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Abstract
In this paper we extend the Multidimensional Byzantine Agreement (MBA) Protocol,
a leaderless Byzantine agreement for lists of arbitrary values, into a protocol suitable
for wide gossiping networks: Cob. This generalization allows the consensus process
to be run by an incomplete network of nodes provided with (non-synchronized) same-
speed clocks. Not all nodes are active in every step, so the network size does not
hamper the efficiency, as long as the gossiping broadcast delivers themessages to every
node in reasonable time. These network assumptions model more closely real-life
communication channels, so Cob may be applicable to a variety of practical problems,
such as blockchain platforms implementing sharding. Cob has the same Bernoulli-like
distribution that upper-bounds the number of steps as the MBA protocol. We prove
its correctness and security assuming a supermajority of honest nodes in the network,
and compare its performance with Algorand.

Keywords Distributed consensus · Fault-tolerant protocols · Blockchain

1 Introduction

One of the main issues that blockchain platformsmust deal with is the lack of scalabil-
ity. Scalability is the ability of a platform to grow andmanage an increasing number of
requests. In particular, we say that a blockchain scales if it can easily adapt to changes
in the number of users that decide to join in, as well as in the number of transaction
requests that such users broadcast to the nodes maintaining the blockchain platform.
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In order to solve the scalability issues of blockchain platforms, many approaches have
been proposed over the years. Some of them are the block size increase, the use of off-
chain state channels, segregated witness (SegWit) and sharding. Among the proposed
approaches, sharding seems to be the most promising [1].

The term sharding comes fromdatabasemanagement,where it identifies a particular
type of database partitioning, that consist in dividing large databases into smaller
parts, called shards. Shards are more manageable in terms of server hosting and other
aspects of database maintenance, and allow to have faster query time by diversifying
the responsibility of a database structure.

In the context of blockchain design, sharding consists of breaking the blockchain
into small parts that are managed in parallel by node subsets, called shards. This aug-
ments throughput, since many transactions can be simultaneously validated, allowing
blockchains to effectively scale for a huge number of users.Manyblockchain platforms
use sharding as a means to reach scalability, for example Ethereum 2.0 [2], Zilliqa [3]
or EOS [4]. For a better description of blockchain sharding we refer to the survey of
Meneghetti et al. [1]. Together with the security concerns regarding how to distribute
the nodes among different shards (so that groups of cooperating malicious nodes are
not assigned to the same shard), one of the main issues the protocol designer must deal
with is the way the transactions validated by different shards can reach compatibility
with one another. This problem is also referred to as the reconciliation problem.

Since blockchains are distributed ledgers, one of the core component is represented
by the consensus protocol that the blockchain network must execute. The consensus
protocol allows the nodes of the network to update their copy of the ledger in the very
same way. Therefore, a blockchain implementing sharding might benefit from being
able to bring the network to agreement (reach consensus) on which blocks are legiti-
mately created by each shard, so that the network can proceed with the reconciliation
of such transactions. One possible way to achieve this goal is to let the network execute
a consensus protocol and decide which shards legitimately produced a valid block.

1.1 Cob protocol

In this paper we present Cob, a novel consensus protocol which efficiently solves the
problem of reaching consensus on a set of blocks legitimately created by each shard.
In particular we propose a viable solution for permissionless blockchain networks.

This problem can be easily extended to the following more general problem:

Problem 1.1 Given a set of events which a network of nodes can observe, how can the
nodes reach consensus on some relevant information about such events?

In the context of blockchains implementing sharding the events to be observed are
the creation and diffusion of a block by each shard; the relevant information about the
event is the content of the block or some data which identifies it (e.g. the digest of the
block computed via an hash function). In this paper we will describe Cob following
the more general problem (i.e. Problem 1.1), however, the reader can keep in mind the
specific application of reaching consensus over the shards.

Given a set of m events the nodes can observe, an instance of Cob requires every
node in the network to build a list with m components. Each event (e.g. creation of a
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block of a shard) is associated to a component of the list and, once the nodes observe
an event, they locally record in the corresponding component the relevant information
about such event (e.g. the digest of the newly created block). This can be referred to
as the observation phase.

After the observation phase, the nodes of the network will continue with a Cob pro-
tocol execution, exchanging messages until they reach consensus on a list of relevant
information.

1.1.1 Cob: a parallel consensus protocol

We say that Cob is a parallel protocol since it is designed in a way that the consensus
process is carried out simultaneously on each component of the list by every node
involved in the consensus protocol. Every message broadcast by the nodes contains
some information about each component, but the consensus achievement on each
component is independent from the others.

In particular the nodes will exchange lists of values during the whole protocol
execution. In the first 3 steps they will exchange lists of strings (the relevant informa-
tion) and in the following steps they will exchange lists of bits in order to reduce the
bandwidth required.

Agreement might be reached faster in some components, however the nodes will
stop the protocol execution onlywhen they realize that they agree on every component,
therefore on the whole list.

If an event is not detected (e.g. a shard did not broadcast any block) or it is impossible
to reach consensus (e.g. multiple blocks have been broadcast by the same shard),
agreement will be reached on the special value ⊥.

It is crucial that agreement is carried out in parallel on the list components instead
of on the whole list, otherwise a widespread disagreement on a single component
would affect the consensus achievement on the other components as well. Conversely,
if agreement is carried out in parallel and independently, it is possible to preserve and
finalize the agreed upon components, and to set to ⊥ the controversial components.

1.1.2 Cob: a leaderless consensus protocol

Since anyone can join the network of a permissionless blockchain, we must consider
an attacker that may try to disrupt the consensus process in several ways. Let us
consider again the example of a blockchain implementing sharding. In this context,
a malicious user may broadcast different information to different nodes advertising
different blocks related to the same shard. This would cause a network partition in
groups with different views about what the attacker has seen. Another attack it may
perform is a censorship attack, pretending not to have received a block by a specific
shard, setting the related component to ⊥.

Many classical consensus protocols used by blockchain networks to record trans-
actions [3, 5–8] (e.g. cryptocurrency transfers, smart contract execution requests) do
not guarantee that a specific transaction will be included into the blockchain as soon
as it is broadcast, in the block which is created right after the transaction diffusion.
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In many cases this is just fine, in fact the transaction can be included into one of the
following blocks after waiting a reasonable time interval.

For this reason, many consensus protocols are leader based, whichmeans that there
is a node which proposes a new block, and then the network decides whether to accept
it or not. If the network decides to discard the leader proposal it elects a new leader
and starts over. However, it is essential that the leader must change from time to time
so that, if an attacker tries to undermine the liveness of the platform or to practice
censorship, a (eventually honest) new leader will propose a new block (in one case),
or will include the deliberately excluded transactions (in the other case).

The Problem 1.1 differs from the problem of (eventually) recording transaction
requests. The events observed by the network must be discussed right after they are
observed and the relevant information must be included in the agreed upon list or
excluded once and for all.

Therefore, it is essential for our consensus protocol to be leaderless. In fact, a leader,
if honest, would propose a list of relevant information which is heavily influenced by
their own point of view (which in some cases might lead them to take incorrect deci-
sions), and if the leader is malicious may easily perform censorship attacks refusing
to include some information in the list, or deliberately include invalid information.
In both cases, if the network does not agree even with one component proposed by
the leader, it will reject the leader proposal, and this process is repeated until a leader
proposes a list which gets accepted by a majority of the network. Note that this might
not even happen, in fact, if there is a wide disagreement among the nodes about one
or more components, there might not exist a list which is accepted by such majority.

So we have shown that there are many reasons that suggest to abandon the leader-
based approach in favour of a leaderless approach. A leaderless consensus protocol,
instead of questioning a single node, requires several nodes to share their own proposal.
Then, based on these proposals, the protocol will bring the network to a consensus on
a shared output as we will show in Sect. 3.2 and prove in Sect. 4.

We will show in Sect. 3.2 that in the first step of Cob, a set of randomly chosen
nodes will share with the network their observed values, namely the list of relevant
information (e.g. the hash of the shard blocks they have received). Starting from this
information, the network will carry on with the consensus protocol to decide which
components of the list can have a value, since the nodes of the network agree on some
relevant information, and which will be set to ⊥.

1.2 State of the art and considerations

In [9] is presented the MBA Protocol, a solution to Problem 1.1 for a relatively small
network of a fixed number n of nodes, under some strong communication assumptions,
and under the threat of an attacker that controls less than 1

3 of the nodes. In particular,
it is assumed a strongly synchronous communication model and a complete network,
where every node could instantaneously send a message to each other. These assump-
tion are unrealistic or dramatically reduce the possible application contexts.

