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� People with Type 1 Diabetes need insulin injections to keep glycemia in a safe range.
� A risk can occur if the estimate of active insulin and insulin action time is not accurate.
� Current active insulin estimate does not account for physiological conditions
� Real-time estimation of active insulin can be enhanced by using an insulin sensor
� Patient-tailored active insulin estimates are obtained by an extended Kalman filter.
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The availability of insulin measurements can improve automated insulin delivery technology for people
with type 1 diabetes, who require exogenous insulin delivery. To reduce the risk of hypo- or hyper-
glycemia, there is a strong need of calculating the amount of insulin that is yet to become active from
the previous doses, known as the insulin-on-board. In this work, we propose an approach for the real-
time estimation of insulin-on-board by means of an extended Kalman filter based on actual insulin levels
measured using a microchip-based immunoassay. Moreover, the availability of further insulin measure-
ments, collected with high accuracy by the laboratory-based ELISA, allows the development of a proba-
bilistic description of the insulin measurement error, which is exploited in the tuning of the extended
Kalman filter. The proposed approach for real-time quantification of the insulin-on-board will allow an
informed refinement of insulin dosing, especially under varied conditions including stress and exercise.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Individuals with type 1 diabetes (T1D) require lifelong replace-
ment of insulin to maintain healthy metabolism, prevent ketoaci-
dosis, and maintain glucose in a desired range in order to
minimize long-term disease complications. Advances in technol-
ogy and closed-loop control algorithms have enabled automated
insulin delivery (AID) for management of T1D (Aiello et al.,
2021). One of the main limitations of current AID systems is the
presence of residual insulin remaining active in the plasma, known
as the insulin-on-board (IOB), which must be accounted for in
order to calculate a safe amount of additional insulin to deliver.
The IOB represents the estimate of the amount of insulin remaining
in the body from previous insulin delivery. Currently, the residual
active insulin is estimated using either a curvilinear or linear decay
curve, neither of which account for any dependence on physiolog-
ical conditions, such as changes in insulin sensitivity due to exer-
cise, stress, illness, or medication use. Similarly, meals high in fat
or other macronutrients could alter insulin sensitivity after a meal
(Dadlani et al., 2018). Many AID designs compute an approxima-
tion of the IOB to correct for any remaining insulin from the last
delivery (Rodriguez-Saldana, 2019; Gondhalekar et al., 2018). In
the absence of real-time insulin measurements, glucose concentra-
tion via glucose-insulin models are used to estimate the plasma
insulin concentration (Hajizadeh et al., 2017; Hajizadeh et al.,
2019; De Pereda et al., 2016; Haidar et al., 2013; Dalla Man et al.,
2007; Hovorka et al., 2004). The ability to measure insulin in
real-time provides a unique opportunity to determine available
circulating insulin in individual patients and lead to more efficient
glucose regulation (Wolkowicz et al., 2021). In Wolkowicz et al.
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(2020), a fully in silico Kalman filter was developed to enable the
reconstruction of plasma insulin concentration utilizing a noisy
remote compartment, while in Hajizadeh et al. (2019), De Pereda
et al. (2016) an extended and an unscented Kalman filter algo-
rithms are used to estimate the plasma insulin concentration.

For the first time, the applicability of a microneedle insulin
immunosensor as a point of care (POC) device was evaluated by
conducting validation tests in adults with T1D at the clinical
research unit at the Sansum Diabetes Research Institute, Santa Bar-
bara, CA (Vargas et al., 2022; Aiello et al., 2022). This proof-of-
concept study showed the feasibility for near real-time evaluation
of insulin levels and boosted the investigation of how to exploit the
measurements of insulin levels to improve diabetes management.
The novel sensor can measure insulin levels in untreated serum
samples obtained from venous blood, which can be used to esti-
mate plasma insulin concentration and, eventually, personalized
IOB curves that would help avoid over-delivery of insulin, thus
minimizing the risk for hypoglycemia. While free insulin repre-
sents a portion of total insulin unbound by insulin binding antibod-
ies in circulation, and provides an important indicator of the
relationship between insulin levels and blood glucose, the novel
microneedle sensor uses only a very small sample of fluid and it
was not yet feasible to measure free insulin with the sensor. In
order to achieve the goal of residual active insulin estimation, we
propose the design of an extended Kalman filter (EKF) that utilizes
measurements from the insulin immunosensor to estimate plasma
insulin concentration, even in the case of infrequent measure-
ments. Addtionally, an error model for the insulin immunosensor
was developed to characterize the uncertainties in the insulin mea-
surements and, in turn, improve the tuning of the EKF. The EKF was
chosen as the observer because it supports a real-time model for
making estimates of the current insulin state.

