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Autonomous systems are nowadays having an undisputed pervasiveness in the modern society. 

Autonomous driving cars as well as applications of service robots (e.g., cleaning robots, 

companion robots, intelligent healthcare solutions, tour guided systems) are becoming more 

and more popular and a general acceptance is now developing around such systems. 

Nonetheless, one of the major hurdles in building such applications relies on the capability of 

autonomous systems to understand their surroundings and then plan proper actions. The most 

popular solutions, which are gaining more and more attention, rely on artificial intelligence 

and deep learning as a means to perceive the structured and complex natural environment.  

Nonetheless, besides the importance of such powerful tools, classical concept of metrology, 

such as standard uncertainty, accuracy and precision, are still unavoidable for a clear and 

effective understanding of modern autonomous systems applications. In this paper, some 

fundamental measurement concepts will be revised in light of the autonomous systems domain, 

with an emphasis on localisation and positioning problems for mobile robots. In particular, we 

will discuss and present the main issues and concepts that build around the statistical approach 

to measurements and the main role of uncertainties. 

A common class of Autonomous Systems: Mobile Robots 
 

The term Autonomous System (AS) has different meaning depending on the research field 

considered, ranging from communication technology to mathematics. In this paper, we will 

consider the definition given in robotics: an AS is a robot that performs tasks (e.g., self-

maintenance, moving in an unknown environment, handling objects) with a high degree 

of autonomy. Since autonomy is enforced by the connection of perception, control and 

actuation, a widely accepted definition of robotics is: “the science studying the intelligent 

connection between perception and action” [1]. In particular, perception is used both to 

understand the surroundings environment and to give feedback to specific controlled actions 



(i.e., actuation). From a measurement perspective, perception represents the most important 

component, since it comprises the description of the available sensors and the intelligent 

elaboration of the data they produce (i.e., estimators). A graphic representation of the different 

elements is offered in Figure 1. 

 

Figure 1: Graphical representation of perception for AS and its different components. 

 

Perception is maybe the most fundamental component for mobile robots, i.e., robots that are 

able to move autonomously inside a (unknown) environment.  

The main characteristic of a robot is its ability to interact with the environment, which asks for 

a model of the physical motion of the AS. In general, a robot is governed by a continuous time 

nonlinear dynamic that, for the practical implementation on a digital platform, is usually 

assumed to be discretised with a certain (possibly time varying) sampling time 𝑇𝑠. Denoting 

with 𝑝𝑘 ∈ ℝ𝑛 the state vector of the system at time 𝑘𝑇𝑠, the generic time-invariant discretised 

nonlinear dynamic can be expressed as 

 𝑝𝑘+1 = 𝑓(𝑝𝑘 , 𝑢𝑘 , 𝜂𝑘), (1) 

where 𝑢𝑘 ∈ ℝ𝑞 are the inputs (related to the number of actuators) and 𝜂𝑘 ∈ ℝ𝑙 are the 

uncertainties related to the imperfect actuation or to the input measurements. It is usually 

assumed that the uncertainties are generated by a discrete time white stochastic process and 

being distributed as 𝜂𝑘~𝒩(0, 𝑄𝑘), where 𝑄𝑘 ∈ ℝ𝑙×𝑙 is the covariance matrix. When the 
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dynamic is linear (that for a standard robot is usually a first order Taylor approximation of (1)), 

it is usually represented as 

 𝑝𝑘+1 = 𝐴𝑘𝑝𝑘 + 𝐵𝑘𝑢𝑘 + 𝐹𝑘𝜂𝑘 . (2) 

The model is then completed with the output function, which is usually a nonlinear function of 

the state variables,  i.e. 

 𝑧𝑘 = ℎ(𝑝𝑘 , 𝜈𝑘), (3) 

or in its linear (or linearised) version 

 𝑧𝑘 = 𝐶𝑘𝑝𝑘 + 𝐿𝑘𝜈𝑘 = 𝐶𝑘𝑝𝑘 + 𝜀𝑘 . (4) 

In this case, 𝑧𝑘 ∈ ℝ𝑚 represents the vector of the 𝑚 measurement results of the system outputs 

and 𝜈𝑘 ∈ ℝ𝑠 are the related measurement uncertainty random effects (according to the GUM 

[2]) that are usually assumed generated by a discrete time white stochastic process with 

distribution 𝜈𝑘~𝒩(0,𝐸𝑘), where 𝐸𝑘 ∈ ℝ𝑠×𝑠 is the covariance matrix. Therefore, for a first 

order Taylor approximation of (3) or exactly for (4), 𝑧𝑘~𝒩(𝐶𝑘𝑝𝑘 , 𝑅𝑘) where 𝑅𝑘 = 𝐿𝑘𝐸𝑘𝐿𝑘
𝑇 ∈

ℝ𝑚×𝑚, which yields to the equivalent formulation of the measurement uncertainties by means 

of 𝜀𝑘 = 𝐿𝑘𝜈𝑘 and 𝜀𝑘~𝒩(0,𝑅𝑘) in (4). 

