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Abstract: This study analyzes the limitations of the low-frequency EIS impedance modulus as a tool
to describe the protective properties of organic coatings subjected to accelerated aging tests. Acrylic
clear-coated steel and hot-dip galvanized steel were exposed to accelerated test methods such as the
neutral salt spray chamber and the Prohesion test for up to 2000 and 3000 h, respectively. During
exposure, the protective properties of the coatings were monitored by EIS and visual inspection. We
observed a significant discrepancy between the measured impedance modulus in the low frequency
range (|Z0.01Hz|), and the actual deterioration of the metal–paint interface. The degradation of
the two painted substrates is independent of the accelerated test considered. The |Z0.01Hz| values
do not represent the actual degradation state of the metal–polymer interface. The manuscript
discusses the reasons for the lack of agreement between EIS and visual inspection. The limitations
of using the low-frequency EIS impedance modulus to describe the protective properties of organic
coatings are highlighted, and several cautions for interpreting the raw EIS data are suggested. The
reliability of possible thresholds of |Z0.01Hz| (e.g., failure below 106 ohm·cm2) to define the protective
performance of the coating turned out to be misleading.
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1. Introduction

Since the 1970s, electrochemical impedance spectroscopy (EIS) has been used to study
organic coatings [1,2]. To date, a large number of studies have been published on the
application of EIS to investigate the electrochemical properties and durability of painted
metals. Accordingly, several fundamental properties have been investigated using this AC
electrochemical technique: water absorption and permeability [3–8], cathodic delamina-
tion [9], mechanical deformation [10–12], and weathering [13–15]. Thus, it is well known
that the electrochemical properties of organic coatings are closely related to the durability of
the protective system. For this reason, a relevant part of the scientific community, industry,
military, and standardization bodies have adopted the EIS method to study the degradation
kinetics of painted metals and develop modeling and lifetime prediction methods.

EIS is used to monitor the evolution of the electrochemical properties of the painted
metal compared to baseline conditions (i.e., prior to outdoor exposure or accelerated
laboratory testing). The goal of these experiments may be simply to compare organic
coatings of different compositions or to build a database for the development of predictive
models. In either case, defining the relevant and representative environment for weathering
is a critical issue. Weathering in the intended service environment is the most reliable
and effective method for evaluating the durability of organic coatings. However, it is a
time-consuming approach because it takes a long time for the coating to fail, making it
unsuitable for the time frame of industrial research and development [16]. For this reason,
the properties of painted metals are often evaluated by laboratory-scale static or cyclic static
accelerated tests. In this context, the neutral salt spray test (ASTM B117 [17]) and its variants
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(ASTM G85-19 Annex 1–4 [18] or copper accelerated salt spray CASS, ASTM B368 [19])
are commonly used. In the climatic chamber (ASTM D1735 [20]), various combinations
of humidity and temperature can be modulated, from the humidostatic regime (ASTM
D2247 [21]) to complex wet/dry-cold/warm cycles. Within the cyclic accelerated tests, the
prohesion test (also called the dilute electrolyte cyclic fog/dry test, (ASTM G85 Annex 5 [18])
is the most commonly chosen, especially in the automotive field. The prohesion test is
recognized as being suitable for simulating a typical industrial environment because it
contains aggressive contaminants such as ammonium sulfate. Accelerated weathering
cabinets provide a near qualitative and comparable result in a relatively short time (weeks
or a few months). The reliability of the results and their correspondence with outdoor
weathering has been disputed for many years. The principal limitation of accelerated
aging on a laboratory scale is that it should induce the same mechanism of coating failure
(e.g., cathodic delamination, filiform corrosion, anodic undermining, blistering, etc.) that
occurs in service. Accordingly, one would expect the accelerated test to yield the same
performance rating for the specimens tested as for exposure in the natural environment [22].
This basic condition is not always met, and research in this area requires further effort to
address all critical aspects.