Beginning with the initial pathway of subcutaneous insulin
administration to plasma from Wolkowicz et al. (2020), Schiavon
et al. (2017), the patient-specific insulin pharmacokinetic (PK)
model is enhanced by the introduction of a capillary compartment
because capillaries are the connectors between arterial and venous
blood. Insulin levels were measured as the venous level, which
show a difference compared with arterial levels. Levels are higher
in the arterial blood because insulin diffuses from the plasma to
interstitial fluid (ISF) as blood circulates through the capillary sys-
tem (Cengiz and Tamborlane, 2009). Subsequently, the insulin
pathway from the capillaries to the ISF insulin compartment is
expanded in a barrier-limited and flow-limited condition
(Sangren and Sheppard, 1953; Goresky et al., 1970;
Bassingthwaighte, 1974). Additionally, the formulation of the insu-
lin plasma clearance is replaced by a saturable nonlinear function.
In Rasmussen et al. (2011), Lindauer and Becker (2019), the
authors state that the elimination of insulin in plasma is not only
a first-order process, but a saturable nonlinear net elimination. In
Wagner (1973), the insulin degradation rate via saturable Michae-
lis–Menten kinetics is suggested, since the absorption rate in the
plasma depends on the concentration in the subcutis, as well as
on the concentration gradient over the capillary wall.

Moreover, in order to facilitate the tuning of the EKF, a model of
the probabiliy density function (PDF) of the immunosensor mea-
surement error model is derived. Specifically, immunosensor mea-
surement error data are derived as the difference between the
measurements obtained by the microneedle insulin immunosensor
and the reference insulin values obtained via the centralized
laboratory-based ELISA method, and a PDF estimated from such
data. In the framework of self-monitoring blood glucose (SMBG)
measurements, the error distribution has been described by a
Gaussian distribution with constant mean and standard deviation
over the entire glucose range (Boyd and Bruns, 2009; Breton and
Kovatchev, 2010; Virdi and Mahoney, 2012), while a SMBG error
2

model based on a ensemble of distributions been developed and
validated in Vettoretti et al. (2015). A similar approach is adopted
in this work for insulin measurements, as it well suits the require-
ments of the EKF.

As an overview, this paper has four main contributions:

� an extended model for the insulin PK dynamics that integrates a
capillary compartment,

� a probabilistic description of the insulin immunosensor mea-
surement error for characterizing the uncertainties in the
measurements,

� the design of an EKF that utilizes measurements from the insu-
lin immunosensor to estimate plasma insulin concentration,
and,

� a novel methodology to calculate patient-tailored active insulin
based on the EKF state estimates.

The parameters of the PKmodel are obtained from the literature
(Schiavon et al., 2017; Kovatchev et al., 2010; Vicini et al., 2014), or,
when not available, estimated by the EKF. The available measure-
ment samples from the immunosensor collected during the clinical
study at the Sansum Diabetes Research Institute, Santa Barbara, CA
(Vargas et al., 2022; Aiello et al., 2022) are used as measurement
signals in the EKF. The performance of the EKF is demonstrated
on the protocols of the clinical study by assessment of the concor-
dance with both the immunosensor and ELISA insulin levels com-
puting root-mean-square error (RMSE).

2. Material and methods

2.1. Insulin pharmacokinetic model

Starting from the model in Schiavon et al. (2017), which models
the subcutaneous (SC) absorption of fast-acting insulin, the insulin
concentration in the SC compartments are defined as:

_ISC1 ¼ �ðka1 þ kdÞISC1 þ uðt � sÞ
_ISC2 ¼ �ka2ISC2 þ kdISC1

ð1Þ

where ISC1 [pmol/kg] is the first SC compartment representing insu-
lin in a non-monomeric state, while ISC2 [pmol/kg] represents insu-
lin in the monomeric state. The parameter kd [min�1] is the transfer
rate from ISC1 into ISC2, while the rate constants ka1 and ka2 [min�1]
represent the non-monomeric and monomeric insulin absorption
into plasma, respectively. The model parameters are reported in
Schiavon et al. (2017), Kovatchev et al. (2010). In Schiavon et al.
(2017), the inflow in the plasma compartment is determined by
insulin, which is finally absorbed from ISC1 and ISC2, while the net
elimination of insulin in plasma was assumed to be linear. In this
work, a saturable Michaelis–Menten kinetics is assumed to describe
the insulin plasma elimination given by:

k1IP
k2 þ IP

ð2Þ

where IP [pmol/kg] represents insulin in the plasma, k1 [min�1] is
the constant representing the maximum insulin clearance rate
and k2 [pmol/kg] is the half-saturation value. The dynamics of the
plasma compartement can be written as follows:

_IP ¼ ka1ISC1 þ ka2ISC2 � k1IP
k2 þ IP

: ð3Þ

In an effort to further examine insulin diffusion, the insulin PK
model is extended to integrate the capillary exchange model
between plasma and ISF insulin compartments. A two-region
capillary-ISF model is applied (Vicini et al., 2014). The transport
along capillaries is modelled as the flow carrying a concentration
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of a substance across a surface within two regions, which are capil-
lary plasma (ICAP) and ISF (IISF), respectively (Sangren and Sheppard,
1953; Goresky et al., 1970; Bassingthwaighte, 1974). The diffusion
from ICAP and IISF is defined by the following partial differential
equations (PDEs) as a function of time and one spatial dimension:

@ICAP
@t ¼ DCAP

@2 ICAP
@x � FL

Vi

@ICAP
@x � PsþGCAP

Vi
ICAP

@IISF
@t ¼ DISF

@2 IISF
@x � PsþGISF

Vi
IISF þ Ps

Vi
ICAP

ð4Þ

where the terms @2 ICAP
@x and @2 IISF

@x model the diffusion processes in the
two regions with corresponding diffusion rates DCAP [cm2s�1] and
DISF [cm2s�1]. The term FL=Vi represents the convective velocity,
which can be expressed as a function of the flow in the capillary
channel F [cm3 s�1], the length L [cm] and the volume of distribu-
tion Vi [mL] of the capillary region. Ps [cm3 g�1 s�1] is the
permeability-surface area product of the capillary membrane repre-
senting the exchange rate between the regions, and GCAP [cm3 g�1

s�1] and GISF [cm3 g�1 s�1] are the clearance rates within a region
(Bassingthwaighte et al., 1986). A detailed description of the two-
region capillary-ISF model can be found in Vicini et al. (2014).

The two-region capillary-ISF model is included in the EKF. It is
worthy to highlight that PDEs cannot be used in the formulation
of the EKF. A preliminary step is required to convert the PDEs into
a set of ordinary differential equations (ODEs). Using Euler’s
method (Brasseur and Jacob, 2017), the PDEs can be recast as fol-
lows (Poulain et al., 1997):

_ICAP ¼ DCAP
ICAP � 2IP=VP

L2
� FL

Vi

ICAP � IP=VP

L
� Ps þ GCAP

Vi
ICAP ð5Þ

_IISF ¼ DISF
IISF � 2ICAP

L2
� Ps þ GISF

Vi
IISF þ Ps

Vi
ICAP: ð6Þ

where VP is the plasma distribution volume. Additionally, insulin
clearance in IISF due to the insulin action on the peripheral glucose
utilization is added in Eq. 6 as follows:

_IISF ¼ DISF
IISF � 2ICAP

L2
� Ps þ GISF

Vi
IISF þ Ps

Vi
ICAP � p2UIB: ð7Þ

where p2U is the rate constant of insulin action on the peripheral
glucose utilization and IB is basal insulin.

2.2. Immunosensor measurement error model

The novel disposable insulin electrochemical sensor was devel-
oped in controlled lab settings at the University of California San
Diego. It can provide near real-time insulin detection in a micro-
liter sample of undiluted serum using a microchip-based
immunoassay (Vargas et al., 2022). The immunostrips were
applied for on-the-spot insulin determination in untreated serum
samples from venous blood collected from nine individuals with
T1D. For validation purposes, the insulin concentrations were also
quantified by a laboratory-based ELISA assay. To identify the model
of the PDF of the immunosensor measurement error, errors are
computed for the sample dataset as follows:

E ¼ Y � X ð8Þ
where E is the error between Y and X representing the insulin
immunosensor concentrations and the measurements obtained by
the ELISA method, respectively.

Since the PDF of immunosensor measurement error is formu-
lated to characterize the error noise covariance in the EKF, we
are interested in testing the normality of E to check whether the
EKF assumption on having the measurement noise normally dis-
tributed is satisfied (Rawlings et al., 2017). To this end, the Kol-
mogorov–Smirnov (KS) and Shapiro–Wilk (SW) test of normality
3

with significance level 0.05 is applied to E. If the null hypothesis
of normality fails to be rejected, a Normal PDF is fitted by maxi-
mum likelihood estimation (MLE).

