
UNIVERSITY
OF TRENTO
DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

A LOGIC FOR CONTRACTS

Massimo Bartoletti and Roberto Zunino

June 2009

Technical Report #DISI-09-034

A Logic for Contracts

Massimo Bartoletti

Dipartimento di Matematica e Informatica

Università degli Studi di Cagliari, Italy

Roberto Zunino

Dipartimento di Ingegneria e Scienza dell'Informazione

Università degli Studi di Trento, Italy

Abstract

We introduce a logic for modelling contractual committment, and

study its properties. Our logic is free from modalities, and instead re-

lies on a peculiar form of implication. In this paper, we discuss proof

theory for our logic. We present a Hilbert-style axiomatisation for our

logic, which is shown consistent. We also provide a Gentzen-style sequent

calculus, and prove it equivalent to our axiomatization. We prove our

logic decidable.

1 Introduction

Security, trustworthiness and reliability of software systems are crucial issues in
the rising Information Society. As new online services (e-commerce, e-banking,
e-government, etc.) are made available, the number and the criticality of the
problems related to non-functional properties of services keeps growing. From
the client point of view, it is important to be sure that, e.g., after a payment
has been made, then either the payed goods are made available, or a full refund
is issued. From the provider point of view it is important to be sure, e.g., that a
client will not repudiate a completed transaction, so to obtain for free the goods
already delivered. In other words, the interaction between a client and a service
must be regulated by a suitable contract, which guarantees to both parties the
properties on demand. The crucial problem is then how to de�ne the concept
of contract, and how to actually enforce it, in an environment - the Internet -
which is by de�nition open and unreliable.

Unfortunately, at the present no widespread technology exists, as well as
no strong theoretical foundation, which gives a general solution to this prob-
lem. Typically, services do not provide the client with any concrete guarantee
about the actual functionality they implement. At best, the service provider
commits himself to respect some �service level agreement�. In the case this is
not honoured, the only thing the client can do is to take legal steps against the
provider (or vice versa). Although this is the normal practice nowadays, it is
highly desirable to reverse this trend. Indeed, both clients and services could
incur relevant expenses due to the needed legal disputes. This is impractical,
especially for transactions dealing with small amounts of money.

1

Contributions. We propose to study the theoretical foundations upon which
constructing a service infrastructure where contracts carry, besides the usual
legal meaning, also a �formal� one. In other words, our contracts will be math-
ematical entities, that specify exactly the rights and the duties of clients and
services. We devise a world of services where clients and service providers can
have precise, mathematical guarantees about the functionality implemented by
a service, and about the assumed side conditions. In the scenario we aim at,
contesting a contract will not necessarily require to resort to a court, yet it will
be an event managed automatically, deterministically and inexpensively, by the
service infrastructure itself.

In this paper we begin our investigation by studying formalisms to describe
contracts. A contract is a binding agreement between two or more parties, that
dictates the duties the involved parties must ful�ll, whenever some preconditions
are satis�ed. Our theory of contracts will be able to infer, in each possible
context, the duties deriving from a given set of contracts.

In Section 2 we give, with the help of an example, some motivations about
the need for a logic for contracts. In Section 3 we characterize this logic through
a set of properties that we would expect to be enjoyed by any logic for contracts.
In Section 4 we synthetise a set of Hilbert-style axioms, that imply all the de-
sired properties. In Section 5 we give further details and examples about using
our logic to model a variety of contracts. In Section 6 we study relations with
other logics, in particular with intuitionistic propositional logic IPC, with the
modal logic S4, and with propositional lax logic. In Section 7 we propose a
sequent calculus for the logic, which is equivalent to the Hilbert system. The
main technical result is in Section 8, where we prove cut elimination for our
sequent calculus. Together with the subformula property (enjoyed by the se-
quent calculus), this paves us the way to prove decidability for the logic. In
Section 9 we discuss some possible future work and extensions to our logic. To
put the developed theory at work, we have implemented a proof search tool,
which decides whether a given formula is a tautology or not.

2 Motivations

Suppose there are two kids, Alice and Bob, who want to play together. Alice
has a toy airplane, while Bob has a bike. Both Alice and Bob wish to play with
each other's toy: Alice wants to ride Bob's bike, and Bob wants to play with
Alice's airplane. Alice and Bob are very meticulous kids, so before sharing their
toys, they stipulate the following �gentlemen's agreement�:

Alice: I will lend my airplane to you, Bob, provided that I borrow your bike.

Bob: I will lend my bike to you, Alice, provided that I borrow your airplane.

We want to make precise the commitments exchanged by Alice and Bob, so
to be able to formally deduce that Alice and Bob will indeed share their toys,
provided they are real �gentlemen� who always respect their promises.

Let us write a for the atomic proposition �Alice lends her airplane� and b for
�Bob lends his bike�. Using classical propositional logic, a straightforward � yet
naïve � formalization of the above commitments could be the following. Alice's
commitment A is represented as the formula b→ a (if Bob lends his bike, then

2

Alice lends her airplane) and Bob's commitment as the formula a→ b (if Alice
lends her airplane, then Bob lends his bike):

A = b→ a B = a→ b

where the symbol → denotes classical implication. Under the hypothesis that
Alice and Bob always respect their promises, both formulas A and B are sound
with respect to our scenario. For the formula A, it is true that whenever b holds
(Bob lends his bike), then a will also hold (Alice lends her airplane). For the
formula B, it is true that whenever a holds (Alice lends her airplane), then b
will also hold (Bob lends his bike).

So, why are we unhappy with the above formalization? The problem is
that, in classical propositional logic, the above commitments are not enough to
deduce that Alice will lend her airplane and Bob will lend his bike. Formally, it
is possible to make true the formula A∧B by assigning false to both propositions
a and b. So, Alice and Bob will not be able to play together, despite of their
gentlemen's agreement, and of the hypothesis that they always respect promises.

The failure to represent scenarios like the one above seems related to the
�standard� interpretation of the Modus Ponens. In both classical and intuition-
istic proof theories, the Modus Ponens rule allows to deduce b whenever a→ b
and a are true. Back to our scenario, we could deduce that Bob lends his bike,
but only after Alice has lent Bob her airplane. One of the two parties must
�take the �rst step� in order to make the agreement become e�ective, that is to
imply the promised duties. In a logic for mutual agreements, we would like �
instead � to make an agreement become e�ective also without the need of some
party taking the �rst step (as we shall see in a while, such party might not even
exists in more complex scenarios). That is, A and B are contracts, that once
stipulated imply the duties promised by all the involved parties.

Technically, we would like our logic able to deduce a ∧ b whenever A ∧ B
is true. As we have noticed above, this does not hold neither in classical nor
in intuitionistic propositional logic, where the behaviour of implication strictly
adheres to Modus Ponens.

To model contracts, we extend intuitionistic propositional logic IPC with a
new form of implication, which we denote with the symbol �. For instance,
the contract declared by Alice, �I will lend my airplane to Bob provided that
Bob lends his bike to me�, will be written b � a. This form of, say, contractual
implication, is stronger than the standard implication→ of IPC. Actually, b � a
implies a not only when b is true, like IPC implication, but also in the case that
a �compatible� contract, e.g. a � b, holds. In our scenario, this means that
Alice will lend her airplane to Bob, provided that Bob agrees to lend his bike
to Alice whenever he borrows Alice's airplane, and vice versa. Actually, the
following formula is a theorem of our logic:

(b � a) ∧ (a � b) → a ∧ b

In other words, from the �gentlemen's agreement� stipulated by Alice and Bob,
we can deduce that the two kids will indeed share their toys.

To make our scenario a bit more interesting, suppose now that a third kid,
Carl, joins Alice and Bob. Carl has a comic book, which he would share with
Alice and Bob, provided that he can play with the other kids' toys. To ac-
commodate their commitments to the new scenario, the three kids decide to
stipulate the following gentlemen's agreement (which supersedes the old one):

3

Alice: I will share my airplane, provided that I can play with Bob's bike and
read Carl's comic book.

Bob: I will share my bike, provided that I can play with Alice's airplane and
read Carl's comic book.

Carl: I will share my comic book, provided that I can play with Alice's airplane
and ride Bob's bike.

Let us write a for �Alice shares her airplane�, b for �Bob shares his bike�,
and c for �Carl shares his comic book�. Then, the above commitments can be
rephrased as: Alice promises a provided that b and c, Bob promises b provided
that a and c, and Carl promises c provided that a and b. In our contract logics,
we model the above agreement as the formula A ∧B ∧ C, where:

A = (b ∧ c) � a B = (a ∧ c) � b C = (a ∧ b) � c

The proof system of our logic will be able to deduce that the three kids will
indeed share their toys, that is, the following is theorem of the logic:

A ∧B ∧ C → a ∧ b ∧ c

It it interesting to compare the speci�cation above, which uses contractual im-
plication, with a speci�cation which uses, instead, standard implication. Let:

A′ = (b ∧ c)→ a B′ = (a ∧ c)→ b C ′ = (a ∧ b)→ c

Clearly, in this case we cannot deduce A′ ∧ B′ ∧ C ′ → a ∧ b ∧ c. This scenario
provide us with a further insight about contractual implication. Reconsider
for a moment the scenario with only two contracting parties, modelled with
standard implication: (a→ b) ∧ (b→ a). We have shown above that, in such a
situation, a single party can make the agreement e�ective, e.g. Alice can take the
�rst step, and lend her airplane to Bob (then, by Modus Ponens, Bob will lend
his bike to Alice). Instead, in the extended scenario (modelled with standard
implication), it is no longer the case that a single party can take the �rst step
and achieve the same goal. For instance, assume that Alice decides unilaterally
to share her airplane. Even by doing that, Alice will have no guarantee that
she will eventually be able to play with the other kids' toys. This is because,
with standard implication, setting a to true would transform A′ ∧ B′ ∧ C ′ into
(c→ b)∧(b→ c), which clearly implies neither b nor c. To make their agreement
e�ective, at least two of the three parties must use contractual implication in
their commitments (while the other one can use standard implication).

This observation can be generalised to a scenario with n contracting parties,
where one can show that at least n−1 parties must use contractual implication.

3 Desirable properties

We now discuss some desirable properties of a logic for contracts, as well as some
other properties that � instead � are undesirable. In the next section, we will
show an axiomatisation that enjoys all the properties marked here as desired.

As shown in the previous section, a characterizing property of contractual
implication is that of allowing two contracting parties to �handshake�, so to

4

make their agreement e�ective. This is resumed by the following handshaking
property, which we expect to hold for any logic for contracts:

(p � q) ∧ (q � p) → p ∧ q (1)

A generalisation of the above property to the case of n contracting parties is
also desirable. It is a sort of �circular� handshaking, where the (i + 1)-th party,
in order to promise some duty pi+1, relies on a promise pi made by the i-th
party. In the case of n parties, we would expect the following:

(p1 � p2) ∧ · · · ∧ (pn−1 � pn) ∧ (pn � p1) → p1 ∧ · · · ∧ pn (2)

As an example, consider, an e-commerce scenario where a Buyer can buy
items from a Seller, and pay them through a credit card. The contracts issued
by the Buyer and by the Seller could be e.g.:

Buyer: I will click �pay� provided that the Seller will ship my item

Seller: I will ship your item provided that I get the money

To �ll the gap between the Buyer and the Seller, there is a Bank which manages
payment, with the following contract:

Bank: I will transfer money to the Seller provided that the Buyer clicks �pay�.

Let the atomic propositions ship, clickpay, and pay denote respectively the facts
�Seller ships item�, �Buyer clicks pay�, and �Bank transfers money�. Then, the
three contracts above can be modelled as follows:

Buyer = ship � clickpay Bank = clickpay � pay Seller = pay � ship

Then, by the handshaking property (2), we obtain a successful transaction:

Buyer ∧ Bank ∧ Seller → pay ∧ ship

Note that, in the special case that n equals 1, the above �circular� handshak-
ing property turns into a particularly simple form:

(p � p) → p (3)

Intuitively, (3) can be interpreted as the fact that promising p provided that p,
implies p (actually, also the converse holds, so that promise is equivalent to p).

