DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL'INFORMAZIONE

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.disi.unitn.it

SCIENTIFIC KNOWLEDGE OBJECTS V.1

Fausto Giunchiglia and Ronald ChenuAbente

January 2009

Technical Report # DISI-09-006

Scientific Knowledge Objects v.1

Fausto Giunchiglial, Ronald Chenu-Abente'

1
University of Trento, Dipartimento di Ingegneria e Scienza dell'Informazione,
31800 Trento, Italy
{fausto, chenu} @disi.unitn.it

Abstract. This document introduces the SKO and its associated structures as a
response to the needs of a collaborative platform for the creation, dissemination
and publication of Complex Artifacts and also as an option to the current paper-
centered scientific publication practices. The approach presented is based on
three Organization levels (Data, Knowledge and Collection) and also three
States (Gas, Liquid, Solid) that regulate the properties and operations allowed at
each level.

Keywords: Complex Artifacts, Paper Publishing, Data organization,
Knowledge, Collection, Liquid, Solid, Gas.

A Knowledge Artifact is an object created as a result of an activity which encodes
knowledge, the understanding or awareness gained beyond data. On the other hand,
Complex Artifacts are those that are composed from several simpler Artifacts that
have been made into a single coherent unit. Examples of these Complex Knowledge
Artifacts include scientific papers, books, and journals, among others.

In this document define and detail the Scientific Knowledge Object (abbreviated as
SKO) introduced at the Liquidpub proposal [1]. These will become the unit that will
be used to represent the Complex Knowledge Artifacts in the context of the
Liquidpub project.

As a direct response to the current problems and deficiencies treated in the Publish
and Perish paper [2], the following are among the most important properties of the
SKO:
® Complex structure: because SKOs may contain different types of data (texts,
spreadsheets, images, videos, etc) along with its corresponding metadata.
® Composabilty and Reusability: a SKO built from lower-level structures
which, at the same time, may be used by several other SKOs.
® FEvolvability: either the SKO as a whole or its different components can
change and evolve over time.
® Facilitate collaborative work: the previous properties like evolvability and
composability greatly facilitate the creation of SKOs as collaborative effort
between different actors.

Along with the SKO other two main structures will be introduced; the SKOnodes
which represent the data pieces that the SKO brings together; and the SKOsets, which
represent collections and aggregations of other structures.

mailto:LNCS@Springer.com

Each of these structures represents a different conceptual and organizational level,
as displayed at the next table:

Table 1. The three proposed levels of organization

Level Name Unit Purpose

1 Data SKOnodes Organize data

Joining and Ordering of data and knowledge to to

2 Knowledge SKOs propose new knowledge.

3 Collection SKOsets Categorize related data and knowledge

Furthermore we add a different dimension to this three-leveled organization
approach by introducing three States; Gas, Liquid and Solid; a metaphor to the States
of physical matter itself. Each of the mentioned States can be assigned to each of the
mentioned organizational level structure, which fundamentally changes their
properties and allowed operations.

This document will start with introduction of the three levels of organization;
Data(Chapterl), Knowledge(Chapter2) and Collection(Chapter3); along with other
additional structures(Chapter4) that complement the previous three.

The State dimension will be introduced (ChapterS) detailing the purpose and
properties introduced by each state, along with a treatment of the change-state
operations for the defined structures. Finally, (Chapter6) will deal with the Basic
Operations for the structures, always detailing how the current State of the structure
affects it.

More information about SKOs and the Liquidpub project can be found at the
Liquidpub project homepage [3].

1 The Data Representation Level

Data organization is the most basic level of organization and its final objective is to
organize the data into semantically linked nodes. It does so by taking each data piece,
adding a metadata structure along with an unique id URL and links to create relations
between these nodes. The final result of this process is the creation of a Directed
Acyclic Graph (DAG) that includes all the original data.

The chapter will first give the definition of the basic unit of this level, the
SKOnode, along with its components and it will also present considerations about the
structures that can be built by using these SKOnodes.

1.1 SKOnode Definition

This section will define the SKOnodes, the node structure to be used to organize data
at this level. The following graphical representation gives a basic idea of the
components of the SKOnode structure:

URL ID-----—-------mmmm- I
Metadata-—————————- » \

Physical Data . — .. »

Linked SKOnodes -~ —————__. »

Fig. 1. Graphical representation of a SKOnode

More specifically, a SKOnode N is defined as:

N =<URL, MD, PD, {LinkedNs}> . 1)

Where:

URL: provides a unique identifier to the node.

MD: metadata attributes that are used to contain information related to the

node and its descendants. The general structure and function of metadata and

attributes will be given later on section 4.1.

As an additional requirement for the SKOnode's MD:

O State: a unique attribute with the Name or Label “State” must always be
defined. Furthermore, its value must be either “Gas”, “Liquid” or
“Solid”. More information about State and its uses will be given later on
Chapter 5.

PD: PhysicalData points to the actual Data of the node which for example,

could be a html file, a filesystem file, etc. Nodes with empty or null values of

PD are not allowed.

{LinkedNs)}: a possibly empty (0...n) set of the SKOnodes pointed by the

current node.

