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ABSTRACT Manufacturers are willing to incorporate Machine Learning (ML) algorithms into their sys-
tems, especially those considered as Safety-Critical Systems (SCS). ML algorithms that perform binary clas-
sification (i.e., Binary Classifiers (BCs)) find a wide applicability as error, intrusion or failure detectors,
provided that their performance complies with SCS safety requirements. However, the performance analysis
of BCs relies on metrics that were not developed with safety in mind and consequently may not provide
meaningful evidence to decide whether to incorporate a BC into a SCS. In this paper, we empirically assess
the properness of such incorporation by analyzing the distribution of misclassifications of BCs instead of sim-
ply counting misclassifications. This allows us to better assess the adequacy of a given BC by identifying
areas of the classification space where the BC is likely to misclassify and therefore constitutes actionable
information to deal with the SCS. Our assessment takes a deeper view of the classification performance con-
cerning safety by using new metrics that consider the proportions of predictions that are/are not considered
sufficiently safe to be used by incorporating SCS. The results of our experiment allow discussing the potential
of such distribution analysis for deciding if a BC can be incorporated into a SCS.

INDEX TERMS Machine learning, performance metrics, safety measures, safety-critical systems

I. INTRODUCTION

Powered by their ability to work with novel input and
incomplete knowledge, their learning and generalization
capabilities, Machine Learning (ML) algorithms became a
highly desirable mean to solve complex problems [1]. Par-
ticularly, ML algorithms which perform binary classifica-
tion (binary classifiers from now on) can efficiently classify
input data as belonging either to a positive or to a negative
class [8], [10], [19]. Binary classifiers can therefore perform
complex tasks such as failure prediction, error detection,
intrusion detection, pattern recognition, and even control to
mention a few [1]. That is why we are witnessing increased
incorporation of binary classifiers into many automated sys-
tems covering almost all the main domains of our lives. Par-
ticularly, there is a growing interest in integrating binary
classifiers into systems whose failure may cause injuries or
even death to humans: those systems are classified as
Safety-Critical Systems (SCS) [2]. In SCSs, the adoption of

binary classifiers needs to be regulated by rigorous safety
requirements as such systems require levels of assurance
far beyond those needed for non-SCS. More specifically,
the performance of a binary classifier must be assessed and
guaranteed to be compliant with safety requirements of
incorporating SCS before it is used in its operational envi-
ronment [3].
For instance, modern automotive vehicles have been

proven vulnerable to hacking attacks by exploiting vulner-
abilities in their external interfaces [4], through which, an
attacker can access the Controller Area Network (CAN) bus
and control some core functions of the vehicle. An example
of such attacks is the hijacking of the steering and braking
units in a Ford Escape1. Similarly, a group of hackers was
able to remotely hijack a Tesla Model S from a distance of

The authors are with the Informatic and Maths Department (DiMal), University of Florence, 50121 Firenze, Italy

1.Greenberg, A., 2013. Hackers Reveal Nasty New Car Attacks-With Me
Behind The Wheel (Video). https://bit.ly/3lWRAIN

Received 13 October 2021; revised 23 May 2022; accepted 24 May 2022.
Date of publication 3 June 2022; date of current version 6 December 2022.

Digital Object Identifier 10.1109/TETC.2022.3178631

VOLUME 10, NO. 4, OCT.-DEC. 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see

ht _tps://creativecommons.org/licenses/by/4.0/ 1671

https://orcid.org/0000-0003-2286-2819
https://orcid.org/0000-0003-2286-2819
https://orcid.org/0000-0003-2286-2819
https://orcid.org/0000-0003-2286-2819
https://orcid.org/0000-0003-2286-2819
https://orcid.org/0000-0001-9820-6047
https://orcid.org/0000-0001-9820-6047
https://orcid.org/0000-0001-9820-6047
https://orcid.org/0000-0001-9820-6047
https://orcid.org/0000-0001-9820-6047
https://orcid.org/0000-0001-7366-6530
https://orcid.org/0000-0001-7366-6530
https://orcid.org/0000-0001-7366-6530
https://orcid.org/0000-0001-7366-6530
https://orcid.org/0000-0001-7366-6530
https://bit.ly/3lWRAIN


around 12 miles2. Moreover, Chrysler announced a recall for
1.4 million vehicles after a pair of hackers demonstrated that
they could remotely hijack a Jeep’s digital systems over the
Internet3. Overall, adverse safety impacts of such attacks can
be prevented or mitigated by promptly detecting any mali-
cious/anomalous behavior on the CAN bus [4], which can be
done relying on binary classifiers that detect intrusions. Intru-
sion detectors should then trigger adequate reaction stra-
tegies, e.g., switching off connectivity, blocking specific
network addresses. Should the intrusion detector fail to iden-
tify such malicious/anomalous behavior (i.e., a False Nega-
tive, FN), the attacker can carry on its attack controlling the
vehicle that might cause tragic incidents.
The vast majority of existing metrics for assessing the per-

formance of binary classifiers mainly focus on some proper-
ties of interest in the domains where they were developed
[5]. Many researchers have advocated that metrics should be
domain-specific, yet very few efforts have been made to pro-
pose more safety-oriented metrics that focus specifically on
FN predictions and their distribution. For example, Accuracy
is one of the most commonly used metrics that provides an
overall performance evaluation of binary classifiers focusing
on the number of correct predictions i.e., True Positive (TP)
and True Negative (TN). Other metrics such as Precision and
F-score have been designed to focus mainly on the number
of TP predictions [5], and they have less emphasis on False
Negative (FN) predictions. To this end, existing methodolo-
gies to evaluate the properness of integrating binary classi-
fiers into SCSs that do not explicitly focus on FNs and on
how they are produced may not be appropriate for assessing
the performance of binary classifiers with respect to the
safety requirements of the incorporating SCS.
In a previous work [6], we worked toward solving this

problem by proposing a theoretical technique to evaluate
binary classifiers by isolating predictions that are sufficiently
guaranteed to be correct from other predictions based on dis-
tribution of scores of the binary classifier itself. However, we
did not extensively motivate, nor implement, evaluate and
provide clear indications on how to practically take advan-
tage of distribution analysis.
Particularly, this paper shows the importance of consider-

ing how FNs are distributed, which is very important in
deciding whether a prediction of a binary classifier can or
cannot be considered sufficiently safe to be used by a SCS.
Here, we elaborate and expand on:

� A discussion on a fail-controlled architecture to inte-
grate binary classifiers into SCSs.

� Motivation on why analyzing the distribution of scores
and predictions of binary classifiers rather than just
counting misclassifications clearly helps in assessing the
properness of incorporating binary classifiers into SCSs.

� Propose and implement a technique to separate the pre-
dictions of binary classifiers that are sufficiently safe to
be used by incorporating SCS from other predictions,
and quantitative metrics to support an “informed deci-
sion” on whether a binary classifier can be incorporated
in SCS.

� Empirical assessment of our solution by exercising 12
binary classifiers on 9 public datasets related to SCSs.
Such assessment does not aim at comparing the perfor-
mance of binary classifiers: instead, it shows how to
calculate the sufficiently safe predictions of a binary
classifier for a specific system, and how they help in
deciding if a binary classifier should be used in a SCS.

� Report on our findings and lessons learned while
assessing the properness of incorporating binary classi-
fiers into SCS through the aforementioned experiment.

The rest of the paper is organized as follows; Section II
describes a motivating example to illustrate the relevance of
this work. Section III presents a general fail-controlled archi-
tecture for incorporating binary classifiers into SCS. Section IV
discusses a way to analyze safety of a binary classifier based on
distribution of its scores, which paves the way to formalize dis-
tribution-based metrics in Section V. Our experimental meth-
odology is presented and described in Section VI. Section VII
discusses the experimental results about the properness of
incorporating binary classifiers into a SCS. Section VIII dis-
cusses the related works, and Section IX lists threats to the
validity of our work, concluding remarks and future works.