A generalisation of the scenario of the previous section to the case of n kids
is also desirable. It is a sort of �greedy� handshaking property, because now a
party promises pi only provided that all the other parties promise their duties,
i.e. p1, . . . , pi−1, pi+1, . . . , pn. The greedy handshaking can then be stated as:∧

i∈1..n

(
(p1 ∧ . . . ∧ pi−1 ∧ pi+1 ∧ . . . ∧ pn) � pi

)
→ p1 ∧ · · · ∧ pn (4)

As shown by (1), a contract p � q becomes e�ective, i.e. implies the
promise q, when it is matched by a dual contract q � p. Even more directly,
p � q should be e�ective also in the case that the premise p is already true:

p ∧ (p � q) → q (5)

5

In other words, contractual implication should be stronger than standard impli-
cation, i.e. we expect that the following is a theorem of any logic for contracts:

(p � q)→ (p→ q) (6)

On the other hand, we do not want that also the converse holds, since this
would equate the two forms of implication:

(p→ q)→ (p � q) NOT A TAUTOLOGY

We want contractual implication to share with standard implication a num-
ber properties. We discuss some of them below. First, a contract that promises
true (written >) is always satis�ed, regardless of the precondition. Then, we
expect the following tautology:

p � > (7)

However, di�erently from standard implication, we do not want that a con-
tract with a false precondition (written ⊥) always holds.

⊥� p NOT A TAUTOLOGY

So see why, assume that we have ⊥� p as a tautology, for all p. Then, it would
also be the case for p = ⊥, and so by the binary handshaking property we would
deduce a contradiction: (⊥� ⊥) ∧ (⊥� ⊥)→ ⊥.

Another property of implication that we want to preserve is transitivity:

(p � q) ∧ (q � r) → (p � r) (8)

Back to our previous example, transitivity would allow the promise of the
Buyer (ship � clickpay) and the promise of the Bank (clickpay � pay) to be
combined in the promise ship � pay.

Contractual implication should also enjoy a stronger form of transitivity. We
illustrate it with the help of an example. Suppose an air-�ight customer wants
to book a �ight. To do that, he issues the following contract:

Customer : bookFlight � pay

The contract states that the customer promises to pay the required amount,
provided that he obtains a �ight reservation. Suppose now that an airline com-
pany starts a special o�er, in the form of a free drink for each customer that
makes a reservation:

AirLine : pay � bookFlight ∧ freeDrink

Of course, the two contracts should give rise to an agreement, because the airline
company is promising a service that is more convenient than the precondition
required be the customer contract. To achieve that, we expect to be able to
�weaken� the contract of the airline company, to make it match the contract
issued by the customer:

AirLine → (pay � bookFlight)

6

Alternatively, one could make the two contracts match by making stronger
the precondition required by the customer, that is:

Customer → (bookFlight ∧ freeDrink � pay)

More in general, we want the following two properties hold for any logic for
contracts. They say that the promise in a contract can be arbitrarily weak-
ened (9), while the precondition can be arbitrarily strengthened (10).

(p � q) ∧ (q → q′) → (p � q′) (9)

(p′ → p) ∧ (p � q) → (p′ � q) (10)

Note that the properties (8), (9) and (10) cover three of the four possible
cases of transitivity properties which mix standard and contractual implication.
Observe, instead, that combining two implications into a contract is not a de-
sirable property of any logic for contracts, for the same reason for which we do
not want standard and contractual implications be equivalent.

(p→ q) ∧ (q → r) → (p � r) NOT A TAUTOLOGY

Another property that should hold is that, if a promise q is already true,
then it is also true any contract which promises q:

q → (p � q) (11)

Of course, we do not want the converse to hold: it is not always the case
that a contract implies its promise.

(p � q)→ q NOT A TAUTOLOGY

4 A Logic for Contracts

In this section we give the basic ingredients of our logic for contracts PCL.
In Sect. 4.1 we present the syntax of PCL; in Sect. 4.2 we provide it with an
Hilbert-style axiomatization. Finally, in Sect. 4.3 we study some interesting
properties of PCL that follow from the given axioms.

4.1 Syntax

The syntax of PCL is a simple extension of IPC. It includes the standard logic
connectives ¬,∧,∨,→ and the contractual implication connective �. We as-
sume a denumerable set {p, q, r, s, . . .} of prime (atomic) formulas. Generic
formulas are denoted with the letters p, q, r, s, . . . (note that the font di�ers
from that used for prime formulas). The precedence of IPC operators is the
following, from highest to lowest: ¬,∧,∨,→. We stipulate that � has the same
precedence as →.

De�nition 1. The formulas of PCL are inductively de�ned by the following

7

grammar.

p ::= ⊥ false
| > true
| p prime
| ¬p negation
| p ∨ p disjunction
| p ∧ p conjunction
| p→ p implication
| p � p contractual implication

We let p ↔ q be syntactic sugar for (p → q) ∧ (q → p). If a formula is �-free,
we say it is an IPC formula.

We use =⇒ for implication in the meta-theory, to avoid confusion with →.

4.2 Proof Theory: Hilbert-style Axiomatization

We now de�ne a Hilbert-style proof system for PCL. The axioms include all
the standard axioms for IPC (see e.g. [9]). Like IPC, we have a single inference
rule, i.e. Modus Ponens. The characterising axioms for PCL are called Zero,
Fix and PrePost .

De�nition 2. The axioms of PCL are presented below.

• Core IPC axioms.

p ∧ q → p ∧1
p ∧ q → q ∧2
p→ q → p ∧ q ∧3
p→ p ∨ q ∨1
q → p ∨ q ∨2
(p→ r)→ (q → r)→ (p ∨ q)→ r ∨3
p→ q → p → 1
(p→ q → r)→ (p→ q)→ p→ r → 2
⊥ → p ⊥
> >
¬p→ p→ q ¬1
(p→ q)→ (p→ ¬q)→ ¬p ¬2

• Contractual implication axioms.

>� > Zero
(p � p)→ p Fix
(p′ → p)→ (p � q)→ (q → q′)→ (p′ � q′) PrePost

• Modus ponens (cut).

p p→ q

q
cut

We write ` p when p is derivable from the axioms and inference rules above.
The contractual implication axioms are actually special cases of the desired

properties of contracts seen in Sect. 3. For instance, axiom Zero is a special
case of (7). Axiom Fix is exactly property (3). Axiom PrePost performs the
function of both properties (10) and (9).

8

4.3 Fundamental Consequences

We present below some signi�cant consequences of the axioms in Def. 2. Note
that these consequences cover all the �desirable� properties discussed in Sect. 3.
To shorten notation, when speaking about non-provability, we write 6` to denote
that a formula is not a theorem in the general case, i.e. for all the instantiations
of the metavariables. E.g. we write 6` p→ p ∧ q to mean ¬∀p, q. ` p→ p ∧ q.

Lemma 3. Contractual implication is strictly stronger than implication.

` (p � q)→ (p→ q) (12)

6` (p→ q)→ (p � q) (13)

Proof. For (12), assume that p � q and p hold. Hence, q → p trivially holds.
By using PrePost on q → p,p � q, and q → q, we get q � q. We then conclude
q by Fix .

We anticipate in (13) a negative result that can be mechanically veri�ed
using the decision procedure of Lemma 50.

Below, we establish some further connections between � and →, which
generalize the transitivity of �.

Lemma 4. Contractual implication is transitive. More in detail, we have the
following interactions between � and →.

` (p � q)→ (q � r)→ (p � r) (14)

` (p→ q)→ (q � r)→ (p � r) (15)

` (p � q)→ (q → r)→ (p � r) (16)

6` (p→ q)→ (q → r)→ (p � r) (17)

Proof. Properties (15,16) are direct consequences of PrePost, and the trivial
r → r and p→ p.

For (14), we apply Lemma 3(12) to p � q, so obtaining p→ q. Then we can
apply (15) to conclude.

We anticipate in (17) a negative result that can be mechanically veri�ed
using the decision procedure of Lemma 50.

The distributivity laws of � are quite peculiar. As for standard implica-
tion in IPC, ∨-distributivity holds in only one direction (18,19). Instead, while
∧-distributivity holds in both directions in IPC for standard implication, con-
tractual implication only satis�es one direction (20,21). However, a related
property holds (22).

Lemma 5. Distributivity laws.

` (p � q) ∨ (p � r)→ (p � (q ∨ r)) (18)

6` (p � (q ∨ r))→ (p � q) ∨ (p � r) (19)

` (p � (q ∧ r))→ (p � q) ∧ (p � r) (20)

6` (p � q) ∧ (p � r)→ (p � (q ∧ r)) (21)

` (p � q) ∧ (q � r)→ (p � (q ∧ r)) (22)

9

Proof. For (18), assume (p � q) ∨ (p � r). If p � q holds, we apply PrePost
to weaken q to q ∨ r. The p � r case is similar.

For (20), assume p � (q ∧ r). By PrePost , it is then easy to obtain both
p � q and p � r.

We anticipate in (19,21) some negative results that can be mechanically
veri�ed using the decision procedure of Lemma 50.

For (22), assume the hypotheses. We apply Lemma 3 to q � r and obtain
q → r, hence q → (q ∧ r). By PrePost on p � q, we obtain the thesis.

Lemma 6. Substitution of equivalent formulas.

` (p↔ p′)→ (q ↔ q′)→ (p � q)→ (p′ � q′)

Proof. Apply PrePost to p′ → p, p � q, and q → q′.

The following lemma states a su�cient condition and a necessary condition
for p � q to hold. These conditions are expressed in IPC, i.e. they make no
use of �. We will return on these in Def. 21,23 and related results, where we
will prove that, when p, q are IPC formulas, these conditions are actually the
weakest su�cient condition and the strongest necessary condition that can be
expressed within IPC (Lemma 25).

Lemma 7. Contractual implication admits the following su�cient condition
and necessary condition.

` q → (p � q) (23)

` (p � q)→ ((q → p)→ q) (24)

Proof. For (23), assume q. We conclude by PrePost on p→ > (trivial), >� >
(by Zero), > → q (by q).

For (24), assume p � q and q → p. By PrePost , we have q � q, so we
conclude by Fix .

The following lemma justi�es our choice of IPC as the basis for our logic. The
lemma shows that using CPC instead would make our contractual implication
much less interesting.

Lemma 8. Denote with `C p the provability of p in the system of Def. 2
augmented with the axiom of excluded middle (p ∨ ¬p). We have:

`C (p � q)↔ q

Proof. Direct consequence of Lemma 7, since ((q → p)→ q)→ q is a tautology
of CPC (actually, it is the well-known Peirce's law).

The following two lemmata are about �handshaking� of n contracting parties.
Lemma 9 speaks about �circular� handshaking where the i-th party relies on the
promise made by the i−1-th party, as in (2). Lemma 10 is a stronger version of
this, because it allows each party to rely on the promises made by all the other
parties, as in (4).

Lemma 9. (Handshaking) For all n ≥ 0 and for all p0, . . . , pn:

` (p0 � p1)→ · · · → (pn−1 � pn)→ (pn � p0)→ (p0 ∧ . . . ∧ pn)

10

Proof. Assume all the hypotheses. By repeated application of Lemma 4, we
have pi � pi for all i ∈ 0..n. We then conclude by Fix .

Lemma 10. (Greedy handshaking) For all n ≥ 0, for all p0, . . . , pn, and
for all i, j ∈ 0..n:

`
∧
i

((∧
j 6=i

pj

)
� pi

)
→
∧
i

pi (25)

Proof. By induction on n. The base case n = 0 is simple: (> � p0) → p0 is
proved by applying PrePost to >� p0, hence obtaining p0 � p0 and concluding
by Fix .

In the inductive case, assuming that (25) holds for n − 1 we prove it for n.

We assume the hypothesis,
(∧

j 6=i pj

)
� pi for each i = 0..n, and we proceed

to prove the thesis
∧

i pi. First, we prove the following auxiliary result:

pn →
∧
j 6=n

pj (26)

To prove (26), assume pn. Then, we have
(∧

j 6=i pj

)
↔
(∧

j 6=i,j 6=n pj

)
, so

by Lemma 6 we get
(∧

j 6=i,j 6=n pj

)
� pi for i = 0..n − 1. We can apply the

inductive hypothesis (25), and have
∧

j 6=n pj .

Back to the inductive case, we note that since i can be n, we have
(∧

j 6=n pj

)
�

pn. We then conclude by (26,24).

5 Examples

Example 11. The toy exchange scenario from the introduction is modelled as:

` (airplane � bike) ∧ (bike � airplane)→ (airplane ∧ bike)

Indeed, this is a consequence of our axioms, and is a special case of Lemma
9.

Example 12. We now exploit our logic to model a typical preliminary contract
for a real estate sale in Italy.

Assume a buyer who is interested in buying a new house from a given seller.
Before stipulating the actual purchase contract, the buyer and the seller meet
to stipulate a preliminary sale contract, that �xes the terms and conditions of
the purchase. Typically, this contract will indicate the price and the date when
the deed of sale will take place, and it will outline the obligations for the buyer
and the seller. When the preliminary contract is signed by both parties, the
buyer will typically pay a part of the sale price. By the italian laws, if the
seller decides not to sell the house after having signed the preliminary contract
and collected the deposit, she must pay the buyer back twice the sum received.
Similarly, if the buyer changes his mind and decides not to buy the house, he
loses the whole deposited amount.

