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Abstract—Due to the scarcity of labeled samples, clustering in 

hyperspectral images (HSIs) has a great potential and application 
value. However, current clustering methods are mainly pixel-level 
techniques which neglect the large spectral variability of a scene, 
and suffer from massive time and memory consumption when 
dealing with large HSIs. In this paper, we propose a 
superpixel-level global and local similarity graph-based clustering 
(SGLSC) algorithm that can classify ground objects exploiting 
spectral and spatial dimensions with reasonable time and memory 
consumption on large HSIs. The proposed SGLSC, exploits the 
superpixel concept, which is treated as a homogeneous entity, into 
the clustering process. For modeling the essential structure of 
HSIs, a similarity graph combing the global and local information 
is constructed and inserted into the spectral clustering to partition 
the superpixel-level graph structure. The proposed method was 
tested on three benchmark HSIs data sets and compared with 
some advanced literature algorithms. Experiments demonstrate 
that it can obtain promising results. 
 

Index Terms—Clustering, superpixels, similarity graph, global 
and local structure information, large hyperspectral images, 
remote sensing. 

I. INTRODUCTION 

YPERSPECTRAL sensors integrate imaging and spectral 
technology for acquiring hyperspectral images (HSIs) in 

hundreds of narrow and contiguous spectral channels [1]. HSIs 
can capture discriminative features and fine differences among 
various land-cover materials. This is a very important 
information for many application fields such as environmental 
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monitoring, precision agriculture, mineral exploration and 
urban planning [2-6]. 

If a sufficient number of labeled samples is provided, the 
problem of HSI classification can be addressed by supervised 
methods [7] (e.g., support vector machine (SVM) [8], extreme 
learning machine (ELM) [9] and deep learning-based 
approaches [10-12]) which achieved excellent performances in 
recent years. However, it is difficult to have a large amount 
labeled samples due to the high cost in label collection and 
practical limitations. On the contrary, HSI unsupervised 
classification or clustering, which does not employ any label 
samples, has a strong practical significance. Nevertheless, 
clustering is a very challenging task due to the high- 
dimensional features space, the large spectral variability, and 
the complex ground objects distribution presented in HSIs 
[13-16]. 

Recently, a wide variety of clustering algorithms used for 
HSIs have been proposed. According to clustering mechanism, 
they can be divided into five main categories: centroid-based, 
density-based, probability-based, bionics-based and graph- 
based methods. 

As the most classical method, the centroid-based clustering 
algorithms [17-20] were earliest introduced in HSIs clustering. 
They usually start with a random initialization and iteratively 
update the cluster centers and the corresponding pixel partitions 
until a certain stop criterion is met. However, such algorithms 
often assume a spherical cluster structure in the feature space, 
which is not suitable for HSIs with large spectral variability. In 
the density-based methods, the samples in high-density regions 
partitioned by the sparse regions are regarded as different 
clusters [21-23]. However, due to the high dimensions of HSIs, 
pixels are usually intrinsically sparse in their feature space, 
which prevents the density-based methods from distinguishing 
high-density regions from sparse ones. Probability-based 
methods [24], [25] group pixels based on posterior probability 
maximization criterion. They assume that the pixels belonging 
to the same class in HSIs obey a certain probability distribution 
with specific parameters. Nonetheless, this assumption is often 
difficult to satisfy for the complex structure and large spectral 
variability in the HSIs. Bionics-based methods introduce the 
biological heuristic models, e.g., evolution algorithms, swarm 
intelligence algorithm and artificial neural networks, into HSIs 
clustering. Examples of these methods are the self-organizing 
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map (SOM) [26] and the unsupervised extreme learning 
machine (US-ELM) [28], [29]. In general, such approaches also 
suffer from similar obstacles as mentioned above and fail to 
achieve satisfactory clustering accuracy for HSIs.  

Graph learning can effectively express the essential structure 
and even the complex higher-order relationships of data [30, 
31]. Thus graph-based methods have been widely applied to 
HSI processing. Similarly, for hyperspectral image clustering 
tasks, graph-based methods show impressive performance and 
great potential due to the flexible construction of a similarity 
graph. In general, the graph-based clustering methods [32-34] 
represent the collection of objects as a graph in which the 
(dis)similarity relationships among different objects is 
measured by the similarity graph. These methods typically 
employ a two-step strategy. First, a similarity graph (i.e., 
similarity matrix) is constructed, where the data points are the 
nodes and the relationships are the weights. The relationships 
between the data points can be computed by various similarity 
measures. Then, the clustering can be achieved based on the 
graph theory optimization process. It should be emphasized that 
the quality of similarity graph plays a decisive role in the final 
clustering performance. 

In consequence, many improved graph-based clustering 
algorithms have been applied to HSIs, with the goal to construct 
more robust similarity graphs. Zhai et. al. [35, 36] introduced 
spatial information into the sparse self-representation learning 
framework to construct the similarity matrix. The nonlinear 
kernels was adopted to model the nonlinear structure of HSIs 
[37]. Zhang et. al. [38] proposed an unsupervised HSI 
clustering method based on the robust manifold matrix 
factorization technique, which can jointly perform the HSI 
dimension reduction and clustering tasks and achieve good 
results. In addition, Huang et. al. [39] proposed a bipartite 
graph partition based coclustering with joint sparsity for HSIs 
clustering task. This method incorporated the structured 
dictionary constraint into a joint sparsity constrained 
optimizing model to construct the similarity graph. 
Furthermore, the recent hot graph convolution network was 
utilized to generate the similarity graph to exploit the intrinsic 
structure information of HSIs [40, 41]. Unfortunately, these 
methods usually suffer from a large amount of computation and 
huge memory requirements when applied to large HSIs. The 
detailed reasons for which these methods have issues in 
handling large HSIs are described in Section II. 

In recent years, several methods have been presented for 
large HSIs clustering. Wang et al. [42], [43] presented two 
clustering algorithms for large HSIs, i.e., the fast spectral 
clustering with anchor graph (FSCAG) [42] and the scalable 
graph-based with nonnegative relaxation (SGNCR) [43]. The 
two methods choose a small number of pixels (i.e., anchors) to 
build a small size similarity graph for reducing computational 
complexity. However, the anchors are selected in a random way 
that neglects the structure information in HSIs and affects the 
ability to explore the intrinsic similarity between pixels. Wei et. 
al. [44] proposed a fast spectral clustering method based on 
anchor graph and spatial information. Yang et. al. [45] 
proposed a novel method for large HSI clustering tasks inspired 

by the spectral embedding and clustering with adaptive 
neighbors. Huang et. al. [46] proposed a bipartite graph 
partition with graph nonnegative matrix factorization (NMF) 
for coclustering of large HSIs, which fully explores the spectral 
and spatial information in HSIs and relieves the computational 
consumption and memory space required with the orthonormal 
constrained NMF-based bipartite graph partition. However, 
these methods involve lots of complicated processing and the 
performance also need to be improved. Zhai et al. [47] 
converted the HSI clustering task into a pixel-wise sparse 
recovery problem and proposed joint spare coding-based 
clustering (JSCC) algorithms for large HSIs, which can 
efficiently reduce the computational complexity and memory 
consumption. However, a structured dictionary needs to be 
generated in advance. The performance of the JSCC depends 
on the quality of structure dictionary whose purity is difficult to 
be guaranteed. 

Hyperspectral images have rich spectral and spatial context 
information. The high volume of spectral channels with a large 
number of pixels make the performance of the traditional 
clustering method degrades or even fail to work. For the spatial 
domain, the distribution of ground object is usually irregular, 
but the pixels in local areas are more likely to belong to the 
same class. It is necessary to design a clustering approach that 
can consider the characteristics of the spatial features and 
spectral information. Many papers [48-50] have exploited the 
superpixel concept [51], which represents a small 
homogeneous region in the images in which pixels have similar 
properties. For the HSI clustering task, superpixels are mostly 
used to provide spatial context information, such as in 
dictionary or representation learning constrained by superpixels 
[46, 47]. 

In this paper, we propose a superpixel-level global and local 
similarity graph-based clustering (SGLSC) algorithm which 
can accurately group ground objects integrating the spectral 
and spatial information with reasonable time and memory 
consumption on large HSIs. The main contributions of the 
proposed SGLSC method are highlighted as follows. 