Regardless of the aging strategy employed, EIS has been widely used to monitor the
evolution of the corrosion protection properties of organic coatings in order to correlate the
results of quantitative electrochemical properties with the extent of degradation observed
in the outdoor environment [13]. The fame of EIS is based on the fact that it is possible,
in principle, to extract from a raw electrochemical impedance spectrum collected over a
painted metal several physical parameters representative of the system under study: (i) the
bulk properties of the polymeric coating, such as coating capacitance and pore resistance;
(ii) the electrochemical properties of the metal–electrolyte interface, such as charge transfer
resistance and double layer capacitance. In particular, the latter is related to the corrosion
activity on the metal substrate [23–25]. Extrapolation of these physical parameters from raw
EIS data sets is usually performed using nonlinear least-squares fitting techniques, which
have proven to be valuable tools for the analysis of complex frequency dispersion data.
Passive circuit elements (i.e., electrical equivalent circuits, EEC) are commonly used to fit
impedance spectra collected over painted metals. The use of EEC to fit a raw experimental
EIS data set is widespread [26,27], although the selection of the correct equivalent circuit
and the physical meaning of the obtained fitting parameters are often complex [9,24,28]. In
fact, the collected EIS spectra often result from the superposition of electrochemical reac-
tions responses arising from the differential water uptake, organic/inorganic compound
leaching, macro defects, distribution of preferential pathways for water permeation, free
volume fraction, polar groups in the polymer, inhomogeneity of substrate composition,
local corrosion phenomena, diffusion of species through the coating to the metal interface,
temperature variations [29–32], and paint thickness profile [33], etc. Due to the superpo-
sition of the electrochemical response of these different processes, the collected spectra
would appear very complex and of questionable interpretation. Under these conditions,
the application of nonlinear least squares fitting techniques would produce results that
are inconsistent with each other, even for similar samples, and the multiple trends would
work against the goal of obtaining a common model of degradation. This is especially
apparent for large structures where even the simple resist thickness can vary [34]. For this
reason, the low-frequency electrochemical impedance modulus (often referred to as |Z|LF,
Zmax, |Z0.01Hz|) is commonly used to evaluate, rank, and monitor the performance of coat-
ings. This parameter, generally extrapolated from the “impedance modulus vs. frequency”
plot, was proposed by Murray and Hack in 1993 [35] and more widely used by Amirudin
and Thierry in their renowned review [36]. Although it is known that the electrochemical
impedance modulus provides only partial and incomplete information in the low-frequency
range, it is widely used to compare and evaluate different organic coatings on different
metal substrates [13,37–40]. Indeed, several |Z| thresholds are proposed in the literature to
distinguish whether the paint is protective or not [36,41]. However, the reliability of these
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thresholds is controversial. Given the wide range of paint chemistries and the variability of
paint cycles [2,42], it is not recommended to adopt universally valid thresholds.

In addition to the limitations of using |Z0.01Hz| to evaluate the protective properties
of organic coatings, it should be noted that corrosion tests on organic coatings often give
little consideration to the scatter of results in a replicate sample and the uncertainty of the
data [43]. Several studies appear to be based on a limited number of samples observed
over an extended period of time [37,39–41].

Based on these observations, this study aims to evaluate the limitations of using
|Z0.01Hz| (i.e., at 10 mHz, |Z0.01Hz|) extrapolated from EIS plots for the study of painted
steel and hot-dip galvanized steel specimens when subjected to accelerated aging tests such
as the continuous neutral salt spray test (NSST) and the cyclic prohesion test. These aging
tests are among the most widely used in the industrial field, both for quality control and new
product development [44–47]. Moreover, different corrosion mechanisms could be triggered
by the two types of environmental stresses, and the results of the electrochemical reactions
may also be different. The evolution of|Z0.01Hz|, as an indicator of the protection provided
by the coating, has been monitored in accelerated tests for up to 3000 h. It is known that
|Z0.01Hz| depends on the properties of the coating (dielectric and resistive response), the
extent of the corrosion process (charge transfer resistance and double layer capacitance), and
the corrosion products (dielectric and resistive response). The effectiveness and reliability
of |Z0.01Hz| were evaluated by comparison with the visual appearance of the metal–paint
interface (this was possible thanks to the use of a pigment-free coating). The presence of
electrolyte deposits and the formation of corrosion products were verified.

