced by the plain application of

ConvAttention layers are compressed with a CTC-based strategy to obtain

a compact, yet informative representation that vanilla Transformer encoder

layers can process. Our experiments on three language pairs have shown

that Speechformer significantly outperforms a state-of-the-art ST model by

0.5-0.8 BLEU, reaching a peak of +4 BLEU points in a low-resource scenario.

However, we have also noted that Speechformer requires a pre-training of

the first part of the encoder, which causes an overhead in terms of training

costs. The following section is devoted to addressing this issue, as well as

integrating and comparing our solutions with the recent Conformer model.

3.6 Competitive ST without Pre-training

Our goal is not only to increase the quality of the ST systems, but also

to limit their training costs. Toward this goal, we first propose solutions

to avoid the encoder pre-training for the Speechformer and we integrate

it with the Conformer architecture – recently introduced with compelling

results in ST (Inaguma et al., 2021; Vyas et al., 2021) – creating the

Speechformer Hybrid model (§3.6.1). Second, we explore data selection

mechanisms to increase model quality and reduce training time (§3.6.2).
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Our experiments (§3.6.4) show that avoiding any additional pre-training or

transfer learning from ASR does not degrade the performance in a Conformer

architecture with CTC compression on the MuST-C en-de section. Scaling

to high-resource data conditions, we notice that the gap between an ASR

pre-trained system and a system trained from scratch is closed only after a

fine-tuning on in-domain data. Moreover, with the addition of a simple data

filtering method, we achieve the new state-of-the-art score of 26.7 BLEU

for a direct ST model that does not exploit external (audio or textual)

resources on the popular MuST-C en-de tst-COMMON benchmark.

3.6.1 Speechformer Hybrid

In light of the superiority of Conformer over ST Transformer models, we

create a composite architecture made of a first stack of 8 Speechformer

layers and a second stack of 4 Conformer layers. Hereinafter, we refer

to this architecture as Speechformer Hybrid. As a side note, we also

experimented with replacing the ReLU activation functions in the decoder of

our Conformer model with the squared ReLU, in light of the recent findings

on language models (So et al., 2021) showing accelerated model convergence,

decreased training time, and improved performance. Unfortunately, these

benefits were not observed in our experiments, as the introduction of the

squared ReLU caused a small performance drop (-0.2 BLEU) and did not

improve the convergence speed of the model. So, we do not consider this

change in the rest of the thesis.

As in the Speechformer architecture, the encoder starts with two 1D

convolutions that do not perform any downsampling. Indeed, the modified

self-attention mechanism (ConvAttention) reduces memory requirements

and the length of the input sequence is shrunk only on top of 8 ConvAtten-

tion layers by means of the CTC-compression mechanism before feeding

the sequence to 4 Conformer layers. However, in a randomly initialized
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state, the CTC compression may actually not reduce the input sequence

(or only slightly), leading to OOM errors caused by the quadratic memory

complexity with respect to the sequence length of the Conformer layers.

This issue can be prevented by initializing the encoder layers up to the

CTC-compression module with a pre-trained model whose encoder is made

only of ConvAttention layers. However, this solution contrasts with our

goal of reducing the computational cost by avoiding any pre-training. For

this reason, we introduce two methods that ensure a minimal compression

factor of the input sequence after the CTC-compression:

• Max Output Length: if the sequence produced by the CTC com-

pression is longer than a threshold (a hyperparameter that we set to

1/4 of the maximum input sequence length10), we merge (averaging

them) an equal number of consecutive vectors so that the final length

of the sequence is inferior to the defined threshold. For instance, if the

maximum input sequence length is 4,000 vetcirs, we set the threshold

to 1,000. in this case, if a sample results in a sequence of length 2,346

after the CTC compression, we merge the first 3 vectors, then the

vectors from the 4th to the 6th, and so on. We use 3 because it is the

minimum compression factor that satisfies the length requirement.11

• Fixed compression: for a given number of epochs nE (a hyperparam-

eter) the CTC compression is disabled and replaced by a fixed com-

pression that averages 4 consecutive vectors. In this way, we directly

control the length of the sequence after the compression, resembling

the fixed compression performed by the initial 1D convolutional layers

of Transformer and Conformer ST models.

10This ensures that the resulting sequences are not longer than the maximum length obtained by the

Transformer and Conformer architectures after the two 1D convolutions.
11A compression factor 2 would result in a sequence of length 1,173 – higher than the 1,000 threshold –

while 3 produces a sequence of length 782.
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3.6.2 Data Filtering

Easy methods to improve the quality of ST systems – and deep neural

networks in general – consist in providing them with more data or better

data. The first approach comes at the cost of longer training time and

higher computational requirements. This makes the second approach more

appealing and in line with the overall goal and spirit of this work. We

hence focus on the definition of an efficient filtering strategy that improves

the quality of our training data (and consequently of our models) without

additional computational costs.

We start from the observation that ST models estimate the probability of

an output text given an input audio p(Y |X), and a good ST model assigns

a low probability to erroneous samples, which are outliers of the p(Y |X)

distribution. Although training an ST model only to filter the training

data would be extremely computationally expensive, we decided to adopt

this method as an upper bound for comparison with easier and feasible

strategies. In particular, for each sample in the training set, we computed

the negative log-likelihood12 (NLL) with a strong ST model trained on

all the data available for the IWSLT 2022 competition (see §3.6.3) as a

proxy of the probability of the sample. A high NLL means that a sample

is unlikely, while a NLL close to 0 means that the sample has a very high

probability. Based on this, we can filter all the samples above a threshold

to remove the least probable ones.

To set the threshold, we draw a histogram on all the training sets (see

Figure 3.7) that leads to the following considerations: i) each dataset has

a different distribution, making it difficult to define a threshold valid for

all of them, and ii) MuST-C has the highest NLL, meaning that it is more

complex to fit for the model.

12The negative log-likelihood is defined as −log(p(Y |X)).
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Figure 3.7: Histogram of the negative log-likelihood (NLL) of the samples for all the

training set of the competition. The ST model used to estimate the NLL has been trained

on all the data and was scoring 29.6 BLEU on MuST-C.

Through the approach described above, we selected the data of MuST-C

with a NLL greater than 4.0. Upon a manual inspection of a sample of these

selected data (5-10% of the total), we noticed that two main categories

were present: i) bad source/target text alignments13 (e.g. two sentences

in the target translation are paired with only one in the transcript or vice

versa), and ii) free (non-literal) translations. Instead, no cases of bad audio-

transcript alignments were found (this was only a non-exhaustive manual

inspection, though), meaning that this problem is likely less widespread

and impactful than the textual alignment errors in the corpus.

These considerations motivated us to search for a feasible strategy to

filter out the bad source/target text alignments. We first considered a

simple method that discards samples with a too high or too low ratio

between the target translation length (in characters) and the duration of

the source audio.14 The corresponding histogram on the training data can

be found in Figure 3.8. Looking at the plots, it emerges that this ratio is

13In the MuST-C corpus, the alignments between transcripts and translations of the training set are

automatically produced, hence misalignments and textual differences can be present.
14In practice, we compute the number of characters divided by the number of 10ms audio frames.
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Figure 3.8: Histogram of the ratio between the number of target translation characters

and 10ms audio frames for all the training set of the competition.

strongly dataset-dependent, likely due to the high variability in speaking

rate for different domains and conditions, thus making it hard to set good

thresholds. For this reason, also supported by the finding of our manual

inspection on the good quality of audio-text alignments discussed above,

we turn to examine the ratio between the target translation length and the

source transcript length.15 Figure 3.9 shows its histogram: in this case, the

behavior is consistent on all datasets, making it easy to determine good

values for the minimum and maximum acceptable ratio (we set them to 0.8

and 1.6).

3.6.3 Experimental Settings

Data and Evaluation

We perform a preliminary study on the English-German (en-de) section

of MuST-C v2 and then we scale to the high-resource data condition to

verify the preliminary findings. In high-resource settings, we include in

the training set the ASR and ST datasets allowed for the offline tasks of

15We used normalized transcript without punctuation, so the length of the target translation is on

average 1.2X that of the source transcript.
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Figure 3.9: Histogram of the ratio between the number of characters in the target translation

and the source punctuation-free transcript for all the training set of the competition.

IWSLT.16 The ASR data consist in (speech, transcript) pairs that, in our

case, are in English. The ST data consist in (speech, transcript, translation)

triplets from a source language (here English) to a target language (here

German). The ASR data we used are: LibriSpeech (Panayotov et al., 2015),

TEDLIUM version 3 (Hernandez et al., 2018), Voxpopuli (Wang et al.,

2021a), and Mozilla Common Voice.17 The ST data we used are: MuST-C,

CoVoST version 2 (Wang et al., 2020a), and Europarl-ST (Iranzo-Sánchez

et al., 2020). The ASR-native corpora were included in our ST training by

applying sequence KD from an MT teacher. The MT teacher is the freely

available pre-trained model by Tran et al. (2021) for WMT2021 that was

trained on the corresponding WMT2021 dataset (Akhbardeh et al., 2021).

As in the previous section, we extract 80 features from the input audio.

The vocabularies are built via SentencePiece models. In our preliminary

experiments only on MuST-C, the number of merge operations was set to

8,000 for the German translations and 5,000 for the lowercase punctuation-

16https://iwslt.org/2022/offline
17https://commonvoice.mozilla.org/en/datasets
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free English transcripts. In the experiments on high-resource data condition,

we doubled these values.

We evaluate translation quality with SacreBLEU18 on the en-de section

of MuST-C v1 and v2.

Architectures and Training Details

All the architectures (Transformer, Speechformer, Speechformer Hybrid,

and Conformer) consist in 12 encoder layers and 6 decoder layers, 512

features for the attention layers and 2,048 hidden units in the feed-forward

layers. We used 0.1 dropout for the feed-forward layer and attention layer.

For Conformer convolutional layers we also apply 0.1 dropout and we set

the kernel size to 31 for the point- and depth-wise convolutions.

We trained with the Adam optimizer (β1 = 0.9, β2 = 0.98). The learning

rate was set to increase linearly from 0 to 2e−3 for the first 25,000 warm-up

steps and then to decay with an inverse square root policy. Differently, it

was kept constant for model fine-tuning, with a value of 1e−3. We normalize

the audio features before passing them to our models with Cepstral Mean

and Variance Normalization at utterance level.

Trainings were performed on 4 A100 GPUs. We set the maximum

number of tokens to 40k per mini-batch and 2 as update frequency for the

Conformer with CTC-compression. The other models were trained with

20k tokens per mini-batch and 4 as update frequency. We trained each

model for 100,000 updates and averaged the last 7 checkpoints.

3.6.4 Results

We begin this section with a comparison of the architectures both with

and without pre-training. After determining that with the best trade-off

18BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0
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Model w pretrain w/o pretrain

Transformer 23.6 23.6

Speechformer 24.5 24.3

Conformer 24.8 24.8

+ CTC compr. 25.6 25.5

Speechformer Hybrid 25.7 24.9

Table 3.11: SacreBLEU on the tst-COMMON set of MuST-C v1 en-de.

between translation quality and computational efficiency, we compare the

data filtering strategies described in §3.6.2, and validate our findings in

high-resource conditions.

As a first step, we compare different architectures proposed for ST: ST

Transformer, Conformer, Speechformer, and Speechformer Hybrid. For

Speechformer and Speechformer Hybrid, we choose the nE parameter of

the fixed compression method (see §3.6) among the values 6, 8, 10, and 12

according to the BLEU score on the dev set. The best score was achieved

with nE = 10 (24.16 BLEU), which was lower than the score obtained by

the Max Output Length method (24.26 BLEU). As such, in Table 3.11 (w/o

pretrain column) we report the results of Speechformer and Speechformer

Hybrid with the Max Output Length method.

The results show that the Speechformer-based models do need pre-

training to reach their best scores while Conformer and Transformer models

achieve comparable translation quality avoiding the pre-training. Specifi-

cally, the Conformer architecture with CTC compression obtains the best

score without pre-training (25.5 BLEU) and has a negligible gap from the

best result with pre-training (25.7 of Speechformer Hybrid). We can hence

confirm the statement that, at least for Conformer and Transformer, ASR

pre-training can be avoided at barely no translation quality cost. Therefore,

in the rest of this section we use the Conformer with CTC compression

without pre-training unless noted otherwise. It is worth mentioning that

the introduction of the CTC compression in the Conformer encoder does
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Model BLEU

Cascade (Bahar et al., 2021) 25.9

Tight Integrated Cascade (Bahar et al., 2021) 26.5

Without external data

SATE (Xu et al., 2021) 25.2

BiKD (Inaguma et al., 2021) 25.3

With external data

JT-ST (Tang et al., 2021) 26.8

Chimera (Han et al., 2021) 26.3

This work

Conformer + CTC compr. 25.5

+ char-ratio filter. 26.7

+ NLL-based filter. 26.9

Table 3.12: SacreBLEU on the tst-COMMON set of MuST-C v1 en-de. Chimera uses

additional speech and WMT14 (Bojar et al., 2014), while JT-ST uses only WMT14 as

external resource.

not only increase translation quality; also, it reduces the RAM requirements

and speeds up both the inference and training phases. Indeed, as the

sequence length is significantly reduced in the last encoder layers and in

the encoder-decoder attention, fewer computations are required and the

mini-batch size – the number of samples processed in parallel – can be

increased. Overall, this leads to save ∼ 35% of the training and inference

time. We leave for future work further investigations on how to effectively

train the Speechformer Hybrid models and on the reasons for the drop

without pre-training, as, with encoder pre-training, it achieves the best

scores.

Data Filtering

In Table 3.12 we report the results of our simple filtering method based on

the target/source character ratio and we compare it with the upper bound

of the NLL-based filtering strategy as well as with previous works both
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under the same data condition and with additional external data. First, we

can notice that our method leads to a 1.2 BLEU gain, and has a very small

gap (0.2 BLEU) with respect to the upper bound exploiting a strong ST

model for filtering. Second, our score (26.7 BLEU) is significantly higher

than those reported by previous direct ST works in the same data condition

and is on par or even outperforms those of models trained with the addition

of external resources. Finally, we compare the results of our model with

those of the best cascade models reported in the same data conditions

(Bahar et al., 2021): the tightly-integrated cascade is close to our model

(-0.2 BLEU), but ours also benefits from the data filtering technique we

just discussed.

To sum up, we managed to define a training recipe that enables reaching

state-of-the-art ST results on MuST-C en-de (26.7 BLEU) with a single

training step and involves: i) the Conformer architecture, ii) an auxiliary

CTC loss and CTC-compression in the 8th encoder layer, and iii) a simple

yet effective filtering strategy based on the ratio between source and target

number of characters. In the following, we discuss the application of this

procedure in high-resource data conditions.

High Resource Conditions

In addition to training our models in high-resource data conditions, we also

investigate whether fine-tuning on in-domain data brings advantages or not.

The results are reported in Table 3.13. As we can notice, the Conformer

with pre-training outperforms its version trained from scratch by 0.9 BLEU.

However, when both the systems are fine-tuned on the in-domain data

(rows II and IV), this difference becomes negligible (0.1 BLEU) meaning

that the pre-training phase can be skipped in favor of a single fine-tuning

step. This might also suggest that the learning rate scheduler and the

hyperparameters we used – tuned on MuST-C – may be suboptimal when
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Model BLEU

I. Conformer 30.6

II. + in-domain fn 31.6

III. Conformer pretrain 31.5

IV. + in-domain fn 31.7

Table 3.13: BLEU on MuST-C v2 tst-COMMON for Conformer with pre-training (Con-

former pretrain) and without it (Conformer). We also report the scores after fine-tuning

on in-domain data (+ in-domain fn).

a large amount of data is available. For lack of large computing resources

and time reasons, we did not investigate this aspect, which we leave to

future work.

3.6.5 Summary

This section concludes our efforts toward high-quality and efficient direct

ST models. In pursuit of these two objectives, we not only integrated

the methods outlined in the previous sections with the recent Conformer

architecture, but we also studied both in controlled settings (MuST-C)

and in high resource conditions if we can skip complex and long training

procedures without compromising the translation quality. To this aim, we

i) showed that ASR pre-training of the encoder can be avoided without a

significant impact on the final system performance, ii) proposed a simple

yet effective data filtering technique to enhance translation quality while re-

ducing the training time. The effectiveness of our solutions is demonstrated

by the result (26.7 BLEU) on MuST-C en-de of our Conformer model with

CTC compression that is – to the best of our knowledge – the best score

reported in literature without leveraging external data or knowledge (e.g.

in the format of pre-trained models – Gállego et al. 2021; Zhao et al. 2022;

Polák et al. 2022).
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3.7 Conclusions

This chapter described the efforts carried out in this PhD toward obtaining

competitive results without undergoing long and computationally expensive

training procedures. To this aim, our first strand of activities focused on the

knowledge transfer from the MT models, which can benefit from an ample

availability of corpora. Specifically, we showed that distilling knowledge

from MT is a good knowledge transfer technique, but a KD-independent fine-

tuning is required to solve the side effect of learning undesirable behaviors

of the MT teacher, among which the most critical one is the truncation of

multi-sentential utterances.

Then, we dedicated to modeling the audio information in a way that

accounts for the variability of the amount of information over time typical

of speech signals. Toward this goal, we demonstrated that averaging the

vectors corresponding to the same phone prediction according to a CTC

module improves the translation quality and reduces the memory footprint

as well as the training/inference time. Along the same research direction,

we also removed the initial fixed subsampling of the audio sequence and the

information loss it causes thanks to a more efficient attention mechanism,

leaving the CTC content-based compression as the only downsampling

method in the encoder. Lastly, we proved that the pre-training of the

ST encoder with the weights of an ASR model can be avoided without a

significant impact on the final system performance, and that a simple yet

effective data filtering technique enhances translation quality while reducing

the training time.

The results of the efforts of these three years, combined with the im-

provements coming from the research community, brought direct ST to the

level of (or even above) cascade solutions. Indeed, we scored 26.7 BLEU

on the popular MuST-C v1 en-de benchmark without introducing external
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data, 0.2 BLEU more than the best cascade solution published in the same

data condition, to the best of our knowledge. In light of the high translation

quality achieved by direct ST models, in the following chapters, we focus

on more specific issues, yet essential for their adoption in real applications.

Chapter 4 goes beyond the ideal condition in which, at test and inference

time, the audio signal is already split into utterances containing well-formed

sentences. Chapter 5 inspects the bias and potential harms to different

groups of users, focusing on gender disparities. Chapter 6 investigates

the employment of direct ST systems in the context of the augmented

ST paradigm, in which the ST system supports the users by highlighting

relevant information.
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Chapter 4

Audio Segmentation

4.1 Introduction

The previous chapter described our efforts toward higher-quality direct

ST models, which were trained and evaluated on corpora segmented at

the sentence level. Indeed, existing corpora split continuous speech into

utterances according to strong punctuation marks in the transcripts (which

are known in advance), reflecting linguistic criteria related to sentence well-

formedness. This “gold” segmentation is optimal, as it allows ST systems

to potentially generate correct outputs even for languages with different

syntax and word order (e.g., subject-verb-object vs subject-object-verb).

However, audio transcripts are not known in advance at inference time and

other segmentation techniques have to be applied. The traditional approach

consists in adopting a Voice Activity Detection (VAD) tool to break the

audio on speaker silences (Sohn et al., 1999), considered as a proxy of clause

boundaries. As such, the way the audio is split into segments is considerably

different at training and inference time: this causes a mismatch between

the data the models are trained on and the data they have to process at

inference time, which severely harms the translation quality (Sinclair et al.,

2014).

Both cascade and direct ST systems can be significantly affected by
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this mismatch between training and test data. In cascade systems, though,

the impact of a syntax-unaware segmentation can be limited by means of

dedicated components that re-segment the ASR transcripts, so as to feed

the MT component with well-formed sentences (Matusov et al., 2006; Oda

et al., 2014; Cho et al., 2017). The absence of intermediate transcripts

makes this solution unfeasible for direct systems, whose performance is

therefore highly sensitive to suboptimal audio segmentation.

In light of these considerations, we approached the problem from two

different perspectives. On one side, we proposed methods to create ST

models that are robust to automatically segmented audio and limit the

quality drop from optimally segmented data (§4.3). This was done either

by fine-tuning them on artificial data (§4.3.1) or by providing the previous

segment as contextual information (§4.3.2). On the other side, we analyzed

in depth the strengths and weaknesses of different audio segmentation

methods in the context of direct ST. Based on the resulting observations, we

introduced improved hybrid methods that can also be applied to streaming

audio (§4.4). At last, we combined the approaches, studied how they

interact, and compared them with newly proposed solutions on state-of-the-

art Conformer models (§4.5).

Our contributions can be summarized as follows: i) we build models

robust to automatic segmentation by re-segmenting training corpora with

random utterance boundaries and fine-tuning the models on them; ii) we

introduce the first context-aware direct ST models, showing that they

outperform a strong base model and the fine-tuning on different VAD

segmentations of an English-German test set by up to 4.25 BLEU points;

iii) we propose enhanced hybrid solutions (based on both utterance length

and audio properties) that reduce by at least 30% the gap between the

traditional VAD-based approach and optimal manual segmentation; iv)

we combine the two approaches, apply them to state-of-the-art Conformer
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models, and compare them with recent alternative solutions.

4.2 Related Works

In this section, we first provide an overview of the audio segmentation

methods available at the time of writing this thesis (§4.2.1), which also

covers methods posterior to our work on the topic presented in §4.4. Then,

we discuss the works that study the integration of surrounding audio

segments as contextual information in ST (§4.2.2), which are all posterior

to our proposal in §4.3.

4.2.1 Audio Segmentation

Audio segmentation has been tackled with 4 main categories of approaches:

i) VAD systems, ii) fixed-length methods, iii) hybrid solutions (considering

both audio length and pauses), and iv) ASR-based models.

VAD systems. VAD tools are classifiers that determine whether a given

audio frame contains speech or not. Based on this, a VAD-based segmen-

tation considers a sequence of consecutive speech frames as a segment,

filtering out non-speech frames. In the context of ST, the most widely

used open-source VAD tools are: LIUM (Meignier and Merlin, 2010) and

WebRTC’s VAD.1 For instance, to date all the IWSLT offline ST evaluation

campaigns (Niehues et al., 2018, 2019; Ansari et al., 2020; Anastasopoulos

et al., 2021, 2022) have released a default audio segmentation obtained

with LIUM, although participants are free to use their own segmentation

technique. Although easy and efficient, such methods are known to cause

unpredictable, often large, performance drops (Sinclair et al., 2014).

1http://webrtc.org/. We use the Python interface http://github.com/wiseman/py-webrtcvad.
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Fixed length. A simple approach is splitting the audio at a predefined

fixed length (Sinclair et al., 2014), without considering the content. In

contrast with VAD, this naive method has the benefit of ensuring that the

resulting segments are neither too long nor too short, which are typically

hard conditions for ST systems. However, the split points are likely to

break sentences in critical positions, such as between a subject and a verb

or even in the middle of a word. Unlike in the VAD solution, non-speech

frames are not filtered from the input audio, which is entirely passed to the

ST system.

Hybrid methods. The method described in (Potapczyk and Przybysz, 2020)

takes into account both audio content (silences) and target segment length

(i.e., the desired length of the generated segments) to split the audio. It

recursively divides the audio segments on the longest silence, until either

there are no more silences in a segment, or the segment itself is shorter

than a threshold. It is important to notice that the silences are detected

with a manual operation, making the approach hard to reproduce and not

scalable. To compare with this method, we replicate the logic, but we rely

on WebRTC to automatically identify silences. For this reason, our results

might be slightly different from the original ones, but the segmentation is

automatic and easy to reproduce. Another major problem of this method

is that it requires the full audio to be available for splitting it. So it is not

applicable to audio streams and online use cases.

ASR models. Bahar et al. (2020) exploited an external hybrid ASR model

to segment the audio (showing a 10% BLEU gain compared to its VAD-

based counterpart). This solution, however, formally makes direct ST

closer to a cascade architecture, losing the advantage of the reduced latency

of direct systems. Recently, Tsiamas et al. (2022b) presented a novel

92



Chapter 4 4.2. RELATED WORKS

Supervised Hybrid Audio Segmentation (SHAS) with excellent results in

limiting the translation quality drop. SHAS adopts a probabilistic version

of the divide and conquer algorithm by Potapczyk and Przybysz (2020) that

progressively splits the audio at the frame with the highest probability of

being a splitting point until all segments are below a specified length. The

probability of being a splitting point is estimated by a classifier fed with

audio representations generated by wav2vec 2.0 (Baevski et al., 2020) and

trained to approximate the manual segmentation of the existing corpora, i.e.

to emit 1 for frames representing splitting points and 0 otherwise. Since this

approach involves a prediction with neural models of considerable size, its

superiority over the VAD-based ones comes with a significant computational

cost and overhead. In addition, SHAS is not applicable to audio streams, as

it requires the full audio to be available before start splitting. In the context

of offline ST, however, these limitations do not represent a significant issue.

4.2.2 Contextual ST

The idea of exploiting contextual information from previous sentences

to improve translation quality has been introduced when MT was still

performed with phrase-based approaches (Hardmeier et al., 2012; Xiong

and Zhang, 2013) and it has been successfully applied in NMT (Wang

et al., 2017; Zhang et al., 2018; Bawden et al., 2018; Kim et al., 2019).

In light of this and following our work on the topic, several papers tested

its effectiveness in providing contextual information in ST as well. Zhang

et al. (2021) concatenated the previous audio sentences as input to the

encoder, and provided the generated translations of these sentences as

previous output tokens to the decoder. They showed that this approach

provides consistent gains over all 8 language pairs of MuST-C, and their best

results are obtained by feeding the previous 2 segments with the one to be

translated. Similarly, Mart́ınez De Morentin Cardoner (2022) investigated
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the concatenation of both the previous and the following segment with

the current utterance, showing that both can contribute to small quality

improvements, with the previous one being the more important. In our

work, we do not explore solutions based on the concatenation of the context

with the current input (Agrawal et al., 2018), or the combination of encoded

representations of the two (Voita et al., 2018), for two reasons: i) they are

highly inefficient (because of the quadratic complexity of the self-attention),

and ii) previous findings in NMT (Kim et al., 2019) demonstrate the

superiority of methods exploiting a dedicated attention. Closer to our

solution, (Bang et al., 2022) processed the previously generated text with

BERT (Devlin et al., 2019), and provided this encoder representation as

context to the decoder, showing that this approach helps the translation of

unclearly spoken utterances. None of the above papers, though, explore

the effectiveness of context-based solutions to recover from the information

loss caused by a suboptimal automatic audio segmentation, as we will do

in §4.3.

4.3 Model Robustness to Automatic Segmentation

In this section, we move our first step toward reducing the negative effects

of the train/inference audio-segmentation mismatch by making our direct

ST models more robust to automatically segmented data. In particular,

we focus on the traditional and widespread approach in which the audio

is segmented with VAD tools. As seen in §4.2.1, VAD systems determine

whether a given short (usually 10-30 ms) audio segment actually contains

speech. This information is used in the context of ST for two purposes: i)

dividing the audio stream into segments containing uninterrupted speech;

ii) filtering out audio segments containing other sounds. Since VAD is solely

based on the alternation between human voice, silences and other sounds,
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the resulting splits might not correspond to well-formed sentences but to

fragments of one or more sentences. The impact of feeding an ST model

trained on optimally segmented data with suboptimal, not linguistically-

motivated segmentations varies according to the characteristics of the VAD

employed and its settings. Very aggressive settings reduce the generation

of long (cross-sentential) segments, which are difficult to handle by neural

models that are typically very sensitive to input length. On the downside,

they produce short (sub-sentential) segments that might not provide enough

context for proper translation.

In light of this, the contribution of this section is the definition of

architectural solutions and training recipes that increase the ability of

direct ST models in translating cross- and sub-sentential utterances. To

this aim, we first generate an artificial dataset by randomly re-segmenting

clean (i.e., sentence-based) ST data. Then, we train ST systems on this

new dataset with the aim of reducing the distributional shift (or mismatch)

with the data fed at inference time. In particular, we experiment with two

approaches: i) fine-tuning on the new dataset (§4.3.1); ii) improving our

direct ST model with the capability to look back and attend to the preceding

segment as contextual information (§4.3.2). Our experiments (§4.3.4) show

that the context-based solution effectively handles the segmentation of

different VAD systems and configurations, reducing the drop in translation

quality caused by segmentation mismatches in the training and test data

by up to 55%.

4.3.1 Training on Automatically Segmented Data

As a first solution to “robustify” ST models with respect to segmentation

mismatches between the utterances used for training and those automatically

segmented at inference time, we propose to fine-tune ST models on an

automatic re-segmentation of the training set. The method consists in
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choosing a random word in the transcript of each sample, and using it as

the sentence boundary instead of the linguistically-motivated (sentence-

level) splits provided in the original data.

The re-segmentation starts by picking a random (with uniform distribu-

tion) split word for each sample in the original English transcripts. Each

fragment spanning from a split word to the word before the next split

word becomes a segment of the new training set. We extract the audio

corresponding to each resulting transcript by leveraging word alignments

computed with Gentle.2 Then, we retrieve the corresponding translations

using word alignments generated with fast align (Dyer et al., 2013). In case

of missing alignments (either with the audio or with the translation), the

sample is discarded. The resulting training dataset contains 4K samples

less than the original (225K vs 229K), while the validation set size is almost

unchanged.

A manual check on a sample of the produced aligned segments revealed

that about 96% of them are acceptable. The most frequently observed issue

is that some translations contain 1-2 words more than the optimum, mostly

due to the lack of some word alignments and word reordering. Although

this caused no issue when fine-tuning the model, in the next section we will

present a use case in which, instead, it represents a problem and how it can

be easily addressed.

4.3.2 Contextualized Translation

A second approach consists in looking at the previous segment as contextual

information to recover from information losses caused by suboptimal (sub-

sentential) splits. As seen in §4.2.2, the idea of exploiting contextual

information to improve translation is not new, as it has been successfully

applied in MT. In our use case, we are interested only in modeling short-

2https://github.com/lowerquality/gentle/
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range cross-segment dependencies to cope with the suboptimal breaks

introduced by automatic segmentation. We hence consider as context only

the segment immediately preceding the one to be translated, leaving out of

our study hierarchical approaches modeling the whole document as context.

Moreover, while in document-level NMT the best approach is to use the

source side of the sentence(s) as contextual information, in the ST scenario

it is not trivial to understand which side is the best. On the one hand,

audio source avoids the error propagation and exposure bias introduced by

using as context the translations generated at inference time. On the other,

these problems are balanced by the easiness of extracting information from

text rather than from audio (Di Gangi et al., 2020b). Here, we study both

options.

To integrate context information into the model, we explore the two

solutions that gave the best results for NMT (Kim et al., 2019). They

respectively use sequential (Zhang et al., 2018) and parallel (Bawden et al.,

2018) decoders. We also experimented with the integration of context

information in the encoder (Zhang et al., 2018), but the trainings were

either very unstable (when using audio as context) or ineffective, eventually

leading to worse results.

Both the sequential and the parallel decoder use a multi-encoder ap-

proach, with an additional encoder dedicated to the context information.

The context encoder is composed of Transformer encoder layers, but its

input depends on the modality of the segment used as context, i.e., text

or audio. When we use the generated translation as context, its tokens

are converted into vectors with word embeddings (namely, we re-use the

decoder embeddings), summed with positional encoding and then provided

to the encoder Transformer layers. When we use the audio as context, the

input audio features are first processed by the encoder of the base model

and then passed to the context encoder (Di Gangi et al., 2020b).
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The difference between the two methods (sequential and parallel) lies

in the way this information is integrated into the decoder of base model,

which is described below.

Figure 4.1: Sequential context integration.

Sequential (Figure 4.1). In each decoder Transformer layer, an additional

multi-head cross-attention sublayer is introduced. It queries the output

Cout of the context encoder using the output Hi of the i-th encoder cross-

attention sub-layer. The result Si of this operation is combined with Hi

using a position-wise gating mechanism, before being fed to the feed-forward

network FFNi. Hence, the output of the i-th decoder layer Di is:

λi = σ(WhiHi + WsiSi) (4.1)

Di = FFNi(λiHi + (1− λi)Si) (4.2)

Parallel (Figure 4.2). In each decoder Transformer layer, the output of the

self-attention sublayer is used as query for both the encoder cross-attention
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Figure 4.2: Parallel context integration.

and the context cross-attention defined in the same way as in the previous

case. The outputs of these two sub-layers are then combined using the

position-wise gating mechanism described in Eq.(4.2).

