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Abstract
TheArbitraryLagrangian–EulerianSmoothedParticleHydrodynamics (ALE-SPH) formulation canguarantee stable solutions
preventing the adoption of empirical parameters such as artificial viscosity. However, the convergence rate of the ALE-SPH
formulation is still limited by the inaccuracy of the SPH spatial operators. In this work, aWeighted Essentially Non-Oscillatory
(WENO) spatial reconstruction is then adopted to minimise the numerical diffusion introduced by the approximate Riemann
solver (which ensures stability), in combination with two alternative approaches to restore the consistency of the scheme:
corrected divergence SPH operators and the particle regularisation guaranteed by the correction of the transport velocity.
The present work has been developed in the framework of the DualSPHysics open-source code. The beneficial effect of the
WENO reconstruction to reduce numerical diffusion in ALE-SPH schemes is first confirmed by analysing the propagation
of a small pressure perturbation in a fluid initially at rest. With the aid of a 2-D vortex test case, it is then demonstrated that
the two aforementioned techniques to restore consistency effectively reduce saturation in the convergence to the analytical
solution. Moreover, high-order (above second) convergence is achieved. Yet, the presented scheme is tested by means of a
circular blast wave problem to demonstrate that the restoration of consistency is a key feature to guarantee accuracy even in
the presence of a discontinuous pressure field. Finally, a standing wave has been reproduced with the aim of assessing the
capability of the proposed approach to simulate free-surface flows.

Keywords Weakly compressible SPH · WENO · Arbitrary Lagrangian–Eulerian · SPH · Shifting · DualSPHysics

1 Introduction

Smoothed particle hydrodynamics (SPH) is a numerical
method originally developed for astrophysical simulations
[1, 2]which has been applied to several different fluid dynam-
ics phenomena. Thanks to its meshless and Lagrangian
character, the method is suited to simulate topologically
complex moving interfaces and large (nonlinear) defor-
mations. This includes many applications in hydraulics
involving complex highly dynamic free surfaces [3–5]. How-
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ever, despite its potentially attractive features, SPH schemes
present some relevant limitations, in comparison with clas-
sical Eulerian mesh-based numerical methods. To this end,
the SPH rEsearch and engineeRing International Commu-
nity (SPHERIC) has identified the current weaknesses that
prevent widespread use of it in industry, classifying them
into five categories or Grand Challenges (GCs) [6]. In this
frame of reference, this paper aims to address GC1, which
concerns the low accuracy and poor convergence rate of the
method. Indeed, theSPHapproximationof differential opera-
tors, differently fromclassicalEulerian schemes such asfinite
difference or finite volume, presents two classes of approxi-
mation: one related to the so-called smoothing length and the
other caused by the spatial discretisation. The former appears
at continuous level, whereas the latter is due to the approxi-
mation of the convolution integralwith a discrete summation.
For a comprehensive analysis of the effects of those errors on
the accuracy and convergence rate of the SPH approximation
of differential operators, the reader might refer to [7, 8].
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In practice, the original SPH scheme [3] exhibits con-
vergence rates around first order (rather than the theoretical
second order of the continuous SPH spatial operators).
Historically, the problem was addressed by introducing
corrected SPH operators which ensure polynomial consis-
tency (initially zeroth and first order [9–11], later up to nth
order [12–14]) regardless of the particle distribution. The
popularity of these corrections was relative as they pose
difficulties to the stability of simulations and, importantly,
break the appealing global conservation properties that have
characterised SPH since its inception [15, 16]. Alternative
approaches have targeted particle distributions to achieve a
reduction of the discretisation error of SPH spatial opera-
tors. For example, Lind and Stansby [17] demonstrated that
high-order convergence can be achieved for SPH in Eule-
rian simulations with particles distributed in the vertices of a
Cartesian grid. In this context, it is also worth to mention the
recent development of the Local Anisotropic Basis Function
Method (LABFM) [18] as an interesting alternative to SPH
schemes thanks to its framework to generate local high-order
difference operators for arbitrary node distributions.

For applications with free-surface flows, where the
Lagrangian description is desired, the strategy of periodic
reinitialisation (or remeshing) of particle positions [19]
appeared first, though it resulted too diffusive. Later the
shifting technique based on Fick’s law of diffusionwas devel-
oped [20, 21], where particle positions are slightly shifted
towards regions of less particle concentration at each time
step obtaining a remarkable increase in accuracy. However,
updating particle positions in an unchanged velocity field
while keeping constant their masses is not consistent with the
Reynolds transport theorem [22]. A recent approach to the
problem lies in arbitrary Lagrangian–Eulerian (ALE-SPH)
schemes [23] with transport velocities prescribed (basing
on Fickian shifting) to regularise the particle distribution
[22], and where particles interact exchanging fluxes (com-
puted via the solution of Riemann problems). Contrary to
the traditional weakly compressible (WC-SPH) formulation
where artificial viscosity [3] and diffusive terms [24, 25]
are required for stability, in ALE-SPH schemes the intrin-
sic numerical dissipation of the Riemann solver guarantees
a smooth pressure field (avoiding the need to tune empir-
ical coefficients). It is remarkable that these schemes are
consistent with the Reynolds transport theorem and, inter-
estingly, they conserve global mass and momentum as well.
Additional gains in the regularity of the particle distribution
can be obtained with implicit shifting approaches such as
the iterative method of Rastelli et al. [26, 27]. ALE-SPH
schemes are, however, affected by excessive diffusion [23].
Avesani et al. [28] addressed this issue by introducing a for-
mulation to compute the fluxes with a Riemann solver based
on a Weighted Essentially Non-Oscillatory (WENO) recon-
struction. Subsequently, anArbitraryDerivative in Space and

Time (ADER) integrator has been added [29] to skip the
expensive reconstruction process at intermediate stages of
a time integration step. More recently, Antona et al. [30]
improved the efficiency of theWENO reconstruction in SPH
by adopting corrected SPH operators [12] rather thanmoving
least squares (MLS) [31] tomarkedly speed up the generation
of the reconstruction polynomials. Very recently Vergnaud
et al. [32] proposed a different approach based on a 1-
D WENO reconstruction of the conserved variables at the
particle–particle interface with the aim of avoiding the use
of 2-D stencil in theWENO spatial reconstruction. However,
despite all efforts in [28–30] dedicated to reduce diffusion in
the ALE-SPH formulation, the analysis of the global error
showed that the convergence rate of the scheme is still lower
than second order and experiences a saturation effect.

Motivated by the above, this paper presents a novel
ALE-SPH scheme where fluxes are computed by an approx-
imate Riemann solver starting from a WENO polynomial
reconstruction and two independent approaches have been
included to improve the consistency of the SPH approxima-
tion of the divergence operators. The first one is obtained
by applying a kernel correction procedure, and the second
one is added by using a formulation for the transport veloc-
ity based on the explicit Fickian shifting. It is important to
remark that, in this work, it has been preferred to study the
effect of the latter two features separately to better assess the
effects obtained by each one. The objective of the present
work is to achieve high-order (above second) convergence
in Lagrangian SPH simulations, particularly for test cases
where highly anisotropic particle distributions develop eas-
ily. As suggested in [30], it is expected that improving the
consistency of the divergence operators will decrease the
associated discretisation error and, consequently, unleash the
high-order capabilities of theWENO reconstruction. Finally,
the improvement in accuracy will also be discussed in the
presence of shock waves, generated by strong initial discon-
tinuities in the pressure field.

