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Abstract

The present work constitutes an attempt to
investigate the relational structures learnt by
mBERT, a multilingual transformer-based net-
work, with respect to different cross-linguistic
regularities proposed in the fields of theoret-
ical and quantitative linguistics. We pursued
this objective by relying on a zero-shot transfer
experiment, evaluating the model’s ability to
generalize its native task to artificial languages
that could either respect or violate some pro-
posed language universal, and comparing its
performance to the output of BERT, a monolin-
gual model with an identical configuration. We
created four artificial corpora through a Prob-
abilistic Context-Free Grammar by manipulat-
ing the distribution of tokens and the structure
of their dependency relations. We showed that
while both models were favoured by a Zipfian
distribution of the tokens and by the presence of
head-dependency type structures, the multilin-
gual transformer network exhibited a stronger
reliance on hierarchical cues compared to its
monolingual counterpart.

1 Introduction

Massively Multilingual Models (MMMs) are neu-
ral networks that can perform a NLP task in mul-
tiple languages, relying on a shared set of param-
eters. At the time of writing, the state-of-the-art
performance of MMMs is achieved by transformer-
based models such as multilingual BERT (mBERT,
Devlin et al., 2019), XLM (Conneau and Lample,
2019), and XLM-R (Conneau et al., 2020a). They
are usually derived from monolingual language
models, trained simultaneously on multilingual text
in up 104 languages without major architectural
changes nor any reliance on explicit cross-lingual
signal. The practical need for MMMs in NLP is
undisputed: they drastically reduce resource and
maintenance requirements with respect to multiple
monolingual models, and benefit in particular low-
and mid-resource languages (Dufter and Schütze,

2020). MMMs reach impressive performance lev-
els in zero-shot cross-lingual transfer, enabling the
fine-tuning of a model on supervised data in a set of
N languages {Li}i= 1 . . . N and its application to a dif-
ferent language LN+1, with no additional training1.
Zero-shot cross-lingual transfer has been shown
to be effective across a variety of tasks and lan-
guages (Dufter and Schütze, 2020; Liu et al., 2020;
Pires et al., 2019; Wu and Dredze, 2019; see Dod-
dapaneni et al., 2021 for a review), and, although
performance levels tend to be higher for typologi-
cally similar languages, it yields surprising results
in languages written in different scripts (Pires et al.,
2019) and with little (Karthikeyan et al., 2020) or
no (Conneau et al., 2020b; Wang et al., 2019) vo-
cabulary overlap. The distribution of resources
available for NLP researchers in the world’s lan-
guages is extremely skewed, with only a small sub-
set of them being represented in the evolving lan-
guage technologies (Joshi et al., 2020). MMMs
constitute an attempt to mitigate the effects of this
uneven allocation of resources by leveraging the
knowledge that can be shared across languages.

Besides the obvious practical advantages that
MMMs can bring to the NLP community, the na-
ture of the cross-linguistic information extracted
by these models is of high theoretical interest from
a linguistic standpoint, and can contribute to the
domain of artificial intelligence research in rele-
vant subfields such as representation learning and
interpretability. A modest but growing body of
findings suggests that the structure of the represen-
tation space that MMMs exploit is multilingual in
nature (Pires et al., 2019; Wu and Dredze, 2019;
Hu et al., 2020; Liu et al., 2020; although see
Dhar and Bisazza, 2021 for opposite conclusions).
For instance, syntactic trees can be retrieved from
mBERT’s intermediate representational subspaces,
with these subspaces being approximately shared

1{Li}i= 1 . . . N and LN+1 are typically resource-rich and
resource-poor languages, respectively.



across languages (Liu et al., 2020). If MMMs
learn universal patterns which generalize across
languages, the structure of the representations they
induce could inform us of the presence of latent reg-
ularities in different language spaces. Furthermore,
the benefits of the study of the MMMs’ behaviour
extend to the domain of representation learning,
a subfield of AI research focusing on the devel-
opment of computational representations and the
analysis of their properties (Bengio et al., 2013).
While the present study will not analyze the inter-
nal states of the networks, it will be possible to
draw conclusions on the generality of their learned
representations through non-parametric probing, by
directly examining their behaviour in response to
non-linguistic input. More precisely, we will com-
pare the suitability of the representational formats
induced by mono- and multilingual models with re-
spect to different properties that are desirable from
a linguistic perspective.