In this paper we go a step further and define an analogous protocol called Cob,
which works under more realistic assumptions and can be executed by a network of
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nodes of any size and the nodes communicate gossiping the messages broadcast in the
network. This model makes Cob a viable solution to Problem 1.1 for a permissionless
blockchain platform network. In fact, as we will see in Sect. 2.1, every step of the
protocol is executed by a randomly selected set of nodes, whose cardinality is constant
in expected value: this guarantees that, independently of the size of the network, the
number of messages broadcast during each step will be constant.

As we have stated in Sect. 1.1.2, we are interested in leaderless consensus protocols
which work under realistic network and communication assumptions.

There is no doubt that asynchronous BFT protocols would be the best solution
for building high-assurance and resistant consensus protocols. Unlike synchronous or
weakly synchronous protocols, whose liveness relies on communication assumptions,
the asynchronous protocols do not put their liveness at risk.

In 2016, Miller et al. presented the leaderless asynchronous BFT protocol Hon-
eyBadgerBFT [10], which significantly improved prior asynchronous BFT protocols
[11–13]. HoneyBadgerBFT is based on the Asynchronous Common Subset (ACS)
[11] implemented in combination with the asynchronous binary consensus protocol
of Mostéfaoui et al. [14]. HoneyBadgerBFT can be used as a consensus protocol for
blockchains, achieving a throughput of 200 KB/s of data appended to the ledger using
10 MB blocks (therefore it requires 5 min for each protocol run) using 104 partici-
pating servers. Later, in 2018, Duan et al. improved the HoneyBadgerBFT protocol
presenting BEAT [15], a family of five asynchronous consensus protocols designed
to meet different goals, such as different performance metrics (scalability, bandwidth
or latency). Another improvement to HoneyBadgerBFT was proposed by Guo et al.
with the Dumbo protocol [16].

However, these leaderless asynchronous BFT protocols have performance (latency,
throughput) issues when they are executed by a number of replicas which exceeds the
hundreds. For this reason, these protocols, or their variations, could be adopted only
by permissioned or private blockchain platforms, because they are often controlled
by relatively few nodes, but they do not provide a viable solution to the consensus
problem in the context of permissionless networks. Moreover, these protocols must be
executed by a fixed set of nodes who actively partake to the communication protocol.
Therefore, these protocols can be incapable to guarantee resistance to targeted attacks
that either compromise the servers involved or disconnect them from the network.

Since in this paper we are interested in solving a problem which can be applied
to permissionless blockchain platforms implementing sharding, we assume that the
number of nodes in the network can grow with no limit (potentially reaching millions
of nodes) still guaranteeing the highest level of decentralization.

Therefore the asynchronous protocols mentioned above, classical primary-backup
protocols such as PBFT [17] and other recent concurrent protocols such as Mir-BFT
[18] or RCC [19] must be considered impractical for our use case due to the reduced
and fixed number of actors involved in the protocol execution.

For this reason we must make some compromises, and find a solution which allows
the implementation of a scalable platform settling for a protocol which relies on
assumptions that are as weak as possible.

In this regard, Algorand [7] is a blockchain platform for cryptocurrency which
adopts a BFT consensus protocol that faces three main challenges:
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1. avoid Sybil attacks: this is done usingweighted users. Every user is weighted based
on the amount of money in their account, therefore as long as more than 2

3 of the
money is in honest hands, then the protocol is proven to be secure.

2. can scale to millions of users: this is achieved by choosing for every step a different
committee, a small set of representative randomly selected from the set of users
based on the users’ weight.

3. resistant to denial of service attacks or disconnection of users performed by an
attacker: in fact, relying on a committee which performs the operations, gives the
possibility of targeted attacks against the chosen committee members. To prevent
this, the protocol selects the committee members in a private and non interactive
way via a verifiable random function (VRF) on the users’ private key and some
public data from the blockchain, a technique pioneered by Rabin in [20] which
simulates a random lottery.
Once a player realizes they are selected in a committee, then they must broadcast a
message containing, among other things, the proof of their selection. At this point
the attacker clearly knows about the selection and can try to corrupt such player.
However, the nodes executing the protocol randomly change at every step and the
attacker can not know in advance which node will be selected to broadcast a new
message. This property is called player replaceability and protects the network
from targeted attacks.

All these properties are achieved assuming that the attacker can corrupt or take
control of any user in the network but, as we mentioned before, more than 2

3 of the
money (on which each user’s weight is based) must always be in honest hands.

Algorand, to guarantee liveness, makes a strong synchrony assumption [21] requir-
ing that almost every honest node (e.g. 95%), when it broadcasts a message, reaches
almost every other honest node (e.g. 95%) within a predetermined time interval. The
time is measured by each node by using same speed clocks which might not be syn-
chronized (pointing to different times) as long as they have the same speed.

Moreover, to guarantee safety a weak synchrony assumption is used: the network
can be asynchronous (i.e. controlled by an adversary) for a long period of time, as
long as this time is bounded (e.g. 1 day, 1 week). After that the network must be
synchronous for a reasonably long period of time (e.g. few hours, 1 day) in order to
ensure safety [21].

In this paper we build on top of Algorand’s network and communication model a
consensus protocolwhich solves the problemof reaching consensus on a list of relevant
information about some observed events. In fact, for our scope, it is essential to involve
a high number of nodes to safely determine that this information has been correctly
recorded, so we cannot rely on asynchronous protocols (due to their limitations) and
must compromise on the network assumptions.
Outline In Sect. 2 we establish the preliminaries necessary to describe Cob. We define
our network assumptions,we recall someuseful notation, thenwedescribe the sortition
mechanism that selects which nodes are active in each step of the protocol, giving the
necessary definitions. Finallywe describe our assumptions on the honesty of the nodes.

In Sect. 3 we introduce the actual protocol, presenting a reference list of all the
parameters and then describing in detail every step.
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Then, in Sect. 4 we formally analyze the properties of Cob, proving that it is a
Byzantine agreement through a series of preparatory lemmas and propositions. The
main theorem also gives a probabilistic upper bound on the number of steps that are
necessary to halt the execution.

In Sect. 5 we analyze the message complexity and the weight of the data broadcast
in the network in each protocol execution. We also compare the performance of Cob
with the one ofAlgorand’s consensus protocol [7] in solving Problem1.1 in the context
of blockchain platforms implementing sharding.

Finally in Sect. 6 we draw some conclusions and remarks, and outline future works
to improve the applicability of the protocol.

2 Preliminaries

In this section we define some assumptions, preliminary concepts, and notations that
will be used later on to describe Cob and prove its properties.

2.1 Network assumptions

In complete networks, the number of messages exchanged through the network grows
exponentially with the number of network participants, so for practical applications it
is more convenient to consider a different network model, such as the Asynchronous
Gossiping Network (AG networks)1 presented by Micali in Algorand [7].

In this model messages are broadcast in the network in a gossiping fashion: a
procedure characteristic of peer-to-peer communications where messages pass from
one node to its neighbours and so on until they reach every node. In gossiping networks
we rely on each member to pass messages along to its neighbours, therefore it is
reasonable to envisage the network as an incomplete, connected and non-directed
graph. We assume that a message sent by an honest node reaches every honest node
within a time limit that depends on the size of the message itself. Since malicious
nodes can behave arbitrarily, this assumption means that malicious nodes cannot be
cut vertices in the network graph, that is the graph remains connected even without the
edges connected to malicious nodes. We will also require that the ratio of malicious
or faulty nodes is less than 1

3 .
In an AG network there does not exist a common clock, but we assume that all

network participants are provided with Same-Speed Clocks [7]. In other words, we
assume that each network participant has its own clock and that the clocks all have
the same speed, even if they are not synchronized in any other way.

We take as time frame reference the earliest clock in the network, and suppose that
the protocol execution starts at time 0, i.e. time starts when the first player begins the

1 Algorand describes the environment in which it operates as asynchronous. This is because the communi-
cations between nodes happen via gossip and the protocol steps, which for a single user are non-overlapping
time intervals, for different users may overlap due to asynchrony. However, since Algorand assumes that
there exists a predetermined upper-bound on the time required by a message to reach (almost) every node,
and therefore exists an upper-bound on the delay between different nodes, Algorand can not be considered
an asynchronous protocol.
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protocol execution. Moreover we assume that the discrepancy between any two clocks
is at most a constant λ, that also upper bounds the time required to diffuse a “short”
message of the protocol to the whole network (see Sect. 3.1), so each player will start
the execution of the protocol at a time comprised in the interval [0, λ]. For example,
this discrepancy could be observed in a scenario in which the first player triggers the
start of the protocol execution, broadcasting a signal and resetting its clock, and then
each player starts the execution (and resets its clock) when it receives this signal, with
the network delay causing the discrepancies. Afterwards the time discrepancies do not
vary because of the same-speed nature of the clocks.