II. MOTIVATING EXAMPLE: AN INTRUSION DETECTION

SYSTEM FOR CONTROLLER AREA NETWORK

(CAN) BUS

There has been significant growth in the number and complex-
ity of electronic components/units in modern vehicles, which
may have as many as 70 Electric Control Units (ECUs) [7].
ECUs control various functions ranging from temperature con-
trol to steering and cruise control [8]. Some of these units need
to communicate with one another, and the CAN bus was devel-
oped to prevent the need for large multi-core wiring in modern
vehicles. Although the CAN bus is currently the most widely
used bus in modern vehicles [8], it lacks appropriate security
mechanisms, and it has been proven to be subject to various
remote attacks. For instance, an attacker can gain access to the

FIGURE 1. A representation of the architecture of vehicle with a

CAN Bus.

2.Solon, O., 2016. Team of hackers take remote control of Tesla Model S
from 12 miles away j Technology j The Guardian. https://bit.ly/3h73FaL
3.Greenberg, A., 2016. The Jeep Hackers Are Back to Prove Car Hacking
Can Get Much Worse. https://bit.ly/35e9CAk
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CAN bus by hijacking one of the connected ECUs [7] since
some ECUs communicate with the outside world. Then, the
attacker can inject messages into the bus that can invoke sud-
den braking, turn the engine off, control the steering wheel or
the braking system to mention a few.
This problem became more prominent as vehicles are get-

ting more and more connected by technologies such as
Bluetooth, WiFi and smart-phones, or as in intelligence con-
nected vehicles, where various units and systems are con-
nected to the CAN bus. In this context, vehicle security
became a main concern for the general audience since most
people own or use vehicles. Accordingly, they might be
subject to such attacks [7]. More specifically, vehicle secu-
rity is not only related to data confidentiality and integrity
anymore, but also to traffic safety that is directly related to
humans’ safety [9].
A modern vehicle architecture (illustrated in Figure 1)

includes a central gateway (CGW), which is connected to the
On-board diagnostics (OBD) II port as well as the CAN bus
that is connected to various ECUs. Most ECUs can be
equipped with firewalls that filter packets and allow white-
listed packets to pass only. As monitoring the traffic on the
CAN bus allows detecting attacks/suspicious behavior, it is
possible to employ a binary classifier as an Intrusion Detec-
tion System (IDS) [10]. Such IDS can be installed at least in
the CGW but in order to improve the detection rate, it can be
additionally deployed in a specific or even all ECUs. Such
IDS monitors communication packets and also the ECU sta-
tus if it is installed in one. Then, it compares such behavior
with a reference (intended/specified) behavior to detect
abnormal/anomalous behavior, and triggers appropriate secu-
rity mechanisms [11]. Moreover, to identify both known and
unknown (e.g., zero-day attacks [10]) intrusion attacks, the
use of unsupervised binary classifiers is advised [10].
In what follows, we specify the attack model we consid-

ered in this study concerning the IDS example in terms of
attackers’ capabilities and knowledge.
Capability: Our study assumes an attacker can exploit a

vulnerability in one of the external interfaces of the vehicle,
and also can inject harmful messages into the CAN bus
through the aforementioned interface to compromise an ECU
that is responsible for a critical functionality (e.g., braking
system, engine, steering wheel). We assume that the attacker
does not have access to the training set(s) and does not have
the capability to perform data poisoning attacks (e.g., con-
taminates the training set(s)), which can dramatically degrade
the performance of the binary classifier for detecting its
planned attacks.
Knowledge: Our study assumes that the attacker is aware

of vulnerabilities in at least one of the external interfaces of
the vehicle, which can be exploited. The attacker is also
capable of exploiting this vulnerability by adequate technical
means, and can also inject harmful messages into the CAN
bus. Moreover, the attacker should have the basic knowledge
of the architecture vehicle in terms of its CAN bus and how
it is connected to the targeted ECU.

III. A FAIL-CONTROLLED ARCHITECTURE FOR

INCORPORATING BINARY CLASSIFIERS INTO SCSS

Generally speaking, safety management can be described as
practices that direct, monitor and intervene in core operations
to achieve or maintain safety through fail-aware, fail-safe, or
fail-operational mechanisms. These same mechanisms can
be used to deal with situations when a binary classifier incor-
porated into SCS does not work as intended, and therefore
may lead to a failure at the incorporating SCS level.

A. SAFETY ENVELOPES

According to Avizienis et al. [9], fail-controlled systems
are systems designed so to fail only in those modes that
are prescribed by their specification and only to an extent
considered acceptable. In our work, identifying when the
system may fail and providing techniques to deal with
such failure is essential to develop a fail-controlled binary
classifier. Moreover, Salay and Czarnecki [12] listed two
architectural techniques for fault tolerance and discussed
how they can be used to deal with faults resulting from
binary classifiers:

� Safety envelope [13], where a safety component runs
alongside with the binary classifier with the main objec-
tive of monitoring, assessing and optimizing the behavior
of the last concerning the desired safety requirements.
More specifically, the monitoring component will assess
the predictions of the binary classifier and decide whether
such predictions are sufficiently safe to be used by the
incorporating system.

� Runtime verification and fail-safe, which i) conducts
error checking to identify whether some preconditions
concerning the predictions of the binary classifier are
violated. In such cases, the output cannot be trusted; and
ii) employs adequate fail-safe architecture technique
that disables the functionality on error and transitions
the system to a safe state.

A general-purpose fail-controlled architecture for incorporat-
ing binary classifiers into SCS is shown in Figure 2. Such archi-
tecture adopts a Safety Envelope to mask the predictions of a
binary classifier component into safe and unsafe predictions.
Further, instead of adopting a run-time verification and fail-safe
principle, the architecture adopts a run-time verification and

FIGURE 2. A fail-controlled architecture to handle safe and

unsafe predictions of a binary classifier.
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fail-controlled principle in order to cover a wider range of
mechanisms than just the fail-safe ones, i.e., fail soft recovery
[14]. According to this architecture, a binary classifier either i)
provides predictions that are sufficiently safe to be used in a
SCS, either positive or negative, or ii) triggers fail-control
mechanisms to mask a potential ongoing failure and guarantee
“safety” in such situations.

B. ACCEPTABLE LEVEL OF RISK AND STANDARDS

Safety does not assume that critical events will never happen
in a system. Instead, it guarantees that the risk – a combina-
tion of likelihood and impact – of a given threat is tolerable
according to the requirements of a given system. In other
words, a few misclassifications of a binary classifier might
appear as safe predictions. Misclassifications may either be
FNs (positive predicted as negative) or FPs (negative pre-
dicted as positive): however, they do not have the same
impact on most SCS. Whereas FPs might indirectly lead to
unsafe situations, in SCSs FNs are generally considered the
primary and direct trigger to catastrophic incidents e.g.,
pedestrian not detected in autonomous driving, undetected
attack in the security domain, or component/resource/device
misbehavior that has an erroneous behavior in general. We
assume here that only FNs may be the direct cause of safety
issues, whereas FPs mostly impact the availability and
usability properties of a given system or component.
Therefore, we foresee that a given amount of FNs, which

we call FN� (or residual FNs), may happen even in a SCS.
However, those FN� should not exceed the Acceptable Lev-
els of Risk (ALR) corresponding to the safety requirements
of the system or component [15]. ALR is a commonly used
concept in safety standards (e.g., IEC 61508 [15], CENELEC
- EN 50129 [16], ISO 26262:2011 [17]) to specify the tolera-
ble hazard. The ALR can be seen as an indicator for identify-
ing the Safety Integrity Level (SIL), which is a measure of
the confidence with which the system is expected to deliver a
safety function. Moreover, safety standards such as IEC
61508 [15] address ALR considering two operating modes:

� low demand mode of operation that is dedicated for
systems or functions that operate on demand, and this
mode is specified in terms of the Probability of Failure
on Demand (PFD); and

� the high demand or continuous mode of operation that
is dedicated for systems or functions that operate con-
tinuously, and this mode is specified in terms of the
Tolerable Hazard Rate (THR).