To avoid over-relying on the context, we add a regularization on the

context gate. Our regularization is slightly different from the one proposed

by Li et al. (2020): we always penalize the context information, so that the

model will use it only when it is strictly needed. With the regularization

factor, the resulting loss is:

L′ = L+ α

Nd∑
i=0

(1− λi) (4.3)

To train the model, we rely on data segmented as described in the

previous section (§4.3.1), in which the previous segment is considered as

context. However, as mentioned above, the target side (translation) can

contain extra words due to alignment and word-ordering issues. This leads

to the presence of overlapping words between the context and the target

references in 25% of the samples. In early experiments, this caused model

instability at inference time because models learned to copy the final context

words, up to producing nonsensical sequences of repeated tokens. We solved

the issue by filtering out the overlapping words from the context.
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4.3.3 Experimental settings

Data and Evaluation

We performed preliminary experiments on a baseline model (hereinafter

BASE MUSTC ) trained the on English-German data drawn from the

MuST-C corpus. Since models using the generated translations as context

are affected by exposure bias, we wanted to test our solution also in more

realistic conditions, with a stronger model trained in rich data conditions.

This model (hereinafter BASE ALL) was trained on all the data available

for the IWSLT 2020 evaluation campaign.3 Textual data were pre-processed

with tokenization and punctuation normalization performed using Moses

(Koehn et al., 2007), and were segmented with 8, 000 BPE merge rules. The

audio was preprocessed as described in §3.3.2.

As we want our systems to be robust to different VAD outputs, we

test our models on both LIUM and the WebRTC VAD.4 For LIUM, we

apply the configuration employed in the IWSLT 2020 campaign (Ansari

et al., 2020). For WebRTC, we tested all the possible configurations,

varying the frame size (allowed values are 10ms, 20ms and 30ms) and the

aggressiveness (ranging from 0 to 3, extremes included). We discarded

those producing either too long (> 60s) or too many segments (> 5, 100,

i.e. twice the segments of the original sentence-based segmentation of the

MuST-C test set). In this way, we ended up with three configurations,

whose characteristics are described in Table 4.1.

Overall, the segments produced by WebRTC have much higher variance

in their length (ranging from 0.40s to 58.62s) compared to LIUM (from

2.50s to 18.63s) and are significantly more (> 3, 500 vs 2, 725). This can

affect the final performance of neural ST models, for which handling very

long/short segments is difficult. However, from a qualitative standpoint, a

3http://iwslt.org/doku.php?id=offline speech translation
4We use the open-source Python interface https://github.com/wiseman/py-webrtcvad.
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System Man. LIUM WebRTC

Frame size 30ms 20ms 20ms

Aggress. 3 2 3

% filt. audio 14.66 0.00 11.27 9.53 15.58

Num. segm. 2,574 2,725 3,714 3,506 5,005

Max len. (s) 51.97 18.63 48.84 58.62 46.76

Min len. (s) 0.05 2.50 0.60 0.40 0.40

Table 4.1: Statistics for different segmentations of the MuST-C test set. “Man.” refers to

the original sentence-based segmentation.

manual inspection of 50 samples showed that the split times selected by

LIUM are less accurate than those selected by WebRTC: while the former

often splits fluent speech, the latter always selects positions in which the

speaker is actually silent.

Evaluation is performed with BLEU5 (Papineni et al., 2002) and TER

(Snover et al., 2006).

Architecture and Training Details

Our architectures are analogous to the big models introduced in §3.3.2

unless stated otherwise. The number of context encoder layers Nc is set

to 1, as (Zhang et al., 2018) shows that this leads to the best results.

Since (Kim et al., 2019) has demonstrated that poorly regularized systems

can lead to ambiguous results when integrating context, we used 0.2 dropout

and SpecAugment to prevent this issue.

The BASE MUSTC model has 8 encoder layers Ne and 6 decoder layers

Nd. The BASE ALL model, instead, has Ne set to 11 and Nd to 4. The

training of this latter model involves a pre-training on the synthetic data, a

fine-tuning on the data having ground-truth translations and a second fine-

tuning using label-smoothed cross entropy instead of knowledge distillation,

5Computed with the multi-bleu.pl script.
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as per §3.3.

All our models are optimized with label smoothed cross entropy using

the Adam optimizer (Kingma and Ba, 2015) with a learning rate starting

from 3 · 10−4, increasing linearly up to 5 · 10−4 in the first 5, 000 steps and

then decaying with inverse square root policy. We train on 4 K80 GPUs

using 8 sentences as mini-batch size and 16 as update frequency.

All the context-aware models are initialized with the corresponding

baseline model trained on sentence-segmented data. We experimented

with freezing all the pre-trained parameters as in (Zhang et al., 2018), but

freezing the decoder weights turned out to be harmful. If freezed, decoder

layers are not able to adapt to the new inputs (with different segmentation)

and this slows down convergence and leads to worse results. We hence

freeze only the encoder.

We choose the best model according to the loss on the validation set.

4.3.4 Results

We performed preliminary experiments with BASE MUSTC (scoring 21.08

BLEU on the original MuST-C en-de test set) to compare the context

integration techniques and select the most suitable one for ST. We then

compared the fine-tuning with the context-aware models using the stronger

baseline model BASE ALL (scoring 27.55 BLEU on the original test set).

Context information and integration

Table 4.2 shows that all the tested approaches outperform the baseline on

VAD-segmented data with a margin that ranges from 0.25 to 2.69 BLEU

points. This indicates that the context is useful to mitigate the effect

of VAD-based segmentation. On LIUM, our models achieve the highest

score (TGT PAR, 20.01 BLEU) and the largest gain over the baseline; on
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LIUM WebRTC

3, 30ms 2, 20ms 3, 20ms

BASE MUSTC 17.32 17.82 17.75 16.31

SRC SEQ 19.08 18.81 18.00 17.42

SRC PAR 19.25 18.90 18.25 17.30

TGT SEQ 19.57 19.21 18.81 17.60

TGT PAR 20.01 18.98 18.82 17.32

Table 4.2: Evaluation results on the VAD-segmented test set. Notes: SRC=audio as

context; TGT=generated translation as context; SEQ=sequential; PAR=parallel.

WebRTC the improvements are significant but smaller. We argue that the

reason lies in the different characteristics of the two tools. The split positions

selected by LIUM do not always correspond to actual pauses in the audio,

which prevents the baseline model from disposing of all the information

necessary for translation. This information, instead, is available to the

context-aware models as they can access the previous segment. WebRTC,

instead, produces very long/short segments, whose effect on context-aware

models is limited: the contribution of adding the previous segment is low

both in case of very long segments, as only the first part is influenced by

it, and in case of very short ones, as having a short segment as context

means adding little information. We also experimented with including

manually-segmented data in the training set of the models, but it was not

beneficial for any of them.

Looking at the context modality (text vs audio), we observe that supply-

ing the previously generated translation (TGT*) yields higher BLEU scores

than supplying its corresponding audio (SRC*) with both the integration

types (*SEQ and *PAR). This suggests that the audio representation pro-

duced by current ST models is less suitable than text to extract useful

content information to support translation. In light of these observations,

we decided to proceed with TGT SEQ and TGT PAR in the following
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LIUM WebRTC

AGG=3, FS=30ms AGG=2, FS=20ms AGG=3, FS=20ms

BLEU (↑) TER (↓) BLEU (↑) TER (↓) BLEU (↑) TER (↓) BLEU (↑) TER (↓)

BASE ALL 19.66 76.57 22.07 67.08 21.98 66.83 19.59 72.62

FINE-TUNE 22.48 64.21 23.48 60.03 23.40 61.54 21.35 63.90

TGT SEQ 23.18 58.60 22.85 58.49 22.59 59.79 21.11 60.51

+ REG 23.88 58.81 23.61 58.57 23.15 60.36 21.88 60.97

TGT PAR 23.77 59.02 23.34 58.94 22.91 60.09 21.75 60.77

+ REG 23.91 58.95 23.51 58.64 23.40 59.95 22.03 60.83

Table 4.3: Comparison between base model, fine-tuning and context-aware models.

experiments with the stronger BASE ALL model.

Context vs fine-tuning

To disentangle the benefits produced by the context and those due to the

use of artificial training data, we compare the performance of the fine-tuning

and the context-aware solutions.

The results in Table 4.3 show that: i) fine-tuning on the artificial

data produces significant gains over BASE ALL (respectively, 2.82 BLEU

points on LIUM and from 1.41 to 1.76 on WebRTC), and ii) TGT PAR

outperforms TGT SEQ on all datasets (by 0.32 to 0.64). TGT PAR

without regularization is superior to the fine-tuning when the VAD splits

very aggressively (21.75 vs 21.35 on WebRTC 3, 20ms) or in non-pause

positions (23.77 vs 22.48 on LIUM). On the other VAD configurations, the

results are close, but inferior to the fine-tuning. Our intuition is that this

behavior is caused by the noise added by the context-attention when the

context is not needed. This is confirmed by the results obtained when adding

the context-gate regularization6 presented in Eq. (4.3) (TGT PAR+REG

6The value of the hyperparameter α was chosen among 0.01, 0.02, 0.04 and 0.08: we set it to 0.04 as it

provided the best loss on the validation set.
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and TGT SEQ+REG). The regularization allows our best context-aware

model (TGT PAR+REG) to outperform the fine-tuned model on 3 out of

the 4 VAD configurations tested (in one case BLEU is on par) and improves

both integration types. TGT SEQ benefits more from it, closing the gap

with TGT PAR.

An in-depth analysis of the BLEU scores revealed that 1-,2-,3- and

4-gram BLEU scores are always significantly higher for the context-aware

solutions than for the fine-tuning, even when the overall BLEU scores

are close (or on par). This gap, indeed, is not reflected in the final score

due to the brevity penalty, as the context-aware models produce shorter

translations. This difference between context-aware models and fine-tuning

is confirmed and evident if we consider the TER metric (the lower, the

better). In this case, TGT SEQ obtains the best scores in every setting,

but the results of all context-aware models are close and are 2 to 6 points

better than those obtained with fine-tuning. Interestingly, the best result

(23.91 BLEU) is obtained by exploiting the context in one of the worst

segmentations for the base model (19.66 BLEU). This is coherent with the

behavior observed in §4.3.4.

4.3.5 Analysis

A researcher with a background in linguistics and excellent English knowl-

edge performed a manual analysis of the translations produced by the

baseline and by our best context-aware model (TGT PAR + REG) on

the LIUM-segmented test set. The goal was to check whether the gains

are actually due to the use of contextual information and to understand

how this information is exploited. We noticed three main issues solved by

the context-aware approach. They are all related to the presence of sub-

sentential fragments located at the beginning or the end of a segment. First,

these fragments are often ignored by the baseline model. Being trained only
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on well-formed sentences from the clean MuST-C corpus, this model seems

unable to handle segments reflecting truncated sentences and, instead of

returning partial translations, it opts for ignoring part of the input audio.

Second, the base model produces hallucinations (Lee et al., 2018) trying to

translate a sub-sentential fragment into a well-formed target sentence. Our

models, instead, produce the translation corresponding to the incomplete

fragment. Third, the baseline model translates the sub-sentential fragment

and the adjacent sentence in the same segment into one single output

sentence, mixing them. In contrast, context-aware models translate them

separately.

4.3.6 Summary

As a first approach to reducing the translation quality drop caused by

automatic (suboptimal) audio segmentation performed at inference time, in

this section we studied how to make ST models robust to VAD-segmented

utterances. To this aim, we explored different approaches to integrate

contextual information provided by the segment preceding the one to

be translated. Our experiments show that a context-aware architecture,

trained on artificial data generated with random segmentation, improves

final translation quality. We also demonstrate that, compared to the

best automatic segmentation (22.07 BLEU), context-aware models achieve

results that are similar in the worst case (22.03) and significantly better in

the best case (23.91). In this case, our context-based systems reduce by

55% the performance gap of the base model (19.66) with respect to optimal

(i.e. sentence-level) manual segmentation (27.55). These results confirm the

effectiveness of this approach in reducing the drop in translation quality

caused by segmentation mismatches in the training and test data. As an

alternative and complementary method, the next section directly addresses

the problem of the mismatch between the way the audio is segmented in
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the training data and at inference time and tries to mitigate the mismatch

by proposing a better audio segmentation technique.

4.4 Hybrid Audio Segmentation

As a complementary approach to build robust models, in this section we

focus on the audio segmentation itself. Audio segmentation strategies typi-

cally aim to mimic the sentence-based segmentation observed in the training

data to reduce the distributional shift between training and inference in-

puts. The importance of the audio segmentation has been demonstrated

in the 2020 IWSLT evaluation campaign (Ansari et al., 2020), where the

best direct ST system had a key feature in the segmentation algorithm

(Potapczyk and Przybysz, 2020), improving by 3.81 BLEU points the score

achieved when using the basic segmentation provided by the task organizers.

Similarly, in the 2021 edition (Anastasopoulos et al., 2021) the participants

that employed their own audio segmentation method outperformed nearly

all the teams that utilized the provided basic segmentation. At last, in

2022, the basic segmentation was definitively abandoned (Anastasopoulos

et al., 2022).

Our goal is the introduction of a segmentation strategy that not only

reduces the gap with the optimal segmentation, but is also applicable to

streaming audio. Toward this goal, since so far no work analyzed in depth

the strengths and weaknesses of different audio segmentation methods

in the context of direct ST, we first study the behavior of the existing

techniques (see §4.2.1). Based on the resulting observations, we propose

two variants of an improved hybrid technique. Through experiments in two

domains (TED and European Parliament talks) and two target languages

(German and Italian), we show that our solutions outperform the others in

all conditions, reducing the gap with optimal manual segmentation by at
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VAD System MuST-C Europarl-ST MuST-C Europarl-ST

BLEU (↑) TER (↓) BLEU (↑) TER (↓) BLEU (↑) TER (↓) BLEU (↑) TER (↓)
English-German English-Italian

LIUM 19.55 76.21 15.39 94.06 21.29 67.50 18.88 73.73

WebRTC 3, 30ms 21.90 66.96 16.23 89.35 22.46 64.99 19.85 72.28

WebRTC 3, 20ms 19.48 72.25 14.07 99.32 20.09 68.62 17.35 78.18

WebRTC 2, 20ms 21.87 66.72 18.51 78.12 22.34 66.12 20.90 69.54

Table 4.4: Results of the VAD systems on MuST-C and Europarl-ST for en-de and en-it.

least 30% compared to VAD systems.

4.4.1 Existing Methods

Before proposing a new segmentation strategy we analyze the quality of

existing methods described in §4.2.1 to gain useful insights. The models

and training settings used to build them are reported in §4.4.3.

VAD systems. We consider here the same VAD tools and configurations of

the previous section (§4.3.3). To better understand the impact of different

VADs on translation quality, the tools are compared on MuST-C and

Europarl-ST data. Table 4.4 reports preliminary translation results for

en-de and en-it. LIUM and the most aggressive WebRTC configuration (3,

20ms) are significantly worse than the other two WebRTC configurations.

As (2, 20ms) achieves comparable BLEU performance to (3, 30ms) on

MuST-C and better on Europarl-ST, it is used in the rest of the section.

Fixed-length. Fig. 4.3 shows that, with fixed segmentation, translation

quality improves with the duration of the segments (slightly for values

>=16s) up to 20s, after which it decreases. 20 seconds is the maximum

segment length in our training data due to memory limits: we can conclude

that longer segments produce better translations, but models can effec-

tively translate only sequences whose length does not exceed the maximum

observed in the training set.
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Figure 4.3: BLEU scores with different fixed-length segmentations (in seconds).

SRPOL-like segmentation. For the hybrid method described in §4.2.1, based

on the previous considerations drawn from Fig.4.3, in our experiments we

set the maximum length threshold to 20s, so that the model is fed with

sequences that are not longer than the maximum seen at training time.

The resulting segments have an average length of 7-8s.

4.4.2 Proposed hybrid segmentation

Similar to the hybrid method described in §4.2.1, our solution considers

both the audio content and the length of the target segments. However,

we give more importance to the length of the target segments than to the

detected pauses (we motivate this choice in §4.4.4). Specifically, we split on

the longest pause in the interval (minimum and maximum length), if any,

otherwise we split at maximum length. Maximum and minimum segment

lengths are controlled by two hyperparameters (MAX LEN and MIN LEN ).

Unlike the previously described methods that are based on a divide and

conquer approach, ours can operate on audio streams, as it does not require

the full audio to start the segmentation procedure. Moreover, the latency

is controlled by MAX LEN and MIN LEN, which can be tuned to trade

translation quality for lower latency.

We tested different values for MIN LEN and we chose 17s for our

experiments, because it resulted in the best score on the MuST-C dev set.
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Segm. method MuST-C en-de Europarl en-de MuST-C en-it Europarl en-it

BLEU (↑)TER (↓)BLEU (↑)TER (↓)BLEU (↑)TER (↓)BLEU (↑)TER (↓)
Manual segm. 27.55 58.84 26.61 60.99 27.70 58.72 28.79 59.16

Best VAD 21.87 66.72 18.51 78.12 22.34 66.12 20.90 69.54

Best Fixed (20s) 23.86 61.29 23.27 64.01 23.20 64.24 22.28 64.57

SRPOL-like 22.26 71.10 20.49 77.61 23.12 66.27 23.26 66.19

Pause in 17-20s 24.39 61.35 23.78 63.15 23.50 63.76 22.86 63.44

+ force split 23.17 66.20 22.52 68.56 23.45 63.79 24.15 63.31

Table 4.5: Comparison between manual and automatic segmentations: VAD, fixed-length

and hybrid approaches.

As in the other methods, and for the same reasons, MAX LEN is set to 20s.

The resulting segments have an average length slightly higher than 17s.

We also introduce a variant of this method that enforces splitting on

pauses longer than 550ms. In (Karakanta et al., 2020), this threshold

is shown to often represent a terminal juncture: a break between two

utterances, usually corresponding to clauses. Splitting on such pauses

should hence enforce separating different clauses. As a result, segments

can be shorter than MIN LEN, but we still ensure they are not longer

than MAX LEN. With this variant, the segments are much shorter, as

their average length is 8s, similar to that obtained with the SRPOL-like

segmentation.

4.4.3 Experimental Settings

We experimented with translation from English speech into two target

languages: German and Italian. We compute ST results in terms of BLEU7

and TER on the test sets of MuST-C and Europarl-ST. In MuST-C the two

test sets contain the same audio, while in Europarl-ST there are different

recordings.

In our experiments, we use the big system trained on large corpora

7Computed with the multi-bleu.pl script.
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introduced in §3.3. For a complete description of the architecture of the

models and the training details, the reader can refer to §3.3.2.

4.4.4 Results

As shown in Table 4.5, fixed-length segmentation always outperforms the

best VAD, both in terms of BLEU and TER. This may be surprising, but it

confirms previous findings in ASR (Sinclair et al., 2014):8 also in ST, VAD

is more costly and less effective than a naive fixed-length segmentation.

Besides, it suggests that the resulting segment length is more important than

the precision of the split times. This observation motivates the definition

of our proposed techniques. Compared to fixed-length segmentation, the

SRPOL-like method provides better results for en-it, but worse for en-de,

indicating that the syntactic properties of the source and target languages

are a critical factor for audio segmentation (see §4.4.5).

Our proposed method (Pause in 17-20s in Table 4.5) outperforms the

others on all test sets but Europarl en-it, in which SRPOL-like has a higher

BLEU (but worse TER). The version with forced splits on 550ms pauses is

inferior to the version without forced splits on the German test sets, but it

is on par for MuST-C en-it and superior on Europarl en-it, on which it is the

best segmentation overall by a large margin. Moreover, its scores are always

better than the ones obtained by the SRPOL-like approach, although the

length of the produced segments is similar. These results suggest that,

although the best version depends on the syntax and the word order of the

source and target languages, our method can always outperform the others

in terms of both BLEU and TER. Noticeably, it does not introduce latency,

since it does not require the full audio to be available for splitting it, as the

SRPOL-like technique does. In particular, averaged on the two domains,

our best results (respectively with and without forced splits) reduce the

8This was also later confirmed by Fukuda et al. (2022).
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Figure 4.4: Z-score normalized output lengths (number of words) according to the input

segments length.

gap with the manual segmentation by 54.71% (en-de) and 30.95% (en-it)

compared to VAD-based segmentation.

4.4.5 Analysis

With the goal of understanding the reasons for the different scores, we start

our analysis of the outputs produced by the different segmentation methods

by inspecting the overall length of the produced translations. In particular,

we examine the case of fixed-length segmentation (see Fig. 4.4): in presence

of short input segments, the output is longer, while it gets shorter in the case

of segments longer than 20s. To understand this behavior, we performed

a manual inspection of the German translations produced by fixed-length

segmentation with 4s, 20s, and 22s.

The analysis revealed two main types of errors: overly long (hallucina-

tions) and overly short outputs. The first type of error occurs when the

system is fed with small, sub-sentential segments. In this case, trying to

generate well-formed sentences, the system “completes” the translation

with text that has no correspondence with the input utterance. The second

type of error occurs when the system is fed with segments that exceed the

maximum length observed in the training data. In this case, part of the

input (even complete clauses, typically towards the end of the utterance) is
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(a) Hallucinations with non-speech audio

Audio Music and applause.

4s segments [Chinesisch] [Hawaiianischer Gesang] // Chris Anderson: Du bist ein Idiot. // Nicole: Nein.

[Chinese] [Hawaiian song] // Chris Anderson: You are an idiot. // Nicole: No.

(b) Hallucinations with sub-sentential utterances

Audio Now, chimpanzees are well-known for their aggression. // (Laughter) // But unfortunately, we have made

too much of an emphasis of this aspect (...)

Reference Schimpansen sind bekannt für ihre Aggressivität. // (Lachen) // Aber unglücklicherweise haben wir diesen

Aspekt überbetont (...)

4s segments Publikum: Nein. Schimpansen sind bekannt. // Ich bin für ihre Aggression gegangen. // Aber leider

haben wir zu viel Coca-Cola gemacht. // Das ist eine wichtige Betonung dieses Aspekts (...)

Audience: No. Chimpanzees are known. // I went for their aggression. // But unfortunately we made

too much Coca-Cola. // This is an important emphasis of this aspect (...)

20s segments Schimpansen sind bekannt für ihre Entwicklung. // Aber leider haben wir zu viel Schwerpunkt auf diesem

Aspekt (...)

Chimpanzees are known for their development. // But unfortunately, we have expressed too much emphasis

on this aspect (...)

(c) Hallucinations and bad translation with sub-sentential utterances

Audio (...) where the volunteers supplement a highly skilled career staff, you have to get to the fire scene pretty

early to get in on any action.

Reference (...) in der Freiwillige eine hochqualifizierte Berufsfeuerwehr unterstützten, muss man ziemlich früh an der

Brandstelle sein, um mitmischen zu können.

4s segments (...) wo die Bombenangriffe auf dem Markt waren. // Man muss bis zu 1.000 Angestellte in

die USA, nach Nordeuropa kommen.

(...) where the bombings were on the market. // You have to come up to 1,000 employees in the

USA, to Northern Europe.

20s segments (...) in der die Freiwilligen ein hochqualifiziertes Karriere-Team ergänzen, muss man ziemlich früh an die

Feuerszene kommen, um in irgendeiner Aktion zu gelangen.

(...) where the volunteers complement a highly qualified career team, you have to get to the fire scene pretty

early in order to get into any action.

(d) Final portions of long segment ignored

Audio But still it was a real footrace against the other volunteers to get to the captain in charge to find out what

our assignments would be. // When I found the captain, (...)

Reference Aber es war immer noch ein Wettrennen gegen die anderen Freiwilligen um den verantwortlichen

Hauptmann zu erreichen und herauszufinden was unsere Aufgaben sein würden. // Als ich den

Hauptmann fand (...)

22s segments (...) Es war immer noch ein echtes Fussrennen gegen die anderen Freiwilligen. // Als ich den Kapitän fand,

(...)

(...) It was still a real footrace against the other volunteers. // When I found the captain, (...)

Table 4.6: Translations affected by errors caused by too short – (a), (b), (c) – or too long

– (d) – segments. The symbol “//” refers to a break between two segments. The breaks

might be located in different positions in the different segmentations. Over-generated – in

examples (a), (b), (c) – and missing – in (d) – content is marked in bold respectively in

the system outputs and in the reference.

not realized in the final translation.

Table 4.6 provides examples of all these phenomena. The first three

examples showcase hallucinations in short (4s) segments, while the last one
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shows an incomplete translation of a long (22s) segment. In particular:

(a) shows the generation of text not related to the source when the

audio contains only noise or silence (e.g. at the beginning of a TED talk

recording).

(b) presents the addition of non-existing content in the translation of a

sub-sentential segment.

(c) is related to a sub-sentential utterance as well, but in this case the

output of the system is affected by both hallucinations and poor translation

quality due to the lack of enough context.

(d) reports a segment whose last portion is ignored.

The length of the generated outputs also helps to understand the different

results obtained by the variants of our method on the two target languages.

Indeed, the introduction of forced splits (+ force split) produces audio

segments that are much shorter (∼8s vs ∼17s) and hence, according to

the previous consideration, the resulting translation is overall longer. For

German, the difference in terms of output length is high (> 8.5%), while for

Italian it is much lower (4.33% on MuST-C and 2.49% on Europarl-ST). So,

the German results are penalized by the additional hallucinations, while,

for Italian translations, the beneficial separation of clauses delimited by

terminal juncture dominates.

This different behavior relates to the different syntax of the source and

target languages. Indeed, translating from English (an SVO language) into

German (an SOV language) requires long-range re-orderings (Gojun and

Fraser, 2012; Navrátil et al., 2012), which can also span over sub-clauses.

The Italian phrase structure, instead, is more similar to English. This

is confirmed by the shifts counted in TER computation, which are 20%

more in German than in Italian. Moreover, in Italian their number does

not change between our method with and without forced splits, while in

German the version with forced splits has 5-10% more shifts.
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4.4.6 Summary

Our study on reducing the quality drop caused by suboptimal segmenta-

tion of the audio at inference time has progressed in this section with a

comparison of different segmentation techniques for direct ST. Despite its

wide adoption, VAD-based segmentation resulted to be underperforming.

We showed that the length of audio segments is a crucial factor to obtain

good translations and that the best segmentation approach depends on the

structural similarity between the source and target languages. In particu-

lar, we demonstrated that the resulting segments should be neither longer

than the maximum length of the training samples nor too short (especially

when the target language has a different structure). Inspired by these

findings, we proposed two variants of a hybrid method that significantly

improve on different test sets and languages over the VAD baseline and

other techniques, reducing by at least 30% the gap with optimal manual

segmentation. In addition, our approach was designed to be also applicable

to audio streams and to allow controlling latency, hence being suitable

even for online use cases. All in all, our methods improve the translation

quality while keeping low the computational cost and controlling the latency

introduced, in line with the spirit of this thesis. The next section combines

our segmentation strategy with the techniques proposed in §4.3 to assess

their complementarity and overall effectiveness.

4.5 Combination of Approaches

We now combine the two approaches presented in §4.3 and §4.4 to investi-

gate whether their benefits are cumulative or not. Moreover, as Tsiamas

et al. (2022b) compare their newly proposed SHAS method (see §4.2.1)

with other segmentation methods only using models trained on well-formed

sentence-utterance pairs, we complement their experiments by validating
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Model BLEU (↑) TER (↓)
BASE 24.39 61.35

FINE-TUNE 25.39 57.64

TGT PAR + REG 24.92 57.41

VAD (TGT PAR + REG) 23.91 58.95

Table 4.7: Comparison between fine-tuned and context-aware models with hybrid audio

segmentation on the en-de section of MuST-C.

their findings also on models robust to automatic segmentation. In particu-

lar, we investigate whether i) model robustness brings benefits also with

audio segmented with SHAS, and ii) the gap between SHAS and other

segmentation methods is closed or not by the adoption of robust models.

Our experiments show that the two approaches (model robustness and

audio segmentation) account for complementary gains, both contributing to

reduce the detrimental effect of the audio segmentation mismatch between

training and inference data. However, this finding does not hold when SHAS

is used. In this case, the model robustness to automatic segmentation results

irrelevant due to the high quality of the automatic segmentation.

4.5.1 Model Robustness with Hybrid Audio Segmentation

We evaluate the models proposed in §4.3 on audio segmented with the

hybrid method introduced in §4.4 to assess whether their benefits are

complementary. Table 4.7 presents the results.

First, both approaches to increase model robustness to automatic seg-

mentation (fine-tuning and context-based) significantly improve the scores

(+0.5/1.0 BLEU and -3.7/3.9 TER). Moreover, there are large gains

(+1.0/1.5 BLEU and -1.3/1.5 TER) compared to the best scores obtained

using VAD tools to segment the audio. We can conclude that the two

approaches are complementary in reducing the gap with optimal audio

segmentation, limited to only 2.16 BLEU in the best scenario.
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Model Hybrid SHAS

tst-COMMON iwslt2020 tst-COMMON iwslt2020

Conformer 27.4 23.8 30.3 26.4

Conformer + resegm. fn 29.1 25.0 29.9 26.2

Table 4.8: BLEU scores of Hybrid and SHAS audio segmentation methods of the models

with and without fine-tuning on re-segmented data (resegm. fn) on the MuST-C v2

tst-COMMON and the IWSLT2020 test set.

Comparing the two techniques to increase model robustness, the fine-

tuning and the context-aware models show very similar results in this

scenario, with differences that are not statistically significant and are not

coherent across metrics and test sets. Although this finding may seem to

contradict previous results, the behavior is explained by the previously-

mentioned observation that in presence of long segments (as those produced

by our hybrid method) the beneficial contribution of the previous segment

is low. In light of these results and the fact that the fine-tuning is a simpler

approach, this method is considered in the experiments of the next section.

4.5.2 Comparison with SHAS

This section compares our hybrid method with the recent SHAS segmen-

tation in the condition in which the ST models are adapted to be robust

to a suboptimal audio segmentation. For this comparison, we leverage the

state-of-the-art Conformer models used in §3.6. For the training details,

the reader can refer to §3.6.3.

Table 4.8 compares our hybrid approach with the recent SHAS method,

with and without fine-tuning. First, we notice that the SHAS segmentation

improves over the Hybrid one, with gains from 0.8 to 2.9 BLEU. Secondly,

we see that the fine-tuning on re-segmented data – useful with the Hybrid

segmentation – becomes useless if using SHAS. In fact, the best overall

results are obtained using SHAS on a model that is not fine-tuned on reseg-
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mented data, which scores 30.3 BLEU on the MuST-C v2 tst-COMMON

and 26.4 BLEU on the IWSLT 2020 test set. As such, we can conclude that

fine-tuning on resegmented data is not needed if the audio is segmented

with SHAS.

Figure 4.5: Histogram of sequence lengths (in seconds) of the segments generated by our

Hybrid method and SHAS, compared with the reference, on the tst-COMMON of MuST-C

en-de v2.

To delve deeper into the comparison between our audio segmentation

method and SHAS, we analyze the lengths of the utterances obtained with

the two audio segmentation methods. Figure 4.5 compares the two methods

with the reference segmentation released for the MuST-C v2 test set. We

can notice that the distribution of segment lengths is very different between

all methods: our Hybrid method has a peaky distribution between 17 and

20 seconds, as expected, with a long tail toward 0 seconds, corresponding to

the last parts of the TED talks; SHAS has a quite flat distribution between

1 and 16 seconds (the default max segment length configured in SHAS),

with few outliers that go up to 23s; lastly, the segmented in the reference

display a higher variability, although most of them are shorter than 10

seconds, with a long tail of longer segments. These differences are also
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reflected in the mean and variance of the methods. Our Hybrid solution

has the highest mean (17.7s) and lowest variance (6.6), while the reference

has the lowest mean (5.8s) and highest variance (22.2). SHAS positions in

the middle, although it is closer to the reference, with an average segment

length of 9.1 seconds and 16.0 variance.

4.5.3 Summary

This section has shown the effect of combining our approaches for mitigat-

ing the impact of the audio segmentation mismatch between training and

inference data. We have seen that the benefits brought by a model robust

to a different segmentation vary according to the quality of the audio seg-

mentation. With our hybrid audio segmentation method, model robustness

contributes to closing the gap with optimal segmentation. The comparison

of our segmentation technique with the recent SHAS revealed that SHAS

leads to better results and eliminates the need for dedicated adaptations

of the ST model. However, we reiterate that SHAS has limitations (see

§4.2.1) that prevent its adoption in a streaming scenario. Thus, our hybrid

method, complemented by the proposed fine-tuning on resegmented data,

still represents a valid alternative in specific scenarios.

4.6 Conclusions

In this chapter, we confronted the topic of automatic segmentation of long

speeches, which is a preparatory step for translating with direct ST models.