2.2 A cryptographic sortitionmechanism

In the protocol described in Sect. 3.2 not every player in the network is always active
(i.e. authorized to broadcast messages), on the contrary at every step some players are
selected to be active, while the others have a passive role. In order to better clear up
this distinction, from now on in a specific step we will call players only the nodes
selected to be active and broadcast their message, while a generic node of the network
will be referred as a user. We will denote with P(s) the set of players of step s.

We want this selection to be random, and furthermore we would like it to be private
and performed without the aid of a trusted third party. With private we mean that each
user should be able to privately check if it will be selected to be active (i.e. a player)
in a step, and then be able to prove its selection to the other players. This concept
is closely related to that of verifiable random functions (VRF), i.e. pseudo-random
functions which provide publicly verifiable proofs of their outputs’ correctness.

In our protocol the sortition is implemented through a cryptographic hash function
H (modeled as a random oracle) and a digital signature scheme (G, S, V ) with the
uniqueness property, which is defined as follows.

Definition 2.1 (Digital Signature Scheme with Unique Signature) A digital signature
scheme with unique signature is a triple of algorithms (G, S, V ) such that:

– G is the key generation algorithm that outputs a secret key sk and a public key
pk;

– S is the signing algorithm, that given a message m and a private key sk outputs a
signature σ = S (sk,m);

– V is the verification algorithm that given a message m, a signature σ and a public
key pk outputs either true or false, and such that:

– the scheme is correct, i.e. for every (sk,pk) generated with G it holds

V (pk, S (sk,m) ,m) = true ∀m ;

– the signature is unique, i.e. for any probabilistic polynomial time algorithm
F that given a message outputs a public key p̂k and two distinct signatures
σ̂ �= σ̃ , we have that:

P

(
V

(
p̂k, σ̂ ,m

)
= V

(
p̂k, σ̃ ,m

)
= true

)
< ε ∀m
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where ε is negligible. Note that this property holds also for public keys whose
relative private key is known, and even for values p̂k that are not legitimately
generated public keys.

Given this definition, we can now describe the sortition of the active players in each
step of the protocol.

Definition 2.2 (SortitionMechanism) Let (G, S, V ) be a digital signature schemewith
unique signature, and suppose that every user 1 ≤ i ≤ N is identified by a public key
pki , let r be a random string independent from pki for every 1 ≤ i ≤ N , and suppose
that every user knows r and {pki }1≤i≤N . Moreover let n ≤ N be the desired number
of players during each step s of the protocol, let H : {0, 1}∗ −→ {0, 1}d be a hash
function, and let φ : {0, 1}d −→ (0, 1] be the standard decoding of a bit string into

the unit interval φ (h) = 1+∑d−1
i=0 hi2i

2d
.

User i is selected to be a player during step s of the protocol, i.e. i ∈ P(s), if:

φ
(
H

(
σ

(s)
i

))
≤ n

N

∧
V

(
pki , σ

(s)
i , H (r‖s)

)
= true .

Where σ
(s)
i = S (ski , s‖r). The signature σ

(s)
i can then be used to prove that i ∈ P(s).

Note that, when H is modeled as a random oracle, φ
(
H

(
σ

(s)
i

))
is uniformly dis-

tributed, so the probability of a player to be selected is n
N , and the expected number

of active players is indeed n.
Note that the same sortition mechanism can be implemented with a weaker notion

of signature scheme that allows signing failures. That is, a scheme where the output of
S is a special symbol⊥with fixed probability f (supposing the message to be uniform
in {0, 1}d ), with V (pk,⊥,m) = false for every pk and m. The sole adjustment
required is to increase the threshold n

N to account for the signing failure, using n
N (1− f )

instead.
In some applications it might be desirable that players are selected with nonuniform

probability. There is a simple trick to adjust the selection probability for each player:
let p ∈ (0, 1] be a fixed probability and ti ≥ 1 be a publicly known threshold for
player i . The tweaked process selects player i if it can provide a pair signature-counter(
σ

(s)
i , ci

)
such that φ

(
H

(
σ

(s)
i

))
≤ p, V

(
pki , σ

(s)
i , H (r‖s‖ci )

)
= true, and

ci ≤ ti . In other words the player i has ti attempts to produce a winning signature, so
its probability to be selected is 1 − (1 − p)ti .

2.3 Sortition assumptions

Similarly to the MBA protocol [9], Cob requires that the number of honest nodes at
each step s is more than two times the number of malicious players active at step s.
Since the active players are randomly selected, we require that at each step there are
enough active honest players with high probability.

We now define a probabilistic concept which will be widely used throughout this
paper.
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Definition 2.3 We will write that an event E happens with overwhelming probability
if P (E) ≥ 1 − ε, where ε ∈ (0, 1) is a parameter sufficiently close to 0.

A good choice for practical applications could be ε = 10−12.

Definition 2.4 Let n be the expected number of active players in a step, we define the
threshold tH = � 2n

3 �+1. For every step s we choose the parameter n in a way that the
following relationships between the number of honest players HP(s) and the number
of malicious players MP(s) hold with overwhelming probability:

1. |HP(s)| > tH;
2. |HP(s)| + 2|MP(s)| < 2tH.

Note that these two conditions imply that HP(s) > 2MP(s). In practice, they imply
that with overwhelming probability:

– the protocol has, at each step, the required 2
3 honest majority of players.

– at every step there is a sufficient number of honest players who can certify a new
list or finalize a list component;

– two distinct nodes can not finalize the same component with two distinct values.

Note that the closer to 1 the ratio of honest users in the network is, the smaller the
number of players for each step needs to be.

The parameter choice necessary to meet the requirements is done using variants of
Chernoff bounds, as in Algorand [7] and the analysis of such bound can be found in
[22].

2.4 Notation

We will typeset lists in boldface and in general subscript will be used to denote the
player who created the value and the index of list components, while superscripts
will refer to the protocol step in which the value has been produced. So v(s)

i will be

a list created by user i during step s of the protocol, while v
(s)
i,c will denote the c-th

component of said list. As shorthand, 1 denotes a list where each component is equal
to 1, and similarly 0 denotes an all-zero list.

As in [7] and [9], the notation #(s)
i (v, c), for 1 ≤ c ≤ m represents the number

of players from which player i has received during step s a valid message containing
a list v(s) = (v1, . . . , vm) such that vc = v considering, possibly, also its own mes-
sage. We recall that honest players consider at most one message from player j as
valid (discarding all contrasting and not properly formatted messages, and counting
identical messages as one), so only valid messages are considered and counted, and∑

v #
(s)
i (v, c) ≤ |P(s)| ∀i, s, c.

In the protocol the players try to reach agreement on a list of arbitrary val-
ues, where each player j starts the protocol knowing an m-dimensional list v j =(
v j,1, . . . , v j,m

) ∈ V = ∏m
c=1 Vc. We say that the players have reached c-agreement,

where 1 ≤ c ≤ m is a specific component, when there exists v ∈ Vc such that for
every honest player j , v j,c = v. When c-agreement is reached on all the components
of the list, we have that for all honest players i, j , vi = v j , hence also agreement is
reached.
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3 Cob protocol

We now present Cob, a protocol that allows a wide gossiping network to reach agree-
ment on a list of arbitrary values. The properties of the protocol will be formally stated
and proved in Sect. 4.

3.1 Protocol parameters and components

For the sake of clarity and easy reference, we now provide a list with the definition of
the parameters and the notation that we will use to describe and analyze Cob:

– H : a cryptographic hash function, modelled as a random oracle;
– (G, S, V ): a digital signature scheme with unique signature (see Definition 2.1);
– N ∈ Z

+: the number of nodes in the network, i.e. the users of the protocol;
– PK: the set of public keys of the users, each user i , with 1 ≤ i ≤ N , is univocally
identified by its public key pki ∈ PK and has a private key ski ;

– 2
3 < h ≤ 1: the ratio of the honest users in PK;

– r : a reference string, i.e. a random string independent from every pki ∈ PK and
known by every user;

– n: the expected number of players active in each step of the protocol;
– tH = � 2n

3 � + 1: a threshold used in the protocol, derived from the expected lower
bound of the number of honest players in each step;

– m: the number of components of the list of arbitrary values upon which agreement
has to be achieved, and which is common knowledge since the nodes know the
events they must observe and describe on the ledger;

– V = ∏m
c=1 Vc: the set the list to be agreed upon belongs to, each set Vc contains

all the possible values of the c-th component of said list;
– ⊥: a special value that represents a non meaningful value for any component, we
require that ⊥ ∈ Vc for every 1 ≤ c ≤ m;