The links from {LinkedNs} carry a semantic meaning, as all the nodes inside

of the LinkedNs set from N are considered to be “Part of” N in such way

that P{LinkedNs}N holds.

An additional requirement is related to the {LinkedNs} component:

O Cycle exclusion: For each node Nn to be added to the set {LinkedNs}, a
non-empty directed path that starts and ends on Nn must not exist.

Depending on the decided implementation of the previous structure, all the other
components that come after MD can be chosen to be implemented as attributes
contained in MD.

Some basic examples of single SKOnodes include text, data sets, stimuli, figures,
images and other non-Complex Artifacts.

1.2 SKOnode Semantic Structure

Based on the previous definition, this section will introduce the interactions and
structures that are made possible by the joining and interaction of SKOnodes

Starting from a Complex Artifact A with d1, d2, ..., dn representing all its data (for
example, text, images, etc.) it is possible to create SKOnodes by adding an URL and a
metadata structure to each of A's data units (Nn = <URLn, MDn, dn, 0>). This
process could be represented as in the following image:

Fig. 2. Conversion of data units into SKOnodes, the light blue portion of each node represents
the metadata of the node while the bottom yellow part represents its data.

To join these nodes and contain general information about them a Root node Nr =
<URLr, Mdr, dr, {N1, N2, ..., Nn}> can be created. Note how this node's {LinkedNs}
is defined in such way that it has “Part of” links to each of the originally defined Nn
nodes. With the introduction of a root, the resulting structure can be further refined by
reordering the nodes and giving more depth to the structure according to the actual
contents of each node.

Though it may seem that by applying the previous procedure a Tree will always be
created, the SKOnode definition does not forbid linking to the same node from
multiple ones. Semantically this means that each node may be “Part of” of two or
even more nodes, allowing the resulting structure become a rooted DAG instead.

The previous leads us to the following lemma:

If A is a Complex Artifact then for all A a rG exists such that rG is a 2)
rooted DAG of SKOnodes and it includes the same data as A.

For example, when transforming a document with a clearly defined Title, Chapters
and Paragraphs of text into SKOnode rooted DAG, the result cab be a structure
similar to the one in the following example:

Root

Chapters

Paragraphs
or Images

Fig. 3. Example of a SKOnode structure resulting from the conversion of a Complex Artifact

The SKOnode-based semantic structures are particularly interesting because, when
writing complex documents, authors that take a top-bottom approach can first define
their index(high-level nodes) and work on its refining (creating lower level nodes).
On the other hand, authors that take a bottom-up approach would not have problems
creating several unrelated nodes of data to later join them with the creation of higher-
level nodes.

1.3 The Universal SKOnode Graph

The last section showed how to represent any Complex Artifacts as a rooted DAG of
SKOnodes, the aim of this section is the creation of a single structure from several
Complex Artifacts.

There are two main ways in which multiple Complex Artifacts, already converted
into rooted DAGs of SKOnodes, can be made into a single structure:

1. Sharing of nodes: if two Artifacts share some data (for example, a piece of
text, a table or an image), a single SKOnode can be created to represent the
shared data and linked to by the nodes from both Artifacts.

Thus, the shared SKOnode effectively joins both Artifacts and the resulting
structure is a SKOnode DAG.

2. Creation of a common higher-level node: with no shared data between two
Artifacts, a new SKOnode can be created and linked to the root of two or
more SKOnode DAGs.

Thus, higher-level SKOnode effectively joins the Artifacts in a single
SKOnode DAG.
Applying these joining procedures with the lemma (2) leads us to the following
lemma:

If U represents a set of Complex Artifacts {Al, A2, ..., An} then for all U a 3)
G exists such that G is a SKOnode DAG and it includes the same data as U

As an example, of the previous consider the following image:

(1) (e) fio)
OO OO
(W) (el)

Fig. 4. Three separate Complex Artifacts represented as SKOnode rooted DAGs

The three Complex Artifacts from the previous figure can be joined into a single
DAG by:

Creation of
higher-level

Sharing of nodes
i &

Fig. 5. Three separate Complex Artifacts joined into a single SKOnode DAGs

The SKOnode level is then able to represent all the data from an arbitrarily large
set of Complex Artifacts into a Universal Data Graph which contains all the
information of the original Complex Artifact Set as a SKOnodes related by the “Part
of” relation.

2 The Knowledge Representation Level

The second level in this approach is the Knowledge Level and it is built on top of the,
previously defined, Data Level. Knowledge represents the understanding or
awareness gained through data as opposed to the data itself, which just represents
facts and descriptions.

One of the objectives of this level is to organize the data nodes into Knowledge
Objects, and it does so by picking a node from the Universal Graph Structure, making

it the root of a rooted DAG and adding global metadata on top of it. As such, while
the Data Level may be a DAG, each Knowledge Level structure has only their
personal rooted DAG from the universal DAG.

However, besides the organization of data nodes, the objectives of the Knowledge
Level also include to provide the tools to enable evolution, collaboration and the
composition of existing Knowledge into new propositions of Knowledge.

The chapter will first give the definition of the basic structure of this level, the
SKO, along with its components, and then it will also introduce its Serialization
Structure.