2.3. Extended Kalman Filter

An EKF insulin observer was developed by combining Eq. 1 with
Eqs. 3, 5, and 7. The nonlinear term in Eq. 3 has two unknown
parameters k1 and k2. To jointly estimate the system states and
the unknown parameters, fictitious parameter dynamics are intro-
duced with the assumption that k1 and k2 are constant values. To
maintain consistent with (Wolkowicz et al., 2020), IB is added as
a state for parameter estimation in the following continuous-
time model:

_ISC1
_ISC2
_IP
_ICAP
_IISF
_IB
_k1
_k2

2666666666666664

3777777777777775
¼

�ðka1 þ kdÞISC1 þ uðt � sÞ
�ka2ISC2 þ kdISC1
ka1ISC1 þ ka2ISC2 � k1 IP

k2þIP

DCAP
ICAP�2IP

L2
� FL

Vi

ICAP�IP
L � PsþGCAP

Vi
ICAP

DISF
IISF�2ICAP

L2
� PsþGISF

Vi
IISF þ Ps

Vi
ICAP � p2UIB

0
0
0

26666666666666664

37777777777777775
ð9Þ

The continuous-time model was discretized via forward Euler inte-
gration, obtaining the following discrete-time state-space equations
(Rawlings et al., 2017):

xkþ1 ¼ f xk;uk�Dtsð Þ þwEKF
k

yk ¼ g xk;uk�Dtsð Þ þ vEKF
k

ð10Þ

where x is the state vector of the insulin concentration in each com-
partment, u is the insulin dose, y is the measured state (i.e., the ISF
concentration), f �ð Þ is the model dynamic equation, and g �ð Þ is the
model output transformation equation. The model sampling time
Dt corresponds to five minutes. Note that Dt should not be confused
with the measurement sampling time, which represents the time
points when insulin measurements were available, i.e., at mealtime
and at 1, 2, and 4 h after the mealtime. Process and measurement
noises, wEKF

k and vEKF
k , are defined as follows:

wEKF
k � N 0;QEKF

� �
vEKF
k � N 0;REKF

� � ð11Þ

where QEKF is the process noise covariance and REKF is the measure-
ment noise covariance. Note that the latter was determined from
the immunosensor error model described in Section 2.2 to accu-
rately represent the specific sensor noise levels.

Once the discretized model has been defined, the state and

measurement Jacobian matrices, bAk and bCk, respectively, are
obtained by linearizing the system dynamics and output transfor-
mation models about the point (x̂kjk;uk), as follows:

bAk ¼ df x;uð Þ
dx

jx̂kjk ;uk and bCk ¼ dg x;uð Þ
dx

jx̂kjk ;uk ð12Þ

where x̂kjk is the propagated and updated state from the previous
time step and uk is the most recent insulin delivery. The EKF predic-
tion step can be carried out as follows:

x̂kþ1jk ¼ f xkjk;uk�Dts
� �þ 0

Pkþ1jk ¼ bAkPkjkbAT
k þ QEKF

ð13Þ

where x̂kþ1jk represents the propagated state at the current time
step and Pkþ1jk is the state covariance matrix. The measurement,
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or correction, step for the state estimate and covariance is then per-
formed using the following equations:

Kkþ1 ¼ bAkPkþ1jkbCT
k
bCkPkþ1jkbCT

k þ REKF
h i�1

x̂kþ1jkþ1 ¼ x̂kþ1jk þ Kkþ1½yk � gðx̂kþ1jkk;uk�DtsÞ�
Pkþ1jkþ1 ¼ ½I � Kkþ1

bCkPkþ1jk�
ð14Þ

where K is the optimal EKF gain, which minimizes the residual error

and is dependent upon the current estimation through bAk and bCk.

2.4. Real-time prediction of the active insulin in the plasma

To compute the real-time prediction of the percent insulin
remaining active in the plasma, the Wagner–Nelson method is
considered in combination with the EKF estimates. This approach
allows the accurate estimation of the rate of a generic drug absorp-
tion in the plasma from its elimination rate (Wagner, 1974). In case
of a single dose case, the mass balance in the plasma compartment
yields:

XA ¼ XP þ XE ð15Þ
where XAis the cumulative mass of the absorbed dose, XP is the
mass of present in the plasma, and XE is the cumulative mass of
the drug eliminated. In insulin treatment, a single-dose framework
can be applied to the insulin bolus administered to compensate for
the carbohydrate content of a meal. However, the insulin pump
continuously delivers the basal rate, which corresponds to a con-
stant insulin infusion. For the hypothesis of the single dose to be
valid, the estimated IB is subtracted from IP as follows:

IBP ¼ IP=VP � IB ð16Þ
where VP is the plasma distribution volume. Differentiating Eq. 15
and substituting with XP ¼ VPI

B
P:

_XA ¼ VP
_IBP þ _XE: ð17Þ

The rate of insulin elimination in the plasma _XE corresponds to

VP
k1 I

B
P

k2þIBP
in the PK model. To compute the cumulative mass of the

absorbed insulin dose from the time the dose was administered,
T0, until a generic time instant T, Eq. 17 is integrated from t ¼ T0

to T:Z T

T0

_XA sð Þds ¼
Z T

T0

VP
_IBP sð Þdsþ

Z T

T0

VP
k1I

B
P sð Þ

k2 þ IBP sð Þ ds: ð18Þ

Assuming that XA T0ð Þ ¼ 0:

XA Tð Þ ¼ VPI
B
P Tð Þ � VPI

B
P T0ð Þ þ AUCT

T0
VP

k1I
B
P

k2 þ IBP

 !
ð19Þ

since the integral corresponds to the area under the plasma insulin
level versus time curve. If T ¼ 1, the total amount of insulin ulti-
mately absorbed is:

XA 1ð Þ ¼ AUC1
T0

VP
k1I

B
P

k2 þ IBP

 !
ð20Þ

where it can be assumed that the plasma insulin concentration
returns to initial level when the dose is ultimately absorbed, i.e.
IBP T0ð Þ and IBP 1ð Þ are equal. The percent insulin remaining to be

absorbed ^IOB Tð Þ can be computed at each time instant T as:

^IOB Tð Þ ¼ 1� XA Tð Þ
XA 1ð Þ100: ð21Þ

The Wagner-Nelson calculation can be extend in cases of multiple
doses by subtracting the initial plasma concentration when a dose
4

is administered. In this work, the main focus is on the single-dose
case to remain consistent with the study protocol applied to evalu-
ate the insulin immunosensor. During the study, participants were
given an injection of their usual mealtime insulin before eating
breakfast and no bolus insulin was given within 6 h of the breakfast
dose (Aiello et al., 2022).
3. Results and discussion

3.1. Insulin error model identification and validation

Fig. 1(a) shows the original 34 paired samples, where it appears
that an outlier sample of X of 374 liU=mL was recorded by ELISA
method due to the presence of high anti-insulin antibodies, which
can impact accurate measurement of insulin levels. The impact of
autoantibody titers on the accuracy of the sensor insulin measure-
ment still needs to be determined. For this reason, this sample was
not used for modeling. The null hypothesis of E being normally dis-
tributed for KS and SW tests failed to be rejected with p-values of
0.44 and 0.10, respectively, thus a normality assumption for the
immunosensor error model was assumed to be fulfilled. The esti-
mated PDF, which was fitted by MLE to the error data is reported
in Fig. 1(b) on top of the data histogram. The estimated PDF shows
a near-zero mean and a standard deviation of 49 liU=dL. The iden-
tified distribution well approximates the zero mean and a non-null
standard deviation assumptions on vEKF

k . Hence, the identified error
model can be applied to characterize the measurement noise
covariance REKF in the EKF.

3.2. Evaluation of the insulin observer

The EKF was evaluated on each participant’s protocol where
infrequent sensor measurements were recorded. As mentioned in
Section 3.1, the EKF measurement noise standard deviation REKF

was defined as 335 pmol/L, which corresponds to 49 liU/dL. The
covariance matrix QEKF has been set as follows:

QEKF ¼ diag 200000;200000;0;0;0;1000;1000;100ð Þ
The uncertainties affecting the dynamics of ISC1 and ISC2 mean to
increase the reactivity to any minimal input variation. The uncer-
tainties in the dynamics of IP are indirectly characterized by adding
uncertainties on the states k1 and k2, which are the unknown
parameters characterizing the insulin plasma elimination and are
the last two values of QEKF . While the description of the dynamic
behavior of ICAP and IISF is assumed to be correct, the uncertainties
in the dynamics of IB represent the mismatch with the basal insulin
of the real patient.