– Oi ∈ V : the list built by player i at the start of the protocol, for every 1 ≤ c ≤ m
we will say that c is an unambiguous component if Oi,c = Oj,c for every couple
of honest users i, j , otherwise, if there exist two honest users i and j such that
Oi,c �= Oj,c, we will say that c is an ambiguous component;

– �: the amount of time spent by each player i at the start of the protocol to build
its private list Oi (e.g. by observing some events and reporting some relevant
information about them), the protocol will then try to reconcile all these lists into
a shared one;

– �: the upper bound to the time needed to propagate the messages in each of the
first two steps of the protocol;

– λ: the upper bound to the time needed to propagate the messages of the third and
following steps of the protocol. The difference between λ and � depends on the
size of the elements of V . We assume that � = O (λ);

– s ∈ Z
+: the current step of the protocol;

– P(s): the active players that partake in step s of the protocol;
– σ

(s)
i = S (ski , H (r‖s)): the credential of user i for step s, used to check if

i ∈ P(s);
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– p ∈ (0, 1): for each time-slot s, each user in PK is chosen to be in P(s) with
probability p = n

N ;
– MP(s) and HP(s): they are respectively the set of malicious and honest players in
step s, note that MP(s) ∪ HP(s) = P(s) and MP(s) ∩ HP(s) = ∅;

– m(s)
i : the message broadcast by player i during step s;

– v(s)
i : the list of information contained in the message m(s)

i , we will see that v(s)
i ∈ V

if s ≤ 2, v(s)
i ∈ {0, 1}m if s ≥ 3;

– sig(s)
i (x) = (x, S (ski , s‖x)): the value x broadcast by player i during step s

certified by its signature, it is included in m(s)
i ;

– Ci : the certificate built by player i which attests that the final list has network
agreement, each user i continues running the protocol until it can build a certificate
Ci ;

– αi ∈ [0, λ]: the time atwhich user i starts the execution of each step of the protocol;
– β

(s)
i : the time at which user i ends the execution of step s of the protocol;

– t (s): the amount of time that players of step s have to wait in order to harvest all
the information required to compute the message to broadcast, if i ∈ P(s) then
t (s) = β

(s)
i − αi ;

– Tc: the time at which the first honest user finalizes component c;
– T : the time at which the first honest user produces a certificate;
– L: a random variable representing the number of Bernoulli trials needed to see the
output 1, when each trial outputs 1 with probability h

2 ;
– χl, h2

: a random variable representing the number of steps required to end the

probability game described in [9] with parameters l and h
2 . The probability game

consists of flipping l distinct but equal coins (which flip heads with probability
h
2 ) until each of them flipped head at least once. Its probability distribution is
computed in [9] but is also reported in Sect. 5.1.

3.2 Cob protocol description

We now describe in detail how Cob works. The honest users will be the ones who
follow the protocol described below, and, even if not elected as players on any step,
they are supposed to stay online to support message propagation during the whole
protocol execution.

The protocol is a variant of the MBA, where the first three steps are essentially the
Multidimensional Graded Consensus presented in [9], then from the step 4 onward
it is a three-step loop that corresponds to the Multidimensional Binary Byzantine
Algorithm, also presented in [9].

As in the protocol MBA, each user i privately saves a list fi initialized to 0 that
keeps track of the finalization of the components. A component is finalized when
the network is in agreement on it, and from that moment on the protocol will not
change it anymore. Once every component has been finalized, the protocol enables
the creation of certificates that attest that the list is indeed shared by the network, and
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then terminates. That is, the three-step loop is repeated until the ending condition is
met, which corresponds to the creation of a certificate for the agreed-upon final list.

Every honest user i in the system starts the protocol execution when its own private
clock signs 0. Note that, right from the start, each user i can build its credentials σ

(s)
i

and check for which s it will be φ
(
H

(
σ

(s)
i

)) ≤ p and therefore i ∈ P(s).
We now describe Cob, followed by the Ending Condition to be performed in each

step s ≥ 4 to determine whether agreement has been achieved.

STEP 1 (first step of m-dimensional GC)

– Each user i computes its credential σ (1)
i and checks if i ∈ P(1);

– if i /∈ P(1) then i ends its step 1 right away;
– if i ∈ P(1), i spends t (1) = � time building its own private list Oi ∈ V , then:

– sets v(1)
i = Oi ;

– broadcasts the message:

m(1)
i =

(
1, σ (1)

i ,sig(1)
i

(
v(1)
i

))
.

STEP 2 (second step of m-dimensional GC)

– Each user i computes its credential σ (2)
i , if i /∈ P(2) then i ends its step 2;

– if i ∈ P(2), after waiting an amount of time t (2) = t (1) + � + λ, player i does the
following:

– sets v(2)
i , where v

(2)
i,c = vc �= ⊥ if and only if #(1)

i (vc, c) ≥ tH, and v
(2)
i,c = ⊥

otherwise;
– broadcasts the message:

m(2)
i =

(
2, σ (2)

i ,sig(2)
i

(
v(2)
i

))
.

STEP 3 (output determination of m-dimensional GC and starting broadcast in m-
dimensional BBA)

– Each user i collects and locally saves the messages received from the players of
step 2;

– after waiting an amount of time t (3) = t (2) + λ + �, i updates its private list Oi

and computes the list gi where, for each component c, Oi,c and gi,c are computed
as follows:

– if, for some x �= ⊥, #(2)
i (x, c) ≥ tH, then

(
Oi,c, gi,c

) = (x, 2);
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– else, if, for some x �= ⊥, #(2)
i (x, c) ≥ tH

2 , then
(
Oi,c, gi,c

) = (x, 1);
– otherwise,

(
Oi,c, gi,c

) = (⊥, 0);

– if i /∈ P(3), then i ends the execution of step 3;
– if i ∈ P(3), then player i does the following:

– builds the list v(3)
i ∈ {0, 1}m such that v(3)

i,c = 0 if gi,c = 2, v(3)
i,c = 1 otherwise;

– computes the list �
(3)
i such that �

(3)
i,c = ⊥ if v

(3)
i,c = 1, �

(3)
i,c = Oi,c when

v
(3)
i,c = 0;

– broadcasts the message:

m(3)
i =

(
3, σ (3)

i ,sig(3)
i

(
v(3)
i

)
,sig(3)

i

(
H

(
�

(3)
i

)))
.

STEP s 4 ≤ s, s − 1 ≡ 0 mod 3 (Coin-Fixed-To-0 step and starting broadcast of
Coin-Fixed-To-1 step in m-dimensional BBA)

– Each user i collects the messages received from the players active during step
s − 1;

– after waiting an amount of time t (s) = t (s−1) + 2λ, the user i starts building the
list v(s)

i performing the following operations:

– verifies the ENDING CONDITION;
– sets v

(s)
i,c = v

(s−1)
i,c for all 1 ≤ c ≤ m such that fi,c = 1;

– performs the FINALIZATION CHECK 0;
– performs the FINALIZATION CHECK 1;

– if i /∈ P(s), the user i ends the execution of step s;
– if i ∈ P(s), the player i does the following:

– completes the list v(s)
i depending on the lists v(s−1)

j included in the valid mes-
sages it has received, in particular, for each component c such that fi,c = 0:

• if #(s−1)
i (1, c) ≥ tH, then i sets v

(s)
i,c = 1;

• else i sets v
(s)
i,c = 0;

– computes the list �
(s)
i such that �

(s)
i,c = ⊥ when v

(s)
i,c = 1, �(s)

i,c = Oi,c when

v
(s)
i,c = 0;

– broadcasts the message:

m(s)
i =

(
s, σ (s)

i ,sig(s)
i

(
v(s)
i

)
,sig(s)

i

(
H

(
�

(s)
i

)))
.

STEP s 5 ≤ s, s − 1 ≡ 1 mod 3 (Coin-Fixed-To-1 step and starting broadcast of
Coin-Genuinely-Flipped step in m-dimensional BBA)
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– Each user i collects the messages received from the players active during step
s − 1;

– after waiting an amount of time t (s) = t (s−1) + 2λ, the user i starts building the
list v(s)

i performing the following operations:

– verifies the ENDING CONDITION;
– sets v

(s)
i,c = v

(s−1)
i,c for all 1 ≤ c ≤ m such that fi,c = 1;

– performs the FINALIZATION CHECK 0;
– performs the FINALIZATION CHECK 1;

– if i /∈ P(s), the user i ends the execution of step s;
– if i ∈ P(s), the player i does the following:

– completes the list v(s)
i depending on the lists v(s−1)

j included in the valid mes-
sages it has received, in particular, for each component c such that fi,c = 0:

• if #(s−1)
i (0, c) ≥ tH, then i sets v

(s)
i,c = 0;

• else i sets v
(s)
i,c = 1;

– computes the list �
(s)
i such that �

(s)
i,c = ⊥ when v

(s)
i,c = 1, �(s)

i,c = Oi,c when

v
(s)
i,c = 0;

– broadcasts the message:

m(s)
i =

(
s, σ (s)

i ,sig(s)
i

(
v(s)
i

)
,sig(s)

i

(
H

(
�

(s)
i

)))
.