2.1 SKO Definition

This section will define the SKOs or Scientific Knowledge Objects which is the basic
structure to be used for organization at this level.

The following graphical representation gives a basic idea of the components of the
SKO structure:

URL D L
Metad ata--—-------------- >
SKOnode — - N

Fig. 6. Graphical representation of a SKO

More specifically, a SKO S is defined as the following ordered 5-tuple:

S= <URL, GMD, N>. @)

Where:
® URL: provides a unique identifier for the SKO as a whole.
® GMD: Global Metadata contains SKO related information. The GMD is
defined as a set of attributes, in the same way as the MD component from
SKOnodes was.
Additional requirements for the SKO's GMD include:
O State: a unique attribute with the Label or Name ““State” must always be
defined. Furthermore, its value must be either “Gas”, “Liquid” or
“Solid”. More information about State and its uses will be given later on
Chapter 5.

O Serialization Structure: a unique attribute with Label or Name
“Serialization Structure” must be defined and its value must also be
defined.

® N:is a SKOnode, as defined in the previous chapter. This node is taken as
the root of a rooted DAG of SKOnodes from which the SKO will be built.
Depending on the decided implementation of the previous structure, all the other
components that come after GMD can be chosen to be implemented as attributes
contained in GMD.

Some basic SKO examples include papers, books, presentations, photo albums,
recordings among other Complex Artifacts.

2.2 SKO Serialization Structure

Based on the previous definitions, this section will introduce the SKO Serialization
Structure and its relation to the previously treated SKOnode Semantic Structure.
Continuing with the example shown on figure 3 from section 1.2, we will assume
that we have a document with a clearly defined Title, Chapters and Paragraphs and
we want to represent that as a SKO. By making S = <URL, GMD, Nr> a SKO is now
wrapped around the whole structure and adds Global Metadata (GMD) to it.
The following image is an example of the result:

Fig. 7. Conversion of the data tree of Figure 3 into a SKO, the light blue box represents the
SKO's GMD while the yellow box contains an extended view of the node pointed at by the
SKO and its descendants

This SKO keeps its semantic from the SKOnodes intact, as each link still
represents the “Part of” relation.

However if presented “as is” to a human user, its branching nature may make it
difficult to read and understand. The solution for this problem is the definition of
something that would turn the rooted Graph from the previous image into a list, like
the following image:

Fig. 8. Serialization structure for the previous document example

Just like in the previous chapter, Nr represents the document's Root(containing the
Title and other general information), N1, N5 and N7 represent the introduction of
each chapter, while the bottom nodes represent its paragraphs. Thanks to the
Serialization Structure the document is now ordered in a much more understandable
way to human users. We will call this list-like structure the Serialization Structure
(SS) of a SKO S. This SKO Serialization Structure is defined as the ordered n-tuple:

SS=<NI, N2, ..., Nn>. (5)

Where each of the components of the n-tuple represents a SKOnode that is either
N, the root node pointed by the SKO, or one of his descendants.

The most common use for the Serialization Structure is to “assemble” the SKO
into a format that is much more understandable to humans.

2.3 Composing SKOs

One of the main objectives of this level is to help the proposition of knowledge based
on previously existing knowledge. An example of this is the creation of a book that
arranges, presents and discuses several previously existing Artifacts.

To achieve this is necessary to define a way of linking SKOs in such way that a
child SKO C can be said to be part of parent SKO P. This linking is done in the two
levels we currently presented.

Data Level Linking. To create a data-level link between the SKOnodes from two
SKOs its only necessary that one SKOnodes belonging to the parent SKO links to the
root of the child SKO. An example of this procedure is shown in the next figure.

B
()
OIO),

_

Mode-level
linking

()
(12)re)

Fig. 9. Example of a Link of the SKOnodes belonging to two different SKOs

Note that a data-level link between two SKOs only ensures that the data is shared
between SKOs but it doesn't say anything about how this data is ordered, its context
or the knowledge that this data may propose.

Knowledge Level Linking. To create a knowledge-level link between two SKOs it is
first necessary that a data-level link exists. Once that requirement is complied, a
“Composes” SKOlink from the Parent SKO to the child SKO can be created to
establish the knowledge-level link. For more information about SKOlinks please refer

to chapter 4.3.

An example of this procedure is shown in the next figure.

.
()
OO

.
(n)
(n) e

SKO-level
linking

-

Composes

Fig. 10. Example of the composition of two SKOs

A Knowledge-level link ensures that the Child SKO is presented as part of the
Parent SKO exactly as it was presented individually. For this reason, when creating a
Serialization Structure for a SKO that composes other SKOs it is mandatory to follow
the same Serialization Structure of the original children SKOs.

If at any moment this requirement is deemed too strict and the data from the child
SKO wants to be used on a different way than it was in the original SKO, its only
necessary to break the knowledge-level link (deleting the SKOlink) while still
keeping the data-level link.

3 The Collection Representation Level

The third and final level of organization in this approach is the Collection Level, built
on top of both the, previously defined, Data and Knowledge Levels. Collections here
represent a grouping of data and/or knowledge that have some shared significance
with each other.