 

The sensing system of an AS 
 

From a measurement perspective, it is strictly needed to characterise the available sensors and 

the associated uncertainties, whose statistical description returns both the process uncertainties 

𝜂𝑘 in (1) and (2), and the output uncertainties 𝜀𝑘 in (3) and (4). Notice that in both cases,  the 

systematic effects are supposed to be negligible (according to the GUM definition [2]). 

In an AS, the sensors are divided into proprioceptive and exteroceptive sensors [3]. The former 

refers to sensors that are able to give information about relative motion quantities (e.g., 

measuring the instantaneous velocities, instantaneous accelerations or relative displacements). 

In this category fall odometers (including visual odometry), relative (joint) encoders, 

tachometers, gyroscopes, accelerometers or combination thereof (e.g., Inertial Measurement 

Units – IMUs). 

The exteroceptive sensors, instead, return measurements about quantities that are external to 

the mobile AS (e.g., distances, orientations or Cartesian coordinates with respect to known or 

unknown environmental objects) and expressed either in a moving reference frame attached to 

the robot (generically expressed as 〈𝑀𝑘〉, hence time varying) or in a fixed world reference 

frame (dubbed here 〈𝑊〉). Examples of sensors in the first set are monocular, stereo or RGB-



D cameras, laser range finders and sonars measuring unknown objects or known objects in 

(partially) unknown locations. Sensing systems that intrinsically return measurements in 〈𝑊〉 

are the Global Positioning System (GPS), which is not available for indoor applications, or 

fingerprinting-based techniques using, e.g., radio signal strength intensity (RSSI). However, in 

this category also fall all the sensors that make use of a known set of environmental tags that 

are placed in known positions, e.g., Radio-Frequency Identification Tags (RFIDs), Ultra-Wide 

Band (UWB) anchors, 5G anchors, visual markers. 

These two sensor categories play a fundamental role in determining the performance of the 

perception system of an AS in terms of uncertainties. At a very first step, it is most often 

assumed that proprioceptive sensors are responsible for the process uncertainties 𝜂𝑘 in (1) or 

(2), while exteroceptive sensors are mapped into the output uncertainties 𝜀𝑘 in (3) or (4). 

 

Estimators for ASs 
 

The perception system can be identified with the characterisation of the sensing system and 

with the definition of a proper estimator. The objective of the estimator is to return both an 

estimate �̂�𝑘  of the state space variable and the associated uncertainty, which usually comes in 

the form of the covariance matrix 𝑃𝑘 = 𝐸(�̃�𝑘�̃�𝑘
𝑇) of the estimation error �̃�𝑘 = 𝑝𝑘 − �̂�𝑘, where 

𝐸(∙) represents the expected operator. It has to be noted that in order for the previous expression 

to be valid, the mean value 𝐸(�̃�𝑘) = 0, ∀𝑘, that is the estimator should be unbiased. The 

underlying assumption of using 𝑃𝑘 to express the estimator uncertainties is that all the noises 

are Gaussian and their relation is linear, i.e., the models are (2) and (4). In the more probable 

case that the system is given in terms of (1) and (3), 𝑃𝑘 should be regarded as just a first order 

Taylor approximation, which may lead to estimator inconsistency. 

Due to the nonlinearity of the system dynamics (1) and of the output model (3), several different 

estimation approaches exist, such as particle filters, Monte Carlo-based filters and, more 

recently, machine learning-based approaches. However, the lion’s share is still played by those 

model-based solutions that make the most out of the given models, such as Bayesian filters. 

The success of such filters, that rely on the very essence of the Bayes Theorem as it has been 

explained by the mathematician and philosopher Richard Price, is that the more evidence is 

collected from the measurements, the lower will be the uncertainty. In particular, the analogy 

adopted by Price, who edited and published in “Philosophical Transactions” the work of 

Thomas Bayes [4], is the example of “a person that is brought forth in this world and left to 



collect from his observation” evidences about the natural phenomena (e.g., the sun rising). 