STEP s 6 ≤ s, s − 1 ≡ 2 ( mod 3) (Coin-Genuinely-Flipped step and starting
broadcast of Coin-Fixed-To-0 step in m-dimensional BBA)

– Each user i collects the messages received from the players active during step
s − 1;

– after waiting an amount of time t (s) = t (s−1) + 2λ, the user i starts building the
list v(s)

i performing the following operations:

– verifies the ENDING CONDITION;
– sets v

(s)
i,c = v

(s−1)
i,c for all 1 ≤ c ≤ m such that fi,c = 1;

– performs the FINALIZATION CHECK 0;
– performs the FINALIZATION CHECK 1;

– if i /∈ P(s), the user i ends the execution of step s;
– if i ∈ P(s), the player i does the following:

– completes the list v(s)
i depending on the lists v(s−1)

j included in the valid mes-
sages it has received, in particular, for each component c such that fi,c = 0:

• if #(s−1)
i (0, c) ≥ tH, then i sets v

(s)
i,c = 0;

• if #(s−1)
i (1, c) ≥ tH, then i sets v

(s)
i,c = 1;
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• otherwise, letting P(s−1)
i ⊆ P(s−1) be the set of players who sent i a

valid message in the previous step, then i sets v
(s)
i,c = kc, where k =

H
(
min

j∈P(s−1)
i

H
(
œ(s−1)
j

))
;

we will refer to the player whose hashed credential is minimal from i’s point
of view as the coin flipper selected by i during step s;

– computes the list �
(s)
i such that �

(s)
i,c = ⊥ when v

(s)
i,c = 1, �(s)

i,c = Oi,c when

v
(s)
i,c = 0;

– broadcasts the message:

m(s)
i =

(
s, σ (s)

i ,sig(s)
i

(
v(s)
i

)
,sig(s)

i

(
H

(
�

(s)
i

)))
.

ENDING CONDITION
If, while user i waits for the end of the current step (step s), there exist a string
θ ∈ {0, 1}d and a step s′ such that:

– 4 ≤ s′ with s′ − 1 ≡ 0 mod 3;
– user i has received at least tH messages m(s′−1)

j containing the signature of s′ −
1‖θ = s′ −1‖H

(
�

(s′−1)
j

)
and at least tH messages m(s′)

j containing the signature

of s′‖θ = s′‖H
(
�

(s′)
j

)
;

then i can build its certificate Ci , diffuse it in the network and terminate its execution
of the protocol.

For the collision resistance of H we can assume that there is a list � ∈ V such that
θ = H (2), i.e. i has collected 2tH signatures that refer to the same list�. Lemma 4.2
states that in this case i has received, for each 1 ≤ c ≤ m, at least a message m(2)

j with

v
(2)
j,c = �c, hence it can reconstruct the list �. Let P̂(s−1) ⊆ P(s−1) and P̂(s) ⊆ P(s) be

the the sets of players (each of cardinality at least tH) that have sent messages with
the signature of H (�) as stated above, then i can build its certificate as:

Ci =
(

�, s,
{(

sig(s−1)
j (H (�)) , σ

(s−1)
j

)}
j∈P̂(s−1)

,
{(

sig(s)
j (H (�)) , σ

(s)
j

)}
j∈P̂(s)

)
.

FINALIZATION CHECK 0
Let s′ be a step such that 4 ≤ s′ ≤ s and s′ − 1 ≡ 0 mod 3 (that is, step s′ is a
Coin-Fixed-To-0 step).

For each component c ∈ {1, . . . ,m} such that fi,c = 0, if, considering the

lists v(s′−1)
j contained in the valid messages m(s′−1)

j received by i , we have that

#(
s′−1)

i (0, c) ≥ tH, then i sets:
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– v
(s)
i,c = 0;

– fi,c = 1.

FINALIZATION CHECK 1
Let s′ be a step such that 4 ≤ s′ ≤ s and s′ − 1 ≡ 1 mod 3 (that is, step s′ is a
Coin-Fixed-To-1 step).

For each component c ∈ {1, . . . ,m} such that fi,c = 0, if, considering the

lists v(s′−1)
j contained in the valid messages m(s′−1)

j received by i , we have that

#(
s′−1)

i (1, c) ≥ tH, then i sets:

– v
(s)
i,c = 1;

– fi,c = 1.

User i keeps following the protocol instruction until the ending conditions are
satisfied and i is able to build a certificate Ci . A certificate Ci contains the list �

on which the network has reached agreement, alongside a set of digital signatures
for H (�) together with a proof that those who signed were indeed players of a
specific step. In particular Ci contains at least tH signatures from players of a Coin-
Genuinely-Flipped step s andtH signatures from players of the subsequent subsequent
Coin-Fixed-To-0 step s + 1.

4 Security analysis

We now outline the security proof for the protocol Cob.
In the main theorem, Theorem 4.1, we determine:

1. an upper bound to the time needed by the first honest node to produce a certificate
for the agreed upon list �;

2. the time interval when every honest user gets to know �.

In order to prove this, in Sect. 4.1 we show some preliminary results characterising
the gossiping communications under our assumptions, and prove a lemma that justifies
the construction of a certificate as described in Sect. 3.2.

In Sect. 4.2 we prove some propositions and lemmas regarding the time needed by
a network of nodes to reach consensus on the single list components. In particular we
distinguish two cases:

1. if the nodes observed unambiguous events (i.e. the honest nodes agree on the same
value at the beginning of the protocol) or very ambiguous events (which means
that there is not a majority of the nodes who observed the same value), then they
will reach c-agreement not later than step 5;

2. otherwise, the number of steps required to reach c-agreement is upper bounded by
3L + 5, where L is a Bernoulli-like random variable with parameter h

2 > 1
3 .
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Finally, we use the results above to prove that the nodes of the network will be
in possession of a certificate for the agreed upon list � within a number of steps
upper-bounded by 5 + 3χ

�, h2
, and that only one list can be certified.

Theorem 4.1 (Main Theorem) Given an instance of Cob, described in Sect. 3.2, the
following properties about each protocol execution hold with overwhelming probabil-
ity:

1. if 0 ≤ � ≤ m is the number of ambiguous components, then we have that T ≤
� + 2� +

(
7 + 6χ

�, h2

)
λ, where χ

�, h2
is the random variable described in [9];

2. all honest users agree on the same list � and know it in the interval [T , T + λ].
Remark 4.1 When there are no ambiguous components, i.e. all honest nodes at
the beginning of the protocol build the same list, then we have χ

�, h2
= 0, so

T ≤ � + 2� + 7λ.

4.1 Preliminary results

In order to prove our Main Theorem 4.1, we first need to prove some preliminary lem-
mas and propositions which characterize Cob under our communication and network
model.

Lemma 4.1 For each step s ≥ 1 of a protocol run we have:

1. if i ∈ P(s) is honest, then β
(s)
i ∈ [t (s), t (s) + λ];

2. if i ∈ P(s) is honest, then by time β
(s)
i it has received all messages sent by all

honest players j ∈ HP(s′) for all steps s′ < s;
3. for each step s̄ > s, fixing a component 1 ≤ c ≤ m,with overwhelming probability

there do not exist two players i, i ′ ∈ P(s̄) such that:

– i has received at least than tH messages m(s)
j advertising v

(s)
j,c = b;

– i ′ has received at least than tH messages m(s)
j advertising v

(s)
j,c = b′ with

b′ �= b.

Note that for step 2 and 3 we have b, b′ ∈ Vc, while for the next steps b, b′ ∈ {0, 1}.
Proof Property 1 holds as a consequence of the network assumptions regarding the
same speed clocks delay. In fact we know that each user i starts its protocol execution
at a time αi ∈ [0, λ] and waits for time t (s) before acting and then ending its step. This
means that β(s)

i = αi + t (s) ∈ [t (s), t (s) + λ].
Property 2 holds by the definition of the protocol, noticing that t (s) ≥ t(s

′) for all
s′ < s. If s = 2, 3, then for all s′ < s, i ∈ P(s), we have that

β
(s)
i ≥ t (s) = t (s−1) + λ + � ≥ t(s

′) + λ + � ≥ β
(s′)
j + �,

since the honest players j ∈ HP(s′) send their messages of step s′ at time β
(s′)
j and the

messages reach all honest users in at most � time, then player i has received all the
messages from honest players of the previous steps.
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If s ≥ 4, then:

β
(s)
i ≥ t (s) = t (s−1) + 2λ ≥ t(s

′) + λ + λ ≥ β
(s′)
j + λ,

since each honest player j ∈ HP(s′) sends its message of step s′ at time β
(s′)
j , then it

will reach all honest players by time β
(s′)
j + λ ≤ β

(s)
i .