For each of these operating modes, different ALR in terms
of THR or PFD are considered.
Noteworthy, existing safety standards (e.g., IEC 61508 [15],

ISO 26262:2011 [17]) did not evolve to cover ML algorithms,
and they do not provide compliance requirements for binary
classifiers nor error handlingmechanisms that are explicitly tai-
lored for them. Moreover, most standards define the SIL, THR
or PFD for a system function, not for a component. Therefore,
specifying the THR/PFD for a binary classifier is not an easy
task as it relies on the architecture of the incorporating system:

the THR/PFD of the incorporating system can be further appor-
tioned at the level of the binary classifier [16]. To such extent,
several researchers relied on safety/assurance cases [18] to
derive the safety requirements at the binary classifier level
from the incorporating system requirements.
In this paper, we followed the same approach, constructing

a safety case for the binary classifier to derive its SIL level as
well as corresponding ALR based on the requirements and
architecture of the incorporating system. Due to space limita-
tions, we briefly summarize the safety case we considered for
determining the ALR for the an IDS that uses a binary classi-
fier. The top-level Goal G1 in our study was “the performance
of the IDS for the ECU is compliant with the safety require-
ment of the incorporating system”, which was decomposed
into two sub-goals: G2 and G3 that aim at specifying the
safety requirement for the incorporating system and the
IDS respectively. G2 was achieved by identifying hazards
involved, which we performed relying on Hazard Analysis
and Risk Assessment (HARA). Then, we conducted a risk
assessment for each of the identified hazards following ISO
26262 [17]. Followed by identifying the corresponding ASIL
level(s) appropriate to the identified hazards. As a result,
ASIL A was determined. On the other hand, G3 was achieved
by identifying the ALR of the IDS considering the ASIL of
the incorporating system (ASIL A) as well as the operation
mode of the IDS (low demand mode). As a result, the ALR of
the IDS and of the binary classifier was determined as 0.014.

IV. SAFETY ANALYSIS OF A BINARY CLASSIFIER

A. ALGORITHM SCORES AND DECISION FUNCTIONS

Binary classifiers devise a mathematical model from a train-
ing data set, which contains a given amount of data points,
where each data point contains f feature values. Once training
is completed, a binary classifier bc takes advantage of that
model to make predictions concerning new data points [19]
through a function:

dp_label ¼ bc.predict(dp)

where dp is a single data point composed by f feature values,
and dp_label is a binary label – either positive or negative –
which represents the (binary) prediction for a data point.
Noteworthy, the predict function can be broken down as a
composition of two different sub-functions

bc.predict(dp): bc.decisionfunction.apply(bc.score(dp))

In particular, a binary classifier assigns numeric scores to
each data point dp and thus bc.score(dp) e R. For clustering
algorithms, this score can be the distance with respect to the
centroid of the closest cluster, whereas in distance-based
algorithms such numeric score can be derived from a kNN
graph [20]. Then, a decision function is applied to such

4.Please refer to Appendix A for a full description of how we constructed a
safety case for the binary classifier to derive its SIL level as well as corre-
sponding ALR based on the requirements and architecture of the incorporat-
ing system.
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numeric score num_score to convert it into classes; in binary
classification, a decision function converts a numeric score
into a binary label [21], either positive or negative.

bc.decisionfunction.apply(num_score) e {positive, negative}

A decision function identifies one or more classification
thresholds, e.g., interquartile range [22] or confidence inter-
val. Depending on the score of a data point, a classification
decision is made: data points with scores higher than the
threshold are predicted to belong to one class, whereas data
points with scores lower than the threshold are predicted to
belong to the other class. Decision functions such as interquar-
tile range, confidence interval and even majority voting are
commonly used, albeit some binary classifiers require algo-
rithm-specific thresholds. Supervised binary classifiers as the
k-th nearest neighbor [20] calculate the score depending on
the amount of those k neighbors that have a given label. Then,
this numeric amount is converted into a binary label through
majority voting (i.e., is the numeric score bigger than k / 2).
Instead, the unsupervised version of kNN [20], calculates the
(Euclidean) distance of a data point with respect to its k-th
neighbor, and then applies a decision function based on a sin-
gle threshold (e.g., if the distance is bigger than 100, a data
point is predicted positive) to derive the binary label.
As such, predictions of a binary classifier can be parti-

tioned into four mutually exclusive groups based on the real
class of the data point – the ground truth - and the class pre-
dicted by the binary classifier: True Positive (TP) cases refer
to the Predicted Positives that are indeed positives; True
Negatives (TN) cases refer to the Predicted Negatives that
are indeed negatives; False Positive (FP) cases refer to the
Predicted Positives that are instead negatives; and False Neg-
atives (FN) cases refer to the Predicted Negatives that are
positives. Altogether, those four classes build the so-called
confusion matrix, which is commonly used to evaluate the
classification performance of binary classifiers. In fact, com-
monly used performance metrics [5] aggregate items of the

confusion matrix to build Precision, Recall (or Coverage),
False Positive Rate (FPR), Accuracy (ACC), FScore-b (Fb),
F-Measure (F1), Area Under ROC Curve (AUC) and Mat-
thews Coefficient (MCC).

B. THE DISTRIBUTION OF MISCLASSIFICATIONS

However, metrics based on the confusion matrix may not ade-
quately describe all the aspects of the behavior of a binary clas-
sifier. Suppose that a binary classifier bc1 was trained using a
given training set. Such algorithm provides numeric scores
(bc.scores(dp) function) in the range of [1];[15] for a given
data point. Additionally, the algorithm decides on binary clas-
sification by applying the following decision function: nega-
tive if 7 � num_score � 9, and positive otherwise. Now, we
provide the binary classifier with 76 data points that build our
test set. The application of bc1 results in 65 TP, 4 TN, 4 FP
and 3 FN, which translate to values of 90.7 and 94.9 of accu-
racy and F-Measure (or F1-Score). Figure 3a plots the fre-
quency of each of the four classes of the confusion matrix
against a numeric score num_score of the algorithm through a
bar chart where bars above the x-axis show TP or TN, and bars
below x-axis depict FP or FN. It is worth noticing how mis-
classifications – either FN or FP – happen when the binary
classifier assigns a numeric score in the range [4]; [9]. Now,
let’s consider a different binary classifier bc2 trained on the
same training set which shows the same amount of misclassifi-
cations on the test set, but with a slightly different distribution
as shown in Figure 3b. The confusion matrix is the same for
bc1 and bc2 as the number of misclassifications is the same.
However, in this picture, we can observe how misclassifica-
tions by bc2 accumulate only on scores in the range [6]; [7].
This difference in the behavior of the two binary classifiers

is not reflected in the confusion matrix: misclassifications
have different distributions. As a consequence, considering
performance metrics uniquely tied to the amount of TP, TN,
FP, and FN, not accounting for their distribution against
scores may hide some details of the behavior of a binary

FIGURE 3. (a-left, b-right): Different distribution of the same amount of misclassifications. X-axis reports on the score of the binary clas-

sifier, whereas the y-axis reports the amount of correct classifications (above the horizontal line) or misclassifications (below the hori-

zontal line). Decision Function (Negative if 7 � num_score � 9) are represented as vertical lines and show the binary classification

result.
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classifier. These details may turn out to be critical when
deciding on incorporating a binary classifier into a SCS.