After the assessment of the huge quality drop due to the distributional

shift between the manually segmented training data and VAD-segmented

inference data, we addressed the problem with two approaches. On one side,

our first contribution is the introduction of two methods to create models

robust to the automatic segmentation of the audio. These methods are i) a

119



Chapter 4 4.6. CONCLUSIONS

fine-tuning on randomly-segmented training data, and ii) a context-aware

architecture that attends to the previous segment as contextual information.

On the other side, we pursued the goal of limiting the distributional shift

between training and inference data by means of a novel hybrid solution

for the automatic segmentation of the audio. Lastly, we combined the two

approaches, showing that they bring complementary advantages, restraining

the gap with the optimal segmentation to only 2.16 BLEU, from the 5.65

BLEU of the best VAD tool. This chapter concludes our activities on

improving the quality of direct ST systems, even in the realistic scenario

of unsegmented audio. The results achieved lay the foundations for the

in-depth analysis of the next two chapters on specific capabilities of direct

ST models, which are crucial for their adoption in production. Along

this line, Chapter 5 focuses on gender bias, while Chapter 6 explores the

translation and recognition of salient elements, in particular named entities,

in the output of direct ST systems.
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Chapter 5

Gender Bias

5.1 Introduction

The previous chapters described the efforts toward high-quality direct

ST systems to make them ready for real applications. However, overall

translation quality is not the only factor that should be considered to

determine whether the technology is ready or not for production. Indeed,

the widespread use of language technologies has motivated growing interest

on their social impact (Hovy and Spruit, 2016; Blodgett et al., 2020), with

gender bias representing a major cause of concern (Costa-jussà, 2019; Sun

et al., 2019). As regards translation tools, focused evaluations have exposed

that even state-of-the-art ST – and MT – models do in fact overproduce

masculine references in their outputs (Cho et al., 2019; Bentivogli et al.,

2020), except for feminine associations perpetuating traditional gender roles

and stereotypes (Prates et al., 2020; Stanovsky et al., 2019). The problem

is particularly critical when translating from genderless languages1 (e.g.,

Finnish, Turkish) or notional gender languages2 (e.g., Danish, English) into

1Languages in which the gender-specific repertoire is at its minimum, only expressed for basic lexical

pairs, usually kinship or address terms (e.g., in Finnish sisko/sister vs. veli/brother).
2Languages that display a system of pronominal gender (she/he, her/him). English also hosts some

marked derivative nouns (actor/actress) and compounds (chairman/chairwoman).
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grammatical gender languages3 (e.g., Arabic, Spanish). In this case, the

richer morphology of the target language requires automatic models to

generate outputs that overtly assign a gender even without any explicit

indication in the source.

Most works identified data as the primary source of gender asymmetries.

Accordingly, many pointed out the misrepresentation of gender groups in

datasets (Vanmassenhove et al., 2018; Garnerin et al., 2019), focusing on

the development of data-centered mitigating techniques (Zmigrod et al.,

2019; Saunders and Byrne, 2020). However, data are not the only factor

contributing to gender bias (Shah et al., 2020). Neural networks rely on

easy-to-learn shortcuts or “cheap tricks” (Levesque, 2014), as picking up

on spurious correlations offered by training data can be easier for machines

than learning to actually solve a specific task. What is “easy to learn” for a

model depends on the inductive bias (Sinz et al., 2019; Geirhos et al., 2020)

resulting from architectural choices, training data, and learning rules. As

such, technical components can exacerbate the problem (Vanmassenhove

et al., 2019) and architectural changes can contribute to its mitigation

(Costa-jussà et al., 2020). Also, “taken-for-granted” approaches that come

with high overall translation quality may actually be detrimental when it

comes to gender bias (Roberts et al., 2020). In addition, unlike cascade

architectures, direct ST models may leverage the acoustic properties of

the audio input (e.g., speaker’s fundamental frequency) to determine the

gender of the speaker, as they are almost always aligned in training corpora.

However, relying on perceptual markers of speakers’ gender is not the best

solution for all users (e.g., transgenders, children, vocally-impaired people).

For these reasons, we believe that the technological development of

3Languages in which each noun pertains to a class such as masculine, feminine, and neuter (if present).

Although for most inanimate objects gender assignment is only formal, for human referents gender markings

are assigned on a semantic basis. Several parts of speech besides the noun (e.g., verbs, determiners,

adjectives) carry gender inflections, according to a system of morphosyntactic agreement.

122



Chapter 5 5.1. INTRODUCTION

new solutions should also account for the biasing effects they can have.

With this spirit, this chapter investigates the gender bias introduced by

the techniques leveraged to train direct ST models, eventually proposing

mitigating strategies. To this aim, we first study different solutions to

exploit external metadata indicating the gender of the speaker4 to control

the gender realizations in the translation (§5.3). Then, we inspect the

effect of different word segmentation strategies on gender translation (§5.4).

Along the same line, we carry out a multifaceted evaluation of systems

with different segmentation strategies and trained on different amounts of

data, assessing their capabilities on different parts of speech (POS) and

their coherence in morphosyntactic agreement chains (§5.5). We conclude

by complementing our study on KD from MT systems by analyzing the

effects it can have on gender translation, especially on first-person references

(§5.6).

The contributions of this chapter include: i) comparing different solutions

that integrate the external knowledge about the speaker’s gender and control

the generated translation accordingly; ii) showing that the widespread BPE

tokenization of the text exacerbates gender disparities in the training data

and proposing a solution to maintain the same translation quality while

limiting gender bias; iii) introducing a fine-grained evaluation of gender

bias in ST systems, thanks to which we individuate in nouns the most

biased POS and assess the almost perfect ability of ST systems in respecting

morphosyntactic agreement rules; iv) unveiling the negative effects of KD

from MT on gender bias and how to mitigate them.

4This information may be available in many situations. For instance, before a talk the speaker can be

asked for their gender.
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5.2 Related Works

After an overview of the (few) works on gender bias in ST (§5.2.1), we

present studies aimed at controlling gender translation in MT (§5.2.2), as

our solutions (described in §5.3) are the first to do so in ST. We then

provide and overview of the different word segmentation strategies (§5.2.3),

whose effect on gender bias is analyzed in §5.4.

5.2.1 Gender Bias in ST

Despite the importance of the topic, few works analyzed gender bias in

direct ST. Bentivogli et al. (2020) introduced MuST-SHE, a gender-sensitive

benchmark available for English→{French, Italian, Spanish}. Built on

naturally occurring instances of gender phenomena retrieved from MuST-

C, it allows evaluating gender translation on qualitatively differentiated

and balanced masculine/feminine forms. MuST-SHE contains two main

categories of sentences: category 1 refers to words whose correct translation

depends on the gender of the speaker (as in I’ve never been there, which is

translated in Italian as Non sono mai stata/stato l̀ı according to whether

it is uttered by a woman or a man), and category 2 to those in which the

gender of the translated words is derived by a pronoun or another referent

present in the sentence (as in He/She work as a doctor, which is translated

in Italian as Lui/Lei lavora come dottore/dottoressa). Thanks to this

resource, Bentivogli et al. (2020) compared gender translation performance

of cascade and direct ST, proving that the latter has an advantage when it

comes to speaker-dependent gender translation (category 1), since it can

leverage acoustic properties from the audio that have a strong correlation

with correct gender realizations in the test set.

Costa-jussà et al. (2022) extend the popular challenge test set WinoMT

by Stanovsky et al. (2019) to ST, recording 3,888 English sentences uttered
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by an American female speaker. This resource can be useful to diagnose

gender stereotyping at scale when translating into grammatical gender

languages, as it consists of synthetic sentences with the same structure

and a pre-selected occupational lexicon, in which a pronominal coreference

determines the gender of the referent. The gender information of the

evaluated terms is always explicit in the content of the utterances and the

gender of the speaker does not play any role: in this sense, the test set is

similar to category 2 of MuST-SHE. Through experiments on 4 language

pairs, Costa-jussà et al. (2022) demonstrate that ST systems exhibit a

disproportionate production of masculine references in their outputs, except

for feminine associations with traditional gender roles and characteristics.

Lastly, Zanon Boito et al. (2022) annotate the French talks of the mTEDx

corpus (Salesky et al., 2021) and evaluate the overall performance of models

obtained by fine-tuning pre-trained models such as wav2vec 2.0 (Baevski

et al., 2020) on the ASR and ST downstream tasks. They both pre-train

and fine-tune wav2vec 2.0 with varying amounts of data of speakers of each

gender and find out that gender-specific pre-training causes performance

degradation, while balanced pre-training does not imply gender fairness.

They do not focus, though, on the gender realizations in the output.

All these works assess the presence of gender bias in direct ST systems

without focusing on the impact of specific technical choices or components,

i.e. on the algorithmic bias, as we do throughout this chapter. In addition,

to the best of our knowledge, we are the first to propose mitigation strategies

in direct ST.

5.2.2 Controlling Speaker Gender in Translation

While no previous work in ST was dedicated to controlling the gender

realization of words referred to the speaker, in the related field of MT a

few approaches have been employed to make neural MT systems aware of
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speakers’ gender. We divide them into two categories: black-box methods,

which intervene only in the inference phase, and gender tagging methods,

which mitigate gender bias through architectural changes and dedicated

training procedures.

Black-box methods. Moryossef et al. (2019) attempt to control the produc-

tion of feminine references to the speaker and numeral inflections (plural or

singular) for the listener(s) in an English-Hebrew spoken language setting.

To this aim, they rely on a short construction, such as “she said to them”,

which is prepended to the source sentence and then removed from the MT

output. Their approach is simple, it can handle two types of information

(gender and number) for multiple entities (speaker and listener), and im-

proves the ability of systems in generating feminine target forms. This

solution is hardly applicable to ST, though, as prepending information to

the source is not trivial due to the audio modality. Habash et al. (2019) and

Alhafni et al. (2020) confront the problem of speaker’s gender agreement

in Arabic with a post-processing component that re-inflects 1st person

references into masculine/feminine forms. In (Alhafni et al., 2020), the

preferred gender of the speaker and the translated Arabic sentence are fed

to the component, which re-inflects the sentence in the desired form. In

(Habash et al., 2019) the component can be: i) a two-step system that first

identifies the gender of 1st person references in an MT output, and then

re-inflects them in the opposite form; ii) a single-step system that always

produces both forms given an MT output. However, the implementation

of the re-inflection component was made possible by the Arabic Parallel

Gender Corpus (Habash et al., 2019), which demanded an expensive work

of manual data creation, hence being hardly extendible to other language

pairs.
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Gender tagging. To improve the generation of speaker’s referential mark-

ings, Vanmassenhove et al. (2018) prepend a gender tag (M or F) to each

source sentence, both at training and inference time. This approach was in-

spired by one-to-many multilingual NMT systems (Johnson et al., 2017), in

which a single model translates from a source into many target languages by

means of a target-forcing mechanism. The solution proves useful to handle

morphological agreement when translating from English into French. Simi-

lar to our work in §5.3, this approach requires additional metadata regarding

the speakers’ gender. Elaraby et al. (2018) avoid this need by defining a

comprehensive set of cross-lingual gender agreement rules based on POS

tagging. In this way, they identify speakers’ and listeners’ gender references

in an English-Arabic parallel corpus, which is consequently labeled and used

for training. The idea can be adapted for other languages and scenarios by

creating new dedicated rules. However, in realistic deployment conditions

where reference translations are not available, gender information still has

to be externally supplied as metadata at inference time. Stafanovičs et al.

(2020) and Saunders et al. (2020) explore the use of word-level gender tags.

While Stafanovičs et al. (2020) just report a gender translation improve-

ment, Saunders et al. (2020) rely on the expanded version of WinoMT to

identify a problem concerning gender tagging: it introduces noise if applied

to sentences with references to multiple participants, as it pushes their

translation toward the same gender. Saunders et al. (2020) also include a

first non-binary exploration of neutral translation by exploiting an artificial

dataset, where neutral tags are added and gendered inflections are replaced

by placeholders. The results are however inconclusive, most likely due to

the small size and synthetic nature of their dataset. Both solutions are

not applicable to ST, though, due to the different source modality, as they

require identifying speaker-referred words in the source.
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5.2.3 Word Segmentation

Although early attempts in neural MT employed word-level sequences

(Sutskever et al., 2014; Bahdanau et al., 2015), the need for open-vocabulary

systems able to translate rare/unseen words led to the definition of sev-

eral word segmentation techniques. Currently, the statistically motivated

approach based on BPE (Sennrich et al., 2016; Kudo and Richardson,

2018) represents the de facto standard in MT. Recently, its superiority

to character-level segmentation (Costa-jussà and Fonollosa, 2016; Chung

et al., 2016; Lee et al., 2017) has been also proved in the context of ST

(Di Gangi et al., 2020a). However, depending on the languages involved

in the translation task, the data conditions, and the linguistic properties

taken into account, BPE greedy procedures can be suboptimal. By breaking

the surface of words into plausible semantic units, linguistically motivated

segmentations (Smit et al., 2014; Ataman et al., 2017) were proven more

effective for low-resource and morphologically-rich languages (e.g., aggluti-

native languages like Turkish), which often have a high level of sparsity in

the lexical distribution due to their numerous derivational and inflectional

variants. Moreover, fine-grained analyses comparing the grammaticality of

character, morpheme and BPE-based models exhibited different capabilities.

Sennrich (2017) and Ataman et al. (2019) showed the syntactic advantage

of BPE in managing several agreement phenomena in German, a language

that requires resolving long-range dependencies. In contrast, Belinkov et al.

(2020) demonstrated that while subword units better capture semantic

information, character-level representations perform best at generalizing

morphology, thus being more robust in handling unknown and low-frequency

words. Indeed, using different atomic units does affect the model ability to

handle specific linguistic phenomena. All these works analyze the different

segmentation methods in terms of their impact on overall quality. However,
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whether low gender translation accuracy can also be to a certain extent

considered a by-product of certain text-segmentation algorithms has not

been investigated. Therefore, we aim at filling this gap in §5.4.

5.3 Gender-aware Systems

As seen in §5.2.1, by translating speech audio data without intermediate

transcription, direct ST models are able to infer speakers’ gender from their

vocal characteristics, which are otherwise lost in the cascade framework.

Although such ability proved to be useful for gender translation, since

female speakers (and associated feminine marked words) are less frequent

within the training corpora, direct ST nonetheless tends towards a masculine

default just like its cascade counterpart, as well as MT, and numerous other

natural language processing applications. Moreover, direct ST systems

that exclusively rely on vocal biometric features as a gender cue can be

unsuitable and potentially harmful for certain users (e.g., transgenders,

children, vocally-impaired people).

Going beyond speech signals, in this section we compare different ap-

proaches to inform direct ST models about the speaker’s gender and test

their ability to control gender translation from English into Italian and

French. Toward this objective, we annotated MuST-C with speakers’ gender

information and explored different techniques to exploit such information

in direct ST to go beyond a potentially harmful exploitation of speakers’

vocal traits. The proposed techniques are compared, in terms of both

overall translation quality and accuracy in the translation of gender-marked

words, against a “pure” model that solely relies on the speakers’ vocal

characteristics for gender disambiguation.

In light of the above, our contributions are i) the manual annotation of

the TED talks contained in MuST-C with speakers’ gender information,
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based on the personal pronouns found in their TED profile5, and ii) the

first comprehensive exploration of different approaches to mitigate gender

bias in direct ST, depending on the potential users, the available resources,

and the architectural implications of each choice.

Experiments carried out on English-Italian and English-French show

that, on both language directions, our gender-aware systems significantly

outperform “pure” ST models in the translation of gender-marked words

(up to 30 points in accuracy) while preserving overall translation quality.

Moreover, our best systems learn to produce feminine/masculine gender

forms regardless of the perceptual features received from the audio signal,

offering a solution for cases where relying on speakers’ vocal characteristics

is detrimental to a proper gender translation.

5.3.1 Speakers’ Gender Annotation

The assumption that the gendered forms expected in translation align with

speakers’ vocal characteristics is detrimental to different groups of users.

As such, a better alternative is to directly enforce and control the correct

gender of the speaker if it is known in advance. To enable researchers in ST

to study solutions for this scenario, we decided to build a training ST corpus

explicitly annotated with gender information. To this aim, rather than

building a new resource from scratch, we opted for adding an annotation

layer to MuST-C, which has been chosen over other existing corpora for the

following reasons: i) it is currently the largest freely available multilingual

corpus for ST, ii) being based on TED talks it is the most compatible

one with MuST-SHE, iii) TED speakers’ personal information is publicly

available and retrievable on the TED official website.6

5The resource, MuST-Speakers, is released under a CC BY NC ND 4.0 International license, and is

freely downloadable at https://ict.fbk.eu/must-speakers/.
6Available at https://www.ted.com/speakers/
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Following the MuST-C talk IDs, we have been able to i) automatically

retrieve the speakers’ name, ii) find their associated TED official page,

and iii) manually label the personal pronouns used in their descriptions.

Though time-consuming, such manual retrieval of information is preferable

to automatic speaker gender identification for the following reasons. First,

since automatic methods based on fundamental frequency are not equally

accurate across demographic groups (e.g., women and children are hard to

distinguish as their pitch is typically high – Levitan et al. 2016), manual

assignment prevents from incorporating gender misclassifications in our

training data. Second, biological essentialist frameworks that categorize

gender based on acoustic cues (Zimman, 2020) are especially problematic

for transgender individuals, whose gender identity is not aligned with the

sex assigned at birth based on designated anatomical/biological criteria

(Stryker, 2008).

Differently, following the guidelines in (Larson, 2017), we do not want

to run the risk of making assumptions about speakers’ gender identity and

introducing additional bias within an environment that has been specifically

designed to inspect gender bias. By looking at the personal pronouns used

by the speakers to describe themselves, our manual assignment instead is

meant to account for the gender linguistic forms by which the speakers

accept to be referred to in English (GLAAD, 2007), and would want their

translations to conform to. We stress that gendered linguistic expressions

do not directly map to speakers’ self-determined gender identity (Cao and

Daumé III, 2020). We therefore make explicit that, when talking about

speakers’ gender, we refer to their accepted linguistic expression of gender

rather than their gender identity.

Focusing on the two language pairs of our interest, 2,294 different speakers

described via he/she pronouns7 are represented in both en-it and en-fr.

7It is important to point out that some individuals do not neatly fall into the female/male binary
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Talks M Talks F Hours M Hours F Segments M Segments F

en-it 1,569 725 316 136 178,841 71,877

en-fr 1,569 725 327 151 189,742 81,527

Table 5.1: Statistics for MuST-C data with gender annotation. The number of segments

and hours varies over the two language pairs due to the different pre-processing of MuST-C

data.

Their male/female8 distribution is unbalanced, as shown in Table 5.1, which

presents the number of talks, as well as the total number of segments and

the corresponding hours of speech.

5.3.2 ST Systems

For our experiments, we build three types of direct systems. One is the

base system, a state-of-the-art model that does not leverage any external

information about the speaker’s gender (§5.3.2). The others are two gender-

aware systems that exploit speakers’ gender information in different ways:

multi-gender (§5.3.2) and specialized (§5.3.2). All the models share the

same architecture, a Transformer adapted to ST, analogous to that used in

previous experiments (e.g., §3.3, §4.4), with logarithmic distance penalty.

(gender fluid, non-binary) or may even not experience gender at all (a-gender) (Richards et al., 2016; Schilt

and Westbrook, 2009; GLAAD, 2007), possibly preferring the use of singular they or other neopronouns.

Within MuST-C, speakers with they pronoun have been encountered, but MuST-C human-reference

translations do not exhibit linguistic gender-neutralization strategies, which are difficult to fully implement

in languages with grammatical gender (Lessinger, 2020). Note that, because of such inconsistency and the

very limited number of cases, these instances were not used for training. Our experiments therefore focus

on binary linguistic forms. By design, some sparse talks with multiple speakers of different genders were

also excluded. Detailed information about all MuST-C speakers and corresponding talks can be found in

the resource release at ict.fbk.eu/must-speakers.
8Some authors distinguish female/male for sex and woman/man for gender (among others Larson

2017). For the sake of simplicity, in our study we use female/male to respectively indicate those speakers

whose personal pronouns are she/he.
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Base ST Model

We are interested in evaluating and improving gender translation on strong

ST models that can be used in real-world contexts. As such, our base,

gender-unaware model is trained with the goal of achieving state-of-the-art

performance on the ST task. To this aim, we rely on data augmentation

and knowledge transfer techniques (see §2.3.2 and §3.3). In particular,

we use SpecAugment, time stretch, and synthetic data generation, and

we transfer knowledge both from ASR and MT through, respectively,

component initialization and KD.

The ST-model encoder is initialized with the encoder of an English

ASR model with a lower number of encoder layers (the missing layers are

initialized randomly, as well as the decoder). This ASR model is trained

on Librispeech, Mozilla Common Voice, How2, TEDLIUM-v3, and the

utterance-transcript pairs of the ST corpora – Europarl-ST and MuST-C.

These datasets are either gender unbalanced or do not provide speakers’

gender information apart from Librispeech, which is balanced in terms of

female/male speakers (Garnerin et al., 2020). However, since these speakers

are just book narrators, first-person sentences do not really refer to the

speakers themselves. For both en-it and en-fr, the MT model is trained on

the OPUS datasets.

The ST model is trained in three consecutive steps, following the method-

ology introduced in §3.3. In the first step, we use the synthetic data obtained

by pairing ASR audio samples with the automatic translations of the cor-

responding transcripts. In the second step, the model is trained on the

ST corpora. In these first two steps, we use the KD loss function. Finally,

in the third step, the model is fine-tuned on the same ST corpora using

label-smoothed cross entropy.
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Multi-gender Systems

As anticipated in §5.2.2, the idea of “multi-gender” models, i.e. models

informed about the speaker’s gender with a tag prepended to the source

sentence, was introduced by Vanmassenhove et al. (2018) and Elaraby et al.

(2018) in MT. With this mechanism, ST multi-gender systems are fed not

only with the input audio, but also with a tag (token) representing the

speaker’s gender. This token is converted into a vector through learnable

embeddings. This approach has two main potential advantages: i) a single

model supports both male and female speakers (which makes it particularly

appealing for real-world application scenarios), and ii) each gender direction

can benefit from the data available for the other, potentially learning to

produce words that would have never been seen otherwise (transfer learning).

Regarding the several options to supply the model with the additional gender

information, we do not follow the approach of Vanmassenhove et al. (2018)

and Elaraby et al. (2018), since it is dedicated to MT. Instead, we consider

those that obtained the best results in multilingual direct ST (Di Gangi

et al., 2019d; Inaguma et al., 2019), namely:

Decoder prepending. The gender token replaces the BOS token9 (beginning-

of-sentence). This is the token added in front of the previously generated

tokens fed to the autoregressive decoder.

Decoder merge. The gender embedding is added to all the word embeddings

representing the generated tokens in the decoder input.

Encoder merge. The gender embedding is added to the Mel-filter-bank

sequence representing the source speech given as input to the encoder.

9In our implementation, the EOS (end-of-sentence) token is actually used in place of the BOS, which

does not exist.
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In all cases, model weights are initialized with those of the Base mod-

els. The only randomly-initialized parameters are those of the gender

embeddings.

Gender-specialized Systems

In this approach, two different gender-specific models are created. Each

model is initialized with the weights of the Base model and then fine-tuned

only on samples of the corresponding speaker’s gender. This solution has

the drawback of a higher maintenance burden than the multi-gender one, as

it requires the training and management of two separate models. Moreover,

no transfer learning is possible: although each model is initialized with the

base model trained on all the data and the low learning rate used in the

fine-tuning prevents catastrophic forgetting (Mccloskey and Cohen, 1989),

data scarcity conditions for a specific gender are likely to lead to lower

performance on that direction.

5.3.3 Gender-balanced Validation Set

To train our gender-aware models, we do not rely on the standard MuST-

C validation set, as it reflects the same gender-imbalanced distribution

found in the training data. We therefore created a new specifically designed

validation set composed of 20 talks. Unlike the standard MuST-C validation

set, it contains a balanced number of female/male speakers, thus avoiding

the reward of potentially biased behaviors. This new resource is released

under a CC BY NC ND 4.0 International license, and is freely downloadable

at https://ict.fbk.eu/must-c-gender-dev-set/.10

10To ease future research on gender bias in ST for the three language pairs represented in MuST-SHE

(en-it, en-fr, en-es), the validation set is also available for en-es.
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5.3.4 Experimental Setting

Multi-gender (§5.3.2) and gender-specialized models (§5.3.2) are initialized

with the weights of the base model and are then fine-tuned on the MuST-C

gender-labeled dataset. Since, as seen in §5.3.1, this dataset shows a quite

skewed male/female speaker distribution (approximately 70%/30%), we

test both approaches in two different data conditions: i) balanced (*-Bal),

where we use all the female data available together with a random subset

of the male data, and ii) unbalanced (*-All) where all the MuST-C data

available are exploited. It must be noted that there are differences between

the two approaches on the usage of data. In the specialized approach, since

we have two separate systems, the one which is fine-tuned with talks by

female speakers remains the same in both data conditions. Differently, in

the multi-gender approach, which is trained on both genders together, all

the training mini-batches contain the same number of samples for each

gender. Thus, when all MuST-C data are used, the female gender pairs –

which are underrepresented – are over-sampled.

5.3.5 Evaluation Method

For our experiments, we rely on MuST-SHE. By design, each segment in

the corpus requires the translation of at least one English gender-neutral

word into the corresponding masculine/feminine target word(s) to convey

a referent’s gender. With the intent to evaluate our gender-aware ST

models on speaker-dependent gender phenomena, we focus on category 1 of

MuST-SHE (see §5.2.1).

An important feature of MuST-SHE is that, for each reference translation,

an almost identical “wrong” reference is created by swapping each annotated

gender-marked word into its opposite gender (e.g., I have been uttered by a

woman is translated into the correct Italian reference Sono stata, and into
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the wrong reference Sono stato). The idea behind gender-swapping is that

the difference between the scores computed against the “correct” and the

“wrong” reference sets captures the ability of the systems to handle gender

translation. However, relying on these scores does not allow distinguishing

between those cases where the system “fails” by producing a word different

from the one present in the references (e.g., andat* in place of stat* ) and

failures specifically due to the wrong realization of gender (e.g., stato in

place of stata).

Thus, we introduce a more informative evaluation. First, we calculate

the term coverage as the proportion of gender-marked words annotated

in MuST-SHE that are actually generated by the system, on which the

accuracy of gender realization is therefore measurable. Then, we define

gender accuracy as the proportion of correct gender realizations among

the words on which it is measurable. Our evaluation method has several

advantages. On one side, term coverage unveils the precise amount of

words on which gender realization is measurable. On the other, gender

accuracy directly informs about performance on gender translation and

related gender bias: scores below 50% indicate that the system produces the

wrong gender more often than the correct one, thus signalling a particularly

strong bias. Gender accuracy has the further advantage of informing about

the margins for improvement of the systems.

5.3.6 Results

Table 5.2 presents overall results in terms of BLEU scores on the MuST-SHE

test set. Both language directions show the same trend.

First, the MT systems used by the ST models for KD achieve by far the

highest performance. This is expected since the ST task is more complex

and MT models are trained on larger amounts of data. However, all our

ST results are competitive compared to those published for the two target
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en-it en-fr

BLEU BLEU

MT for KD 33.59 39.61

Base 27.51 34.25

Multi-DecPrep-Bal 26.36 33.54

Multi-DecPrep-All 26.17 34.13

Multi-EncMerge-Bal 26.47 33.29

Multi-EncMerge-All 26.39 33.07

Multi-DecMerge-Bal 21.99 27.06

Multi-DecMerge-All 22.12 27.74

Specialized-Bal 27.43 34.32

Specialized-All 27.79 34.61

Table 5.2: BLEU on MuST-SHE.

languages. In particular, on the MuST-C test set, the scores of our ST

Base models are 27.7 (en-it) and 40.3 (en-fr), respectively 0.3 and 4.8

BLEU above the best cascade results reported in (Bentivogli et al., 2020).

Moving on to ST systems, except for the Multi-DecMerge system

(whose performance is significantly lower), we do not observe statistically

significant BLEU differences between the Base models and their gender-

aware extensions (Multi-* and Specialized-*), which also perform on

par when fine-tuned with varying amounts of annotated data (balanced vs

all).

Due to the very small percentage of speaker-dependent gender-marked

words in MuST-SHE (< 3%, 810-840 over ∼30,000 words), the ability of the

systems in translating gender is not reflected by BLUE scores. Therefore,

we now delve deeper into our more informative evaluation (as per §5.3.5)

and turn to the term coverage and gender accuracy values presented in

Table 5.3. The overall results assessed with BLEU are confirmed by term

coverage scores for both en-it and en-fr: the MT systems generate the

highest number of annotated words present in MuST-SHE (63.83% on en-it

and 63.10% on en-fr), while we do not observe large differences among the

ST models (between 56.17% and 58.02% for en-it and 60.60% and 62.38%
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en-it en-fr

Cover. Acc. Cover. Acc.

MT for KD 63.83 51.45 63.10 52.08

Base 56.17 56.26 62.02 56.24

Multi-DecPrep-Bal 56.91 64.86 60.95 69.34

Multi-DecPrep-All 56.54 66.81 61.31 70.29

Multi-EncMerge-Bal 57.04 62.55 60.60 62.67

Multi-EncMerge-All 57.65 60.39 62.38 61.83

Multi-DecMerge-Bal 49.88 59.41 54.52 64.63

Multi-DecMerge-All 50.74 60.58 56.31 65.96

Specialized-Bal 57.90 86.35 61.79 86.13

Specialized-All 58.02 87.02 62.38 86.45

Table 5.3: Term coverage and gender accuracy.

for en-fr).

Instead, looking at gender accuracy, we immediately unveil that overall

performance is not an indicator of the ability of systems in translating

gender. In fact, the best-performing MT systems show the lowest gender

accuracy (51.45% for en-it and 52.08% for en-fr): intrinsically constrained

by the lack of access to audio information, they produce the wrong target

gender in half of the cases. Base models indeed better translate gender,

although they still present a large margin of improvement. Differently,

the models fed with the speaker’s gender information display a noticeable

increase in gender translation, with Specialized-* models outperforming

the Multi-* ones by 16–20 points and the Base ones by 30 points.

Among the multi-gender architectures, our results show that Multi-

DecPrep has an edge on the other two models, both in overall and gender

translation performance: for the sake of simplicity, from now on, we thus

present only that model. As a single-model architecture, multi-gender would

be a more functional solution than multiple specialized models, but – being

trained on both female and male speakers’ utterances – it is noticeably

weaker than multiple specialized models (trained on gender-specific data)

at predicting gender. With regard to the different amounts of gender-
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en-it en-fr

Feminine Masculine Feminine Masculine

Cover. Acc. Cover. Acc. Cover. Acc. Cover. Acc.

MT for KD 66.25 16.23 61.46 88.49 63.76 16.24 62.41 89.58

Base 58.75 33.62 53.66 80.45 60.47 32.30 63.61 79.55

Multi-DecPrep-Bal 60.00 68.75 53.90 60.63 61.41 68.58 60.48 70.12

Multi-DecPrep-All 58.00 69.83 55.12 63.72 61.88 65.78 60.72 75.00

Specialized-Bal 62.00 79.84 53.90 93.67 62.59 79.32 60.96 93.28

Specialized-All 62.00 79.84 54.15 95.05 62.59 79.32 62.17 93.80

Table 5.4: Coverage and accuracy scores divided by feminine and masculine word forms.

annotated data used to train our gender-aware models, we cannot see any

appreciable variation in term coverage and gender accuracy between the

two settings.

Cross-gender Analysis

Table 5.4 shows separate term coverage and gender accuracy scores for

target feminine and masculine forms. This allows us to highlight the

translation ability of the models for each gender form and conduct cross-

gender comparisons to detect potential bias. Also in this analysis, results are

consistent across language pairs. We assess that the MT models present a

very strong bias since they almost always produce masculine forms: accuracy

is always much lower than 50% on the feminine set (up to 20.85% for en-it

and 26.91% for en-fr) and very high on the masculine set (up to 88.49% for

en-it and 89.58% for en-fr). The Base ST models improve the realization

of feminine forms, but they still remain far from 50%.

All gender-aware models significantly reduce bias with respect to the

Base systems. This is particularly evident in the feminine set, where

accuracy scores far above 50% indicate their ability to correctly represent

female speakers. In particular, the Specialized models achieve the best

results on both feminine and masculine sets (over 79% and 93% respectively).

The higher performance on the masculine set can be explained considering
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that the two gender-specialized models derive from the Base model, which

is strongly biased towards masculine forms. Interestingly, Multi-DecPrep

shows similar feminine/masculine accuracy scores. This is possibly due to

the random initialization of the embeddings of gender tokens: as a result,

the initial model hidden representations and predictions are perturbed in

an unbiased way. An unbiased starting condition combined with balanced

data leads to a fairer, similar behavior across genders, although the final

models have lower accuracy than the Specialized ones.