One of the objectives of this level is to group related structures. It does so by
defining a set of conditions that selects a set of objects and adding global metadata on
top of that selection.

While these collections also organize data and knowledge as the previously defined
structures, the weaker semantic relation between its components makes them ideal for
category-like uses like bookmarks and workspaces. Furthermore unlike the previously
defined levels, resolving which objects are included is resolved intensively (by
conditions) and dynamically (at run-time, for example).

The chapter will first give the definition of the basic structure of this level, the
SKOset, along with its components and considerations.

3.1 SKOset definition

This section will define the SKOset which is the basic structure to be used for
organization at this level.

The following graphical representation gives a basic idea of the components of the
SKOset structure:

URL ID--—--=---mmmmmeen »I
metadoto-—————» [T
|
Set of e » | {IncludedConds)
Conditions i

Fig. 11. Graphical representation of a SKO

More specifically, a SKOset S is defined as the following ordered triplet:
Sset = <URL, GMD, {IncludedConds}> 6)

Where:
® URL: provides a unique identifier for the SKOset as a whole.
® GMD: Global Metadata contains SKOset related information. The GMD is
defined as a set of attributes, in the same way as the metadata component
from SKOnodes and SKOs were.
As an additional requirement for the SKO's GMD:
O State: a unique attribute with the Label or Name “State” must always be
defined. Furthermore, its value must be either “Gas”, “Liquid” or
“Solid”. More information about State and its uses will be given later on
Chapter 5.
® [IncludedConds}: is a possibly empty (0..n) set of conditions. These
conditions can be used to pick sets of either SKOnodes, SKOs or
SKOsets(albeit with cycle prevention considerations in the last one).

Depending on the decided implementation of the previous structure, all the other
components that come after GMD can be chosen to be implemented as attributes
contained in GMD.

Furthermore, please note that the SKOset is the first structure in this document that
has a recursive definition, meaning that SKOsets themselves may be a part of a
SKOset. This composability helps the Collection Level to consolidate its position as
the last level of organization in this approach.

Some basic examples of SKOsets are personal bookmarks, workspaces, categories
and even search result sets.

4 Complementary Definitions

With the basic structures of the three-level organization approach already covered at
the previous chapters, this chapter will focus on describing some other objects and
structures that complement the approach.

Specifically, the chapter starts dealing with the metadata and attribute-definition to
later focus on links between the defined structures. Structures related to Authors and
types of SKO-based structures (SKOtypes) will also be briefly touched but their
definition will be left for future works

4.1 Metadata and Attributes

Metadata and attributes were briefly mentioned as part of the structure definitions
from the last three chapters. In particular, MD from the SKOset and both GMD from
the SKO and the SKOset are defined as a set of attributes:

MD = GMD ={A})

Where A represent attributes. Attributes, in turn, are defined as:

A=<URL,L, T, V, O, D> 8
Where:

® URL: provides an identifier for the attribute.

® [: attribute label in Natural Language, implemented as a string.

® T attribute type, this is implemented as a closed list of options. This
component determines the acceptable range and format of the accepted
values for V. This component may be used to denote:
O Simple types: like integer, float, etc, or
O Complex types: like date/time and user defined binary-based ones, with

specific formats expected from them.

® V: attribute value, limited by T and implemented as a string or binary.

® O: possibly empty offset, this is used on some attributes to specify the start
of the specific portion of data to which the attribute refers to. Having Offset
set to an empty or nil value, means that the attribute itself applies to the
whole object and not to a specified part of it

® D: possibly empty duration, along with offset this specifies the exact part of

the data to which the attribute refers to. Having Offset defined and Duration
set to an empty or nil value means that the attribute itself applies from the
part of the object specified by Offset until the end of that object.

Basic use of metadata includes format-specific attributes, which identify and carry
information about the specific format in which the Physical Data is encoded; semantic
information, which carries the subjects and meaning related to the Physical Data; and
special attributes that may carry annotations, links to other sources or instructions on
how to render the data, among others applications.

Metadata-linked Data. For text-based Artifacts like papers, items like Author, Title,
and references are difficult to classify as exclusively belonging to the data or
metadata category because they seemingly act as both in the following ways:

as data: the author, title and references can be actually written in the text of
the document and as such they form part of the data of the SKO.

® a5 metadata: author, title, etc, are in fact a classic example of metadata and
form part of several metadata specifications.

As a solution to this situation, Metadata-linked Data defines a way to make certain
values that are contained in specific metadata attributes to also appear in the data of
the Artifact they represent. The exact specification of how this is achieved will be left
for further works but an indication of it will be given here.

To implement Metadata-linked Data the definition of a suitable Markup language,
that introduces these references to the object's metadata attributes from within the
object's data, would be necessary.

For example, assume that we have the following attribute A = <URL,
“main_topic”, string, “Computer Science”, 0, 0> within the metadata of an object
which has a written text defined as its data. When the time to write the main subject
of the text within the text itself comes, instead of writing “Computer Science” again,
the author may choose to write “%main_topic%” instead. In this example the used
Markup language prints the value of the attribute with its label included between the
percentile signs instead of interpreting the string literally.