C. FROM BINARY TO SEMI-TERNARY CLASSIFICATION

Here comes the intuition behind the rest of the paper.
It is possible to analyze the distribution of misclassifica-

tions to identify which numeric scores assigned by the binary
classifier may generate misclassifications, and especially
FNs, after applying the decision function. Accordingly, we
will consider this subset of scores as not sufficiently safe,
because we know that when the binary classifier assigns
those scores it can potentially output a FN. Therefore, we
depict a gray area (see Figure 4) in which predictions are not
sufficiently safe (NSSP), while in the rest of the scores the
algorithm provides predictions that are sufficiently safe
(SSP), either positive or negative. In the example in Figure 4,
we will have 69 SSP Positive, 3 SSP Negative, and 4 NSSP.
Overall, out of the 76 data points in the test set, we will have
72 predictions that are safe, and 4 predictions that we know
are not safe to be used in SCSs.
In our previous work [6], we observed that a great number

of misclassifications (FN and/or FP) usually co-locate around
the threshold(s) of the decision function. Therefore, we pro-
posed a technique to isolate predictions that are sufficiently
guaranteed to be safe (TP, TN, and, to a lesser extent, FP)
from other predictions (FN and TNs that co-locate with
them) relying on two thresholds. As such, any prediction
which falls outside the two thresholds is considered suffi-
ciently guaranteed to be safe and can be used by an incorpo-
rating SCS.
To generalize this formulation, we show in Figure 5 a

general representation of the distribution of algorithm
scores according to the confusion matrix, separating cor-
rect predictions (TNs and TPs) from incorrect (FPs or
FNs) ones, which are below the x-axis. The figure shows
two vertical dashed lines which contain the Not Suffi-
ciently Safe (NSSP) area, whereas items outside those
thresholds are to be considered as Sufficiently Safe Predic-
tions (SSP). Noticeably, not all FNs are inside the NSSP:

there is a slight percentage, labelled as FN�, which appear
as SSP even if they have detrimental impact on safety.
This is the portion of FNs that is deemed tolerable accord-
ing to a given ALR: therefore, FN� � ALR. Overall, pre-
dictions of a binary classifier are said to be sufficiently
safe to be used (SSP) by incorporating SCS (in which FN
are the problem) when:

� They are predicted positive, either TP or FP. Notice-
ably, a FP is an incorrect prediction that may not lead
to unsafe situations but result in false alarm (e.g., mar-
ginal incident).

� They are predicted negative and they do not co-locate
to any FN, or co-locate with a residual fraction of FNs
such that FN� � ALR.

In all other cases, the predictions of the binary classifier are
said to be Not Sufficiently Safe (NSSP) and should not be
used by the incorporating SCS as they have the potential to
originate an unfortunate incident. Ideally, we would like the
SSP predictions to be as many as possible, leaving the NSSP
area with just a sliver of data points for which the binary clas-
sifier cannot deliver a safe prediction.

V. CRITERIA FOR ASSESSING THE PROPERNESS OF

INCORPORATING BINARY CLASSIFIERS IN SCS

In this section, we will elaborate on how we can separate the
SSP and NSSP from one another, deriving metric scores to
quantitatively assess safety of a binary classifier. As explained
earlier, the safety of predictions will be defined with respect to
an ALR which the safety specialists have to extract from non-
functional system requirements. Therefore, in this section we
tie the safety of predictions of a binary classifier to a parameter
ALR, to derive SSPALR and NSSPALR values.

A. AN ALGORITHM TO SEPARATE SSP FROM NSSP

Let bc be the target binary classifier, let V be its validation set
with jV j ¼ nv items and let bcScores be a set of nv numeric
scores assigned by the algorithm bc to each of the data points
in V. Those scores are then converted into either positive or
negative prediction according to a decision function bc.df.
We define the following sets and variables:

FIGURE 4. Semi-ternary Classification into SSP (either positive or

negative) and NSSP from example in Figure 3b.

FIGURE 5. Semi-ternary Classification into SSP (either positive or

negative) and NSSP.
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� neg_s: subset of bcScores for which the application of
bc.df generates a negative prediction. In the example in
Figure 3a, neg_s ¼ {7, 7, 8, 8, 8 9, 9} and in Figure 3b
neg_s ¼ {7, 7, 7, 7, 8, 8, 9};

� fn_s: subset of neg_s for which bc generates a FN,
organized as couples <score, frequency> without repe-
titions of score values. In the example in Figure 3a, fn_s
¼ {<7,1>, <8,1>, <9,1>}, whereas in the example in
Figure 3b, fn_s ¼ {<7, 3>};

� pos: the integer amount of scores for which the applica-
tion of bc.df generates a positive prediction. This is
always calculated as FP þ TP: in the example in
Figures 3a and 3b, pos ¼ 4 þ 65 ¼ 69.

Those variables are used as inputs for the pseudocode
shown in Listing 1. Briefly, this greedy algorithm starts (line
3) by calculating the default FN� residual which - at the
beginning – this represents the percentage of FNs over all the
nv items. In addition, it sets the ssp_fn variable as equal to
fn_s: this describes the FNs that are tolerated in the SSP area.
Then, line 4 iterates over the greedy algorithm until the FN�

gets smaller than the ALR, or until the ssp_fn becomes
empty. Each iteration aims at reducing the FN� until they get

smaller than the ALR. This is done by progressively enlarg-
ing the NSSP and thus removing one or more couples from
the ssp_fn variable, whose size reduces by one item iteration
by iteration. The choice on how to enlarge NSSP follows a
greedy rule at each iteration: we compute FN� and the SSP
obtained by adding data points assigned to the maximum
score in ssp_fn as NSSP (l_fn set in line 5 of Listing 1) or to
the minimum score in ssp_fn (r_fn set in line 6 of Listing 1).
Both sets are then used in lines 7 and 8 to calculate residuals
l� of r� by calling the compute function on l_fn (the former)
and r_fn (the latter). Out of those two residuals l� and r�, the
choice which lowers FN� the most is used to iteratively
update SSP and ssp_fn. At the end of the process (line 14 of
Listing 1), the function builds the SSP (and NSSP, by differ-
ence) that contains the most predictions according to a spe-
cific ALR.
The compute function in Listing 1 computes FN� and SSP

according to a given set of NSSP described by the variable
ssp_fn. First, it computes the FN� by calling the residualFN
function (line 16, 24-27 of Listing 1). Then, in lines 17-22 it
computes the SSP according to the FN� quantity:

� should FN� be zero, this means that the NSSP is empty
and therefore all predictions are SSP (lines 17-18);

� if 0 < FN� � ALR, some FNs appear in the SSP, but
the NSSP is not empty: thus, all data points falling into
that area have to be excluded from SSP (lines 19-20);

� lastly, should FN� be bigger than the ALR, it means
that the NSSP embraces all predictions in between the
minimum score in fn_s and the maximum score in fn_s
(lines 21-22). In this last case, all FNs and TNs that col-
locate with, or fall in between FNs are considered
NSSP.