Finally, we notice that results obtained by training our models with

balanced (*-Bal) and unbalanced (*-All) datasets are similar. Indeed,

the masculine gender accuracy slightly improves by adding more male

data, while there is not a clear trend on the feminine accuracy: we can

conclude that oversampling the data is functional inasmuch as it keeps the

performance on the feminine set stable.

5.3.7 Analysis of Conflicting Vocal Characteristics and Tags

So far, we worked under the assumption that the speakers’ vocal characteris-

tics match those typically associated with the gender category they identify

with. In this section, we explore the capacity of the systems in producing

translations that are coherent with the speaker’s gender in a scenario in

which this assumption does not hold: this is the case of some transgenders,

children and people with vocal impairment. However, we are hindered by

the almost absent representation of such users within MuST-C. We hence

design a counterfactual experiment where we associate the opposite gender

tag to each actual female/male speaker and inspect the behavior of the

models when receiving conflicting information between the gender tag and

the properties of the acoustic signal.

Table 5.5 presents the results for this experiment. In the M-audio/F-

transl set, systems were fed with a male voice and a female tag and the
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en-it en-fr

M-audio/F-tag F-audio/M-tag M-audio/F-tag F-audio/M-tag

Cover. Acc. Cover. Acc. Cover. Acc. Cover. Acc.

Multi-DecPrep-All 54.88 45.78 60.25 38.17 61.93 45.14 61.18 55.77

Specialized-All 54.39 64.57 60.75 94.24 62.17 59.69 61.41 94.25

Table 5.5: Coverage and accuracy scores when the correct translation is expected in a

gender form opposite to the speaker’s gender but in accordance with the gender tag fed to

the system.

expected translation is in the feminine form, while in the F-audio/M-transl

set we have the opposite. As we can see, in both sets the multi-gender

model has a drastic drop in accuracy with respect to the results shown

in Table 5.4, with scores below 50% for en-it. This behavior indicates

that the model relies on both the gender token and the audio features,

which in this scenario are conflicting. Thus, the multi-gender model is not

usable in scenarios in which the vocal characteristics have to be ignored.

On the contrary, the specialized systems show a high accuracy on both

sets. In particular, on F-audio/M-transl the performance is in line with the

results of Table 5.4. This indicates that, independently of speakers’ vocal

characteristics, the model relies only on the provided gender information,

being therefore suitable for situations in which one wants to control the

gendered forms in the output and override the potentially misleading speech

signals.

5.3.8 Summary

Going beyond the attested ability of direct ST systems in leveraging speakers’

vocal characteristics from the audio input, we developed gender-aware

models suitable for operating conditions where speakers’ gender is known.

To this aim, we annotated the MuST-C dataset with speakers’ gender

information, and used the new annotations to experiment with different

architectural solutions: “multi-gender” and “specialized”. The results of
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our experiments on two language pairs (en-it and en-fr) demonstrated the

improvements in gender realization brought by breeding ST models aware

of the speaker’s gender. In particular, our specialized systems outperform

the gender-unaware ST models by 30 points in gender accuracy without

affecting overall translation quality. In addition, we demonstrated that

specialized systems can be used to directly control the gender realization in

the output even when the vocal characteristics of the speakers are conflicting

with their gender, without requiring dedicated training data for this case.

These solutions focused only on the gendered words referred to the speakers

(category 1 of MuST-SHE). In the next sections, we turn our attention

to the effect of well-established practices in ST on the translation of all

gendered words (both category 1 and 2 of MuST-SHE).

5.4 The Effect of Word Segmentation

In line with the spirit of this chapter, which aims to investigate whether

and which algorithmic aspects concur to exacerbate biased outputs, we now

bring the analysis onto a seemingly neutral yet critical component: word

segmentation. BPE represents the de-facto standard and has been recently

shown to yield better results compared to character-based segmentation in

ST (Di Gangi et al., 2020a). But does this hold true for gender translation

as well? If not, why?

Languages like French and Italian often exhibit comparatively complex

feminine forms, derived from the masculine ones by means of an additional

suffix (e.g., en: professor, fr: professeur M vs. professeure F). Besides,

women and their referential linguistic expressions of gender are typically

under-represented in existing corpora (Hovy et al., 2020). In light of

the above, purely statistical segmentation methods could be unfavorable

for gender translation, as they can break the morphological structure of
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words and thus lose relevant linguistic information (Ataman et al., 2017).

For instance, BPE merges the character sequences that co-occur more

frequently, so rarer or more complex feminine-marked words may result in

less compact sequences of tokens (e.g. en: described, it: des@@critto M

vs. des@@crit@@ta F). Due to such typological and distributive conditions,

may certain splitting methods render feminine gender less probable and

hinder its prediction?

We address such questions by implementing different families of seg-

mentation approaches employed on the decoder side of ST models built

on the same training data. By comparing the resulting models both in

terms of overall translation quality and gender accuracy, we explore whether

a so-far considered irrelevant aspect like word segmentation can actually

affect gender translation. As such, our contributions include: i) the first

comprehensive analysis of the results obtained by 5 popular segmentation

techniques for two language directions (en-fr and en-it) in ST; ii) finding

that the target segmentation method is indeed an important factor and

state-of-the-art subword splitting (i.e., BPE) comes at the cost of higher

gender bias, while character-based models are the best at translating gen-

der; iii) the proposal of a multi-decoder architecture able to combine BPE

overall translation quality and the higher ability to translate gender of

character-based segmentation.

5.4.1 Segmentation Techniques

For a comprehensive comparison of the impact of word segmentation on

gender bias in ST, we identified three substantially different categories of

splitting techniques. For each of them, we hereby present the candidates

selected for our experiments.

144



Chapter 5 5.4. THE EFFECT OF WORD SEGMENTATION

Character Segmentation. Dissecting words at their maximal level of granu-

larity, this technique proves simple and particularly effective at generalizing

over unseen words. On the other hand, the length of the resulting sequences

increases the memory footprint, and slows both the training and inference

phases. We perform our segmentation by appending “@@ ” to all characters

but the last of each word.

Statistical Segmentation. This family comprises data-driven algorithms

that generate statistically significant subwords units. The most popular

is BPE,11 which proceeds by merging the most frequently co-occurring

characters or character sequences. Recently, He et al. (2020) introduced

the Dynamic Programming Encoding (DPE) algorithm, which performs

competitively and was claimed to accidentally produce more linguistically-

plausible subwords with respect to BPE. DPE is obtained by training a

mixed character-subword model. As such, the computational cost of a

DPE-based ST model is around twice that of a BPE-based one. We trained

the DPE segmentation on the transcripts and the target translations of the

MuST-C training set, using the same settings of the original paper.12

Morphological Segmentation. A third possibility is linguistically-guided

tokenization that follows morpheme boundaries. Among the unsupervised

approaches, one of the most widespread tools is Morfessor (Creutz and

Lagus, 2005), which was extended by Ataman et al. (2017) to control the size

of the output vocabulary, giving birth to the LMVR segmentation method.

These linguistically motivated segmentation techniques have outperformed

other approaches when dealing with low-resource and/or morphologically-

rich languages (Ataman and Federico, 2018). In other languages, they are

11We use SentencePiece implementation Kudo and Richardson (2018): https://github.com/google/

sentencepiece.
12See https://github.com/xlhex/dpe.
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en-fr en-it

# tokens 5.4M 4.6M

# types 96K 118K

BPE 8,048 8,064

Char 304 256

DPE 7,864 8,008

Morfessor 26,728 24,048

LMVR 21,632 19,264

Table 5.6: Dictionary sizes. “Tokens” refers to the number of words in the corpus, and

not to the unit resulting from subword tokenization.

not as effective, so they are not widely adopted. Both Morfessor and LMVR

have been trained on the MuST-C training set.13

For fair comparison, we chose the optimal vocabulary size for each

method (when applicable). Following (Di Gangi et al., 2020a), we employed

8k merge rules for BPE and DPE, since the latter requires an initial BPE

segmentation. In LMVR, instead, the desired target dimension is actually

only an upper bound for the vocabulary size. We tested 32k and 16k, but

we only report the results with 32k as it proved to be the best configuration

both in terms of translation quality and gender accuracy. Finally, character-

level segmentation and Morfessor do not allow determining the vocabulary

size. Table 5.6 shows the size of the resulting dictionaries.

5.4.2 Experimental Settings

All the direct ST systems used in our experiments are built in the same

fashion within a controlled environment, so to keep the effect of different

word segmentations as the only variable. Accordingly, we train them on

the MuST-C corpus, which contains 492 hours of speech for en-fr and 465

for en-it.

We are interested in measuring both i) the overall translation quality

13We used the parameters and commands suggested in https://github.com/d-ataman/lmvr/blob/

master/examples/example-train-segment.sh

146

https://github.com/d-ataman/lmvr/blob/master/examples/example-train-segment.sh
https://github.com/d-ataman/lmvr/blob/master/examples/example-train-segment.sh


Chapter 5 5.4. THE EFFECT OF WORD SEGMENTATION

en-fr en-it

M-C M-SHE Avg. M-C M-SHE Avg.

BPE 30.7 25.9 28.3 21.4 21.8 21.6

Char 29.5 24.2 26.9 21.3 20.7 21.0

DPE 29.8 25.3 27.6 21.9 21.7 21.8

Morfessor 29.7 25.7 27.7 21.7 21.4 21.6

LMVR 30.3 26.0 28.2 22.0 21.5 21.8

Table 5.7: SacreBLEU scores on MuST-C tst-COMMON (M-C) and MuST-SHE (M-SHE)

for en-fr and en-it.

obtained by different segmentation techniques, and ii) the correct generation

of gender forms. We evaluate translation quality on both the MuST-C

tst-COMMON set and MuST-SHE, using SacreBLEU.14 For fine-grained

analysis on gender translation, we rely on gender accuracy (see §5.3.5). We

report gender accuracy for the two categories of phenomena in MuST-SHE

(see §5.2.1). In category 1, we let ST models leverage speakers’ vocal

characteristics as a gender cue to infer gender translation, since train and

test data reflect this correlation.15

Concerning the architecture and training details, our models are Trans-

formers adapted to ST, as in the previous section and chapters (see §3.3).

5.4.3 Comparison of Segmentation Methods

Table 5.7 shows the overall translation quality of ST systems trained with

distinct segmentation techniques. BPE comes out as competitive as LMVR

for both language pairs. On averaged results, it exhibits a small gap (0.2

BLEU) also with DPE on en-it, while it achieves the best performance on

14BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.3.
15Although potentially harmful for certain groups, we do not investigate methods to control gender

translation, as we already did this in the previous section. Rather, we experimented with unmodified

models for the sake of hypothesis testing without adding variability. However, our results suggest that, if

certain word segmentation techniques better capture correlations from the received input, such capability

could be exploited to redirect ST attention away from speakers’ vocal characteristics by means of other

information provided.
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ALL 1F 1M 2F 2M

en-fr

BPE 65.18 37.17 75.44 61.20 80.80

Char 68.85 48.21 74.78 65.89 81.03

DPE 68.55 49.12 70.29 66.22 80.90

Morfessor 67.05 42.73 75.11 63.02 80.98

LMVR 65.38 32.89 76.96 61.87 79.95

en-it

BPE 67.47 33.17 88.50 60.26 81.82

Char 71.69 48.33 85.07 64.65 84.33

DPE 68.86 44.83 81.58 59.32 82.62

Morfessor 65.46 36.61 81.04 56.94 79.61

LMVR 69.77 39.64 89.00 63.85 83.03

Table 5.8: Gender accuracy (%) for MuST-SHE Overall (ALL), Category 1 and 2 on en-fr

and en-it.

en-fr. The disparities are small, though: they range within 0.5 BLEU, apart

from Char standing ∼1 BLEU below. Compared to the scores reported

by Di Gangi et al. (2020a), the Char gap is however smaller. As our

results are considerably higher than theirs, we believe that the reason for

such differences lies in a suboptimal fine-tuning of their hyperparameters.

Overall, in light of the trade-off between computational cost (LMVR and

DPE require a dedicated training phase for data segmentation) and average

performance (BPE achieves winning scores on en-fr and competitive on

en-it), we hold BPE as the best segmentation strategy in terms of general

translation quality for direct ST.

Turning to gender translation, the gender accuracy scores presented in

Table 5.8 exhibit that all ST models are clearly biased, with masculine

forms (M) disproportionately produced across language pairs and cate-

gories. However, we intend to pinpoint the relative gains and losses among

segmentation methods. Focusing on overall accuracy (ALL), we see that

Char – despite its lowest performance in terms of BLEU score – emerges

as the favorite segmentation for gender translation. For French, however,
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DPE is only slightly behind. Looking at morphological methods, they

surprisingly do not outperform the statistical ones. The greatest variations

are detected for feminine forms of Category 1 (1F), where none of the

segmentation techniques reaches 50% of accuracy, meaning that they are

all worse than a random choice when the speaker should be addressed by

feminine expressions. Char appears close to such threshold, while the others

(apart from DPE in French) are significantly lower.

These results illustrate that target segmentation is a relevant parameter

for gender translation. In particular, they suggest that Char segmentation

improves the model ability to learn correlations between the received input

and gender forms in the reference translations. Although in this experiment

models rely only on speakers’ vocal characteristics to infer gender – which

we discourage as a cue for gender translation for real-world deployment

(see the previous section) – such ability shows a potential advantage for

Char, which could be better redirected toward learning correlations with

reliable gender meta-information included in the input. For instance, in

a scenario in which meta-information (e.g., a gender tag) is added to the

input to support gender translation, a Char model might better exploit

this information. Lastly, our evaluation reveals that a proper comparison

of gender translation potentialities of different solutions requires adopting

the same segmentation. Our question then becomes: what makes Char

segmentation less biased? What are the tokenization features determining

a better/worse ability in generating the correct gender forms?

Lexical diversity. We posit that the limited generation of feminine forms

can be framed as an issue of data sparsity, whereas the advantage of Char-

based segmentation ensues from its ability to handle less frequent and

unseen words (Belinkov et al., 2020). Accordingly, Vanmassenhove et al.

(2018) and Roberts et al. (2020) link the loss of linguistic diversity (i.e.,
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en-fr en-it

TTR MATTR TTR MATTR

M-SHE Ref 16.12 41.39 19.11 46.36

BPE 14.53 39.69 17.46 44.86

Char 14.97 40.60 17.75 45.65

DPE 14.83 40.02 18.07 45.12

Morf 14.38 39.88 16.31 44.90

LMVR 13.87 39.98 16.33 44.71

Table 5.9: Lexical diversity scores on en-fr and en-it

the range of lexical items used in a text) with the overfitted distribution of

masculine references in MT outputs.

To explore such hypothesis, we compare the lexical diversity (LD) of the

translations produced by our models and MuST-SHE references. To this

aim, we rely on Type/Token ratio (TTR – Chotlos 1944; Templin 1957),

and the more robust Moving Average TTR (MATTR – Covington and

McFall 2010).16

As we can see in Table 5.9, character-based models exhibit the highest

LD (the only exception is DPE with the less reliable TTR metric on en-it).

However, we cannot corroborate the hypothesis formulated in the above-

cited studies, as LD scores do not strictly correlate with gender accuracy

(Table 5.8). For instance, LMVR is the second-best in terms of gender

accuracy on en-it, but shows a very low lexical diversity (the worst according

to MATTR and second-worst according to TTR).

Sequence length. Italian and French feminine forms are, although to a

different extent, longer and less frequent than their masculine counterparts.

In light of such conditions, we expected that the statistically-driven BPE

segmentation would leave feminine forms unmerged at a higher rate, and

thus add uncertainty to their generation. To verify if this is the actual case –

16Metrics computed with software available at: https://github.com/LSYS/LexicalRichness. We set

1,000 as window size for MATTR.
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en-fr (%) en-it (%)

BPE 1.04 0.88

Char 1.37 0.38

DPE 2.11 0.77

Morfessor 1.62 0.45

LMVR 1.43 0.33

Table 5.10: Percentage increase of token-sequence length for feminine words over masculine

ones.

explaining the lower gender accuracy of BPE models – we check whether

the number of tokens (characters or subwords) of a segmented feminine

word is higher than that of the corresponding masculine form. We exploit

the coupled “wrong” and “correct” references available in MuST-SHE, and

compute the average percentage of additional tokens found in the feminine

segmented sentences17 over the masculine ones. Results are reported in

Table 5.10.

At first look, we observe opposite trends: BPE segmentation leads to

the highest increment of tokens for feminine words in Italian, but to the

lowest one in French. Also, DPE exhibits the highest increment in French,

whereas it actually performs slightly better than Char on feminine gender

translation (see Table 5.8). Hence, even the increase in sequence length

does not seem to be an issue for gender translation. Nonetheless, these

apparently contradictory results encourage our last exploration: How are

gender forms actually split?

Gender isolation. By means of further manual analysis of 50 output sen-

tences for each of the 6 systems, we inquire if longer token sequences for

feminine words can be explained in light of the different characteristics

and gender-productive mechanisms of the two target languages. Table 5.11

17As such references only vary for gender-marked words, we can isolate the difference relative to gender

tokens.
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en Segm. F M Freq. F/M

a) asked BPE chie–sta chiesto 36/884

b) DPE chie–sta chiesto 36/884

c) friends BPE a–miche amici 49/1094

d) DPE a–miche amici 49/1094

e) adopted BPE adop–tée adop–té 30/103

f) DPE adop–t–é–e adop–t–é 30/103

g) sure Morf. si–cura sicuro 258/818

h) grown up LMVR cresci–uta cresci–uto 229/272

i) celebrated LMVR célébr–ées célébr–és 3/7

Table 5.11: Examples of word segmentation. The segmentation boundary is identified by

”–”.

reports selected instances of coupled feminine/masculine segmented words,

with their respective frequency in the MuST-C training set.

Starting with Italian, we find that BPE sequence length increment indeed

ensues from greedy splitting that, as we can see from examples (a) and

(c), ignores meaningful affix boundaries for both same length and different-

length gender pairs, respectively. Conversely, on the French set – with

95% of feminine words longer than their masculine counterparts – the low

increment of BPE is precisely due to its loss of semantic units. For instance,

as shown in (e), BPE does not preserve the verb root (adopt), nor isolates

the additional token (-e) responsible for the feminine form, thus resulting

into two words with the same sequence length (2 tokens). Instead, DPE,

which achieved the highest accuracy results for en-fr feminine translation

(Table 5.8), treats the feminine additional character as a token per se (f ).

Based on such patterns, our intuition is that the proper splitting of the

morpheme-encoded gender information as a distinct token favors gender

translation, as models learn to productively generalize it. Considering the

high increment of DPE tokens for Italian in spite of the limited number of

longer feminine forms (15%), our analysis confirms that DPE is unlikely to

isolate gender morphemes on the en-it language pair. As a matter of fact,

it produces the same kind of coarse splitting as BPE (see (b) and (d)).
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Finally, we attest that the two morphological techniques are not equally

valid. Morfessor occasionally generates morphologically incorrect subwords

for feminine forms by breaking the word stem (see example (g) where

the correct stem is sicur). Such behavior also explains the higher token

increment of Morfessor with respect to LMVR. Instead, although LMVR

(examples (h) and (i)) produces linguistically valid suffixes, it often con-

denses other grammatical categories (e.g., tense and number) with gender.

As suggested above, if the pinpointed split of morpheme-encoded gender is

a key factor for gender translation, the lower level of granularity of LMVR

explains its reduced gender accuracy. Working on character sequences,

instead, the isolation of the gender unit is always attained.

5.4.4 Beyond the Quality-Gender Trade-off

Informed by our experiments and analysis, we conclude this study by

proposing a model that combines BPE overall translation quality and Char

ability to translate gender. To this aim, we train a multi-decoder approach

that exploits both segmentations to draw on their corresponding advantages.

In the context of ST, several multi-decoder architectures have been

proposed, usually to jointly produce both transcripts and translations with

a single model. Among those in which both decoders access the encoder

output, here we consider the best-performing architectures according to

Sperber et al. (2020). As such, we consider: i) Multitask direct, a model

with one encoder and two decoders, both exclusively attending the encoder

output as proposed by Weiss et al. (2017), and ii) the Triangle model

(Anastasopoulos and Chiang, 2018), in which the second decoder attends

the output of both the encoder and the first decoder.

For the triangle model, we used a first BPE-based decoder and a second

Char-based decoder. With this order, we aimed to enrich BPE high-quality

translation with a refinement for gender translation, performed by the Char-
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en-fr en-it

M-C M-SHE Avg. M-C M-SHE Avg.

BPE 30.7 25.9 28.3 21.4 21.8 21.6

Char 29.5 24.2 26.9 21.3 20.7 21.0

BPE&Char 30.4 26.5 28.5 22.1 22.6 22.3

Table 5.12: SacreBLEU scores on MuST-C tst-COMMON (M-C) and MuST-SHE (M-SHE)

on en-fr and en-it.

ALL 1F 1M 2F 2M

en-fr

BPE 65.18 37.17 75.44 61.20 80.80

Char 68.85 48.21 74.78 65.89 81.03

BPE&Char 68.04 40.61 75.11 67.01 81.45

en-it

BPE 67.47 33.17 88.50 60.26 81.82

Char 71.69 48.33 85.07 64.65 84.33

BPE&Char 70.05 52.23 84.19 59.60 81.37

Table 5.13: Gender accuracy (%) for MuST-SHE Overall (ALL), Category 1 and 2 on

en-fr and en-it.

based decoder. However, the results were negative: the second decoder

seems to excessively rely on the output of the first one, thus suffering from

a severe exposure bias (Ranzato et al., 2016) at inference time. Hence, we

do not report the results of these experiments.

Instead, the Multitask direct has one BPE-based and one Char-based

decoder. The system requires a training time increase of only 10% and 20%

compared to, respectively, Char and BPE models, while, during inference,

running time and size are the same as a BPE model. We report overall

translation quality (Table 5.12) and gender accuracy (Table 5.13) of the BPE

output (BPE&Char).18 Starting with gender accuracy, the overall gender

translation ability (ALL) of the Multitask model is still lower, although very

close, to that of the Char-based model. Nevertheless, feminine translation

improvements are present on Category 2F for en-fr and, with a larger gain,

18The Char scores are not reported, as they are not enhanced compared to the base Char encoder-decoder

model.
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on 1F for en-it. We believe that the presence of the Char-based decoder

is beneficial to capture into the encoder output gender information, which

is then also exploited by the BPE-based decoder. As the encoder outputs

are richer, overall translation quality is also slightly improved (Table 5.12).

This finding is in line with other work (Costa-jussà et al., 2020), which

proved a strict relation between gender accuracy and the amount of gender

information retained in the intermediate representations (encoder outputs).

Overall, following these considerations, we posit that target segmentation

can directly influence the gender information captured in the encoder output.

In fact, since the Char and BPE decoders do not interact with each other in

the Multitask model, the gender accuracy gains of the BPE decoder cannot

be attributed to a better ability of a segmentation method in rendering

the gender information present in the encoder output into the translation.

With this work, we have taken a step forward in ST for English-French and

English-Italian, pointing at plenty of new ground to cover concerning how

to split for different language typologies.

5.4.5 Summary

After the study on how to control the gender of words referring to the

speaker (§5.3), in this section we continued our exploration of the exac-

erbation of gender bias caused by technical choices in direct ST models,

focusing on the influence of word segmentation. To this aim, we compared

several word segmentation approaches on the target side of ST systems for

English-French and English-Italian, in light of the linguistic gender features

of the two target languages. Our results show that word segmentation does

affect gender translation and that the higher BLEU scores of state-of-the-art

BPE-based models come at the cost of lower gender accuracy. Moreover, our

analyses of the behavior of different segmentation techniques revealed that

improved generation of gender forms could be linked to the proper isolation

155



Chapter 5 5.5. A MULTIFACETED EVALUATION

of the morpheme that encodes gender information, a feature that is attained

by character-level segmentation. Lastly, we introduced a multi-decoder

training strategy to leverage the qualities of BPE and character splitting,

improving both gender accuracy and BLEU score, while keeping compu-

tational costs under control. The next section enriches the comparison

between BPE-based and char-based models by introducing new fine-grained

annotations of the gender phenomena in MuST-SHE, and assessing their

ability in handling different part-of-speech and morphosyntactic agreement

chains.

5.5 A Multifaceted Evaluation

The previous sections (§5.3 and §5.4) and previous works (see §5.2.1)

assessed the bias of ST systems with word-level metrics that treat all

gender-marked words indiscriminately. Indeed, the existing benchmarks

do not allow us to inspect if and to what extent different word categories

(or part-of-speech) participate in gender bias and overlook the underlying

morphosyntactic nature of grammatical gender on agreement chains, which

cannot be monitored on single isolated words (e.g., en: a strange friend; it :

una/o strana/o amica/o).19

We believe that fine-grained evaluations including the analysis of gender

agreement across different parts of speech (POS) are relevant not only to

gain a deeper understanding of bias in grammatical gender languages, but

also to inform mitigation strategies and data curation procedures. Toward

these goals, our contributions20 are as follows: i) we enrich MuST-SHE with

two layers of linguistic information, POS and agreement chains;21 ii) in

19To be grammatically correct, each word in the chain has to be inflected with the same (masculine or

feminine) gender form, similar to number agreement.
20The creation of the annotation layer has been curated by Beatrice Savoldi and Luisa Bentivogli.

However, it is reported here as it is crucial for the comprehension of the other contributions.
21The annotation layers are an extension of MuST-SHE v1.2 and are freely downloadable at:
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light of the findings of the previous section, we rely on our manually curated

resource to compare three ST models, which are trained on varying amounts

of data, and built with different segmentation techniques (character and

BPE). Lastly, through experiments on three language pairs (en-es, en-fr,

en-it) we demonstrate that iii) not all POS are equally impacted by gender

bias, and iv) translating words in agreement does not emerge as a systematic

issue.

5.5.1 MuST-SHE Enrichment

In light of the above, a fine-grained evaluation of bias focused on POS and

gender agreement requires the creation of a new dedicated resource. Rather

than building it from scratch, we add two annotation layers to the existing

MuST-SHE benchmark.22 The target languages covered in MuST-SHE (es,

fr, it) are particularly suitable to focus on linguistic specificity. In fact,

as Gygax et al. (2019) suggest, accounting for gender in languages with

similar typological features allows for proper comparison.

Phenomena Categorization

Parts-Of-Speech. We annotate each target gender-marked word in MuST-

SHE with POS information. As shown in Table 5.14 (a-c), we differentiate

among six POS categories:23 i) articles, ii) pronouns, iii) nouns, iv) verbs.

For adjectives, we further distinguish v) limiting adjectives with minor

semantic import that determine e.g., possession, quantity, space (my, some,

this); and vi) descriptive adjectives that convey attributes and qualities, e.g.

glad, exhausted. This distinction enables to neatly sort our POS categories

into the closed class of function words, or into the open one of content

ict.fbk.eu/must-she/ under the same MuST-SHE licence (CC BY NC ND 4.0)
22Version 1.2: https://ict.fbk.eu/must-she/
23Some POS categories (e.g., conjunctions, adverbs) are not considered since they are not subject to

gender inflection.
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PARTS-OF-SPEECH

(a) src As one of the first women...

Reffr En tant que l’unePron des premièresAdj−det femmes..

(b) src As a child growing up in Nigeria...

Refit Da bambinoNoun cresciutoV erb in Nigeria.

(c) src Then an amazing colleague...

Refes Luego unaArt asombrosaAdj−des colega...

AGREEMENT

(d) src I was the first Muslim homecoming queen,

the first Somali student senator...

Refes Fui [la primera reina musulmana] del baile,

[la primera senadora] somaĺı estudiantil...

(e) src She’s also been interested in research.

Refit E’ [stata anche attratta] dalla ricerca .

(f) src I also became a high school teacher.

Reffr Je suis aussi [devenu un professeur] de lycée.

Table 5.14: MuST-SHE target gender-marked words annotated per POS and

[agreement chains].

words (Schachter and Shopen, 2007). Since words from these two classes

differ substantially in terms of variability, frequency, and semantics, we

reckon they represent a relevant variable to account for in the evaluation of

gender bias.

Agreement. We also enrich MuST-SHE with linguistic information that is

relevant to investigate the morphosyntactic nature of grammatical gender

agreement. Gender agreement, or concord (Corbett, 2006; Comrie, 1999),

requires that related words match the same gender form, as in the case of

phrases, i.e. groups of words that constitute a single linguistic unit.24 Thus,

as shown in Table 5.14, we identify and annotate as agreement chains gender-

marked words that constitute a phrase, such as a noun plus its modifiers

(d), and verb phrases for compound tenses (e). Also, structures that involve

a gender-marked (semi-) copula verb and its predicative complement are

24If agreement is not respected, the unit becomes ungrammatical e.g. es : *elM buenM ninãF (the good

kid).
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annotated as chains (f ), although in such cases the agreement constraint

is “weaker”.25 This annotation lets us verify whether a model consistently

picks the same gender paradigm for all words in the chain, enabling the

assessment of its syntagmatic behavior.

Manual annotation

POS and agreement annotation was manually carried out by 6 annotators (2

per language pair) undergoing a linguistics/translation studies MA degree,

and with native/excellent proficiency in the assigned target language. For

each language pair, they annotated the whole corpus independently, based

on detailed guidelines.26 For POS, we computed inter-annotator agreement

(IAA) on label assignment with the kappa coefficient (in Scott’s π formula-

tion – Scott 1955). The resulting values of 0.92 (en-es), 0.94 (en-fr) and 0.96

(en-it) correspond to “almost perfect” agreement according to its standard

interpretation (Landis and Koch, 1977). For gender agreement, IAA was

calculated on the exact match of the complete chains in the two annotations.

The resulting Dice coefficients (Dice, 1945) of 89.23% (en-es), 93.0% (en-fr),

and 94.34% (en-it) can be considered highly satisfactory given the more

complex nature of this latter task. Except for few liminal cases that were

excluded from the dataset, all disagreements were reconciled.

We show the final annotation statistics in Table 5.15. Variations across

languages are due to inherently cross-lingual differences.27 These figures

underscore the so far largely unaccounted variability of gender across lexical

categories.

25Such structure, due to the semantics of some linking verbs, can enable more flexibility. E.g., in French,

Elle est devenueF unM canardM (She became a duck) is grammatical, although un canard (a duck) is

formally masculine.
26The full guidelines are available ar: https://bit.ly/3CdU50s.
27Spanish, for instance, relies less than French or Italian on the gender-enforcing to be auxiliary, resulting

in less gender-marked verbs (fr : est parti/ie; it : è partita/o; es: se ha ido).
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en-es en-fr en-it M-SHE All

POS (tot) 2099 1906 2026 6031

Art 487 325 413 1225

Pronoun 104 61 48 213

Adj-det 118 106 149 373

Adj-des 676 576 448 1700

Noun 607 344 346 1297

Verb 107 494 622 1223

AGR-CHAINS 420 293 421 1080

Table 5.15: Distribution of POS and agreement chains for each language and in the whole

MuST-SHE corpus.

5.5.2 Experimental Settings

Our experiments draw on the finding of the previous section and of studies

exploring the relation between overall system performance, model size

and gender bias. Vig et al. (2020) posit that bias increases with model

size as larger systems better emulate biased training data. Working on

WinoMT/ST, (Kocmi et al., 2020) correlates higher BLEU scores and

gender stereotyping, whereas (Costa-jussà et al., 2022) shows that systems

with lower performance tend to produce fewer feminine translations for

occupations, but rely less on stereotypical cues. To account for these findings

and inspect the behavior of different models under natural conditions, we

experiment on three language pairs (en-fr, en-it, en-es) with three direct

ST solutions, namely: large-bpe, small-bpe, and small-char.

Our small-bpe and small-char models are the same of the previous

section. The large-bpe systems are also analogous, but their training is

performed in three consecutive steps on both ST corpora and synthetic

data obtained by automatically translating the ASR corpora transcript

(see §3.3). The dataset used are the same of §3.3 as well. Trainings are

performed on 4 GPUs and stopped after 5 epochs without improvements

on the validation loss. We average 5 checkpoints around the best on the

validation set. As a validation set, we rely on the MuST-C gender-balanced
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en-es en-fr en-it

(Bentivogli et al., 2021) 32.93 - 28.56

(Le et al., 2021) 28.73 34.98 24.96

large-bpe 34.1 40.3 27.7

Table 5.16: Comparison in terms of BLEU scores of large-bpe models with recent works.

dev set, introduced in §5.3.3.