Finally we prove Property 3. Let us assume for sake of contradiction that the two
players i, i ′ and the two values b, b′ of Property 3 do exist. Note that each malicious
player j ∈ MP(s) may have signed both a list v(s)

j with v
(s)
j,c = b and another list v′(s)

j

with v′(s)
j,c = b′, but all honest players have signed exactly one list, hence their c-th

component is unequivocal.
Therefore, at least tH − MP(s) of the messages received by i advertising b must

come from a set H of honest players, and tH − MP(s) must come from another set
H′ of honest players with H and H′ disjoint sets. Note that the messages advertising
different values in the c-th component must be distinct messages, this means that we
are considering at least 2tH distinct messages.

Let M be this set of at least tH messages collected by i and M ′ the analogous set
of messages collected by i ′, then:

2tH ≤ |M | + |M ′| ≤ |H| + |MP(s)| + |H′| + |MP(s)| ≤ |HP(s)| + 2|MP(s)| < 2tH,

where the last inequality holds with overwhelming probability thanks to the assump-
tions of Definition 2.4. This is a contradiction, therefore such players i and i ′ do not
exist. ��

Nowwe prove a lemma that justifies the construction of a certificate as described in
Sect. 3.2. In particular, the messages which constitute a valid certificate do not contain
the list that the network is certifying, but just its digest. Therefore a node must be able
to determine which is the list associated to that digest. In Lemma 4.2 we prove that
a node can find the candidate values for each components from the messages it has
received in step 2.

Lemma 4.2 If a user i builds a certificate Ci for the list �, then, for each 1 ≤ c ≤ m,
i has received at least one step 2 message from j ∈ HP(2) with v

(2)
j,c = �c.

Proof Note that from the assumptions of Definition 2.4 on the number of malicious

players we have that |MP(s)| <
2tH−|HP(s)|

2 < 2tH−tH
2 = tH

2 , so at least one of the sig-
natures in the certificate Ci must come from an honest player k ∈ HP(s). Then k must
have received, during step 3, at least tH

2 messages for �c in c-th component. Again,
since |MP(s)| < tH

2 , at least one of them must come from an honest player j ∈ HP(2)

and, according to Item 2 of Lemma 4.1, his message must have reached also i within
time β

(3)
i .

To conclude, note that β(3)
i is the ending time of step 3 for player i and it is before

any possible certificate production time. ��
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4.2 Component-wise finalization

In this section we prove some properties about the finalization of a single compo-
nent, distinguishing between the associated ambiguous and unambiguous events to be
recorded.

We recall that the finalization checks are performed after every step s ≥ 4 and
refer to messages exchanged during step s′ ≥ 3, and s′ ≡ 0 mod 3 (i.e. STEP 3 and
all subsequent Coin-Genuinely-Flipped steps) for what concerns FINALIZATION
CHECK 0 and step s′′ ≥ 4, and s′′ ≡ 1 mod 3 (i.e. all Coin-Fixed-To-0 steps)for
what concerns FINALIZATION CHECK 1.

4.2.1 Unambiguous components

In the following proposition we will show how the network behaves if the event
associated to a specific component is unambiguous. In particular, we will explain,
following the protocol steps, why every honest player will finalize that component
within the end of STEP 5.

Proposition 4.1 (c-Agreement on Unambiguous Components) Let c be an unambigu-
ous component, then the following happens with overwhelming probability:

– all honest users have their c-th component finalized by step 5 (and in particular
there is c-agreement on the lists �

(s)
i for all s ≥ 5);

– Tc ≤ t (5) + λ.

Proof Note that every honest player i ∈ HP(s) starts its step s at time αi ∈ [0, λ]. Now
we analyse the protocol step by step.

STEP 1 Since component c is unambiguous, then for a certain value x ∈ Vc each
honest player i ∈ HP(1) will build a list v(1)

i with v
(1)
i,c = x . Then i will propagate

its message m(1)
i at time β

(1)
i = αi + �.

STEP 2 When an honest player i ∈ HP(2) stops waiting at time β
(2)
i = αi + t (2),

i has received all step 1 messages sent by the other honest players.
By our assumptions we have, with overwhelming probability, |HP(1)| > tH, hence
more than tH step 1 messages m(1)

j that i has received contain a list v(1)
j with

v
(1)
j,c = x . Then, whether x = ⊥ or x �= ⊥, player i builds a list v(2)

i with v
(2)
i,c = x

and broadcasts the message m(2)
i containing the digital signature of this list.

STEP 3 When an honest player i ∈ HP(3) stops waiting at time β
(3)
i = αi + t (3),

i has received all step 2 messages from all the honest players.
Since the lists in their messages m(2)

j have v
(2)
j,c = x , and with overwhelming

probability |HP(2)| > tH, then player i will set
(
Oi,c, gi,c

) = (x, 2) if x �= ⊥,(
Oi,c, gi,c

) = (x, 0) if x = ⊥. So, i will build the list v(3)
i with v

(3)
i,c = 0 if x �= ⊥

or v
(3)
i,c = 1 if x = ⊥, and broadcast its message m(3)

i .

STEP 4 When an honest player i ∈ HP(4) stops waiting at time β
(4)
i = αi + t (4),

i has received all step 3 messages from all the honest players. We now consider
separately two cases:
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– x �= ⊥, in this case player i enters the FINALIZATION CHECK 0 (4 −
1 ≡ 0 mod 3) and since the number of honest players is |HP(3)| ≥ tH with
overwhelming probability, player i sets v

(4)
i,c = 0 and fi,c = 1. This means that

all honest players have finalized the c-th component of the list and they will
get �(s)

i,c = x for all s ≥ 4.
– x = ⊥, in this case player i will neither enter the ENDING CONDITION
nor any FINALIZATION CHECK. It will build a list v(4)

i such that v
(4)
i,c = 1

since with overwhelming probability |HP(3)| > tH. Player i will broadcast its
message m(4)

i containing the digital signature of v(4)
i .

Thus c-agreement has been reached if x �= ⊥, otherwise we will see that it will be
reached in the next step.
STEP 5 When an honest player i ∈ HP(5) stops waiting at time β

(5)
i = αi + t (5),

i has received all step 4 messages from all the honest players. Again, we consider
two cases:

– x �= ⊥, in this case c-agreement on lists �
(s)
i has already been reached, and

the c-th component has already been finalized by the honest players.
– x = ⊥, in this case, i has received with overwhelming probability at least tH
messages from all the other honest players j ∈ HP(4) containing the digital
signature of a list v(4)

j with v
(4)
j,c = 1. Then i enters the FINALIZATION

CHECK 1 and sets v
(5)
i,c = 1 and fi,c = 1. This means that all honest players

have finalized the c-th component of the list and they will get �(s)
i,c = ⊥ for all

s ≥ 5.

Since the malicious players are less than tH, they will not be able to produce the
number of messages required to mislead the honest players. We have seen that by
the end of step 5 all honest users have finalized the c-th component (and they are
in agreement with each other), so we have that Tc ≤ t (5) + λ. ��

4.2.2 Ambiguous components

Let us now tackle the more difficult case of ambiguous components. In Proposition
4.2 we deal with the simpler sub-case, when no honest player sets gi,c = 2 during
step 3, which means that there is a wide disagreement among the network about that
specific component. As we will see, this case will resolve with the achievement of
agreement on the symbol ⊥.

Then, we complete the analysis by considering the case when some honest node
sets gi,c = 2. In Lemma 4.3 we prove that in this case each honest user j has saved
the same value Oj,c = x ∈ Vc at the beginning of step 3. They do not know yet that
they already are in agreement, so each of them tries to figure out whether to preserve
that component of the final list or to discard it by setting it to ⊥. This decision will be
made by exchanging the bit lists from step 3 onward. In fact, as it is stated in Lemma
4.4, once c-agreement is reached on the bit list either on 0 or 1, it is also reached on
the list 2 j ∈ V respectively on x ∈ Vc or ⊥.
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Then, it becomes essential to prove that c-agreement is achievable on each com-
ponent with probability 1, and also to upper-bound the time required to achieve it. To
do that, we prove in Lemma 4.5 that the network will reach c-agreement on the bit
list with probability greater than 1

3 after every Coin-Genuinely-Flipped. Therefore, in
Lemma 4.6 we prove that c-agreement is eventually reached with probability 1 and
that all the honest nodes will finalize the component c with the same value finalized
by the first node in the network who can do it (even if the first user who can finalize
the component is malicious).