1) Inspired by the effectiveness of superpixel concept in the 
analysis of HSI, we introduce superpixel to address the 
challenges of high computational complexity and 
memory consumption for large HSIs clustering. The 
superpixels can significantly reduce the number of 
samples on large HSIs clustering tasks, and alleviate the 
spectral variability of pixels located in a local region. 

2) A new global and local superpixel-level similarity graph 
is constructed, in which the relationships of each 
superpixel with its neighbors are measured to model the 
essential structure of HSIs. Due to the comprehensive 
superpixel-level similarity graph, the inherent structure 
of ground objects in HSI can be completely exploited to 
improve the clustering performance. 

3) A lightweight large HSIs clustering algorithm, i.e., 
SGLSC is presented by inserting constructed 
superpixel-level similarity graph into the spectral 
clustering. Extensive experiments show that our 
proposed SGLSC achieves both high accuracy and high 
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efficiency on some benchmark datasets compared with 
advanced methods recently proposed in the literatures. 

The rest of this paper is organized as follows. Section II 
describes the related work and motivation. Section III presents 
the details of the proposed SGLSC algorithm. Section IV 
describes the experimental results and the comparison between 
the proposed method and some state-of-the-art and latest 
methods on three HSI data sets. Finally, Section V concludes 
the paper and presents the future research.  

II. RELATED WORKS AND MOTIVATION 

Based on graph theory, graph-based clustering methods have 
recently shown advanced performance in HSI clustering task. 
These methods generally construct a similarity graph (i.e., 
similarity matrix) W  RN×N, whose elements indicate the 
affinity between the corresponding two pixels, to model the 
similarities among different hyperspectral pixels. A similarity 
graph is commonly constructed by various similarity measures 
combining with the KNN strategy [52], the ε–ball strategy [53], 
and the full connection strategy [54]. After that, graph cut 
algorithms are adopted to segment the similarity graph into 
several disjoint subgraphs by minimizing the correlation 
between subgraphs and maximizing the correlation within 
subgraphs. The spectral clustering (SC) [55, 56] is a typical 
graph-based clustering algorithm, whose optimization problem 
can be formulated as follow: 
                                 min

ி೅ிୀூ
𝑇𝑟ሺ𝐻்𝐿𝐻ሻ (1) 

where H = {h1, h2, ∙∙∙, hM}  N×M is the indicator matrix, M 
indicates the number of clusters, L=D - W is the Laplacian 
matrix, D denotes the degree matrix, which is a diagonal matrix 
and can be computed as 𝐷௜௜ ൌ ∑ 𝑊௝௜௝ . The optimization 
problem of SC is usually solved by singular value 
decomposition (SVD). The optimal H can be obtained by 
extracting the eigenvectors corresponding to the first M small 
eigenvalues of the Laplace matrix L. Then, k-means is 
commonly applied to the eigenvectors to assign a cluster index 
to each sample. 

However, a huge challenge in the computational 
requirements of graph-based clustering methods for large and 
high-dimensional HSIs is encountered in the solution of the 
optimization problem with SVD. In addition, the memory 
requirements for storing the entire similarity matrix of large 
HSIs are also very expensive. Given a HSI data set X  L×N , 
where N is the number of pixels and L is the number of bands, 
which contains M classes, the memory space and time 
complexity required to compute the similarity matrix are 
𝑂ሺ𝑁ଶሻ  and 𝑂ሺ𝑁ଶ𝐿ሻ , respectively. Moreover, at least a 
𝑂ሺ𝑁ଶ𝑀ሻ complexity is required to obtain the M eigenvectors 
of the Laplace matrix derived from the similarity matrix. For 
instance, the popular Salinas Valley hyperspectral benchmark 
image contains 111,104 pixels (i.e., the spatial size is 512×217), 
which makes the similarity matrix consumes more than 90GB 
memory space, resulting in little applicability of these methods 
to large HSI data sets in real-world scenarios.  

From the aforementioned analysis, it can be clearly observed 
that the number of data points has a critical impact on 

computational complexity and memory consumption when 
using the conventional graph-based clustering methods on large 
HSIs. However, it is well known that the pixels of HSI in local 
areas are more likely to belong to the same category, and that 
one HSI can be over-segmented into different disjoint 
homogeneous regions (i.e., superpixels) in which pixels have 
similar properties. The number of superpixels is far smaller 
than the number of pixels in the original HSI. Therefore, 
superpixel oriented graph-based clustering can significantly 
mitigate the computation and memory requirements for large 
HSI clustering tasks at a large extent.  

From the clustering performance perspective, the quality of 
similarity graph directly affects final clustering accuracy. 
Therefore, the similarity graph should be able to model the 
relationships among ground objects in HSI as realistically as 
possible. Due to the complexity and inhomogeneity of ground 
objects, objects belonging to the same category are usually 
distributed in different positions in the HSI. Meanwhile, 
because of the over-segmentation characteristics of superpixels, 
a region having pixels associated with the same class label may 
be divided into different adjacent superpixels. Consequently, 
the similarity graph should be able to both model the global 
information (i.e., a superpixel should be able to connect with 
the non-adjacent superpixels belonging to the same category), 
and the local information (i.e., the adjacent superpixels should 
have a high probability of belonging to the same category). 

As a result, we firstly construct the superpixel-level global 
similarity graph and the local similarity graph, which can 
complement each other. Then a new superpixel-level similarity 
graph integrating the global and local information is generated 
to model the essential structure of large HSIs and thus improve 
the clustering accuracy. Section III describes the proposed 
algorithm in detail. 

III. PROPOSED SGLSC TECHNIQUE 

In this section, the proposed SGLSC technique is described 
in detail. First, the given hyperspectral data is oversegmented 
into a certain number of superpixels for getting homogeneous 
regions. Second, we build a superpixel-level global similarity 
graph by mean of self-expression among different superpixels. 
Then a superpixel-level local similarity graph is constructed 
based on the spatial structure of the superpixel map. Finally, the 
clustering results are obtained by spectral clustering with 
combination of the global and local similarity graphs. The 
flowchart of the proposed SGLSC algorithm is illustrated in Fig. 
1.  

A. Superpixel Segmentation 

The large number of pixels contained in HSIs dataset brings 
high computational complexity for the calculation of similarity 
in the clustering process. The entropy rate superpixel 
segmentation (ERS) [57] method is adopted to oversegment the 
hyperspectral imagery into a small number of superpixels with 
high homogeneity and compactness. The ERS is one of the 
representative superpixel segmentation algorithms based on the 
graph theory. It takes into account both the entropy rate of a 
random walk term ensuring the compactness and homogeneity  
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of superpixels and the balance term controlling the number of 
superpixels to segment the given image. 

Given a HSI image X = {x1, x2, ∙∙∙, xN}  L×N, where xi= {xi1, 
xi2, ∙∙∙, xiL}, N is the number of pixels in the HSI, and L is the 
number of spectral bands. When the ERS is applied to the HSI 
data set X, the superpixels set SP = {sp1, sp2, ∙∙∙, spK} is 
generated, where 𝑠𝑝௞ ൌ ൛𝑥ଵ

௞, 𝑥ଶ
௞, ⋯ , 𝑥௡ೖ

௞ ൟ  (k = 1, 2, ∙∙∙, K) is the 

kth superpixel, K denotes the number of superpixels, 𝑥௜
௞ is the 

ith pixel vector in spk and nk denotes the number of pixel vectors 
in the spk. Each superpixel is treated as a homogeneous entity. 
The mean spectrum M ={m1, m2, ∙∙∙, mK}  L×K corresponding 
to the superpixel set SP is used as superpixel feature, in which 
mk indicates the mean spectrum of the kth superpixel computed 
as follows: 

                                 𝑚௞ ൌ
ଵ

௡ೖ
∑ 𝑥௜

௞௡ೖ
௜ୀଵ  (2) 

The superpixel feature is used for the similarity graph 
construction instead of pixels. It is worth noting that the number 
of superpixels is far less than that of the pixels in the HSIs (i.e. 
K<<N), thus the computing time and memory can be 
tremendously reduced. More importantly, the superpixel can 
retain the local structure information of the ground objects as 
adjacent pixels with similar spectral features usually belong to 
the same category. Therefore, the superpixel features can 
alleviate the influence of spectral variability in the HSIs. 