We employ the enriched MuST-SHE corpus to assess generic perfor-

mance and gender translation at several levels of granularity. We measure

translation quality with SacreBLEU,28 while for word-level gender-specific

evaluations we rely on the coverage, and gender accuracy metrics intro-

duced in §5.3.5. For chain-level gender agreement evaluation, we define

coverage as the proportion of fully generated chains. Then, we adapt gender

accuracy29 to measure the proportion of fully generated agreement chains

for: i) agreement-correct, i.e. agreement is respected and with the correct

gender; (ii) agreement-wrong, i.e. agreement is respected, but with the

wrong gender form; and (iii) no-agreement, i.e. agreement is not respected,

as both feminine and masculine gender inflections occur within the same

chain.

5.5.3 Results

Overall Quality and Gender Translation

First, to ensure the trustworthiness of our results, we compare our large-

bpe with recently published results on MuST-C test data. Table 5.16 shows

that our systems compare favorably overall on the three language pairs.

Then, we turn to compare the overall and gender translation quality of

our systems. Table 5.17 reports the results that exhibit a consistent trend

over the three language directions: unsurprisingly, large-bpe systems

28BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.3
29The scripts has been released together with the extensions.
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BLEU All-Cov All-Acc F-Acc M-Acc

small-bpe 27.6 65.0 64.1 45.8 79.6

en-es small-char 26.5 64.2 67.3 52.8 79.6

large-bpe 34.1 72.0 69.1 52.8 83.6

small-bpe 25.9 55.7 64.9 50.3 78.1

en-fr small-char 24.2 55.9 68.5 57.7 78.2

large-bpe 34.3 64.3 70.9 57.1 83.4

small-bpe 21.0 53.1 67.7 52.3 80.3

en-it small-char 20.7 52.6 71.6 57.2 83.9

large-bpe 27.5 59.2 69.1 52.2 85.4

Table 5.17: BLEU, coverage, and gender accuracy scores computed on MuST-SHE.

achieve by far the highest overall translation quality, while small-bpe

models outperform the char ones as shown in the previous section. The

higher overall translation quality of large-bpe models is also reflected by

the coverage scores (All-Cov), indicating that they generate the highest

number of MuST-SHE gender-marked words for all language pairs.

By turning to overall gender accuracy (All-Acc) though, the edge previ-

ously assessed for the bigger state-of-the-art systems ceases to be clear-cut:

for en-es and en-fr large-bpe systems outperform small-char by ∼2

points only, a slim advantage compared to the huge gap observed in BLEU

score, whereas small-char proves the best at translating gender for en-it.

We further zoom into the comparison of gender translation for feminine

(F-Acc) and masculine (M-Acc) forms, where we can immediately assess

that all ST models are skewed toward a disproportionate production of

masculine forms (on average, 53.1% for F vs. 81.3% for M). Focusing on

large-bpe models, we discover that their higher global gender accuracy

(All-Acc) is actually due to the higher generation of masculine forms, while

they do not compare favorably when it comes to feminine translation. In

fact, in spite of achieving the lowest generic translation quality, small-

char proves on par (for en-es) or even better (for en-it and en-fr) than

large-bpe at handling feminine gender translation.
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Figure 5.1: F vs M coverage per open and closed class words.

Figure 5.2: F vs. M accuracy for closed and open class words.

In light of the above, our results reiterate the importance of dedicated

evaluations that, unlike holistic metrics, are able to disentangle gender

phenomena. As such, we can confirm that higher generic performance does

not entail a superior capacity in producing feminine gender. This does not

only emerge in the comparison of (small) BPE- and char-based ST models,

as shown in the previous section. Rather, even for stronger systems, we

attest how profiting from a wealth of – uncurated and synthetic (Bender

et al., 2021) – data does not grant advantages to address gender bias. This

motivates us to continue our multifaceted evaluation by taking into account

only small models – henceforth char and bpe – that, being trained on the

same MuST-C data, allow for sound and transparent comparison.
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Verbs Nouns Adj-des

F-Acc M-Acc F-Acc M-Acc F-Acc M-Acc

en-es bpe 44.4 93.8 21.1 89.0 57.4 80.0

char 60.0 84.2 37.4 89.7 61.2 79.7

en-fr bpe 51.3 79.8 16.4 93.5 50.6 78.6

char 68.4 75.0 27.4 95.3 63.0 81.4

en-it bpe 63.7 83.7 28.6 92.2 62.0 76.7

char 66.7 89.2 33.3 94.3 70.6 84.5

Table 5.18: F vs. M Accuracy scores per open class POS.

Word Classes and Parts-of-speech

At a finer level of granularity, we use the MuST-SHE extension to inspect

gender bias across open and closed class words. Their coverage ranges

between 74-81% for function words, but it shrinks to 44-59% for content

words (see Figure 5.1). This is expected given the limited variability and high

frequency of functional items in language. Instead, the coverage of feminine

and masculine forms is on par within each class for all systems, thus allowing

us to evaluate gender accuracy on a comparable proportion of generated

words. A bird’s-eye view of Figure 5.2 attests that, although masculine

forms are always disproportionately produced, the gender accuracy gap is

amplified on the open class words. The consistency of such behavior across

languages and systems suggests that content words are involved to a greater

extent in gender bias.

We hence analyze this more problematic class by looking into a break-

down of the results per POS. Table 5.18 presents results for verbs, nouns,

and descriptive adjectives. First, in terms of system capability, char models

still consistently emerge as the best for feminine translation. What we

find notable, though, is that even within the same class we observe evident

differences, where nouns come forth as the most biased POS with a huge

divide between M and F accuracy (52–77 points). Specifically, scores below

50% indicate that feminine forms are generated with a probability that is

below random choice, thus signaling an extremely strong bias.
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Art Pronoun Adj-det

F-Acc M-Acc F-Acc M-Acc F-Acc M-Acc

en-es bpe 51.35 70.0 52.0 84.9 49.1 86.1

char 53.5 68.4 51.7 85.7 59.3 91.2

en-fr bpe 52.0 69.2 65.5 78.3 82.9 79.5

char 50.8 68.6 54.2 77.3 79.1 78.6

en-it bpe 47.2 74.6 75.0 71.4 50.9 81.8

char 52.2 76.8 52.9 77.8 61.8 83.3

Table 5.19: F vs. M accuracy scores per closed class POS.

In light of this finding, we hypothesize that semantic and distributional

features might be a factor to interpret the word gender skew. Specifically,

occupational lexicon (e.g., lawyer, professor) makes up for most of the nouns

represented in MuST-SHE (∼70%). While such a high rate of professions

in TED data is not surprising per se,30 it singles out that professions

may actually represent a category where systems largely rely on spurious

cues to perform gender translation, even within natural conditions that do

not ambiguously prompt stereotyping. We exclude basic token frequency

by POS as a key factor to interpret our results, as MuST-SHE feminine

nouns do not consistently appear as the POS with the lowest number of

occurrences, nor do they have the lowest F:M ratio within MuST-C training

data.

We conclude our evaluation of gender accuracy of different POS by

looking at the function words. As we can see in Table 5.19, the otherwise

attested advantage of char over BPE is not consistent for function words,

where we find variations across POS and languages. Such variations may

be due to the fairly restricted amount of MuST-SHE pronouns and limiting

adjectives (Adj-det) on which accuracy can be computed in MuST-SHE (see

Table 5.15), which make very fine-grained evaluations particularly unstable.

30As TED talks are held by field experts, references to education and titles are quite common (MacKrill

et al., 2021).
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Figure 5.3: F vs M chains coverage

Additionally – since the present POS evaluation still remains at the word

level – we are not able to ponder whether gender translations for modifiers

(i.e., articles, determiners) is to some extent constrained by the content

words they refer to.

Gender Agreement Evaluation

The final step in our multifaceted analysis goes beyond the word level to

inspect agreement chains in translation. Overall, agreement translation was

measured on a lower coverage (30-50%) than the world-level one (see Table

§5.17) as expected given the strict requirement of generating full chains with

several words. Figure 5.3 shows the coverage of fully generated agreement

chains split into feminine (F) and masculine (M) forms. Although we attest

notable variations across languages and gender forms, overall masculine

and feminine chains are both produced at comparable rates.

Table 5.20 shows accuracy scores for all MuST-SHE agreement chains

(All), also split into feminine (F) and masculine (M) chains. The overall

results are promising: we find very few instances (literally 1 or 2) in which

ST systems produce an ungrammatical output that breaks gender agreement

(NO). In fact, both systems tend to be consistent with one picked gender

for the whole dependency group. Thus, in spite of previous MT studies
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All Feminine Masculine

C W NO C W NO C W NO

en-es bpe 74.3 24.6 1.2 33.9 64.4 1.7 95.5 3.6 0.9

char 78.4 21.0 0.6 42.4 57.6 0.0 96.6 2.6 0.9

en-fr bpe 67.9 31.0 1.2 54.1 45.9 0.0 78.7 19.1 2.1

char 76.7 22.3 1.0 57.5 40.0 2.5 88.9 11.1 0.0

en-it bpe 71.7 27.5 0.7 47.4 50.9 1.8 88.9 11.1 0.0

char 78.5 20.0 1.5 54.2 44.1 1.7 97.4 1.3 1.3

Table 5.20: Accuracy scores for gender agreement. Scores are given for agreement respected

with correct gender (C), agreement respected with wrong gender (W), and agreement not

respected (NO).

concluding that character-based segmentation results in poorer syntactic

capability (Belinkov et al., 2020), respecting concord does not appear as

an issue for any of our small ST models. For the sake of comparability,

however, we note that our evaluation involves language pairs that do not

widely resort to long-range dependencies; this may contribute to explaining

why char better handles correct gender agreement.

5.5.4 Summary

Following the findings of the previous section that unveiled the importance

of the target text segmentation method, in this section we explored whether

different POS categories are equally suject to gender bias and whether

grammatical gender agreement is respected in the output of ST models

built with different segmentation techniques and data quantities. To this

aim, we enriched the MuST-SHE benchmark with new linguistic information

and carried out an extensive evaluation on 3 language pairs (en-es/fr/it),

which led to two main findings. First, while all POS categories are subject

to masculine skews, they are not impacted to the same extent, as nouns

represent the category that is mostly affected by bias. Second, respecting

gender agreement in the translation of related words is not an issue for
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current ST models. In line with the previous section, we also reiterated

that, in spite of lower generic performance, character-based segmentation

favors feminine translation at different levels of granularity. In addition,

we demonstrated that translation quality and the amount of training data

do not influence how much models are biased. With the same spirit of

understanding how techniques introduced to improve the quality of ST

systems affect their gender bias, we now turn to analyze the effects on

gender bias of distilling knowledge from an MT teacher.

5.6 Knowledge Distillation and Gender Translation

We conclude our investigation on the impact of training and architectural

solutions on gender bias by complementing the study on KD for ST presented

in §3.3. As we have seen, distilling knowledge from an MT system improves

the translation quality of ST students and this technique is widely employed

to train strong ST models (Zhang and Ao, 2022; Zhang et al., 2022).

However, the ST input (audio) contains information that is not present in

the MT input (the corresponding transcript). As an example, the sentence

“I am a student” can be translated into Italian either as “Sono uno studente”

or as “Sono una studentessa” depending on the gender of the speaker.

As this information is completely missing in the textual English input,

in section §5.3 we have seen that an MT model is likely to produce the

more frequent masculine forms with representational harm for women. The

speaker’s pitch in the speech input, instead, can be used as a gender cue

to disambiguate the correct form. Although in general biological features

should not be considered as gender cues,31 our training dataset (MuST-C)

contains a strong correlation between speakers’ vocal characteristics and

31The adoption of physical cues can lead to reductionist gender classifications (Zimman, 2020) and be

harmful to a diverse range of users.
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gender forms in the reference translations, so ST models can learn and

leverage this gender cue in our setting. Our question therefore is: do ST

students also learn the bias in MT models as a side effect?

To answer this question, we analyzed the behavior of ST models trained

with KD on the category 1 of the MuST-SHE English→{French, Italian}
sections. Our investigation led to the following findings: i) ST students

learn not only useful information, but also the gender bias in MT models,

in particular for gender-marked words that are related to the speaker; ii)

the fine-tuning on ST corpora introduced in §3.3 eliminates this additional

gender bias.

5.6.1 Results

To assess the gender bias of models trained with KD from an MT teacher,

we inspect the behavior of the systems trained in high resource conditions

described in §3.3. These systems undergo a first training with Word-KD

on ASR data augmented with a pseudo-reference translation generated by

the MT teacher (Seq-KD). Then, they are fine-tuned with Word-KD on ST

corpora, before a final fine-tuning on ST corpora without KD, in accordance

with the findings of §3.3. For full experimental settings and architectural

details, the reader can refer to §3.3.2.

As a baseline, we report two systems trained without KD: the ST system

developed by Bentivogli et al. (2020), where the target text is represented

at character level (Base Char ST), and the BPE-based system presented

in §5.4 (Base BPE ST). Indeed, we demonstrated in §5.4 and §5.5 that

target-text segmentation is an important factor for the system ability to

translate gender and our systems segment target text with BPE, as this

text segmentation method leads to the best translation quality. We measure

the ability in translating gender with gender accuracy (see §5.3.5).

Since we are interested in assessing the effect of KD on the ability of the
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BLEU Female Gender Acc. Male Gender Acc.

en-it

Base Char ST 21.5 49.5% 87.2%

Base BPE ST 21.8 33.2% 88.5%

MT 33.6 16.3% 88.5%

Seq-KD + Word-KD + FT Word-KD 23.6 20.9% 84.9%

+ FT w/o KD 27.5 33.6% 80.5%

en-fr

Base Char ST 27.9 46.3% 86.2%

Base BPE ST 25.9 37.2% 75.4%

MT 39.6 16.2% 89.6%

Seq-KD + Word-KD + FT Word-KD 32.0 26.9% 79.4%

+ FT w/o KD 34.3 32.3% 79.6%

Table 5.21: BLEU score and Gender Accuracy on Category 1F (female speakers) and 1M

(male speakers) of the MuST-SHE test set.

resulting ST systems to deal with gender, we compare: i) the teacher MT

models, ii) the intermediate ST models trained on KD, and iii) the final ST

models obtained with fine-tuning without KD. The results are reported in

Table 5.21. First, we confirm that overall performance is not an indicator

of the system ability to translate gender. In fact, the best-performing MT

systems show the lowest female gender accuracy. Such deficiency is directly

reflected in the ST students (Seq-KD + Word-KD + FT Word-KD), which are

strongly influenced by the MT behavior; thus, although effective for overall

quality, KD is detrimental to gender translation. However, fine-tuning on

ST data demonstrates beneficial also by improving gender accuracy of the

feminine forms from 20.9-26.9% to 33.6-32.6% respectively on en-it and en-

fr, reducing the bias towards generating masculine forms. In particular, the

gap with a BPE-based ST system (Base BPE ST) is closed (en-it – 33.6% vs

33.2%) or significantly reduced (en-fr – 32.3% vs 37.2%). So, the fine-tuning

seems to completely remove the additional bias of the ST student compared

to a normal ST system. The gap with the ST systems by Bentivogli et al.

(2020) is, instead, still large (33.6% vs 49.5% on en-it, 32.3% vs 46.5% on
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en-fr), but it is motivated by the different text segmentation (char vs BPE).

All in all, the experiments show that distilling knowledge from biased

MT models is detrimental when it comes to gender bias. However, the

final fine-tuning without KD mitigates the additional gender bias and the

resulting models display a similar bias to systems trained from scratch.

5.6.2 Summary

This section concludes our investigation on the impact on gender bias of

technical solutions and choices motivated by the pursuit of higher translation

quality. In particular, we complemented and completed our in-depth study

on the distillation of knowledge from an MT teacher (§3.3), by assessing its

effect on the bias of the ST student. Through experiments on two language

pairs, we demonstrated that: i) KD introduces additional bias in the ST

systems, as words referring to the speaker are almost always realized in their

masculine forms; ii) the problem can be solved by means of a fine-tuning

on ST corpora.

5.7 Conclusions

The huge improvements in translation quality of direct ST systems described

in the first two chapters do not imply that these models are ready to be

useful for a wide range of users. Indeed, techniques that are effective in

producing overall performance gains may be detrimental for certain groups,

hindering their access to this new technology. As such, in this chapter we

studied different techniques that are widely adopted in ST in light of their

translation-quality benefit, showing that they lead to an increased gender

bias and exacerbate the detraction from the representation of certain groups.

For each of the issues detected, we then proposed solutions that go beyond

the compromise between translation quality and gender bias. Specifically,
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we first demonstrated that, while direct ST models have an edge on cascade

systems in translating feminine words referred to the speaker, there is still

large room for improvement, and their reliance on biometrical cues makes

them unsuitable for certain groups (e.g., transgender, children). To avoid

these limitations, we i) released a new annotation of the TED talks in

MuST-C and MuST-SHE with the speakers’ gender, ii) presented a more

informative evaluation procedure (which disentangles coverage and gender

accuracy), and iii) showed that specialized models (fine-tuned for each

gender category) allow for controlling the gender realization of speaker-

referred words, even if they contrast with the biometrical cues.

Then, we unveiled that the higher translation quality brought by a

segmentation of the target text with BPE comes at the cost of increasing

gender bias with respect to a character-based segmentation, which emerged

as the least biased text segmentation method even in comparison with

morphologically-motivated splits. As a solution, we suggested a multi-

decoder training strategy, in which a character-based decoder leads to more

informative encoder outputs that are exploited by the BPE decoder, capable

of achieving the quality of a pure BPE-based model and the gender accuracy

of a character-based system.

In addition, we released new annotation layers over the MuST-SHE

test set, allowing for a more fine-grained analysis of gender bias in ST

systems. This resource enabled us to demonstrate that nouns exhibit the

highest degree of bias among all POS, while gender agreement chains are

respected by ST systems, and that their performance on these aspects does

not depend on the translation quality and amount of training data of ST

system, but rather by the specific techniques employed (e.g., the target text

segmentation strategy).

At last, we completed the study of KD in §3.3, assessing its effect on

gender bias. ST students came out as “good learners” also of the bias of
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MT teachers, but a fine-tuning on ST corpora eliminated the additional

bias introduced.

The next chapter concludes our investigation of the capabilities of direct

ST systems by studying their application in the context of “augmented ST”,

where the focus is mostly on the ability to correctly render and recognize

named entities and specific terminology.
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Chapter 6

Augmented Speech Translation

6.1 Introduction

In line with the spirit of Chapter 5, in this chapter we go beyond the good

scores obtained in Chapter 3 and 4 for overall translation quality and assess

specific aspects that – although crucial in real applications – are neglected

by holistic measures. In particular, we focus on named entities (NEs) and

terminology, whose correct handling is needed to convey the proper meaning

of a sentence (Li et al., 2013) as translation errors often result in blatant

(meaningless, hilarious, or even offensive) errors, which jeopardize users’

trust in the translation system. One example is “moby dick” (in lower case,

as in the typical output of a speech recognition system): Google Translate1

returns mazikó pouĺı (massive bird) for Greek, while the translation contains

profanities for other languages like Hungarian or Italian.

Regardless of their relevance, as anticipated in §1.2, automatic metrics are

relatively insensitive to errors on NEs and numbers (Amrhein and Sennrich,

2022), which are instead of paramount importance for human readers (Xie

et al., 2022). Specifically, in a human-centric vision of automatic translation,

where technological solutions “augment” users by supporting and relieving

them from the most tedious and cognitive-intensive tasks, translation tools

1Accessed on the 27th April 2021.
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should primarily highlight specific terms and NEs, eventually enriching

them with relevant/contextual information (Lommel, 2018). In this vision,

translators and interpreters can dedicate themselves to crafting fluent and

intelligible translations, a task they can easily address, differently from

machines (Fantinuoli and Prandi, 2021), while machines carry out repetitive

tasks, such as the identification, lookup into dictionaries, and disambigua-

tion of domain-specific terminology and NEs, which significantly contribute

to humans’ high cognitive workload (Jones, 1998; Prandi, 2018; Desmet

et al., 2018). Indeed, NEs and terminology i) are hard to remember for

interpreters (Liu et al., 2004), ii) can be unknown to interpreters/translators

and difficult to recognize (Griffin and Bock, 1998), and iii) differently from

other types of words, usually have one or few correct translations. For

this reason, modern computer-assisted interpreting (CAI – Fantinuoli 2017)

tools aim at automatically recognizing, displaying, and translating NEs and

terms. However, current solutions rely on pre-defined dictionaries to identify

and translate the elements of interest (Fantinuoli et al., 2022), preventing

them from both generalizing and disambiguating homophones/homonyms.

This would be instead possible using an ST system, but requires a reliable

recognition and translation of NEs and terms, without generating wrong

and potentially-harmful suggestions (Stewart et al., 2018).

In light of the above, in this chapter we first assess the ability of direct

and cascade ST systems in translating NEs and terminology (§6.3). Then,

we focus on increasing the performance of the systems for the category that

turned out as the most difficult to handle for ST systems: person names.

On one side, we study the factors that influence the ability of ST systems

in translating person names and how to act accordingly toward improving

accuracy (§6.4). On the other, we also explore how to leverage external,

contextual knowledge in the form of dictionaries of NEs that pertain to

a specific domain, which are often curated by professional translators
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and interpreters (§6.5). At last, we investigate models that are capable

of jointly translating from speech and recognizing NEs, comparing them

with a pipeline of ST and NE recognition (NER) tools, in terms of both

effectiveness in addressing the tasks and computational efficiency (§6.6).

As such, the contributions of this chapter are: i) the introduction of the

first benchmark to assess NE and terminology translation quality for ST; ii)

the demonstration that the nationality of the referent and the frequency in

the training set are critical factors for the correct processing of person names,

and that multilingual models predicting both transcripts and translations

(attending also to the transcript) improve person name accuracy; iii) the

first solution for direct ST that identifies which entities in a dictionary

are present in an utterance and conditions the output generation on their

translation; iv) the introduction of the first models able to jointly translate

and recognize NEs, without introducing significant computational overhead

with respect to a plain direct ST model.

6.2 Related Works

To the best of our knowledge, the work presented in this chapter is the first

that addresses the topic of NE and terminology translation from speech.

For this reason, this section overviews relevant papers that assess and try to

improve NE and terminology translation in the related field of NMT (§6.2.1),

investigate the recognition of person names and other NEs in ASR (§6.2.2),

and integrate (or inject) external knowledge in ASR models (§6.2.3).

6.2.1 NE and Terminology in NMT

The translation of rare words – as NEs and specific terms are – is one of

the main challenges for NMT models (Sennrich et al., 2016; Koehn and

Knowles, 2017). In the case of NEs, researchers have hence confronted
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with the topic for many years, opening different lines of research: i) the

substitution of NE with placeholders; ii) the addition of information about

NE categories to the source sentence; iii) the inclusion of auxiliary loss

functions dedicated to NER while training NMT models; iv) the integration

of knowledge graphs (KGs).

The substitution of NE with placeholders (i)) has been explored by Post

et al. (2019) that replace the NEs identified using regular expressions (e.g.,

for email or URL) or a dictionary before feeding the source sentence to

the NMT model. The model is trained to produce special placeholders

indicating the type of entity and the position in the target sentence, which

are then replaced with the corresponding entry in the dictionary or the

source representation in the case it was identified with a regular expression.

The addition of information about NE categories to the source sentence

(ii)) has been instead tested by Ugawa et al. (2018); Zhou et al. (2020) that

enrich the source sentence with start/end NE tags, and by Modrzejewski

et al. (2020) that sum the token embeddings of the source sentence with

embeddings of the NE type they belong to. As all these solutions require

the annotation of the source sentence with a NER model, they introduce a

significant computational overhead.

To avoid this issue, (Xie et al., 2022) recently proposed the inclusion of

auxiliary loss functions dedicated to NER while training NMT models (iii)),

as they add losses for the NER task both on the encoder output (recognizing

the NEs in the source) and on the decoder output (recognizing the NEs in

the target). Their experiments claim the superiority of this approach over

the addition of information about NE categories to the source sentence (ii)),

not only in terms of inference time, but also from the qualitative standpoint

in the English-Chinese and Japanese-English language pairs.

Lastly, in the integration of KGs (iv)), the main goal is to transfer the

knowledge present in KG into NMT models. Moussallem et al. (2019) con-
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catenate embeddings of KG entities to the encoder and decoder embeddings

of NMT systems, while Lu et al. (2019b); Zhao et al. (2020a,b); Ahmadnia

et al. (2020) exploit KGs to enforce that the embeddings of the entities are

similar in the source and target side, forcing the relationship between linked

entities, and introduce synthetic training data built to contain parallel

entities of the KG.

Similarly, most approaches devised to tackle terminology translation

exploit domain-specific bilingual dictionaries (Hokamp and Liu, 2017; Chat-

terjee et al., 2017; Hasler et al., 2018; Dinu et al., 2019; Song et al., 2020;

Dougal and Lonsdale, 2020; Niehues, 2021). In this case, the source sentence

is enriched with the translation of each term found in a dictionary (e.g.,

“this is a term”→“this is a #term#término#”), before being fed to the

NMT model.

Unfortunately, all the above-mentioned techniques assume that the source

sentence is represented as text. Indeed, they are all based on NER tools

that recognize which words belong to NEs, and/or on textual matching with

other sources (e.g., dictionaries, KGs). Since there is no existing method to

identify which portions of an audio segment correspond to NEs and which

do not, none of these solutions is applicable to our direct ST scenario. As

such, to the best of our knowledge, in §6.3 we investigate for the first time

the ability of ST systems in handling NEs, and in §6.4 and §6.5 we describe

the first attempts to improve the performance of direct ST systems on

handling NEs, which cannot be compared these solutions.

6.2.2 NER from speech

As we just mentioned, handling NEs is even more challenging when the

source modality is audio, as in the case of ST and ASR. To foster research

on this problem, Galibert et al. (2014) introduced the first benchmark for

NER recognition from speech, extracted from recordings of French TV and
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radio shows. A similar dataset has been released by Yadav et al. (2020), who

manually annotated English ASR corpora from different domains (e.g., TED

talks, audiobook readings) with NEs. However, none of these benchmarks

is suitable for ST, as they are both limited to ASR (i.e., they only include

the transcript).

Despite the presence of these suitable ASR benchmarks with NE anno-

tations, few works approached the topic. Ghannay et al. (2018), Caubrière

et al. (2020), Porjazovski et al. (2021), and Chen et al. (2022) mostly

compare pipelines of ASR and NER tools with end-to-end models that

directly extract NEs (in some cases the output is the transcript with inline

NE tags, in others – e.g., Ghannay et al. 2018 – characters outside NEs

are ignored). The conclusions of these works are contradicting with respect

to which approach is best (end-to-end or cascade), but the paradigms are

always close and, overall, can be considered on par in terms of performance.

To the best of our knowledge, none of the existing works assesses the ability

in translating NEs, as we do in §6.3, and the recognition of NEs on tex-

tual translations of audio content has been neglected before our analysis

described in §6.6.

6.2.3 Knowledge Integration in ASR

The topic of contextual knowledge injection into ASR systems has mostly

targeted the application of voice-command-recognition task, where user-

specific content, such as contact names and application names, has to

be correctly processed (Raghavan and Allan, 2005; Suchato et al., 2011;

Bruguier et al., 2016). Without the sake of completeness, this section

summarizes the most relevant research directions that influenced our work

in §6.5.

One line of research concentrated on improving the recognition of user-

specific content by creating dedicated language models. Such direction
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has been investigated for the first time in the context of traditional ASR

hybrid systems, where the acoustic modeling is performed with neural

Hidden Markov Models (HMM) and the language is modeled with a finite

state transducer (FST). The works in this area (Novak et al., 2012; Aleksic

et al., 2015; Williams et al., 2018; Ravi et al., 2020; Jung et al., 2022) build

adapted FST that assign a high probability to user-specific content and

mostly differ in the way such FSTs are built or in the way they are used

to rescore the hypotheses. With the same principle, in end-to-end ASR

Toshniwal et al. (2018) proposed the shallow fusion integration that rescores

all the tokens in the hypotheses of the ASR model with an adapted LM.

These solutions have been further improved by proposing a class-based

rescoring (Chen et al., 2019; Zhao et al., 2019; Huang et al., 2020; Gourav

et al., 2021; Sun et al., 2021). In this case, a different LM is built for each

class (or category of entities, such as person names and application names),

and a rule or condition for its activation is defined. At inference time,

when an activation condition is met in a hypothesis, its tokens are rescored

with the corresponding class language model. The works in this direction

mostly differ in the way the activation conditions are defined. In §6.5, when

adopting the class-based LM rescoring in ST as a baseline, we follow Huang

et al. (2020), who relabeled the speech training data to insert (start and

end) class tags into the target text and activated the corresponding class

LM at inference time when a candidate contains its start class tag.

A different approach has been taken by Pundak et al. (2018), who

proposed CLAS (Contextual Listen Attend and Spell) to integrate domain-

specific information into end-to-end ASR models. Specifically, the authors

add a context (or bias) encoder, which first builds an embedding for each

context sentence and then concatenates them together with a no-bias vector,

and the decoder attends to the outputs of both the acoustic encoder and

the bias encoder. To avoid the degradation that occurs in the presence
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of many contextual sentences, they also created a rule-based system that

generates prefixes for each sentence, and assigns 0 probability to all the

sentences whose prefix is not present in the hypothesis. The success of

the CLAS method has led to its adaptation to different architectures, such

as transducer models Chang et al. (2021); Jain et al. (2020); Chang et al.

(2021). In our attempt – the first, to the best of our knowledge – of

integrating external contextual knowledge in direct ST models (§6.5), we

adapt the CLAS architecture to the Transformer decoder with the goal

of injecting the translation of the NEs considered present in an utterance.

However, the language switch between the source and target representations

in ST first requires the identification of the entities present in the source

utterance, which is our focus in §6.5, as the solutions proposed in MT (see

§6.2.1) are not feasible due to the different input modality.

6.3 Named Entities and Terminology in ST

The assessment of the capability of state-of-the-art ST systems to properly

translate NEs and terminology present in an utterance is hindered by the

dearth of publicly available resources tailored to their specific evaluation.

Therefore, our investigation on the topic started with the creation of a

dedicated benchmark. Building on the newly-created resource, since the

long dominance of cascade systems has gradually diminished thanks to

the huge improvements of the direct approach, as described in §3, we then

focused on understanding whether the inherent strengths and weaknesses

of the two paradigms (Sperber and Paulik, 2020) can favor one or the other

when it comes to the translation of NEs and terms. Indeed, while direct ST

models avoid error propagation and can take advantage of unmediated access

to audio information (e.g., prosody) during the translation phase, cascade

solutions can exploit sizeable datasets for the ASR and MT subcomponents.
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All in all, the contributions of this line of work are: i) the release

NEuRoparl-ST, a novel benchmark on three language directions (en→es/fr/it)

built from European Parliament speeches annotated with NEs and terminol-

ogy, and ii) the first systematic analysis of the behavior of state-of-the-art

ST systems in translating NEs and terminology. Our experiments show

that direct and cascade ST systems display very similar behaviors, although

direct models have slightly higher scores on NEs and slightly lower on terms.

Overall, both cascade and direct ST systems prove to struggle more with

NEs, as they correctly translate 75–80% of terms and 65–70% of NEs, with

very low performance (37–40%) on person names.

6.3.1 Evaluation Data: NEuRoparl-ST

To the best of our knowledge, freely available NE/term-labelled ST bench-

marks suitable for our analysis did not exist at the beginning of this PhD.

The required resource should contain i) the audio corresponding to an

utterance, ii) its transcript, iii) its translation in multiple target languages

(three in our case), and iv) NE/term annotation in both transcripts and tar-

get texts. Currently available MT, ST, ASR, NE and terminology datasets

lack at least one of these key components. For example, most MT corpora

(e.g., Europarl) lack both audio sources and NE/terminology annotations.

The very few available MT corpora annotated with NE/terminology still

lack the audio portion, and extending them to ST would require generating

synthetic audio, which is known to be problematic for the performance

of ST models. For these reasons, we preferred to create a benchmark by

annotating the en→es/fr/it transcripts and translations of the Europarl-ST

test sets, which are mainly derived from the same original speeches. The

result, NEuRoparl-ST,2 is a multilingual benchmark featuring very high

content overlap, thus enabling cross-lingual comparisons.