The performance of the EKF was evaluated using the clinical
study protocols adopted at the Sansum Diabetes Research Institute,
Santa Barbara, CA (Aiello et al., 2022), listed in Table 1. We aim for
a one-to-one comparison with the individual participant data, but
the PK model parameters are unknown for specific subjects in the
clinical study, nor can they be estimated from the available data.
The unknown parameters are obtained from the in silico adult pop-
ulation of the United States Food and Drug Administration-
accepted University of Virginia (UVA)/Padova T1D Metabolic Sim-
ulator (Visentin et al., 2018). Two in silico population options are
available within the Simulator: 1) utilize the average parameters
of the in silico population or 2) utilize the ten in silico patient-
specific sets of parameters and average the EKF estimates. We
opted for the latter choice because it allows an uncertainty charac-
terization of the estimates. A EKF estimate for each in silico patient
is computed and the median and interquartile (IQR) ranges of the
state estimates are taken as final results. The EKF was initialized



Fig. 1. a: Scatterplot for the insulin concentrations obtained by decentralized immunosensor (Y) and a centralized ELISA method (X), with its marginal distributions as
univariate histograms. b: Histogram reporting on the x-axis of the measurement error data, while the probability density function of the samples is reported on the y-axis.
The estimated Normal distribution in represented by the red line.

Table 1
The protocols adopted during the clinical study reported
in Aiello et al. (2022).

Participant Scenario

HS1-02 27 grams carbohydrates at 08:22
HS1-03 60 grams carbohydrates at 08:13
HS1-04 45 grams carbohydrates at 08:23
HS1-05 20 grams carbohydrates at 07:20
HS1-06 20 grams carbohydrates at 07:32
HS1-07 20 grams carbohydrates at 07:32
HS1-08 60 grams carbohydrates at 08:03
HS1-09 70 grams carbohydrates at 07:58
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with known individualized values of the in silico adult population
from the UVA/Padova T1DM Metabolic Simulator (Visentin et al.,
2018), with the exception of k1 and k2. The initialization of the
unknown parameters k1 and k2 plays a key role in the convergence
of the EKF. Specifically, the ratio k1=k2 is responsible for the net
insulin elimination dynamics. Greater values for k2 compared to
k1 correspond to a faster net elimination, while smaller values
for both k1 and k2 affect the excursion of the plasma insulin con-
centration, which increases abnormally. Based on this considera-

tion, the two parameters were initialized as 50 min�1
h i

and 150

min�1
h i

, respectively.

The participants’ measurement samples from the immunosen-
sor are used as measurements in the state estimation when avail-
able, i.e., at baseline before breakfast, then at 60, 120, and 240 min
after mealtime. The EKF estimates are compared with the insulin
measurements collected by the insulin immunosensor, as well as
the laboratory-based ELISA insulin measurements. Given the pres-
ence of insulin antibodies in some participants and differences in
baseline insulin levels across the nine participants (Aiello et al.,
2022), concordance of the EKF with both the immunosensor and
ELISA insulin levels was assessed in the evaluation of changes from
baseline by computing RMSE to determine the prediction errors
from the actual insulin measurements.

Please note that participant HS1-01 was not included because
the baseline measurement was not obtained via the immunosen-
5

sor. Additionally, the four-hour insulin measurement for HS1-02
is missing due to issues related to immunostrip transportation
conditions.

For each participant, Fig. 2 presents the median and IQR ranges
of the estimated IISF , with the available measurement samples from
the immunosensor and serum samples extracted from venous
blood via ELISA method, as well as the corresponding delta changes
from baseline. In Fig. 2, it is observed that the estimates of the IISF
show similar temporal trends to those of ELISA insulin levels for all
the participants, characterized by a rise in insulin levels after insu-
lin injection, a peak within the first hour and then a decrease over
the next three to four hours. Participants HS1-08 and HS1-09 had
much higher insulin concentrations estimated by the immunosen-
sor relative to ELISA. It is important to note that the EKF state esti-
mates are consistent with the insulin levels obtained by the ELISA
method, due to the underlying detailed PK model and the tuning of
both the QEKF and REKF matrices. The updated EKF model yielded
accurate insulin concentration estimates, as well as filtered mea-
surement values that were outside the expected insulin concentra-
tion range. This result stresses the role of a precise sensor noise
approximation in the EKF tuning process.

For each participant, the median RMSE values between the ref-
erence delta and the estimated delta changes are reported in
Table 2 across three different time intervals. The median (IQR)
RMSE across the participants are of 14.78 (16.34) liU/mL, 10.88
(14.40) liU/mL, and 6.20 (4.41) liU/mL is observed for increasing
measurement sampling intervals from 1 h to 4 h, respectively
when comparing with the venous blood samples from the ELISA
method, while the median and (IQR) RMSE values are 10.96
(22.66) liU/mL, 4.87 (12.17) liU/mL, and 5.12 (6.08) liU/mL when
comparing the immunosensor measurements. The RMSE between
the estimated ISF insulin concentration from EKF and the venous
insulin levels for Participant HS1-05 is affected by substantially
greater levels assessed by the ELISA method at the baseline.