This algorithm works well when scores are distributed as
in Figures 3a and 3b, Figure 4 or in Figure 5, with a unique
continuous range where the binary classifier shows a nega-
tive prediction. However, it may sparingly happen that a
decision function assigned to a binary classifier derives mul-
tiple non-continuous ranges of scores that converted into a

Listing 1: Pseudocode to compute SSPALR and NSSPALR. Listing 2: Pseudocode to compute SSPALR and NSSPALR
with a divide-and-conquer approach for complex decision
functions.
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negative binary classification. The reader can think about
having a decision function for Figure 2 which instead of
being “Negative if 7 � num_score � 9” is the opposite,
or rather “Negative if num_score < 7 or num_score >
9”. In such a context, the algorithm in Listing 1 may end
up finding a SSPALR value which is far from the optimum
as the process ends to converge to a single continuous
area containing NSSPALR. As such, the algorithm in List-
ing 1 needs to be adapted to a divide-and-conquer
approach we reported in Listing 2. The dcSSP algorithm
first partitions the output space of algorithm scores into
ns slices, where each slice ¼ [neg_s, fn_s, pos] e slices
contains the negative predictions, the false negatives and
the counter for positive predictions for a given portion of
the output space. Then, we calculate calcSSP from List-
ing 1 separately for each slice; then, we sum up SSP and
NSSP for each slice building the dacSSP and dacNSSP
quantities (rows 5-7 of Listing 2). Those quantities are
ultimately (rows 8-11) compared against the SSP and
NSSP computed using the calcSSP function: the result
with the highest SSP is then returned to the user. Notice-
ably, the dcSSP function can be executed recursively:
however, to the best of our knowledge, there are no deci-
sion functions that may require multiple levels of parti-
tioning of our algorithm to derive adequate SSP and
NSSP scores.

B. DEFINING SAFETY-ORIENTED METRICS

Those SSPALR and NSSPALR counters we formalized before
can then be used to compute metrics based on the distribution
of predictions of a binary classifier, as follows:
Sufficiently Safe Prediction rate – SSPr(ALR): is the pro-

portion of predictions that are sufficiently safe to be used by
an incorporating SCS to the overall number of predictions
with respect to the considered ALR.

SSPr ALRð Þ ¼ SSPALR

NSSPALR þ SSPALR

No Prediction rate – NPr(ALR): is the proportion of pre-
dictions that are not sufficiently safe to be used to the overall

number of predictions with respect to the considered accept-
able ALR.

NPr ALRð Þ ¼ 1� SSPr ALRð Þ ¼ NSSPALR

NSSPALR þ SSPALR

VI. METHODOLOGY AND EXPERIMENTAL SETUP

This section reports on the methodology (shown in Figure 6)
and experimental setup we employed in this work.

� We first conducted a comprehensive investigation on
public datasets about SCSs to build a solid baseline for
our experimental study. Out of existing alternatives, we
found a considerable amount of publicly available data
about intrusion detection (see Section VI.A).

� Then, we adopted several unsupervised algorithms that
have potential in detecting both known and unknown
(e.g., zero-day attacks [21]) attacks, which is very
important when dealing with intrusions (Section VI.B).

� Besides the two new metrics defined earlier in the paper
(with ALR set to 0.01), we have selected the most com-
monly used evaluation metrics in the literature. The
selected metric scores are, further, described in Section
VI.C.

� We fed the selected datasets, algorithms, metrics into
the RELOAD tool [23], which allows for conducting
the experiment (see Section VI.D) according to the
experimental setup in Section VI.E.

A. SELECTED DATASETS

Taking advantage of recent surveys such as [24] and query-
ing online portals like AZSecure – Intelligence and Security
Informatics Datasets, and UNB – Canadian Institute for
CyberSecurity, we select labelled datasets that contain
enough records to guarantee statistical evidence and pub-
lished in the last decade or very well known. Labels are
required for evaluating detection performance of any binary
classifier, whereas they are not required for training the
unsupervised binary classifiers we use in our experimental
study. Our process ended up selecting the following 9 data-
sets (Table 1), whose references can be found in papers
[25], [10].

� NSL-KDD (2009) is a very well-known dataset that
contains the following attacks: DoS (Denial-of-Ser-
vice), R2L (unauthorized access from a remote
machine), U2R (unauthorized access to super-user or
root functions) and Probing (gather information about a
network).

� ISCX12 (2012), generated in a controlled environment
based on a realistic network and traffic to depict the
real effects of attacks over the network and the corre-
sponding responses of workstations. Four different
attack scenarios were simulated by the authors.

� UNSW-NB15 (2015), released by the Australian
Defense Force Academy in the University of New
South Wales, and it contains 7 attacks that were able to
bypass existing security mechanisms.

FIGURE 6. Methodology to execute experiments in this work.
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� UGR16 (2016) has been built with real traffic and up-
to-date attacks. Its data come from several net-flow col-
lectors strategically located in the network of a Spanish
ISP and embeds normal traffic as well as data related to
DoS, BotNet, Scan, Blacklist and Spam attacks.

� ADFA-Netflow-IDS (2017), created at the next genera-
tion cyber range infrastructure of the Australian Centre
of Cyber Security (ACCS) and contains normal and
abnormal host (LINUX) and adversarial network activi-
ties which authors deemed relevant for future IDS
design.

� CIDDS-001 (2017) was created within an emulated
small business environment in 2017, contains four
weeks of unidirectional flow-based network traffic, and
contains several attacks captured from the wild.

� CICIDS17 (2017) was created within an emulated envi-
ronment over a period of 5 days. For each flow, the
authors extracted more than 80 features. The data set
contains a wide range of attack types like SSH brute
force, Botnet, DoS, DDoS, web and infiltration attacks.

� CICIDS18 (2018). Similar to CICIDS 2017, CICIDS18
was created as an updated version of the previous data-
set, containing Brute-Force, Botnet, DoS, DDoS, Web
i.e., SQLi, and Infiltration attacks.

� SDN20 (2020) was obtained by monitoring a Software
Defined Network installed at the University College
Dublin, Ireland. Attacks in SDN include Probe, i.e.,
network scanning, DDoS, Brute-Force (BFA to bypass
the username-password login), and Exploits (privilege
escalation known as U2R).

Table 1 provides a summary of the datasets used in this
study, including: name, release year, the total size of dataset
(# of data points), the size of the subset we selected, the num-
ber of features, and frequency of attacks. We used up to
200,000 data points for each dataset: this allows reducing the
time needed to execute the whole experimental campaign.
Consequently, we used all data points for ADFANet (132
002), NSL-KDD (148 516), UNSW-NB15 (175 341), and
cropped others to 200,000 data points. Moreover, we disre-
garded the usage of categorical features, as it may be not

meaningful to compute common operations such as Euclid-
ean distance between two port numbers, or even an average.

B. BINARY CLASSIFIERS

We choose a heterogeneous set of unsupervised binary
classifiers to perform intrusion detection on the selected
datasets. Different algorithms were chosen out of several
families [25], [26], namely clustering, statistical, neigh-
bor-based, angle-based, density-based, classification, and
neural networks. We disregard heavy algorithms (e.g.,
ABOD that has a cubic time complexity), which naturally
requires intensive computing and memory resources and
therefore may not meet the performance requirements of
many systems. Accordingly, we select 12 unsupervised
classifiers as follows:

� One algorithm for each family: One-Class SVM (classi-
fication family), K-Means (clustering), ODIN (neigh-
bor-based), HBOS (statistical), SOM (neural-network),
FastABOD (angle-based), and Sparse Density Observ-
ers (SDO, density-based).

� Other well-known binary classifiers as COF, LOF,
LDCOF, Isolation Forests (iForest), and G-Means to
widen the selection of unsupervised algorithms.

C. EVALUATION METRICS

Besides the new metrics we calculated by using an ALR of
0.01, thus SSPr(0.01) and NPr(0.01), we considered the most
commonly used performance metrics such as Accuracy
(ACC), Precision (P), Recall (R), False Positive Rate (FPR),
F1-Score (F1 or F-Measure). Moreover, Matthews Coefficient
(MCC) is a correlation coefficient between the true and pre-
dicted classes, and achieves a high value only if the classifier
obtains good results in all the entries of the confusion matrix,
and can be calculated relying on the following equation

MCC ¼ TP � TN� FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp

TheMCC is bounded to [-1; 1], where a value of 1 represents
a perfect prediction, 0 random guessing, and -1 total disagree-
ment between prediction and observation. The Area Under
Receiver Operating Characteristics (ROC) Curve (AUC) and
the Area Under the Convex Hull of the ROC Curve (AUCH)
represent the degree of the separability of the ROC curve, and
evaluate the tradeoff between TPR and FPR of a classifier.
We also considered several under-used metrics like Gini

index that is used to measure how well a model is classifying
points, and normalize the AUC so that a random classifier
scores 0, and a perfect classifier scores 1, as follows: Gini ¼
2 x AUC -1. H-measure (H) has been developed to overcome
the situation of incurring different misclassification costs for
different classifiers, and it measures of the expected mini-
mum loss obtained for a given cost distribution. H-measure
takes a severity ratio as input, which examines how much
more severe misclassifying one class instance is than mis-
classifying another class instance. Kappa Statistics (KS)

TABLE 1. Datasets used in this study: Name, release year, data

point used, number of ordinal and categorical features, number

and percentage of attacks.