We model the preliminary sale contract as two PCL formulas, one for the
buyer and the other for the seller. The buyer will sign the preliminary contract

11

(signB), provided that the seller will actually sell her house (sellS), or she refunds
twice the sum received (refundS). Also, the buyer promises that if he signs the
preliminary contract, than either he will pay the stipulated price (payB), or he
will not pay and lose the deposit (refundB)

Buyer : ((sellS ∨ refundS) � signB) ∧ (signB � (payB ∨ (¬payB ∧ refundB)))

The seller promises that she will sign the preliminary contract (signS), pro-
vided that either the buyer promises to pay the stipulated amount, or he
promises to lose the deposit. Also, the seller promises that is she signs the
preliminary contract, then she will either sell her house, or will not sell and
refund twice the sum received.

Seller : ((payB ∨ refundB) � signS) ∧ (signS � (sellS ∨ (¬sellS ∧ refundS)))

A �rst consequence is that the two contracts lead to an agreement between
the buyer and the seller, that is both parties will sign the preliminary contract:

Buyer ∧ Seller → signB ∧ signS (27)

As a second consequence, if one of the parties does not �nalize the �nal deed
of sale, than that party will refund the other:

Buyer ∧ Seller ∧ ¬payB → refundB (28)

Buyer ∧ Seller ∧ ¬sellS → refundS (29)

To prove the above, we proceed as follows. First, we apply transitivity (14)
to Buyer and Seller:

(sellS ∨ refundS) � (payB ∨ (¬payB ∧ refundB))
(payB ∨ refundB) � (sellS ∨ (¬sellS ∧ refundS))

Then, we use PrePost:

(sellS ∨ (¬sellS ∧ refundS)) � (payB ∨ (¬payB ∧ refundB))
(payB ∨ (¬payB ∧ refundB)) � (sellS ∨ (¬sellS ∧ refundS))

So, by Lemma 9, we have that Buyer ∧ Seller implies

(sellS ∨ (¬sellS ∧ refundS)) ∧ (payB ∨ (¬payB ∧ refundB))

By (12) the above and Buyer∧Seller imply signB∧ signS. This proves (27).
Also, the above and ¬payB clearly imply refundB. The same holds for sellS and
refundS. Hence, we establish (28,29).

Example 13. We now describe a possible online sale between two parties. In
order to buy an item, �rst the buyer has to contact the bank and reserve from
his account a speci�c amount of money for the transaction. When this happens,
that amount is no longer available for anything else. We model this reservation
with the formula lock. Then, the buyer has to make an o�er to the seller: this
is modelled with offer. The seller, when provided with an o�er, evaluates it.
If she thinks the o�er is good, and the money has been reserved, then she will

12

send the item (send). Otherwise, she cancels the transaction (abort). When
the transaction is aborted, the bank cancels the money reservation, so that the
buyer can use the amount for other transactions (unlock).

We now formalize the scenario. The buyer agrees to lock ∧ offer, provided
that either the item is sent, or the money reservation is cancelled. The seller
agrees to evaluate the o�er. The bank agrees to cancel the reservation when the
transaction is aborted.

Buyer : (send ∨ unlock) � (lock ∧ offer)
Seller : offer � ((lock→ send) ∨ abort)
Bank : (lock ∧ abort) � unlock

Under these assumptions, we can see that either the item is sent, or the
transaction is aborted and the reservation cancelled.

` (Buyer ∧ Seller ∧Bank)→ (send ∨ (abort ∧ unlock))

To prove this, �rst we apply PrePost to Seller and obtain (lock ∧ offer) �
((lock→ send)∨abort). By property (22) and Buyer, we have (send∨unlock) �
(lock ∧ offer ∧ ((lock → send) ∨ abort)). By PrePost , we weaken it, obtaining
(send ∨ unblock) � (send ∨ (lock ∧ abort)). By Bank and 3, we have (lock ∧
abort) → unlock, as well as (lock ∧ abort) → (abort ∧ unlock). Therefore, by
PrePost we have (send ∨ unlock) � (send ∨ (abort ∧ unlock)). We conclude by
PrePost and Fix .

Example 14. (Dining retailers) Around a round table, a group of n cutlery
retailers is about to have dinner. In the center of the table, there is a large dish
of food. Despite the food being delicious, the retailers cannot start eating right
now. To do that, and follow the proper etiquette, each retailer needs to have
a complete cutlery set, consisting of n pieces, each of a di�erent kind. Each
one of the n retailers owns a distinct set of n piece of cutlery, all of the same
kind. The retailers start discussing about trading their cutlery, so that they can
�nally eat. Since everyone wants to get a fair deal, they want to formalize their
committments.

We can formalize the scenario as follows. We can number the retailers
r1, . . . , rn together with the kinds of pieces of cutlery, so that ri initially owns
n pieces of kind number i. We then write gi,j for �ri gives a piece (of kind i) to
rj�. Since retailers can use their own cutlery, we assume gi,i to be true. Retailer
ri can start eating whenever ei =

∧
j gj,i .

Suppose that r1 commits to a simple exchange with r2: they commit to
g2,1 � g1,2 and g1,2 � g2,1, and the exchange takes place since g2,1 ∧ g1,2 can
be derived. While this seems a fair deal, it actually exposes r1 to a risk: if
r3, . . . , rn perform a similar exchange with r2, then we have g2,i ∧ gi,2 for all
i. In particular, gi,2 holds for all i, so r2 can start eating. This is however not
necessarily the case for r1, since r3 has not committed to any exchange with r1.

A wise retailer would then never agree to a simple exchange g2,1 � g1,2.
Instead, the retailer r1 could commit to a safer contract1:

g1,1 ∧ g2,1 ∧ · · · ∧ gn,1 � g1,1 ∧ g1,2 ∧ · · · ∧ g1,n

1We include g1,1 = > to make it more homogeneous.

13

The idea is simple: r1 requires each piece of cutlery, that is, r1 requires to
be able to start eating (e1). When this happens, r1 agrees to provide each other
retailer with a piece of his cutlery. Now, assume ech retailer ri commits to the
analogous contract:

ci = ei �
∧
j

gi,j

We can now verify that
∧

i ci →
∧

i ei, that is, the above contracts actually
allow everyone to eat. Assume ci for all i, and de�ne pi =

∧
j gi,j . Clearly,

ci = ei � pi. Note that∧
j 6=i

pj =
∧
j 6=i

∧
k

gj,k →
∧
j

gj,i = ei (30)

since we can choose k = i and gi,i is true. Therefore, by PrePost ,

ci = ei � pi →
(∧

j 6=i

pj

)
� pi

By Lemma 10, since
∧

i ci, we have
∧

i pi. By applying (30) we can conclude∧
i ei.

Example 15. In Sect. 3 we listed several requirements for the notion of con-
tractual implication. A small set of these was then picked as our axiomatization:
Zero, F ix, PrePost. However, we have not yet checked that this is indeed com-
plete with respect to the other requirements. That is, we have to check that all
the requirements are indeed theorems of PCL. We now quickly recall the list of
all these requirements and provide a support for each one.

The handskaking properties (1,2) have been established in Lemma 9. Prop-
erty (3) is the axiom Fix. The �greedy handshaking� (4) was established in
Lemma 10. Property (6) was proved in Lemma 3. Property (7) is a direct
consequence of Zero. Property (8) is proved in Lemma 4. Properties (9,10) are
direct consequences of PrePost. Property (11) is a consequence of axioms Zero
and PrePost.

6 Relations with Other Logics

In this section we explore the relationships between PCL and other logics. We
are interested in possible mappings, to see if there is some way to encode PCL
in some other pre-existing logic. For instance, since PCL is a direct extension of
IPC, one might wonder whether the newly introduced connective for contractual
implication � can be expressed using IPC connectives. We answer to this
question in Sect. 6.1, where we prove that this is not the case.

In Sect. 6.2 we instead explore some mappings to the modal logic S4, by
extending a well-known IPC-to-S4 mapping.

In Sect. 6.3 we discuss about the relations between our logic and PLL, the
propositional lax modal logic. It turns out that our axioms are not su�cient
to make p � • a lax modality. We discuss why extending the axioms in this
direction might prove useful.

14

Finally, we recall Lemma 8, which provides a justi�cation for our use of IPC
as the basis for our logic, since the principle of excluded middle (valid in e.g.
CPC and S4) makes our contractual implication connective trivial.

In the proofs of this section, when we need to check tautologies of IPC or S4,
we shall sometimes resort to an automatic theorem prover. To this purpose, we
used the Logics WorkBench (LWB) [8]. If the reader wishes to read the actual
proofs generated by LWB, in Sect. A.3 we describe how to obtain them.

6.1 Mappings for IPC

We study here the mappings that act homomorphically with respect to each
IPC connective.

De�nition 16. A homomorphic mapping is a function m(•) from PCL to IPC
such that

m(p) = p (pprime)
m(p ∧ q) = m(p) ∧m(q)
m(p ∨ q) = m(p) ∨m(q)
m(p→ q) = m(p)→ m(q)
m(¬p) = ¬m(p)
m(>) = >
m(⊥) = ⊥

Note that m(p � q) is not constrained by the above. A homomorphic mapping
m(•) is sound i� ` p implies `IPC m(p), and is complete i� `A m(p) implies
` p.

We �rst state some basic properties of such mappings.

Lemma 17. If m(•) is a homomorphic mapping, then m(p ↔ q) = m(p) ↔
m(q).

Proof. Trivial expansion of the syntactic sugar for ↔.

Lemma 18. For any homomorphic mapping m(•) and IPC formula p, we have
m(p) = p.

Proof. Trivial structural induction.

The identity provides a sound and complete partial mapping for IPC formu-
las.

Lemma 19. `IPC p =⇒ ` p.

Proof. Trivial, since the Hilbert axioms of PCL are a superset of those of IPC.

We anticipate here a result which will be proved in Sect. 7, namely the
partial completeness of the identity mapping. Note that this actually proces
that PCL is a conservative extension of IPC.

Lemma 20. For any IPC formula p, we have ` p =⇒ `IPC p.

15

Proof. See Lemma 52.

We are aware of several sound but incomplete mappings of PCL in IPC.
Among these, two are peculiar in that they provide the strongest and weakest
interpretations of the connective� in IPC. The formal justi�cation for this
terminology will be provided by Lemma 26.

De�nition 21. The �strongest� �-interpretation, s(•), is de�ned as the homo-
morphic mapping to IPC such that

s(p � q) = s(q)

We now prove the soundness of s, as well as its incompleteness.

Lemma 22. ` p =⇒ `IPC s(p). The converse is false, in general.

Proof. Easy induction on the derivation of ` p.

• If ` p was derived through an IPC axiom, then we use the same axiom to
derive `IPC s(p), since s is an homomorphism.

• If ` p was derived through a � axiom, we have the following subcases.

� Zero: p = >� >. Trivially, `IPC s(p) = >.
� Fix :p = (r � r)→ r. Trivially, `IPC s(p) = s(r)→ s(r).

� PrePost : p = (r′ → r)→ (r � q)→ (q → q′)→ (r′ � q′). Then,

`IPC s(p) = (s(r′)→ s(r))→ s(q)→ (s(q)→ s(q′))→ s(q′)

is easy. Indeed, if we generalize the above by replacing s(r), s(r′), s(q), s(q′)
with distinct prime formulas, the formula still holds, as it can be triv-
ially veri�ed by an IPC theorem prover. We used LWB for this: see
Sect. A.3 for more details.

• If ` p was derived through a cut
p p→ q

q
, then by inductive hypothesis

we have `IPC s(p) and `IPC s(p→ q), the latter being `IPC s(p)→ s(q).

We can then conclude by the cut
s(p) s(p)→ s(q)

s(q)
.

The converse does not hold in general, e.g. for p = (r � q)→ q.

Below, we introduce the �weakest� interpretation w for contractual implica-
tion. This is somehow dual with respect to s, as we shall see in Lemma 25.

De�nition 23. The �weakest� �-interpretation, w(•), is de�ned as the homo-
morphic mapping to IPC such that

w(p � q) = (w(q)→ w(p))→ w(q)

We now prove the soundness of w, as well as its incompleteness.

Lemma 24. ` p =⇒ `IPC w(p). The converse is false, in general.

Proof. Easy induction on the derivation of ` p.

16

• If ` p was derived through an IPC axiom, then we use the same axiom to
derive `IPC w(p), since w is an homomorphism.

• If ` p was derived through a � axiom, we have the following subcases.

� Zero: p = >� >. Trivially, `IPC w(p) = (> → >)→ >.
� Fix :p = (r � r) → r. Then, `IPC w(p) = ((w(r) → w(r)) →

w(r))→ w(r) is simple to prove.

