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Abstract: In this paper, we present an overview of recent developments in the Feynman sum over
paths approach for teaching introductory quantum mechanics to high school students and university
undergraduates. A turning point in recent research is identified in the clarification of the distinction
between the time-dependent and time-independent approaches, and it is shown how the adoption
of the latter has allowed new educational reconstructions to proceed much farther beyond what
had previously been achieved. It is argued that sum over paths has now reached full maturity as
an educational reconstruction of quantum physics and offers several advantages with respect to
other approaches in terms of leading students to develop consistent mental models of quantum phe-
nomena, achieving better conceptual understanding and a higher degree of longitudinal integration
of knowledge.
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1. Introduction

The sum over paths approach in physics education originates mainly from two sources:
Feynman’s path integral formulation of quantum physics [1] and his own divulgation book
QED: the Strange Theory of Light and Matter [2] (‘’QED” stays for Quantum Electro-Dynamics).
The latter, in fact, constitutes the first, fundamental sketch of an educational reconstruction
of quantum physics based on the path integral formulation. Among the milestones for
the development of the approach, one can trace the undergraduate course Demystifying
Quantum Mechanics on quantum physics held by E.F. Taylor at MIT (Massachusetts Institute
of Technology, USA) [3], which had a profound impact in the international physics edu-
cation research community, and the Advancing Physics project [4] of the British Institute
of Physics, an advanced physics course for high schools, designed to attract students to
physics, and to give them a good basis for their future progression in the subject at uni-
versity level, in which J. Ogborn, A. Dobson and collaborators [5] proposed an innovative
presentation of quantum physics based on sum over paths. After the turn of the millennium,
interest in the sum over paths approach has grown, with several works of great interest,
both empirical [6,7] and theoretical [8,9].

Sum over paths has been considered right from the beginning of its history in education
as a promising route for teaching the conceptual core of quantum physics to secondary
school students and non-physicists. However, some critical points in the approach were
also highlighted by some authors (e.g., [10]). These questions and critical remarks can be
summarized as follows:

1. Is it possible that using the sum over paths approach may encourage students to
retain the classical concept of trajectory, as they may misinterpret Feynman paths as
trajectories that are taken alternatively according to some probability rule?

2. The treatment of simple one-dimensional time independent systems may be much
more complicated using Feynman’s approach than using a standard formulation (i.e.,
a wavefunction approach).
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3. Can the approach be integrated to provide at least an elementary introduction to
concepts, related to spin?

2. A summary of Recent Developments

Recent educational research has addressed many of the open issues standing on the
sum over paths approach [11], including devising effective educational strategies for dis-
cussing time-independent problems such as bound states and tunneling [12,13]; improving
the treatment of the uncertainty principle [14]; establishing connections with two state
approaches based on spin or light polarization [15]; designing and realizing tools such as
interactive simulations and tutorials to sustain students’ learning [16,17]. Many of these ad-
vances were stimulated or facilitated by the complete clarification of the distinction between
a time-dependent and a time-independent sum over paths approach in education [13]. Fur-
ther improvements included pinpointing and clarifying the educational advantages of
sum over paths, including reliable measures of conceptual learning outcomes [18,19] and
highlighting the importance of concepts such as path distinguishability, which were not
central in the initial educational tests of the approach, but have demonstrated extremely
fecund in leading to conceptual understanding of wave particle duality, and allowing
modern experimental settings and technologies to be introduced [20].

In the last 10 years, interest in the sum over paths approach has remained high, al-
though research has been led by a few groups, such as the physics education groups at
the Universities of Pavia and Trento in Italy and the physics education group at CONICET
(Consejo Nacional de Investigaciones Científicas y Técnicas) and the National University
of La Plata in Argentina. There has also been related research into the use of Feynman
diagrams in education (e.g., Ref. [21]), which can be considered, given the shared underly-
ing philosophy, a “natural” prosecution of quantum instruction in the perspective of sum
over paths.