The rest of the paper is organised as follows. It begins
with a discussion of the basic methodology for ALE-SPH
based on Riemann solvers in Sect. 2.1. The algorithm to
compute SPH interpolations that guarantee the desired level
of consistency is detailed in Sect. 2.2. Polynomial WENO
reconstructions on sets of disordered particles are explained
in Sect. 2.3. Details on the particle regularisation algorithm
inALE-SPH basing on Fickian shifting are given in Sect. 2.4.
Section3.1 tests ALE-SPH with the WENO reconstruction
for the propagation of a small pressure perturbation in a
fluid initially at rest, analysing the benefits of the scheme in
terms of stability and lownumerical diffusion. Then, Sect. 3.2
discusses accuracy and convergence for a 2-D vortex case
followed by Sect. 3.3 that shows the robustness of the algo-
rithm in the presence of strong discontinuities of a circular
blast wave, and finally a standing wave has been simulated in
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Sect. 3.4 comparing the numerical dissipation obtained with
the WENO and the MUSCL spatial reconstructions. Sec-
tion4 discusses the main results obtained and draws some
conclusions.

2 Methodology

In this section, the high-order weakly compressible
Lagrangian SPH scheme used in this work is explained
includingdetails on its numerically stable and low-dissipative
formulation based on Riemann solvers; on the mesh-free
WENO reconstruction adopted; and on the consistency
enhancements introduced by using either corrected kernel
interpolations or a particle regularisation algorithm in an
ALE framework.

2.1 Arbitrary Lagrangian–Eulerian weakly
compressible SPH based on Riemann solvers

The basic elements of the SPH formalism adopted in this
paper, firstly established by Vila [23], can be reduced to the
use of an ALE framework to lay out the equations governing
the fluid motion and to the introduction of Riemann solvers
to model the interactions between particles.

Following then the ALE formalism, the Euler equations
can be written as:

∂Q
∂t

+ ∇ · F = 0, (1)

where t is time, and the conserved quantity Q and the asso-
ciated flux F are a vector and a matrix, respectively, with the
following expressions:

Q =
(

ρ

ρv

)
, F =

(
ρv

ρv ⊗ v + pI

)
. (2)

Here, v is fluid velocity, ρ is density, p is pressure and I
represents the unit tensor. Note that, for the purposes of this
paper, no source term originated from body forces (e.g. grav-
ity) has been included in Eq. (1). This equation emphasises
the conservation of some fluid properties in a control volume
fixed in space. Aiming at building an expression to track the
changes to the fluid state in a moving (not necessarily with
the fluid velocity) frame of reference, Eq. (1) can be inte-
grated on a generic volume �(t) that moves and deforms in
time:

∫
�(t)

(
∂Q
∂t

+ ∇ · F
)

dV = 0, (3)

and then transformed on the basis of the Reynolds theorem
to obtain:

d

dt

∫
�(t)

Q dV −
∮

∂�(t)
(v0 · n)Q d A+

∫
�(t)

∇ · F dV =0,

(4)

where V is the volume and A is the area.
The second term in the expression above corresponds to

a surface integral over the closed boundary ∂� (t) of the
compact volume �(t). Here, n is the outward-pointing unit
normal at each point on the boundary ∂� (t), and v0 is the
velocity of the corresponding area element (not the flow
velocity). It is possible to express this surface integral in
terms of an integral over the volume enclosed �(t) if one
considers first the identity:

(b · n) a = (a ⊗ b) · n, (5)

where a and b are two generic vectors, then applies the
divergence theorem. After regrouping terms, the following
integral expression for the changes in the moving frame of
reference is finally obtained:

d

dt

∫
�(t)

Q dV = −
∫

�(t)
∇ · (F − Q ⊗ v0) dV (6)

On the other hand, Eq. (2) shows that the continuity and
momentum conservation have been considered. In this paper,
the system of equations is closed thanks the following equa-
tion of state:

p = c20 (ρ − ρ0) , (7)

where p is pressure, c0 is the speed of sound, and ρ0 is a
reference density.

The discretisation of the scheme is attained by first
partitioning the problem domain into a finite set of N com-
putational nodes or particles, Pi (1 ≤ i ≤ N ), located at
positions ri andwith volumes Vi . Any discrete quantity gi (t)
associated with the particle Pi is then computed as a space
average over the volume of the particle:

gi (t) = 1

Vi (t)

∫
Vi (t)

g (r, t) dV . (8)

The semi-discrete form of Eq. (6) results consequently as:

d

dt
(ViQi ) = −Vi [∇ · (F − Q ⊗ v0)]i (9)

Note that, in the ALE-SPH scheme, the transport velocity
v0i associated with the trajectory described by the particle
Pi differs in general from the corresponding fluid velocity
vi . To predict the resulting change in the volume of the par-
ticle, it should be recalled the (purely geometric) relation
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between the divergence of a velocity field and the associated
volumetric dilation rate:

dVi
dt

= Vi [∇ · v0]i . (10)

To complete the spatial discretisation in Eqs. (9) and
(10), SPH summations are needed to approximate the diver-
gence operators. Using standard zeroth-order consistent SPH
approximations [33], the following expressions are obtained:

d

dt
(ViQi ) = −Vi

∑
j

(
Fi − Qi ⊗ v0i + F j − Q j ⊗ v0 j

)

·∇Wi j Vj , (11)
dVi
dt

= Vi
∑
j

(
v0 j − v0i

) · ∇Wi j Vj , (12)

where Wi j = W
(
ri − r j , h

)
is the kernel function and h

is the smoothing length that determines the (finite) size of
the support domain of particle Pi . In this paper, a computa-
tionally efficient cubic spline [15] has been chosen as kernel
function:

W (r, h) = κ

hd

⎧⎨
⎩
1 − 3

2q
2 + 3

4q
3, 0 ≤ q ≤ 1,

1
4 (2 − q)3 , 1 ≤ q ≤ 2,

0, q ≥ 2.
(13)

Here, q is defined as the ratio ‖r‖
h , d is the dimension of the

space, and κ is a normalisation factor ( 107π in 2-D). For radially
symmetric kernel functions, it can be easily demonstrated
that ∇Wi j = ψ (q) ni j with ni j = ri−r j

‖ri−r j‖ . Note then the
symmetry of the form used for the SPH average in Eq. (11)
which ensures global mass and momentum conservation of
the scheme.

The SPHmethod is in general explicitly integrated in time,
and therefore, the time step �t is computed accordingly to
the following condition:

�t = CFL min
(
�t f ,�tc

)
(14)

with

�t f = min
i

√
mih

‖ d(mivi )
dt ‖

�tc = min
i

h

max (c0, 10‖vi‖)
where mi is the mass of particle i (obtained as the product
Viρi ) and CFL is the Courant number.

Being as well approximately centred in space, SPH
schemes require some algorithmic artefact to ensure numer-
ical stability. In this paper, it has been chosen to introduce

some upwinding via the use of 1-D finite difference fluxes
[23]. Similarly to mesh-based Godunov methods, each inter-
action between the central particle Pi and a neighbouring
particle P j in Eq. (11), Fi − Qi ⊗ v0i + F j − Q j ⊗ v0 j , is
interpreted as a centred approximation of the numerical flux
associated with a Riemann problem posed in the midpoint
(r̄ = ri+r j

2 ), along the direction n j i , and moving with veloc-

ity v̄0i j = (v0i+v0 j)
2 . Naming such flux as Gi j , Eq. (11) can

be written as:

d (ViQi )

dt
= −Vi

∑
j

2Gi j · ∇Wi j Vj . (15)

In the present work, a simple and computationally efficient
Rusanov flux [34] is used to approximate the resolution of
the moving Riemann problem:

Gi j = 1

2

(
F
(
QL

i j

)
− QL

i j ⊗ v̄0i j + F
(
QR

i j

)
− QR

i j ⊗ v̄0i j
)

−ci j
2

(
QR

i j − QL
i j

)
⊗ n j i , (16)

whereQL
i j andQ

R
i j are the vectors of conserved quantities for

the left and the right lateral states, and ci j is the maximum
value of speed of sound between the two particles that make
up the pair. For the equation of state used in this work, Eq.
(7), the field of speed of sound is actually both uniform in
space and constant in time. The values of the vectorsQL

i j and

QR
i j for the lateral states are inferred from the fluid fields in

the neighbourhood of the particles Pi and P j , respectively.
Specifically, a high-order polynomial WENO reconstruction
is here adopted to do such interpolation of the information
coming from the surrounding fluid fields. (Further details are
given inSect. 2.3.)Note the second term in the right-hand side
of Eq. (16) which naturally introduces the abovementioned
upwinding (and the associated large stabilisation effect).