� PrePost : p = (r′ → r)→ (r � q)→ (q → q′)→ (r′ � q′). Then,

`IPC w(p) = (w(r′)→ w(r))→ ((w(q)→ w(r))→ w(q))→ A

where A = (w(q)→ w(q′))→ ((w(q′)→ w(r′))→ w(q′))

can be proved in IPC. Indeed, if we generalize the above by replacing
w(r), w(r′), w(q), w(q′) with distinct prime formulas, the formula still
holds, as it can be trivially veri�ed by an IPC theorem prover. We
used LWB for this: see Sect. A.3 for more details.

• If ` p was derived through a cut
p p→ q

q
, then by inductive hypothesis we

have `IPC w(p) and `IPC w(p→ q), the latter being `IPC w(p)→ w(q).

We can then conclude by the cut
w(p) w(p)→ w(q)

w(q)
.

The converse does not hold in general, e.g. for p = ((q → r) → q) → (r �
q).

Below, we relate the s and w mappings by examining their behaviour on
p � q, where p, q are IPC formulas. Note that the lemma below does not apply
when p, q make use of contractual implication.

Lemma 25. Let p, q be IPC formulas. Lemma 7 provides the weakest su�cient
condition and the strongest necessary condition for p � q that can be expressed
in IPC. That is,

1. If for an IPC formula c we have ` c→ (p � q), then ` c→ q.

2. If for an IPC formula c we have ` (p � q)→ c, then ` ((q → p)→ q)→ c.

Proof. For (1), by Lemma 22, we have `IPC s(c → (p � q)). That is `IPC

s(c)→ s(q), hence by Lemma 18 `IPC c→ q. We conclude by Lemma 19.
For (2), by Lemma 24, we have `IPC w((p � q) → c). That is `IPC

((w(q)→ w(p))→ w(q))→ w(c), hence by Lemma 18 `IPC ((q → p)→ q)→ c.
We conclude by Lemma 19.

Here we justify the terms �strongest� and �weakest� for s and w.

Lemma 26. Let m ≤ n be the preorder over homomorphic mappings m,n given
by

` m(p � q)→ n(p � q) for all IPC formulas p, q

Then, s(•) is a maximum and w(•) is a minimum. That is, w ≤ m ≤ s for
any m.

17

Proof. For s, we need to show that ` m(p � q) → s(p � q). By Lemma 18,
this is ` m(p � q)→ q, which directly follows from Lemma 25:1.

For w, we proceed similarly, using Lemma 25:2.

We proved that s and w are sound homomorphic mappings. Several others
do exist, however. Below, we provide a short table of those known to us at the
time of writing.

m(p � q) = m(q) (s)
m(p � q) = (m(q)→ m(p))→ m(q) (w)
m(p � q) = ¬¬(m(q)→ m(p))→ m(q)
m(p � q) = ¬(m(q)→ m(p)) ∨m(q)
m(p � q) = ((m(q)→ m(p)) ∨ a)→ m(q) for any prime a

The soundness proofs for these mappings are similar to those of Lemma 22
and 24, so we omit them. However no mapping can be complete, as we show
below.

Theorem 27. There is no complete homomorphic mapping to IPC.

Proof. By contradiction, suppose there exists an homomorphic mapping m(•)
such that ` p ⇐⇒ `IPC m(p) for all p. Take p = m(q � r)↔ (q � r) for some
prime q, r. Then m(p) = m(m(q � r)) ↔ m(q � r) = m(q � r) ↔ m(q � r)
by Lemma 17. The last form is trivially provable in IPC, so we can state
`IPC m(p). By the completeness of m(•), we have ` p. Hence

` m(q � r)→ (q � r)
` (q � r)→ m(q � r)

By Lemma 25, we have

` m(q � r)→ r

` ((r→ q)→ r)→ m(q � r)

hence, ` ((r→ q)→ r)→ r. By Lemma 20 we have `IPC ((r→ q)→ r)→ r.
This is however false, since IPC can not prove Peirce's law (not even on prime
formulas).

6.2 Mappings to S4

We shall consider the extensions of a standard ICP mapping to S4 [7, 5].

De�nition 28. An extended mapping to S4 is a function m(•) from PCL to
S4 such that

18

m(p) = �p

m(p ∧ q) = m(p) ∧m(q)
m(p ∨ q) = m(p) ∨m(q)
m(p→ q) = �(m(p)→ m(q))
m(>) = >
m(⊥) = ⊥
m(¬p) = �¬m(p)
m(p � q) = C[m(p),m(q)]

for some �xed S4 formula context C.

We now introduce some technical lemmas.

De�nition 29. A formula p is �-invariant i� `S4 p↔ �p.

Note that the ← direction is actually true for all p.

Lemma 30. If p, q are �-invariant, then m(p∧q),m(p∨q),m(p→ q),m(¬p),m(>),m(⊥),m(a)
(with a prime) are such.

Proof. The cases>,⊥ are trivial. For the other, we proceed as follows. For ∧, we
simply apply `S4 �(a ∧ b) → �a ∧ �b. For ¬,→, a, we apply `S4 �a → ��a.
For ∨, by hypothesis m(p) ∨ m(q) implies (�m(p) ∨ �m(q)), which implies
�(m(p) ∨m(q)).

Lemma 31. Assume that, for all �-invariant p, q, m(p � q) is �-invariant.
Then, for any p, m(p) is �-invariant.

Proof. By structural induction on p. Indeed, all the inductive steps are covered
by either the hypothesis or Lemma 30.

Lemma 32. If a is prime, m(q) is �-invariant, and `S4 m(p), then we have
`S4 m(p{q/a}).

Proof. Clearly, m(p) = C[m(a)] = C[�a] for some context C. So, for the same
context, m(p{q/a}) = C[m(q)]. Since m(q) is �-invariant, the latter is equivalent
in S4 to C[�m(q)] = C[�a]{m(q)/a} = m(p){m(q)/a}. The last formula holds
in S4, by substituting a in `S4 m(p).

We are aware of several sound but not complete mappings to S4.

De�nition 33. The extended mappings e1, . . . , e4 to S4 are de�ned as follows:

e1(p � q) = (e1(q)→ e1(p))→ e1(q)
e2(p � q) = ♦(♦e2(q)→ e2(p))→ e2(q)
e3(p � q) = �(�(e3(q)→ e3(p))→ e3(q))
e4(p � q) = �(�(e4(q)→ ♦e4(p))→ e4(q))

Lemma 34. ei(p) is �-invariant.

19

Proof. By Lemma 31, we only need to check that ei(p � q) is �-invariant
whenever p, q are such. If we write Ci for the contexts such that ei(p � q) =
Ci[ei(p), ei(q)], then it is su�cient to verify that

`S4 (a↔ �a) ∧ (b↔ �b)→ (Ci[a, b]↔ Ci[a, b]) (31)

and then conclude by substituting the prime formulas a, b. Formula (31),
for each i, can be easily veri�ed. A simple way to do it is to use a S4 theorem
prover. We used LWB for this: see Sect. A.3 for more details.

Lemma 35. `S4 ei(p � q)↔ ej(p � q) i� i = j .

Proof. This is an easy, albeit long, exercise. See Sect. A.3 for more details.

Lemma 36. The mappings ei(•) are sound, i.e.` p =⇒ `S4 ei(p), for i ∈ [1..4].
The converse is false, in general, so they are not complete.

Proof. We proceed by induction on the derivation of ` p.
If p is an instance of a PCL axiom, by Lemma 31 and 32 it is su�cient to

consider the case of the axiom being applied to prime distinct formulas, since
we can then substitute them to obtain p. Therefore, we check whether ` ei(q)
for each prime instance of each PCL axiom q. This generates a �nite number
of speci�c formulas to verify in S4. Since this is rather long, we resort to LWB
for this task. See Sect. A.3 for more details.

If instead ` p was derived through a cut rule, say
a a→ p

p
, then, by the

inductive hypothesis, we have `S4 m(a) and `S4 m(a→ p) = �(m(a)→ m(p)).
Since �q → q is a tautology of S4, we can have `S4 m(a) → m(p). By the cut
rule of S4, we conclude `S4 m(p).

For the incompleteness result, it is enough to check that `S4 ei(pi) for some
pi such that 6` pi. This was checked using the LWB theorem prover: we refer to
Sect. A.3 for more details.

6.3 Relations with Propositional Lax Logic

Propositional lax logic (PLL) [4] is an extension of IPC with a single modality
#, called lax modality, characterized by the following axioms:

p→ #p #R
p→ #p #M

(p→ q)→ (#p→ #q) #F

These axioms appear to be relevant for contracts. Suppose we have a con-
tract at hand, and reason about its implications. If we read #p as �q is ensured
by the contract�, then the axioms agree with our intuition. Axiom #R states
that true propositions are always guaranteed. Axiom #M states that commit-
ting to a promise is actually a promise itself. Axiom #F is simple: if p is
ensured, and implies q, clearly q must be ensured as well.

One might expect that, if we take a �xed formula c expresing the require-
ments of a contract, and we interpret #q as c � q, then this should satisfy the
axioms above. In other words, we expect # = c � • to be a lax modality (for
any �xed c). However, it turns out that this is not the case in PCL.

20

Under the above de�nition of #, Axiom #R holds, as one can derive it using
PrePost and Zero. Axiom #F is also a special case of PrePost. However, axiom
#M does not hold, because 6` (c � (c � p)) → (c � p). The latter can be
veri�ed through the decision procedure of Lemma 50.

Quite interestingly, sometimes PLL is axiomatized in alternative equivalent
way. Instead of including#F as an axiom, the related inference rule is used,
together with another axiom:

p→ q

#p→ #q
#F

(#q ∧#r)→ #(q ∧ r) #S

Axiom #S does not hold either PCL under our interpretation for #. We
actually already stated this when we discussed property (21).

We shall return on PLL when we discuss future work in Sect. 9.1.

7 Proof Theory: Sequent Calculus

In this section we provide an alternative formalization of PCL, through a sequent
calculus à la Gentzen. Our sequents have the form Γ ` p, where Γ is a �nite set
of formulas. Below, we write Γ, p for Γ ∪ {p}.

Most of the rules for the IPC fragment have been taken from [12], which
features a rule set for IPC without structural rules. This fact turns out to
be quite useful when reasoning about the rule system. Indeed, as in [12], we
are able to establish cut-elimination by applying a reasonably simple structural
induction; we refer to Sect. 8 for the detailed proof. In the IPC fragment
of our rule system below, only rules ¬R and weakR diverge from [12]. This
change was required to establish the subformula property (Lemma 49). Another
minor di�erence from [12] arises from our Γ's being sets rather than multisets;
this is however immaterial, because of the absence of structural rules, and the
admissibility of contraction in [12].

De�nition 37. The Gentzen-style rule system for PCL comprises the following
rules.

21

IPC core rules

Γ, p ` p
id

Γ, p ∧ q, p ` r

Γ, p ∧ q ` r
∧ L1

Γ, p ∧ q, q ` r

Γ, p ∧ q ` r
∧ L2

Γ ` p Γ ` q

Γ ` p ∧ q
∧R

Γ, p ∨ q, p ` r Γ, p ∨ q, q ` r

Γ, p ∨ q ` r
∨ L

Γ ` p

Γ ` p ∨ q
∨R1

Γ ` q

Γ ` p ∨ q
∨R2

Γ, p→ q ` p Γ, p→ q, q ` r

Γ, p→ q ` r
→ L

Γ, p ` q

Γ ` p→ q
→ R

Γ,¬p ` p

Γ,¬p ` r
¬L

Γ, p ` ⊥
Γ ` ¬p

¬R

Γ,⊥ ` p
⊥L

Γ ` >
>R

Γ ` ⊥
Γ ` p

weakR

Γ ` p Γ, p ` q

Γ ` q
cut

Contractual implication rules

Γ ` q

Γ ` p � q
Zero

Γ, p � q, r ` p Γ, p � q, q ` r

Γ, p � q ` r
F ix

Γ, p � q, a ` p Γ, p � q, q ` b

Γ, p � q ` a � b
PrePost

Note that IPC rules have left and right rules for each IPC connective.
Roughly, each connective has right rules for introduction, and left rules for
elimination. Contractual implication instead has a di�erent �avor. Rule Zero
is e�ectively an introduction rule, and has a similar function to the Hilbert
axiom Zero. Similarly, rule Fix is an elimination rule; its function is related
to the Hilbert axiom Fix. Indeed, these rules could be named � R and � L,
respectively. The left/right rule dualism however is broken by rule PrePost.
Of course, its function is that of the Hilbert axiom PrePost. This rule behaves
both as an introduction and an elimination, so is both a right and left rule, in
a sense.