3. Time Dependent vs. Time Independent Sum over Paths Approach

To some degree, the disagreement about the educational usefulness of sum over
paths in the last 20 years has been due to a confusion surrounding the role of time in the
algorithm for computing detection probabilities. In the 10 years, our group took significant
efforts to clarify the situation and show that it is actually possible to use two sum over
paths approaches, with a similar general structure but a different identification of physical
variables involved in the algorithm of summing over all possible paths. In order to clarify
the problem concerning the stationary or time-dependent phenomena, one can analyze the
case of the two slit interference of an individual electron.

This problem can be treated in the sum over paths perspective in two ways:

• Considering an initial wavefunction (a “wavepacket”) and evolving all the points
belonging to it using Feynman’s path integral propagator.

• Considering the time-independent problem (at fixed energy) of the propagation of a
quantum object from the source to the detector, and using the time-independent prop-
agator (Green function), which basically (apart from a prefactor) reduces to eikx with
x denoting the path length. This approach draws, in addition to Feynman’s original
works, from more recent research in the area of semiclassical path integrals [22].

The latter approach may be called “stationary” or “time-independent” path integral
and the results of the two methods agree, if the energy of the time-dependent wavepacket
in the former of the two approaches above is defined with sufficiently small uncertainty
(see e.g., Ref. [23]).

In both the following expositions of the time-dependent and time-independent ap-
proaches, the concept of action is used. However, secondary school students are rarely
exposed to either the full or abbreviated action in the study of classical mechanics. Typically,
in both kinds of approaches a rule is given for computing the phase of path amplitudes,
and then, if desired, the concept of action is introduced, and the principles of stationary
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action are derived, after recovering the classical from quantum behavior (correspondence
principle) in the short wavelength limit [8].

3.1. The Time-Dependent Sum over Paths Approach

The time-dependent version of the sum over paths approach, derived directly from
Feynman’s path integral formulation, can be summarized as follows [3,24–26]:

I. The quantum object goes through all possible paths from an initial space–time point
(xi, ti) to a final space–time point (xf, tf).

II. A complex number, often represented by a conventional rotating vector, is associ-
ated with each of the paths; its phase angle is proportional to the classical action,
R =

∫
L(t)dt, calculated along the path. Here, L denotes the Lagrangian.

III. The (normalized) sum of all contributions from the possible paths starting at (xi, ti)
and ending at (xf, tf) gives the time-dependent propagator, which can be understood
as the probability amplitude of finding at (xf, tf) a quantum object that was initially at
(xi, ti).

IV. The probability, P, of detecting the quantum object at (xf, tf) is then computed by
taking the square modulus of the propagator.

Authors have proposed and experimented with several versions of this approach,
especially in university education for non-specialists [3,27] and in secondary school [26],
but also in introductory courses for first year physics students [28]. These settings are
typical of research on sum over paths, as the use of less advanced mathematics is nor-
mally in order, and the ability to solve problems may be partly sacrificed in favor of a
conceptual understanding of a deep and productive reconstruction of quantum theory. The
approach was in general judged promising by physics education researchers although some
difficulties were highlighted already from the initial paper by Taylor [3], among which
in particular:

• A time-dependent formulation may increase students’ confusion about the concepts
of quantum paths and classical trajectories.

• The time-dependent treatment obscures the fact that many of the most important
predictions of quantum physics are actually time-independent statistics. For example,
finding the eigenfunctions for confining potentials usually requires computing the
time-dependent propagator and then determining the initial amplitudes that, for the
given propagator, are stationary in time, a procedure which appears intricated to stu-
dents even in the presence of technological aids such as tailored simulation software.

3.2. The Time Independent Sum over Paths Approach

In this approach, the behavior of quantum objects is modelled using a sum-over-
paths approach at fixed energy, independent of time. More explicitly, the sum over paths
approach at fixed energy, for time-independent problems, can be compactly described
as follows:

I. The quantum object goes through all possible paths at fixed energy, E, from an initial
point in space, xi (the source), to a final one, xf (the detector).