From a theoretical view-point, the Bayes Theorem relies on the following relation: 

 
𝑓𝑝(�̂�𝑘|𝑧𝑘) =

𝑓𝑙(𝑧𝑘|�̂�𝑘)𝑓𝑝(�̂�𝑘)

𝑓𝑚(𝑧𝑘)
, 

(5) 

where the prior probability density function (pdf) 𝑓𝑝(�̂�𝑘) is combined with the likelihood pdf  

𝑓𝑙(𝑧𝑘|�̂�𝑘), which expresses the evidence from measurement models (3) and (4), to obtain the 

posterior 𝑓𝑝(�̂�𝑘|𝑧𝑘) conditional pdf. Finally, the pdf 𝑓𝑚(𝑧𝑘) assumes the role of a normalisation 

factor. 

Notice that, due to the Markovian property inherited by the dynamic system of a robot 

expressed as in (1) or (2), the prior 𝑓𝑝(�̂�𝑘) is generated by the posterior 𝑓𝑝(�̂�𝑘−1|𝑧𝑘−1) at the 

previous time instant. The nature of the uncertainties 𝜂𝑘 and 𝜀𝑘 rules the choice and the 

attainable performance of the estimator: 

• If they are generated by stochastic processes that are white and zero-mean, one solution 

from the Kalman Filter (KF) family turns to be a quite effective solution to implement 

a Bayesian filter [6]; 

• If, additionally, the system is described by the linear equations (2) and (4), the KF turns 

to be the Best Linear Unbiased Estimator (BLUE); 

• If the uncertainties are also Gaussian (as assumed previously), the KF is optimal in the 

Mean Squared Error sense, i.e., it reaches the Cramer-Rao lower bound [6]. 

As a final remark, when the dynamic model is not explicitly considered in the estimator design, 

no prior is given and, hence, only the likelihood pdf 𝑓𝑙(𝑧𝑘|�̂�𝑘) can be used. In such a case, 

popular approaches such the Maximum Likelihood (ML) or the Least Squares (LS) can be 

effectively used [5].  

Positioning and Localisation: Two Different Problems 
 

A localisation problem deals with the estimates �̂�𝑘 representing the pose of the AS in a global 

and fixed reference frame 〈𝑊〉. In such a case, the exteroceptive sensors are strictly needed. 

The measurement results should be expressed directly in 〈𝑊〉 (such as wireless anchors in 

known positions or GPS) or local quantities that are matched against an available map (i.e., a 

metric representation of measurable quantities whose coordinates in 〈𝑊〉 are given). Notice 

that localisation is not positioning, the latter having radically different characteristics in terms 

of feasible estimators, number of sensors and structural properties, as it will be evident in the 



next section. Localisation is probably the most important problem to solve to ensure autonomy 

for mobile robots, since with no knowledge of the pose, it is not possible to solve any task. 

 

Observability: a necessary condition 
 

The design of an estimator for �̂�𝑘 always requires a preliminary observability analysis to prove 

that the initial state 𝑝0 of the robot can be reconstructed assuming the knowledge of both the 

sequence of input values 𝑢0, … , 𝑢𝑘 and the sequence of measurements 𝑧0, … , 𝑧𝑘. Since the 

observability is a structural property of the system [7], it just depends on the nominal dynamic 

and output functions, i.e., neglecting the presence of the uncertainties 𝜂𝑘 and 𝜀𝑘. It is then 

evident why observability refers to the initial state 𝑝0: if the process uncertainties are neglected, 

knowing 𝑢0, … , 𝑢𝑘 it is possible to reconstruct all the state sequence 𝑝1, … , 𝑝𝑘 using (1) or (2). 

Furthermore, if the system is unobservable, it is not possible to design any estimator able to 

estimate �̂�𝑘, i.e., at least a subset of the eigenvalues of the estimation error covariance 𝑃𝑘 

(associated to the unobservable subspace) grows unbounded. 