In the rest of this section we study the sequent rule system above. First,
we prove it equivalent to our Hilbert axioms (Th. 40). Then we prove the
redundancy of the weakR rule, i.e. that weakR is admissible in the proof
system composed of all the other rules. More importantly, we also proce the
cut rule redundant, i.e. we prove cut-elimination for our sequent rule system.
As a consequence of cut-elimination, we are able to establish the consistency of

22

the logic (Th. 47), the subformula property (Lemma 49), and the decidability
of `(Lemma 50). We also prove that the rules Zero, PrePost, F ix are not
redundant, as one might expect (Lemma 51). Finally we prove that PCL is a
conservative extension of IPC (Lemma 52).

7.1 Equivalence of the Hilbert and Gentzen Systems

In this section, we establish the equivalence between the two di�erent logical
systems we introduced. We denote with `H p the fact that p is provable from
the Hilbert-style axioms of Def. 2. Similarly, by `G p we denote that ∅ ` p is a
derivable sequent from the Gentzen-style rules of Def. 37. We will then prove
`H=`G .

Lemma 38. `H p =⇒ `G p

Proof. It is su�cient to show that `G holds for all the Hilbert-style axioms, and
that it is closed under modus ponens. The latter is trivially done by cut and
→ R. For the former, we check the �-related axioms, only, since the others are
standard.

• Zero

` >
>R

` >� >
Zero

• PrePost

∆, p′ ` p′
id

∆, p′, p ` p
id

∆, p′ ` p
→ L

∆, q ` q′
id

∆, q, q′ ` q′
id

∆, q ` q′
→ L

∆ = p′ → p, p � q, q → q′ ` p′ � q′
PrePost

p′ → p, p � q ` (q → q′)→ (p′ � q′)
→ R

p′ → p ` (p � q)→ (q → q′)→ (p′ � q′)
→ R

` (p′ → p)→ (p � q)→ (q → q′)→ (p′ � q′)
→ R

• Fix

p � p, p ` p
id

p � p, p ` p
id

p � p ` p
F ix

` (p � p)→ p
→ R

Lemma 39. `G p =⇒ `H p

Proof. It is su�cient to prove the following statement for each rule:
Γ0 `G p0 · · · Γn `G pn

Γ `G p
=⇒ `H

∧
i [
∧

Γi → pi]→
∧

Γ→ p

Then, the lemma follows by induction on the derivation of `G p. Most cases
are standard, so we check only the �-related rules.

23

• Rule Zero: (
∧

Γ→ q)→
∧

Γ→ (p � q).
Assume the hypotheses. By modus ponens, we get q, hence > → q. We
have >� > by Zero. The formula p→ > trivially holds. We then apply
PrePost to reach p � q:

(p→ >)→ (>� >)→ (> → q)→ (p � q)

• Rule PrePost :[(
∧

Γ ∧ (p � q) ∧ a)→ p]∧[(
∧

Γ ∧ (p � q) ∧ b)→ q]→ (
∧

Γ∧
(p � q))→ (a � b).
Assume all the hypotheses. We easily get a → p, p � q, q → b. By
PrePost , we get a � b.

• Rule Fix : [(
∧

Γ ∧ (p � q) ∧ r)→ p]∧ [(
∧

Γ ∧ (p � q) ∧ q)→ r]→ (
∧

Γ∧
(p � q))→ r.
Assume all the hypotheses. We get r → p, q → r, hence q → p. Using
q → p (deduced), p � q (hypothesis), q → q (trivial), we apply PrePost
and get q � q. By Fix , q, hence r.

Theorem 40. `G=`H

Proof. Immediate from lemmas 38 and 39.

7.2 Properties of the Gentzen System

A �rst basic result of our system is that the left-weakening of a sequent, i.e.
augmenting the Γ, is strongly admissible. That is, whenever we have a derivation
for a sequent, we can produce a derivation for the augmented sequent having
the same height.

Lemma 41. If
D

Γ ` p
then

D′

Γ,Γ′ ` p
where D′ has the same height of D.

Proof. It is su�cient to augment each sequent in D with Γ′. It is straightforward
to check that no rule is invalidated by this.

Convention. The above lemma is very frequently used in our proofs. To
avoid continuously referring to it, we adopt the following notation: when we

have
D

Γ ` p
, we simply write

D+
Γ,Γ′ ` p

for the augmented derivation.

The next result is dual to Lemma 41. It states that the right-weakening of
a sequent, i.e. replacing a ⊥ on the right of the turnstile ` with some other
formula , can be performed without using the weakR rule. In other words, rule
weakR is redundant in our system. To prove this, we �rst introduce an auxiliary
lemma.

Lemma 42. If
D

Γ ` ⊥
where D is a weakR-free derivation, then we also have

Γ ` p with a weakR-free derivation, for any p.

Proof. By induction on the height of the derivation D. The last step of D must
be one of id, cut, F ix or a left rule. If a left rule or a cut has been used, the thesis
is either trivial (¬L,⊥L) or immediately follows by the induction hypothesis. If

24

id has been used, then ⊥ ∈ Γ, and ⊥L su�ces. If Fix has been used, we rewrite
the derivation in the following way:

D0
Γ, a � b,⊥ ` a

D1
Γ, a � b, b ` ⊥

Γ, a � b ` ⊥
Fix =⇒

Γ, a � b, p, a ` a
id

D1′′+
Γ, a � b, p, b ` a

Γ, a � b, p ` a
Fix

D1′

Γ, a � b, b ` p

Γ, a � b ` p
F ix

where D1′ and D1′′ are obtained from the induction hypothesis on D1, and
the formulas p, a respectively.

Note that the transformation above does not introduce new cuts in the
derivation. So, once the cut has been eliminated, the same procedure can elim-
inate weakR, too.

Lemma 43. The weakR rule is redundant.

Proof. It is su�cient to iterate Lemma 42.

Another fundamental result enjoyed by our Gentzen-style rules, is the re-
dundancy of the cut rule. This is a classic cut-elimination result, or Haupsatz,
which is the basis for many of the results in this section.

Theorem 44. (Cut-elimination)The cut rule is redundant.

Proof. See Sect. 8 for the detailed proof.

It is possible to remove both the rules cut and weakR from our system
without a�ecting the generated ` relation.

Theorem 45. The rule set {cut, weakR} is redundant.

Proof. This is not an immediate corollary of the previous results, since removing
a cut from a derivation could force us to include weakR in the new derivation,
and, viceversa, removing a weakR could force us to introduce a cut. However,
by inspecting the proof for Lemma 43, we can see that the weakR-elimination
procedure does not introduce new cuts. So, given an arbirtrary derivation D for
a sequent, by Th. 44 we also have a cut-free derivation D′ for the same sequent.
Then, we can apply the procedure of Lemma 43 to conclude.

In our logic, as for IPC, every negation-free theory Γ is consistent.

Lemma 46. Let Γ be free from ¬,⊥. Then Γ 6` ⊥.

Proof. By contradiction, assume
D

Γ ` ⊥
to be a cut-free derivation. We proceed

by induction on the derivation D, and then by case analysis. The last step of
D can not be id,¬L,⊥L, otherwise Γ is not free from ¬,⊥. If the last step
is another left rule, we have Γ′ ` ⊥ as a premise for some Γ′ free from ¬,⊥
so the inductive hypothesis su�ces. The same applies to Fix. No right rule
can introduce ⊥, so the last step is not a right rule. The same applies to
Zero, PrePost. No other rule exists.

25

Theorem 47. (Consistency)The logic is consistent, i.e. ∅ 6` ⊥.

Proof. Direct consequence of Lemma 46.

Cut-free derivations enjoy the subformula property, stating that all the for-
mulas occurring such a derivation for a sequent appear as subformulas in the
sequent as well. Equivalently, it states that a cut-free derivation of a sequent can
only involve subformulas of that sequent. As a single exception, the derivation
might mention ⊥ while the sequent does not, because of the weakR rule.

De�nition 48. The subformulas sub(p) of a formula p are inductively de�ned
as follows

sub(p) = {p}
sub(⊥) = {⊥}
sub(>) = {>}
sub(¬p) = {¬p} ∪ sub(p)
sub(p ∨ q) = {p ∨ q} ∪ sub(p) ∪ sub(q)
sub(p ∧ q) = {p ∧ q} ∪ sub(p) ∪ sub(q)
sub(p→ q) = {p→ q} ∪ sub(p) ∪ sub(q)
sub(p � q) = {p � q} ∪ sub(p) ∪ sub(q)

The subformulas of a set of formulas Γ is sub(Γ) =
⋃

p∈Γ sub(p).

Lemma 49. (Subformula Property)If
D

Γ ` p
and D is cut-free, then the

formulas occurring in D belong to sub(Γ, p,⊥).

Proof. By a simple induction on D. The property is preserved by every rule.

Note that a {cut, weakR}-free derivation would instead have a more tight
sub(Γ, p) bound.

We can now establish decidability for PCL.

Lemma 50. (Decidability)Γ ` p is decidable.

Proof. We have Γ ` p i� it can be derived without cuts. We can decide the
latter by searching for a shortest derivation bottom-up, exploring the whole
proof space non-deterministically. By the subformula property, cut-free proofs
can only contain sequents having formulas in sub(Γ, p,⊥). This is a �nite set of
sequents: let k be its cardinality. The depth of the search in the proof space can
be limited to k: if there is a taller derivation, it has a sequent occurring twice
in some path, so the proof can be made shorter. This ensures the termination
of the algorithm.

We have implemented the above naïve decision procedure for PCL, develop-
ing a prototype tool, which we used for experimenting with our logic. Since the
proof space is huge, the tool was very helpful in establishing the negative results
for our logic, i.e. 6` p from some given p. We give more information about it in
Sect. A.2.

We can now prove the non redundancy of the �-related rules.

26

Lemma 51. None of the Zero, PrePost, Fix Gentzen rules is redundant.

Proof. First, we carefully examine the proof of the cut-elimination theorem,
and check that the same proof actually establish cut-elimination event in the
rule system whithout any of the rules Zero, PrePost, Fix. This is because
the cut-elimination procedure never introduces a new application of, say, a Fix
rule unless Fix was already present in the original derivation. Similarly, we
can restate the subformula property in these restricted rule systems, as well as
decidability. We therefore have decision procedures for both the full rule system
and each restriction of it, so we can check that indeed some formula is provable
in the full system, but not in the restriction. As it might be expected, it turns
out that to prove the Hilbert axioms Zero, PrePost, Fix in the Gentzen system,
the related rule is necessary. This was checked by a simple modi�cation of our
tool, described in Sect. A.2.

As a nice result of the subformula property, we get that PCL is a conservative
extesion of IPC.

Lemma 52. PCL is a conservative extension of IPC, that is `IPC p ⇐⇒ ` p
for all IPC formulas p.

Proof. The ⇒ part is Lemma 19. For the ⇐ part, if ` p, by Lemma 38 we

have `G p. By cut-elimination and the subformula property, we have
D

` p
where

D make no use of rules Zero, Fix, and PrePost. Since all the other rules are
included in the Gentzen system of IPC, we can state `IPC p.

8 Cut-elimination

In this section we prove cut elimination for the Gentzen system of Def. 37.
In order to do this, we borrow a fairly simple structural induction technique
from [12].2 The whole technique can be described as a recursive algorithm,
transforming a generic derivation into a cut-free one. The algorithm is made of
two recursive routines: a core routine (cut-reduce) and a driver (cut-elim).
The core routine deals with the special case of a derivation ending with a cut
between two cut-free subderivations. We name derivations of this special form
reducible derivations. When provided with a reducible derivation, cut-reduce
produces a cut-free derivation for the same sequent. Exploiting cut-reduce,
the driver cut-elim handles the general case. The actual procedure is shown
in Alg. 1.

2Here, �structural� means that it proceeds inductively on the structure of a derivation in

the Gentzen system.

27

Algorithm 1 Main driver for cut-elimination.

cut-elim

(D0

Γ0 ` p0

D1

Γ1 ` p1

Γ ` p
cut

)
=cut-reduce

(D′
0

Γ0 ` p0

D′
1

Γ1 ` p1

Γ ` p
cut

)

cut-elim

(· · · Di

Γi ` pi
· · ·

Γ ` p
r

)
=

· · · D′
i

Γi ` pi
· · ·

Γ ` p
r (r 6= cut)

where
D′

i

Γi ` pi
=cut-elim

(Di

Γi ` pi

)
The cut-elim driver takes as input a derivation D. First, it applies itself

recursively on the derivations of the premises Di so converting them to the cut-
free ones D′

i. Then, if the last rule r used in D is not a cut, we can apply
the same rule to D′

i to construct a cut-free derivation. Otherwise, r is a cut,
and we are in the special case handled by cut-reduce, so we just invoke it.
The cut-elim driver always terminates since each recursive call is made on a
subderivation.