Name Year # Data Points Features Attacks

Ord. Cat. # %

ADFANet 2015 132 002 5 6 3 11.3
CICIDS17 2017 200 000 77 5 5 79.7
CICIDS18 2018 200 000 77 5 6 26.2
CIDDS 2015 200 000 5 7 4 14.4
ISCX12 2012 200 000 4 10 4 43.5
NSLKDD 2009 148 516 37 5 4 40.7
SDN20 2020 200 000 63 5 5 66.6
UGR16 2016 200 000 4 6 5 3.3
UNSW-NB15 2015 175 341 38 6 8 6.5
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measures the goodness of fit for the continuous cumulative
distribution of data samples. Youden Index measures the
effectiveness of a diagnostic classifier as well as selecting an
optimal threshold value for it, and it can be calculated, as fol-
lows: Youden Index ¼ sensitivity þ specificity -1. Finally,
the Precision-Recall-Gain curve (PR-Gain) plots Precision
Gain on the y-axis against Recall Gain on the x-axis in the
unit square (i.e., negative gains are ignored), and it is calcu-
lated based on enclosing an area that is directly related to the
expected F1-score in a similar way as AUC is related to
expected accuracy. Additionally, we computed ACC(0.01)
and MCC(0.01), the Accuracy and Matthews Coefficient
restricted to the SSP0.01 predictions areas. Those two metrics
provide a quantitative measure about the detection perfor-
mance of binary classifiers when they are providing suffi-
ciently safe predictions, without accounting for NSSP0.01.

D. TOOLING

RELOAD [23] is an open-source tool that offers a simple
GUI, and includes the implementations for all unsupervised
algorithms described in Section VI.B. Concerning the selected
datasets (Section VI.A), we have downloaded their source
files from repositories and re-shaped them as CSV files, which
can be processed by RELOAD. RELOAD also includes all
metrics implementations described in Section VI.C but H-
Measure and AUCH and the two new ones (NPr and SSPr).

Therefore, we relied on an R-package5 to calculate H-Measure
and AUCH, and we have extended RELOAD with the imple-
mentations of the new metrics as well as a technique to set the
required thresholds required for calculating them based on the
specified ALR that has to be entered as an input by the user.
Additionally, RELOAD embeds automatic tuning of

parameters of algorithms through grid searches and facili-
tates examining outputs through graphical plots. Moreover,
we used Information Gain [27] as a feature selection strat-
egy and F-Score(2) as a target metric for parameter tuning
which is automatically calculated by the tool through grid
searches.

E. EXPERIMENTAL SETUP

After setting up RELOAD, preparing the selected datasets,
algorithms, and metrics, we run the experiments with a 50-
50 train-test split, 10-fold cross-validation and collected met-
ric scores. Noticeably, RELOAD automatically removes
labels (if any) from the training set, as unsupervised ML
algorithms can perform training while being completely
unaware of labels themselves. The experiments have been
executed on a server equipped with Intel Core i7-6700 with
four 3.40 GHz cores, 24GB of RAM and 100GB of user

TABLE 2. A portion of the results (metric scores) of applying the binary classifiers to the datasets, ordered by decreasing SSPr.

Highlighted cases are those that are being explored through plots in this section.

5.Measuring classification performance: the H-measure package. https://cutt.
ly/dccy3P2
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storage. Executing all the experiments required more than
three weeks of 24H execution. Applying the 12 binary classi-
fiers to the 9 datasets resulted in 108 cases. The results of the
experiment performed including all metric scores, RELOAD
data logs and snapshots showing the distribution of results of
the application of the algorithms to the datasets (e.g., TP,
TN, FP and FN) can be found at https://bit.ly/3aysI4i.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

This section is dedicated to the discussion of the results, and
it is organized as follows: Section VII.A discusses the
properness of incorporating binary classifiers into SCS con-
cerning the specified ALR, followed in Section VII.B by a
discussion on whether we can assess such properness using
traditional metrics. Section VII.C debates on the correlation
of traditional metrics with respect to metrics based on
distribution.

A. ANALYSIS OF DISTRIBUTION-BASED METRICS

Table 2 shows a portion of the results of applying binary
classifiers to the datasets, ordered by decreasing SSPr(0.01).
Applying the iForest algorithm to the ADFANet dataset

(ID 66 in Table 2) resulted in an SSPr(0.01) of 69.08%: this
means that roughly 69% of the predictions of this case are
sufficiently safe to be used by the incorporating SCS.
Accordingly, the NPr is 30.92%, i.e., 30.92% of the predic-
tions of this case are not sufficiently safe to be used in a SCS.
Figure 7 shows the logarithmic scale distribution of TP, FP,
FN, and TN concerning this case; solid vertical bars represent
boundaries of the decision function, while dashed bars show
boundaries of the NSSP area. From left to right, the figure
shows four different areas:

i. Predicted Negative area that contains data points that
have been predicted negative but nevertheless can be
safely used in a SCS (SSP).

ii. Predicted Negative that contains all data points that
have been predicted negative and cannot be safely used
(NSSP) in a SCS; and

iii. Predicted Negative area that contains data points that
have been predicted negative but nevertheless can be
safely used in a SCS (SSP).

iv. Predicted Positive that contains data points that have
been predicted positive by the binary classifier and can
be safely used by the incorporating SCS (SSP).

This case is ranked 66/108 accounting only for the safety
metric SSPr with an ALR of 0.01. In fact, we see that the
area ii) between dashed lines in Figure 7 comprises many
data points that are thus considered as NSSP and that cannot
be safely used in a SCS as they co-locate with FNs (see red
bars in the figure). Noticeably, this binary classifier generates
very few FNs, ending up with a very high Recall of 99.2.
However, many FNs co-locate with TNs, which are consid-
ered NSSP as well.
There are many other cases that end up having very

poor SSPr even with relatively low FN% and high Recall.
It is the case of the application of the ODIN algorithm to
the CICIDS18 dataset (ID 77 in Table 2), which produced
1971 FNs out of 100000 data points (1.97% of all predic-
tions). However, due to the scattered distribution of such
FNs, almost half of the overall predictions are considered
not sufficiently safe to be by the incorporating SCS, i.e.,
NPr is 48.7% and SSPr is 51.3%. The distribution of this
case is shown on top of Figure 8, where we clearly see
how all the predicted negative predictions end up being
NSSP. Another example of the effect of the scattered dis-
tribution of FNs is the application of the ODIN algorithm
to the ISCX dataset (ID 78 in Table 2), where the FNs
are only 0.8% of the data points in the test set, yet the
SSPr was 50.0%. Again, down in Figure 8 we see how
also in this case the distribution of FNs (red bars) over-
laps completely with TNs (blue patterned bars), which all
become NSSP.
Yet another interesting case (ID 43 in Table 2) is provided

by the application of the LOF binary classifier to the UNSW
dataset, whose distribution is shown in Figure 9. LOF gener-
ates many FNs in this dataset with a FN% of 6.58; however,
those FNs are mainly distributed in a relatively small area in
between the dashed vertical lines in the figure. As a result, all
data points for which LOF assign scores in the range 0.85
and 2.85 are SSP as they are predicted positive, whereas data
points for which LOF assign scores bigger than 5 are SSP as
well even if the binary classifier will predict negative label.
FNs appear in this last area, but they are overall below the

FIGURE 7: Bar chart showing the distribution of predictions of

the iForest algorithm to the ADFANet dataset (ID 66).