The significance of the electrochemical results was discussed in terms of the actual
degradation level, which was visually verified, and the monitoring based on |Z0.01Hz|
was evaluated in terms of the reliability and accuracy of the data. This study focuses on
the EIS monitoring method rather than characterizing the performance of the samples. Six
measurements for each sample type and aging procedure were used to examine the trend
of deterioration and the agreements between outcomes kinetics were discussed. Since the
body of knowledge in the field of organic coatings corrosion is now extensive, users of the
available experimental tools need to be made aware of the difficulties in applying these
established techniques. The main factor in the complexity of dealing with the degradation
of painted metal structures is the enormous number of different practical cases that might
be encountered. For this reason, the case studies presented could help to describe some
detrimental circumstances that may occur.

2. Materials and Methods
2.1. Samples Preparation

In this work, two types of metal substrates were coated with the same commercial
two-component acrylic clearcoat (supplied by Palini Vernici; Pisogne BS, Italy). The selected
materials were mild steel (Q-panel R-36, composition: C max. 0.15 wt%; Mg max. 0.6 wt%;
P max. 0.03 wt%; S max. 0.035 wt%; and Fe. Bal.) and hot-dip galvanized (HDG) steel
supplied by Liberty Steel Italy (Piombino, Italy). For HDG sheets, energy dispersion X-ray
spectroscopy (EDXS) revealed the presence of a small amount of Al (0.26 wt.%) in the
zinc layer. The base metal for HDG is DX51D low carbon steel EN10346:2015 [48] (C max.
0.18 wt.%; Mn max. 1.2 wt.%; Si max. 0.5 wt.%; P max. 0.12 wt.%; and Fe. Bal.) The steel
samples were degreased in acetone and pickled with hydrochloric acid at a concentration
of 80 g/dm−3 for 20 min at room temperature. The HDG steel specimens were treated with
a 25 g/dm−3 solution of sodium hydroxide for 1 min at 50 ◦C. A layer of acrylic paint was
applied using a blade apparatus (Elcometer 4340). After curing for 1 h at 60 ◦C, a dry film
thickness in the range of 62–78 µm was obtained (see Appendix A for numerical values of
each specimen).
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2.2. Sample Aging and Characterization

The dry adhesion strength for painted steel and HDG steel determined in the pull-off
test [49] was 3.8 ± 0.2 MPa and 2.3 ± 0.3 MPa, respectively (adhesive failure was observed in
both cases). The painted specimens were subjected to the neutral salt spray chamber (NSST,
ASTM B117) [17] and the prohesion test (ASTM G85-19) [18]. For the tests in the chambers,
the edges of the exposed specimens were protected with tape to prevent delamination of
the cut edges. The accelerated tests aim to simulate an aggressive environment from the
corrosion point of view, which exposes the painted system to high humidity, relatively
high temperature, and the presence of chloride ions. The NSST consists of a 100% RH
environment achieved with a 5 wt% NaCl solution (Ascott-Analytical, Livonia, MI, USA)
and a constant temperature of 35 ◦C. The prohesion test includes one hour of exposure of
the material to a continuous mist of dilute electrolytes followed by one hour of drying at a
temperature of 35 ◦C [18]. The electrolyte used in the wet phase of the prohesion test is a
solution of 0.05 wt% NaCl and 0.35 wt% ammonium sulfate (Ascott-Analytical, Livonia,
MI, USA) (the composition is described in ASTM D1193 [50]). The coated plates were
monitored periodically by recording the EIS response and checking the visual appearance.
EIS measurements were performed using an Autolab PGSTAT302N potentiostat (Metrohm,
Herisau, Swiss). Spectra were recorded at room temperature (25 ◦C) in an aqueous NaCl
solution (0.5 mol·dm−3) with a quasi-neutral pH (6.2) and with 7.5 ppm dissolved oxygen
measured with a PCE-PHD1 probe (PCE-Instruments, Capannori (LU), Italy). Spectra
are recorded at a voltage amplitude of ± 15 mV with respect to the open-circuit potential
in a frequency range from 100 to 10 mHz after a 5 min delay at the immersion time. A
built-in-house mobile cell with a platinum counter electrode with an area of 0.75 cm2 and
an Ag/AgCl/3.5M KCl reference electrode with a planar circular test area of 1.25 cm2 was
used as the working electrode. EIS data collection was performed to evaluate the corrosion
protection properties of the paint during the development of the degradation of the coating
system; each sample was analyzed periodically. The experimental campaign was carried
out at six different measurement spots for both metallic substrates. The tested areas are
always the same for the series of measurements.