B. Superpixel-level Global Similarity Graph 

Considering the characteristics of high dimensionality and 
large spectral variability of HSIs, the similarity graph based on 
traditional distance measure cannot adequately reflect 
relationships between data points. Recently, the graph-based 
subspace clustering method has achieved accurate results in 
HSI clustering tasks. It takes the whole HSI data points as an 
over-complete dictionary and models the similarity between 
data points based on a self-representation learning pattern with 
a certain prior constraint (such as sparsity or low-rank [58, 59]).  

In this sub-section, a superpixel-level global similarity graph 
is built by the self-representation learning to measure the 
relationships between superpixels. According to the definition 
of superpixel feature matrix M in Section III-A, we assume that 
C is the representation coefficient matrix of superpixel feature 
matrix M under the self-representation learning framework, and 
mi  L and c:,i  K denote the columns of M and C in the 
vector form, respectively. The i-th superpixel mi is represented 
by the other superpixels with sparsity constraint defined as 
follows:  
                  𝑚௜ ൌ ∑ 𝑐௝௜𝑚௝

௄
௝ୀଵ,௝ஷ௜ ,   ฮ𝑐:,௝ฮ

଴
→ 𝑚𝑖𝑛 (3) 

where ฮ𝑐:,௝ฮ
଴
 denotes the ℓ0-norm which means the number of 

nonzero elements reflecting the sparsity of the solution, and cji 
is the value of contribution of the j-th superpixel (i.e., mj) to the 
process of reconstruction of the i-th superpixel (i.e., mi). It is 
natural to understand that larger 𝑐௝௜ values indicate that a higher 
similarity between mj and mi. 

It should be noted that the ℓ0-norm optimization problem 

corresponds to a NP-hard problem with no guarantee of the 
uniqueness and stability of the solution. Fortunately, according 

to the literature [60], ℓ0-norm can be relaxed to ℓ1-norm, which 

can be solved efficiently by multiple convex optimization 
algorithms [61-63]:  
                  𝑚௜ ൌ ∑ 𝑐௝௜𝑚௝

௄
௝ୀଵ,௝ஷ௜ ,   ฮ𝑐:,௝ฮ

ଵ
→ 𝑚𝑖𝑛 (4) 

Equation (4) can be rewritten for superpixels by using the 
matrix formulation: 

                      min
஼

‖𝐶‖ଵ 

                       s.t.  𝑀 ൌ 𝑀𝐶, 𝑑𝑖𝑎𝑔ሺ𝐶ሻ ൌ 0   (5) 
Furthermore, HSI data are inevitably corrupted by a variety 

of noises and even outliers in the process of data acquisition and 
transmission. Therefore, for better modeling the affinity 
relationship of objects collected in the complex HSI scenes, the 
self-representation problem can be ultimately reformulated as:  

Fig. 1. Flowchart of the proposed SGLSC approach. (1) superpixel-level global similarity graph 𝑆ீ , (2) superpixel-level local similarity graph 𝑆௅  and (3) 
superpixel-level local similarity graph 𝑆 on the Salinas Valley data set. 
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                min
ሺ஼,ா,௓ሻ

ቄ‖𝐶‖ଵ ൅ 𝜆ଵ‖𝐵‖ଵ ൅
ఒమ

ଶ
‖𝐴‖ி

ଶ ቅ 

                  s.t.  𝑀 ൌ 𝑀𝐶 ൅ 𝐴 ൅ 𝐵,   𝑑𝑖𝑎𝑔ሺ𝐶ሻ ൌ 0     (6) 
where C = [c1, c2, …, cK]  K×K indicates the sparse 
representation coefficient matrix in which the i-th column 
refers to the sparse representation coefficient of the i-th 

superpixel 𝑚௜ , and the ℓ1-norm of C (i.e., ‖𝐶‖ଵ) ensures the 

sparsity of the representation coefficient matrix C; A  K×K 
represents the noise, and the Frobenius norm facilitates that 
noise matrix has small values; B  K×K represents the sparse 

outliers, and the ℓ1-norm is adopted to guarantee sparsity. Two 

parameters 𝜆ଵ ൐ 0  and 𝜆ଶ ൐ 0  are used to balance the 
contributions of the three terms (i.e., the sparsity of the 
representation coefficient, the degree of noise and the 
magnitude of outliers). The constraint item 𝑑𝑖𝑎𝑔ሺ𝐶ሻ ൌ 0  is 
used to exclude the trivial solutions, i.e., a data point is 
expressed by itself. 

The self-representation learning optimization problem in (6) 
can be efficiently solved by the alternating direction method of 
multipliers (ADMM) [63]. The nonzero elements in the 
representation coefficient of each superpixel demonstrate that 
the corresponding superpixels belong to the same subspace (i.e., 
the same class). Considering that the other superpixels are 
taken into account in the optimization process of sparse 
representation coefficient of a certain superpixel, we define the 
superpixel-level global similarity graph 𝑆ீ . It models the 
weight on the edge between the superpixels and can be 
constructed by the sparse representation coefficient matrix C as 
follows:  

                          𝑆ீ ൌ ଵ

ଶ
ሺ|𝐶| ൅ |𝐶|்ሻ (7) 

Equation (7) expresses that the weight on the edge between the 

superpixel 𝑚௜ and 𝑚௝ is equal to 
ଵ

ଶ
൫ห𝐶௜௝ห ൅ ห𝐶௝௜ห൯. According to 

the assumption that nonzero elements of the sparse 
representation coefficient of 𝑚௜  demonstrate that the 
corresponding superpixels belong to the same category 
including 𝑚௜, it is intuitive that 𝑚௝ is chosen to represent 𝑚௜ if 

ห𝐶௝௜ห ൐ 0 . However, 𝑚௝  may not select 𝑚௜  in its sparse 
representation. Therefore, (7) is adopted to obtain a symmetric 
similarity matrix to guarantee that 𝑚௜ and 𝑚௝ are connected to 
each other regardless of whether 𝑚௜ and 𝑚௝ have chosen each 
other in the self-representation process. The process of 
construction of the superpixel-level global similarity graph 𝑆ீ  
is summarized as Algorithm 1. 

C. Superpixel-level Local Similarity Graph 

A superpixel as homogeneous entity also has spatial 
adjacency, i.e. the spatial neighbors may belong to the same 
category. In this sub-section, a superpixel-level local similarity 
graph 𝑆௅  is constructed for modeling the spatial adjacency 
between a superpixel and its neighbors. 

1) Neighborhood of superpixels 
In a hyperspectral image, the regular 4 or 8-adjacent areas are 

used to describe the neighborhoods of pixels. Unlike the 
pixel-level case, the spatial distribution of superpixels is 
 

Algorithm 1: Superpixel-level Global Similarity Graph 
Input: 
1) Dataset: superpixel feature matrix M ={m1, m2, ∙∙∙, mK}  

L×K; 
2) Parameters: the regularization parameters 𝜆ଵ and 𝜆ଶ.
Procedure: 
1. Construct the sparse self-representation learning model with 

(6) and obtain the sparse representation coefficient matrix C 
by the ADMM; 

2. Normalize C by column with 𝑐௜ ← 𝑐௜ ‖𝑐௜‖ஶ⁄ ; 
3. Establish the superpixel-level global similarity graph 𝑆ீ  

according to (7).
Output: 
The superpixel-level global similarity graph 𝑆ீ. 

irregular, and the neighborhoods of superpixels should be 
defined differently. For two different superpixels 𝑠𝑝௔ ൌ
൛𝑥ଵ

௔, 𝑥ଶ
௔, ⋯ , 𝑥௡ೌ

௔ ൟ and 𝑠𝑝௕ ൌ ൛𝑥ଵ
௕, 𝑥ଶ

௕, ⋯ , 𝑥௡್
௕ ൟ (a, b = 1, 2, …, K, 

and a ് b), the distance between 𝑠𝑝௔ and 𝑠𝑝௕ is defined as the 
minimum Manhattan distance between the pixels 𝑥௜

௔ in 𝑠𝑝௔ and 
𝑥௝

௕ in 𝑠𝑝௕. It can be formulated as follows: 