These Lemmas are then used to prove Proposition 4.3, where we present an upper
bound to the number of steps and time required to finalize a single component. Finally,
the results of the previous lemmas and propositions are used to prove Theorem 4.1.

Proposition 4.2 (c-Agreement on Very Ambiguous Components) Let c be an ambigu-
ous component and assume that all honest step 3 players set gi,c < 2, then with
overwhelming probability we have that:

– all honest users have their c-th component finalized (in particular will be in c-
agreement on the list �(s)

i ) in step 5, setting �
(s)
i,c = ⊥;

– Tc ≤ t (5) + λ.

Proof By definition of the protocol Cob, for each i ∈ HP(3), i sets v
(3)
i,c = 1, since

gi,c < 2. Thismeans that the honest step 3 players start in agreement on the component
c of the list v(3)

i . They may not be in agreement on the list component Oi,c, but this
does not matter. In fact, during step 4 no honest player is able to finalize component
c by collecting more than tH messages with v

(3)
k,c = 0, since |MP(3)| < tH. In the

same way even if the honest players have received more than tH valid messages with
v

(3)
k,c = 1 they will not finalize the component c because 4 − 1 �≡ 1 mod 3. Anyway,
each honest step 4 player i has received all honest messages, hence more than tH
advertising v

(3)
k,c = 1. This means that i will create a message m(4)

i with v
(4)
i,c = 1.

During step 5, which is a Coin-Fixed-To-1 step, each honest user i will receive all
messages by other honest players before β

(5)
i , hence with overwhelming probability i

will receive tH messages for v(4)
k,c = 1. Thus i will enter the FINALIZATION CHECK

1 and will finalize the c-th component by setting v
(5)
i,c = 1 and fi,c = 1.

This means that the honest users reach c-agreement on�
(s)
i,c = ⊥ by the end of step

5 (which happens in the interval [t (5), t (5) + λ]), and it will hold for all s ≥ 5. Note
that in this case, a strong disagreement among the players results in the component to
be set to ⊥ as it happens in Proposition 4.1 when every honest players starts with ⊥.

��
Proposition 4.3 (c-Agreement on Ambiguous Components) Let c be an ambiguous
component and assume that there exists a player i ∈ HP(3) which sets gi,c = 2, then:

– all honest users have their c-th component finalized (in particular will be in c-
agreement on the list �(s)

i ) within step 3L + 5;
– Tc ≤ t (3L+5) + λ.
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Where L is a random variable representing the number of Bernoulli trials needed to
see the output 1, when each trial outputs 1 with probability h

2 .

In order to prove Proposition 4.3 we need the results stated in the following four
lemmas.

Lemma 4.3 Under the assumption of Proposition 4.3, we show that the following
properties hold:

1. g j,c ≥ 1 for all j ∈ HP(3);
2. there is a value x ∈ Vc such that O j,c = x for all j ∈ HP(3).

Proof Since player i ∈ HP(3) is honest and sets g(3)
i,c = 2, then:

1. i sets Oi,c = x since it has received more than tH messages m(2)
k advertising

v
(2)
k,c = x . By Property 3 of Lemma 4.1 we know that no honest player j ∈ HP(3)

has received tH messages m(2)
k for v

(2)
k,c = x ′ �= x , hence if g(3)

j,c = 2 it must be
Oj,c = x .
As showed in the proof of Lemma4.2,we have thatwith owerwhelming probability
|MP(s)| < tH

2 , so we can state that more than tH
2 honest players must have signed

for x . Therefore, if g(3)
j,c < 2, then g(3)

j,c = 1, and Property 1 holds.
2. We now show that, even if j sets g j,c = 1, it will set Oj,c = x . In fact, there can

not exist a value x ′ �= ⊥ and x ′ �= x such that j has received also more than tH
2

step 2 messages m(2)
k with v

(2)
k,c = x ′. For the sake of contradiction, we suppose that

these messages exist; many of them may come from malicious players in MP(2),
but at least one of them must come from an honest player p ∈ HP(2). This means
that p has received tH step 1 messages m(1)

k with v
(1)
k,c = x ′. Since we have seen

that some other honest step 2 players have signed a step 2 message advertising
v

(2)
k,c = x , this implies that they have seentH step 1messages with v

(1)
k,c = x , which,

by Lemma 4.1, is a contradiction. This means that Property 2 holds. ��
Lemma 4.4 Under the assumptions of Proposition 4.3 we have that c-agreement on
the list � is reached when c-agreement is reached on the bit list v().

Proof Since the honest player i ∈ HP(3) sets gi,c = 2, it will set vi,c = 0, therefore it
is possible that c-agreement is reached on 0. By the analysis of Property 2 of Lemma
4.3 the honest users may not have an agreement on their v

(3)
i,c at the end of step 3 but

they will have an agreement on O(3)
i,c = x . This means that, by the definition of Cob,

when c-agreement is reached on the bit list (either on 0 or 1), then it will also be
reached on x in � (respectively on x or ⊥). ��
Remark 4.2 This property is true also in the general case, but we have explicitly proved
it only under the assumptions of Proposition 4.3.

Lemma 4.5 Being c a component on which agreement among the honest user does not
hold, at every Coin-Genuinely-Flipped step c-agreement is reached with probability
at least h

2 .
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Proof Assuming that c-agreement is not reached at the beginning of aCoin-Genuinely-
Flipped step s where s ≥ 6, s − 1 ≡ 2 mod 3, let an honest player i ∈ HP(s) be in
the condition that it must flip the coin during such step.

This means that the player i has not received more than tH messages for a bit
b ∈ {0, 1} in component c, so i selects its own coin flipper �′, and i will set v

(s)
i,c =

bi = H
(
H

(
σ

(s−1)
�′

))
c
, where H (K )c is the c-th bit of H (K ).

Note that, by Lemma 4.1, if an honest player has seenmore thantH messages for the
same bit b in component c, then no honest player has seen more than tH messages for
1−b in the same component. This means that i will be in c-agreement with the honest
players who did not flip the coin only if bi = b, and this happens with probability 1

2
with the Random Oracle assumption for the hash function H .

Therefore, all honest players in HP(s) will be in agreement with probability 1
2 .

Actually, this is true if the coin flipper is an honest player, in fact in this case bi can be
assumed to be randomly chosen and globally shared among the honest players flipping
the coin. If the player with minimal hashed credential is a malicious player, then we
cannot say much about the probability distribution of the output of the bit extraction,
since some players may not have seen its message.

However, with our assumptions on the common reference string r , we can state
that, with probability h, the coin flipper will be honest, and in this case all honest
players will be in agreement with probability 1

2 .
Combining these two independent probabilities we get that with probability at

least h
2 the honest players reach c-agreement every time they enter a Coin-Genuinely-

Flipped step. Note that they will finalize this component within the following 2 steps:
in s + 1 if bi = 0, in s + 2 if bi = 1. ��

Lemma 4.6 Under the assumptions of Proposition 4.3, we have that:

1. being E the event “there exists a step ŝ ≥ 4 such that, for the first time, some user
ı̂ ∈ PK (either malicious or honest) should finalize its c-th component of list v(ŝ)

ı̂ ”,
E happens with probability 1;

2. Tc ≤ t(ŝ+3) + λ and c-agreement is reached in step ŝ on the same value finalized
by ı̂ (however, the c-th component might be finalized 3 steps later).

Proof 1. As proven in Lemma 4.5, if c-agreement is not reached by the honest users,
at every Coin-Genuinely-Flipped step they will reach it with probability at least
h
2 > 1

3 .
Therefore, once every 3 steps the c-th component will be finalized with probability
greater than 1

3 , therefore the probability that the event E happens converges to 1.
2. Step ŝ is the first step in which a user ı̂ can finalize the c-th component. By the

construction of the protocol, this happens in two possible ways:

Ea : ı̂ is able to collect or generate (and then propagate) at least tH valid messages

m(s′−1)
k with v

(s′−1)
k,c = 0, 4 ≤ s′ ≤ ŝ, and s′ − 1 ≡ 0 mod 3;

Eb: ı̂ is able to collect or generate (and then propagate) at least tH valid messages

m(s′−1)
k with v

(s′−1)
k,c = 1, 4 ≤ s′ ≤ ŝ, and s′ − 1 ≡ 1 mod 3;
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Because the messages produced during step s′ − 1 by honest players are received
by every user before they are done waiting in step s′, and because the adversary
receives everything no later than the honest users, without loss of generality we
can assume that s′ = ŝ, and that the user ı̂ is malicious.
For any step s ≥ 4, every honest player i ∈ HP(s) who has waited time t (s) has
received all honest step s − 1 messages (thanks to Lemma 4.1), and all honest
players in HP(s) have set Oi,c = x (according to Lemma 4.3).
We now consider step ŝ and examine 4 exhaustive ways in which event E may
happen.