The system formed by Eqs. (12) and (15) is completed
with the discrete version of Eq. (7):

pi = c20 (ρi − ρ0) (17)

and the expression needed to advance the positions of the
particles:

dri
dt

= v0i (18)

These equations are integrated in time with an explicit
second-order accurate symplectic scheme [16], where the
size of the time step is bounded by Eq. (14).

A numerical value for the speed of sound c0 in Eq. (17) is
chosen as only ten times themaximumexpectedfluidvelocity
in the simulation. This is a common assumption in so-called
weakly compressible SPH schemes [3] that allows for much
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larger time steps at the expense of a small (∼ 1%) compress-
ibility of the fluid.

2.2 High-order divergence operator

It is not uncommon for SPH practitioners (see, for example,
[28, 29]) to use zeroth-order consistent SPH approximations
for differential operators. In this work, the procedure devised
by Liu and Liu [12] to build a higher-order consistent SPH
divergence operator is used in Eqs. (12) and (15), and their
effect in the global accuracy of the present scheme is studied.

The algorithm to increase the consistency of an SPH
approximation is described here. For simplicity, the explana-
tion is restricted to the case of guaranteeing first-order con-
sistency of a two-dimensional function, though the process
can be readily generalised for higher orders of consistency
(and higher dimensions of the functional space).

A Taylor expansion of a scalar field g centred in the posi-
tion of particle Pi , ri = (xi , yi ), can be used to compute
the values of the field at a generic location r = (x, y) in the
vicinity with the following expression:

g (x, y) = gi + (x − xi ) ∂x gi + (y − yi ) ∂ygi

+O
(
‖r − ri‖2

)
, (19)

where gi , ∂x gi , and ∂ygi are the values of the scalar field and
of its first derivatives ( ∂g

∂x and
∂g
∂ y ) at the location of particlePi .

Evaluating the expansion at the location of a neighbouring
particle P j , and neglecting second- and higher-order terms,
the expression takes the form:

g j = gi + x ji ∂x gi + y ji ∂ygi . (20)

Here, g j is the value of the scalar field at the location of
particleP j , and the notation x ji and y ji stands for x j −xi and
y j − yi , respectively. Multiplying Eq. (20) by the product of
the value of the kernel function for the pair times the volume
of particleP j ,Wi j Vj , and performing a summation for all the
neighbouring particles, the following equation is obtained:

∑
j

g jWi j Vj = gi
∑
j

Wi j Vj + ∂x gi
∑
j

x jiWi j Vj

+∂ygi
∑
j

y jiWi j Vj , (21)

where the unknowns are gi , ∂x gi , and ∂ygi . Two additional
equations can be obtained from Eq. (20) taking similar steps
but using instead the first derivatives of the kernel function,

∂xWi j and ∂yWi j :

∑
j

g j ∂xWi j Vj

= gi
∑
j

∂xWi j Vj + ∂x gi
∑
j

x ji ∂xWi j Vj

+∂ygi
∑
j

y ji ∂xWi j Vj , (22)

∑
j

g j ∂yWi j Vj

= gi
∑
j

∂yWi j Vj + ∂x gi
∑
j

x ji ∂yWi j Vj

+∂ygi
∑
j

y ji ∂yWi j Vj . (23)

Therefore, Eqs. (21)–(23) constitute a linear system:

Aixi = bi , (24)

where

Ai =
⎛
⎜⎝

∑
j Wi j V j

∑
j x j i Wi j V j

∑
j y j i Wi j V j∑

j ∂xWi j V j
∑

j x j i ∂xWi j V j
∑

j y j i ∂xWi j V j∑
j ∂yWi j V j

∑
j x j i ∂yWi j V j

∑
j y j i ∂yWi j V j

⎞
⎟⎠ , (25)

bi =
⎛
⎜⎝

∑
j g j Wi j V j∑

j g j ∂xWi j V j∑
j g j ∂yWi j V j

⎞
⎟⎠ , (26)

and the vector of unknowns is defined as:

xi =
⎛
⎝ gi

∂x gi
∂ygi

⎞
⎠ . (27)

The linear system in Eq. (24) can be solved, for instance, with
an LU decomposition algorithm [35]. Note that the method
relies on the fact that Ai is in general diagonally dominant
(provided there is near complete support) and hence it can
be inverted [12, 30].

The procedure described is applied to compute the cor-
rected SPH approximations of the two divergence operators
that appear in Eqs. (12) and (15). A generic vector field in a
two-dimensional space, g = (

gx , gy
)
, has first-order deriva-

tives [∂x gx ]i ,
[
∂ygx

]
i ,
[
∂x gy

]
i ,
[
∂ygy

]
i at the location of

particle Pi . Please note the notation [. . . ]i to specify here
properties at particle Pi , for the sake of clarity. The cor-
responding value of the divergence operator at that same
location is obtained from the definition of the differential
operator:

[∇ · g]i = [∂x gx ]i + [
∂ygy

]
i . (28)
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This approach is used in this paper to obtain high-order
consistent versions of the divergence SPH operators. For
example, Eq. (12) can be rewritten as:

dVi
dt

= Vi
(〈[∂xv0x ]i 〉C + 〈[∂yv0y]i 〉C) (29)

where 〈. . . 〉C is the SPH-corrected spatial operator.
Then, by solving the linear system of Eq. (24) in which the

generic function gi in Eq. (27) is equal to the x-component
of the transport velocity [v0x ]i for particle i , it is possible to
obtain 〈[∂xv0x ]i 〉C . Similarly, 〈[∂yv0y]i 〉C can be obtained
by solving the linear system in Eq. (24) a second time where
gi = [

v0y
]
i . Please note that the matrix Ai does not depend

on the scalar function gi and therefore is unique for each
particle.

The same procedure can also be adopted for any other
divergence operator that appears in Eq. (15) (one for the con-
tinuity equation and two for each component of the momen-
tum equation) and therefore all different SPH divergence
operators adopted in the model can be linearly consistent.

Note that the generalisation to achieve a higher order of
consistency implies firstly to retain higher-order terms in Eq.
(20), and secondly to pose the necessary number of additional
equations by repeating the procedure to obtain Eqs. (21)–(23)
with the aid of higher derivatives of the kernel function as
well. In the present work, a second-order consistent formu-
lation is adopted.