         𝐷𝑖𝑠𝑡ሺ𝑠𝑝௔, 𝑠𝑝௕ሻ ൌ min
∀௫೔

ೌ∈௦௣ೌ

∀௫ೕ
್∈௦௣್

൛ℳ൫𝑥௜
௔, 𝑥௝

௕൯ൟ  (8)  

where 𝐷𝑖𝑠𝑡ሺ𝑠𝑝௔, 𝑠𝑝௕ሻ indicates the distance between 𝑠𝑝௔  and 
𝑠𝑝௕, ℳ൫𝑥௜

௔, 𝑥௝
௕൯ is the Manhattan distance between 𝑥௜

௔ and 𝑥௝
௕, 

it is defined as follows: 

     ℳ൫𝑥௜
௔, 𝑥௝

௕൯ ൌ ห𝑝௜
௔ െ 𝑝௝

௕ห ൅ ห𝑞௜
௔ െ 𝑞௝

௕ห                   (9) 

where 𝑝௜
௔ and 𝑞௜

௔ indicate the location (i.e., the row and column 
number) of pixel 𝑥௜

௔ in the image, and 𝑝௝
௕ and 𝑞௝

௕ indicate the 

location of pixel 𝑥௝
௕. The neighborhoods of superpixel 𝑠𝑝௔ can 

be defined based on the (8) as follows:  

     𝑠𝑝௕ ∈ 𝒩ሺ𝑠𝑝௔ሻ   𝑖𝑓 𝐷𝑖𝑠𝑡ሺ𝑠𝑝௔, 𝑠𝑝௕ሻ ൌ 1,   𝑏 ൌ 1,2, ⋯ , 𝐾 (10) 

where 𝒩ሺ𝑠𝑝௔ሻ denotes the set of neighborhoods of superpixel 
𝑠𝑝௔; 𝐷𝑖𝑠𝑡ሺ𝑠𝑝௔, 𝑠𝑝௕ሻ ൌ 1 means that at least one pair 𝑥௜

௔ and 𝑥௝
௕ 

of superpixels are adjacent. 

 

Fig. 2. Example of superpixel neighborhoods. (a) Superpixel map of the 
Salinas Valley dataset. (b) Enlarged view of the local area marked by the 
yellow box in (a). (c) Shape of neighborhoods of superpixel 𝑠𝑝଺, i.e, the 
region surrounded by black lines. (d) Shape of neighborhoods of 
superpixel 𝑠𝑝ଵଵ, i.e, the region surrounded by yellow lines.
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An illustrative example of superpixel neighborhoods is 
showed in Fig. 2. From Fig. 2. (c), one can observe that the 
neighborhoods of superpixel 𝑠𝑝଺  are superpixels 𝑠𝑝ଶ , 𝑠𝑝ହ , 
𝑠𝑝଻ ,  𝑠𝑝ଵ଴ , 𝑠𝑝ଵଵ , and 𝑠𝑝ଵଶ , i.e., 𝒩ሺ𝑠𝑝଺ሻ ൌ
ሼ𝑠𝑝ଶ, 𝑠𝑝ହ, 𝑠𝑝଻, 𝑠𝑝ଵ଴, 𝑠𝑝ଵଵ, 𝑠𝑝ଵଶሽ. From the Fig. 2. (c) and (d), we 
can observe that the shape of neighborhoods of superpixel is 
irregular, and that the shapes of neighborhoods of different 
superpixels are also different. This indicates that the superpixel 
neighborhoods are more flexible and more consistent with the 
distribution of ground objects in comparison with the 
conventional pixel-level neighborhood (i.e., 4-neighborhood, 
8-neighborhood and so on). 

2) Construction of local similarity graph based on superpixel 
neighborhoods 

In order to measure the spatial adjacency of superpixels, the 
Gaussian kernel function, 𝐺ሺ𝑥, 𝑦ሻ ൌ 𝑒𝑥𝑝ሺെ‖𝑥 െ 𝑦‖ଶ 2𝜎ଶ⁄ ሻ 
where 𝜎  is a hyperparameter, is adopted to calculate the 
similarity between superpixel 𝑠𝑝௜  and its neighbor 𝑠𝑝௝ . The 
superpixel-level local similarity graph 𝑆௅ is expressed as:  

      𝑺௜௝
௅ ൌ ቊ𝑒𝑥𝑝 ቀെฮ𝑚௜ െ 𝑚௝ฮ

ଶ
2𝜎ଶ⁄ ቁ     𝑖𝑓  𝑠𝑝௝ ∈ 𝒩ሺ𝑠𝑝௜ሻ

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
  (11) 

where 𝑚௜ indicates the superpixel feature of 𝑠𝑝௜ defined in (2), 
‖∙‖ denotes the length of a vector, and the parameter 𝜎 controls 
the decay rate and is empirically set to 1 in the following 
experiments.  

The construction process of superpixel-level local similarity 
graph 𝑆௅ is given in Algorithm 2. 

Algorithm 2: Superpixel-level Local Similarity Graph 
Input: 
1) Dataset: superpixel feature matrix M ={m1, m2, ∙∙∙, mK}  

L×K; 
2) Parameters: the parameter 𝜎. 
Procedure: 
1) Obtain neighborhoods set of superpixel 𝑠𝑝௔  using (8) and 

(10); 
2) Construct the superpixel-level local similarity graph 𝑆௅ with 

(11). 
Output: 
The superpixel-level local similarity graph 𝑆௅. 

D. Superpixel-level Global and Local Similarity-based 
Clustering 

In this paper, a graph-based clustering method, i.e., spectral 
clustering [35-40], is adopted to achieve final clustering results. 
The basic idea of spectral clustering is to segment the graph 
based on the criterion that the weight sum of edges between 
different subgraphs should be as small as possible, whereas the 
weight sum of edges within the same subgraph should be as 
large as possible. The final clustering accuracy depends on the 
quality of the similarity graph, and the computational 
complexity is proportional to the square of the dimension of the 
similarity graph. 

To consider both the superpixel-level global similarity graph 
and the superpixel-level local similarity graph, an integrated 
similarity graph 𝑆 is defined as follows: 
                𝑆 ൌ 𝛼𝑆ீ ൅ ሺ1 െ 𝛼ሻ𝑆௅,   0 ൑ 𝛼 ൑  1   (12) 

where 𝛼 ∈ ሾ0, 1ሿ  indicates a trade-off parameter tuning the 
significance of global and local similarity graphs. 

The procedure of the proposed SGLSC is illustrated in detail 
in Algorithm 3.  

Compared with traditional pixel-level clustering methods, 
the proposed superpixel-level approach has two advantages. On 
the one hand, for a given HSI dataset, the number of superpixels 
K is far less than the number of the pixels. This reduces the 
dimension of the similarity graph considerably and thus 
guarantees the efficiency of clustering process. On the other 
hand, in the superpixel pattern, the comprehensive 
consideration of global and local similarity can improve 
clustering performance. 

Algorithm 3: SGLSC algorithm  
Input: 
1) Dataset: hyperspectral image dataset X = {x1, x2, ∙∙∙, xN}  

L×N; 
2) Parameters: the number of superpixel K, the regularization 

parameters 𝜆ଵ  and 𝜆ଶ , the parameter 𝜎 , and the trade-off 
parameter α.

Procedure: 
1) Apply ERS to HSI dataset X, and obtain the superpixels set 

SP = {sp1, sp2,…,spK} (k = 1, 2, …, K);  
2) Compute the superpixel feature M ={m1, m2, ∙∙∙, mK}  L×K 

corresponding to SP according to (2); 
3) Construct the superpixel-level global similarity graph 𝑆ீ  

using Algorithm 1; 
4) Construct the superpixel-level local similarity graph 𝑆௅ with 

Algorithm 2; 
5) Compute the superpixel-level global-local similarity graph 𝑆 

according to Equation (12); 
6) Apply spectral clustering to the superpixel-level global-local 

similarity graph 𝑆.
Output: 
The clustering results.

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, extensive experiments on three widely used 
hyperspectral benchmarks are carried out to verify the 
effectiveness of the proposed SGLSC technique. All the 
experiments are conducted on a Windows computer with the 
Intel(R) Core(TM) i7-4790 3.60 GHz CPU and 32-Gb RAM. 
And the two comparison methods EKGCSC [39] and 3DCAE 
[66] are implemented with Python 3.6, the other methods with 
Matlab R2016b. 