3.3. Verification and Use of the real-time IOB Estimate

Fig. 3 presents the median and IQR ranges of the estimated per-
centage of active insulin from the mealtime bolus for each partic-



Fig. 2. On the left of each two-plot pair, median and interquartile ranges of estimated ISF insulin concentration (green line) with insulin concentrations obtained by the
decentralized immunosensor (blue star) and a centralized ELISA method (orange circle) at time samples of 1-, 2-, and 4-h intervals at a noise standard deviation of 49 liU=mL.
On the right, median delta change from baseline of insulin concentrations estimated by the insulin observer (green star) with the measurements obtained by the
decentralized immunosensor (blue cirle) and a centralized ELISA method (orange circle). Error bars of insulin observer and immunosensor measurements are also included at
each delta.
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ipant. Thus, zero percentage in Fig. 3 conveys that the mealtime
insulin bolus has been completely utilized by the body. Because
the subject-specific reference IOB curves do not exist, we propose
to validate the obtained curves indirectly, by using the blood glu-
cose (BG) levels, since a decrease in the BG levels is expected to
be seen due to the insulin utilization when the IOB curve reaches
zero percentage. It is important to highlight that the BG measure-
6

ments, which are reported in Fig. 4, were not used in any step of
the model development and are suitable for validation purposes.
Moreover, the information of the current BG level combined with
the real-time IOB estimate can help for a more informed
decision-making strategy to adjust the insulin therapy. If the BG
levels remain elevated after an insulin bolus, the IOB estimate
may suggest either increasing the insulin dose, or keeping



Table 2
EKF median RMSE [liU/mL] at each time point when insulin measurements were available, i.e., at 1, 2, and 4 h after the mealtime measurement.

Participant Insulin immunosensor [liU/mL] Venous insulin (ELISA) [liU/mL]

1 h 2 h 4 h 1 h 2 h 4 h

HS1-02 1.086 2.474 - 12.914 2.126 2.504
HS1-03 3.253 3.049 8.943 35.127 25.441 5.463
HS1-04 7.727 0.275 10.548 16.657 0.315 6.868
HS1-05 14.205 3.857 2.587 258.485 272.683 295.063
HS1-06 23.043 19.686 5.126 4.783 9.936 10.436
HS1-07 43.079 13.547 4.745 22.669 21.367 5.545
HS1-08 6.096 5.883 0.424 4.856 11.217 9.094
HS1-09 43.280 21.252 22.977 10.980 10.552 3.667
Median (IQR) 10.966 (22.667) 4.870 (12.176) 5.126 (6.080) 14.785 (16.334) 10.884 (14.402) 6.207 (4.415)

Fig. 3. Median (dashed line) and interquartile ranges of the estimated percentage of active insulin from the mealtime bolus versus time for each participant.
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unchanged insulin dosing. Conversely, if an hypoglycemic state
(BG 670 mg/dL) occurs, the IOB estimate may suggest from a slight
reduction up to suspension of insulin delivery.

By looking at the IOB curve for Participant HS1-02, the insulin
activity decreases at a slow rate and there is 20% of active insulin
after 4 h, which clues to see the BG levels that hardly go down. In
fact, the BG levels for Participant HS1-02 have a clear increasing
trend for the next 5 h after mealtime, as shown in Fig. 4, though
the mealtime bolus was administered and the insulin pump con-
tinued to deliver the normal basal rate. The information on the
IOB estimate suggests the insulin has been almost absorbed after
4 h, although slowly, and a correction insulin bolus could be
administered safely without any risk of hypoglycemia.

Similar IOB behaviors were obtained for Participants HS1-03
and HS1-04 because the insulin levels recorded by the
immunosensor have similar values, although the insulin levels
measured via ELISA method for Participant HS1-04 remain almost
flat, while a larger excursion was recorded for Participant HS1-03,
as shown in Fig. 2. However, the BG profiles of both Participants
HS1-03 and HS1-04 do not present a peak due to a meal consump-
7

tion and show decreasing BG levels within two hours that can be
consistent with the IOB estimate, which suggests a fast utilization
of the insulin bolus.

The active insulin from the mealtime bolus for Participants
HS1-05 and HS1-07 is consumed quickly, consistently with the
several hypoglycemic events recorded. In early morning hours,
people with T1D experience the ‘‘dawn phenomenon” that
refers to episodes of hyperglycemia due to an increase in insu-
lin sensitivity. To counteract this known effect, a basal increase
is recommended. Despite of being in early morning, the infor-
mation on the IOB estimate could suggest a condition of insulin
sensitivity, which is confirmed by the persistent low glucose
levels. In this case, the estimated IOB could suggest adjusting
the clinical parameters for the insulin dose to prevent a hypo-
glycemic state.