4.2 SKOlinks

Besides the “Part of” links, which were presented at the SKOnode definition, no
relational object or link between structures has been treated up to this point.

However, the interactions which exist externally between the Artifacts and Authors
and internally between these two groups themselves, also contain information about
these structures that its deemed interesting to capture.

As such this section will introduce SKOlinks whose main purpose is representing
the existing relations between all the previously defined structures.

The following graphical representation conveys the basic idea behind SKOlinks:

Relation
Name
Source P Destination

(offset, duration) (type, offset, duration)

Fig. 12. Graphical representation of a SKOlink

More specifically, a SKOlink Link is defined as:

Link = <URL, Rname, Source, Soffset, Sduration, Destination, Dtype, Doffset, 9
Dduration> .

Where:

URL: provides a unique identifier to the type.

Rname: name of the relation, this is implemented as a closed list of options,

for example “is related to”, “references”, “links to”, etc. Furthermore, the

available options depend on the type of object they are linking.

Source: URL of the SKO, SKOnode, SKOset or Author that is the source of

the link.

Soffset: possibly empty, used to specify the start of the part of the source that

starts the link.

Sduration: possibly empty, used along with Soffset to specify the portion of

the source that starts the link.

Destination: URL of the SKO, SKOnode, SKOset or Author that is the

destination of the link.

Dtype: deals with the multi-version aspect of the link. In the current

definition it can take either the value:

O “Current”: meaning that the link refers to the latest accepted version of
the object linked,

O “Newest”: meaning that the link refers to the newest version of the
object linked, or

O “Strict”: meaning that the link refers to the exact object linked.

Doffset: possibly empty, used to specify the start of the portion of the

destination that is being linked to.

Dduration: possibly empty, used along with Doffset to specify the portion of

the destination that is being linked to.

SKOlinks are what are used, for example, on a web Artifact to link to another web
Artifact, or in text Artifacts to reference other Artifact. Another less visible use of
SKOlinks is to create semantic relations between SKOnodes, SKOs, SKOsets and
Authors. The following table is an example of possible SKOlinks:

Table 2. Examples of possible predefined Rname values based on the structures it links

Source type | Destination type Rname Purpose
SKO SKO “reference” Reference from one work to another
SKO SKOset “is included in” State that a certain work is included in a

certain collection

Author SKO “is collaborator of”

State that a person has collaborated for
the creation of a certain work

Author Author “is colleague of”

State that a certain collaboration exists
between two persons

A complete listing of all the relations and its details for each of the objects will be
made available at future works.

5 The State Dimension

Just like in the physical world the same matter has very different properties and
behaviors depending on the state it is in, the general properties and allowed operations
of each of the previously defined three main structures of the approach vary greatly
depending on the value of their State property.

The definition of this State dimension and its interaction with the previously
defined structures is the main objective of this chapter.

5.1 Purpose of each State

This section will introduce each of the three proposed states; Gas, Liquid and Solid,
along with their most important properties and their overall purpose.

Table 3. Summary of properties of each of the three States

Property/State Gas State Liquid State Solid State
Development Level Early Tentative Finalized
. Conventional
Main Purpose Internal development Feed.back e}nd P artial publishing and mass
dissemination . ..
dissemination
Immediate work- General public or
Target Development partners .
group target audience
e Frequent and Correction batches P
Modification Interval unordered based on feedback No modifications
Contributions Loosely tracked Strictly tracked No modifications

Each of these States will be discussed with more detail in the following
subsections.

The Gas State. Structures at the Gas state are mainly used as the starting point for
changes and evolution. The following list contains the main characteristics of
structures in the Gas state:
® Modifications overwrite: each of the modifications done to the objects in the
Gas state can partially or fully overwrite the previous existing information.
® [oosely tracked modifications: in this state it is expected that authors
introduce frequent and significant changes, many times overwriting
previously existing information. This makes difficult the keeping of a fine-
grained detail of the changes introduced and the level of collaboration from
the authors.

Authorship: since modifications are not strictly tracked and information can
be overwritten, Authorship for a Gas object cannot clearly be determined by
the system. Authors themselves are charged to define their participation level
at the creation of the object.

Maturity of information: the information from Gas object is deemed as
preliminary. As such, Gas objects are not generally considered worthy of
being cited or referenced and carry no significant impact for the Authors.
For development or close-knit collaboration: the preliminary evolving ideas,
the frequent and loosely tracked modifications and authors having to define
collaboration themselves, all of these factors point to a very reduced number
of trusted collaborators working on the Gas State object.

The current equivalent to Gas SKOs would be the work-in-progress documents that
are written by individuals or relatively small teams. Because of its preliminary nature,
they are frequently treated with relative secrecy (particularly on research or business
cases). Concrete examples include regular MS Word or LaTeX files and on-line
collaborative editing tools like Google Docs.

The Liquid State. Structures at the Liquid State are still evolving and being modified
by their original creators, however this process is a lot more ordered than in the Gas
State. Liquid objects can also be opened for collaboration and discussion within a
group of people, mirroring some sort of closed (or open depending on the owner)
Beta Test from the Software Development world. The specific characteristics of
structures at the Liquid State are the following:

Modifications version: on the Liquid State each of the modifications
introduced to the object creates a new version of it. This is fundamentally
different to the Gas State modification where information is overwritten.
Strictly tracked modifications: the modifications are expected in this state are
normally batch of corrections and medium/small additions. As such, not only
each modification can be is attributed to a specific author and a specific date/
time but these modifications are also reversible.