A. Description of Data Sets 

The performance of the proposed SGLSC is assessed on 
three HSI datasets, i.e., the Indian Pines, the Salinas Valley, and 
the Pavia Center benchmarks, which are briefly described in the 
following. 

1) Indian Pines: This historical data set was collected by 
National Aeronautics and Space Administration using the 
Airborne Visible/Infrared Imaging Spectrometer sensor 
(AVIRIS) over northwest Indiana in June 12, 1992. It contains 
145×145 pixels and has a spatial resolution of 20m. After 
discarding 20 water absorption bands, the remaining 200  
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Fig. 3. (a) False color composite of images of bands 57, 27, and 17; (b) 
Available ground truth map (Indian Pines dataset). 

 

Fig. 4. (a) False color composite images of bands 50, 27, and 17; (b) Available 
ground truth map (Salinas Valley dataset). 

 
Fig. 5. (a) False color composite images of bands 102, 56, and 31; (b) Available 
ground truth map (Pavia Center dataset). 

spectral bands are used in the experiments. There are 16 
land-cover classes in total in this scene, which are mainly 
different categories of crops and vegetation. Fig.3 shows the 
false color composition of the data set and the available ground 
truth map.  
2) Salinas Valley: The second data set was collected by 
AVIRIS over Salinas Valley, Southern California, in 1998. It 
contains 224 spectral bands from 400 to 2500 nm and a spatial 
size of 512×217 pixels with a high spatial resolution of 3.7 m. 
Twenty water absorption bands (i.e., in this case bands: 
108-112, 154-167 and 224) were discarded. This area is mainly 
composed of some subtypes of vegetation, bare soil, and 
vineyard fields. The ground truth contains 16 classes with 
relatively compact land-cover distributions. The false-color 
image composition and reference land-cover map are shown in 
Fig. 4. 

3) Pavia Center: This data set was obtained by the Reflective 
Optics System Imaging Spectrometer System (ROSIS) sensor 
with 115 spectral channels over the center of Pavia, Italy. After 
removing the low SNR bands, the dataset used for experiments 
has 102 bands. The image scene has a size of 1096×715 pixels 
with a spatial resolution of 1.3m. There are nine classes of 
interest contained in the image. The false-color image of Pavia 
Center dataset and the corresponding ground reference map are 
shown in Fig. 5. 

B. Experimental Settings  

1) Compared methods 
To comprehensively assess the validity of the proposed 

SGLSC technique, three common methods (i.e., FCM [18] 
US-ELM [28] and Scalable-SC [64]), and seven recently 
proposed methods for HSI clustering (i.e., EKGCSC [39], 
SRDL [65], FSCAG [41], SGCNR [42], FSCS [44], JSCC [43] 
and 3DCAE [66]) are selected as benchmarks for comparison. 
The properties of the seven recently proposed HSI clustering 
methods are summarized in Table I in terms of suitability for 
large HSIs, exploitation of spatial-spectral information, use of 
deep learning techniques, and exploitation of graph-based 
methods. All the comparative clustering algorithms are briefly 
described below. 

1) FCM [18]: This is a C-means based on fuzzy theory 
HSIs clustering. 

2) US-ELM [28]: This is an unsupervised extreme learning 
machine with manifold regularization used for HSIs 
clustering. 

3) Scalable-SC [64]: This is a scalable spectral clustering 
with cosine similarity used for HSIs clustering. 

4) EKGCSC [39]: The HSI is clustered with the similarity 
graph constructed by graph convolution network and 
nonlinear kernel technology. 

5) SRDL [65]: Spectral-spatial diffusion geometry is 
incorporated into the diffusion learning algorithm for 
HSIs clustering. 

6) FSCAG [41]: Anchor graph is designed to reduce the 
computational complexity. The FSCAG can efficiently 
perform the large HSIs clustering task. 
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7) SGCNR [42]: The anchor graph and nonnegative 
relaxation is used to cluster large HSIs.  

8) FSCS [44]: The spectral–spatial information and anchor 
graph are combined to fast cluster large HSIs. 

9) JSCC [43]: The sparse representation reconstruction 
error is used to cluster large HSIs.  

10) 3DCAE [66]: The deep architecture (i.e., 3-D 
convolutional autoencoder) is introduced to cluster large 
HSIs. 

TABLE I 
PROPERTIES OF SEVEN RECENTLY PROPOSED METHODS FOR HSIS CLUSTERING 

TASK USED IN OUR EXPERIMENTS 

Methods 
Large 

HSI 

Spatial- 

Spectral based 

Deep- Learning 

based 
Graph based 

EKGCSC   √ √ 

SRDL  √   
FSCAG √   √ 

SGCNR √   √ 

FSCS √ √  √ 

JSCC √ √   
3DCAE √ √ √  

For the three HSI data sets, the parameters adopted in each 
compared clustering method have been tuned to be optimal. For 
the FSCAG, SGCNR and JSSC, the parameters are set 
according to the respective literature. 

2) Quality indices 
In order to assess the performance of the proposed approach 

and the seven compared methods, four quantitative evaluation 
indicators including overall accuracy (OA), kappa coefficient 
(Kappa), normalized mutual information (NMI) and producer’s 
accuracy (PA) are adopted. All these quantitative indices range 
from 0 to 1. Meanwhile, the execution time of all clustering 
methods is reported to assess the computing complexity, and 
the visual clustering results of different methods are given for 
more intuitive comparative analysis. 

C. Parameter Sensitivity Analysis 

In the proposed SGLSC, there are three parameters, i.e., the 
number of superpixels K, the regularization parameter 𝜆 and 
the trade-off coefficient α. The sensitivity of each parameter is 
firstly evaluated on all three HSI data sets. The influence of the 
three parameters of the proposed SGLSC technique on the three 
considered HSIs is shown in Figs. 6-8. In addition, the best OAs 
of the first three clustering methods (i.e., those that achieved the 
best performance among the seven compared methods) are 
given to quantitatively show the performance of the proposed 
SGLSC algorithm. 

1) Number of superpixels 

The number of superpixels K is an important parameter for 
the proposed SGLSC. It controls the homogeneity in each 
superpixel and the samples size in the clustering. In the 
experiments, the parameter K is set in the range [1000, 2000] 
for the Indian Pines and the Pavia Center data sets, and [500, 
1500] for the Salinas Valley data set, with a step of 250. 

The clustering accuracy and execution time of the proposed 
SGLSC technique are shown in Fig. 6. It can be seen that the 

proposed SGLSC approach is robust to the different number of 
superpixels. The OA of SGLSC is relatively steady over a wide 
range of K values for the three HSI data sets. Furthermore, the 
performance of the proposed SGLSC is far better than other 
three best compared methods on the three hyperspectral images. 
Given the complex spatial structure and irregular distribution of 
land-covers of Indian Pines and Pavia Center data sets, the 
optimal values of parameter K are relatively large numbers, i.e., 
1500 and 1750, respectively. On the contrary, the OA curve of 
Salinas Valley image describes declining trend with the 
increase of the number of superpixels [Fig. 6 (b)]. The best 
performance is obtained when the parameter K is 500. For the 
execution time, the time cost of the proposed SGLSC algorithm 
is proportional to the number of superpixels. 

2) Regularization parameter 

The proposed SGLSC requires to tune the two regularization 
parameters (i.e., 𝜆ଵ and 𝜆ଶ) in (5), which adjust the weights of 
the noise constraint term and the outlier constraint term. In 
practice, for reducing the number of hyperparameters, the 
regularization parameters 𝜆ଵ  and 𝜆ଶ  are set to be equal, i.e., 
𝜆ଵ ൌ 𝜆ଶ ൌ 𝜆. In the experiments, we set 𝜆 vary from 5 to 50 
with a step of 5 for the Indian Pines data set, from 500 to 1500 
with the interval of 100 for the Salinas Valley data set, and from 
10 to 90 with steps of 10 for the Pavia Center data set. The 
achieved OAs are shown in Fig. 7.  