3. Results
3.1. NSST Aging Results

EIS analysis was performed periodically on the painted samples throughout artificial
weathering. Figures 1 and 2 show examples of the EIS response of the tested specimens
exposed to NSST, being painted steel and HDG steel, respectively.
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For each sample, a decrease in impedance modulus with time is observed, with
different kinetics and magnitude. Figure 1 shows the case of a sample that probably had a
very small defect in the coating from the beginning. Indeed, a partial resistive response
is observed in the mid and low-frequency range. Visual inspection cannot reveal such
defects, but EIS can detect them in the early stages of weathering. Many authors believe
that samples must be carefully selected before aging tests to obtain homogeneous data [1,2]
and a more reproducible campaign. However, real paint films very often do not show a
pure capacitive behavior over the whole frequency range [33,51–54] because the application
methods induce the formation of defects. In this work, we examine a range of samples,
including coatings with some unavoidable weak spots, to investigate the limit of |Z| in a
broader range of scenarios closer to actual application conditions.

Instead, Figure 2 shows the evolution of the coated HDG sample starting from a purely
capacitive behavior represented by a phase angle curve stable around −90◦ [55]. As the
aging time progresses, several contributions to the irregular shape of the phase angle occur
in parallel with a deflection of the impedance-modulus curve (Figures 1b and 2b). These
trends are the superposition of several electrochemical contributions represented by the
peaks seen in Figures 1b and 2b, some of which overlap. The qualitative observation of
the evolution of |Z| could also be treated as the increasingly resistive frequency range in
the weathering period according to Ammar et al. [56], shown by the enlargement of the
horizontal part of the curve as the coating absorbs electrolyte and increasingly loses its
protective properties [57,58].