2Available at https://ict.fbk.eu/neuroparl-st/.
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NE annotation. To build NEuRoparl-ST, we used the 18 tags and the anno-

tation scheme defined by the guidelines (“OntoNotes Named Entity Guide-

lines - Version 14.0”) used to annotate the OntoNotes5 corpus (Weischedel

et al., 2012). The annotation was carried out manually by a professional

interpreter with a multi-year experience in translating from English, French,

and Italian into Spanish the verbatim reports of the European Parliament

plenary meetings. This guarantees the high level of language knowledge and

domain expertise required to achieve maximum quality and precision. To

ease the task, the annotator was provided with transcripts and translations

automatically pre-annotated with the BERT-based NER model3 available in

DeepPavlov (Burtsev et al., 2018). Human annotation was then conducted

in parallel on the three test sets by labeling, for each audio segment, the

English transcript and the three corresponding translations. To check the

reliability of the annotations, all English transcripts were also indepen-

dently labeled by a second annotator with a background in linguistics and

excellent English knowledge. The inter-annotator agreement was calculated

in terms of complete agreement, i.e. the exact match of the whole NE in the

two annotations. The resulting Dice coefficient4 (Dice, 1945) amounts to

93.87%, which can be considered highly satisfactory. For the subset of NEs

for which complete agreement was found (1,409 in total), we also computed

the agreement on label assignment with the kappa coefficient (in Scott’s π

formulation – Scott 1955). The resulting value is 0.94, which corresponds to

“almost perfect” agreement according to its standard interpretation (Landis

and Koch, 1977).

3http://docs.deeppavlov.ai/en/master/features/models/ner.html
4Note that Dice coefficient has the same value of the F1 measure computed considering either annotator

as reference.
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en-es en-fr en-it

en es en fr en it

NEs 1,637 (2,703) 1,638 (3,003) 1,578 (2,604) 1,562 (2,949) 1,523 (2,497) 1,466 (2,649)

TERMS 2,571 (3,174) 2,662 (3,294) 2,797 (3,502) 2,947 (3,659) 2,166 (2,669) 2,202 (2,645)

Num. of sentences 1,267 1,214 1,130

Table 6.1: Total number of named entities and terms annotated in the test sets (and the

corresponding number of tokens).

Terminology annotation. Similar to (Dinu et al., 2019), terminology was

automatically extracted by exploiting the IATE termbase.5 Each entry in

IATE has an identifier and a language code. Entries with the same identifier

and different language codes represent the translations of a term in the

corresponding languages. To annotate our parallel texts, we first removed

stop-words and lemmatized the remaining words and IATE entries.6 Then,

for each parallel sentence, we marked as terms only those words in the source

and the target side that were present in IATE with the same identifier.

This source/target match is essential to avoid the annotation of words that

are used with a generic, common meaning but, being polysemic, can be

technical terms in different contexts (e.g., the word “board” can refer to

a tool or to a committee). Checking the presence of the corresponding

translation in the target language disambiguates these cases, leading to a

more accurate annotation.

NE and term annotations were merged into a single test set using

BIO (Ramshaw and Marcus, 1995) as span labeling format. Had a word

been tagged both as term and NE, the latter was chosen, favoring the more

reliable manual annotation. Table 6.1 presents the total number of NEs

and terms for the three language pairs, together with their corresponding

number of tokens. These numbers differ between source and target texts and

across pairs due to the peculiarities of the Europarl-ST data. Specifically, i)

5http://iate.europa.eu
6Preprocessing made with spaCy: http://spacy.io/
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en-es en-fr en-it

en es en fr en it

CARDINAL 91 (105) 85 (104) 87 (101) 90 (105) 86 (100) 85 (98)

DATE 149 (314) 152 (321) 145 (303) 144 (377) 141 (300) 141 (294)

EVENT 8 (26) 9 (27) 7 (22) 7 (27) 8 (26) 9 (31)

FAC 18 (31) 19 (38) 18 (31) 21 (52) 18 (31) 16 (33)

GPE 241 (338) 240 (361) 232 (322) 221 (312) 222 (316) 209 (300)

LANGUAGE 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2)

LAW 146 (478) 141 (622) 136 (448) 143 (608) 137 (439) 128 (509)

LOC 96 (121) 91 (122) 92 (118) 86 (128) 89 (111) 83 (109)

MONEY 10 (34) 11 (45) 10 (34) 11 (49) 6 (20) 6 (25)

NORP 135 (151) 126 (147) 136 (151) 156 (182) 123 (139) 143 (194)

ORDINAL 64 (64) 65 (65) 57 (57) 40 (40) 62 (62) 52 (53)

ORG 565 (857) 582 (989) 550 (844) 533 (906) 520 (773) 485 (851)

PERCENT 4 (10) 4 (6) 3 (8) 3 (9) 4 (10) 4 (14)

PERSON 92 (134) 96 (122) 88 (129) 88 (122) 89 (130) 87 (101)

PRODUCT 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

QUANTITY 3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7)

TIME 11 (26) 10 (20) 10 (22) 9 (18) 11 (26) 11 (24)

WORK OF ART 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (3)

TERM 2571 (3174) 2662 (3294) 2797 (3502) 2947 (3659) 2166 (2669) 2202 (2645)

Table 6.2: Number of named entities and terms annotated in the test sets (and the

corresponding number of tokens).

sometimes translations are not literal and NEs are omitted in the translation

(e.g., when a NE is repeated in the source, one of the occurrences may be

replaced by a pronoun in the target text), ii) the professional interpreters

and translators “localize” the target translations, i.e. adapt them to the

target culture (e.g., while the English source simply contains the name and

surname of mentioned European Parliament members, in Italian the first

name is omitted and the surname is preceded by “onoverole” - honorable),

and iii) the number of words a NE is made of can vary across languages

(e.g “European Timeshare Owners Organisation” becomes “Organización

Europea de Socios de Tiempo Compartido” in Spanish).

Table 6.2 presents the number of named entities (NEs) and terms an-

notated in the test sets, divided by category. Since both NEs and terms
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can be composed of more than one word (e.g., for a person it is common to

have both the name and surname), the total number of tokens per category

is also given.

Enabled by this newly created benchmark, we proceed with a system-

atic analysis of the behavior of cascade and direct ST systems to answer

understand whether their behavior is similar on not with respect to NE

and terminology translation.

6.3.2 Experimental Settings

To compare the cascade and direct solutions, we build strong models trained

on large corpora, which are described below, after the details regarding the

evaluation procedure.

Data and Evaluation

As ASR training data, we used LibriSpeech, TEDLIUM v3, and Mozilla

Common Voice, together with (utterance, transcript) pairs extracted from

three ST corpora: MuST-C, Europarl-ST, and CoVoST 2. We augment

data with SpecAugment and, after lowercasing and punctuation removal,

the text is split into sub-words with 8,000 BPE merge rules. The same

datasets are used for training our direct ST models, where the transcripts

contained in the ASR training corpora synthetically are translated with

our NMT model.

The MT training data were collected from the OPUS repository and

cleaned with the ModernMT framework. At the end of this process, the

actual training data is reduced to 45M segment pairs (550M English words)

for English-Italian. For English-Spanish, the training data is further filtered

with data selection methods (Axelrod et al., 2011) using a general-domain

seed resulting in 19M segment pairs (330M English words). Finally, for

English-French we have 28M sentence pairs (550M of English words).
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We use our benchmark to measure the ability of systems in handling

NEs and terminology. Transcription and translation quality are respectively

measured with WER and SacreBLEU7. Similarly to the Named Entity

Weak Accuracy proposed in (Hermjakob et al., 2008), we compute NE/term

accuracy8 as the ratio of entities that are present in the output of the

evaluated system in the correct form.

Architectures and Training Details

Cascade ST Model The ASR component of our cascade is a Transformer-

based model consisting of 11 encoder layers, 4 decoder layers, 8 attention

heads, 512 features for the attention layers and 2,048 hidden units in the

feed-forward layers. Its encoder has been adapted for processing speech by

means of two initial 2D convolutional layers that reduce the input sequence

length by a factor of 4. Also, the encoder self-attentions are biased using a

logarithmic distance penalty that favors the local context. The model is

trained with an additional Connectionist Temporal Classification (CTC)

loss, which is added as a linear layer to the 8th encoder layer. We set the

dropout to 0.1. We optimize label-smoothed cross entropy with a smoothing

factor of 0.1 with Adam. The learning rate is increased for 5,000 steps from

0.0003 up to 0.0005 and then decays with inverse square root policy. Our

mini-batches are composed of up to 12K tokens or 8 samples and we delay

parameter updates for 8 mini-batches, training on 8 K80 GPUs.

Before feeding the MT with the ASR outputs, the transcripts are post-

processed by an additional model to restore casing and punctuation. This

model is a Transformer-based system trained on data from the OPUS

repository, where the source text is lowercase and without punctuation, and

the target text is made of normally formatted sentences.

7BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0
8Scores have been computed with the script available at https://github.com/mgaido91/FBK-

fairseq-ST/blob/emnlp2021/scripts/eval/ne_terms_accuracy.py
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en-es en-fr en-it

WER BLEU NE Term WER BLEU NE Term WER BLEU NE Term

ASR 12.6 – 84.6 92.6 12.7 – 84.5 92.1 12.6 – 84.3 92.4

MT – 48.8 83.5 88.8 – 36.2 78.8 85.7 – 33.8 80.2 86.9

Cascade – 37.6 70.9 82.5 – 28.3 66.7 80.4 – 26.5 66.9 80.4

Direct – 37.7 71.4 79.2 – 30.1 67.3 77.7 – 26.0 67.3 76.3

Table 6.3: WER/BLEU and NE/term case-insensitive accuracy for ASR, MT and ST

(cascade and direct) models.

The MT component is a Transformer model with 6 layers for both

the encoder and the decoder, 16 attention heads, 1,024 features for the

attention layers, and 4,096 hidden units in the feed-forward layers. Models

are optimized on label-smoothed cross entropy with Adam, with a learning

rate that linearly increases for 8,000 updates up to 0.0005, after which

decays with inverse square root policy. Each batch is composed of 4 mini-

batches made of 3072 tokens. Dropout is set to 0.3. We train for 200,000

updates and average the last 10 checkpoints. Source and target languages

share a BPE vocabulary of 32k sub-words.

Direct ST Model Our direct model has the same architecture as the ASR

component described above, which is also used to initialize its encoder

weights. Besides encoder pre-training, for knowledge transfer, we also distill

knowledge from the MT model with the three-step process introduced in

§3.3. In addition, we use SpecAugment and time stretch.

6.3.3 Results

In this section, we compare the two ST systems just described, and we also

analyze the ASR and MT subcomponents (the latter being fed with human

transcripts) of the cascade system. Table 6.3 presents the case-insensitive

scores to fairly compare the different models, as the ASR produces lowercase

text. For the sake of completeness, case-sensitive NE/term accuracy is also
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en-es en-fr en-it

NE Term NE Term NE Term

MT 81.0 88.0 75.5 85.3 77.5 86.2

Cascade 65.8 81.6 61.3 79.9 62.6 79.5

Direct 69.4 78.7 65.9 77.3 65.1 75.9

Table 6.4: Case-sensitive accuracy scores of MT and ST (cascade and direct) models on

en→es/fr/it.

given in Table 6.4 for ST and MT models (we do not include ASR since it

generates lowercase text). Comparing these results with those reported in

Table 6.3, for all language pairs we see that the drop in NEs accuracy with

respect to case-insensitive scores is higher for the cascade model – around 5

points – than for the direct one – around 2 points (e.g., for en-es, from 70.9

to 65.8 for the cascade model and from 71.4 to 69.4 for the direct model).

We posit the reason is the propagation of errors in the module in charge to

restore casing on the ASR output in the cascade architecture.

ASR and MT results

The WER of the ASR is similar across the three language directions. This

is not surprising because the three test sets differ only in very few debates.

In terms of accuracy, it is evident that transcribing NEs is more difficult

than transcribing terms (average accuracy: 84.5 vs 92.4). Besides lower

frequency, the higher difficulty to transcribe NEs can be ascribed to the

variety of different pronunciations by non-native speakers (in particular for

person, product, and organization names). Concerning the MT performance,

the BLEU differences between language directions (en-es ≫ en-fr > en-it)

reflect the results reported in the Europarl-ST paper (Iranzo-Sánchez et al.,

2020). The main reason is that the translations are less literal for some

language directions. For instance, the French references are 20% longer

than the human source transcripts. Analyzing NE and term translation

quality, we notice that NEs are, again, harder to handle compared to
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terminology (average accuracy: 80.8 vs 87.1). It is worth noticing that

accuracy does not strictly depend on translation quality. For instance, en-fr

has a higher translation quality than en-it (+2.4 BLEU points), but NE

and term accuracy scores are lower.

ST results

Unsurprisingly, when it comes to combining transcription and translation in

a single task, performance decreases significantly. In particular, the results

of the cascade model are a direct consequence of cumulative ASR and MT

errors. As such, like for its sub-components, NEs are harder to handle than

terms. Compared to the MT results computed on manual transcripts, we

see large drops on all languages in both translation quality (-13.2 BLEU on

average) and NE/term accuracy (-12.8/-6.0).

Comparing cascade and direct models, the BLEU scores are on par for

en-es and en-it (differences are not statistically significant9), while the direct

one is significantly better for en-fr. This is explained by the aforementioned

peculiarity of the French reference translations in Europarl-ST that, unlike

in common training corpora (Europarl included), are on average 20% longer

than the source transcripts. The MT model of the cascade, trained on

massive corpora including Europarl, tends to produce translations that are

similar in length to the transcripts and shorter than Europarl-ST references,

being thus penalized. Having Europarl-ST among its training corpora, the

direct model produces outputs more similar in length to the references,

resulting in a 2.8 BLEU gain.

In terms of NE and term translation quality, the trend is clear and

coherent in all languages: the cascade outperforms the direct on terminology

(+3.5 on average), while the direct has an edge (+0.5) in handling NEs. The

advantage of the cascade on terminology can be explained by the higher

9Computed with bootstrap resampling (Koehn et al., 2003).
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en-es en-fr en-it

ASR MT Casc. Dir. ASR MT Casc. Dir. ASR MT Casc. Dir.

CARDINAL 92.31 88.24 80.00 76.47 94.25 86.67 80.00 81.11 93.02 89.41 78.82 80.00

DATE 90.60 78.95 73.68 72.37 89.66 57.64 52.08 56.25 89.36 76.60 67.38 68.09

EVENT 37.50 33.33 33.33 33.33 28.57 71.43 28.57 57.14 37.50 66.67 44.44 55.56

FAC 77.78 73.68 63.16 57.89 77.78 57.14 52.38 47.62 77.78 75.00 62.50 50.00

GPE 94.61 84.17 79.17 82.50 94.40 89.19 81.98 86.88 94.62 89.00 83.25 82.30

LANGUAGE 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 100.00 100.00 100.00 50.00

LAW 69.86 63.12 46.10 42.55 70.59 65.73 46.15 43.36 69.34 69.53 53.13 47.66

LOCATION 93.75 85.71 79.12 81.32 92.39 81.40 77.91 74.42 93.26 79.52 79.52 74.70

MONEY 20.00 54.55 27.27 72.73 20.00 18.18 27.27 27.27 16.67 66.67 16.67 66.67

NORP 87.41 79.37 70.63 69.84 87.50 69.43 63.06 62.18 86.99 70.63 60.84 56.64

ORDINAL 90.63 81.54 72.31 69.23 89.47 80.00 65.00 70.00 90.32 80.77 65.38 65.38

ORG 89.38 89.00 77.49 78.69 89.09 84.08 73.97 73.36 89.23 79.59 67.63 71.96

PERCENT 0.00 100.00 0.00 75.00 0.00 66.67 0.00 66.67 0.00 25.00 0.00 75.00

PERSON 40.22 93.75 40.63 38.54 39.77 93.18 38.64 38.64 39.33 98.85 42.53 41.38

PRODUCT 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00

QUANTITY 0.00 66.67 0.00 0.00 0.00 100.00 33.33 33.33 0.00 66.67 0.00 33.33

TIME 63.64 100.00 80.00 70.00 60.00 77.78 77.78 66.67 63.64 63.64 63.64 45.45

WORK OF ART 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.5: Case insensitive accuracy scores for all the NE types on the three language

pairs. We report the results for ASR, MT, Cascade (Casc.) and Direct (Dir.) systems.

reliability of its MT component in selecting domain-specific target words

compared to the direct models built on much smaller ST training corpora.

One example is the English term “plastic explosive”, which is correctly

translated into Italian by the cascade (“esplosivo plastico”), and wrongly

by the direct (“esplosivo di plastica” - En: “explosive made of plastic”).

Concerning NEs, instead, the unmediated access to the audio helps the

direct to avoid both i) error propagation (e.g., the NE “Lamfalussy” is

correctly translated by the direct, while the MT component of the cascade

is not able to recover the wrong ASR output “blunt Hallucy”), and ii) the

translation of NEs that are homographs of common nouns in the source

language but should be copied as is (e.g., the English surname “Parish”

is translated into Italian as “Parrocchia” by the cascade, but correctly

preserved in the output of the direct model).
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Figure 6.1: Accuracy scores on PERSON and LOCATION of MT, ASR and ST systems

on en-es.

Looking at NE types (Table 6.5), we can notice that the performance

of the two ST systems (cascade and direct) are similar in all categories,

except for some types (e.g., LANGUAGE, PRODUCT, QUANTITY) that

show a high variability caused by the limited number of examples with that

label. This demonstrates that their different architecture does not bring a

different ability in handling a specific type of entity, reflecting the global

accuracy scores in Table 6.3. For both approaches, the differences across

the NE types depend on their capability to recognize entities in the audio

and properly translate them. Two types are paradigmatic (see Figure 6.1).

PERSON names (the worst category, with 37–40% ST accuracy) are difficult

to recognize in the audio, as shown by the poor performance of ASR and

both ST systems, while their translation from manual transcripts (MT)

is trivial as it only requires copying them from the source. Conversely,

ST and MT results are very close on the more frequent and normally

easier-to-pronounce LOCATION names, for which the problem lies more in

translation than in recognition.

6.3.4 Summary

We started our investigation toward augmented ST by addressing the

foremost limitation for the understanding of the behavior of ST systems with
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respect to NEs and terminology: the dearth of suitable labeled benchmarks.

To fill this gap, we created an annotated test set, NEuRoparl-ST, covering

three language directions, and used it for the first comparison of state-of-

the-art cascade and direct ST systems on NE and term translation. Our

results show that NEs, and especially person names, are in general more

difficult to handle than terminology. For this reason, in the next sections

we analyze which factors hinder the correct handling of person names

and subsequently propose solutions to improve person-name accuracy. In

particular, we address two scenarios: when a dictionary of names likely to

occur in a domain is present (§6.5), and when it is not (§6.4).

6.4 Handling Person Names in ST

Following the finding of the previous section regarding the poor handling

of person names by ASR/ST systems, we move on to: i) identify the

factors causing the problem, and ii) design appropriate mitigation solutions.

Toward these objectives, our first contribution (§6.4.1) is the annotation10

of each person name occurring in NEuRoparl-ST with their nationality and

the nationality of the speaker (as a proxy of the native language) – e.g.,

if a German person says “Macron is the French president”, the speaker’s

nationality is German, while the referent nationality is French. Drawing on

this additional information, our second contribution (§6.4.1) is the analysis

of the concurring factors involved in the correct handling of person names.

Besides the frequency, we identify as a key discriminating factor the presence

in the training data of speech uttered in the referent’s native language (e.g.,

French in the above example). This finding, together with an observed

accuracy gap between person name transcription (ASR) and translation

(ST), leads to our third contribution (§6.4.3): a multilingual ST system that

10Available at: https://ict.fbk.eu/neuroparl-st/.
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jointly transcribes and translates the input audio, giving higher importance

to the transcription task in favor of a more accurate translation of person

names. Our model shows relative gains in person name translation accuracy

by 48% on average on three language pairs (en→es,fr,it), producing useful

translations for interpreters in 66% of the cases.

6.4.1 Factors Influencing Name Recognition

As shown in the previous section, the translation of person names is difficult

both for direct and cascade ST systems, which obtain similar accuracy

scores (∼40%). The low performance of cascade solutions is largely due to

errors made by the ASR component, while the MT model usually achieves

nearly perfect scores. For this reason, henceforth we will focus on identifying

the main issues related to the transcription and translation of person names,

respectively in ASR and direct ST.

We hypothesize that three main factors influence the ability of a system

to transcribe/translate a person name: i) its frequency in the training

data, as neural models are known to poorly handle rare words, ii) the

nationality of the referent, as different languages may involve different

phoneme-to-grapheme mappings and may contain different sounds, and iii)

the nationality of the speaker, as non-native speakers typically have different

accents and hence different pronunciations of the same name. To validate

these hypotheses, we inspect the outputs of Transformer-based ASR and ST

models trained with the configuration defined in (Wang et al., 2020b). For

the sake of reproducibility, complete details on our experimental settings

are provided in §6.4.2.

Data and Annotation

To enable fine-grained evaluations on the three factors we suppose to be

influential, we enrich the NEuRoparl-ST benchmark by adding three (one
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for each factor) features to each token annotated as PERSON. These are: i)

the token frequency in the target transcripts/translations of the training set,

ii) the nationality of the referent, and iii) the nationality of the speaker. The

nationality of the referents was manually collected through online searches.

The nationality of the speakers, instead, was automatically extracted from

the personal data listed in LinkedEP (Hollink et al., 2017) using the country

they represent in the European Parliament.11 All our systems are trained

on Europarl-ST and MuST-C, and evaluated on this new extended version

of NEuRoparl-ST.

The Role of Frequency

As the first step in our analysis, we automatically check how the three

features added to each PERSON token correlate with the correct generation

of the token itself. To this end, we train a classification decision tree

(Breiman et al., 1984). Classification trees recursively divide the dataset

into two groups, choosing a feature and a threshold that minimize the

entropy of the resulting groups with respect to the target label. As such,

they do not assume a linear relationship between the input and the target

(like multiple regression and random linear mixed effects do) and are a good

fit for categorical features as most of ours are. Their structure makes them

easy to interpret (Wu et al., 2008): the first decision (the root of the tree)

is the most important criterion according to the learned model, while less

discriminative features are pushed to the bottom.

We feed the classifier with 49 features, corresponding to: i) the frequency

of the token in the training data, ii) the one-hot encoding of the speaker

nationality, and iii) the one-hot encoding of the referent nationality.12

We then train it to predict whether our ASR model is able to correctly

11 For each speech in Europarl-ST, the speaker is referenced by a link to LinkedEP.
12Speakers and referents respectively belong to 17 and 31 different nations.
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All Freq. ≥ 3 Freq. < 3

ASR 38.46 55.81 4.55

en-fr 28.69 45.45 0.00

en-es 35.29 53.57 19.05

en-it 29.70 46.77 2.56

Average 33.04 50.40 6.54

Table 6.6: Token-level accuracy of person names divided into two groups according to

their frequency in the training set for ASR and ST (en→es/fr/it) systems.

transcribe the token in the output. To this end, we use the implementation

of scikit-learn (Pedregosa et al., 2011), setting to 3 the maximum depth of

the tree, and using Gini index as an entropy measure.

Unsurprisingly, the root node decision is based on the frequency of the

token in the training data, with 2.5 as a split value. This means that

person names occurring at least 3 times in the training data are likely to be

correctly handled by the models. Although this threshold may vary across

datasets of different sizes, it is an indication of the necessary number of

occurrences of a person name, potentially useful for data augmentation

techniques aimed at exposing the system to relevant instances at training

time (e.g., names of famous people in the specific domain of a talk to be

translated/interpreted). We validate that this finding also holds for ST

systems by reporting in Table 6.6 the accuracy of person tokens for ASR

and the three ST language directions, split according to the mentioned

threshold of frequency in the training set. On average, names occurring at

least 3 times in the training set are correctly generated in slightly more

than 50% of the cases, a much larger value compared to those with fewer

than 3 occurrences.

The other nodes of the classification tree contain less interpretable criteria,

which can be considered as spurious cues. For instance, at the second level

of the tree, a splitting criterion is “is the speaker from Denmark?” because

the only talk by a Danish speaker contains a mention to Kolarska-Bobinska
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Referent ASR en-fr en-es en-it Freq.

UK 52.38 59.09 63.16 41.18 46.21

non-UK 35.78 22.00 30.00 27.38 21.96

All 38.46 28.69 35.29 29.70 25.65

Table 6.7: Token-level accuracy of ASR and ST (en-fr, en-es, en-it) systems for UK/non-UK

referents.

that systems were not able to correctly generate. We hence decided to

perform further dedicated experiments to better understand the role of the

other two factors: referent and speaker nationality.

The Role of Referent Nationality

Humans often struggle to understand names belonging to languages that are

different from their native ones or from those they know. Moreover, upon

manual inspection of the system outputs, we observed that some names

were “Englishized” (e.g. Youngsen instead of Jensen). In light of this,

we posit that a system trained to recognize English sounds and to learn

English phoneme-to-grapheme mappings might be inadequate to handle

non-English names.

We first validate this idea by computing the accuracy for names of people

from the United Kingdom13 (“UK” henceforth) and for names of people

from the rest of the World (“non-UK”). Looking at Table 6.7, we notice

that our assumption seems to hold for both ASR and ST. However, the

scores correlate with the frequency (Freq.) of names in the training set14

as, on average, UK referents have more than twice the occurrences (46.21)

13We are aware that our annotation is potentially subject to noise, due to the possible presence of UK

citizens with non-anglophone names. A thorough study of the best strategies to maximize the accuracy

of UK/non-UK label assignment is a task per se, out of the scope of our work. By now, as a manual

inspection of the names revealed no such cases in our data, we believe that the few possible wrong

assignments do not undermine our experiments, nor the reported findings.
14Notice that the ASR and the ST training sets mostly contain the same data, so frequencies are similar

in the four cases.
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ASR en-fr en-es en-it Avg.

UK 42.86 25.76 33.33 29.41 32.84

non-UK 29.05 22.67 23.33 19.44 23.62

∆Accuracy 13.81 3.09 10.00 9.97 9.22

Table 6.8: Token-level accuracy of UK/non-UK referents averaged over three runs with

balanced training sets.

of non-UK referents (21.96). The higher scores for UK referents may hence

depend on this second factor.

To disentangle the two factors and isolate the impact of referents’ na-

tionality, we create a training set with balanced average frequency for UK

and non-UK people by filtering out a subset of the instances containing

UK names from the original training set.11 To ensure that our results are

not due to a particular filtering method, we randomly choose the instances

to remove and run the experiments on three different filtered training sets.

The results for the three ST language pairs and ASR (see Table 6.8) confirm

the presence of a large accuracy gap between UK and non-UK names (9.22

on average), meaning that the accuracy on non-UK names (23.62) is on

average ∼ 30% lower than the accuracy on UK names (32.84). As in this

case we can rule out any bias in the results due to the frequency in the

training set, we can state that the nationality of the referent is an important

factor.

The Role of Speaker Nationality

Another factor likely to influence the correct understanding of person names

from speech is the speaker’s accent. To verify its impact, we follow a similar

procedure to that of the previous subsection. First, we check whether

the overall accuracy is higher for names uttered by UK speakers than for

those uttered by non-UK speakers. Then, to ascertain whether the results

depend on the proportion of UK/non-UK speakers, we randomly create
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Speaker ASR en-fr en-es en-it Freq.

UK 41.03 32.43 36.84 29.41 34.55

non-UK 37.36 27.06 34.57 29.85 21.76

All 38.46 28.69 35.29 29.70 25.65

Table 6.9: Token-level accuracy of ASR and ST systems for names uttered by UK/non-UK

speakers.

Speaker ASR en-fr en-es en-it Avg.

UK 29.91 29.73 28.95 23.53 28.03

non-UK 33.33 22.75 25.51 19.40 25.25

∆Accuracy -3.42 6.98 3.43 4.13 2.78

Table 6.10: Token-level accuracy of person names uttered by UK/non-UK speakers averaged

over three runs with balanced training sets.

three training sets featuring a balanced average frequency of speakers from

the two groups.

Table 6.9 shows the overall results split according to the two groups

of speaker nationalities. In this case, the accuracy gap is minimal (the

maximum gap is 5.37 for en-fr, while it is even negative for en-it), suggesting

that the speaker accent has a marginal influence, if any, on how ASR and

ST systems handle person names.

The experiments on balanced training sets (see Table 6.10) confirm the

above results, with an average accuracy difference of 2.78 for ASR and

the three ST language directions. In light of this, we can conclude that,

differently from the other two factors, speakers’ nationality has negligible

effects on the ASR/ST performance on person names.

6.4.2 Experimental Settings

The previous section has uncovered that only two of the three considered

factors actually have a tangible impact: the frequency in the training set,

and the referent nationality. A low frequency can be tackled either by
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collecting more data or by generating synthetic instances (Alves et al., 2020;

Zheng et al., 2021). Fine-tuning the model on additional material is usually

a viable solution in the use case of assisting interpreters and translators

since, during their preparation phase, they have access to various sources of

domain-specific information (Gile, 2009; Dı́az-Galaz et al., 2015). Focusing

on the second factor, we experiment with the creation of multilingual models

that are more robust to a wider range of phonetic features and hence to

names of different nationalities. In addition, we investigate the adoption of

the so-called “triangle” architecture (Anastasopoulos and Chiang, 2018) to

close the gap between ASR and ST systems attested in §6.3 and confirmed

by the preliminary results shown in Table 6.6.

Data and Evaluation

We train our systems on MuST-C and Europarl-ST. When using multilingual

models, the ST training data (*→es/fr/it) consists of the en→es/fr/it

sections of MuST-C and the {nl, de, en, es, fr, it, pl, pt, ro}→es/fr/it

sections of Europarl-ST. Notice that, in this scenario, the English source

audio constitutes more than 80% of the total training data, as MuST-C is

considerably bigger than Europarl-ST and the English speeches in Europarl-

ST are about 4 times those in the other languages.15 For ASR, we use the

audio-transcript pairs of the *-it training set defined above.

We extract 80 features from audio segments, while the target text is

segmented into BPE subwords using 8,000 merge rules with SentencePiece.

Transcription and translation quality are measured respectively with

WER and SacreBLEU on both MuST-C and Europarl-ST test sets.16 The

person name accuracy, instead, is computed on NEuRoparl-ST as seen in

the previous sections.

15For instance, in *-fr the training set amounts to 671 hours of audio, 573 (i.e., 83%) having English

audio.
16BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0
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Architectures and Training Details

All our ASR and ST models share the same architecture. Two 1D convolu-

tional layers with a Gated Linear Unit non-linearity between them shrink

the input sequence over the temporal dimension, having 2 as stride. Then,

after adding sinusoidal positional embeddings, the sequence is encoded by

12 Transformer encoder layers, whose output is attended by 6 Transformer

decoder layers. We use 512 as Transformer embedding size, 2048 as the

intermediate dimension of the FFNs, and 8 heads. In the case of the triangle

model, we keep the same settings and the configurations are the same for

the two decoders. We filter out samples whose audio segment lasts more

than 30 s, normalize them at utterance level, and apply SpecAugment.

Models are optimized with Adam to minimize the label-smoothed cross

entropy. The learning rate increases up to 1e-3 for 10,000 warm-up updates,

then decreases with an inverse square-root scheduler. We train on 4 K80

GPUs, using mini-batches containing 5,000 tokens, and accumulating the

gradient for 16 mini-batches. We average 5 checkpoints around the best on

the validation loss.

6.4.3 Results

Toward our goal of improving person name translation, in this section we

report the results of two different interventions. First, we explore whether

multilingual models increase the robustness of ASR and ST systems to

non-UK referents. Second, we propose the triangle architecture to close the

gap between ASR and direct ST systems in terms of person name accuracy.

Increasing Robustness to non-UK Referents

As illustrated in §6.4.1, one cause of failure of our ASR/ST models trained

on English audio is the tendency to force every sound to an English-like word,
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Monolingual Multilingual

ASR en-fr en-es en-it ASR en-fr en-es en-it

WER (↓) BLEU (↑) WER (↓) BLEU (↑)
Europarl-ST 13.65 32.42 34.11 25.72 13.29 33.92 35.59 26.55

MuST-C 11.17 32.81 27.18 22.81 11.86 33.34 27.72 23.02

Token-level Person Name Accuracy (↑) Avg. ∆

Overall 38.46 28.69 35.29 29.70 46.15 38.52 44.54 36.63 +8.43

UK 52.38 59.09 63.16 41.18 66.67 59.09 63.16 52.94 +6.51

non-UK 35.78 22.00 30.00 27.38 42.20 34.00 41.00 33.33 +8.84

Table 6.11: Transcription/translation quality and token-level person name accuracy, both

overall and divided into UK/non-UK referents. Avg. ∆ indicates the difference between

multilingual and monolingual systems averaged over the ASR and the three ST directions.

distorting person names from other languages. Consequently, we posit that

a multilingual system, trained to recognize and translate speech in different

languages, might be more robust and, in turn, achieve better performance

on non-English names. We test this hypothesis by training multilingual

ASR and ST models that are fed with audio in different languages, and

respectively produce transcripts and translations (into French, Italian, or

Spanish in our case).