Fig. 7 shows that the parameter 𝜆 exerts a large influence on 
the clustering accuracy of the proposed SGLSC approach. 
Nevertheless, the SGLSC mostly achieves higher OAs than the 
three best compared algorithms on the considered HSI data sets. 
For the three HSI data sets, the optimal parameter 𝜆 is set as 15, 
1000 and 40 in the following experiments, respectively. In 
practical applications, the suitable setting of parameter 𝜆 can be 
easily fine-tuned for a specific hyperspectral image. 

3) Trade-off coefficient 

The trade-off coefficient 𝛼  balances the ratio of 
superpixel-level global and local information. In the 
experiments, the parameter 𝛼 gets its value in the range of [0, 1] 
with a step of 0.1. 

Fig. 8 illustrates the behavious of the OAs of the proposed 
SGLSC algorithm versus the parameter 𝛼. For the Indian Pines 
and Salinas Valley data sets, one can observe that the proposed 
SGLSC with integrated superpixel-level global and local 
similarity graph (0൏ 𝛼 ൏ 1) always achieve better performance 
than when only either the superpixel-level global similarity 
graph (𝛼 ൌ 1) or the superpixel-level local similarity graph 
(𝛼 ൌ 0 ) are used. This indicates that the global and local 
similarity information are complementary and both beneficial 
for the improvement of HSI clustering accuracy. In details, 
from Fig. 8 (a)-(c), one can see that the best OA is obtained 
when 𝛼 is set to 0.7, 0.5, 0.9 with different proportions of the 
superpixel-level global similarity graph and the 
superpixel-level local similarity graph. Therefore, the optimal 
𝛼 used are 0.7, 0.5, 0.9 for the Indian Pines, the Salinas Valley 
and the Pavia Center data sets, respectively. 
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(a) (b) (c) 

Fig. 6. OA and execution time versus the number of superpixels. (a) Indian Pines data set, (b) Salinas Valley data set, (c) Pavia Center data set. 

 
(a) (b) (c) 

Fig. 7. OA versus the parameter 𝜆. (a) Indian Pines data set, (b) Salinas Valley data set, (c) Pavia Center data set. 

 
(a) (b) (c) 

Fig. 8. OA versus the parameter α. (a) Indian Pines data set, (b) Salinas Valley data set, (c) Pavia Center data set. 

 

D. Results on the Indian Pine Data Set 

The first experiment was conducted on the Indian Pines 
image to verify the validity of the proposed SGLSC algorithm. 
The visual clustering results of compared methods are shown in 
Fig. 9 (a)-(l), and the corresponding quantitative assessments 
are listed in Table II. In the table, the optimal values of 
clustering accuracies are marked in bold, and the suboptimal 
values are underlined. From Fig. 9 and Table II, one can 
observe that the proposed SGLSC algorithm performs far better 
than the other methods in terms of OA, Kappa, and NMI. 

The comparison among the three common methods shows 
that the FCM obtains the worst clustering result in this data set 
with significant amounts of misclassifications. In details, the 
FCM achieves a relatively good clustering results for the 
Hay-windrowed, Wheat and Oats categories, with the PA of 
98.95%, 96.59% and 65% respectively. However, the 
accuracies of many other classes are all at a low level. The 

US-ELM method achieves third-best result in this experiment, 
achieving a good accuracy on most classes. However, due to 
the pixel-level based distance metric adopted in US-ELM, this 
method fails to model the local spatial information. The 
improved graph-based clustering method (i.e., Scalable-SC), is 
the most efficient and take very little time. However, it achieves 
an unsatisfactory clustering accuracy, with an OA of 46.43%. 

For the recently proposed method for HSI clustering task, the 
EKFCSC obtained the medium level performance compared 
with other clustering methods on this data set. However, it 
should be noted that the execution time of the EKGCSC is 
extremely high, which may greatly reduce its application 
prospect in practical applications. The SRDL method achieves 
suboptimal results with an OA of 52.75%. Due to its 
exploitation of spatial information, it can be observed that there 
are little salt and pepper noise in the related cluster map (i.e., 
Fig. 9 (f)). 
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

Fig. 9. Clustering maps of different methods on the Indian Pines data set. (a) Ground truth. (b) FCM. (c) US-ELM. (d) Scalable-SC. (e) EKGCSC. (f) SRDL. (g) 
FSCAG. (h) SGCNR. (i) FSCS. (j) JSSC. (k) 3DCAE. (l) Proposed SGLSC. 

TABLE II 
QUANTITATIVE ASSESSMENT OF CLUSTERING RESULTS BY USING SEVEN COMPARED METHODS ON THE INDIAN PINES DATA SET 

Metric Classes FCM US-ELM 
Scalable-

SC 
EKGCSC SRDL FSCAG SGCNR FSCS JSCC 3DCAE

Proposed 

SGLSC 

PA 

(%) 

Alfalfa 0.00 2.17 8.70 0.00 6.52 0.00 0.00 10.87 6.52 0.00 0.00

Corn-notill 31.16 30.11 30.25 51.82 67.09 32.07 19.19 34.45 35.01 21.08 42.44

Corn-mintill 23.86 34.58 0.00 32.53 32.53 16.27 11.45 34.82 27.47 12.29 57.35 

Corn 8.86 0.42 5.91 64.14 0.00 27.00 33.76 11.39 12.66 14.77 100.00 

Grass/Pasture 40.79 65.63 7.87 32.51 65.84 49.28 47.62 36.44 15.53 4.14 65.84 

Grass/Trees 35.62 53.97 18.08 55.75 39.04 56.85 55.62 25.07 56.71 90.55 99.73 

Grass/Pasture-mowed 0.00 0.00 3.57 100.00 0.00 3.57 0.00 53.57 0.00 0.00 100.00 

Hay-windrowed 98.95 98.54 98.12 100.00 98.12 99.16 99.37 55.86 65.69 97.91 100.00 

Oats 65.00 0.00 5.00 40.00 0.00 75.00 50.00 50.00 0.00 75.00 0.00

Soybean-notill 30.04 42.18 5.76 10.08 74.79 33.44 51.03 31.38 45.99 43.21 75.31 

Soybean-mintill 30.79 69.86 77.39 47.78 41.83 32.91 32.99 32.02 68.43 60.73 74.26

Soybean-clean 25.13 29.01 35.92 54.47 24.79 18.38 24.96 25.97 27.15 26.98 74.20 

Wheat 96.59 95.12 98.05 64.88 0.49 96.59 98.54 97.56 100.00 24.88 100.00 

Woods 26.40 69.09 99.21 65.77 71.46 33.36 29.09 42.37 70.20 71.46 62.37

Bldg-Grass-Tree-Driver 16.32 34.97 10.62 61.66 76.94 16.84 12.69 16.84 40.93 42.49 79.79 

Stone-Steel-Tower 6.45 3.23 2.15 0.00 0.00 2.15 0.00 68.82 88.17 3.23 1.08

OA (%) 33.22 52.74 46.43 49.15 52.75 36.38 35.54 34.87 50.59 46.79 69.95 

Kappa 0.2685 0.4617 0.3702 0.4353 0.4772 0.2922 0.2907 0.2808 0.4402 0.4001 0.6638 

NMI 0.4238 0.5223 0.4632 0.4770 0.6418 0.4504 0.4223 0.3719 0.4892 0.4450 0.6917 

Time (s) 60.27 24.47 1.62 11193.08 150.20 2.95 6.52 6.37 16.43 627.42 127.22

By comparison, the three graph-based clustering methods for 
large HSIs, i.e., the FSCAG, the SGNCR, and the FSCS, all 
take a few seconds. Nevertheless, it should be noted that the 
three methods are not able to obtain satisfactory clustering 
accuracies, and they achieve OAs of 36.38%, 35.54%, and 

34.87%, respectively. The sparse representation recovery 
residual-based method for large HSIs (i.e., JSCC) achieves the 
third-best clustering accuracy with a small execution time equal 
to only 16.43s. However, the clustering accuracy of this method 
also cannot meet the needs of practical applications. The 
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3DCAE method, which adopts the 3D convolutional neural 
network (CNN) to extract the features for the clustering task 
and integrates the spatial and spectral information, is selected 
for comprehensive comparison. However, it failed to achieve 
satisfactory result on this scene, with an OA of only 46.79%. 
This may be due to the fact that 3DCAE uses regular spatial 
information, which does not accurately match the ground object 
distribution. 