II. A complex number, often represented by a conventional rotating vector, is associated
with each of the paths; its phase angle is proportional to the classical abbreviated
action, S =

∫
p(x) dx, calculated along the path, where p(x) is the particle momentum at

point x.
III. The sum of all contributions from the possible paths at fixed energy starting at xi and

ending at xf gives the energy-dependent propagator, or Green function, which can
be understood as the probability amplitude of finding at xf, independently of arrival
time, a particle with defined energy whose source is at xi.

IV. The probability P of detecting the quantum object at xf is then proportional to the
square modulus of the Green function. For bound systems, the probability is nonvan-
ishing only when the energy E corresponds to an allowed energy level.
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In this way, the conceptual structure of Feynman’s formulation is entirely preserved,
with two main modifications:

• The action R is replaced by the abbreviated action S;
• All paths connecting xi and xf, regardless of travel time, are considered.

The “disappearance of time” allows the idea (of educational value in itself) to be
introduced that when energy is fixed, time must be completely unknown. This also enables
an interesting connection with the time–energy uncertainty to be constructed, which is
explored in more detail in Section 5.

The time-independent path integral can be considered a partially different educa-
tional reconstruction of quantum mechanics, which in addition to the works of Feyn-
man, also draws from the research on the semiclassical path integral, especially by M.C.
Gutzwiller [29] and L.S. Schulman [30]. Within this new perspective, it was possible for
researchers to address in a more educationally constructive way several problems of in-
terest in introductory quantum mechanics, such as confined systems with discrete energy
levels, as well as the important case of tunnelling [11] with the same elementary mathemat-
ical tools used in Feynman’s QED [2]. Furthermore, educational advantages in using the
time-independent sum over paths approach were found also in the case of open systems:
for example, the issue sometimes brought up by students in the treatment of the two slit
interference [8], of why it is it that paths of different length are allowed to interfere, since
the photon goes through them in different times, is answered right from the beginning in
this picture. Paths are independent of time, as they represent the corpuscular equivalent of
a plane wave, i.e., a quantum object emitted with infinite uncertainty on emission time, so
that paths of different length are actually not distinguishable and the sum of their ampli-
tudes must be considered. The focus, right on the beginning, on the importance of path
indistinguishability for producing interference (see Section 7) allows students to construct
a more consistent idea of wave particle duality. In the following Section, we provide some
recent results deriving from the adoption of a time-independent sum over paths approach.

4. Treatment of Stationary Problems
4.1. Infinite Square Well

The ‘’particle in a box” problem is the paradigmatic example for the treatment of
bound systems in the sum over paths approach. A quantum object is confined in a square
potential well with infinite depth and width L. For a fixed energy E, the particle can reach
the detector xf starting from a source at xi through one of four families of paths, depicted
in Figure 1. The phasor corresponding to each path is computed by the usual rules, with
each reflection contributing a π phase loss, and the result is that amplitudes associated
with all possible paths interfere constructively when the value of energy corresponds to an
allowed energy level (Figure 2; the computed amplitude sum is in the right window) and
destructively otherwise.

Analytically, the allowed energy levels (the poles of the energy dependent Green
function) can be determined uniquely from the condition that two paths differing for a
full back and forth round trip in the well are in phase. Thus, the full Green function can
be determined and the stationary wave functions (eigenfunctions) can be also evaluated.
The set of GeoGebra tutorials [31], created to support student understanding of quantum
concepts within the sum over paths approach [16,17], have been tested with both secondary
school students and pre-service and in-service teachers in several courses. Since the
simulations are available for free on the GeoGebra website [31], they have also occasionally
been modified by teachers to produce simulations of different physical situations or more
suitable to the needs [32], or considered in other research [33].