In the rest of this section, we de�ne the core routine cut-reduce. This
routine makes use of a sophisticated recursion scheme. When invoked as

cut-reduce

(D0

Γ ` p

D1

Γ, p ` q

Γ ` q
cut

)
with cut-free D0, D1

the routine makes several recursive calls, all of them for reducible derivations.
Assume a recursive call is made on a cut having p′ as the cut formula, and D′

0, D
′
1

as the subderivations. Then, one of the following conditions holds:

De�nition 53. Constraints on the recursive calls to cut-reduce:3

1. p′ is a proper subformula of p, or

2. p′ = p and h(D′
0) < h(D0), or

3. p′ = p, h(D′
0) ≤ h(D0), and h(D′

1) < h(D1).

We can state the conditions above as follows: the triple (p′, h(D′
0), h(D′

1)) is
lexicographically smaller than (p, h(D0), h(D1)). It is easy to see that this or-
dering for triples is a well-founded ordering relation, and therefore the recursion
must eventually terminate.

We now proceed to de�ne the cut-reduce routine. This is done by ex-
amining the last rules used in D0 and D1, and covering all the possible cases.
To simplify the presentation, we adopt a compact notation, writing =⇒ for our
reduction, as seen in Alg. 2. The rest of this section will precisely de�ne the
=⇒ relation.

3We let conditions 2 and 3 to overlap, since we use ≤ instead of =. This is done to follow

our actual reduction procedure more closely, as we will see.

28

Algorithm 2 Core routine for cut-elimination.

cut-reduce

(D0

Γ ` p

D1

Γ, p ` q

Γ ` q
cut

)
=D̄

where

D0

Γ ` p

D1

Γ, p ` q

Γ ` q
cut =⇒ D'

and D̄ is obtained by recursively applying cut-reduce to all the cuts in D′.

When we write D =⇒ D′, D is a reducible derivation, and D′ is the result of
the reduction. When we use cuts in D′, they are to be interpreted as recursive
calls to the cut-reduce routine. Of course, we shall take care these cuts
agree with the well-founded ordering discussed above. We document this in the
derivation D′, by writing cutp when we are in case 1 of the enumeration above,
cut0 when we are in case 2, or cut1 when we are in case 3.

8.1 Summary of Cases

To classify all possible cases, we �rst introduce some terminology. Each Gentzen
rule is related to some logical connective. A rule for a generic connective � has
as its principal formulas the formulas occurring in that rule that involve �.
Rules id, weakR and cut have no principal formulas. Both �left� and �right�
rules in the IPC fragment have exactly one principal formula. Rules Zero and
Fix have one principal formula as well. When a principal formula occurs in the
left (resp. right) hand side of the turnstile `we call it a left (resp. right) principal
formula. Rule PrePost has two principal formulas, named left principal and
right principal formulas.

In order to reduce

D0

Γ ` a

D1

Γ, a ` b

Γ ` b
cut

we proceed by case analysis on the last rule used in D0, D1. The derivation
D0can end with a Zero rule, a PrePost rule, a Fix rule, or an IPC rule.
Similarly for D1. These 42cases are further split, according to whether

• the cut formula is the left principal formula of D0 and the right principal
formula of D1 (the essential case),

• is not the right principal formula of D0 (the left commutation case), or

• is not the left principal formula of D1 (the right commutation case).

This classi�cation is rather standard in cut-elimination results, and is used in
[12] as well. Note that the two commutation cases can overlap when the cut
formula is not right/left principal in both D0, D1, respectively. In Table 1, we
cover all the possible cases, and group them whenever the handling is similar.

We now provide a reading key for Table 1. The �rst row describes the case
where D0 ends with Zero. In this case, the cut formula is the right principal for-
mula of D0, and so there is no left commutation case, denoted by @(l). The �rst

29

D0\ D1 Zero PrePost Fix IPC

Zero

@ (l)

@ (e)

*/Zero (r)

Zero/PrePost (e)

*/PrePost (r)

Zero/Fix (e)

*/Fix (r)

@ (e)

standard (r)

PrePost

@ (l)

@ (e)

*/Zero (r)

PrePost/PrePost (e)

*/PrePost (r)

PrePost/Fix (e)

*/Fix (r)

@ (e)

standard (r)

Fix

@ (e)

[Fix/* (l)]

*/Zero (r)

Fix/* (l)

[*/PrePost (r)]

Fix/* (l)

[*/Fix (r)]

Fix/* (l)

[standard (r)]

IPC

@ (e)

[standard (l)]

*/Zero (r)

@ (e)

standard (l)

[*/PrePost (r)]

@ (e)

standard (l)

[*/Fix (r)]

standard (e,l,r)

(e) essential, (l) left commutation, (r) right commutation, [subsumed]

Table 1: Summary of cases for cut-elimination

cell is for the case where D1 ends with Zero as well: this is a right commutation
case which is handled in the same way as PrePost/Zero, Fix/Zero, etc. so we
will have a single case ∗/Zero case for the whole column. The Zero/PrePost
case can be an essential case or a right commutation depending on whether the
cut formula is the left principal formula of PrePost, so we split in two subcases.
The right commutation case ∗/PrePost is also reused in other points in the
same column. The same applies to Zero/F ix. The Zero/IPC case can not
be an essential case, since � never occurs in an IPC rule; so this is a right
commutation.

The second row describes the case where D0 ends with PrePost, and is
similar to the �rst row.

The third row describes the case where D0 ends with Fix. Since Fix has
no right principal formula, there is no essential case in this row, denoted by
@(e). The case Fix/Zero is both a left and right commutation case, which we
arbitrarily chose to handle as a right commutation case. The remaining cases
might be right commutations, but are surely left commutations Fix/∗, so we
handle them in that way.

The fourth row describes the case where D0 ends with an IPC rule. The case
IPC/Zero might be a left commutation (depending on the actual IPC rule),
but is surely a right commutation as well, so we handle it in that way. The case
IPC/PrePost can not be an essential case, since � occurs in no IPC rule; it
might be a right commutation, but is surely a left commutation (no IPC rules
involves �), so we handle it in that way. The case IPC/Fix is similar. The case
IPC/IPC can be either essential, a left commutation, or a right commutation.

We invite the reader to check that Table 1 indeed enumerates all the possible
cases, which can therefore be grouped as follows:

• essential: Zero/PrePost (e), Zero/F ix (e), PrePost/PrePost (e), PrePost/F ix
(e), standard (e)

• left commutations: Fix/∗ (l), standard (l)

• right commutations: ∗/Zero (r), ∗/PrePost (r), ∗/F ix (r), standard (r)

Most cases of the �standard� group are well-known cases for IPC, and are covered
in [12], Appendix 1. This includes, for instance, the essential case ∧R/∧L1, the
left commutation ∧L1/∗, and the right commutation ∗/ ∧ R. Handling these

30

cases here would essentially amount to copying the whole Appendix 1 of [12]
here, and perform some minor notation change, only. Since this would provide
no actual contribution, we will refer to [12] when these cases arise, and omit
them. For completeness, we document in Sect. A.1 how to rephrase [12] in our
notation. Finally, recall that in Def. 37 we diverge from [12] in a few IPC rules,
namely ¬R and weakR. Of course, these rules are involved in standard cases
which are not covered in [12], so we shall provide a reduction for these cases.
The case ¬R/∗ can not be a left commutation, but it can be essential (¬R/¬L);
the case ∗/¬R is instead a right commutation. The case ∗/weakR is a right
commutation, while weakR/∗ is a left commutation.

We now proceed by handling all the cases mentioned above. We sometimes
write Γ(p) instead of Γ to stress that p ∈ Γ.

8.2 The Essential Cases

In these cases the cut formula is (right/left) principal in both the premises of
the cut.

• Case Zero/PrePost

D0
Γ ` q

Γ ` p � q
Zero

D1
Γ, p � q, a ` p

D2
Γ, p � q, q ` b

Γ, p � q ` a � b
PrePost

Γ ` a � b
cut =⇒

D0
Γ ` q

Γ, q ` q
id

Γ, q ` p � q
Zero

D2
Γ, q, p � q ` b

Γ, q ` b
cut1

Γ ` b
cutp

Γ ` a � b
Zero

• Case Zero/F ix

D0
Γ ` q

Γ ` p � q
Zero

D1
Γ, p � q, a ` p

D2
Γ, p � q, q ` a

Γ, p � q ` a
Fix

Γ ` a
cut =⇒

D0
Γ ` q

Γ, q ` q
id

Γ, q ` p � q
Zero

D2
Γ, q, p � q ` a

Γ, q ` a
cut1

Γ ` a
cutp

31

• Case PrePost/PrePost. We can assume (p � q) ∈ Γ.

D0
Γ, a ` p

D1
Γ, q ` b

Γ ` a � b
PrePost

D2
Γ, a � b, x ` a

D3
Γ, a � b, b ` y

Γ, a � b ` x � y
PrePost

Γ(p � q) ` x � y
cut =⇒

D̂0

Γ, x ` p

D̂1

Γ, q ` y

Γ(p � q) ` r
PrePost

D̂0 =

D0+
Γ, x, a ` p

D1+
Γ, x, q ` b

Γ, x ` a � b
PrePost

D2
Γ, x, a � b ` a

Γ, x ` a
cut1

D0+
Γ, x, a ` p

Γ, x ` p
cutp

D̂1 =

D1
Γ, q ` b

D0+
Γ, q, b, a ` p

D1+
Γ, q, b, q ` b

Γ, q, b ` a � b
PrePost

D3+
Γ, q, b, a � b ` y

Γ, q, b ` y
cut1

Γ, q ` y
cutp

• Case PrePost/F ix. We can assume (p � q) ∈ Γ.

D0
Γ, a ` p

D1
Γ, q ` b

Γ ` a � b
PrePost

D2
Γ, a � b, r ` a

D3
Γ, a � b, b ` r

Γ, a � b ` r
F ix

Γ(p � q) ` r
cut =⇒

D̂0

Γ, r ` p

D̂1

Γ, q ` r

Γ ` r
F ix

D̂0 =

D0+
Γ, r, a ` p

D1+
Γ, r, q ` b

Γ, r ` a � b
PrePost

D2
Γ, r, a � b ` a

Γ, r ` a
cut1

D0+
Γ, r, a ` p

Γ, r ` p
cutp

D̂1 =

D1
Γ, q ` b

D0+
Γ, q, b, a ` p

D1+
Γ, q, b, q ` b

Γ, q, b ` a � b
PrePost

D3+
Γ, q, b, a � b ` r

Γ, q, b ` r
cut1

Γ, q ` r
cutp

• standard. As anticipated, we refer to [12] here, but for the case ¬R/¬L,
shown below.

32

• Case ¬R/¬L

D0
Γ, p ` ⊥
Γ ` ¬p

¬R

D1
Γ,¬p ` p

Γ,¬p ` q
¬L

Γ ` q
cut =⇒

D0
Γ, p ` ⊥
Γ ` ¬p

¬R
D1

Γ,¬p ` p

Γ ` p
cut1

D0
Γ, p ` ⊥

Γ ` ⊥
cutp

Γ ` q
weakR

8.3 The Left Commutation Cases

In these cases the cut formula is not a right principal formula in the left premise
of the cut.

• Case Fix/∗.We can assume (p � q) ∈ Γ.

D0
Γ, a ` p

D1
Γ, q ` a

Γ ` a
Fix

D2
Γ, a ` b

∗

Γ(p � q) ` b
cut =⇒

Γ, b, p ` p
id

D1+
Γ, b, q ` a

D0+
Γ, b, q, a ` p

Γ, b, q ` p
cut0

Γ, b ` p
F ix

D1
Γ, q ` a

D2+
Γ, q, a ` b

Γ, q ` b
cut0

Γ ` b
F ix

• standard. As anticipated, we refer to [12] here, but for the case weakR/∗,
shown below.

• Case weakR/∗
D0

Γ ` ⊥
Γ ` p

weakR
D1

Γ, p ` q
∗

Γ ` q
cut =⇒

D0
Γ ` ⊥
Γ ` q

weakR

8.4 The Right Commutation Cases

In these cases the cut formula is not a left principal formula in the right premise
of the cut.

• Case ∗/Zero

D0
Γ ` a

∗

D1
Γ, a ` q

Γ, a ` p � q
Zero

Γ ` p � q
cut =⇒

D0
Γ ` a

D1
Γ, a ` q

Γ ` q
cut1

Γ ` p � q
Zero

33

• Case ∗/PrePost. We can assume (p � q) ∈ Γ.