The proposed SGLSC approach achieves the best clustering 
performance, including the OA, Kappa and NMI of 69.95%, 
0.6638 and 0.6917, respectively. Furthermore, the accuracy of 
SGLSC is far better than the second best result on this data set, 
with 17.20%, 0.1866 and 0.0499 improvement in term of OA, 
Kappa and NMI, respectively. In particular, the proposed 
SGLSC achieves the best PA for ten land-cover types, with the 
classes of Corn, Grass/Pasture-mowed, Hay-windrowed, and 
Wheat having accuracies of 100%. Overall, the proposed 
SGLSC algorithm exhibits superiority to the other compared 
clustering methods in this experiment. 
E. Results on the Salinas Valley Data Set 

The second experiment was conducted on the Salinas Valley 
data set. Fig. 10 shows the clustering maps obtained by the 
proposed SGLSC approach and the compared methods. Table 
III reports the OA, Kappa, NMI, PA and execution time for 
different methods. Similarly to the results of the Indian Pines 
data set, the proposed SGLSC approach is far superior to other 
considered methods. 

For the common clustering methods (i.e., FCM, Scalable-SC, 
and US-ELM), the FCM obtains the worst clustering accuracy 

on this data set, with the lowest OA of 58.20%, and its 
clustering map displays a large number of misclassifications 
and noise. The Scalable-SC can efficiently obtain the clustering 
result for this large hyperspectral image, with a running time of 
only 14.11s. However, the clustering accuracy of this method is 
not satisfactory, with an OA of only 64.55%. The US-ELM 
achieves the third-best accuracy among these clustering 
methods in this experiment, but at the cost of requiring the 
second-largest running time. In details, from Fig. 10(c), one can 
observe that there are a lot of misclassification between the 
classes of Grapes_unstrained and Vinyard_unstrained, and 
approximately half of the land-cover of Fallow is misclassified 
as Lettuce_5wk.  

It is unfortunate that the EKGCSC and SRDL methods 
cannot deal with this data set because of the large memory 
consumption and the high computing complexity. By 
comparison, the FSCAG, the SGNCR, and the FSCS can also 
efficiently cluster this large hyperspectral image, with 
execution times of 34.02s, 41.75s, and 34.19s, respectively. 
However, they cannot achieve satisfactory clustering 
accuracies, with OAs of only 65.89%, 60.24%, and 59.97%, 
respectively.  

In contrast, the JSCC can categorize different land cover 
types with the second best clustering OA of 68.46%. It should 
be noted that the execution time of the JSCC is relatively high 
(i.e., 451.25s). The 3DCAE obtains acceptable clustering 
accuracies, and a suboptimal NMI (i.e., 0.8271), which is far 
better than other considered methods. It should also be noted 
that the 3DCAE consumes the most running time on this scene. 

   
(a) (b) (c) (d) (e)

   
(f) (g) (h) (i) (j)

Fig. 10. Clustering maps of different methods on the Salinas Valley data set. (a) Ground truth. (b) FCM. (c) US-ELM. (d) Scalable-SC. (e) FSCAG. (f) SGCNR. (g) 
FSCS. (h) JSSC. (i) 3DCAE. (j) Proposed SGLSC. 
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TABLE III 
QUANTITATIVE ASSESSMENT OF CLUSTERING RESULTS BY USING SIX COMPARED METHODS ON THE SALINAS VALLEY DATA SET 

Metric Classes FCM US-ELM 
Scalable-

SC 
FSCAG SGCNR FSCS JSCC 3DCAE 

Proposed 

SGLSC 

PA 

(%) 

Brocoli_weeds_1 99.75 31.66 0.00 96.71 95.87 0.00 99.65 94.82 100.00 

Brocoli_weeds_2 35.29 96.22 95.57 98.55 95.38 68.65 97.72 99.70 100.00 

Fallow 51.82 57.19 13.36 16.85 24.44 24.34 0.00 0.00 100.00 

Fallow_rough 98.64 69.01 0.50 97.92 97.56 0.00 100.00 0.00 0.00

Fallow_smooth 97.65 83.68 97.61 97.80 89.13 90.93 47.80 99.10 99.81 

Stubble 96.36 98.99 99.77 95.91 59.86 95.58 98.53 99.82 99.90 

Celery 98.85 61.83 94.72 54.26 63.51 80.78 98.46 99.86 100.00 

Grapes_unstrained 33.50 45.45 52.80 52.23 46.59 58.83 76.27 97.98 87.12

Soil 73.14 97.03 79.53 91.20 87.57 56.62 57.36 100.00 100.00 

Corn 48.87 56.62 82.40 60.31 61.53 55.46 51.68 86.49 70.99

Lettuce_4wk 0.00 0.00 94.85 0.09 0.75 34.27 42.70 0.00 0.00

Lettuce_5wk 81.94 89.15 12.45 49.71 92.79 98.13 58.33 0.00 100.00 

Lettuce_6wk 99.24 98.14 0.00 99.34 0.00 98.80 0.00 0.00 0.00

Lettuce_7wk 61.50 81.68 98.60 86.45 87.66 88.22 63.18 94.67 98.41

Vinyard_unstrained 31.48 59.89 53.40 50.61 38.79 50.17 55.88 0.00 92.38 

Vinyard_trellis 25.84 81.96 76.43 0.00 0.00 33.09 63.70 0.00 100.00 

OA (%) 58.20 68.37 64.55 65.89 60.24 59.97 68.46 68.16 88.25 

Kappa 0.5470 0.6504 0.6074 0.6212 0.5652 0.5578 0.6496 0.6389 0.8695 

NMI 0.6837 0.7314 0.7479 0.7433 0.7042 0.6665 0.7211 0.8271 0.9062 

Time (s) 321.32 932.76 14.11 34.02 41.75 34.19 451.25 2596.44 40.19 

 

The proposed SGLSC approach obtains the best clustering 
performance compared with the other methods (see Table III). 
In details, the proposed SGLSC has 19.79%, 0.2191 and 0.0791 
improvements of OA, Kappa and NMI compared with the 
second best result, respectively. Furthermore, the proposed 
SGLSC achieves the best PA in most land-cover types, and 
there are seven classes whose accuracies are 100%. The 
running time of the SGLSC is 40.19s, which is less than the 
time required by the JSCC. This demonstrates the excellent 
capabilities of the proposed SGLSC on this data set. 

F. Results on the Pavia Center Data Set 

A large-size hyperspectral image, i.e., Pavia Center data set, 
is used in the third experiment to evaluate the performance of 
the proposed SGLSC approach. From the clustering maps 
shown in Fig. 11 and the quantitative assessments listed in 
Table IV, one can see that the proposed SGLSC achieves the 
best clustering performance. 

The FCM obtains the poorest clustering accuracy, with a 
small OA of 67.93% and a clustering map including a large 
number of misclassifications. The Scalable-SC is still able to 
quickly cluster large HSIs, with a running time of only 303.32s. 
However, its accuracy is low, with an OA of only 73.25%. The 
US-ELM achieves the second best accuracy, i.e., 83.18%, 
among all these methods on this data set. However, it is not 
suitable to be extended to practical applications due to the huge 
running time, i.e., 39675.63s. 

For the three graph-based clustering methods for large HSIs, 
the SGCNR also achieves poor clustering performances, with 
an OA of 67.58%. The FSCAG performs better than the 
SGCNR in terms of both clustering accuracy and running time 
on this date set. The FSCS achieves an unsatisfactory clustering 
performance, with an OA of 75.58%. However, it is most 

efficient and takes only a small amount of time (i.e., 67.32s). 
The JSCC obtains the third-best clustering accuracy, i.e., 

82.55%, with a relatively higher running time, i.e., 8733.11s. 
However, it achieves the best result in term of NMI. The 
3DCAE only achieves a moderate clustering performance and 
requires a relatively long running time with respect to other 
methods on this scene.  