Example: let us consider a robot moving along a curvilinear path on a plane. Let us assume 

that 𝑝0 = [𝑥0, 𝑣0]
𝑇 is the state of the robot, where 𝑥0 is the initial position on the curvilinear 

path (expressed in 〈𝑊〉), while 𝑣0 is the initial velocity. We assume a (time invariant) linear 

dynamic as in (2), here reported explicitly 

 

[
𝑥𝑘+1

𝑣𝑘+1
] = [

1 𝑇𝑠

0 1
] [

𝑥𝑘

𝑣𝑘
] + [

𝑇𝑠
2

2
𝑇𝑠

] 𝑢𝑘 = 𝐴𝑝𝑘 + 𝐵𝑢𝑘 , (6) 

where 𝑢𝑘 represents the acceleration of the robot. Let us assume that the vehicle is equipped 

with odometers and uses an external reference system to collect a position measurement 𝑥𝑘 in 

〈𝑊〉. It then follows that with odometers readings and knowing the sampling time 𝑇𝑠, it is 

possible to define an indirect measurement of the velocity 𝑣𝑘. Therefore, the output equation 

(4) turns to 

 𝑧𝑘 = [
1 0
0 1

] [
𝑥𝑘

𝑣𝑘
] = 𝐶𝑝𝑘 . (7) 

This is a very unusual situation since observability is ensured with just the first set of 

measurements, since 𝑧0 = 𝑝0. In other words, observability is ensured even without the need 

of the knowledge of the system dynamic (6), thus resulting in a static observability condition. 

Instead, if only the position 𝑥𝑘 can be measured, i.e., if 𝐶 = [1, 0]𝑇 in (7), static observability 



does not hold. However, after two consecutive measurements at time 0 and 𝑇𝑠 (i.e., with 𝑘 = 0 

and 𝑘 = 1), we have 𝑧0 = 𝐶𝑝0 = 𝑥0 and  

 𝑧1 = 𝐶𝑝1 = 𝐶(𝐴𝑝0 + 𝐵𝑢0), (8) 

in which we have substituted explicitly the dynamic (6). Rearranging the terms, we can define 

the following linear system 

 
[

𝑧0

𝑧1 − 𝐶𝐵𝑢0
] = [

𝐶
𝐶𝐴

] 𝑝0 ⟹ 𝑝0 = [
𝐶
𝐶𝐴

]
−1

[
𝑧0

𝑧1 − 𝐶𝐵𝑢0
] = 𝑂−1 [

𝑧0

𝑧1 − 𝐶𝐵𝑢0
]. (9) 

The state 𝑝0 can then be computed if and only if the observability matrix 𝑂 in (9) is invertible, 

which is the case for the example at hand. It is now clear why the linear system observability 

is a structural property: it is based on the structure of the system expressed by the matrices 𝐶 

and 𝐴. Of course, this analysis can be extended to a linear system having a state variable 𝑝0 ∈

ℝ𝑛, where the observability matrix should be computed up to order 𝑛 [7], i.e. 

 

𝑂 =

[
 
 
 
 

𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

, (10) 

and then verifying that 𝑂 is a of full column rank.  

Notice that if only the velocity 𝑣𝑘  can be measured, i.e., if 𝐶 = [0, 1]𝑇 in (7), the resulting 

observability matrix is not invertible. 

Notice that if the system is nonlinear and given by the equations (1) and (3) or when it is linear 

time variant, observability is no more a structural property, but instead depends on the 

particular trajectory followed. This is a remarkable difference, which is expressed by the fact 

that the nonlinear observability analysis, involving more complicated tools of differential 

geometry [7], is valid only locally. As a consequence, the state 𝑝0 can be reconstructed only if 

there exists a prior knowledge available, i.e., the invertibility is ensured only in a 

neighbourhood of the actual state 𝑝0. These concepts have been used recently for  localisation 

using RFID [8] or for the definition of estimators stemming directly from a global  observability 

analysis [9]. 

 

Estimators 

 

If the system is observable, it is then possible to design an effective estimator. Let us first 

consider the case of localisation for a linear system. Under the hypothesis given previously 



about the whiteness of the stochastic processes related to 𝜂𝑘 and to 𝜀𝑘 uncertainties, the most 

effective linear estimator is given by the KF, whose equations are subsumed in Figure 2. 

 

Figure 2: The Kalman Filter algorithm for a linear system localisation in which the two steps 

(Prediction and Update) are clearly visible. 

The two steps comprising the KF, which are the Prediction and the Update steps, map on the 

prior and likelihood functions in (5). This algorithm is one of the most popular algorithms 

applied for robotics estimation problems and, in particular, to localisation [10]. 

As mentioned above, a positioning problem is basically a sub-class of a localisation problem 

and takes place whenever the system is statically observable, i.e., when it is sufficient just a 

set of (repeated) measurements to estimate the position, i.e., 𝑝𝑘 = (𝐶𝑘
𝑇𝐶𝑘)

−1𝐶𝑘
𝑇𝑧𝑘. From a 

theoretical view-point, this implies that the state variable 𝑝𝑘 is not treated as a random variable 

(as instead happens for localisation problems) but as a constant and unknown parameter. This 

marks a remarkable theoretical difference: the estimator that can be used does not consider the 

motion priors. In this case, one popular solution is to adopt a Weighted LS (WLS) [5], depicted 

in Figure 3. 