The present work aims to analyze the generaliza-
tions that BERT and mBERT induced from natural
language data in a set of transfer learning experi-
ments. The use of transfer learning methods to shed
light on the relational structures learned by neural
networks has been recently adopted for monolin-
gual models (Papadimitriou and Jurafsky, 2020).
Here, we extended the transfer approach to a mul-
tilingual setting, and compare the performance of
mBERT and its monolingual counterpart in gen-
eralizing their native task (i.e. masked language
modelling) to artificial languages that display dif-
ferent degrees of structural similarity with natural
languages. We wish to highlight three main differ-
ences between our paradigm and the methodologies
Papadimitriou and Jurafsky proposed.

1. Cross-lingualism. The most significant con-
tribution of our study consists of the transposi-
tion of Papadimitriou and Jurafsky’s paradigm
to a multilingual setting.

2. Direction of the transfer. Papadimitriou and
Jurafsky (2020) evaluated the performances
of several LSTM models trained on non-
linguistic data and transferred zero-shot to a
natural language corpus in Spanish. We in-
vert the direction of the transfer, testing the
pre-trained multilingual model on artificial
corpora derived from formal grammars. This
choice is desirable for three reasons: first, it
allows to test the model once for each exper-

imental condition, and not in different lan-
guages. Second, it frees us from the need to
train several models – one for each artificial
corpus – since we can leverage one single mul-
tilingual pre-training. Third, it lets us draw
conclusions on the structural generalizations
which have been directly induced from natu-
ral language data. In the other direction, the
models could have extracted helpful general-
izations from the artificial dataset which might
still not have been visible when looking at nat-
ural language alone.

3. Neural architecture. Papadimitriou and Ju-
rafsky (2020) have employed LSTM models
for all their experiments; however, transform-
ers are gaining increasing popularity in NLP
research and applications, and achieve state-
of-the-art results across different downstream
tasks. Most MMMs are built as transformer ar-
chitectures, and mBERT is an instance of this
class. Hence, our study can be informative
also in terms of model comparison. Note that
moving to a bidirectional transformer requires
a different approach to calculating sequence-
level performance, one which eliminates the
randomness from the masking process. Our
approach, which we name iterative token-level
cloze task (ITCT) is detailed in Section 2.

Our experiment focused on the Zipf’s law and
hierarchy, which have been considered as universal
linguistic features (Zipf, 1935; Chomsky, 1957).
We evaluated the transfer performances of the two
transformers in four corpora, characterized by in-
creasing statistical and structural consistency with
natural languages. The models were tested on (a)
a RANDOM corpus, composed by sequences of to-
kens sampled from a uniform distribution, (b) a
ZIPFIAN corpus, where the tokens were extracted
from a Zipfian distribution, (c) a FLAT BRACK-
ETS corpus, composed of sequences of matching
parentheses with crossed dependencies, and (d) a
NESTED BRACKETS corpus, consisting of paired
symbols nested hierarchically. To anticipate the
results, we found that both models showed higher
performance scores in the ZIPFIAN compared to
the RANDOM condition, and in the FLAT BRACK-
ETS as opposed to the ZIPFIAN corpus, while only
the multilingual model showed a significant per-
formance advantage in the comparison between
the FLAT BRACKETS and the NESTED BRACKETS



corpora. We conclude that while mathematical reg-
ularities and pairwise head-dependent relationships
are detected across model types, the multilingual
input favours the reliance on structural cues, and
specifically on balanced constituent structures, a
hallmark of theoretical linguistic formalisms.

2 Methods

As a testing procedure, we froze all mBERT’s
weights setting it in evaluation mode, and assessed
its structural knowledge by studying its predictive
ability. To do so, we employed a non-parametric
evaluation procedure, which we named iterative
token-level cloze task (ITCT). The ITCT consists
of an adaptation of mBERT’s native functionality,
i.e. masked language modelling (MLM). The main
difference consists in the fact that while in MLM
the model has to predict the tokens correspond-
ing to the masks applied to a randomly selected
subpart of the input (15% of the tokens in the sen-
tence), in the ITCT all the tokens are masked itera-
tively. This mitigates the aleatory dimension in the
selection of the tokens that are masked, and pro-
vides an index of the predictability of a sequence,
where each token has to be predicted by the model
given the whole remaining context. After freezing
its weights2, at the first timestep t0 the model is
presented with the input sequence where the first
token is masked, i.e. substituted with a mask to-
ken, and two special characters – [CLS] and [SEP]
– are appended to the beginning and the end of
the sequence, to mark the sequence boundaries.
The model then predicts the original token relying
upon the right context, and the hidden vector cor-
responding to the masked token is passed through
a softmax over the vocabulary, in order to assign
it a probability. At t1, the mask is moved from
the first to the second token, and now mBERT’s
prediction is conditioned by both the right and the
left contexts. The process is repeated until the end
of the sequence, with the number of timesteps N
being equal to the length of the tokenized input
(see Figure 1). The mean probability assigned to
the masked tokens across all the timesteps is taken
as an index of the overall predictability of the se-
quence. Note that a proper sequence probability