FIGURE 8: Bar chart showing the distribution of predictions of

ODIN to CICIDS18 - ID 77 - (up) and ISCX – ID 78 - (down) datasets.
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ALR ¼ 0.01 that we used in our experiments and thus are
considered tolerable.
In turn, there are other cases (see IDs from 1 down to 19 in

Table 2) where all predictions are sufficiently safe, thus SSPr
is 100%. In those cases, the FN� (or FN% in Table 2) is lower
than 0.01, which is the ALR we set for this experimental
study. As such, the residual FNs are considered acceptable
without major safety implications.
Noticeably, the last two columns of Table 2 report on

MCC and Accuracy values that are calculated only for the
SSP area. The safety specialist is for sure interested in
understanding the performance of a binary classifier
regarding safety, but it is also interested in understanding
how well the classifier performs in the so-called safe area
where all SSP lie. When SSPr(0.01) ¼ 100%, those scores
equal to the regular MCC and Accuracy scores. However,
it is common to have a quite evident decrease in those
metric values: when FNs co-locate with many TNs, both
predictions fall into the NSSP and thus lower both the
overall amount of FN (which is desirable) and TN, which
instead negatively affects the overall classification perfor-
mance of a binary classifier.

B. ANALYSIS OF TRADITIONAL METRICS

This section elaborates on the contribution of traditional met-
rics in understanding if a binary classifier can be safely

incorporated into a SCS. Table 2 already reports on tradi-
tional metric scores, but cannot provide an overall compari-
son of them. Therefore, we first observe that there are 43
cases – the last one being the LOF algorithm on the UNSW
dataset at ID 43 in Table 2 - in which the SSPr(0.01) is above
90%. This means that for those 43 cases we have no more
than 10% of the overall predictions in the NSSP according to
the distribution analysis. Then, we scan traditional metric
scores to derive the “best” 43 cases for each of those metrics.
This allows drawing Table 3, which contains the number of
cases that have both a SSPr(0.01) bigger than 90% and that
appear in the best 43 values for a given traditional metric. In
a nutshell, the higher the overlap, the more similar a metric is
with respect to SSPr.
Among the top 43 best scoring cases concerning Recall, 36

of them have SSPr(0.01) � 90%; 18 cases appeared in the
top 43 best scoring cases when we applied F-Score(2), while
other metrics show even less overlap. It is easy to note that
more than half of the cases where SSPr(0.01) � 90% did not
appear within the top scoring cases for all traditional metrics
but Recall. The similarity between SSPr and Recall can be
explained as follows: Recall focuses on the proportion of
TPs overall positives (both TPs and FNs), yet it does not
account for their distribution. We already highlighted in Fig-
ures 7 and 9 how a scattered distribution of FNs may trans-
late to a very high Recall but low SSPr(0.01) due to many
FNs that co-locate with TNs (Figure 7), or a binary classifier
with quite poor Recall which instead accumulates FNs in
restricted ranges and thus have high SSPr scores.

C. CORRELATION BETWEEN TRADITIONAL METRICS

AND DISTRIBUTION-BASED METRICS

To provide an even better understanding of the correlation
between traditional metrics and metrics based on distribution,
Table 4 reports the R-Squared (R2) correlations of the met-
rics across all 108 cases, colored with a gradient that reflects
the strength of such correlation: the darker, the stronger.
We can notice how groups of metrics as {AUC, AUCH,

Gini, H-Measure}, {Precision, F1, F2, PR-Gain}, and {FPR,
MCC, KS, Youden, ACC} emerge as tightly correlated
among themselves. More importantly, the table allows quan-
titatively evaluating whether and to which extent SSPr is cor-
related with traditional metrics. It is easy to note that SSPr is
only moderately correlated with Recall.
Importantly, we do not suggest that metrics based on dis-

tribution should replace traditional ones when dealing with
SCSs but rather used in conjunction. It turns out evident
from this analysis that SSPr catches aspects of the behavior
of a binary classifier that are different from existing ones and
therefore should be considered when investigating the

FIGURE 9: Bar chart showing the distribution of predictions

when applying LOF algorithm to the UNSW dataset (ID 43).

TABLE 3. Number of cases that result in a SSPr(0.01)� 90 and that correspond to the best scoring cases for traditional metrics.

R F2 Youden H F1 PR-Gain AUC AUCH Gini P KS MCC ACC FPR

36/43 18/43 16/43 16/43 14/43 13/43 10/43 10/43 10/43 10/43 9/43 6/43 6/43 4/43
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properness of incorporating a binary classifier into a SCS. On
the other side, there are cases that show a perfect (100%)
SSPr but generate many misclassifications, mainly FPs. For
example, compare the applications of the FastABOD and
SVM algorithms to the ADFANet dataset (IDs 1 and 3 in
Table 2 respectively). They both achieve SSPr of 100, but
the former shows an accuracy of 0.993 while the latter
achieves an accuracy of only 0.310 (and MCC ¼ 0). This
last case highlights how the training phase of the SVM algo-
rithm on ADFANet dataset devised a model which always
predicts positive: therefore, there are no FNs (and thus Recall
¼ SSPr(0.01) ¼ 100%) but also there are no TNs, with all
the predictions ending up being either FPs or TPs.

VIII. RELATEDWORKS

Several studies have been proposed suggesting methodolo-
gies, approaches, or processes that focus on the safe incorpo-
ration of binary classifiers into SCS. For example, Varshney
and Alemzadeh [28] discussed four main categories of
approaches/strategies for increasing safety in ML namely:
inherently safe design, safety margins, safe fail, and proce-
dural safeguards. Cheng et al. [29] proposed the nn-depend-
ability-kit that is an open-source tool, which can be used to
support data-driven engineering of Neural Networks (NN)
for safety-critical systems.
Borg et al. [11] conducted a review concerning the state-

of-the-art verification and validation methods for automotive
systems that rely on ML in general and Deep learning Neural
Networks (DNN) in particular. The authors identified various
key challenges concerning the use of safety-critical DNN
components in the automotive domain. Moreover, Henriks-
son et al. [30] conducted a preliminary exploratory study that
tried to identify which parts of the ISO 26262 - Road
vehicles – Functional safety standard need to be adapted to
allow safety-critical ML development in the automotive
context.