 

Figure 3: Weighted Least Squares algorithm for positioning problems. 

In practice, since the measurement results are expressed as in (4), where 𝑝𝑘 is the ideal true 

value of the measured quantity, the estimates are only related to the likelihood function 

obtained from a sampled distribution (in the frequentist sense) that is obtained by repeated 

measurements (Type A analysis [2]). 

Notice how the WLS, here written in its recursive form, and the KF basically differ in the prior 

(e.g., process-based prediction) part. Furthermore, while the KF is optimal if the uncertainties 

are Gaussian, the WLS, which is solely based on the likelihood function, turns to be a disguised 

version of the ML for Gaussian uncertainties and optimal in its turn [5]. 

In the case of nonlinear dynamics (1) and/or of nonlinear output function (3), extension of both 

algorithms can be easily derived,  such as the Extended KF, the Unscented KF or the Nonlinear 

WLS [6]. 

 

The dead-reckoning phenomenon 
 

We have seen that a localisation problem involves both the dynamic and the output function of 

a system, while a positioning problem relies only on the output functions (3) or (4). However, 

it is also possible to use just the model (1) or (2) to estimate the position of a robot. This 

problem subsumes a lack of observability (being the output matrix 𝐶 = 0), hence the initial 

position 𝑝0 in the fixed reference frame 〈𝑊〉 should be known a-priori, while the use of only 



proprioceptive sensors (e.g., odometers) or exteroceptive sensors measuring quantities in the 

mobile frame 〈𝑀𝑘〉 only (e.g., visual odometry) is adopted. In such a case, only the prediction 

part of the KF in Figure 2 can be carried out. Since the covariance matrices 𝑃𝑘 and 𝑄𝑘 involved 

in the prediction step are positive semi-definite and combined through a sum of quadratic 

forms, the eigenvalues of the covariance matrix 𝑃𝑘 cannot asymptotically converge towards 0, 

even if an infinite number of measurements is collected, i.e., for 𝑘 ⟶ +∞. Moreover, a typical 

mobile agent moving on a plane is usually referred to as a driftless system, having an 

equilibrium (i.e., 𝑝𝑘+1 = 𝑝𝑘) when 𝑢𝑘 = 0 in (1) or (2). Hence, for a vehicle moving on a plane 

without output functions (3) or (4), the eigenvalues of the covariance matrix 𝑃𝑘 grow 

unbounded when 𝑘 ⟶ +∞: the dead-reckoning phenomenon. This is somehow trivial since 

the system is unobservable. 

Notice that this phenomenon is implicit in Simultaneous Localisation and Mapping (SLAM) 

problems, where the mobile agent is supposed to estimate a map of an unknown environment 

while simultaneously localising in the estimated map. Indeed, the measurement results can only 

be expressed in the moving reference frame 〈𝑀𝑘〉. Nevertheless, with a loop closure, the 

uncertainty of a SLAM problem can be reduced [1]. 

 

Positioning and Localisation: final comments 
 

The previously introduced concepts can be applied to any estimation problem for any AS. For 

example, the same ideas underlying the design of estimators for localisation or positioning 

problems can be applied to human tracking, provided that a model, e.g., [11], is given. 

Moreover, it is also affirming nowadays the idea of active localisation, for which the agent 

follows desired paths in order to control the uncertainty growth. Finally, it is worth to mention 

that a maximum target uncertainty can be always managed, either by instrumenting the 

environment with a suitable set of sensors [12] or by accessing on-demand to the available 

localisation infrastructure [13]. 

Distributed Localisation: The Role of Covariance 
 

Consider a simple example: two robots 𝑋 and 𝑌 are moving on the same curvilinear abscissa 

(e.g., a corridor), whose coordinates are 𝑥𝑘 and 𝑦𝑘, respectively. Assuming known constant 

velocities 𝑣𝑥,𝑘 and 𝑣𝑦,𝑘, respectively, we have the following scalar linear systems derived from 

(2): 