Although the same insulin dose was administered at mealtime,
a different rate of change in the IOB is estimated for Participant
HS1-06 when comparing with Participant HS1-07, suggesting a dif-
ferent insulin utilization rate, which can be confirmed by looking at
the corresponding BG levels in Fig. 4.



Fig. 4. Self-monitorign blood glucose (SMBG) values collected from nine subjects with T1D (Aiello et al., 2022). The SMBG values were recorded at baseline before breakfast,
then every hour after the breakfast measurement within the next five hours.
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Participant HS1-09 has 20% of active insulin after 3 h when glu-
cose levels start decreasing after reaching 270 mg/dL. It may be
possible to detect a change in insulin sensitivity, which in turn
can be taken into account in the case of an insulin correction dose.
4. Conclusion

In this work, we propose an approach for calculating the IOB
based on actual measurements of serum insulin obtained by a
microneedle insulin immunoassay. Real-time measurements of
ISF insulin are applied to characterize the subject-specific pharma-
cokinetic insulin dynamics that can be used to derive the individ-
ualized fraction of active insulin in the plasma. A model of the
insulin error PDF was first derived from available measurements
8

from the immunosensor, as well as from a laboratory-based ELISA
assay. The model was then used to characterize the uncertainties in
the EKF formulation leading to more accurate models for the
plasma insulin concentration, which provide more precise IOB esti-
mates. The proposed approach aims to reduce the uncertainty
around IOB when dosing the insulin bolus and future work will
focus on using this method to enhance the design of an augmented
closed-loop automated insulin delivery system. Future research
that also includes estimates of free insulin could further help to
improve the utility of using IOB.
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Table A.1
Notation and nomenclature organized by type.

Model Variable Descri

Pharmacokinetic ISC1 insulin
model ISC2 insulin

IP insulin
ICAP insulin
IISF insulin
IB basal

IBP single

ka1 non-m
ka2 monom
kd transfe
k1 maxim
k2 half-sa
VP plasm
DCAP diffusi
DISF diffusi
F flow in
L length
Vi volum
Ps exchan
GCAP cleara
GISF cleara
p2U insulin
XA cumul
XP mass o
XE cumul

Error X measu
model Y insulin

E error b
Kalman filter QEKF EKF pr

REKF EKF m

Table A.2
Abbreviations in alphabetical order.

Abbreviation

AID
BG
EKF
IOB
ISF
KS
MLE
ODE
PDE
PDF
PK
POC
RMSE
SC
SMBG
SW
T1D
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Nomenclature and abbreviations

Tables A.1 and A.2 list the nomenclature and the abbreviations
used in this article.
ption Units

in a non-monomeric state [pmol/kg]
in the monomeric state [pmol/kg]
in the plasma [pmol/kg]
in capillary plasma [pmol/L]
in interstitial fluid [pmol/L]

plasma insulin [pmol/L]
-dose plasma insuln concentration [pmol/L]

onomeric insulin absorption rate [min�1]
eric insulin absorption rate [min�1]
r rate from ISC1 into ISC2 [min�1]
um plasma insulin clearance rate [min�1]
turation plasma insulin value [pmol/kg]
a distribution volume [L/kg]
on rate in capillary plasma [cm2s�1]
on rate in interstitial fluid [cm2s�1]
the capillary channel [cm3 s�1]
of the capillary region [cm]
e of distribution of the capillary region [mL]
ge rate between the ICAP and IISF [cm3 g�1 s�1]

nce rate in the capillary plasma [cm3 g�1 s�1]
nce rate in the interstitial fluid [cm3 g�1 s�1]
action rate on glucose utilization [min�1]

ative mass of the absorbed insulin dose [pmol/kg]
f insulin present in the plasma [pmol/kg]
ative mass of the eliminated insulin [pmol/kg]
rements obtained by the ELISA method [liU/mL]
immunosensor concentrations [liU/mL]
etween Y and X [liU/mL]
ocess noise covariance [pmol/kg]

easurement noise covariance [pmol/L]

Description

automated insulin delivery
blood glucose
extended Kalman filter
insulin-on-board
interstitial fluid
Kolmogorov–Smirnov
maximum likelihood estimation
ordinary differential equation
partial differential equation
probability density function
pharmacokinetic
point of care
root-mean-square error
subcutaneous
self-monitoring blood glucose
Shapiro–Wilk
type 1 diabetes
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