2Freezing the model’s weights is a necessary condition
for this approach, since if this procedure was implemented
during training, the model trying to predict the target token at
t1 would have already seen it at t0; at the end of the sequence,
the prediction would be highly facilitated from having seen
N-1 times the target token in the same context.

metric would require a multiplicative chain rule
of the kind that is applicable for auto-regressive
models but not for masked language models. The
notion of average probability does not correspond
to any well-defined notion in probability theory, but
it serves the purpose of comparing different struc-
tural configurations in the context of our study3.
The predictions of mBERT were compared with
the ones produced by its monolingual counterpart;
this comparison provides a crucial element for dis-
tinguishing which generalizations are driven by the
multilingual input, and which can be extracted by
the same model from monolingual data.

t0 [MASK] should buy a car

t1 John [MASK] buy a car

t2 John should [MASK] a car

t3 John should buy [MASK] car

t4 John should buy a [MASK]

Figure 1: Unfolding of the iterative token-level cloze
task for every timestep t in a sample sentence.

3 Data

The corpora on which our analyses were performed
were created in a way such that the sequence length
varied within each condition, but was identical
across all conditions, both in terms of the number of
sequences and of the number of tokens within each
sequence; they all shared a 50,000 three-letter to-
kens vocabulary. These design choices were made
in order to license pairwise comparisons at the se-
quence level, so that the difference in probability
assigned by the models to a given item of a corpus
could be compared with the probability assigned to
the corresponding item in the other datasets. This
approach allowed us to rule out the effects of inter-
vening variables such as vocabulary and length, so
that the differences in the models’ predictions could
be driven only by structural differences between
the corpora. The models were tested on 1,000 se-
quences in each corpus; within each condition, the
mean sequence length was 9.90, with a standard
deviation equal to 14.74.

3.1 Nested brackets
A NESTED BRACKETS corpus consisting of se-
quences of nested matching symbols was created

3We thank Reviewer pYcV for bringing this issue to our
attention.



to test the transfer performance of mBERT on hi-
erarchical structures. The corpus was built from a
vocabulary of 50,000 three-letter tokens, obtained
from random combinations of Latin characters.
The tokens were assembled into nested structures
through the application of probabilistic rules, de-
fined by a Probabilistic Context-Free Grammar
(PCFG). The grammar was composed by a set of
recursive rules of the form in (1):

(1) S → toki S toki S [P1]

Where S denotes the start symbol, toki a given
terminal symbol sampled from the vocabulary, and
P1 the probability assigned to the application of
the rule. Rules of this form are said to be recur-
sive since the same non-terminal symbol S appears
on both sides of the formula, which enables it to
be reapplied to its own output. The rule in (1)
allows for both right and central recursion, since
the non-terminal symbol S is rewritten into itself
both within a pair of terminal symbols and in the
rightmost part of the formula. The probabilities in
P1 followed a Zipfian distribution, so that the ter-
minal symbols were distributed accordingly in the
corpus; their distribution summed up to 0.4. This
set of rules was complemented by the rule in (2),
where the start symbol was rewritten into the empty
string ε. The probability assigned to this rule was
higher than the sum of all the previous rules, in or-
der to contain the growth of the tree depth. Empty
sequences were removed from the corpus.

(2) S → ε [0.6]

The most prominent feature of the sequences
generated by this grammar is that the pairwise de-
pendency arcs instantiated between tokens never
cross (see Figure 2). In other words, the pairing
between tokens can only be nested hierarchically
within the overlying dependency relations. This
condition is equivalent with respect to this property
to the nested parentheses corpus created by Pa-
padimitriou and Jurafsky (2020), although in their
work they created the structured sequences with
a stack-based grammar, designed to either open
a new bracket or close the last one that had been
opened at each timestep.