2.3 High-order polynomialWeighted Essentially
Non-Oscillatory Reconstruction

As previously mentioned in Sect. 2.1, in the present work the
interaction between a pair of neighbouring particles Pi and
P j is modelled via a moving Riemann problem posed in the
midpoint of the pair. To compute the lateral states (QL

i j ,Q
R
i j )

of suchRiemann problem, it is necessary, at each time step, to
reconstruct smooth functions that represent the spatial vari-
ation of the solution within the support domain of particles
Pi and P j ; these reconstructions can then be evaluated at

r̄ = ri+r j
2 . It is well known that, unless an accurate recon-

struction procedure is used, any algorithm to compute the
solution of the Riemann problem originates toomuch numer-
ical diffusion, rendering the overall scheme very inaccurate.
Particularly, it has been reported [36, 37] that a piece-wise
constant approximation (where the lateral states are taken
as those of the particles Pi and P j ) provides poor results. In
this paper, a high-order nonlinear polynomialWENO recon-
struction is used. Firstly proposed by Avesani et al. [28], this
method is robust to approximate functions that have large
gradients or discontinuities. The algorithm consists in three
steps: construction of the candidate stencils; computation of
a polynomial function per stencil; and nonlinear combination

of the candidate polynomial functions. These are detailed in
the subsequent paragraphs.
Construction of the candidate stencils Figure1 shows a
sketch of all the candidate stencils considered for a sample
randomised two-dimensional particle distribution. A charac-
teristic length hweno is first chosen for the size of the support
domain used in the reconstruction method. The main recon-
struction stencil, known as the central stencil Si,0, considers
all the particlesP j at a distance sufficiently close to the centre
of the reconstruction Pi :

Si,0 = {P j :
∥∥ri j∥∥ ≤ hweno

}
, (30)

where ri j = ri − r j . To confer directional (or adaptive)
behaviour on the reconstruction method, several one-sided
lateral stencils are defined. For two-dimensional problems,
this paper uses the eight lateral stencils proposed in [28].
Here, a neighbouring particleP j is assigned to a lateral sten-
cil Si,s (1 ≤ s ≤ 8) depending on the value of the angular
coordinate θ ∈ [0, 2π ] of the vector r j i in a polar coordinate
system:

Si,s =
{
P j :

∥∥ri j∥∥ ≤ 2hweno, θ ∈
[
(s − 1)

π

4
, s

π

4

]}
(1 ≤ s ≤ 8) . (31)

Note that the radius of the circular sectors defining the
envelope of the lateral stencils doubles the radius of the cen-
tral one.This is needed tohave a sufficient number of particles
per stencil to carry out the second step of the reconstruction.
Computation of a polynomial function per stencil For each
candidate stencilSi,s of the particlePi , a polynomial function
Pi,s of a specified degree M is produced. These polynomials,
defined in local coordinates r̂ = (

x̂, ŷ
) = r−ri

hweno
, have the

following form:

Pi,s
(
r̂
) = Qi +

∑
1≤α1+α2≤M

Cα1,α2
i,s x̂α1 ŷα2 , (32)

where α1 and α2 are nonnegative integer indices, and C
α1,α2
i,s

are the unknown polynomial coefficients that must be deter-
mined by interpolating the information provided by the
corresponding stencil. Note that r̂ remains O (1) in the neigh-
bourhood ofPi which avoids issues with computer precision
irrespective of the method used for the interpolation. In [28,
29], it is proposed first to construct an overdetermined lin-
ear system of equations by forcing the polynomial to pass
through all the points in the stencil, and then to solve it in a
least-squares sense [38]. In this paper, it has been preferred
to identify Eq. (32) with a truncated Taylor expansion of the
fieldQ around the position of particlePi , which provides the
following alternative expression for the unknown polynomial
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Fig. 1 Sketch of the central and the one-sided lateral stencils for a
sample randomised 2-D particle distribution

coefficients:

Cα1,α2
i,s = 1

α1!α2!
[

∂α1+α2Q
∂ x̂α1∂ ŷα2

]
i
. (33)

The spatial derivatives
[

∂α1+α2Q
∂ x̂α1∂ ŷα2

]
i
can then be computed by

means of consistent kernel interpolations following the pro-
cedure previously detailed in Sect. 2.2. (Note that the order
of consistency chosen when assembling the matrix Ai in Eq.
(24) must be equal to the order M of the polynomial recon-
struction.) As demonstrated in [30], this approach provides
higher accuracy and computational efficiency than the MLS
method proposed in [28]. Finally, if a given stencil does not
provide near complete support and the interpolation proce-
dure fails as a consequence, the corresponding polynomial is
ignored in the third step of the reconstruction. Note that the
method relies on the fact that at least one candidate polyno-
mial can be computed.
Nonlinear combination of the candidate polynomial func-
tions The stencil-adaptive behaviour of the method is
achieved by assigning a different weight ω̃s to each of the
candidate polynomials, which has the form:

ω̃s = λs

(ε + σs)
4 . (34)

Here, the numerator provides a larger contribution to the cen-
tral stencil by choosing λ0 = 105 and λs = 1 for s ≥ 1. On
the other hand, the smoothness indicator σs that appears in
the denominator gets larger with the oscillatory character of

the corresponding polynomial, hence penalising its contribu-
tion. As suggested in [28], this indicator is computed from
the polynomial coefficients with the following expression:

σs =
∑

1≤α1+α2≤M

(
Cα1,α2
i,s

)2
. (35)

Finally, the parameter ε is introduced in Eq. (34) to avoid null
denominators. (Hence, it must be assigned a small value such
as 10−7 or 10−14 for single or double precision, respectively.)
Once the following normalised weights are computed:

ωs = ω̃s∑
r ω̃r

, (36)

the final polynomial function that reconstructs the field ofQ
in the neighbourhood of particle Pi is obtained as a convex
combination of all the candidate polynomials:

Pi
(
r̂
) =

∑
s

ωs Ps
i

(
r̂
)
. (37)

2.4 Particle regularisation in arbitrary
Lagrangian–Eulerian frameworks

SPH schemes usually incorporate some sort of technique
to slightly perturb the Lagrangian trajectories of the parti-
cles preventing the formation of anisotropies in the particle
distribution [20, 21]. The strategy followed in this work
exploits the ALE framework introduced in Sect. 2.1 where
the transport velocity v0i of particle Pi can differ from the
corresponding fluid velocity vi . Oger et al. [22] demonstrated
that this approach allows to preserve both conservation and
consistency in a stable SPH scheme.

The key idea to maintain a relatively equispaced particle
distribution as the simulation evolves consists in updating the
transport field at the end of each time step according to the
following expression:

v0i = vi + δvi , (38)

where δvi represents only a small perturbation to the
Lagrangian velocity vi , and such that it induces a motion
from regions of high concentration to regions of low concen-
tration of particles. For a time step of size�t (determined by
the CFL condition of Eq. (14)), the perturbation in velocity
δvi can be written as the quotient

δvi = δri
�t

, (39)

where the unknown δri is the so-called shifting displacement
vector. As proposed by Lind et al. [20], δri can be computed
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with an explicit formula similar to Fick’s law of diffusion that
provides the magnitude and direction of the position shift:

δri = −D∇Ci . (40)

Here, D is a (strictly) numerical diffusion coefficient, and
∇Ci is a measure of the gradient of particle concentration at
the position of particle Pi . Following [20], ∇Ci is estimated
basing on a standard SPH approximation of the gradient of
partition of unity:

∇Ci =
∑
j

V j
(
1 + fi j

)∇Wi j . (41)

The term fi j is added to prevent vanishing values of ∇Ci

when two particles get extremely close to each other. The
expression to compute fi j , firstly proposed in SPH literature
to alleviate tensile instability issues [39], has the form:

fi j = R

(
Wi j

W (�x)

)n

, (42)

with parameters R = 0.2 and n = 4, andwhere�x is the ini-
tial particle spacing. With regard to the diffusion coefficient
in Eq. (40), the following form is used in this work:

D = Ash
2, (43)

where h is the smoothing length already defined in Sect. 2.1,
and the dimensionless parameter As has an upper bound of
0.5 to avoid numerical instability [20, 21]. For the results
in this paper, As = 0.5 has been taken as suggested in [20].
Finally, it is known [20, 22] that Eqs. (40)–(43) do not guaran-
tee that the magnitude of the shifting displacement vector δri
obtained remains much smaller than the smoothing length.
As suggested in [20], in the implementation used in thiswork,
it has been chosen to cap the magnitude of δri to a 20% of
h to prevent too large transport velocity that might generate
stability issues.