 𝑥𝑘+1 = 𝑥𝑘 + 𝑏𝑥𝑣𝑥,𝑘 + 𝑓𝑥𝜂𝑥,𝑘   and   𝑦𝑘+1 = 𝑦𝑘 + 𝑏𝑦𝑣𝑦,𝑘 + 𝑓𝑦𝛾𝑦,𝑘 , (11) 

where 𝜂𝑥,𝑘~𝒩(0, 𝜎𝑥,𝑘
2 ) and 𝜂𝑦,𝑘~𝒩(0, 𝜎𝑦,𝑘

2 ) are the two process uncertainties. Suppose that 

exteroceptive sensors measuring the actual locations in 〈𝑊〉 are available and modelled from 

(4) as 

 𝑧𝑥,𝑘 = 𝑥𝑘 + 𝜀𝑥,𝑘   and   𝑧𝑦,𝑘 = 𝑦𝑘 + 𝜀𝑦,𝑘 , (12) 

with measurement uncertainties given by 𝜀𝑥,𝑘~𝒩(0, 𝜉𝑥,𝑘
2 ) and 𝜀𝑦,𝑘~𝒩(0, 𝜉𝑦,𝑘

2 ). Since all the 

uncertainties are white and mutually uncorrelated, each robot can implement a KF individually 

to estimate �̂�𝑘 and �̂�𝑘. However, let us assume that robot 𝑋 can measure the relative distance 

to robot 𝑌 (e.g., using a laser scanner) in the moving frame 〈𝑀𝑥,𝑘〉. Hence there is an additional 

measure 𝛥𝑥𝑦,𝑘 = 𝑥𝑘 − 𝑦𝑘 + 𝜀𝑥𝑦,𝑘 with uncertainty 𝜀𝑥𝑦,𝑘~𝒩(0, 𝜉𝑥𝑦,𝑘
2 ): if the robot 𝑌 sends its 

own estimated position to 𝑋, we have an indirect measurement of the position 𝑥𝑘 in 〈𝑊〉, i.e. 

 𝑧𝑥𝑦,𝑘 = 𝛥𝑥𝑦,𝑘 + �̂�𝑘 + 𝜀𝑥𝑦,𝑘 = 𝑥𝑘 + �̃�𝑘 + 𝜀𝑥𝑦,𝑘 , (13) 

where �̃�𝑘 = 𝑦𝑘 − �̂�𝑘 is the estimation error of the KF executed on the robot 𝑌 with variance 

given by 𝑃𝑦,𝑘 (see Figure 2). Assuming that 𝜀𝑥𝑦,𝑘 is, again, generated by a white stochastic 

process and assuming that the robot 𝑌 sends the estimate �̂�𝑘 along with the variance 𝑃𝑦,𝑘, the 

overall measurement uncertainty of 𝑧𝑥𝑦,𝑘 is available to the robot 𝑋 and equals to 𝜉𝑥𝑦,𝑘
2 + 𝑃𝑦,𝑘. 

If this measurement is additionally used in the KF of robot 𝑋, the estimation error variance 𝑃𝑥,𝑘 

certainly decreases [5]. Hence, it would be beneficial to do the same for robot 𝑌 if endowed 

with a similar relative sensor. Unfortunately, this is not working so straightforwardly: indeed, 

once 𝑋 firstly uses 𝑧𝑥𝑦,𝑘, the estimate �̂�𝑘 becomes correlated with �̂�𝑘 by means of (13). 

Therefore, if the process is now repeated for 𝑌, the measurements 

 𝑧𝑦𝑥,𝑘 = 𝛥𝑦𝑥,𝑘 + �̂�𝑘 + 𝜀𝑦𝑥,𝑘 = 𝑦𝑘 + 𝑥𝑘 + 𝜀𝑦𝑥,𝑘 , (14) 

are now correlated with �̂�𝑘, which violates the KF assumption of model and measurement 

uncertainties to be uncorrelated. The problem can be circumvented by exchanging the mutual 

covariance quantity between 𝑋 and 𝑌. Indeed, by rewriting the problem as a single KF with 

state 𝑝𝑘 = [𝑥𝑘 , 𝑦𝑘]𝑇 and applying the algorithm in Figure 2, it turns out that a relative 

measurement generates off-diagonal terms in 𝑃𝑘 (covariance terms) that should be taken into 

account in the execution of the filter. Furthermore, it is also evident that using only relative 

measurements in 〈𝑀𝑥,𝑘〉 and 〈𝑀𝑦,𝑘〉 given by (13) and (14) for the mutual localisation problem 

leads to uncertainty growth with respect to the position in 〈𝑊〉, as previously stated. This is 

immediately verified by the fact that 𝑝𝑘 thus defined with the output functions (13) and (14) 

only is unobservable. 
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