In comparison, the proposed SGLSC approach achieves the 
best clustering performance and yields smooth clustering map. 
It performs best for three land cover types, i.e., Bricks, Baresoil 
and Tiles, among all other methods. Moreover, the proposed 
SGLSC increases of 5.63% and 0.0833 the OA and the Kappa 
over the second best method (i.e., the US-ELM), and obtains 
the second best NMI on this data set. In addition, the running 
time of the proposed SGLSC approach is 2236.53s, which is 
close to the running time of the SGCNR. However, the OA of 
the proposed SGLSC is 21.23% higher than that of the SGCNR. 
This experiment from both the visual results and quantitative 
results further confirmed the effectiveness of the proposed 
SGLSC approach. 

G. Discussion 

According to the experimental results presented in the 
previous section, one can see that the proposed SGLSC almost 
always outperforms the other clustering algorithms in terms of 
OAs while requires less execution time. In this section, the 
effectiveness and computational complexity of the SGLSC are 
analyzed and discussed in detail. 

1) Analysis of the effectiveness of proposed SGLSC 
In the proposed SGLSC, superpixel-level global and local 

similarity graph 𝑆 (consisting of global similarity graph 𝑆ீ  and 
local similarity graph 𝑆௅ ) is presented for modelling the 
distribution of ground objects more realistically. From the 
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experimental results in Fig. 8 (Section IV C.), one can see that 
leveraging on both 𝑆ீ  and 𝑆௅ provides the best accuracy on all 
three HSI data sets. This indicates that the superpixel-level 
global and local similarity graph 𝑆 can effectively model the 
essential structure of the HSIs. A further analysis of Fig. 1 (1) - 
(3) (the visualization results of 𝑆ீ , 𝑆௅  and 𝑆  on the Salinas 
Valley data set) indicates that the global similarity graph 𝑆ீ 
and local similarity graph 𝑆௅ are complementary to each other. 
The superpixel-level global similarity graph 𝑆ீ  enables the 
connection between superpixels belonging to the same category 

that are not adjacent to each other, which is consistent with the 
real-world situation in which objects belonging to the same 
category may be distributed in different locations in the HSI. 
The superpixel-level local similarity graph 𝑆௅  models the 
relationship between neighboring superpixels, which 
corresponds to the fact that superpixels in close proximity are 
more likely to belong to the same category. As a result, the final 
similarity graph 𝑆 integrating the 𝑆ீ  and 𝑆௅  ensures that the 
proposed SGLSC method can achieve efficient performance. 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 11. Clustering maps of different methods on the Pavia Center data set. (a) Ground truth. (b) FCM. (c) US-ELM. (d) Scalable-SC. (e) FSCAG. (f) SGCNR. (g) 
FSCS. (h) JSSC. (i) 3DCAE. (j) Proposed SGLSC. 

TABLE IV 
QUANTITATIVE ASSESSMENT OF CLUSTERING RESULTS BY USING SIX COMPARED METHODS ON THE PAVIA CENTER DATA SET 

Metric Classes FCM US-ELM Scalable-SC FSCAG SGCNR FSCS JSCC 3DCAE 
Proposed 

SGLSC 

PA (%) 

Water 99.11 99.36 99.29 98.76 93.40 100.00 98.03 99.35 99.61 

Trees 63.56 64.73 100.00 46.14 39.01 29.38 85.89 99.95 68.83

Meadows 17.54 21.75 0.00 61.68 84.53 42.52 28.58 0.00 31.52

Bricks 19.85 0.00 0.11 0.00 0.52 15.23 19.33 0.00 79.70 

Baresoil 36.53 50.29 46.54 38.81 31.39 15.78 77.28 0.00 77.32 

Asphalt 87.49 99.34 14.40 90.59 49.22 76.25 53.72 83.43 48.77

Bitumen 24.76 0.00 84.23 80.32 84.29 0.00 31.56 65.38 83.71

Tiles 39.81 92.01 55.65 63.75 47.04 79.30 84.63 63.62 97.66 

Shadows 0.10 6.64 36.85 99.83 0.10 0.00 38.53 98.22 0.00

OA (%) 67.93 83.18 73.25 79.32 67.58 75.58 82.55 78.08 88.81 

Kappa 0.5633 0.7586 0.6272 0.7161 0.5680 0.6456 0.7579 0.6987 0.8419 

NMI 0.6727 0.7728 0.8008 0.7366 0.6812 0.5971 0.8358 0.7136 0.8181 

Time (s) 692.22 39675.63 303.32 1111.65 2232.45 67.32 8733.11 7617.43 2236.53 
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2) Computational Complexity 
The clustering process for the classical spectral clustering 

(SC) algorithm (described in Section II) can be divided into 
three main steps: similarity graph construction, singular value 
decomposition (SVD) to determine the indicator matrix, and 
k-means clustering to obtain the optimal cluster index. 
Therefore, the time complexity of SC for a given hyperspectral 
image X with N pixels is 𝑂ሺ𝑁ଶሻ ൅ 𝑂ሺ𝑁ଷሻ ൅ 𝑂ሺ𝑁ሻ , 
corresponding to the above three steps, while the space 
complexity is 𝑂ሺ𝑁ଶሻ ൅ 𝑂ሺ𝑁ଶሻ ൅ 𝑂ሺ𝑁ሻ. 

Assuming that the hyperspectral image X is over-segmented 
into K superpixels (𝐾 ≪ 𝑁), the proposed SGLSC needs to 
construct the superpixel-level global and local similarity graphs. 
The time and space complexities for constructing the global 
similarity graph according to Eq. (6) are 𝑂ሺ𝐾ଷሻ and 𝑂ሺ𝐾ଶሻ, 
and the time and space complexities for constructing the local 
similarity graph according to Eq. (11) are 𝑂ሺ𝐾ଶሻ and 𝑂ሺ𝐾ଶሻ, 
respectively. Thus, the overall time and space complexities of 
the proposed SGLSC are 𝑂ሺ𝐾ଶሻ ൅ 𝑂ሺ𝐾ଷሻ ൅ 𝑂ሺ𝐾ଷሻ ൅ 𝑂ሺ𝐾ሻ 
and 𝑂ሺ𝐾ଶሻ ൅ 𝑂ሺ𝐾ଶሻ ൅ 𝑂ሺ𝐾ଶሻ ൅ 𝑂ሺ𝐾ሻ , respectively. The 
SGLSC can greatly reduce the time and space complexity as K 
is much smaller than N. The reduction in space complexity, in 
particular, makes SGLSC suitable for large size HSIs. For 
example, the Salinas Valley benchmark image contains 
111,104 pixels (i.e., the spatial size is 512×217), requiring 
91.97GB memory space for similarity graph constructed at 
pixel level. However, we can see from the experimental results 
in Section IV C. 1) that SGLSC achieved the best performance 
with 500 superpixels. The superpixel-level similarity graph 
took only 1.86MB memory space, which is significantly less 
than the pixel-level similarity graph. 

V. CONCLUSION 

This paper proposed a large HSIs clustering approach, i.e., 
the SGLSC, in which the superpixel concept is introduced to 
greatly decrease both the computation cost and the memory 
consumption on large size hyperspectral images. Moreover, a 
new similarity graph is constructed to fully exploit both the 
global and the local information for modeling the essential 
structure of HSIs. The strategy of combining superpixel-level 
global and local similarity graph significantly improves the 
clustering accuracy of the complex ground objects. In the 
experiments, we demonstrated that the SGLSC is significantly 
and consistently superior to some recently presented methods, 
including the graph-based, spatial spectral-based and 
CNN-based methods on three widely used benchmark data sets. 
In particular, the proposed SGLSC exhibits efficient 
computational properties when clustering large HSIs. In 
addition, the proposed superpixel-level global and local 
similarity graph enables the revisit of conventional graph-based 
methods for large HSIs clustering. 

In future developments of this work, we will further improve 
two aspects of the proposed SGLSC. On the one hand, the 
number of superpixels for different data sets are determined by 
repeated experiments. An adaptive automatic strategy for 
estimating the optimal number of superpixels for different data 
sets will be investigated. On the other hand, from the 

methodology perspective, despite the proposed method has 
shown accurate clustering results and low computational 
complexity for large HSIs, it still requires efficiency 
optimization. To this end, we will design a one-step similarity 
graph construction strategy that can simultaneously consider 
global and local similarities and adaptively adjust the weights 
between them to further improve the clustering accuracy.  
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