3 Numerical results and discussion

This section tests the accuracy and convergenceof theWENO
SPH formulation enhanced with either corrected SPH opera-
tors for divergence terms as illustrated in Sect. 2.2 (hereafter
referred as corrected WENO SPH), or with a transport
field regularised with the explicit shifting algorithm illus-
trated in Sect. 2.4 (hereafter referred as regularised WENO
SPH). For comparisons, the baseline polynomial WENO
SPH of Sects. 2.1 and 2.3 will be referred simply as WENO
SPH. Additionally, the WENO SPH scheme with Eulerian
transport (i.e. with particle positions regularly spaced in a

Cartesian grid and fixed in time) will be referred as Eule-
rian WENO SPH. Finally, the ALE-SPH scheme based on
a piece-wise constant approximation (hereafter referred as
piece-wise constant ALE-SPH) and on aMUSCL reconstruc-
tion (hereafter referred as MUSCL SPH) will be considered
for completeness.

With this goal in mind, four different test cases have been
chosen:

1. the propagation of a small pressure perturbation in a fluid
initially at rest,

2. a two-dimensional vortex where strong anisotropies in
the particle distribution appear easily, consequence of
large fluid deformations,

3. a circular blast wave problem that tests the algorithm
behaviour in the presence of pressure discontinuities, and

4. a standing wave which involves a dedicated treatment for
free surfaces and a solid walls.

For the SPH scheme, the ratio of the smoothing length and the
initial particle spacing remains fixed at value h/�x = 2, and
the CFL coefficient is set to 0.2. The characteristic length
for the WENO reconstruction is chosen the double of the
smoothing length hweno = 2h, and second-order polynomi-
als are used.Additionally,when correctedSPH interpolations
are used to approximate a divergence operator, second-order
consistency is enforced.

The computer code used to produce all the results in this
section has been implemented basing on the DualSPHysics
open-source project [40]: an efficient state-of-the-art SPH
code for free-surface flows with capabilities for modern
Graphics Processing Units (GPUs).

3.1 Propagation of a small pressure perturbation

Aproblem to test the propagation of a quasi-one-dimensional
small pressure perturbation is constructed in 2-D by specify-
ing a squared fluid domainwith periodic boundary conditions
in both directions and a region inside x ∈ [x1, x2] (with
x1 < x2) initially at a slightly higher pressure than the rest.
By virtue of Eq. (7), this condition can be expressed in den-
sities as follows:

ρ (x, t = 0) =
{
ρH , x1 ≤ x ≤ x2,
ρ0, otherwise,

(44)

where ρ0 is the reference density previously introduced in
Eq. (7), and ρH is the density in the high pressure region
(ρH > ρ0). Both regions are initially at rest, v = 0. The
initial discontinuity splits into two smooth pressure waves
travelling horizontally in opposite directions. In this paper,
the values of the problem parameters are ρ0 = 1.0 kg/m2,
ρH = 1.001 kg/m2, x1 = 1.1 m, x2 = 1.2 m, and the
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Fig. 2 Pressure distribution for the small pressure perturbation test
computed with standard SPH for two different values of artificial vis-
cosity: α = 0.1 and α = 2

sound speed is set to c0 = 1.0 m/s. The domain is a square
box [0, 2]× [0, 2] with periodic boundary conditions in both
Cartesian coordinates [41].

For the presentation of the results, the following dimen-
sionless variables (marked by a hat symbol, ^) are specified:

x̂ = x

D
, ẑ = z

D
, t̂ = t c0

D
, p̂ = p

c20 (ρH − ρ0)
, (45)

where the characteristic length of the problem is defined as
D = x2 − x1. To assess the accuracy of the computations,
the numerical solution obtained for a very fine resolution
(D/�x = 64) with the baselineWENO SPH scheme is used
as reference. Note that in this particular test case the particles
are initially arranged on a Cartesian grid and no significant
particle displacement takes place. This means that there is no
inconsistency of the SPH spatial operators generated by the
particle disorder. All the subsequent results presented in this
section correspond to time t̂ = 4.

Figure2 shows the pressure distribution in the ẑ = 10
section computed with standard SPH [40] using two differ-
ent values of artificial viscosity: α = 0.1 and α = 2. The
resolution is D/�x = 32, and the reference solution is dis-
played superimposed in black. For the lower value of α, close
to those typically seen in hydraulic engineering applications,
the numerical solution with standard SPH presents a highly
oscillatory character, specifically in between the two pres-
sure waves. Increasing α to 2 enhances numerical stability
which helps to mitigate the oscillations. However, the size of
the pressure oscillations around the location of the initial dis-
continuities remains similar (or even worse). Moreover, the
associatednumerical dissipation introduced,which translates
into a net reduction of the magnitude of the pressure distri-
bution maximum, is significant.

Fig. 3 Pressure distribution for the small pressure perturbation test
computed with the piece-wise constant ALE-SPH scheme for four dif-
ferent resolutions: D/�x = 4, 8, 16, 32

To show the benefits of using Riemann solvers for numer-
ical stabilisation, Fig. 3 displays the same pressure profile
computed now with the piece-wise constant ALE-SPH
scheme and for different increasing resolutions. This scheme
completely erases any spurious oscillation in the pressure
field, also around the location of the initial discontinuities. In
addition, it can observed that the numerical results converge
to the reference solution. However, in the absence of (non-
trivial) spatial reconstruction to compute the lateral states of
the Riemann problem, the numerical dissipation associated
with the Riemann solver is prohibitively large.

Results are greatly improved in terms of low numerical
diffusion when using the high-order WENO spatial recon-
struction, as shown in Fig. 4. Thanks to the WENO recon-
struction, the scheme is able to resolve both the minimum
and the maximum of the pressure profile, with convergent
results for increasing resolutions.

In terms of computational cost, the ALE-SPH scheme in
its current implementation is two times as expensive as the
standard SPH scheme, while the WENO high-order formu-
lation is about 10 times more expensive than the ALE-SPH
scheme. It is important to note that these computational times
are specific to the CPU implementation, and further work is
needed to optimise the WENO high-order formulation for
both CPUs and GPUs.

3.2 Two-dimensional vortex

The weakly compressible 2-D vortex introduced in [42] is an
inviscid and stationary problem that presents circular stream-
lines. Considering polar coordinates (r , θ) with origin in the
centre of the vortex, the analytical solution for density ρ and
tangential velocity vθ (the radial velocity vr is null) depends
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Fig. 4 Pressure distribution for the small pressure perturbation test
computed with the WENO SPH scheme for four different resolutions:
D/�x = 4, 8, 16, 32

only on the radial distance r and is given by:

ρ (r) = ρ0 + (ρM − ρ0)

[
1 − 2r

r0
e
− 2r

r0 − e
− 2r

r0

]
,

vθ (r) = 2r

r0
c0

√
ρM − ρ0

ρ (r)
e
− 2r

r0 ,

(46)

whereρ0 and c0 were definedwhen introducingEq. (7),ρM is
the asymptotic value of density when r → ∞, and r0 marks
the radial distance at which the fluid (tangential) velocity is
maximal. In this paper, the values set for these parameters
are ρ0 = 1.0 kg/m2, c0 = 1.0 m/s, ρM = 1.01 kg/m2, and
r0 = 0.1 m. The simulation domain is a circle of radius R =
0.7m. To impose boundary conditions, the necessary number
of rows of dummy particles around the simulation domain is
added,with density andvelocity calculated fromEq. (46). For
simulations with a Lagrangian transport field (particles move
with the local fluid velocity, v0i = vi ), boundary particles
change their momentum according to the centripetal force of
the circular motion at constant speed that they describe. For
the case of a Eulerian transport field (particles remain fixed
in space, v0i = 0), all temporal derivatives for the boundary
particles are zero as the problem is stationary.