In a similar fashion to the square well potential, other confined systems of interest
(e.g., the harmonic oscillator, the finite square well [12], the particle confined on a circum-
ference [14]) can be discussed with students in a conceptually consistent way, using the
same simple mathematical tools (vector amplitudes) used in the treatment of open systems,
such as the two slit interference.
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Figure 1. Left: a representation of the one-dimensional infinite square potential well with two 
points arbitrarily taken as initial, xi, and final, xf. As common in these representation, the vertical 
axis U is an energy scale. Right: the four basic possible routes exist from the source to the detector, 
including possible flections on the potential walls. Theoretically, all the paths that can be con-
structed by adding to any of the above an arbitrary number of full back and forth routes should be 
considered. Note that each reflection from a wall brings a 𝑒  contribution (inverts the sign) of 
the amplitude, associated to that path. 

 
Figure 2. Partial snapshot of the simulation of the infinite square potential well. Left: a drawing of 
the potential, the initial and final points, and the numerically computed energy levels for n = 1 to 6. 
The sliders of the GeoGebra simulation are shown as grey lines with the input values shown by 
solid black circles. a is the halfwidth. In this particular case, the value of Energy corresponds to a 
stationary state (energy level) for the given value of a. The values of xSource and xDetector corre-
spond to xi and xf in the text and in this case neither of them is placed on a wavefunction node, see 
below for details. Right: detail of the imaginary part vs. real part of the amplitude computation for 

Figure 1. Left: a representation of the one-dimensional infinite square potential well with two points
arbitrarily taken as initial, xi, and final, xf. As common in these representation, the vertical axis U is
an energy scale. Right: the four basic possible routes exist from the source to the detector, including
possible flections on the potential walls. Theoretically, all the paths that can be constructed by adding
to any of the above an arbitrary number of full back and forth routes should be considered. Note that
each reflection from a wall brings a e−iπ contribution (inverts the sign) of the amplitude, associated
to that path.
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Figure 2. Partial snapshot of the simulation of the infinite square potential well. Left: a drawing of
the potential, the initial and final points, and the numerically computed energy levels for n = 1 to 6.
The sliders of the GeoGebra simulation are shown as grey lines with the input values shown by solid
black circles. a is the halfwidth. In this particular case, the value of Energy corresponds to a stationary
state (energy level) for the given value of a. The values of xSource and xDetector correspond to xi and
xf in the text and in this case neither of them is placed on a wavefunction node, see below for details.
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Right: detail of the imaginary part vs. real part of the amplitude computation for a particular value
of energy, in this case, very close to one of the energy eigenvalues. Note that each one of the colored
segments is actually composed of N = 30 parallel tiny arrows placed head to tail. In fact, in this
condition, the amplitudes for paths belonging to the same one of the families shown in the right part
of Figure 1 are in phase. The angle between amplitudes corresponding to different path families (the
angle between colored segments, in the right of Figure 2) depends on the position of xi and xf, and
may lead to destructive interference if either point coincides with a wavefunction node, as expected,
since for stationary wavefunctions, the amplitude only vanishes at nodes. A special case is the limit of
energy E→ 0, for which the paths of a given family are in phase, but due to the even or odd number
of path inversions for different families, the resultant of the sum of all four families is identically
zero for all xi and xf. For other values of energy, amplitudes within each individual family of paths
will interfere destructively and in the limit of the number of paths n→ ∞ the resultant amplitude
will vanish.

Despite the conceptual simplicity of the treatment of one-dimensional systems, it has
to be remembered that there have been technical difficulties in extending path integral
techniques to radial coordinates beyond the simplest cases [30,34], and progress in obtaining
path integral solutions to three dimensional problems in radial coordinates, including the
hydrogen atom, has been slow [35,36]. Correspondingly, a sum over paths approach
may not be the most suitable way to deal with these problems, which typically appear at
advanced undergraduate and graduate levels.