Authorship: thanks to the strict tracking of modifications, it is possible
accurately determine the collaboration level of the Authors that participated
on the creation and modification of the Liquid object.

Additionally in the Liquid State objects, it is possible for the Authorship to
gradually change in time as new collaborations are added.

Maturity of the Information: the information from Liquid objects is normally
considered to be of Draft or Request-for-Comment quality and is expected to
contain relatively stable content. As such, Liquid objects can be cited and
quoted and may even influence the Author's standing in his community

For partial dissemination and feedback: the previous characteristics enable
the Liquid objects to better coordinate and keep track of the collaborations
and authors which, in turn, enables them to be opened to a larger group of
people for early dissemination or for obtaining feedback.

While we already introduced work-in-progress documents as an existing example
of Gas state objects and the next subsection will deal with the Solid objects which are
very similar to the current publications, there is no current existing example of the
Liquid State objects described in this approach. The closest existing example are the
widely used Software Repositories from the software development world and Wiki-
like content managing approaches.

As such one of the main objectives and added value of this approach is the
introduction the Liquid State objects as a bridge between currently existing and
widely used Gas-like and Solid-like objects.

The Solid State. Structures at the Solid State have finished their evolution and are
ready to be disseminated to the world. The specific characteristics of structures at the
Solid State are the following:
® No Modifications allowed: no modifications are allowed to be made to a
Solid State object, nor direct versioning of it is allowed. As such there are no
modifications to track in this state.
® Authorship: the authorship of a Solid object remains fixed and unequivocally
defined from the moment of its creation.
® Maturity of the Information: the information from Solid objects is normally
considered to have the highest grade of maturity and treated as of being of
release quality. The previous, along with the general stability offered makes
the Solid State object the most adequate for citing, quoting and influencing
the Author's standing and prestige.
® For publishing and general dissemination: the “rigidity” of the Solid State is
especially appropriate for public releases and dissemination.
The current publication system works exclusively on these Solid objects, they are
the most common and visible types of objects.

5.2 State Change Operations
State change operations are used to make any of the previously defined structures

create a copy of itself on a different State. The following figure illustrates the
different states and the transitions that are possible between them:

Dissemination

Fig. 13. State transition diagram for SKOnodes, SKOs and SKOsets

Based on the previous figure the following operations can be identified:

Gas to Liquid Transition: used normally to open a draft or early work to a
bigger amount of people and to obtain feedback, comments and ideas from
them.

Liquid to Solid Transition: used to publish or make a release of a work that
has been previously opened for feedback, discussed and probably
collaborated upon by a group of people.

Gas to Solid Transition: used to publish or make a release of a work directly
without going through an open feedback phase.

Liquid to Gas Transition: used to create a directly editable copy of a work
that is currently under discussion and collaboration from others. The
objective of such copies is normally to introduce major changes on the
previously mentioned work.

Solid to Liquid Transition: used to create a versionable copy of a currently
published work. The objective of such copies is to collaboratively introduce
small refinements to the previously mentioned work.

Solid to Gas Transition: used to create a directly editable copy of a currently
published work. The objective of such copies is normally to introduce major
changes on the previously mentioned work.

5.3 Structure Specific Considerations

This section will detail the State change operations for each of the introduced
structures (SKOnodes, SKOs and SKOsets).

In general each transition is implemented as the creation of a new object which is
the copy of original structure in the target State. However the process has its
particularities involved on each case, which will be detailed in the next subsections.

SKOnode State Transitions. SKOnodes are the only structure that points directly to
data and are affected if this data is changed.

On every State Transition a new SKOnode will be generated that is initially a copy
of the original SKOnode (on transition duplication). However the data itself will not
be copied or duplicated during the State Change operation. Instead the data will only
be copied or duplicated when the operations applied to it are incompatible between
the different SKOnodes that point to this data (on modification duplication).

The following figure exemplifies both cases.

Upgiate Updated
To Solid
_________ 1. " T
Duplication of Update data Duplication of
structures happens | request arrives data happens

Fig. 14. SKOnode duplication and data duplication example

The previous image is split in three significant moments:

1. Note that on the State transition only the structure itself (ie. Metadata and
other components) is copied but the data itself is not copied (both nodes
point to the same unchanged data N)

2. When an update request for the data pointed by the two nodes is detected a
conflict arises because the Gas SKOnode allows the modification but the
Solid SKOnode does not.

3. The conflict is resolved by the auto duplication of the data, the Solid
SKOnode is left pointing to the original unmodified data while the Gas
SKOnode points to the changed data.

SKO State Transitions. SKO transitions are implemented normally, by creating a
duplicate of the original SKO.

However, SKOs refer to SKOnodes instead of directly pointing to data, the
particularity brought up by this fact is that SKOnodes also have their own State which
may or may not be equal to the SKO that contains it.