We analyze the effect of including additional languages both in terms

of general quality and in terms of person name transcription/translation

accuracy. Looking at the first two rows of Table 6.11, we notice that the

improvements in terms of generic translation quality (BLEU) are higher

on the Europarl-ST than on the MuST-C test set – most likely because

the additional data belongs to the Europarl domain – while in terms of

speech recognition (WER) there is a small improvement for Europarl-ST

and a small loss for MuST-C. Turning to person names (third line of the

table), the gains of the multilingual models (+8.43 accuracy on average)

are higher and consistent between ASR and the ST language pairs.

By dividing the person names into the two categories discussed in §6.4.1

– UK and non-UK referents – the results become less consistent across
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language pairs. On ST into French and Spanish, the accuracy of UK names

remains constant, while there are significant gains (respectively +12 and

+11) for non-UK names. These improvements seem to support the intuition

that models trained on more languages learn a wider range of phoneme-to-

grapheme mappings and so are able to better handle non-English names.

However, the results for ASR and for ST into Italian seemingly contradict

our hypothesis, as they show higher improvements for UK names (∼11-14)

than for non-UK names (∼6-7).

We investigate this behavior by further dividing the non-UK group into

two sub-categories: the names of referents whose native language is included

in the training set (“in-train” henceforth), and those of referents whose

native language is not included in the training set (“out-of-train”). For

in-train non-UK names, the monolingual ASR accuracy is outperformed

by the multilingual counterpart by 16.66 (33.33 vs 49.99), i.e. by a margin

higher than that for UK names (14.29). For the out-of-train names, instead,

the gap between the monolingual ASR accuracy (36.71) and the multilingual

ASR accuracy (39.24) is marginal (2.5). Similarly, for ST into Italian the

in-train group accuracy improves by 8.70 (from 34.78 to 43.48), while the

out-of-train group accuracy has a smaller gain of 4.92 (from 24.59 to 29.51).

These results indicate that adding a language to the training data helps

the correct handling of person names belonging to that language, even

when translating/transcribing from another language. Further evidence is

exposed in §6.4.4, where we analyze the errors made by our systems and

how their distribution changes between a monolingual and a multilingual

model.

Closing the Gap Between ASR and ST

The previous results – in line with those of §6.3 – reveal a gap between ASR

and ST systems, although their task is similar when it comes to person
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names. Indeed, both ASR and ST have to recognize the names from the

speech, and produce them as-is in the output. Contextually, section 6.3

showed that neural MT models are good at “copying” from the source or, in

other words, at estimating p(Y |T ) – where Y is the target sentence and T is

the textual source sentence – when Y and T are the same string. Hence, we

hypothesize that an ST model can close the performance gap with the ASR

by conditioning the target prediction not only on the input audio, but also

on the generated transcript. Formally, this means estimating p(Y |X,T ′),

where T ′ denotes a representation of the generated transcript, such as the

embeddings used to predict them; and this estimation is what the triangle

actually does.

The triangle model is composed of a single encoder, whose output is

attended by two decoders that respectively generate the transcript (ASR

decoder) and the translation (ST decoder). The ST decoder also attends

to the output embeddings (i.e., the internal representation before the final

linear layer mapping to the output vocabulary dimension and softmax)

of the ASR decoder in all its layers. In particular, the outputs of the

cross-attention on the encoder output and the cross-attention on the ASR

decoder output are concatenated and fed to a linear layer. The model is

optimized with a multi-loss objective function, defined as follows:

L(X) = −
∑
x∈X

(
λASR ∗

∑
t∈Tx

log(pθ(ti|x, ti−1,...,0)) + λST ∗
∑
y∈Yx

log(pθ(yi|x, T, yi−1,...,0))
)

(6.1)

where T is the target transcript, Y is the target translation, and x is the

input utterance. λASR and λST are two hyperparameters aimed at control-

ling the relative importance of the two tasks. Previous works commonly set

them to 0.5, giving equal importance to the two tasks (Anastasopoulos and

Chiang, 2018; Sperber et al., 2020). To the best of our knowledge, ours is

the first attempt to inspect performance variations in the setting of these
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Model
WER (↓)

ASR

BLEU (↑) Person Accuracy

en-es en-fr en-it ASR en-es en-fr en-it ST Avg. ASR-ST

Base 13.29 35.86 33.99 26.80 46.15 44.54 38.52 36.63 39.90 6.25

Triangle 14.25 37.42 35.44 28.20 42.31 43.70 41.80 41.58 42.36 -0.05

λASR=0.8, λST=0.2 13.75 36.48 34.85 27.30 47.69 44.54 43.44 50.50 46.16 1.53

Table 6.12: WER (for ASR), SacreBLEU (for ST), and token-level person name accuracy

computed on the NEuRoparl-ST test set. For triangle models, ASR scores are computed

on the transcript output of the *-it model. ST Avg. is the average accuracy on the 3

language pairs (en→es,fr,it) and ASR-ST is the difference between the ASR and the

average ST accuracy.

two parameters, calibrating them toward the specific needs arising from

our application scenario.

In Table 6.12, we compare the previously-introduced multilingual models

(Base) with triangle ST multilingual models trained on the same data

(Triangle). Although the transcripts of the triangle models (second row) are

less accurate (about +1 WER), the translations have higher quality (+1.4-

1.6 BLEU on the three language pairs). Person names follow a similar trend:

in the transcript, the accuracy is lower (-3.84), while in ST it increases

(on average +2.46). Interestingly, the accuracy gap between ASR and ST

is closed by the triangle model (see the ASR-ST column), confirming our

assumption that neural models are good at copying. However, due to the

lower ASR accuracy (42.31), the ST accuracy (42.36) does not reach that

of the base ASR model (46.15). The reason for this drop can be found

in the different types of information required by the ASR and ST tasks.

Chuang et al. (2020) showed that the semantic content of the utterance is

more important for ST, and that joint ASR/ST training leads the model

to focus more on the semantic content of the utterance, yielding BLEU

gains at the expense of higher WER. As person names are usually close in

the semantic space (Das et al., 2017), the higher focus on semantic content

may be detrimental to their correct handling and hence explain the lower
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person name accuracy.

In light of this observation, we experimented with changing the weights

of the losses in the triangle training, assigning higher importance to the

ASR loss (third row of Table 6.12). In this configuration, as expected,

transcription quality increases (-0.5 WER) at the expense of translation

quality, which decreases (-0.8 BLEU on average) but remains higher than

that of the base model. The accuracy of person names follows the trend

of transcription quality: the average accuracy on ST (46.16) increases by

3.8 points over the base triangle model (42.36), becoming almost identical

to that of the base ASR model (46.15). All in all, our solution achieves

the same person name accuracy as an ASR base model without sacrificing

translation quality compared to a base ST system.

6.4.4 Error Analysis

While the goal is the correct rendering of person names, not all the errors

have the same weight. For interpreters, for instance, minor misspellings of

a name may not be problematic, an omission can be seen as a lack of help,

but the generation of a wrong name is harmful, as potentially distracting

and/or confusing. To delve into these aspects, we first carried out a manual

analysis on the ASR outputs, and then compared the findings with the

same analysis on ST outputs.

ASR Analysis

Two researchers with at least C1 English knowledge and linguistic back-

ground annotated each error assigning it to a category.17 The categories,

chosen by analyzing the system outputs, are: misspelling – when a person

17The inter-annotator agreement on label assignments was calculated using the kappa coefficient in

Scott’s π formulation (Scott, 1955), and resulted in 87.5%, which means “almost perfect” agreement in

the standard interpretation (Landis and Koch, 1977).
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(a) Monolingual ASR errors.
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(b) Multilingual ASR errors.

Figure 6.2: Correct person names and the categories of errors of the baseline and

multilingual ASR systems.

name contains minor errors leading to similar pronunciation (e.g. Kozulin

instead of Kazulin); replacement with a different name – when a person

name is replaced with a completely different one in terms of spelling and/or

pronunciation (e.g. Mr Muhammadi instead of Mr Allister); replacement

with other words – when a proper person name is replaced by a common

noun, other parts of speech, and/or proper nouns that do not refer to

people, such as geographical names (e.g. English Tibetan core instead of

Ingrid Betancourt); omission – when a person name, or part of a sentence

containing it, is ignored by the system.

The results of the annotations are summarized in the graphs in Figure 6.2.

Looking at the baseline monolingual system (Figure 6.2a), we notice that

omissions and replacements with a different name are the most common

errors, closely followed by replacements with other words, although for non-

UK names the number of misspellings is also significant. The multilingual

system (Figure 6.2b) does not only show a higher percentage of correct

names, but also a different distribution of errors, in particular for the

names belonging to the languages added to the training set (non-UK in

train). Indeed, the misspellings increase to the detriment of omissions

and replacements with a different name and other words. Omissions also
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(a) Monolingual en-it ST errors.
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(b) Multilingual ST *-it errors.

Figure 6.3: Correct person names and the categories of errors of the baseline and

multilingual ST-into-Italian systems.

decrease for UK names and for names in languages not included in the

training set (non-UK not in train). For UK names, the previously-missing

names fall either into the correct names or into the replacements with a

different name; for the non-UK not in train, instead, they are replaced by

different names or other words.

Considering multilingual outputs, we observe that, for the languages

in the training set (including English), in 66% of the cases the system

generates a name that could be helpful for an interpreter (either correct or

with minor misspellings). Confusing/distracting outputs (i.e., replacements

with a different person name) occur in about 15% of the cases. Moreover,

we notice that the system is able to discern when a person name should be

generated (either correct, misspelled, or replaced by a different name) in

more than 80% of the cases. This indicates their overall good capability

to recognize patterns and/or appropriate contexts in which a person name

should occur.

ST Analysis

The same analysis was carried out for ST systems translating into Italian

(see Figure 6.3) by two native speakers. Although results are lower in
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Figure 6.4: Correct person names and the different categories of errors of the ST-into-

Italian triangle system with λASR=0.8, λST=0.2 expressed in percentages.

general, when moving from the monolingual (Figure 6.3a) to the multilingual

(Figure 6.3b) system we can see similar trends to ASR, with the number of

omissions and replacements with a different name that decreases in favor of

a higher number of correct names and misspellings. Looking at the analysis

of the triangle model with λASR=0.8, λST=0.2 presented in §6.4.3 (Figure

6.4), we observe that misspellings, omissions, and replacements with other

words diminish, while correct names increase. Moreover, both the accuracy

(i.e., correct in the graphs) and the error distributions of this system are

similar to those of the ASR multilingual model (Figure 6.2b). On one side,

this brings to similar conclusions, i.e. ST models can support interpreters

in ∼66% of the cases, and can discern when a person name is required in

the translation in ∼80% of the cases. On the other, it confirms that the

gap with the ASR system is closed, as observed in §6.4.3.

6.4.5 Summary

The analysis of §6.3 revealed that ST systems struggle in handling person

names. In this section, we demonstrated that the problem mostly comes

from names that are unknown to systems and in languages they have not

been trained on. Therefore, we designed dedicated architectural solutions

aimed to improve the ability to handle specific elements. Along this line
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of research, we have shown that a multilingual triangle ST model, which

gives more weight to the transcription than to the translation task, has

relative improvements in person name accuracy by 48% on average. We also

acknowledge that much work is still needed in this area, with a large room

for improvement still available, especially to avoid the two most common

types of errors unveiled by our analysis: omissions and replacements with

different person names. In the next section, we investigate solutions to

integrate external knowledge (in the form of a dictionary of names likely to

appear in a given domain), with the goal of further increasing the correct

recognition and spelling of the names.

6.5 Named Entity Detection and Injection

As seen in §6.2.1 and §6.2.3, since neural translation systems are known to

struggle in presence of rare words (Koehn and Knowles, 2017), a category to

which many NEs belong, researchers studied dedicated solutions that exploit

additional, contextual information (in the form of lists or dictionaries of

domain-specific words/phrases) available at inference time both in ASR and

MT. No work, however, targeted the ST scenario, where the main problem

is assessing which entries of the dictionary are relevant for an utterance.

Here, the pattern matching approach used in text-to-text (T2T) translation

is not feasible because of the different input modality, and ASR solutions

are not directly applicable as they do not deal with the language switch

between the source and target.

Motivated by the difficulties of ST systems in correctly handling NEs

shown in the previous sections, the practical relevance of the problem, and

the lack of existing solutions, in this section we present the first approach

to exploit contextual information – in the form of a bilingual dictionary

of NEs – in direct ST. Specifically, our main focus is the detection of the
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(a) Full sentence. (b) Zoom on Minsk phonemes

Figure 6.5: Heatmap of cosine similarities (the lighter, the more similar) between the

encoder outputs of text and speech of the ST2T model released by Tang et al. (2021). On

the x axis, each item is a phoneme passed to the textual shared encoder; on the y axes

there are frames that correspond to the utterance. The full sentence is: Madam President,

the resolution on the situation in Belarus reveals what Brussels and Minsk could do in

order not to lose the momentum for improving their relations.

NEs present in an utterance, among those in a given contextual dictionary.

Performing this task allows us to rely on existing solutions for ASR (see

§6.2.3) to inject the correct translations for the NEs. In particular, we

propose the adoption of a decoder architecture similar to CLAS (see §6.2.3)

and provide it with the list of translated NEs considered present by our

detector module. Experimental results on NEuRoparl-ST demonstrate that

we can improve NE accuracy by up to 7.1% over a base ST model, and

reduce the errors on person names by up to 31.3% with respect to a strong

baseline exploiting the same inference-time contextual data.
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6.5.1 Entity Detection for ST

Two operations are necessary to exploit a dictionary of NEs likely to appear

in an utterance: i) detect the relevant NEs among those in the dictionary,

ii) look at the corresponding translations to accurately generate them.

Accordingly, we add two modules to the ST model: i) a detector identifying

the NEs present in the utterance, and ii) a module informing the decoder

about the forms of the detected NEs in the target language.

A recent research direction in ST consists in training models that jointly

perform ST and MT to improve the quality of direct ST (Tang et al., 2021;

Ye et al., 2022). These speech/text-to-text (ST2T) models include auxiliary

tasks to force the encoder outputs of different modalities to be close when

the text/audio content is the same. Figure 6.5 confirms that encoder

outputs for text (the text is actually converted into phonemes before being

fed to the encoder, as per Tang et al. 2021) and audio are indeed similar.

Specifically, there is a strong similarity between the phonemes that compose

a word and the audio frames that correspond to that word. Based on this,

we hypothesize that we can use the encoded representation of the textual

NEs in a dictionary/list and the encoded representation of an utterance to

determine whether each NE has been mentioned or not.

Similarity-based Detector

Following the above considerations, a first naive attempt to detect a NE in

the audio is to look whether along the audio dimension (the y axis) there

is an instant with high similarity with the phonemes corresponding to the

NE. However, since the similarities are at word level, we would be unable

to detect NEs with more than one word, which is actually very frequent.

Hence, we defined a word-based approach to obtain a likelihood score for

the presence of an entity in an utterance. For each word of a NE, we look
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for a region in the audio with high similarity and we want this region to

span over many consecutive audio frames to avoid spurious local similarities.

Then, we repeat the same operation for the next word in the NE, where

the starting frame (time) of this word is the last frame (end time) of the

previous word. Finally, we average the scores of all the words that compose

the NE and take the maximum score we can achieve.

Although we noticed significant improvements over the first naive method,

the precision of this solution still resulted very low, with many false positives.

As such, we decided to look for alternatives, moving to an approach based

on a trained detector.

Trained Detector

A trained detector is a neural network that estimates the probability that

a given NE is present in an utterance or not.

At training time, we feed a positive sample (i.e., a piece of text actually

present in the utterance) and a negative sample (i.e., a piece of text not

present in the utterance) for each audio to train the NE detector. Positive

and negative texts can be sampled i) from random words in the transcript of

the current utterance and of those of other utterances in the same batch,18

or ii) from automatically-detected NEs. The second method is closer to the

real goal but limits the amount of training data (ignoring the utterances in

the training set that do not contain NEs), and its variety (at the risk of

overfitting to the NEs in the training set). To avoid this, we adopt a mixed

approach, where in training samples without NEs the first method is used,

while in training samples with NEs one of the two methods is randomly

selected (assigning 80% of probability to choose automatically-recognized

NEs).

Another critical aspect is the design of this detector module. We first

18Ensuring they are not present in the examined utterance.
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Figure 6.6: NE Detector architecture.

tested the Speech2Slot architecture (Wang et al., 2021b), a stack of three

layers made of a multi-head attention (MHA) followed by an FFN without

residual connections. The NE textual encoder output is fed as query to the

MHA, while the key and values are built from the speech encoder output.

Unfortunately, training this architecture turned out challenging and the

network failed to converge.

In light of this, we resorted to a stack of three Transformer encoder

layers, fed with a concatenation of a CLS token, the NE textual encoder

output, a SEP token, and the utterance ST2T encoder output. From the

output of the last layer, we then select only the first vector, corresponding

to the CLS token, and feed it to a sigmoid (σ) activation function to get

the probability that the NE is present in the utterance. In addition, we

add a trained TXT embedding to all the NE textual encoder vectors and a

trained SPC embedding to all the speech encoder vectors, obtaining the

architecture represented in Figure 6.6. Lastly, as a NE should appear in

a contiguous and relatively short speech segment, we force the module to

focus on a limited span of speech vectors surrounding the considered one by

means of an attention masking mechanism. Specifically, as the amount of

speech that should be considered depends on the NE length, we mask all the
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Figure 6.7: CLAS Transformer decoder layer (parallel method).

speech vectors that are farther than two19 times the number of phonemes of

the NE to detect with respect to the current speech element. For instance,

when trying to detect a NE made of 10 phonemes, each speech vector can

attend only to itself, the 20 speech vectors before it, and the 20 after it, in

addition to the textual and the special token vectors. In other words, each

speech vector can attend to the surrounding ones, to all textual vectors,

and the CLS and SEP embeddings.

6.5.2 Decoding with Contextual Entities

As we will see in §6.5.4, the entity detector achieves high recall, but false

positives are hard to avoid. Hence, to demonstrate that our entity detector

is useful despite a low precision, we inject the selected entities into the model

with an approach tolerant to false positives. We adopt an architecture

similar to CLAS (see §6.2.3 – Pundak et al. 2018), where the bias encoder

is a trained 3-layer Transformer encoder, and the attention between the

decoder and the bias encoder outputs is an MHA implemented following

the parallel or sequential methods described in §4.3.2 (see Figure 6.7). Each

NE in the list of those considered likely present (bias-NE ) is encoded with

the bias encoder and the encoder outputs are averaged to get a single vector.

After repeating this step for all the bias-NEs, the resulting vectors are

19We also tested 1 and 3, noticing minimal differences and chose 2 due to its lower loss on the dev set.
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concatenated together with a no-bias learned vector that allows our model

to ignore the information from bias vectors.

6.5.3 Experimental Settings

For our experiments, we build a multilingual direct ST2T and a multilingual

cascade system (ASR followed by multilingual MT), following the recipe in

(Tang et al., 2022).

Data and Evaluation

As monolingual text data for the pre-training of the direct ST2T and

ASR models, and as parallel text data for MT, we use Europarl.20 As

unsupervised audio data, instead, we use Libri-Light (Kahn et al., 2020).

Finally, as supervised data, we use MuST-C and Europarl-ST. In particular,

for ASR we use their en→es section (the largest language direction among

the ones we considered), while for ST we use the en→{es,fr,it} sections.

The quality of the NE detectors is assessed in terms of the trade-off

between recall and the number of NEs retrieved. We estimate selectivity

through the number of NEs retrieved instead of precision, as some NEs may

be correctly detected even though they are not annotated in NEuRoparl-

ST,21 making hard to reliably compute precision. The output of the ST

systems is evaluated with SacreBLEU22 on Europarl-ST for the translation

quality, and with case-sensitive entity accuracy on NEuRoparl-ST for the

ability in handling NEs. Among NEs, we focus on geopolitical entities

(GPE), locations (LOC), and person (PER) names, as these three types

are the most challenging for ST systems (see §6.3).

20We filter from Europarl all the data that belongs to the dates of the talks inside the Europarl-ST test

set, and therefore also to NEuRoparl-ST, which is derived from it.
21For instance, this happens when a NE is part of a bigger one (e.g. the NE Lisbon is retrieved in a

sentence that contains the NE Treaty of Lisbon).
22case:mixed|eff:no|tok:13a|smooth:exp|v:2.1.0

217



Chapter 6 6.5. NAMED ENTITY DETECTION AND INJECTION

Architecture and Training Details

Our ASR and ST2T models directly process raw waveforms using the

same hyperparameters of (Tang et al., 2022). Encoder layers are randomly

dropped (LayerDrop) at training time with 0.1 probability (Fan et al.,

2019). The multilingual MT models have 6 encoder and decoder layers with

512 features and 1024 FFN hidden features. When training CLAS models,

we initialize the weights with those of the pre-trained ST2T model. We

freeze encoder weights, and we also experimented with freezing the decoder

parameters from the pre-trained ST2T model: in this case, we train only

the newly added components and the output projection layer.

For the training of our ASR and ST2T systems, we first perform a

BART text pre-training on monolingual text data, followed by joint pre-

training that also includes the unsupervised and supervised audio data.

The resulting model is the base for both our ASR and ST2T models. While

the ASR system is fine-tuned only on the ASR data, the ST2T is fine-tuned

on both the ST corpora and the ASR data, although the auxiliary ASR

task is not used at inference time. All the trainings have been performed

on 8 V100 GPUs, using the batch sizes indicated by (Tang et al., 2022).

6.5.4 Results

NE Detection

Table 6.13 reports the retrieval results of the trained NE detector mod-

ule described in §6.5.1, isolating the contribution of its components, and

compares it with the algorithm based on the cosine similarities, which is

unable to obtain good selectivity. First, we notice that, to achieve mean-

ingful scores, it is essential to introduce LayerDrop when extracting the

input features using the shared speech/text encoder of the ST2T model.

Otherwise, the results are close to a random predictor. Speech masking
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GPE LOC PER Retr.

Cosine Similarities 68.2% 74.3% 53.2% 138.2

Base NE detector 31.4% 6.3% 28.3% 115.5

+ speech masking 31.9% 17.9% 29.4% 54.3

+ layerdrop 57.2% 24.2% 38.0% 3.9

+ layerdrop 66.8% 33.7% 40.2% 4.3

+ train on NE 93.9% 76.8% 79.4% 1.8

+ modality emb. 95.2% 94.7% 78.3% 1.8

+ attn. masking 93.5% 93.7% 90.2% 1.6

+ max word len 5 96.5% 93.7% 89.1% 1.4

+ margin ranking 96.1% 91.6% 88.0% 1.2

Table 6.13: Recalls on GPE, LOC, and PER, and average number of NEs retrieved per

utterance (Retr.). For each utterance, the NE detectors are fed with all the distinct GPE,

LOC, PER, and organizations (ORG) in the test set for a total of 294 NEs. A NE is

considered detected if the NE detector assigns a detection probability higher than 86%.

also helps, but is harmful when combined with LayerDrop. Moreover, feed-

ing automatically-detected NEs at training time with the mixed approach

described in §6.5.1, instead of only using random words, greatly improves

both recalls and selectivity. The addition of trained modality embeddings

also proved helpful, especially for LOC and GPE recall. The attention

masking provides significant benefits in terms of PER recall and selectivity,

at the cost of a very limited degradation on GPE and LOC recall. Further

improvements in selectivity were obtained by picking more than a single

random word when training the NE detector (up to 5 consecutive words),

and by adding an auxiliary margin ranking loss to the binary cross entropy

loss. This final module achieves recalls higher or close to 90%, retrieving

1.2 NEs per utterance on average (the test set contains 0.34 NEs from

these 3 categories on average). Excluding the retrieved NEs present in an

utterance but not annotated as such in the test set,21 we can compute the

precision of this module, which is 55.8%. The non-negligible number of

false positives is investigated in §6.5.5, and highlights that the NE detector

can be used to create a short-list of NEs likely present in the sentence,
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BLEU GPE LOC PER Avg.

Cascade 37.6 80.0 74.2 51.2 68.5

Base ST2T 38.8 82.2 78.4 49.3 70.0

+ CLM (λ=0.10) 38.8 83.9 76.8 50.8 70.5

+ CLM (λ=0.15) 38.0 83.6 74.9 52.7 70.4

+ CLM (λ=0.20) 37.0 82.5 73.0 53.4 69.6

Parallel CLAS 37.5 84.7 78.4 66.1 76.4

+ freeze decoder 37.0 82.8 78.7 64.6 75.4

Sequential CLAS 35.8 84.5 78.7 68.0 77.1

+ freeze decoder 36.8 82.7 79.9 68.0 76.9

Table 6.14: Translation quality (BLEU) and accuracy for GPE, LOC, and PER – as well

as the average over the 3 categories (Avg.) – of the base direct ST2T, cascade, and the

test-entities aware systems (class LM – CLM – and CLAS models). The results are the

average over the 3 language pairs (en→es,fr,it).

rather than to enforce the presence of detected NEs, motivating the CLAS

solution (§6.5.2).

ST Quality and NE Translation

Our CLAS method leverages additional data available at inference time. Its

comparison with a plain ST model would hence be unfair, so we introduce

a strong baseline that exploits this additional data. Specifically, we perform

a class-based LM rescoring of the ST model probabilities (see §6.2.3),

using shallow fusion (i.e., adding to the ST model probabilities the LM

probabilities rescored with a weight λ). We train the class LM on the

test-time NEs, and a generic LM on the target side of the MT training data.

At each decoding step, if we are inside NE tags for the current hypothesis,

we rescore (shallow fusion) the ST outputs with the class LM; otherwise,

the rescoring is done with the generic LM.

Table 6.14 compares this strong baseline, the base model, and our CLAS

systems fed with the entities selected by our NE detector module. We can

see that CLAS systems are the best in NE accuracy, reducing by up to 31%

the number of errors for person names compared to the best baseline using
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the same additional information. The improvements for other NEs are

lower: we argue that the reason lies in the different textual representations

NEs have in the different languages (source and target) while person names

are mostly the same. Despite its better NE handling, CLAS suffers from a

1.3-2.0 BLEU degradation with respect to the baseline. However, comparing

our Parallel CLAS model to the baselines, we notice that the best baseline

for person names (CLM λ=0.20) is significantly inferior on all metrics,

including BLEU and person name accuracy. Moreover, BLEU is similar to

the cascade solution with significantly higher accuracy on all NE categories.

6.5.5 Analysis

As observed in §6.5.4, the weakness of the NE detector is the number of

wrongly detected NEs (false positives). To better understand why they

happen, we conducted a manual analysis of the false positives, assigning

each of them to one of the following categories: i) similar semantic

(13.7%), NEs detected in an utterance where there is a NE with a similar

meaning (e.g. Chamber/Parliament) or there is another NE of the same

type (e.g. Pakistan/Afghanistan); ii) similar phonetic (14.3%), NEs

detected in sentences where there is a word that is similar or sounds

similar (e.g. President/Presidency); iii) partial match (34.0%), NEs

detected in utterance where only part of the NE is present (e.g. Fisheries

Committee/Budget Committee); iv) acronyms (8.4%), these NEs are poorly

handled because our text-to-phonemes converter does not handle them

properly (e.g. US is converted as the pronoun us and EU as the pronoun

you); v) different form (16.5%), NEs detected where the same NE is

mentioned but in a different form (e.g. government of Malaysia/Malaysian

Government), so these are not real errors; vi) uninterpretable (13.1%),

the human cannot understand the reason for the error. This inspection

shows that future work should focus on training strategies that alleviate
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the detection errors of similar words and partial matches, creating systems

more robust to small yet significant variations between different entities.

6.5.6 Summary

After showing the weaknesses of ST systems in handling NEs, especially

person names (§6.3), and investigating the causes of low person name

accuracy with dedicated mitigations (§6.4), in this section we explored how

to leverage dictionaries of NEs in a specific domain/context to improve

the NE translation accuracy of ST models. We mainly focused on the

detection of which NEs of a domain dictionary are present in the input

utterance, proposing an additional module on top of the encoder outputs

that determines whether each NE is present or not. Such a module achieved

a high recall for geopolitical entities, locations, and person names, while the

most prominent challenge regards increasing the selectivity of the model.

In addition, our thorough analysis of the most common categories of false

positives allowed us to identify guidelines and promising directions for future

works on the topic. Lastly, we proposed a method to inject the selected

NEs in the decoding phase, showing that the proposed detection strategy

is already capable of improving NE handling, with average accuracy gains

of up to 14.4% on GPE, LOC, and PER over strong baselines leveraging

the same inference-time information. The next section moves another step,

complementary to the improvement of NE accuracy, toward augmented ST

systems by exploring a joint execution of the ST and the NER tasks with a

single model.

6.6 Joint Translation and Named Entity Recognition

The augmented ST paradigm requires not only an accurate translation of

relevant entities (covered so far in this chapter), but also supporting the
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users by highlighting important elements (such as NEs) and eventually

providing related information. In this framework, a critical task is the

output enrichment with information regarding the mentioned entities. This

is currently achieved by (post-)processing the generated translations with

NER tools and eventually retrieving their description from knowledge bases

(an aspect we do not cover in this work). In light of the recent promising

results shown by direct systems and the known weaknesses of cascades

(error propagation and additional latency), we explore multitask models

that jointly perform ST and NER, and compare them with a cascade

baseline that performs the two tasks sequentially. In doing so, we address

the following research questions: is the current cascade of ST and NER the

best approach? What are the effects of jointly performing the two tasks on

NE accuracy and translation quality?

Our experiments on NEuRoparl-ST demonstrate that joint models sig-

nificantly outperform the ST+NER cascade by 0.4-1.0 F1 in the NER task,

while being on par in terms of translation quality. Such improvement is

achieved without introducing any significant computational overhead with

respect to a plain ST model, thus being remarkably more efficient than

cascade systems.

6.6.1 Joint NER and ST

The easiest way to extract the NEs from a translation consists in applying

a NER model on the output of the ST model. Henceforth, we refer to this

approach as cascade, and we consider it as a baseline for comparison against

our systems that jointly perform the two tasks with a single model. Our

solutions – inline, and parallel – are described below:

Inline (Fig. 6.8). The vocabulary of the direct ST model is extended with

tags that represent the start (e.g., <LOC>) and end (e.g., </LOC>) of the
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Figure 6.8: Architecture of the inline solution. The additional tokens generated in the

output are highlighted in green, and are passed to the decoder as all the other previous

output tokens.

NE categories to be recognized which, in our case, are 18.23 These tags are

treated as any other token (or subword): they are predicted in the output

sequence, and – together with the other tokens – fed to the decoder as

previous output tokens, informing it about the NE categories. This solution

does not require any architectural changes to the ST model but introduces

additional overhead, especially at inference time, as the higher number of

tokens to generate (due to the additional start/end NE tags) leads to an

increase in the number of forward passes on the autoregressive decoder.

Parallel (Fig. 6.9). At each time step, the output of the last decoder layer

is processed in parallel by two linear layers. The first linear layer maps the

vectors to the vocabulary space to predict the next token as in standard ST

models. The second linear layer maps the same vector to the NE-category

space to predict the NE category to which the token belongs to, if any, or

O (i.e., OTHER), if the token is not part of a NE. Although the second

linear layer introduces additional parameters to train, its computational

cost is negligible compared to that of the whole decoder. Moreover, this

solution avoids the supplementary decoder forward passes required by the

23The categories are those defined in the OntoNotes annotation.
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Figure 6.9: Architecture of the parallel solution. The introduced linear layer (in green) is

processed token-by-token in parallel with the other linear layer. In the + NE emb. variant

(yellow dotted area), the previously predicted tags are converted into embeddings that are

summed to the corresponding previously generated tokens.

inline method. However, the potential drawback in comparison with the

inline solution is that it cannot exploit information about the NE categories

assigned to the previously generated tokens during translation. As we

posit that this lack of information may cause performance degradations, we

propose a variant of this method, in which the embeddings of the previous

output tokens are summed with learned embeddings of their corresponding

NE categories.24 This change requires only 19 additional embeddings to

learn (one for each NE category, plus O) – a negligible number compared

to the target vocabulary size – and a sum, hence producing no significant

computational overhead. Note that the inline solution requires 36 additional

embeddings instead of 19 as in this case, since it differentiates between the

start and the end of each NE category. We refer to this variant as Parallel

+ NE emb. (Fig. 6.9).