For the presentation of the results, the following dimen-
sionless variables (marked by a hat symbol, ^) are defined:

x̂ = x

r0
, ẑ = z

r0
, v̂ = v

c0
√

ρM−ρ0
ρ0

,

t̂ =
t c0

√
ρM−ρ0

ρ0

r0
, p̂ = p

c20 (ρM − ρ0)
.

(47)

Plots displaying the spatial distribution of the approximation
error of these magnitudes are provided. This error can be

defined for a generic scalar property g of particle Pi as

err(g)i = |gexacti − gestimate
i |. (48)

Moreover, convergence studies of the L2 error with resolu-
tion refinement are carried out. The L2 error for a generic
scalar field g is computed by the expression:

‖err(g)‖2 =
√√√√ 1

N

N∑
i

|gexacti − gestimate
i |2. (49)

3.2.1 Results using corrected SPH operators for divergence
terms

Figure5 shows a comparison of the approximation error
in pressures and horizontal velocities computed with the
baseline WENO SPH and with the corrected WENO SPH
schemes following the procedure described in Sect. 2.2.
The measurement is taken at time t̂ = 2, for a resolution
r0/�x = 28, and errors are displayed superimposed to the
distribution of particles. Note that the same error scales are
used for both schemes to ease the comparison, and that results
for the vertical velocity v̂z are omitted due to the similar-
ity with those of the horizontal velocity v̂x . The superior
accuracy of the corrected WENO SPH scheme is apparent,
especially for the pressure field. Note that the improvement
in accuracy is obtained irrespective of the actual particle dis-
tribution that presents strong anisotropies in the central area
of the vortex.

To better quantify the gains in accuracy, a convergence
analysis of the L2 errors with resolution refinement is shown
in Fig. 6. Curves for the following schemes are displayed:

• Piece-wise constant ALE-SPH. The very large numer-
ical diffusion introduced by the Riemann solver in the
absence of any spatial reconstruction leads to inaccurate
results, both in pressure and velocity fields.

• WENOSPH.Thehigh-order spatial reconstruction largely
diminishes the numerical diffusion of the Riemann solver
enhancing the accuracy of the scheme. However, as the
Lagrangian trajectories followedby theparticles aremore
precise, non-uniform particle arrangements form easily
which increase the truncation error of the (standard) SPH
interpolators. The latter is responsible for the saturation
effect seen in the reduction of the L2 errorwith increasing
resolutions.

• Eulerian WENO SPH. The regularity of a distribution
formed by particles fixed in the vertices of a Cartesian
grid eliminates the truncation error in the SPH interpo-
lations. As a consequence, the saturation effect in the
associated convergence curve vanishes. The order of
convergence exhibited for pressure L2 errors reaches a
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Fig. 5 Effect of consistency
correction in accuracy of the
WENO SPH scheme for the 2-D
vortex simulation

(a) WENO SPH – pressure error (b) Corrected WENO SPH – pressure
error

(c) WENO SPH – x-velocity error (d) Corrected WENO SPH – x-velocity
error

maximum value of 2.5 at the highest resolutions. This
is well above second order, moving towards the theoreti-
cal third-order convergence of theWENO reconstruction
used.

• Corrected WENO SPH. The use of corrected SPH inter-
polators for divergencies brings in a very large reduction
in the saturation previously seen for the WENO SPH
curve. In fact, this Lagrangian scheme exhibits conver-
gence above second order for pressures.

3.2.2 Results using a regularised transport field via explicit
shifting

The alternative to achieve better consistency of the SPH
approximation of differential operators exploits the ALE
framework of the present scheme by adopting Eq. (38) for
the transport velocity. Figure7 compares two snapshots of the
particle distribution obtained with the baseline WENO SPH
and the regularised WENO SPH schemes (see Sect. 2.4. As
for the results of the previous section, the measurement is
taken at time t̂ = 2, and for a resolution r0/�x = 28. To
ease the comparison, the magnitude of the gradient of parti-
tion of unity is displayed superimposed (using the same scale

in the two snapshots):

‖∇x̂Ci‖ = r0 ‖∇Ci‖ = r0

∥∥∥∥∥∥
∑
j

V j∇Wi j

∥∥∥∥∥∥ . (50)

The effectiveness of the regularised transport field in the pre-
vention of particle clustering can be appreciated by simple
visual inspection. This is confirmed by the lower values of
the magnitude of the gradient of partition of unity.

Figure8 displays the approximation error in pressures
and horizontal velocities computed now with the regularised
WENO SPH scheme, at time t̂ = 2 and for resolution
r0/�x = 28. Note that the scales have the same values as in
Fig. 5 to ease the comparison. It is clear that the regularised
transport field can also be used to improve the accuracy of the
computations of the WENO SPH scheme. The reduction in
the error displayed is not as large as for the correctedWENO
SPH. However, for different applications where the particle
distribution might get very distorted, the use of some kind
of particle distribution regularisation might be mandatory to
preserve the stability of the scheme. Moreover, in this paper
the shifting displacement vector δri is computed with the
formula in Eq. (40) which, due to its explicit nature, does not
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Fig. 6 Convergence of L2 error
with resolution refinement in the
corrected WENO SPH scheme
for the 2-D vortex simulation: a
comparison study

(a) L2 error in pressure (b) L2 error in horizontal velocity

Fig. 7 Effect of the regularised
transport in the field of gradient
of partition of unity (magnitude)
for the WENO SPH scheme in
the 2-D vortex simulation

(a) WENO SPH (b) Regularised WENO SPH

Fig. 8 Approximation error of
the regularised WENO SPH
scheme for the 2-D vortex
simulation

(a) Pressure error (b) Horizontal velocity error

Fig. 9 Convergence of L2 error
with resolution refinement in the
regularised WENO SPH scheme
for the 2-D vortex simulation: a
comparison study

(a) L2 error in pressure (b) L2 error in horizontal velocity

123



Computational Particle Mechanics

Fig. 10 Field of particle unitary volume variation in the regularised
WENO SPH scheme for the 2-D vortex simulation

guarantee obtaining a negligible ∇C for all particles in the
domain.

A convergence analysis of L2 errors (in pressures and
velocities) with resolution refinement for the regularised
WENO SPH scheme is displayed in Fig. 9. To perform a
comparison study, the same curves corresponding to the base-
line WENO SPH and the Eulerian WENO SPH simulations
previously displayed in Fig. 6 have been reproduced in the
graph as well. It may be seen how the regularised transport
algorithm moderates the saturation of the L2 error reduction
with increasing resolutions. The same reasons explained in
the previous paragraph justify that this effect is weaker here
than what was shown before for the corrected WENO SPH
scheme in Fig. 6.

Finally, Fig. 10 displays the field of particle unitary vol-
ume variation defined as:

�Vunit(%) = 100 × V − (�x)2

(�x)2
, (51)

computedusing the regularisedWENOSPHscheme, at t̂ = 2
and for the resolution r0/�x = 28. The shifting algorithm
used in this paper, in conjunction with theWENO scheme, is
able to keep volume variations at a low level (below a 3%),
which favours the accuracy of SPH operators.