D0
Γ ` a

∗

D1
Γ, a, x ` p

D2
Γ, a, q ` y

Γ, a ` x � y
PrePost

Γ(p � q) ` x � y
cut =⇒

D0+
Γ, x ` a

D1
Γ, x, a ` p

Γ, x ` p
cut1

D0+
Γ, q ` a

D2
Γ, q, a ` y

Γ, q ` y
cut1

Γ ` x � y
PrePost

• Case ∗/F ix. We can assume (p � q) ∈ Γ.

D0
Γ ` a

∗

D1
Γ, a, r ` p

D2
Γ, a, q ` r

Γ, a ` r
F ix

Γ(p � q) ` r
cut =⇒

D0+
Γ, r ` a

D1
Γ, r, a ` p

Γ, r ` p
cut1

D0+
Γ, q ` a

D2
Γ, q, a ` r

Γ, q ` r
cut1

Γ ` r
F ix

• standard. As anticipated, we refer to [12] here, but for the cases ∗/weakR
and ∗/¬R, shown below.

• Case ∗/weakR

D0
Γ ` p

∗

D1
Γ, p ` ⊥
Γ, p ` q

weakR

Γ ` q
cut =⇒

D0
Γ ` p

D1
Γ, p ` ⊥

Γ ` ⊥
cut1

Γ ` q
weakR

• Case ∗/¬R

D0
Γ ` p

D1
Γ, p, q ` ⊥
Γ, p ` ¬q

¬R

Γ ` ¬q
cut =⇒

D0+
Γ, q ` p

D1
Γ, q, p ` ⊥

Γ, q ` ⊥
cut1

Γ ` ¬q
¬R

9 Conclusions

We have investigated the notion of contract from a logical perspective. To do
that, we have extended intuitionistic propositional logic with a new connective,
that models contractual implication. We have provided the new connective with
an Hilbert-style axiomatisation, which have allowed us to deduce, for instance,
that n contracting parties, each requiring a promise from the other n−1 parties
in order to make its own promise, eventually reach an agreement. Further
interesting properties and application scenarios for our logic have been explored,
in particular in Sect. 3 and 5.

34

The main result about our logic is its decidability. To prove that, we have
devised a Gentzen-style sequent calculus for the logic, which is equivalent to
the Hilbert-style axiomatisation. Decidability then follows from the subformula
property, which is enjoyed by our Gentzen rules, and by a cut elimination theo-
rem, which we have proved in full details in this paper. As a further support to
our logic, we have implemented a proof search algorithm, which decides if any
given formula is a tautology or not.

9.1 Future Work

While designing the logic for contracts proposed in this paper, our main con-
cerns were to give a minimal set of rules for capturing the notion of contract
agreement, and at the same time preserving the decidability of IPC.

We expect that many useful features can be added to our logic, to make
it suitable for modelling complex scenarios, which are not directly manageable
with the basic primitives presented here. Of course, preserving the decidability
of the logic will be a major concern, while considering these extensions. We
discuss below some of the additional features which we think to be more useful
in the future developments of our logic.

First order features. A signi�cant extension to our logic would be that of
extending it with predicates and quanti�ers. This will allow us to model more
accurately several scenarios, where a party issues a �generic� contract that can
be matched by many parties. While this �rst order extension shall force us to
drop the decidability result, we expect to �nd interesting decidable fragments
of the logic, through which modelling many relevant situations.

For instance, consider an e-commerce scenario, where a seller promises to
ship the purchased item to a given address, provided that the customer will
pay for that item. Aiming at generality, we make the seller contract parametric
with respect to the item, customer and address. This could be modelled using
a universal quanti�cation over these three formal parameters:

Seller = ∀item, customer , address :
pay(item, customer , address) � ship(item, address) (32)

Now, assume that a customer (say, Bob) promises that he will pay for a drill,
provided that the seller will ship the item to his address. This is modelled by
the following contract issued by Bob, where the actual parameters remark that
the actual payment is made by Bob, and that the destination address is Bob's.

Bob = ship(drill, bobAddress) � pay(drill,Bob, bobAddress)

Joining the two two contracts above will yield the intended agreement, that is:

Seller ∧ Bob → pay(drill,Bob, bobAddress) ∧ ship(drill, bobAddress)

Principals. As a �rst extension to the logic, we will consider allowing formulae
with a says modality, similarly to [5]. For instance, this will enable us to write:

Alice says (b � a)

35

to represent the fact that Alice has issued a contract, where she promises to lend
her airplane, provided that she borrows the bike (note that the binding between
principals and contracts is represented outside the logic, in the examples shown
so far).

Contract agreements shall then come in a richer �avour, because of the
binding between the contracting parties and their inferred duties, which is now
revealed. Back to our �rst example of Sect. 2, one could expect an handshaking
of the following form:

Alice says (b � a) ∧ Bob says (a � b) → Alice says a ∧ Bob says b

from which it is clear that the duty of Alice is that of lending her airplane, and
the duty of Bob is that of lending his bike. This additional information can be
exploited by a third party (a sort of �automated� judge) which has to investigate
the responsibilities of various parties, in the unfortunate case that a contract is
not respected. For instance, if our automated judge is given the evidence that
Alice's airplane has never been lent to Bob, from the above he will infer that:

(Alice says a) ∧ ¬a

From this, our judge will be able to infer that Alice has not respected her
contract (and possibly punish her), which is modelled by the formula:

Alice says ⊥

Extending our logic with the notion of principal will have some additional
bene�ts, especially when putting it at work in insecure environments populated
by attackers. Actually, an attacker could maliciously issue a �fake� contract,
where he makes a promise that he cannot actually implement, e.g. because the
promised duty can only be performed by another party.

As an example, consider again the �rst order contract in (32). Assume that
an attacker wants to maliciously exploit the seller contract, in order to receive
a free item, and make the unaware customer Bob pay for it. To do that, the
attacker issues the following contract:

FakeBob = ship(10Kdiamond, fakeAddress) � pay(10Kdiamond,Bob, fakeAddress)

Joining the seller and the attacker contracts will then cause an unwelcome sit-
uation for Bob, who is due to pay for a 10K diamond, which will be shipped to
the attacker's address:

Seller ∧ FakeBob → pay(10Kdiamond,Bob, fakeAddress) ∧
ship(10Kdiamond, fakeAddress)

To cope with this situation, we could require that each contract p is signed
by the principal A who issues it, i.e. it has the form A says p.

Revisiting our example with this trick, in the safe case that Bob himself has
ordered the item, we would expect to deduce:

Seller ∧ Bob → Bob says pay(drill,Bob, bobAddress)

In this case, we have a successful transaction, because Bob is stating that he will
pay for his drill. Instead, joining the seller and the attacker contracts produces:

Seller ∧ FakeBob → FakeBob says pay(10Kdiamond,Bob, fakeAddress)

36

Now, it is easy to realize that someone has attempted a fraud, because the
principal who has signed the contract (FakeBob) is di�erent from that who is
due to pay (Bob).

Lax modality. Another possible future direction for our logic would be that
of extending its axioms with those of propositional lax logic [4]. This would
allow for establishing further properties of contracts, which are not implied by
the current PCL axioms.

As an example, assume that Carl issues two contracts. In the �rst contract,
Carl promises to share his comic book (c), provided that he can play with Alice's
airplane (a). In the second contract, Carl promises to share his toy drum (d),
provided that he can play with Bob's bike (b). The conjunction of the two
contracts is modelled by the formula:

(a � c) ∧ (b � d)

With the current formalization of PCL, it is not possible to prove that the
conjunction of the two contracts above implies a �compound� contract, that is
Carl promises to share his comic book and his toy drum, provided that he can
play with both Alice's airplane and Bob's bike.

We plan to extend the logic PCL in order to obtain the following theorem:

(a � c) ∧ (b � d) → (a ∧ b � c ∧ d)

To obtain such behaviour, it is enough to enrich the Hilbert-style axiomatisation
of PCL with the lax axiom #M (see Sect. 6.3), which in our framework will take
the form:

(p � (p � q)) → (p � q)

Of course, also this extension will require to revisit the Gentzen system for PCL,
and to deal with several new cases in the proof of the cut elimination theorem.

Explicit time. Time is another useful feature that may arise while modelling
real-world scenarios. For instance, in an e-commerce transaction, a contract
may state that if the customer returns the purchased item within 10 days from
the purchase date, then she will have a full refund within 21 days from then.

We would like to model such a contract in a temporal extension of our logic,
so to reason about the obligations that arise when the deadlines expire. Back
to our e-commerce example, we could imagine to express the seller's contract
as the following formula, where the parameter t in p(t) tells the point in time
where the �event� p occurs:

Seller(t) : ∀t′ : (pay(t) ∧ return(t′) ∧ t′ < t+10) � ∃t′′ < t′+21 : refund(t′′)

From the point of view of the buyer, the contract says that the buyer is willing
to pay, provided that she can obtain a full refund (within 21 days from the
date of payment), whenever she returns the item within 7 days from the date
of payment:

Buyer(t) : ∀t′ : (return(t′) ∧ t′ < t+10→ ∃t′′ < t′+21 : refund(t′′)) � pay(t)

37

We expect our extended logic able to deduce that, in the presence of an
agreement (i.e. a completed e-commerce transaction) between the customer and
the seller on (say) January the 1st, 2009, if the customer has returned the
purchased item on January the 5th, then the seller is required to issue a full
refund to the customer within January, the 26th. This could be modelled by
the formula:

Buyer(1.1.09) ∧ Seller(1.1.09) ∧ return(5.1.09)→ refund(26.1.09)

There are a number of techniques aimed at the explicit representation of
time in logical systems, so we expect to be able to reuse some of them for
extending PCL. These techniques range from Temporal Logic [3], to more recent
approaches on temporal extensions of authorization logics like [2].

Further logics. The complexity of real-world scenarios, where several con-
cepts like principals, contracts, authorizations, duties, delegation, mandates,
normative, etc. are inextricably intermingled, have led to a steady �ourishing
of new logics over the years. The logics proposed to model such scenarios take
inspiration from well-developed frameworks, like e.g. deontic [1], default [13]
and defeasible logics [10], and extend them with new connectives, modalities,
and axioms e.g. like in [6]. Typically, the obtained logics are extremely complex,
both for using them as modelling tools, and for studying their properties and
proof theories.

While developing our logic for contracts, we have taken a di�erent direction,
that is we have started from a set of desirable properties (see Sect. 3), and we
have devised a minimal set of axioms that support them. Decidability was one
of our main goals, and we managed to prove it for our basic logic. We will keep
on this direction while extending our logic to manage richer scenarios.

Process calculi and contracts. In this paper we have focussed our attention
on logics-based formalisms for modelling contracts, and for deciding when they
lead to an agreement among the involved parties. However, our investigation
on contracts is still at its beginnings, and in future work we plan to study, along
with logics for contracts, programming languages that exploit their features.

In particular, we will develop process calculi to describe the behaviour of
services in the presence of contracts and attackers. The main features of these
calculi will be the possibility of publishing and stipulating contracts, deciding
whether a given formula is on duty, and taking recovery actions in the case a
contract is not respected.

For instance, we expect to be able to model the following scenario. Consider
an online auctions service, through which users can buy and sell items. A
possible contract between a seller and a buyer might state that, if an item is not
shipped within 30 days since the payment date, then the buyer will have the right
to obtain a full refund of the amount paid. To implement this behaviour, the
auction service retains the amount paid by the buyer until the 30th day from the
payment. If, by the meanwhile, the buyer contests the contract, and the seller
cannot prove that he has actually shipped the item, then the retained amount is
returned to the buyer. Note that a similar behaviour is actually implemented by
a well-known auctions service (eBay), through an external service (PayPal) that

38

manages the transactions between buyers and sellers. In this case, the service-
level agreement is a text document with legal power, and so it is subjected to
the criticism reported in Sect. 1.

We plan to develop analysis techniques to formally and automatically prove
the correctness of the service infrastructure, i.e. that the contracts are always
respected, without the need for resorting to third parties (e.g. legal o�ces)
external to the model.

9.2 Acknowledgements

This work has been partially supported by EU-FETPI Global Computing Project
IST-2005-16004 SENSORIA (Software Engineering for Service-Oriented Over-
lay Computers) and by the MIUR-PRIN project SOFT (Tecniche Formali Ori-
entate alla Sicurezza).

References

[1] L. Aqvist. Deontic logic. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic: Volume II: Extensions of Classical Logic, pages 605�
714. Reidel, 1984.

[2] Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic
with explicit time. In Proc. CSF, pages 133�145, 2008.

[3] E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages 995�
1072. 1990.