3.2 Flat brackets

A FLAT BRACKETS corpus was created in order to
isolate the effects of non-nested dependency pair-
ing from the presence of hierarchical structures

ABC BCA BAC BAC BCA CAB CAB ABC

Figure 2: Example of a NESTED BRACKETS sequence.

in the transfer performances. The corpus was de-
rived by randomly shuffling the tokens of each item
of the NESTED BRACKETS corpus, a process that
creates structures where the dependencies do not
necessarily nest, and the pairing arcs instantiated
within an entry may cross (see Figure 3). Differ-
ently from Papadimitriou and Jurafsky (2020), who
created a novel corpus for this condition without
any reference to the hierarchical one, we adopted
a procedure that kept constant the length of the
sequences, and the identity of the tokens within
them. We maintain that our methodology licences
more meaningful comparisons between the two cor-
pora, since the only difference between them is the
hierarchical property of recursive nesting.

ABC BCA ABC CAB BAC BCA BAC CAB

Figure 3: Example of a FLAT BRACKETS sequence.

3.3 Zipf’s corpus

The ZIPF’S CORPUS was created in order to eval-
uate whether BERT and mBERT’s performances
were affected by the mathematical distribution of
the token frequencies in the corpus. The sequences
were constructed so that their length had to coin-
cide with the one of the corresponding entry in
the previous corpora. For each item in the NESTED

BRACKETS corpus, we sampled a number of tokens
coinciding with its length from a Zipf’s distribu-
tion, and conjoined them to form a sequence of
tokens. In the creation of this corpus no depen-
dency relation was explicitly encoded. We remark
that this corpus is similar to the FLAT BRACKETS

corpus, with the only difference that the tokens are
not repeated twice within each sequence, and so



Model

BERT mBERT

Corpus Zipf Pairing Nesting Mean SD Mean SD

Random corpus 0.0121 0.0137 0.0094 0.0135
Zipf’s corpus 0.0253 0.0457 0.0250 0.0525
Flat brackets 0.6784 0.1780 0.6353 0.1558
Nested brackets 0.6576 0.1677 0.6417 0.1536

Table 1: Featural summary of the structural and mathematical properties of the four corpora, and descriptive statistics
of the results of the transfer. The best performances for each model are highlighted in bold.

there are no structural correspondences between
tokens.

3.4 Random corpus

In order to define a baseline for the evaluation of
the networks’ predictions, we constructed a RAN-
DOM CORPUS where the tokens composing the
sequences were sampled from a uniform distribu-
tion. As for the ZIPF’S CORPUS, the length of each
sequence matched the length of the corresponding
entry in the other corpora.

4 Models and experimental setup

All our experiments were performed employing
BERT’s native masked language modelling com-
ponent. The configuration of the model was left
unaltered with respect to Devlin et al.’s (2019) re-
lease. In particular, we relied on the monolingual
and multilingual models derived from BERTBASE,
which is composed of 12 layers, 12 self-attention
heads, and a hidden size of 768; the overall network
comprises 110M parameters. The networks did not
undergo any fine-tuning nor adaptation process, as
they were employed as out-of-the-box masked lan-
guage models. As mentioned above, BERT and
mBERT only differ in their vocabulary and the
weights learned during training, sharing an iden-
tical configuration both in terms of architectural
choices and learning objectives. While BERT was
pre-trained on 800M words of the monolingual
BooksCorpus (Zhu et al., 2015) and 2,500 words
of the English Wikipedia, mBERT was trained on
the entire Wikipedia dump of 104 languages. The
two models rely on different tokenizers, each com-
prising a separate WordPiece vocabulary (Wu et al.,
2016). The different tokenizations of the input se-
quences do not allow us to directly compare the raw
probabilities assigned by the two models to a given
sequence; for this reason, we will not consider

the absolute item-wise difference in the models’
predictive performance, but rather the pattern of
results between the experimental conditions. This
comparative approach is also needed in light of
the models’ vocabulary. If we simply compared
probabilities across models and conditions, our re-
sults might be biased by the fact that some of the
three-letter tokens might be assigned different prob-
abilities depending on whether they form English
meaning-bearing vocabulary items (e.g. “for”) or
not (e.g. “zyi”). However, since we only compare
conditions within models, and the two conditions
of main interest (i.e. FLAT and NESTED BRACK-
ETS) are composed by the same tokens in different
arrangements, our contrasts are robust with respect
to this possible confound.