4.2. Tunneling from a Square Barrier

In the context of the time-independent sum over paths approach, the problem of
tunneling from a square barrier can also be solved analytically, and the main conceptual
elements of the solution can be shown to students through a simulation (Figure 3). Trans-
mission and reflection coefficients at the barrier borders are computed by the simulation
through the equivalent for massive particles of Fresnel coefficients [12], but like in the
case of the square well potential, important features of the solution, such as the formation
of energy-dependent resonances in the transmitted amplitude, are due to constructive
interference between paths, which undergo multiple reflections within the barrier.
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Figure 3. Partial snapshot of the simulation of square barrier tunneling for a massive particle in the
framework of the time-independent sum over paths approach. Left: the green dot represents the
source and the red triangle the detector. The yellow rectangle represents the incoming particle energy,
as compared to the barrier energy (light blue). m is the particle mass in natural atomic units (so m = 1
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is the electron mass). The word ‘cammini’ stands for ‘paths’ in Italian. Top right: the representation
of the sum of amplitudes (in this case the amplitudes of paths reflecting inside the barrier have
progressively lower absolute value as the number of internal reflections increases). The red arrows
indicate the amplitudes associated to individual paths, which are summed to form the final amplitude
(black arrow). Bottom right: the probability, P(E), of revealing the quantum object at the detector
beyond the barrier (transmission probability) as a function of the difference between the particle
energy and the barrier height, compared to the theoretical formula.

In the typical structure of a teaching-learning sequence based on the sum over paths
approach (e.g., Ref. [18]), the topic of tunneling is treated before bound systems and
energy quantization, with the case of the resonant scattering of a photon between two
semi-reflecting mirrors (Figure 4) playing the role of a transition case between open and
bound systems.
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Figure 4. Partial snapshot of the simulation of resonant scattering between two semi-reflecting
mirrors for a photon in the framework of the time-independent sum over paths approach. Left: the
setup with the green dot representing the source and the red triangle the detector. The green arrow
represents the wavelength of the photon directed towards a system of two semi-reflecting mirrors.
Right: the probability of detecting the photon at the detector beyond the mirrors as a function of
energy, displaying the typical equispaced resonances. The diamond shows the energy used in the
simulation. The red arrows indicate the amplitudes associated to individual paths, which are summed
to form the final amplitude (black arrow).

5. Stationary Sum over Paths Approach and the Time-Energy Uncertainty Relationship

In the fixed-energy sum over paths approach, the uncertainty in the travel time of the
quantum object from source to detector is considered infinite. Thus, for bound systems,
infinitely many paths, going through an arbitrary number of back and forth roundabouts
within the confining potential, need to be considered in order to obtain the allowed energy
levels. On the other hand, it was shown recently [14] that, if the assumption of infinite
uncertainty in travel time is weakened, considering only a finite, though large, uncertainty
in time, it is possible to derive from the time-independent sum over paths approach, through
geometrical considerations and simple algebra, a time-energy indeterminacy relationship
of the form ∆E · ∆t ≈ }, where h̄ is the reduced Planck’s constant. In fact, if only a finite
number of paths are considered, namely those whose travel times differ by less than the
time uncertainty, the resulting approximate Green function will not have sharp divergences,
but widened peaks, whose width in energy can be described such relationship.

The derivation is not valid only for the infinite square well shown in Figure 5, but for
any confined system (in Ref. [14] the particle on a ring is treated). The time indeterminacy,
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∆t, thus derived can be given different interpretations [14]: (a) upper limit on the time the
quantum object can have spent in the confined system before measurement, which is the
most literal interpretation within the sum over paths approach: (b) coherence time for paths
of different length, i.e., timescale over which they can still considered indistinguishable;
and (c) lifetime of the quantum state, due to external, unspecified reasons, which make
it an unstable state. Among the interpretations proposed by the authors, the third one
seems the most promising in education, given the relevance of the lifetime–linewidth
relationship in the elementary treatment of the time-energy uncertainty principle. Thus,
it may be worth explaining the terms of such interpretation in some more detail. The
lifetime–linewidth relationship, originally derived by G. Gamow in the context of alpha
decay [37] but valid in a wide range of different contexts, applies to quasi-bound states,
which are resonances in the continuous spectrum of object temporarily confined by a
potential barrier, which nonetheless possess a positive total energy. Gamow’s derivation
made use of a semiclassical picture, in which the quantum object, bounced within the walls
of the potential an indeterminate number of times, each time with a finite probability of
escaping the well. In this picture, the time indeterminacy ∆t is the expected value of the time
the quantum object remains in the confined state. Thus, the derivation proposed in Ref. [14]
can be seen as a simplified (at a level accessible also to advanced high school students)
treatment of Gamow’s analysis, in which rather than assigning a finite probability to the
escape of the quantum object from the potential at each bounce, a hard limit is imposed on
the dwell time. Note that a rigorous analysis of Alpha decay in terms of the semiclassical
path integral (which involves assigning progressively decreasing amplitudes to paths) was
given in Ref. [38], where its results are compared to those of Gamow’s original treatment.
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Lorentzian-like shapes is evident. The width of the peaks is not uniform because in this simulation N
is kept fixed for all values of energy rather than depending on a fixed time uncertainty, ∆t, and the
particle momentum, p.
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6. Connections with Spin: From the Hong-Ou-Mandel Experiment to
Quantum Computing