3.3 Circular blast wave

This is a two-dimensional problem that models a cylindri-
cal explosion which is simulated to verify the capability of
the proposed numerical scheme to reproduce shock waves.
Periodic boundary conditions have been adopted in both
directions. The initial condition consists of a region at high
pressure inside of a circle, surrounded by a region at lowpres-

sure. By virtue of Eq. (7), this condition can be expressed in
densities as follows:

ρ (r, t = 0) =
{
ρI , 0 ≤ ‖r‖ ≤ r0,
ρ0, ‖r‖ > r0,

(52)

where r0 is the circle radius, ρ0 is the reference density previ-
ously introduced in Eq. (7), and ρI is the density in the high
pressure inner region (ρI > ρ0). Both regions are initially
at rest. The circular discontinuity in pressures that initially
joins the two regions splits into a shock travelling towards the
outer boundary of the fluid domain and a rarefaction travel-
ling towards the centre of the circle. In this paper, the values
of the problem parameters are ρ0 = 1.0 kg/m2, ρI = 1.1
kg/m2, r0 = 0.5 m, and the sound speed is set to c0 = 1.0
m/s. The simulation domain is a circle of radius R = 1.5
m. All simulations have been carried out with a resolution
r0/�x = 120.

As previously done for the 2-D vortex, the effect of the
Liu&Liu [12] correction applied to the divergence operators
(see Sect. 2.2) and the particle regularisation (see Sect. 2.4) is
analysed. The results are reported using dimensionless vari-
ables defined as follows:

x̂ = x

r0
, ẑ = z

r0
, v̂ = v

c0
√

ρI−ρ0
ρ0

,

t̂ = t c0
r0

, p̂ = p

c20 (ρI − ρ0)
.

(53)

To assess the accuracy of the computations, the solution of
equivalent 1-D equations (with a geometrical source term)
obtained under the assumption of cylindrical symmetry is
used as reference (see Toro [34, Chapter 17] for details). As
a preliminary step, simulations have been carried out using
three different schemes:

1. standard SPH with artificial viscosity (α = 0.1) [40],
2. baseline WENO SPH (without corrected operators for

divergence terms or a regularised transport field), and
3. Eulerian WENO SPH.

Figure11 shows the pressure and velocity distributions in
the ẑ = 0 section computed with the three schemes. The
measurement is taken at time t̂ = 0.66, and the reference
solution is displayed superimposed. Note that plots for the
vertical velocity v̂z are omitted due to the similarity with
those of the horizontal velocity v̂x . The results computed
with the three schemes converge to the reference solution.
However, both pressures and velocities computed with stan-
dard SPH are very noisy in the whole area that connects
the rarefaction and the shock. On the contrary, WENO SPH
provides smooth pressure and velocity fields thanks to the
great stabilising effect of the Riemann solver. Moreover, the
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Fig. 11 Pressure and velocity
distributions in the ẑ = 0 section
for the circular blast wave,
computed with three different
schemes: standard SPH with
artificial viscosity (α = 0.1),
baseline WENO SPH (without
corrected operators or particle
regularisation), and Eulerian
WENO SPH

(a) Standard SPH (α = 0.1) – pressure (b) Standard SPH (α = 0.1) – x-velocity

(c) WENO SPH – pressure (d) WENO SPH – x-velocity

(e) Eulerian WENO SPH – pressure (f) Eulerian WENO SPH – x-velocity

Fig. 12 Pressure and velocity
distributions in the ẑ = 0 section
for the circular blast wave,
computed by the corrected
WENO SPH scheme

(a)Corrected WENO SPH – pressure (b)Corrected WENO SPH – x-velocity
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Fig. 13 Effect of the regularised
transport in the field of gradient
of partition of unity (magnitude)
for the WENO SPH scheme in
the circular blast wave
simulation

(a) WENO SPH (b) Regularised WENO SPH

Fig. 14 Pressure and velocity
distributions in the ẑ = 0 section
for the circular blast wave,
computed by the regularised
WENO SPH scheme

(a)Regularised WENO SPH – pressure (b)Regularised WENO SPH – x-velocity

second-order WENO reconstruction provides the accuracy
needed to resolve both the rarefaction and the shock. Nev-
ertheless, a spurious wrinkle in the pressure curve can be
observed around the radial location where the discontinuity
was initially placed. This wrinkle is no longer present in the
computations of Eulerian WENO SPH (where particles are
arranged in a regular Cartesian grid), which suggests irregu-
larities in the particle distribution are the cause. Next sections
aim at mitigating the inaccuracy present in the pressure field
for the baseline WENO SPH scheme.

3.3.1 Results using corrected SPH operators for divergence
terms

Figure12 displays the distributions of pressure and horizon-
tal velocity in the ẑ = 0 section obtained from the corrected
WENO SPH scheme. It may be appreciated the effectiveness
of this consistency correction that completely erases the spu-
riouswrinkle in the pressure distribution previously shown in
Fig. 11c for the computation with the WENO SPH scheme.
For velocities, there is no substantial change, which is coher-
ent with the use of a weakly compressible model.

3.3.2 Results using a regularised transport field via explicit
shifting

Figure13 compares two snapshots of the particle distribu-
tion with the magnitude of the gradient of partition of unity
superimposed, obtained with the baseline WENO SPH and
the regularised WENO SPH schemes. Different from the 2-
D vortex, in this acoustic wave propagation problem it is
not easy to extract conclusions by simple visual inspection
of the particle distribution. Nevertheless, the field of gradient
of partition of unity (displayed with the same scale in the two
snapshots) shows how the regularised transport field achieves
a more regular particle distribution around the radial location
of the spurious pressure wrinkle (r̂  1).

Figure14 displays the pressure and horizontal velocity
distribution in the ẑ = 0 section computed now with the
regularised WENO SPH scheme. Despite that the presence
of the spurious pressure wrinkle is still evident, the regu-
larised transport field manages to decrease its sharpness. As
mentioned before in the analysis of the 2-D vortex, the partial
effectiveness of the regularised transport field in erasing the
spurious pressure wrinkle is attributed to the explicit nature
of the computation of the shifting displacement vector δri .

123



Computational Particle Mechanics

Fig. 15 Field of particle unitary volume variation in the regularised
WENO SPH scheme for the circular blast wave simulation

To complete the analysis, Fig. 15 presents the field of par-
ticle unitary volume variation, defined by Eq. (51), computed
using the regularised WENO SPH scheme. It may be seen
that for r̂  1 the volume variations are up to a 16%, notably
larger than the values seen for the 2-D vortex. This result
further supports the claim that there is big room for improve-
ment in the shifting algorithm.

3.4 Standing wave

In this section, the evolution of a standing wave in a 2-D rect-
angular tank is studied for an inviscid fluid. For this test, the
wave should oscillate periodically without any change for an
infinite number of periods. In this test case, we can there-
fore evaluate the numerical dissipation of the WENO SPH
scheme herein proposed, in comparison with the standard
ALE-SPH formulation and with the MUSCL SPH formula-
tion.Moreover, this basic test involves a free surface andwall
boundary conditions and thus represents a first test towards
the applicability of the present SPH algorithm to real engi-
neering applications.