Shafaei et al. [31] investigated several key challenges in
ensuring safety for ML methods in the autonomous driving
domain. They mainly focused on the uncertainty of predic-
tion in ML performance and considered when it might be
originated by i) the ML algorithm (model-dependent); and/or
ii) the training data (data-dependent). They categorized
safety-critical situations originated from this issue into four
different cases, and they propose suggested techniques to
address the challenges in each case.
Burton et al. [32] discussed recent challenges involved

in assuring the safety of Highly Automated Driving
(HAD) functionalities that rely on binary classifiers, and
they proposed applying an assurance case approach to
argue the safety of such HADs. Moreover, Sherin et al.
[33] conducted a systematic mapping concerning the test-
ing of ML algorithms aiming to provide a detailed discus-
sion on research gaps and future recommendations. Based
on their study, they concluded that although there is a
significant increase in the number of publications con-
cerning the testing of ML, only a few tools are publicly
available and there is not enough empirical evidence to
assess and compare them.
Picardi et al. [34] developed several “general” patterns to

be used while developing assurance arguments for demon-
strating the safety of the ML components deployed in a SCS,
and they proposed a process to be followed in each stage of
the ML lifecycle to create the assurance cases for ML compo-
nents. Gauerhof et al. [35] discussed the assurance of the safe
performance of Machine Learnt Models (MLMs) that are
operating in the automotive domain. They proposed a five
stages lifecycle process concerning MLM that includes
requirements elicitation, data management, model learning,
model verification and model deployment. Further, they eval-
uate their proposal against a pedestrian detection at crossings
example.
On the other hand, Biondi et al. [36] propose a visionary

software architecture that allows using deep learning algo-
rithms in safety-critical systems by integrating diverse tech-
nologies (e.g., hypervisors, run time monitoring, redundancy
with diversity, fault recovery). However, the authors listed
and discussed several challenges that hinder the realization
of the proposed architecture. Hossin and Sulaiman [37] sys-
tematically reviewed and highlight the shortcomings of vari-
ous metrics (e.g., accuracy, sensitivity, recall) that are used
for evaluating classifiers. Moreover, the authors suggested
several aspects that must be considered when constructing a
new metric for classification such as the metric should not be
too complex to be implemented, has a feasible computational
cost, can favor the minority class, etc. Hicks et al. [38] con-
ducted a study on how various metrics can be interpreted dif-
ferently depending on the context and the purpose of the
study. To demonstrate that, they selected five different stud-
ies and they recalculate the metrics used in these studies, and
also calculate other metrics (called “missing” that includes
less commonly used metrics such as Negative Predictive
Value (NPV), Threat Score (TS) that can be derived from the

TABLE 4. R-Squared correlations of different metrics. Dark back-

ground points to cells with strong correlations.
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confusion matrix) in each of selected studies. The authors
concluded that using only a subset of metrics could give a
false impression of a model’s actual performance, and
explained how the studied metrics should be interpreted.
Sheh, R. [39] criticizes the use of traditional ML metrics

for evaluating the performance of ML systems incorporated
in intelligent robots., and presented several aspects of perfor-
mance that should be considered when evaluating ML sys-
tems to avoid being misled by the results of traditional
metrics, including: 1- failure details that aims at understand-
ing where failures happen, which is more important than just
measuring the failure rate; 2- trade-off invariant performance
measures as there are inevitably tradeoffs to be made
between different metrics of performance (e.g., FPs and
FNs); 3- important and unimportant failures, as some failures
in performance may be easily corrected by decision-making
stages and, thus, optimizing for them represents a wasted
trade-off (e.g., FP in our study); and 4- other characteristics
(e.g., explainability, transparency, interpretability, and cor-
rectability). In the same line, Salman et al. [40] suggest that
any metric for evaluating an ML model built for a security
application should satisfy two requirements: 1- the mistakes
made by misclassifying attack and benign activities should
not be treated equally; and 2- correctly classifying a sample
in a class should not be the same as a mistake made by mis-
classifying in the same class. The authors further developed
a metric, namely Safety Score that satisfies the two require-
ments, and extends the accuracy metric by adding weights to
each of the four classes of the confusion metrics.
Aydemir, O. [41] proposes a new metric for evaluating the

performance of a classifier, namely polygon area metric
(PAM) that uses six traditional metrics including accuracy,
sensitivity, specificity, AUC, Jaccard index, and F-measure
to generate a polygon, then, calculates its area that produces
the result of PAM. However, PAM is a general-purpose eval-
uation metric that was not developed with safety in mind.
Moreover, its six considered metrics are basically based on
the four classes of the confusion matrix. Finally, Samake and
Boulmane [42] propose to evaluate the reliability of deep
learning models through the concept of acceptance, rejection,
and abstain zones that can be defined through two thresholds.
Then, the prediction is accepted, for the acceptance zone.
Otherwise, it is rejected for the reject zone and not consid-
ered for the abstain zone. This approach, although close to
the idea of our earlier work [43], does not consider how the
predictions are distributed. Moreover, when applied by the
authors, its results were not promising as there were very few
predictions in the acceptance as well as the rejection zones.
Accordingly, almost all predictions fall within the abstain
zone.
Most of these works provide general solutions (one size

fits all) without considering the special aspects/characteris-
tics of the domain of disclosure, which may heavily influ-
ence the desired safety requirements to be achieved by the
ML-based component. As discussed earlier, some incorrect
predictions can be of higher cost for some SCS since they

may lead to catastrophic incidents. Therefore, any solution
for the safe incorporation of ML algorithms into SCS
should consider the special aspects/characteristics of the
domain of disclosure.

IX. CONCLUDING REMARKS

A. THREATS TO VALIDITY

We discuss here the different threats to the validity of this
study:

� Internal validity is concerned with factors that may have
influenced the investigated factors, but they have not
been considered in the study. In particular, it would be
interesting to elaborate on how the completeness of the
features and their balanced distribution in the training
set may influence the performance of binary classifiers.

� External validity is concerned with to what extent the
results of the study can be generalized. Our study
started by motivating an analysis of binary classifiers
based on the distribution of their scores, which applies
to any binary classifier. In the experimental evaluation,
we considered 12 unsupervised binary classifiers that
have been applied to 9 public attack datasets and did
not account for supervised nor semi-supervised ML
algorithms nor datasets from other domains. However,
the choice of the binary classifiers and datasets related
to SCSs for experiments was needed only to prove the
importance of distribution-based analysis. Therefore,
our choices in the experimental campaign do not limit
the generalization of our findings.

� Reliability validity is concerned with to what extent the
study is dependent on the researcher(s), i.e., if other
researchers conducted the exact same study, the result
should be almost the same. The results of the experi-
ment including all metric scores are publicly available
at https://bit.ly/3aysI4i, and any researcher can repeat
the experiments and she/he should get similar results.

B. CONCLUSION

In this paper, we discussed and experimentally tried to assess
the properness of incorporating ML algorithms that perform
binary classification into Safety-Critical Systems using vari-
ous commonly used metrics as well as two new metrics we
defined, namely SSPr and NPr. We carefully analyzed the
overall results of the experiment to widen our knowledge
about how we can assess the properness of incorporating
binary classifiers in SCS. We have empirically demonstrated
the applicability of the SSPr and NPr metrics, and based on
their scores, the performance of binary classifiers in 43 out of
the overall 108 cases showed the potential to be incorporated
into the SCS used as our case study. Moreover, it was clear
that commonly used metrics may not be appropriate for
assessing the performance of binary classifiers concerning
safety. Additionally, such performance might be highly influ-
enced by the dataset they are applied to. Our study focused
mainly on FNs as the type of incorrect prediction that has the
highest cost and should be avoided. However, we cannot
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exclude the idea that for some SCS both types of incorrect
predictions (FN and FP) might have the same cost, or even
only FP might be the incorrect prediction of the highest cost
for other SCS. To evaluate the performance of binary classi-
fiers for such systems, the developed metrics can be tuned
concerning the incorrect prediction(s) of interest.

C. FUTUREWORKS

For future work, we aim to deeply investigate the main rea-
sons for the scattered distribution of FNs. Understanding this
problem will allow minimizing the NSSP area, which may
significantly improve the performance of binary classifiers
concerning safety. We intend also to understand how we can
increase the contrast between the scores of negative and posi-
tive predictions [44], which might improve the performance
since it separates better those two classes. As binary classi-
fiers are trained on data that are susceptible to data poisoning
attacks, whereby malicious users inject false data points
intending to skew the learned model, we intend to investigate
how we can assure that the used dataset(s) are not compro-
mised in a way that influences our proposed approach. Build-
ing on our work concerning meta-learning [45], we are
planning to extend our proposed approach beyond the evalu-
ation of simple classifiers to evaluate the performance of N-
version binary classifiers concerning safety. Finally, we want
to research how feature selection impacts the performance of
binary classifiers concerning safety.
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