The values of |Z0.01Hz| were recorded during the exposure time in the different
cabinets, and the evolution with time is shown in Figure 3a,b for painted steel and HDG
steel, respectively. The |Z0.01Hz| data are normalized over the paint thickness of the
studied area to compare the experimental results. |Z0.01Hz| was monitored during 2000 h,
when it dropped significantly to very low values. For both substrates, the initial |Z0.01Hz|
values are above 109 ohm·cm2/µm, and during exposure to NSST, they decrease according
to significantly different kinetics. It should be noted that differences of hundreds of hours
in the failure time are observed even for similarly manufactured samples, which are due to
the unavoidable heterogeneities during the production process, as they are very common in
paints applied for corrosion protection purposes. In the case of the painted steel, during the
first 300 h in NSST, the samples are characterized by high values of impedance modulus;
after about 500 h, some samples show a significant drop to very low |Z0.01Hz| values. As
for the painted HDG steel, some samples show a drop in the modulus after the first few days
of exposure. Once a sample experiences a drop in impedance modulus, it does not recover
and maintains the lower value for the rest of the exposure, or it continues to drop. Both
experiments ended after 2000 h when complete coating failure was observed. A sample
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is considered to have failed when the impedance modulus spectrum shows no capacitive
response in the high-frequency region and has very low impedance modulus values (see
Figures 1 and 2). At this point, the curves are comparable, to a first approximation, to
the results obtained on the bare substrate for comparison. In these conditions, the coating
can no longer exert a protective effect: the barrier properties are lost and the electrolyte
quickly reaches the metal surface. Figure 3a,b show a very high scatter of the collected data.
The experimental points can be schematically represented by a parallelogram, with the
acute vertices representing the condition of similar behavior between the samples. This
case theoretically occurs at the beginning and at the end of the aging process, when all six
samples provide low values of|Z0.01Hz|. The monitored trend during the weathering tests
shows a larger dispersion of responses, represented by the highlighted areas in Figure 3a,b.
These results indicate that a significant number of samples are required for a reliable
experimental investigation of the aging phenomena of painted metals. It seems that even
triplicate specimens, which are common in practice [2], are not sufficient to obtain reliable
results. In the case of coated steel, all the samples studied exhibit an initial |Z0.01Hz| of
about 109 ohm·cm2/µm, which decreases with time with completely different kinetics from
one sample to another. Failure (|Z0.01Hz| ≈ 103 ohm·cm2/µm) is reached after different
exposure times. However, after about 2000 h of the accelerated aging tests, all tested
samples show a |Z0.01Hz| value of about 103 ohm·cm2/µm.
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The |Z0.01Hz| values were compared with the appearance of the metal–paint interlayer
during the exposure time. Figure 4 shows the evolution of the corrosion at the interface
at different exposure times in the aging cabinets: 0, 500, 1000, 1500, and 2000 h. Visual
inspection highlights the early underpainting at the cut edge, which proves to be the
weakest area despite protection with tape. The areas that showed delamination due to the
cut edges were not included in the EIS measurements. The drawn circles on the surface of
the sample indicate the area that was sampled with EIS.

In the case of the galvanized substrate (Figure 5), well-distributed white zinc corrosion
products developed under the clear coat after 500 h of exposure. At this point, paint
adhesion is likely impaired, although the coatings appear to be undamaged, and for most
samples, the measured |Z0.01Hz| values are still high (Figure 3b).

Degradation of the metal–polymer interface, corrosion of the substrate, and formation
of corrosion products continue for up to 1000 h, resulting in significant degradation of the
samples. In the case of steel (Figure 4), in addition to rust formation, significant adhesion
loss is observed along with electrolyte accumulation at the interface. On the galvanized
surface (Figure 5), the whitish zinc corrosion products partially change to reddish iron
corrosion products, and the paint begins to detach from the substrate. After about 1000 h,
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all specimens look damaged due to the corrosion of the substrates: The coatings are no
longer protective. The appearance of the samples after exposure differs significantly from
the trend obtained from the raw EIS data. Despite the loss of adhesion and the presence
of rust at the interface, the |Z0.01Hz| values are still high (108–109 ohm·cm2/µm) and
correspond to those of a nearly intact organic coating. It should be noted that the samples
showing extensive degradation at the interface are often characterized by very high values
of impedance modulus throughout the frequency range and |Z0.01Hz| values comparable
to those of unexposed samples. In the EIS plots, the contribution of the interface is masked
by the electrochemical response of the organic coating (in the frequency range studied, from
10 mHz to 100 kHz), and the true extent of the interface degradation is possible because the
coating is a transparent layer.
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3.2. Prohesion Test Results

The tested samples were exposed in the prohesion test chamber. In this case, the main
differences from static NSST are the composition of the electrolyte and the presence of
wet/dry cycles, as described in ASTM G-85 [18]. It should be noted that even if the chamber
dries out, the moisture remains on the surface of the painted sample until it can be removed
by heating (35 ◦C) after 45 min, simulating the effect of dew or raindrops. Compared to
NSST, the chloride concentration is lower and ammonium sulfate is present in the artificial
fog (measured pH 6.1) to simulate an industrial environment [59].