Specifically, the simulation domain is delimited by a tank
of width L and sufficient height. Initially, the free surface
is horizontal with a constant water height H . By setting
an appropriate initial distribution of velocities (as specified
below), and neglecting viscosity in the fluid, the linear the-
ory predicts that the standing wave evolves indefinitely with
a constant amplitude [43]. If this wave amplitude, D, is small
compared to the water height H , the time evolution of the
velocity field v is determined by the gradient of a potential
function ψ :

v = ∇ψ, (54)

where ψ is given by:

ψ (x, z, t) = ψ0 (x, z) cos (ωt) . (55)

Here, ω is the angular frequency of the wave oscillations
which for a given wave number k can be calculated with the
formula:

ω2 = gk tanh (kH) , (56)

with g being the gravity acceleration. The wave number k in
its turn is linked to the length λ of the wave simulated by the
formula:

k = 2π

λ
. (57)

On the other hand, the velocity potential at t = 0, ψ0, is
obtained from the following analytical expression:

ψ0 (x, z) = −ε
Hg

2ω

cosh (kz)

cosh (kH)
cos (kx) , (58)

where the origin of the coordinate systemchosen corresponds
to the bottom left corner of the tank, and ε is defined as the
ratio:

ε = 2D

H
. (59)

Considering that the time derivative of the velocity potential
ψ given by Eq. (55) is null for the initial instant, it can be
shown that a hydrostatic distribution approximates the initial
pressure field with sufficient accuracy [43]. In the present
analysis, the values set for these parameters are L = 1 m,
H = 1 m, D = 0.025 m, g = 9.81 m/s2 and λ = 1 m.
The reference density of the fluid is taken as ρ0 = 1000
kg/m2, and the sound speed is calculated from the expression
c0 = 10

√
gH . Two different types of boundary conditions

have been adopted. For the bottom limit, awall boundary con-
dition has been imposed by discretising the bottom edge with
the Modified Dynamic Boundary Conditions (mDBC) [44],
whereas periodic boundary conditions have been adopted for
the lateral sides of the tank. The free surface does not require
a specific treatment in the present WENO SPH scheme:
as explained in Sect. 2.3, the lateral reconstruction stencils
without almost complete support are simply ignored in the
nonlinear combination of candidate polynomial functions.

The results of the analysis are reported using dimension-
less variables (marked by a hat symbol, ^) defined as follows:

x̂ = x

H
, ẑ = z

H
, v̂ = v 2 ω

ε H g k
,

t̂ = t ω

2π
, p̂ = p

ρ0 g H
.

(60)
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Fig. 16 Pressure and velocity
distributions at time t̂ = 3 for
the standing wave computed
with the WENO SPH scheme

(a) Pressure (b) x-velocity

(c) z-velocity

All the simulations have been carried out for a resolution of
D/�x = 1.19. This resolution has been chosen to demon-
strate both the applicability ofWENOSPH for practical cases
aswell as the benefits of theWENO reconstruction over other
reconstruct methods available in the literature. Note that a
finer resolution should be used for this case if more accurate
results are needed [45].

Figure16 displays the pressure and velocity distributions
(both horizontal and vertical) after three oscillation periods of
the standing wave, computed with the WENO SPH scheme.
Note that in this case the particle distribution remains pretty
uniform. The results with Corrected WENO SPH and regu-
larised WENO SPH schemes have been thus omitted as they
do not introduces any significant improvement. Once again
it can be seen that WENO SPH produces a smooth pressure
field, which in this case approximates a hydrostatic distribu-
tion. For velocities, although no physical viscosity has been
modelled, it is expected that the numerical dissipation intro-
duced by the scheme itself will reduce the amplitude of the
wave oscillations to zero. However, for the low-dissipative
WENO reconstruction used, it can be observed that after the
three-period oscillation themagnitude of the velocities is still
well in the order of unity.

In fact, the present WENO algorithm can be compared
with other reconstructions available in the literature in terms
of the dissipation they introduce in the simulation of the
standing wave. For this purpose, For this purpose, the total
kinetic energy, Ekin , at a given time can be calculated for the
different ALE-SPH schemes using the following expression:

Ekin =
N∑
i

1

2
Vi ρi v2i . (61)

Figure17 shows the time evolution of the total kinetic energy
for the standing wave simulation computed with three differ-
ent schemes: the piece-wise constant ALE-SPH scheme; an
ALE-SPH scheme that uses the well-known MUSCL recon-
struction [23] (hereafter referred as MUSCL SPH); and the
present WENO SPH scheme. Note that the magnitude dis-
played in the vertical axis of the graph, Êkin , is obtained
by scaling the total kinetic energy with its initial value. The
first thing to notice is the very large dissipation introduced
by the piece-wise constant ALE-SPH scheme, which com-
pletely dampens the wave in less than a quarter of a period.
In contrast, the use of the MUSCL reconstruction signifi-
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Fig. 17 Time evolution of the total kinetic energy for the standing wave
simulation: a comparison study

cantly reduces the numerical dissipation of the standingwave
oscillations, which are still present after ten periods. Finally,
WENO SPH is clearly a superior scheme, preserving the
amplitude of the wave oscillations to a magnitude close to
three times larger than that obtained with MUSCL SPH.

4 Conclusions

In this paper, a WENO spatial reconstruction for ALE-
SPH scheme is completed with two additional alternative
approach to address the saturation in the convergence affect-
ing the classical SPH operators. As demonstrated in the
literature [30], the high-order WENO spatial reconstruction
improves the accuracy of the Lagrangian trajectories which
leads to a significant anisotropy in the particle distribution.
In the present work, two additions have been proposed to
enhance the consistency of the scheme in Lagrangian simu-
lations:

1. high-order divergence SPH operators [12] that approx-
imate differential operators in the governing equations,
and

2. a regularised transport field in the ALE framework [22].

Firstly, the propagation of a small pressure perturba-
tion has been used to demonstrate that an SPH formulation
based onRiemann problems in conjunctionwith a high-order
WENO reconstruction not only prevents the formation of
spurious oscillations in the results but introduces less numer-
ical dissipation than the artificial viscosity. Then, basing on
the analytical solution for the (smooth) fluid variable dis-
tributions of a 2-D vortex, it has been proved that the two
independent methods proposed to enhance consistency in
WENO SPH effectively improve the accuracy and mitigate

the saturation in global error convergence. For the scheme
with corrected SPH interpolation of divergence terms, accu-
racies similar to those of Eulerian simulations in regular
Cartesian grids are obtained in good part of the resolu-
tion range, demonstrating convergence above second order
in pressures (for second-order WENO polynomials). The
scheme has been tested also against the 2-D circular blast
wave simulation with the aim of assessing the capability
of preserving stability in the presence of strong discontinu-
ities (preventing the formation of spurious pressure noise).
The corrected SPH interpolation of divergence terms has
been decisive to accurately resolve all the features of the
flow. As in the case of the 2-D vortex, the regularised trans-
port field also provides improvements in accuracy though
these are smaller. Finally, a inviscid standing wave has been
reproduced adopting the WENO and the MUSCL spatial
reconstruction, demonstrating that the proposed approach is
able to reduce the numerical dissipation also for free-surface
flows. It has been claimed as well that the accuracy of the
scheme with regularised transport via explicit shifting used
in this work could be further improved. Though the imple-
mentation of an alternative implicit formulation [26] has been
left out of the scope of this paper, it is expected that such
scheme would largely improve the results. Contrary to the
use of corrected SPH operators for divergence terms, the
appeal of the approach with a regularised transport field is
the capability to improve the accuracy of the method while
keeping strict conservation of global mass and momentum.
Future works include a further investigation of the numeri-
cal scheme assessing the best type and size of the adopted
kernel function, an analysis on larger test cases to assess
the efficiency of the proposed scheme in comparison with
other existing approaches and, additionally, an investigation
adapting the algorithm for boundary conditions to simulate
arbitrarily complex solid walls while preserving the same
convergence rate.
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