5 Results

Table 1 reports the mean and the standard deviation
of the average probabilities assigned by BERT and
mBERT to the token sequences in the four corpora
considered in the study, along with a schematic
summary of the structural features characterizing
each corpus. In line with our expectations, both
models assigned on average higher probabilities to
the correct tokens in the ZIPF’S CORPUS than in
the RANDOM CORPUS, despite a low absolute dif-
ference in the scores (0.0132 for the monolingual
and 0.0156 for the multilingual model). The sub-
stantial increase in performance was obtained with
the transition from the ZIPF’S CORPUS to the FLAT

BRACKETS corpus, with an average improvement
of 0.6531 for BERT and 0.6103 for mBERT in the
metric. Interestingly, the two networks started di-
verging in their behaviour with the subsequent step
of the structural hierarchy. While the target tokens
of the recursive structures in the NESTED BRACK-
ETS corpus were associated with higher probabili-
ties by the multilingual model, monolingual BERT



Model

BERT mBERT

Corpus 1 Corpus 2 t p d t p d

Random corpus Zipf’s corpus 8.9740 ≪ .001 0.3918 9.2296 ≪ .001 0.4069
Zipf’s corpus Flat brackets 116.9351 ≪ .001 5.0255 117.4448 ≪ .001 5.2476
Flat brackets Nested brackets -12.7494 ≪ .001 -0.1205 3.2662 0.0011 0.0415

Table 2: Pairwise comparisons of the results of the transfer to the four corpora. The comparisons are made
exclusively between the corpora that are adjacent in the hierarchy of structuredness. The reported p-values are
uncorrected, but all the contrasts remain significant when a Bonferroni correction is applied to the α threshold
(0.05/3 = 0.0166).

showed no facilitation induced by the presence of
nested dependencies. On the contrary, the best
performing condition for monolingual BERT was
the transfer to the FLAT BRACKETS corpus. While
mBERT’s results reflected a positive association
with the hierarchy of levels of structure that char-
acterizes our four corpora, its monolingual coun-
terpart showed an inverted trend in the last two
conditions.

We tested the statistical significance of this dis-
sociation through a set of paired samples t-tests
between the mean probability assigned by the mod-
els to the sequences of two corpora. We performed
the tests only on the pairs of corpora that were ad-
jacent in the structural hierarchy; this choice led
us to three comparisons which we summarized in
Table 2. The first two columns of the table specify
the two conditions being contrasted; the following
three columns report the t statistic, the associated p-
value, and Cohen’s d as a measure of the effect size
for BERT; the last three columns indicate the same
statistical indexes for mBERT. As can be evinced
by the table, the first two contrasts (RANDOM COR-
PUS-ZIPF’S CORPUS and ZIPF’S CORPUS-FLAT

BRACKETS) are highly significant for both models,
with an increment in performance attested by the
positive sign of the t and d statistics. The effect size
associated with the comparisons is modest in the
first case and extremely high in the second, with
no considerable differences between the models.
Nonetheless, as shown in the third row of the table,
the pairwise contrast between the FLAT BRACK-
ETS corpus and the NESTED BRACKETS corpus
supports the observation of a dissociation between
the results of BERT and mBERT. Indeed, while
for both models the performance in the NESTED

BRACKETS and the FLAT BRACKETS corpus is sig-
nificantly different, the direction of such difference
is the opposite, as shown by the sign of the t statis-

tic and the Cohen’s d. While the effect sizes as-
sociated with such contrasts are negligible, both
dissociations are statistically significant.

6 Discussion

In discussing the present findings, we begin by
focusing on the commonalities in the networks’
output, and conclude by commenting on the dis-
sociation in their results on the two corpora with
token pairing. First, both models showed a pref-
erence for sequences where the mathematical dis-
tribution of the tokens resembled their empirical
distribution in natural languages. We believe that
the higher average predictability that characterized
the ZIPF’S CORPUS when compared with the RAN-
DOM CORPUS reflects a tendency of the networks
to expect a non-uniform distribution of the tokens
in input that is coherent with the data on which the
pre-training had been performed. Then, we main-
tain that the substantial gain in performance on the
FLAT BRACKET corpus is to be attributed to the
paired correspondences between tokens, which in
turn might mimic head-dependency type structures
in natural language corpora. Arguably, the most
surprising result that we obtained is the dissociation
between BERT and mBERT’s results in the transfer
to the two corpora characterized by token pairing.
While the multilingual model was facilitated in its
native task by the presence of nested structures –
although with a minimal effect size –, the same im-
provement in performance is not found in its mono-
lingual counterpart. On the contrary, the strongest
transfer performance is achieved by BERT in the
FLAT BRACKETS corpus. These results suggest
that the presence of multiple languages in the in-
put during pre-training leads the models to rely on
more structured grammatical abstractions. Obvi-
ously, this finding does not imply that mBERT does
not capture the paired relationships with crossing