The Hong-Ou-Mandel (HOM) experiment [39] demonstrates interference between
indistinguishable processes, and its generalized version [15] using electrons can be used to
explain the properties of bosons and fermions. The general setup of the HOM experiment
is depicted in Figure 6. The experiment is known in its original version performed with
photons, as it demonstrates the possibility of two photon interference due to perfect time
overlap and consequent indistinguishability. A less known version of the experiment with
electrons was also performed [40].
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Figure 6. Setup of a generalized HOM (Hong-Ou-Mandel) experiment. Two sources (S1 and S2) emit
simultaneously indistinguishable quantum objects (either photons or electrons), which are directed
towards either a 50% beam splitter, or in the case of electrons, a potential barrier tailored to have 50%
reflection and 50% transmission probability for the specific energy of the incoming electrons. The
quantum objects may then be revealed at detectors D1 or D2.

Discussing this experiment with students involves first of all a change of perspective,
from performing the sum over all possible paths, to performing a sum over all possible
processes or histories for a given setup. The crucial step in such direction is to explain
that, for processes involving more than one quantum object, amplitudes of histories can be
derived from the amplitudes of single particles paths through a multiplicative operation
(mirroring the multiplication between complex numbers): the result, in the language of
Feynman’s QED, is an arrow whose length is the product of the lengths of the single-particle
arrows, and whose phase is the sum of their phases [2]. At this point, the three possible
distinct outcomes of the experiment (two particles found at D1, two particles at D2, or one
particle in each, referring to Figure 6) can each be represented by two diagrams differing
by the exchange of identical particles (see Figure 3 in Ref. [15] and the text there). Next,
the outcomes of the real experiment are considered. With perfect time coherence, and
so perfect indistinguishability of the two quantum objects, photons are always detected
either both at D1, or both at D2. On the other hand, in the same conditions, electrons
are always found at different detectors. Considering also the phase shift properties of
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beam splitters, the only way to solve such a puzzle is to postulate different exchange
rules for the two types of quantum objects: for indistinguishable fermions, a change of
sign for the global amplitude is involved for diagrams, which only differ by the exchange
of two particles; while for indistinguishable bosons, no such change of sign is involved.
The possibility to introduce, starting from the phenomenology of outcomes of modern
experiments, a key element of the spin-statistics connection, namely the different rules
related to indistinguishability for bosons and fermions, on the one hand reinforces the
centrality of the concept of indistinguishability in quantum mechanics (which is a key idea
of the HOM experiment), and on the other hand provides a first connection of the sum over
paths approach with topics related to spin.