[4] Matt Fairtlough and Michael Mendler. Propositional lax logic. Information
and Computation, 137(1):1�33, 1997.

[5] Deepak Garg and Martín Abadi. A modal deconstruction of access control
logics. In Proc. FoSSaCS, pages 216�230, 2008.

[6] Jonathan Gelati, Antonino Rotolo, Giovanni Sartor, and Guido Governa-
tori. Normative autonomy and normative co-ordination: Declarative power,
representation, and mandate. Artif. Intell. Law, 12(1-2):53�81, 2004.

[7] Kurt Gödel. Eine interpretation des intuitionistischen aussagenkalkuls.
Ergebnisse eines mathematischen Kolloquiums, 8:39�40, 1933.

[8] Alain Heuerding, Gerhard Jäger, Stefan Schwendimann, and Michael
Seyfried. A logics workbench. AI Communications, 9(2):53�58, 1996.

[9] Joan Moschovakis. Intuitionistic logic. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Fall 2008.

[10] Donald Nute. Defeasible logic. In Handbook of Logic in Arti�cial Intel-
ligence and Logic Programming, pages 353�395. Oxford University Press,
2001.

[11] The PCL web site. http://www.disi.unitn.it/∼zunino/PCL.

39

[12] Frank Pfenning. Structural cut elimination - I. intuitionistic and classical
logic. Information and Computation, 157(1/2):84�141, 2000.

[13] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81�132,
1980.

[14] R. Statman. Intuitionistic propositional logic is polynomial-space complete.
Theoretical Computer Science, 9:67�72, 1979.

A Appendix

A.1 Adapting Pfenning's Notation

For completeness, we show here how to adapt the notation of [12], Appendix 1,
to ours. As an example, we adapt the essential case ∧R/ ∧ L1. All the other
cases are similarly dealt with. In [12] we �nd the reduction

N
Γ→A1

N3
Γ→A2

Γ→ (A1 ∧A2)
∧R ⊗

N4
Γ,(A1∧A2),A1→A

Γ, (A1 ∧A2)→ A
∧ L1⇒ N2

Γ→ A
N

Γ,A1→A1

N3
Γ,A1→A2

Γ, A1 → (A1 ∧A2)
∧R ⊗ N4

Γ, (A1 ∧A2), A1 → A
⇒ N1

Γ, A1 → A

N

Γ→ A1
⊗ N1

Γ, A1 → A
⇒ N2

Γ→ A

which we can read as follows. The sign ⊗ in the �rst line is the reducible
cut, the sign → is our `, while N,N3, N4 are the subderivations from which
we want to construct N2. This is done in the next lines. First, a recursive call
is made in the second line using N,N3, N4 in order to obtain N1. Note that
the rightmost derivation w.r.t. ⊗ is smaller now. Then, N1 is used in another
recursive call in the third line, together with N , to construct N2. Here instead
the cut formula A1 is smaller than (A1 ∧A2).

In our notation, we rephrase the above as:

N

Γ ` A1

N3

Γ ` A2

Γ ` A1 ∧A2
∧R

N4

Γ, A1 ∧A2, A1 ` A

Γ, A1 ∧A2 ` A
∧ L1

Γ ` A
cut =⇒

N

Γ ` A1

N+
Γ, A1 ` A1

N3+
Γ, A1 ` A2

Γ, A1 ` A1 ∧A2
∧R

N4

Γ, A1, A1 ∧A2 ` A

Γ, A1 ` A
cut1

Γ ` A
cutp

A.2 The PCL Tool

To experiment with our logic, we developed a theorem prover for PCL. To
prove (or refute) a formula p, it tries to construct a derivation of ∅ ` p using
the rules of the sequent calculus. The derivation is constructed in a bottom-up

40

fashion, through an exhaustive search of the proof space. We avoid potential
loops (e.g. repeating weakL forever) by pruning the branches which would lead
to a derivation having a double occurrence of the same sequent in a root-to-leaf
path. In other words, we look for minimal proofs. Lemma 50 ensures this is a
sound and complete procedure to check for validity in PCL. When a derivation
is found, it is provided as output. When the whole proof space is exhausted
unsuccessfully, a �no derivation� message is printed.

This simple proof-search technique is ine�cient in the worst case. Indeed,
PCL is a conservative extension of IPC (Lemma 52), so the problem is no easier
than checking validity in IPC, which is known to be PSPACE-hard [14]. In all
our examples, however, we were able to apply the tool, which required only a few
seconds to complete. In our experiments, a depth-�rst proof search performed
worse than a depth-�rst search, so we adopted the latter in our tool.

The current prototype consists of about 600 lines of Haskell source code.
The tool is made available as free software from [11].

Below we show a simple session with the PCL tool:

> Pcl '(((a ->> b) /\ (b ->> a)) -> (a /\ b))'

Formula: (((a ->> b) /\ (b ->> a)) -> (a /\ b))

Result

> Pcl '(((p ->> q) /\ (p ->> r)) -> (p ->> (q /\ r)))'

Formula: (((p ->> q) /\ (p ->> r)) -> (p ->> (q /\ r)))

NoResult

> # High verbosity prints search progress and LaTeX derivation

> Pcl --verbosity=4 '((p ->> q) -> ((q -> p) -> q))'

Formula: ((p ->> q) -> ((q -> p) -> q))

1

2

3

4

5

Result (LaTeX follows):

\dfrac{\dfrac{\dfrac{\dfrac{\dfrac{}{q, (q \imp p), (p \coimp q) \vdash q} id...

The last derivation renders as

q, (q → p), (p � q) ` q
id

p, q, (q → p), (p � q) ` p
id

q, (q → p), (p � q) ` p
→ L

q, (q → p), (p � q) ` q
id

(q → p), (p � q) ` q
F ix

(p � q) ` ((q → p)→ q)
→ R

` ((p � q)→ ((q → p)→ q))
→ R

A.2.1 Auxiliary Results for PCL

Here is the input �le we used to prove the negative results in the paper with
our PCL tool.

#!/bin/sh

Pcl '((p -> q) -> (p ->> q))'

41

Pcl '((p -> q) -> ((q -> r) -> (p ->> r)))'

Pcl '((p ->> (q \/ r)) -> ((p ->> q) \/ (p ->> r)))'

Pcl '(((p ->> q) /\ (p ->> r)) -> (p ->> (q /\ r)))'

Pcl '((c ->> (c ->> p)) -> (c ->> p))'

A.3 Formal Proofs in LWB

Sometimes in our proofs we rely on a theorem prover for checking IPC or S4
tautologies. To this purpose we used the Logics WorkBench tool (LWB) [8]. We
provide here the source code we used to perform these checks. The output of
the tool, which includes the long, detailed, formal proofs is also available online
[11].

A.3.1 Auxiliary Results in IPC

For proof generation, uncomment this.

generateDetailedProof :== true;

load(ipc);

if generateDetailedProof then set("infolevel", 4);

Debug.

proc: trace(x)

begin

#print(x);

return x;

end;

translate a formula

proc: transl(A, phi)

begin

if (phi[0] = AND) then

return (transl(A, phi[1]) & transl(A, phi[2]));

if (phi[0] = OR) then

return (transl(A, phi[1]) | transl(A, phi[2]));

if (phi[0] = IMP) then

return (transl(A, phi[1]) -> transl(A, phi[2]));

if (phi[0] = EQ) then

return transl(A, (phi[1] -> phi[2]) & (phi[2] -> phi[1]));

if (phi[0] = SYMBOL) then

return phi;

if (phi[0] = cimp) then

begin

local a, b;

a := transl(A, phi[1]);

42

b := transl(A, phi[2]);

return A{a/p}{b/q};

end;

print("ERROR transl!!!!");

print(phi[0]);

return phi[0];

end;

Test whether A is sound

proc: test(A)

begin

axioms: Zero, Fix, PrePost

if not provable(trace(transl(A, cimp(true,true)))) then

return false;

if not provable(trace(transl(A, cimp(p,p) -> p))) then

return false;

if not provable(transl(A, (p1 -> p) -> cimp(p,q) -> (q -> q1) -> cimp(p1,q1)))

then return false;

return true;

end;

###

Known mappings

interp :==

[q

, (q->p) -> q

, ((q->p) v r) -> q

, ~~(q->p) -> q

, ~(q->p) v q

] ;

sound :== true;

foreach A in interp do begin

print("Proving soundness for ",A);

if not test(A) then begin

print("unsound: ", A);

sound :== false;

end;

end;

if sound then

print("#### All mappings are sound.");

print("Proving independence");

interp2 :== interp;

indep := true;

while not (interp2 = []) do begin

A :== pop(interp2);

foreach B in interp2 do

43

if provable(transl(A, cimp(p,q)) <-> transl(B, cimp(p,q))) then begin

indep :== false;

print("NOT independent: ", A, " AND ", B);

end;

end;

if indep then

print("#### All mappings are independent.");

quit;

A.3.2 Auxiliary Results in S4

#

Search for all the sound S4 mappings of contractual implications

of the form

qs[1] (qs[2] (qs[3] q -> qs[4] p) -> qs[5] q)

where qs are modalities among identity, box, and diamond.

The mapping is an extension of the standard IPC-to-S4 mapping.

#

For proof generation, uncomment this.

generateDetailedProof :== true;

load(s4);

if generateDetailedProof then set("infolevel", 4);

apply a modality q (one of i,b,d) to a formula

proc: appMod(q, phi)

begin

if q = i then return phi;

if q = b then return box phi;

if q = d then return dia phi;

print("ERROR appMod");

print(q);

end;

translate a cimp using the modalities in qs

proc: translCoimpl(qs,p,q)

begin

return appMod(qs[1],

(appMod(qs[2], (appMod(qs[3], q) -> appMod(qs[4], p)))

->

appMod(qs[5], q)

));

end;

translate a formula using the modalities in qs

proc: transl(qs, phi)

44

begin

if (phi[0] = AND) then

return (transl(qs, phi[1]) & transl(qs, phi[2]));

if (phi[0] = OR) then

return (transl(qs, phi[1]) or transl(qs, phi[2]));

if (phi[0] = IMP) then

return box (transl(qs, phi[1]) -> transl(qs, phi[2]));

if (phi[0] = EQ) then

return transl(qs, (phi[1] -> phi[2]) & (phi[2] -> phi[1]));

if (phi[0] = NOT) then

return box ~ transl(qs, phi[1]);

if (phi[0] = SYMBOL) then

return box phi;

if (phi[0] = cimp) then

begin

local p, q;

p := transl(qs, phi[1]);

q := transl(qs, phi[2]);

return translCoimpl(qs,p,q);

end;

print("ERROR transl!!!!");

print(phi[0]);

return phi[0];

end;

Test whether the modalities qs give rise to a sound cimp

proc: test(qs)

begin

axioms: Zero, Fix, PrePost

if not provable(transl(qs, cimp(true,true))) then

return false;

if not provable(transl(qs, cimp(p,p) -> p)) then

return false;

if not provable(transl(qs, (p1 -> p) -> cimp(p,q) -> (q -> q1) -> cimp(p1,q1)))

then return false;

return true;

end;

###

main loop

mods :== [i , b , d] ; # modalities: identity, box, dia

sound :== 0 ;

tot :== 0 ;

sol :== [];

foreach q0 in mods do

foreach q1 in mods do

foreach q2 in mods do

foreach q3 in mods do

45

foreach q4 in mods do

begin

local x;

x :== [q0,q1,q2,q3,q4];

tot :== tot + 1;

if test(x) then

begin

sound :== sound + 1;

sol :== concat(sol,[x]);

end;

end;

print("Total formulas: ", tot);

print("Sound formulas: ", num);

#print(sol);

remove redundant solutions (quotient up to <->)

sol2 :== [];

foreach s in sol do

begin

found :== false;

foreach s2 in sol2 do

if provable(transl(s,cimp(p,q)) <-> transl(s2,cimp(p,q))) then

found :== true;

if not found then

sol2 :== concat(sol2, [s]);

end;

print("Sound formulas up to <->: ", nops(sol2));

print(sol2);

foreach s in sol2 do

print(transl(s, cimp(p,q)));

print("Completeness check");

foreach s in sol2 do begin

complete :== true;

we try several formulas that are not PCL theorems

if provable(transl(s, cimp(a,b) <-> b)) then # 1

complete :== false;

if provable(transl(s, cimp(a,b) <-> (~(b->a) or b))) then # 2

complete :== false;

if provable(transl(s, cimp(a,b) <-> ((b->a)->b))) then # 3

complete :== false;

if provable(transl(s, cimp(a,b) <-> (~~(b->a)->b))) then # 4

complete :== false;

if not complete then

print("Formula ", s, " is not complete.");

else

print("Formula ", s, " MIGHT be complete.");

end;

46

quit;

47