arcs; the biggest progress is undoubtedly obtained
when these simpler one-to-one correspondences are
included in the input. Nonetheless, it seems that
when more complex structures are instantiated be-
tween the tokens in the sequences, the multilingual
model is able to capture these configurational regu-
larities, and exploit them in order to make stronger
predictions regarding the masked input. This differ-
ence should be attributed to the nature of the input
that the networks had been presented with during
pre-training, since under every other aspect except
vocabulary and training set size (e.g. architectures,
training regimes, objective functions) the models
were identical.

6.1 Follow-up analyses

While the results of mBERT can be given a straight-
forward interpretation, the fact that the mono-
lingual model showed a preference for the non-
recursive corpus needs to be explained. Indeed,
if its results had been exclusively driven by the
absence of a hierarchical bias, we would have ex-
pected no significant difference between its perfor-
mance scores in the transfer on the two corpora
characterized by token pairing. What we found
was instead a clear, significant preference for the
FLAT BRACKETS corpus, that cannot be explained
in terms of sequence length or identity of the to-
kens, since all these low-level factors were main-
tained unaltered in the two corpora (see Section
3). Without any clear a priori expectation on the
factors that might have driven this effect, we in-
spected the ninety-ninth percentile of the sequences
that showed the highest difference between the
probability assigned by BERT to the flat and the
nested structures. In other words, we computed
the difference of the ITCT scores assigned by the
model to the nested and the corresponding flat se-
quences (henceforth Δ score), and selected the
first 10 sequences after ranking them in descending
order. We remind the reader that the sequences
in the two conditions comprised the same tokens,
assembled hierarchically and projectively in the
NESTED SEQUENCES corpus, and randomly shuf-
fled in the FLAT SEQUENCES corpus. The most
salient property of the items with the highest Δ
score that we derived was that 80% of them were
four-token sequences, with the form abab in the
FLAT BRACKETS condition and either aabb or abba
in the NESTED BRACKETS condition. We reasoned
that a property that distinguishes these three classes

of sequences is the presence of identical adjacent
tokens, which characterizes both forms of the FLAT

BRACKETS corpus, but not the abab sequence in
the NESTED BRACKETS condition. We speculate
that the models – and in particular the monolingual
one – might not expect the same token to appear in
two immediately adjacent positions within a given
sentence, and that this tendency might have driven
the higher performance scores of the monolingual
model on the FLAT BRACKETS corpus. For this hy-
pothesis to have a plausible theoretical ground, we
needed to assess whether the contiguous repetition
of identical tokens is indeed a rare phenomenon
in natural language. While it is well known that
lexical repetition is common at the discourse level –
words that have entered the discourse have a higher
reuse probability than lexical frequency (Heller
et al., 2010) –, the probability of reoccurrence of
the same token in two contiguous positions has not
been assessed through corpus studies. To do so,
we counted the number of such instances of repe-
tition in four corpora of 1M tokens, derived from
Wikipedia dumps in three languages (English, Chi-
nese, and Finnish) belonging to three different lan-
guage families (Indoeuropean, Sino-Tibetan, and
Uralic). We tokenized each corpus with mBERT’s
WordPiece tokenizer, removed punctuation and un-
known characters, and counted the number of oc-
currences of a given token at index i and i+1. Per-
haps surprisingly, we found that in two out of three
corpora the probability of having the same token
k at index i and i+1 was lower than chance (i.e.,
lower than the probability of having a random token
sampled from the corpus’ vocabulary; see Table 3).
These results support the idea that the juxtaposition
of identical tokens is indeed an unusual occurrence
in natural language.