Examples of the evolution of EIS over time are shown in Figures 6 and 7 for painted
steel and HDG steel, respectively. Despite the change in the accelerated weathering method,
the trends are similar to those observed for exposure in NSST. Comparing the initial EIS
spectra reveals different behavior: Several samples show a predominantly capacitive re-
sponse over the entire frequency range (as shown in Figure 2) with high |Z0.01Hz| (about
1010 ohm·cm2), whereas a few samples show a resistive response in the mid and low-
frequency range with |Z0.01Hz| values of about 106–108 ohm·cm2. The latter is likely char-
acterized by initial weak spots and significant heterogeneities leading to lower impedance
values in the mid-low frequency range and more complex spectra (as in Figure 6) at longer
immersion times. Also, in this case, the test was prolonged until the capacitive response in
the mid-and high-frequency range disappeared (exposure time of more than 2500 h).
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Figure 8a,b show the measured |Z0.01Hz| with exposure time in the prohesion test
chamber for painted steel and HDG steel, respectively. The data distribution is comparable
to that observed for exposure in the NSST. A significant scatter of |Z0.01Hz| data from
almost identical samples is observed. For both metal substrates, failure of the entire sample
series occurs between 2500 and 3000 h of exposure. Comparing these results with NSST,
the prohesion test appears to be less severe for this type of painted substrate, as a failure of
100% of the samples occurred about 1000 h later.
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Figure 9 shows the appearance of the specimens during the 3000 h of the prohesion
test. In this case, corrosion also began at the cut edges with linear filaments. The EIS spectra
were collected over areas that were not affected by delamination of the cut edges. Note
that after 500 h of accelerated aging, the steel specimens (Figure 9) are still intact in most
painted areas despite some degree of cut-edge corrosion described previously.
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In the case of galvanized steel, at the same test time, one of the three specimens is
severely damaged compared to the others, likely due to a defect in the coating (Figure 10).
Aside from the severely corroded specimen, a few areas of whitish zinc corrosion products
appeared after 500 h, but they were nowhere near as pronounced as those observed during
exposure in the NSST. Zinc corrosion products develop with exposure time, and paint
delamination occurs. However, no traces of steel corrosion products are found. It should
be noted that after 2000 h of exposure when an accumulation of corrosion products and
electrolytes is observed at the metal–paint interface, several EIS spectra still show quite
high |Z0.01Hz| values (>107 ohm·cm2/µm).
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As indicated by the electrochemical analysis and reconfirmed by visual observation, a
large number of samples are required to capture the variability in organic coating perfor-
mance. Studies performed on a perfectly controlled surface are not reliable to represent the
actual application in the field, where heterogeneities in coatings are always present.
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4. Discussion

So far, discussion of the EIS spectra has been limited to comparisons between the
|Z0.01Hz| values and the visual appearance of the samples. We have observed a significant
discrepancy between the measured |Z0.01Hz| values decay and the actual metal–paint
interface for both the painted substrates and independent of the accelerated test investi-
gated. However, it is known that EIS is sensitive not only to the organic coating but also
to the corrosion process under the paint [2]. For this reason, it could be suggested that
the collected raw EIS data sets could be analyzed using nonlinear least-squares fitting
techniques to separate the contribution of the coating and that of the metal surface to the
EIS response. We also believe that a comparison between the actual state of degradation
observed by visual inspection and the physical parameters related to the Faradic process at
the metal–electrolyte interface (such as the charge transfer resistance of the double-layer
capacitance) would likely provide consistent results. For this reason, we report here a
discussion of the possible fitting of the collected EIS spectra to obtain a numerical estimate
of the physical parameters describing the corrosion process under the coatings.

4.1. Comments on EIS Spectra

It is known that EIS is more effective in assessing the deterioration of the barrier
properties of organic coatings due to the permeation of ions, whereas EIS may suffer from
a shielding effect in thick and durable coatings and is unable to detect adhesion loss at the
metal–paint interface [42,60]. In the studied samples, which are a good replica of the real
situation where large or complex metal structures are painted, the heterogeneity of the thick-
ness leads to complex impedance spectra. Even for successive measurements on the same
sample during the study period, the shape of the EIS spectrum exhibits a large scatter: a
deterministic trend representative of the progression of the underpaint degradation process
is rarely observed. This aspect appears as a weakness of the experimental campaign, but
from a different perspective, it shows once more the limitations and the current problems
faced by this electrochemical approach in monitoring painted components in service, in
agreement with several previous publications on this subject [61–64].