Furthermore, there is currently ongoing research on the integration of sum over
paths with two state approaches [41], especially in the context of teaching introductory
elements of quantum computation and communication. In fact, in this context, in order
to show students applications of quantum computing that are not entirely trivial (e.g.,
the Deutsch and Grover algorithms), it is necessary to code more than just a single qubit
(often at least two). The educational issue in choosing, as the physical realization of such
qubits, different quantum objects (e.g., two or more electrons) is that by doing so the
quantum gates become very difficult to interpret as physical systems within the reach of
secondary school students. The consequence is that at that point the treatment of quantum
algorithms becomes completely symbolic and algebraic, disconnected by any concrete
physical representation. One alternative that is being explored [42], which allows two qubit
quantum logical circuits using simple optical devices to be constructed, is to use photons
and code one qubit as the polarization state, the second qubit as the choice between possible
paths (typically at a beam splitter). Of course, for the second qubit, all the rules typically
introduced in sum over paths concerning, for example, phase displacements at reflection
and transmission are valid. This approach can be considered a prosecution of the one
pioneered by Daniel F. Styer in his book The Strange World of Quantum Mechanics [27].

7. Path Indistinguishability and the Zhou–Wang–Mandel Experiment

The HOM experiment is only one example of the fecundity of the concept of path
distinguishability/indistinguishability in education [20]. Another experimental result that
has proven highly useful in education is the Zhou–Wang–Mandel (ZWM) experiment [43],
which highlights in a peculiarly sharp way the loss of interference resulting from rendering
quantum processes experimentally distinguishable. The ZWM experiment is conceptually
a concrete realization of a two slit interference experiment with which-way detectors;
but which way information is obtained not by physical detection of the photon passing
through a slit, but by detection of a secondary photon that is emitted by a non-linear
crystal at the same time as the primary one. Discussion of this experiment is highly
instructive for students, as they are introduced to a case in which interference can be
made to appear or disappear, without physically touching the quantum object, which is
(supposedly) only responsible for the appearance of interference fringes, i.e., the “signal”
photon arriving at the primary detector. While the initial reaction of many students is to
declare that the experiment works by way of magic, a more thorough discussion leads
to a deeper understanding of the modern meaning of wave particle duality in quantum
mechanics as a relationship of complementarity between interference fringe visibility and
path distinguishability [44].

8. Educational Outcomes

Several tests of the educational effectiveness of the sum over paths approach were
performed in recent years. In Ref. [18], based on an experimentation in a class of final
year secondary school students, the authors found that Feynman’s approach could lead
students to build consistent, detailed, and integrated mental models of wave particle
duality, as tested within Knowledge Integration theory [45]. Furthermore, the approach
could also help overcome some other integration issues in teaching–learning quantum
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mechanics, such as students building completely different mental models for the photon
and the electron. In this study, specific strategies are adopted in order to reduce the
possibility that students interpret paths as classical trajectories. They emphasized that the
sum over possible paths has to be considered a representation of the mathematical model
of quantum theory, and not of the actual physical reality. Moreover, students were guided
through a detailed analysis, in the context of the two slit and Mach Zehnder settings, of
the inconsistency of considering paths as mutually exclusive classical trajectories (e.g., that
the quantum object passed through one or the other slit, or one or the other arm of the
interferometer). In the teaching experiment of Ref. [18], the issue of students appearing
to reason as if paths were alternative classical trajectories was limited to one student.
The incidence of other deterministic and hybrid conceptions was also reportedly low or
non-existent. Advantages in terms of consistence between students’ mental models of the
photon and electron were also reported in Ref. [19], which discusses an experimentation in
a class of 16–17-year-old students. In Ref. [46], which is based on an experimentation with
four classes of 16–17-year-old secondary school students, the authors report advantages in
helping students form consistent and integrated models of light, by connecting in a unified
perspective phenomena related to ray optics, wave optics, and the quantum theory of light.
These results, which echo the findings reported in Ref. [47], appear especially important
in view of the extremely fragmented character of the topic of light within the secondary
school curriculum in many countries. Convincing results were obtained in the context of
teacher education in several studies [16,17] and it was highlighted that the deep conceptual
understanding provided by the sum over paths approach in in-service courses can render a
teacher confident enough to undertake the enterprise of treating quantum physics in the
classroom, even in contexts (such as the Italian system) in which it is possible, and quite
frequent, that secondary school physics teachers have no formal instruction on the topic at
all (for example, having a degree in mathematics or engineering).