Once we verified the low frequency of identi-
cal adjacent tokens in three natural languages, we
needed to evaluate whether subsequences of this
kind had an actual effect on the models’ predic-
tions. In order to test this hypothesis, we ran four
linear regression models (one for each considered
corpus × model combination) with the score as-
signed to each sequence as a dependent variable,
and the amount of identical adjacent tokens as a
predictor. More precisely, we employed as indepen-
dent variable the ratio of token reoccurrences over
the total amount of token pairs in the sequence.4

4We chose not to employ the raw amount of adjacent pairs
as a regressor in order to mitigate the effects of sequence



Language Family Repetitions Vocabulary P repetitions P random

English Indoeuropean 19 24,443 1.9-5 4.1-5

Chinese Sino-Tibetan 1,891 9,604 1.8-3 1.0 -4

Finnish Uralic 21 17,546 2.1-5 5.7-5

Table 3: Probability of adjacent tokens repetitions and chance level sampling. The probability of the repetitions
was computed by dividing the raw count of the repetitions by the number of tokens in the corpus (1M), while the
probability of sampling a random token from the vocabulary was obtained dividing 1 by the word types in the
corpus.

In line with our expectations, we found a nega-
tive, highly significant effect of the ratio of reoccur-
rences on BERT’s scores in the FLAT BRACKETS

condition (B = -0.1958, t = -16.098, p ≪ 0.001, R2

= 0.206). A similar pattern of results was found
in the NESTED condition (B = -0.1667, t = -7.949,
p ≪ 0.001), although the model explained a lim-
ited amount of variance (R2 = 0.06). Crucially, we
found no significant effect of the adjacent pairs ra-
tio on the results of the multilingual model neither
in the FLAT BRACKETS (B = -0.0214, t = 1.795, p
= 0.073, R2 = 0.003) nor in the NESTED BRACK-
ETS condition (B = 0.0312, t = 1.577, p = 0.115,
R2 = 0.002). These results corroborate our previ-
ous suspicion concerning the different performance
patterns of the two transformers models. More pre-
cisely, they suggest that for the monolingual model,
local heuristics relying on linear order prevail, hid-
ing to the model the structural cues that are instan-
tiated in the nested brackets corpus. Conversely,
the cross-lingual model seems to be able to rely
on more abstract structural features and to exploit
them in its predictive behaviour, while not being in-
fluenced by shallow linguistic factors such as token
repetition.

7 Conclusion

The mathematical regularities of the pre-training
input seemed to have been absorbed to the same ex-
tent by the monolingual and the multilingual trans-
former models, since the ZIPF’S CORPUS exerted
a similar facilitation effect with respect to the RAN-
DOM CORPUS across model types. Furthermore, to-
ken pairing appears to have elicited a much stronger
advantage in the predictive task we employed in
our study, suggesting that regardless of the mono-
or multilingual nature of the input the pre-training
procedure had induced a strong structural transfer
towards non-hierarchical and non-projective struc-
tures. We agree with Papadimitriou and Jurafsky’s

length.

(2020) conclusion that this facilitation emphasizes
the importance of pairing, head-dependency type
structures in the linguistic embeddings of neural
language models. In addition, our results extend the
previous findings to the generalizations employed
by pre-trained transformer models, and validate the
methodological choice of inverting the direction of
the transfer. More importantly, the difference in
BERT and mBERT’s performances when recursion
is implemented in the data suggests that the high
surface inconsistency of the input the multilingual
model is exposed to during pre-training promotes
stronger structural generalizations. This finding
directly answers a question raised in the Introduc-
tion, concerning the relevance of this study with re-
spect to the domain of representation learning. We
noted that the comparison between mono- and mul-
tilingual models on linguistic and non-linguistic
tasks could have allowed us to draw conclusions
on the aptness of their induced representational
formats with respect to different properties that
are desirable from a linguistic perspective. While
the behaviour of the monolingual model seems to
be influenced by other non-structural congruences
with the pre-training input (such as the presence of
adjacent paired tokens), this experiment suggests
that multilingual representations are more deeply
aligned with the structures posited in theoretical
linguistics, showing a hierarchical bias when trans-
ferred zero-shot to non-linguistic input.

8 Limitations and further directions

While our results provide empirical evidence for a
higher structural awareness in mBERT as opposed
to BERT, the generalizability of our findings to nat-
ural language is yet to be assessed. In the present
paper we employed artificial languages in order to
maximize the experimental control over the input;
we leave to future research an evaluation of the
structural biases operating in mono- and multilin-
gual models in a more naturalistic setting.
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