Figure 11 shows an example of the collected EIS spectra on painted steel. Since the
coating is characterized by a not perfectly homogeneous organic layer, some problems arise
in the spectra analysis. First, for most samples, from time zero to the first few hundred
hours of accelerated aging, a minimum is observed in the phase angle spectra. According
to the observation reported by Touzain et al. [33], the EIS response is probably mainly
influenced by the thickness profile of the organic coating on the tested surface, resulting in
different water permeation in the layer. In the cited work, the authors observed a similar
phase angle minimum in the same frequency range for short immersion times. In this work,
the phase angle minimum is observed at high frequency at the beginning of weathering
and longer weathering when other time constants occur in the middle and low-frequency
range. This peculiarity has been observed in thick coatings [65], where the commonly
used electrical equivalent circuits such as R(CR) or R(C(R(CR))) do not fit the raw EIS
data sets. For such organic coatings, two relaxation processes appear to occur in the EIS
spectra [66], one of which is likely due to the water absorption profile in the coating. As
reported by Bouvet et al. [51], the organic coating could ideally be divided into two distinct
parts: the outermost layer, which is saturated with water, and the inner layer, which is
assumed to be dry. This model of the coating corresponds to two different phase constants
in a hypothetical electrical equivalent circuit that considers only the paint portion only.
These contributions greatly complicate the fit of the EEC to the raw EIS data sets, and it is
difficult to assign univocally physical meaning to each element. The sole presence of the
phase angle minimum at high frequencies would require a separate detailed discussion
to select an appropriate combination of passive circuit elements to describe the organic
coating. However, this analysis is beyond the purpose of this work, which is to focus on
the degradation of the system.
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The faradic process is generally observed in the low-frequency region of the EIS spec-
trum, as shown in Figure 11. In contrast to the reported example, most of the curves
collected in this experimental campaign did not clearly show the time constant correspond-
ing to the corrosion process under the coating (as an example, see Figures 1, 2, 6 and 7), even
for samples where there was visible corrosion activity under the coating. The relaxation
process corresponding to interfacial processes is probably at frequencies below 0.01 Hz.
This fact severely compromises the ability to extract the physical parameters representative
of the faradic process using non-linear least squares fit techniques.
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Figure 11. Example of the impedance modulus plot for a painted steel sample characterized by a
minimum at high frequencies.

4.2. Correlation between |Z| and the Corrosion Development

Considering the experimental problems encountered in the analysis of EIS spectra
when this type of spectra is collected, it is generally attractive to adopt a simplified ap-
proach based on the modulus of impedance at 0.01 Hz, as is very often the case in the
literature [13,67–69]. The possibility of using a single parameter (obtained directly from the
EIS spectra) for the rough estimation of the protective properties of the paint during aging
has been exploited repeatedly by different authors. However, the experimental evidence
reported in this work indicates a significant discrepancy between the measured |Z0.01Hz|
values and the corrosion evolution of the undercoat. Figures 12 and 13 show a direct
comparison between the evolution of the |Z0.01Hz| values and the actual degradation state
of the metal–paint interface during the prohesion test: the limitations of the reliability of
the low-frequency impedance modulus to represent the protective properties of the coating
are obvious. Similar results were obtained by other authors [49] combining adhesion tests
(such as the pull-off test) and EIS [39,68]. However, adhesion is a parameter not directly
related to impedance modulus, and high impedance does not always correspond to good
metal–paint adhesion.