In general, it is not allowed for any of the SKOnodes pointed by the SKO's
Serialization Structure (that are the ones directly used by it) to be on la less restrictive
state than the SKO itself. More specifically:

® When a SKO changes to a Liquid State, all the SKOnodes in its Serialization
Structure that are on the Gas State will also be transitioned to the Liquid
State.

® When a SKO changes to a Solid State, all the SKOnodes in its Serialization
Structure that are on either the Gas or Liquid State will also be transitioned
to the Solid State.

The following image gives an example of this process:

biq

| Fepol seD
SapolU pin

Liguid nodes” Solid nodes | Solid nodes

Fig. 15. Example of a SKO state transition

This precaution is in place to make sure that operations that are forbidden on a
given State are not introduced into the Knowledge Level(SKOs) through the Data
Level(SKOnodes).

On the other hand there is not any issue with SKOnodes being on a more restrictive
State than its SKO. More specifically as SKOs in the Gas State may point to
SKOnodes in both the Liquid and Solid States and SKOs in the Liquid State, may
point to SKOnodes in the Solid State.

More information about operations and whether they are allowed or forbidden for
each State can be found on the next chapter.

SKOset State Transitions. While SKOs determine their elements statically and by
extensive definitions, SKOsets determine which elements are included in them by
conditions that can be checked dynamically. Furthermore, modifications to a SKOsets
are done on these conditions rather on the content included itself so a much higher
level of independence exist between the structure and its contents.

This particularity makes the safeguards against disallowed operations put up for
the SKOs meaningless for the SKOsets. If any component suddenly changes and no
longer complies with the conditions set by the SKOset, they will be automatically
excluded from the SKOset. The following image gives an example of this process:

® @ To Liquid @ @ moé?ﬂed ®

S1 S2 S1 S2 S1 S2

Fig. 16. State transition of a SKOset and auto exclusion of one of its members

The previous image is split in three significant moments:
1. Note that even though the SKOset changes its state, all the structures it
includes remain on their same original state.
2. One of these included structures is changed and this change makes the object
non-compliant with the conditions defined in the SKOset structure.
3. Thus, it is automatically excluded from the SKOset.
This behavior is consistent with the view of SKOsets as Categories or “bag of
things”, rather than being charged with representing Data and Artifacts like the
previous structures.

6 Basic Operations

With all the structures and their States already defined at the previous chapters, this
chapter will focus on the definition of the basic operations for these structures.

While the current State of the structures and the sharing of their multiple resources
will be extensively considered on such definitions, the access and permission issues
will not be. As such, unless explicitly noted, for the purpose of all the operation
definitions contained in this chapter, it will be always assumed that all the necessary
author/user permissions are in place for the operation to happen.

The following table introduces the four Basic Operations for the SKOs, SKOnodes
and SKOsets along with how their Current State affects them:

Table 4. Relation between the State of the SKO, SKOnode or SKOset and their allowed basic operations

State/Op Create Read Update Delete
Gas Yes Yes Overwrites Yes
Liquid Yes Yes Versions No
Solid Yes Yes No No

The justification and details for the values in the previous table will be given in the
next sections.

6.1 Create

The Create operation introduces new instances of structures to the system.
Objects can be created either on:
® Gas State: if they are expected to go through significant changes after their
introduction to the system.
® Liquid State: if their main objective is to be obtain feedback and maybe
collaboration from others.
® Solid State: if their main objective is dissemination and some limited
community-related functionalities.
The Create operation, however, is divided in two sub-operations: Create New and
Create Duplicate, which will be detailed in the following subsections along with other
considerations.

Create New. This operation creates a new URL and initializes the structure's values
according to the passed arguments.
Function Examples:

URL = create_new skonode(Gas, MD, PD, LinkedNs)
URL = create_new sko(Solid, GWD, N)
URL = create_new skoset (Gas, GVD, | ncl udedConds)

Create Duplicate or Fork. This operation creates a new URL for a duplicate of an
existing structure.

Unlike Versioning this new object is considered to be completely detached from
the original. These duplicates are used generally for forks or copies that intend to
extend or deviate from the original.

If we assume that url_source is URL that points to the object that wants to be
duplicated, then Create Duplicate can be implemented by:

1. New URL: obtain an URL url_duplicate for the new object

2. Structure Copy: follow url_source and copy all the structure's content into
url_duplicate

3. Outgoing links copy: copy all the SKOlinks that have url_source as their
source, replacing in each copy url_source with url_duplicate

4. Declare the duplication: create a new “Duplicated from” SKOlink from
url_source to url_duplicate.

) | ()
() (12)) =) (3

An Update request from M2 is forked and each
arrives from R3's owner owneris left with a copy

Fig. 17. Example of Forking of a SKOnode N2 that was previously shared by two different
Author. After the fork, each Author is left with their own exclusive node.

Function Examples:

URL = create_duplicate_sko(Gas, url_source_sko)
URL = create_duplicate_skoset(Liquid, url_source_set)
6.2 Read

The Read operation is used to retrieve information from the existing structures.

This operation is allowed regardless of the current State of the object and its only
dependant on access-control rights.