9. Discussion and Recapitulation of Educational Perspectives

Based on the results of research literature, and several years of direct experience
with using the sum over paths approach in teacher education, let us summarize the main
educational advantages offered by in the following way:

1. On the mathematical level, the sum over paths approach allows quantum phenomena
to be discussed using quite a simple formal language. At its heart, such a possibility
is due to the fact that, rather than finding solutions to the Schrödinger equation,
Feynman’s method constructs the Green function for the same equation, representing
it as a sum of complex amplitudes computed over all possible paths. In educational
practice, complex amplitudes associated with paths can be represented and added
up as vectors or “little arrows”, a strategy directly derived from the one used by
Feynman himself, which greatly reduces the stress on student’s cognitive resources
while learning the basics of quantum theory. The recent advances in the design of
teaching–learning sequences based on sum over paths, mostly due to a significant
clarification of the subject matter and the adoption of the time-independent version
of the approach, allow the same simple mathematical machinery essentially to be
treated with all problems, which are typically solved with the one-dimensional time-
independent Schrodinger equation. Thus, sum over paths can be considered an
attractive option not only for secondary education, but also for the introduction of
elements of quantum physics to non-physicists.

2. On the conceptual level, sum over paths has the unique peculiarity of offering students
a clear and unambiguous representation of one of the most profound quantum mys-
teries, namely wave particle duality. There are two basic ingredients that contribute to
forming such conceptual understanding. The first one consists of the distinction be-
tween classical and quantum ways of computing probabilities, which is at the heart of
the approach, and allows what is always “corpuscular” in quantum objects’ behaviour
(they are always revealed as discrete entities at detectors) and what may, or may not,
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be “wave-like” (the statistics of their detection events) to be clearly distinguished. The
second ingredient is the focus on path distinguishability/indistinguishability, which
allows a modern understanding of duality to be constructed in which an either/or (par-
ticle or wave) idea of the quantum object is replaced by a continuum of wave-like and
particle-like behaviours, regulated by the respective weight of path distinguishability
and fringe visibility. Furthermore, while going through this educational path, students
generalize the concept of ‘sum over paths’ to ‘sum over histories’, and by doing so
they construct a language capable to discuss modern experiments and technologies
based on quantum optics, and in principle, to understand the conceptual meaning of
simpler Feynman diagrams [15]. Finally, modern educational reconstructions based
on sum over paths can offer deep insight into the origin of energy quantization for
bound systems, and help clarify the meaning of the time-energy uncertainty principle.

3. At the level of knowledge integration, the sum over paths formulation can make the
classical limit (correspondence principle) completely transparent [8], and provide a
unifying perspective on the nature of light, connecting ray optics, wave optics, and
the quantum behaviour of photons. The approach allows students to build consistent
mental models for photons and electrons, in which differences (the dispersion relation,
the exchange rule) are highlighted that build on a common basic model of the quantum
object. Rather than presenting quantum theory as a set of disconnected formulas
for different situations, as it appears in many secondary school textbooks, in sum
over paths the subject matter is presented as an organic theory, with the additional
advantage of offering the possibility to teachers to develop their own exercises and
problems, applying the computational rules to new situations.

10. Conclusions

In this overview of research on the sum over paths approach for teaching introductory
quantum physics, we have argued that such an approach, whose history started in the late
1980s, has reached full maturity in the second decade of the XXI century. Research has
addressed most of the critical points enumerated in Section 1, and while there may not be
a consensus as to whether they have been fully resolved (especially concerning the first
of the three issues, on which data, while encouraging, is rather scarce), progress has been
significant, and can be considered decisive especially concerning the treatment of bound
systems. Furthermore, new experimentations have reinforced evidence on the educational
advantages of sum over paths, demonstrating that the approach can help researchers and
educators improve educational outcomes in terms of conceptual understanding and knowl-
edge integration, and be an invaluable aid in the introduction of quantum technologies, an
issue which is increasingly felt as central and urgent.
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