24The beginning-of-sentence (bos) token is considered of O category.
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6.6.2 Experimental Settings

Data and Evaluation Metrics

All models are trained on the MuST-C and Europarl-ST corpora. To train

the joint NER and ST models, we automatically annotated the NEs on the

target translations with the same NER tool used in our cascade approach,

obtaining parallel training data with speech and the corresponding anno-

tated translations without any manual intervention. Translation quality

is evaluated with SacreBLEU on the Europarl-ST test set. The capabil-

ity to correctly render/translate NEs is measured on the NEuRoparl-ST

benchmark with NE accuracy (case-insensitive, for the sake of comparison

with the results in §6.3), and with F1, which also measures the ability to

recognize NEs. The F1 is computed considering as correct only those NEs

that are accurately translated and identified (regardless of the category

they have been assigned to). As such, NEs poorly translated and recognized

by a model penalize both recall and precision. This strict definition of

F1 mirrors the needs dictated by users’ perception: in augmented ST,

while unrecognized NEs are only a lack of help to the users, recognized but

spurious NEs are more harmful as they would distract them with unrelated

and potentially misleading content. Finally, the ability to assign a NE to

the correct category is evaluated with accuracy, i.e. the percentage of NEs

assigned to the correct category.

Architectures and Training Details

All our ST models have a Conformer encoder and Transformer decoder,

with the same settings described in §3.6.3. We optimize the label-smoothed

cross-entropy loss with 0.1 smoothing factor with Adam, and the learning

rate is initially increased for 20k steps up to 5 ∗ 10−3, and then it decreases

with inverse squared root policy. Our mini-batches contain 10,000 tokens,
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en-es en-fr en-it

BLEUNE Acc F1 Cat. Acc. BLEUNE Acc F1 Cat. Acc. BLEUNE Acc F1 Cat. Acc.

Best §6.3 37.7 71.4 - - 30.1 67.3 - - 26.0 67.3 - -

Cascade 37.9 71.9 49.1 89.8 36.2 69.2 44.8 90.2 28.3 66.5 44.5 88.8

Inline 37.9 72.2 49.5†‡ 90.1 36.3 69.6 45.6†‡ 90.2 28.3 66.9 45.5†‡ 89.4

Parallel 38.1 71.9 48.1 89.5 36.1 69.0 44.5 90.6 28.4 67.5 43.9 89.1

+ NE emb. 38.0 72.1 49.5†‡ 89.9 36.1 69.3 45.5†‡ 90.4 28.2 67.3 45.4†‡ 89.1

Table 6.15: SacreBLEU, case-insensitive NE accuracy, F1, and category assignment

accuracy (Cat. Acc.) of previous work, our cascade of ST and NER, and the proposed

joint ST+NER models. All results are the average of three runs. † indicates statistically

significant improvements over cascade, and ‡ over parallel. A result is considered statistically

significant when we can reject with 95% confidence the null hypothesis that the considered

mean is not higher than the mean of the baseline (Student, 1908).

we set to 8 the update frequency, and train on 4 K80 GPUs. We stop the

training after 10 epochs without loss decrease on the validation set, and

average 5 checkpoints around the best. As NER system, instead, we rely

on a multilingual BERT-based model,25 openly-available in DeepPavlov.

6.6.3 Results

Table 6.15 compares our cascade baseline, the joint NER+ST inline and

parallel methods, and the best results on the same benchmark reported in

§6.3 with a system trained on a large amount of data.

First of all, we can notice that, even though trained on fewer data, all our

systems outperform the previous ones both in terms of translation quality

(BLEU), and NE accuracy. The difference is remarkable on en-fr, where

our systems are ∼6 BLEU better, while scores are on par on NE accuracy

only in the en-it direction. This is likely motivated by the different and

improved architecture of the models and confirms the soundness of our

experimental settings, as well as the strength of the cascade baselines and

the reliability of our results.

Looking at translation quality – both generic (BLEU) and specific to

25http://docs.deeppavlov.ai/en/master/features/models/bert.html
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NEs (NE accuracy) – we see that all methods (cascade and joint) achieve

similar results. The small differences among the scores (0.2 BLEU and up

to 0.6 NE accuracy) are not consistent across language directions and are

never statistically significant, thus being ascribable to fluctuations due to

the inherent randomness of neural methods. We can conclude that the

additional NER task does not help to improve NE translation (in contrast

with previous findings for MT, see Xie et al. 2022), but it also does not

degrade generic translation quality, as it could have happened since part of

the model capabilities has to be dedicated to the additional task.

When we consider the F1 metric, instead, the results highlight the

differences between the various approaches. Our joint NER and ST models

beat the cascade by a significant margin (0.4-1.0 F1). This is surprising if

we consider that the training data of the joint methods was generated with

the NER system of the cascade approach, and highlights the strength of

direct multitask systems. Among the joint solutions, the inline and parallel

+ NE emb. significantly outperform the parallel method, demonstrating the

importance of providing the decoder with information about the NE category

assigned to the previously generated tokens. The difference between inline

and parallel + NE emb. is instead very limited (0.1, if any) in favor of the

inline, and is not statistically significant. These two methods can therefore

be considered on par.

Lastly, all systems show a good ability in NE category assignment. The

accuracy differences range between 0.6 and 0.3, are not coherent across

language pairs, and are never statistically significant. Not only the overall

performance of the systems is on par, but also their confusion matrices

over the NE categories are basically the same on all language pairs. As an

example, Figure 6.10 reports the confusion matrix of the parallel + NE

emb. model for en-es. We notice that the categories that are more difficult

to recognize for our models are facilities (FAC ), events (EVENT ), and

228



Chapter 6 6.6. JOINT TRANSLATION AND NAMED ENTITY RECOGNITION

Figure 6.10: Confusion matrix over the 15 NE categories with at least one NE correctly

translated and recognized for the parallel + NE emb. system on en-es. On the y-axis there

are the true labels, while on the x-axis the predicted labels. The numbers are percentages

computed on the y-axis.

names of laws (LAW ), while all the other categories achieve high accuracy.

Among the three critical ones, FAC and EVENT are very rare (19 and 9

occurrences in the test set), while LAW is more frequent (141 occurrences),

thus representing the main source of assignment errors. The root of this

difficulty may lay in the nature of laws, which have high variability, are long,

and frequent only in specific domains. At last, another common source of

errors is labeling location names as GPE, which is understandable as their

categorization is highly dependent on the context in which they occur (e.g.

Europe as a continent is a LOC, but in politics it can also refer to a GPE ).

6.6.4 Efficiency

One known advantage of direct systems over the cascade ones is their lower

overall computational cost since they need a forward pass on only one model
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Figure 6.11: BLEU-LAAL, and F1-LAAL curves of the inline and parallel + NE emb for

k=1,2,3 in en-es. All points are the average over three runs.

instead of two. However, the computational cost of the two proposed joint

solutions is different as well, as the number of decoding steps (i.e., forward

passes on the autoregressive decoder) is different. Indeed, the inline method

has to predict the start and end NE tags, requiring on average 7% more

decoding steps (in the test set) compared to a plain ST model and to the

parallel system, which does not introduce additional decoding steps.

The computational cost is particularly critical if the translation has to

be generated in real-time, i.e. in simultaneous ST, where it directly affects

the output latency. For this reason, we conclude our work by comparing

the two best models (inline and parallel + NE emb) in the simultaneous

setting using the popular wait-k (Ma et al., 2020) policy. This allows us to

estimate the overhead introduced by the additional decoding steps of the

inline model. In Figure 6.11, we report the BLEU-latency, and F1-latency

curves of the two models on en-es (the curves for en-fr and en-it show the

same trends), where the latency is measured through computational-aware

length-adaptive average lagging (LAAL – Papi et al. 2022). The two curves

show that the parallel + NE emb model has a slightly better trade-off thanks

to its lower computational cost. However, since the computational cost only
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accounts for a fraction of the latency (∼53% of the computational-aware

LAAL is due to the wait time of the wait-k policy), and the computational

difference is not large (∼5%), the gap between the two models is limited.

All in all, we can conclude that the inline model introduces a com-

putational overhead that depends on the number of NEs detected in an

utterance. On our test set, with 1,267 sentences, 30.6K words, and 1,638

NEs, we estimated as 5% its computational overhead in time compared to

a base direct ST model and to our parallel + NE emb. solution. In light of

the similar quality of inline and parallel + NE emb. systems, this difference

– which may be larger in domains where NEs are more frequent, as news

or molecular biology (Nobata et al., 2000) – makes the parallel + NE emb.

method our best solution overall.

6.6.5 Summary

As an additional step toward augmented ST, in this section we went beyond

the analysis and improvement of NE translation quality (see §6.3, §6.4,

§6.5) and presented the first multitask models jointly performing speech

translation and named entity recognition. First, we showed the importance

of properly feeding information about the previously predicted NE tags,

as done in the inline and parallel + NE emb. models. Second, and most

importantly, we showed that our joint solutions consistently outperform a

cascade system on the NER task (by 0.4-1.0 F1), while being on par in terms

of translation quality. Lastly, we evaluated the computational efficiency of

our methods, demonstrating that the parallel + NE emb. system, which

does not introduce noticeable overhead with respect to a plain ST model,

is more efficient than the inline method, besides being on par in terms of

translation and NER quality. As such, it represents the most attractive

solution to perform the ST and NER tasks with high quality, at the cost of

a single model.
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6.7 Conclusions

Following the huge improvements in terms of translation quality (§3, §4),

we investigated the strengths and weaknesses of direct ST models for their

application in the “augmented translation” paradigm. In this scenario,

the ST model should complement and “augment” humans by providing

support that eases and speeds up their work. Concretely, this means that

ST outputs should convey the correct information in particular with respect

to mentioned entities, numbers, and specific terminology – which cause a

high cognitive workload to translation professionals – and eventually provide

them with contextual information. The task requires the identification of

the mentioned entities and their linking with knowledge bases (although

this second step is not covered in this thesis). Toward these goals, we

started by creating NEuRoparl-ST, an extension of Europarl-ST, which is

the first benchmark (for en→es,fr,it) openly available to assess the ability

of ST systems in translating NEs and domain-specific terms. Then, we

used it to compare the cascade and direct ST paradigms, demonstrating

that they have similar capabilities and both struggle with person names.

Following these findings, we identified the causes of errors on person names

in the nationality of the referent and training frequency, and proposed

a multilingual triangle model to mitigate the problem. In addition, as

interpreters and translators often have access to dictionaries of NEs likely to

appear in a given domain, we investigated the integration of such resources

in direct ST models. To the best of our knowledge, our solution is the first

direct ST system integrated with external dictionaries of NEs. Experiments

with this solution show significant gains, outperforming by 14.4% in person-

name accuracy other solutions borrowed from the ASR field and exploiting

the same kind of data. We concluded our study of the topic by introducing

the first models that jointly perform ST and NER: our best system has
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significantly higher NER accuracy than a pipeline of dedicated ST and

NER models, and keeps the computational cost as low as a single base ST

model. Overall, these contributions pave the way for the integration of

direct ST models in augmented ST applications, albeit leaving ample room

for improvement on the topic to pursue in future works, such as reducing

the false positives when detecting the NEs mentioned in an utterance and

improving its computational efficiency.

233



Chapter 6 6.7. CONCLUSIONS

234



Chapter 7

Conclusion

When this PhD started, in November 2019, the main question within the

ST community was: will direct ST models be able to keep their promise

and reach (or even outperform) the quality of cascade approaches? At that

time, the huge gap between the two paradigms portended a long way to go

to reach performance parity. However, only a few months later, the yearly

evaluation campaign organized by the IWSLT (Ansari et al., 2020) was

won by a direct solution for the first time. Three years later, at the time

of writing this thesis, the joint efforts of the growing research community,

which covered many aspects (as described in §3 and §4), led to substantial

performance parity between the two paradigms. In this endeavor, our

contributions can be summarized as follows:

• We carried out an in-depth study on the best methods to transfer

knowledge from an MT model into a direct ST system with knowledge

distillation, highlighting not only the benefits but also its limitations,

for which we provided an easy yet effective solution.

• We proposed a compression mechanism that leverages the prediction

of a CTC module and dynamically reduces the length of the input

sequence in the encoder of ST systems, improving both translation

quality and computational efficiency.
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• Featuring the CTC-compression module, we introduced Speechformer,

the first architecture for direct ST that, enabled by an attention

implementation with reduced computational complexity, avoids any

fixed compression of the audio input, respecting the variability of the

amount of information in speech signals and bringing significant quality

gains.

• We demonstrated that we can obtain high translation quality even

without ASR pre-training of the encoder and that a simple data filtering

procedure significantly improves the quality of the resulting model.

• We increased the robustness of direct ST models with regard to auto-

matic segmentation of the audio by fine-tuning them on resegmented

training corpora and by providing the previous audio segment as

contextual information;

• We proposed a new hybrid segmentation method that limits the qual-

ity degradation with respect to optimal segmentation based on the

transcripts (unknown at inference time).

In the present condition of substantial parity in terms of translation

quality between cascade and direct solutions, we believe that the preference

for one paradigm may depend on other factors, such as the computational

efficiency (hence the latency), the simplicity in training and using a system,

its hardware requirements, data availability, or other peculiarities important

for a specific domain. Accordingly, we speculate that future works will

focus on the transfer of knowledge from foundation models (Bommasani

et al., 2021) while keeping under control computational costs, a topic on

which the first works recently started to appear (Le et al., 2021; Zhao et al.,

2022). We also posit that computational efficiency will be a key factor for

the widespread adoption of direct ST in production, as its advantage in
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terms of latency over the cascade paradigm makes it the natural candidate

for streaming (or simultaneous) use cases.

The huge improvements in terms of translation quality allowed for

pinpointed analyses of the capabilities of direct ST models. As such, an

important part of the PhD has been devoted to the investigation of their

behavior regarding two important aspects: gender bias (§5) and NEs (§6).

In the first case, the goal was to ensure the fairness of automatic systems

and equal opportunities for different groups of users in benefiting from

them. As such, the work has been motivated by ethical principles that

should always guide the development of technical solutions, and by the

deep belief in the importance of raising the awareness of the limitations,

and even potential harms, of automatically-generated text in contemporary

society. Our contributions on the topic (see §5) include:

• The exploration of different solutions to control the grammatical gender

of words referred to the speaker, investigating for the first time the case

in which the speakers’ gender conflicts with their vocal characteristics.

• The unveiling of the exacerbation of gender bias caused by a BPE

segmentation of the target text in comparison with a character-based

segmentation, and the proposal of a solution that goes beyond the trade-

off between translation quality (BPE) and gender accuracy (char).

• A fine-grade evaluation of gender bias in ST showing that ST models

are nearly perfect in handling gender agreement and the most biased

part of speech is nouns.

• The investigation of the increase in gender bias caused by distilling

knowledge from MT and how to solve the issue.

We think that current works have clearly shown that gender bias is a

problem that is not only caused by biased corpora. Rather, algorithmic bias
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plays an important role in exacerbating representational differences. As such,

also stimulated by the above contributions, we expect more investigation

into this line of research in the future. In addition, while we mostly focused

on remediation strategies involving training new models, an appealing

alternative is the definition of inference-time solutions applicable to any

(also existing) model.

At last, our second study on peculiar aspects (NEs, specifically) has been

driven by the practical needs of professional interpreters in the context of the

project Smarter Interpreting1 financed by CDTI Neotec funds. Indeed, these

users see in ST technology an opportunity to “augment” their capabilities

and the quality of their work. Their needs, though, require dedicated

research endeavors to highlight the potential of automatic systems on the

specific aspects of interest, with the proposal of tailored solutions for the

augmented ST scenario, neglected so far. The results of our activities on

the topic (see §6) showed that:

• Cascade and direct ST systems behave similarly when it comes to NEs

and they are particularly weak on person names, as demonstrated on

our newly-created benchmark (NEurRoparl-ST).

• The most complex person names for ST systems are those with low

frequency in the training data and those associated with languages

not included in the source side of the training set, and multilingual

models that jointly predict the transcript and the translation (giving

more weight to the transcription) are more accurate in handling person

names.

• In cases in which a dictionary of entities likely to appear in a given

domain is available, the accuracy of NEs (especially of person names)

can be significantly improved by means of additional modules that first
1https://smarter-interpreting.eu/
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recognize which of them are present and then inject the corresponding

translations as suggestions while generating the output.

• Models that jointly perform ST and NER outperform a pipeline of ST

and NER systems while keeping the computational cost as low as that

of a single ST model.

Our models have been presented in two demos, carried out in April

and December 2022, in which our joint ST and NER systems have been

integrated into a new CAI tool that displays the translated NEs and domain-

specific terminology in real time to the interpreter. The dissemination of the

work included its presentation at international conferences on interpreting2,

where it was introduced as 4th generation CAI system. The interest shown

by the interpreting community in the solution persuades us to posit that

more work on the topic will spread in the future with production tools

including similar solutions in the mid-term. Moreover, as in many use

cases additional contextual information is available at inference time, we

believe more works on this line will appear, with the goal of integrating

external knowledge without requiring excessive computational costs for

their application to simultaneous settings.

7.1 Limitations and Future Directions

Direct ST Quality and Efficiency One limitation of our solutions lies in the

scarce adoption of some of our methods, caused by different factors. First,

word-level KD has not been widely used, as sequence-level KD is preferred

due to its simplicity and similar efficacy. As such, only this latter method

is included in the training procedure of recent ST systems (Anastasopoulos

et al., 2022). Second, the Speechformer has been outperformed by the

2https://ctn.hkbu.edu.hk/interpreting_conf2022/
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Conformer architecture, which has become the state of the art for ST.

However, the same idea and concept of the Speechformer architecture can

be applied to the Conformer. Although this integration did not prove

effective in our experiments in §3.6, our recent discovery of bugs present in

all the open-source implementations of the Conformer architecture related

to padding management (Papi et al., 2023) may explain the reason of

these negative results: as the Speechformer blocks do not compress the

sequences, the amount of padding is higher and the negative impact of bugs

related to padding management is likely to increase accordingly. In light of

this, more investigations on the potential integration of the Speechformer

into the Conformer architecture are needed. We take the opportunity to

remark that, instead, the CTC compression is currently adopted in many

works (sometimes with different naming, e.g. shrinking, or with minor

modifications, e.g. ignoring vectors corresponding to the blank symbol)

thanks to its benefits both in terms of quality and efficiency. In the future,

we expect more and more solutions based on alternatives to the self-attention

with reduced computational complexity, such as (Poli et al., 2023), to be

the basis of models similar to the Speechformer, as well as more works on

methods to compress the sequence length to improve the efficiency of ST

models without penalizing quality.

Audio Segmentation Similarly, the introduction of SHAS has limited the

adoption of our methods for audio segmentation. However, our methods and

SHAS have mainly been tested in the TED domain, which typically involves

a single speaker, minimal background noise, and ideal audio conditions.

Additionally, the evaluation has primarily been conducted on English speech,

and our findings have highlighted the need for different segmentations for

different languages, as discussed in §4.4.4. In light of these limitations, future

studies should evaluate the robustness of these methods to background
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noise and investigate its impact on the final task performance.

Gender Bias Our solutions to control the grammatical gender of words

referred to the speaker depend on dedicated training procedures, which have

inherent limitations. First, they require parallel audio-text data labeled

with the speakers’ gender, which are scarcely available and expensive to

collect. Second, the training procedures have high resource requirements, as

they involve processing audio data. Future work should overcome these lim-

itations by proposing inference-time solutions that do not require dedicated

training or data and can be applied to any existing model. In addition,

our findings in terms of the effectiveness of debiasing techniques should be

confirmed with newer architectures (e.g., Conformer), and, possibly, on a

wider range of languages and domains. Indeed, our experiments leveraged

MuST-SHE, a benchmark built on TED talks for three Latin language pairs

(en→es,fr,it), which has only been partially adopted by the community,

likely due to the limited number of languages covered.

Augmented Speech Translation Also in this case, our findings should be

confirmed on a wider set of language pairs, as we were able to annotate

with NEs only the en→es,fr,it sections of the Europarl-ST test set. We

hope that our pioneering work on the topic will inspire other researchers

to build more benchmarks on other domains and languages. Regarding

our work on recognizing and injecting entities likely to appear in a given

domain, two main weaknesses of our solution require future improvements

for their deployment in real/production environments. First, the NE

detection module has a linear complexity with the number of entities to

check, therefore having a high computational cost in presence of large

dictionaries of entities. Second, our injection method proved particularly

helpful for person names, where the source and target representation is
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close, but should be improved to bring more benefits also on other categories

with very different source and target text. However, given the importance

of NEs for the reliability of the translation, we believe that this topic will

receive more and more attention in the future, speeding up the process of

finding new and better solutions.
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for pipeline-based speech translation. In 9th International Conference on

Human Language Technologies - the Baltic Perspective (Baltic HLT 2020),

Kaunas, Lithuania, September 2020. URL https://hal.inria.fr/hal-

02907053.

244

https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2022.acl-srw.32
https://www.aclweb.org/anthology/2020.gebnlp-1.12
https://www.aclweb.org/anthology/2020.gebnlp-1.12
https://hal.inria.fr/hal-02907053
https://hal.inria.fr/hal-02907053


Chapter 7 BIBLIOGRAPHY

Chantal Amrhein and Rico Sennrich. Identifying weaknesses in machine

translation metrics through minimum bayes risk decoding: A case study

for comet. ArXiv, abs/2202.05148, 2022.

Antonios Anastasopoulos and David Chiang. Tied Multitask Learning

for Neural Speech Translation. In Proceedings of the 2018 Confer-

ence of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), pages 82–91, New Orleans, Louisiana, June 2018. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/N18-1008. URL

https://www.aclweb.org/anthology/N18-1008.
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Kenton Murray, Maria Nǎdejde, Satoshi Nakamura, Matteo Negri, Jan

Niehues, Xing Niu, John Ortega, Juan Pino, Elizabeth Salesky, Jiatong

245

https://www.aclweb.org/anthology/N18-1008
https://aclanthology.org/2021.iwslt-1.1


Chapter 7 BIBLIOGRAPHY

Shi, Matthias Sperber, Sebastian Stüker, Katsuhito Sudoh, Marco Turchi,
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Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu,

252

https://aclanthology.org/W14-3302
https://aclanthology.org/W14-3302


Chapter 7 BIBLIOGRAPHY

Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei

Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia

Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of

foundation models, 2021. URL https://arxiv.org/abs/2108.07258.
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Marta R. Costa-jussà, Carlos Escolano, Christine Basta, Javier Ferrando,

Roser Batlle, and Ksenia Kharitonova. Gender Bias in Multilingual

Neural Machine Translation: The Architecture Matters. arXiv preprint

arXiv:2012.13176, 2020.
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Christian Fügen. A System for Simultaneous Translation of Lectures and

Speeches. PhD thesis, Universität Karlsruhe, Karlsruhe, 2009.

Ryo Fukuda, Katsuhito Sudoh, and Satoshi Nakamura. Speech Segmen-

tation Optimization using Segmented Bilingual Speech Corpus for End-

to-end Speech Translation. In Proceedings of Interspeech 2022, pages

121–125, 2022. doi: 10.21437/Interspeech.2022-11382.

Sadaoki Furui. Chapter 7 - speaker recognition in smart environments.
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esnay. Scikit-learn: Machine learning in python. Journal of Machine

Learning Research, 12(85):2825–2830, 2011. URL http://jmlr.org/

papers/v12/pedregosa11a.html.

Peter Polák, Ngoc-Quan Pham, Tuan Nam Nguyen, Danni Liu, Carlos
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Costa-jussà. SHAS: Approaching optimal Segmentation for End-to-End

Speech Translation. In Proceedings of Interspeech 2022, pages 106–110,

2022b. doi: 10.21437/Interspeech.2022-59.

298

https://aclanthology.org/2022.acl-long.105
https://aclanthology.org/2022.acl-long.105
https://arxiv.org/abs/2009.06732


Chapter 7 BIBLIOGRAPHY

Amos Tversky and Daniel Kahneman. Availability: A heuristic for judging

frequency and probability. Cognitive psychology, 5(2):207–232, 1973.

Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuris-

tics and biases. science, 185(4157):1124–1131, 1974.

Arata Ugawa, Akihiro Tamura, Takashi Ninomiya, Hiroya Takamura,

and Manabu Okumura. Neural machine translation incorporating

named entity. In Proceedings of the 27th International Conference on

Computational Linguistics, pages 3240–3250, Santa Fe, New Mexico,

USA, August 2018. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/C18-1274.

Eva Vanmassenhove, Christian Hardmeier, and Andy Way. Getting

Gender Right in Neural Machine Translation. In Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing,

pages 3003–3008, Brussels, Belgium, October-November 2018. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/D18-1334. URL

https://www.aclweb.org/anthology/D18-1334.

Eva Vanmassenhove, Dimitar Shterionov, and Andy Way. Lost in Transla-

tion: Loss and Decay of Linguistic Richness in Machine Translation. In

Proceedings of Machine Translation Summit XVII Volume 1: Research

Track, pages 222–232, Dublin, Ireland, August 2019. European Association

for Machine Translation. URL https://www.aclweb.org/anthology/

W19-6622.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All

You Need. In Proceedings of Advances in Neural Information Processing

Systems 30 (NIPS), pages 5998–6008, Long Beach, California, December

2017.

299

https://www.aclweb.org/anthology/C18-1274
https://www.aclweb.org/anthology/D18-1334
https://www.aclweb.org/anthology/W19-6622
https://www.aclweb.org/anthology/W19-6622


Chapter 7 BIBLIOGRAPHY

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel

Nevo, Yaron Singer, and Stuart Shieber. Investigating gender bias in

language models using causal mediation analysis. In H. Larochelle, M. Ran-

zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural

Information Processing Systems, volume 33, pages 12388–12401. Curran

Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/

2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan Titov. Context-

Aware Neural Machine Translation Learns Anaphora Resolution. In

Proceedings of the 56th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pages 1264–1274, Melbourne,

Australia, July 2018. Association for Computational Linguistics. doi:

10.18653/v1/P18-1117.

Piyush Vyas, Anastasia Kuznetsova, and Donald S. Williamson. Optimally

Encoding Inductive Biases into the Transformer Improves End-to-End

Speech Translation. In Proc. Interspeech 2021, pages 2287–2291, 2021.

doi: 10.21437/Interspeech.2021-2007.

Alex Waibel, Ajay N. Jain, Arthur E. McNair, Hiroaki Saito, Alexander G.

Hauptmann, and Joe Tebelskis. JANUS: A Speech-to-Speech Translation

System Using Connectionist and Symbolic Processing Strategies. In

Proceedings of the International Conference on Acoustics, Speech and

Signal Processing, ICASSP 1991, pages 793–796, Toronto, Canada, May

14-17 1991.

Abraham Wald. Statistical Decision Functions. The Annals of Mathematical

Statistics, 20(2):165 – 205, 1949. doi: 10.1214/aoms/1177730030. URL

https://doi.org/10.1214/aoms/1177730030.

Changhan Wang, Juan Pino, Anne Wu, and Jiatao Gu. CoVoST: A diverse

300

https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://doi.org/10.1214/aoms/1177730030


Chapter 7 BIBLIOGRAPHY

multilingual speech-to-text translation corpus. In Proceedings of The

12th Language Resources and Evaluation Conference, pages 4197–4203,

Marseille, France, May 2020a. European Language Resources Association.

ISBN 979-10-95546-34-4. URL https://www.aclweb.org/anthology/

2020.lrec-1.517.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, and

Juan Pino. Fairseq S2T: Fast Speech-to-Text Modeling with Fairseq. In

Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Associ-

ation for Computational Linguistics and the 10th International Joint Con-

ference on Natural Language Processing: System Demonstrations, pages

33–39, Suzhou, China, December 2020b. Association for Computational

Linguistics. URL https://www.aclweb.org/anthology/2020.aacl-

demo.6.

Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar,

Daniel Haziza, Mary Williamson, Juan Pino, and Emmanuel Dupoux.

VoxPopuli: A large-scale multilingual speech corpus for representation

learning, semi-supervised learning and interpretation. In Proceedings of the

59th Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 993–1003, Online, August 2021a. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.80.

URL https://aclanthology.org/2021.acl-long.80.

Longyue Wang, Zhaopeng Tu, Andy Way, and Qun Liu. Exploiting Cross-

Sentence Context for Neural Machine Translation. In Proceedings of the

2017 Conference on Empirical Methods in Natural Language Processing,

pages 2826–2831, Copenhagen, Denmark, September 2017. Association

for Computational Linguistics. doi: 10.18653/v1/D17-1301.

301

https://www.aclweb.org/anthology/2020.lrec-1.517
https://www.aclweb.org/anthology/2020.lrec-1.517
https://www.aclweb.org/anthology/2020.aacl-demo.6
https://www.aclweb.org/anthology/2020.aacl-demo.6
https://aclanthology.org/2021.acl-long.80


Chapter 7 BIBLIOGRAPHY

Pengwei Wang, Xin Ye, Xiaohuan Zhou, Jinghui Xie, and Hao Wang.

Speech2slot: An end-to-end knowledge-based slot filling from speech,

2021b. URL https://arxiv.org/abs/2105.04719.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma.

Linformer: Self-Attention with Linear Complexity, 2020c.

Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Jeff Kaufman,

Michelle Franchini, Mohammed El-Bachouti, Nianwen Xue, Martha

Palmer, Jena D. Hwang, Claire Bonial, Aous Mansouri Jinho Choi, Maha

Foster, Abdel aati Hawwary, Mitchell Marcus, Ann Taylor, Craig Green-

berg, Eduard Hovy, Robert Belvin, and Ann Houston. OntoNotes Release

5.0, 2012. URL https://catalog.ldc.upenn.edu/docs/LDC2013T19/

OntoNotes-Release-5.0.pdf.

Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu, and Zhifeng

Chen. Sequence-to-Sequence Models Can Directly Translate Foreign

Speech. In Proceedings of Interspeech 2017, pages 2625–2629, Stockholm,

Sweden, August 2017.

Ian Williams, Anjuli Kannan, Petar Aleksic, David Rybach, and Tara

Sainath. Contextual Speech Recognition in End-to-end Neural Network

Systems Using Beam Search. In Proceedings of Interspeech 2018, pages

2227–2231, 2018. doi: 10.21437/Interspeech.2018-2416.

D.Randall Wilson and Tony R. Martinez. The general inefficiency of

batch training for gradient descent learning. Neural Networks, 16(10):

1429–1451, 2003. ISSN 0893-6080. doi: https://doi.org/10.1016/S0893-

6080(03)00138-2. URL https://www.sciencedirect.com/science/

article/pii/S0893608003001382.

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,

Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S.

302

https://arxiv.org/abs/2105.04719
https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf
https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf
https://www.sciencedirect.com/science/article/pii/S0893608003001382
https://www.sciencedirect.com/science/article/pii/S0893608003001382


Chapter 7 BIBLIOGRAPHY

Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg.

Top 10 algorithms in data mining. Knowledge and Information Systems,

14(1):1–37, Jan 2008. ISSN 0219-3116. doi: 10.1007/s10115-007-0114-2.

URL https://doi.org/10.1007/s10115-007-0114-2.

Shufang Xie, Yingce Xia, Lijun Wu, Yiqing Huang, Yang Fan, and Tao Qin.

End-to-end entity-aware neural machine translation. Machine Learning,

111(3):1181–1203, March 2022. ISSN 0885-6125. doi: 10.1007/s10994-

021-06073-9. URL https://doi.org/10.1007/s10994-021-06073-9.

Deyi Xiong and Min Zhang. A topic-based coherence model for statistical

machine translation. In Proceedings of the Twenty-Seventh AAAI Con-

ference on Artificial Intelligence, AAAI’13, page 977–983. AAAI Press,

2013.

Chen Xu, Bojie Hu, Yanyang Li, Yuhao Zhang, Shen Huang, Qi Ju, Tong

Xiao, and Jingbo Zhu. Stacked acoustic-and-textual encoding: Integrating

the pre-trained models into speech translation encoders. In Proceedings of

the 59th Annual Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natural Language Process-

ing (Volume 1: Long Papers), pages 2619–2630, Online, August 2021. Asso-

ciation for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.204.

URL https://aclanthology.org/2021.acl-long.204.

Hemant Yadav, Sreyan Ghosh, Yi Yu, and Rajiv Ratn Shah. End-to-

End Named Entity Recognition from English Speech. In Proceedings of

Interspeech 2020, pages 4268–4272, 2020. doi: 10.21437/Interspeech.2020-

2482. URL http://dx.doi.org/10.21437/Interspeech.2020-2482.

Sane Yagi. Studying style in simultaneous interpretation. Meta, 45(3):

520–547, 2000. doi: https://doi.org/10.7202/004626ar.

303

https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10994-021-06073-9
https://aclanthology.org/2021.acl-long.204
http://dx.doi.org/10.21437/Interspeech.2020-2482


Chapter 7 BIBLIOGRAPHY

Rong Ye, Mingxuan Wang, and Lei Li. Cross-modal contrastive learning

for speech translation. In Proceedings of the 2022 Conference of the

North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 5099–5113, Seattle, United States,

July 2022. Association for Computational Linguistics. doi: 10.18653/v1/

2022.naacl-main.376. URL https://aclanthology.org/2022.naacl-

main.376.

Marcely Zanon Boito, Laurent Besacier, Natalia Tomashenko, and Yannick
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