Function Examples:

SKOnode = read_skonode(url _node)
SKO = read_sko(url _sko)
SKCset = read_skoset (url _set)

6.3 Update

The Update operation introduces changes to already existing structures.
The following list specifies the behavior of the Update operation depending on the
State of the target Structure:

® Gas State: Update is carried out as an Overwriting Update.

® Liquid State: Update is carried out as an Versioning Update.

® Solid State: Update is not allowed.

These two types of Update operations will be detailed in the following subsections

along with other considerations.

Overwriting Update. This is the Update operation that corresponds to the Gas State.
As its name implies the Overwriting Update simply replaces the existing Structure
information with the ones passed by the arguments.

Function Examples:

updat e_sko(url _source_node, GVD, PD, LinkedNs)
updat e_skoset (url _source_node, GVD, | ncl udedConds)

Versioning Update. This is the Update operation that corresponds to the Liquid
State.

Instead of overwriting, this Update operation preserves the original and applies the
update to a copy of it but, unlike Forking, this new object is considered to be another
configuration or development stage of the original object. These versions are
generally used as collaboration and development tools aimed at producing a single
final result.

If we assume that url_source is the URL that points to the object that wants to be
versioned, then the Versioning Update can be implemented by:

1. New URL: obtain an URL url_duplicate for the new object

2. Structure Copy: follow url_source and copy all the structure's content into
url_duplicate

3. Outgoing links copy: copy all the SKOlinks that have url_source as their
source, replacing in each copy url_source with url_duplicate

4. Apply changes: apply the modifications carried by the update operation to
the newly obtained copy.

5. Declare the versioning: the existence of new version is registered in the
corresponding version control structure and a new “Versioned from”
SKOlink from url_source to url_duplicate is created.

Note that the following Function examples are exactly the same as the ones from
the Overwriting Update operation, which means that the current State of the target
object is what decides if an Overwriting or Versioning Update is done.

Function Examples:

updat e_sko(url _source_node, GVD, PD, LinkedNs)
updat e_skoset (url _source_node, GVD, | ncl udedConds)

Update Considerations About External Data Modifications. Besides the direct
modification of the Structures, indirect(outside of the control of the system) Data
Updates may happen to the data pointed by SKOnodes and these have to be detected
and either allowed or denied depending on the State of the SKOnodes that point to it.
To be able to detect and react properly to these external changes it is necessary to
store an internal copy of the Data pointed by the SKOnodes. Assuming that PD
represents the Physical Data pointer to the original data and PDC represents such
Physical Data Copy internal to the system, once a difference is found between the
data pointed by PD and PDC there are three actions that the system needs to consider:

® Allow data modification: if all the SKOnodes pointing to the data allow the
requested modification, the modification is allowed by refreshing PDC from
the current PD.

® Deny data modification: if all of the SKOnodes pointing to the data deny
requested modification, the modification is denied by making PD point to
PDC. This effectively detaches the SKOnodes from the external data source.

® Auto-Fork or Auto-Version: if some of the SKOnodes pointing to the data
allow the requested modification and some of them deny it, then the user is
asked to make a Fork or a Version. The SKOnodes that denied the
modification will detach themselves from the external data source while the
SKOnodes that allowed it will refresh their PDCs.

6.4 Delete

The Delete operation is used to destroy the information and free the memory used by
existing structures.

This operation is only allowed while on the Gas State as the system assumes that
once something has been published or collaborated upon, it can no longer be retracted
or make as it never existed.

Function Examples:

del et e_skonode(url| _node)
del ete_sko(url _sko)

7 Final Words

This document has introduced, SKOs, SKOnodes, SKOsets and other related
structures along with its properties and operations. However all the information
contained here should be treated only as the first version of such specification, as
additional details, specifications and refinements still need to be added in future
versions.

Following the terminology set on this document, this version should be considered
only as a Gas version of the final document.

8 Acknowledgements

This work is part of the Liquid Publications Project[3]. The LiquidPub project
acknowledges the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the European
Commission, under FET-Open grant number: 213360.

References

[1] Liquid Publication: Innovating the Scientific Knowledge Object Lifecycle. Small
or medium-scale focused research project (STREP) Full proposal. Set 2007.

[2] Casati, Giunchiglia, Marchese. Publish and perish: why the current publication

and review model is killing research and wasting your money. ACM Ubiquity. Nov
2006

[3] http://project.liquidpub.org/

http://project.liquidpub.org/

	1 The Data Representation Level
	1.1 SKOnode Definition
	1.2 SKOnode Semantic Structure
	1.3 The Universal SKOnode Graph

	2 The Knowledge Representation Level
	2.1 SKO Definition
	2.2 SKO Serialization Structure
	2.3 Composing SKOs

	3 The Collection Representation Level
	3.1 SKOset definition

	4 Complementary Definitions
	4.1 Metadata and Attributes
	4.2 SKOlinks

	5 The State Dimension
	5.1 Purpose of each State
	5.2 State Change Operations
	5.3 Structure Specific Considerations

	6 Basic Operations
	6.1 Create
	6.2 Read
	6.3 Update
	6.4 Delete

	7 Final Words
	8 Acknowledgements