The corresponding EIS spectra for the samples shown in Figures 12 and 13 are given
in Appendix B. Note that despite the significant amount of corrosion and accumulation of
hygroscopic corrosion products at the interface, the |Z0.01Hz| values do not fall below the
threshold of 106 ohm·cm2 [1,70,71] until around 3000 h of testing. At this point, the organic
layer is severely damaged in some places and cracked by the volumetric expansion of the
corrosion products. Although the use of the threshold value of 106 ohm·cm2 to consider an
organic coating as “protective” is questionable, many authors still assume this value as a
reference. [36,41,72,73]

A particular challenge could also be the handling of a large number of replicates,
which inevitably differ slightly in terms of water absorption profile, as shown by the
experience of many studies published in the literature [4,40,51,52,65,74]. Some authors
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suggest performing five or more repeated EIS analyses and using dispersion plots [36]
or reducing the data scatter by rigorous quality control of the painted surface. However,
these approaches are not suitable for assessing the extent of degradation of real in-service
structures by EIS.

In summary, we have reported an experimental campaign where the collected EIS
spectra cannot be evaluated with a reliable EEC. Under these circumstances, or if a less
detailed analysis of the EIS spectra is proposed, one solution would be to use the |Z0.01Hz|
values for a rough description of the protective properties of the coatings studied. However,
the experimental results suggest that when using |Z0.01Hz| values to describe the protective
properties of a coating, a proper analysis of the metal–polymer interface (visual inspection
or adhesion test) is required to avoid misleading conclusions.
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5. Conclusions

In this paper, we report a case study in which the use of |Z0.01Hz| values to classify
and describe the protective properties of organic coatings fails. Acrylic-coated carbon steel
and HDG steel were exposed to NSST and the prohesion test chamber for up to 3000 h.
The comparison between the |Z0.01Hz| value and visual inspection of corrosion product
formation at the interface of the metal–paint interface shows the following results:
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• At least 5–6 samples are required to limit the effect of small defects and/or hetero-
geneities on the final results. A significant scatter in the EIS response of theoretically
identical samples was observed;

• It has been shown that the |Z0.01Hz| values measured during the exposure time do
not describe the actual protective properties of the organic coatings. Thanks to the
transparency of the coatings, it was possible to detect the occurrence of significant
and extensive corrosion processes under the paint when the EIS response |Z0.01Hz|
provided values well above the thresholds generally accepted to assume an organic
coating to be “protective” (e.g., 106 ohm·cm2);

• It should be noted that we have reported on one particular experimental campaign
where the collected EIS spectra could not be analyzed with a reliable EEC. In these
circumstances, or whenever a less detailed analysis of the EIS spectra is proposed,
the solution often used in the literature is to use the |Z0.01Hz| values for a rough
description of the protective properties of the coatings under investigation. The
use of |Z0.01Hz| values requires a proper analysis of the metal–polymer interface
(visual inspection or adhesion test) to avoid misleading conclusions. We believe that a
comparison between the actual state of degradation observed by visual inspection and
the physical parameters related to the Faradic process at the metal–electrolyte interface
(such as charge transfer resistance and double-layer capacitance) would likely lead to
consistent results;

• In cases where it is not possible to apply nonlinear least-squares fit techniques to the
raw EIS data sets, the |Z0.01Hz| values should be used with caution and coupled with
additional investigation methods.
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Appendix A. Paint Thickness of the Measurement Areas

Table A1. Coating thickness for samples aged in NSST.

Paint Thickness
Sample

Steel
(µm)

HDG
(µm)

A1 71.8 61.9
A2 71.2 63.7
B1 72.5 67.6
B2 74.8 60.8
C1 76 61.6
C2 75.8 65.6
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Table A2. A1 Coating thickness for samples aged in the prohesion test.

Paint thickness
Sample

Steel
(µm)

HDG
(µm)

A1 72.8 66.2
A2 78.2 62.7
B1 77.8 71.4
B2 71.5 74.7
C1 70.8 68.8
C2 71.3 62.4

Appendix B. EIS Spectra at Different Aging Times during the Prohesion Test
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