Case 2.1.a: event Ea happens and there is an honest user i ′ ∈ PK who should also
finalize the c-th component.
In this case, we have ŝ − 1 ≡ 0 mod 3, hence Step ŝ is a Coin-Fixed-
To-0 step. By assumption, i ′ has received at least tH valid step ŝ − 1

messages m(ŝ−1)
k with v

(ŝ−1)
k,c = 0. Thus i ′ finalizes its component c

setting v
(ŝ)
i ′,c = 0 and fi ′,c = 1.

Now we show that any other honest user i has either finalized its c-th

component, setting v
(ŝ)
i,c = 0 and fi,c = 1, or has set v

(ŝ)
i,c = 0 without

finalizing such component.
Because step ŝ is the first time any player i should finalize component c
of the list v(s)

i , there does not exist a Coin-Fixed-To-1 step s′ < ŝ (hence

s′ − 1 ≡ 1 mod 3) such that tH players have signed v
(s′−1)
i,c = 1.

Accordingly, no online user in PK finalizes the list component c in step

s′ setting v
(s′)
i,c = 1.Moreover, if an honest user haswaited for a time t(ŝ),

then it must have received all step ŝ − 1 messages from honest players,
and (considering themessages received by i ′) at leasttH−|MP(ŝ−1)| ≥ 1

must have v
(ŝ−1)
k,c = 0. According to Property 4 of Lemma 4.1, an honest

player i cannot collect tH messages with v
(ŝ−1)
k,c = 1, therefore it sets

v
(ŝ)
i,c = 0.
For step ŝ + 1, since user i ′ has helped propagating the messages that
have let it finalize the c-th component on or before time αi ′ + t(ŝ), then

on or before time β
(ŝ+1)
i each honest user i has received at least tH valid

ŝ − 1 messages for the bit 0. In fact, even if some of the tH messages
received by i ′ were not broadcast in time by a malicious user, within

time β
(ŝ+1)
i they have reached i , for all i ∈ PK. This is true because user

i ′ received the messages within time β
(ŝ)
i ′ and helped propagating them,

hence within time β
(ŝ)
i ′ +λ they have reached all honest players, and for

all honest players i ∈ HP(ŝ+1) we have:

β
(ŝ+1)
i ≥ t(ŝ) + 2λ ≥ αi ′ + t(ŝ) + λ = β

(ŝ)
i ′ + λ.
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Furthermore, honest players will not end step ŝ + 1 before receiving
those step ŝ − 1 messages, because there do not exist other tH valid step
s′ − 1 messages for 1 in the component c with s′ − 1 ≡ 1 mod 3 and
5 ≤ s′ < ŝ + 1, by the definition of Step ŝ in assumption Ea (step ŝ is
the first step in which a user should finalize component c). In particular,
step ŝ + 1 itself is a Coin-Fixed-To-1 step, but no honest player has
propagated during step ŝ a message for 1 (as we have shown they have
reached c-agreement on 0), and |MP(ŝ)| < tH. Thus all honest users

finalize their c-th component, setting v
(ŝ+1)
i,c = 0 and fi,c = 1.

So, we have proven that, for all s ≥ ŝ + 1, the honest users set v(s)
i,c = 0

and fi,c = 1 (i.e. they finalize the component c within the end of step
ŝ + 1). We have already seen that ∃x ∈ Vc such that Oi,c = x for
every honest user i , so they will set �(s)

i,c = x and therefore c-agreement

reached on �
(s)
i for all s ≥ ŝ + 1.

Case 2.1.b: event Eb happens and there is an honest user i ′ ∈ PK who should also
finalize c-th component.
In this case we have ŝ − 1 ≡ 1 mod 3, then step ŝ is a Coin-Fixed-To-1
step. The analysis is similar toCase 2.1.a and we will omit many details.
As in the previous case, i ′ must have receivedtH valid step ŝ−1messages

with v
(ŝ−1)
k,c = 1. Again, by the definition of step ŝ, there does not exist

a step s′, with 4 ≤ s′ ≤ ŝ and s′ − 1 ≡ 0 mod 3, where at least tH

players have signed amessagewithv
(s′−1)
k,c = 0.Thus, i ′ finalizes the c-th

component and sets v
(ŝ)
i ′,c = 1 and fi ′,c = 1. Moreover, any other honest

user i ∈ PK has either finalized its c-th component if it has received tH

messages with v
(ŝ−1)
k,c = 1 or has set v

(ŝ)
i,c = 1 and broadcast its m(ŝ)

i
message. Since i ′ has helped propagating the step ŝ − 1 messages it has
received by time αi ′ + t(ŝ), all honest users finalize the c-th component
during step ŝ + 1.
Again, they will reach c-agreement over ⊥ on �

(s)
i for all s ≥ ŝ, they

will set v(ŝ+1)
i,c = 1 and fi,c = 1, finalizing the component c within the

end of step ŝ + 1.
Case 2.2.a: event Ea happens and there does not exist an honest user i ′ ∈ PK who

should also finalize c-th component.
In this case, note that ı̂ could have received or generated tH step ŝ − 1
messages with v

(s−1)
k,c = 0. However, the malicious users may not help

propagating those messages, so we cannot conclude that the honest users
will receive themafter timeλ. In fact, |MP(ŝ−1)| of thosemessagesmay be
from malicious players, who did not propagate their messages at all and
only sent them to the other malicious players cooperating with them.
Therefore, the honest users will wait for time t(ŝ) without finalizing
component c. However, by Property 4 of Lemma 4.1, they will not see

more than tH of the messages received with v
(ŝ−1)
k,c = 1, again because
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with overwhelming probability |HP(ŝ−1)| + 2|MP(ŝ−1)| < 2tH. Since
step ŝ is a Coin-Fixed-To-0 step, every honest player i ∈ HP(ŝ) thus sets

v
(ŝ)
i,c = 0 and propagates its message at time αi + t(ŝ).
During step ŝ + 1, which is a Coin-Fixed-To-1 step, two things may
happen:
1 an honest user receives the tH messages received by ı̂ (who decided
to propagate them and let it finalize component c): in this case the
situation is similar to Case 2.1.a, and every honest user i will finalize
its c-th component within time αi + t(ŝ+1) + λ;

2 the honest users will receive at least |HP(ŝ)| (> tH with overwhelming

probability) messages with v
(ŝ)
k,c = 0 from the honest players. Then

they propagate their messages with v
(ŝ+1)
i,c = 0 but do not finalize

since step ŝ + 1 is not a Coin-Fixed-To-0 step.
In this case, in step ŝ + 2 which is a Coin-Genuinely-Flipped step, two
things may happen:

2.1. if ı̂ broadcasts the step ŝ−1messages that let it finalize its c-th component,
then the honest users will finalize their c-th component as well setting

v
(ŝ+2)
i,c = 0 and fi,c = 1, hence reaching c-agreement over �

(s)
i,c = x for

all s ≥ ŝ + 2 within time αi + t(ŝ+2);
2.2. otherwise all honest users have received all step ŝ + 1 messages from the

honest players with v
(ŝ+1)
i,c = 0. Again, there are more honest players than

tH, so the honest users set v
(ŝ+2)
i,c = 0 without flipping the coin. Again,

they do not finalize component c since ŝ+2 is not a Coin-Fixed-To-0 step
so they just broadcast their step ŝ + 2 messages.
Finally, step ŝ + 3 is a Coin-Fixed-To-0 step, so everyone will receive at

least tH messages with v
(ŝ+2)
i = 0 where i ∈ HP(ŝ+2). Then all honest

users k at time αk + t(ŝ+3) can finalize component c setting v
(ŝ+3)
k,c = 0

and fk,c = 1 and hence reach c-agreement over�(s)
k = x for all s ≥ ŝ+3.

Depending on how ı̂ and in general the malicious users behave, some
users may finalize the component c within the end of step s (with
s ∈ {ŝ, ŝ + 1, ŝ + 2}) using step ŝ − 1 messages, or within the end of
step ŝ+3 with step ŝ+2 messages. It does not matter since c-agreement
is reached anyway over �

(s)
i for all s ≥ ŝ, the component c is finalized

setting fi,c = 1 within step ŝ+3, and v
(s)
i,c = 0 for every step s such that

s ≥ ŝ + 3.
Case 2.2.b: event E.b happens and there does not exist an honest user i ′ ∈ PK who

should also finalize c-th component.
The analysis in this case is similar to Case 2.1.b and Case 2.2.a, thus
many details have been omitted.
We know that ı̂ has collected or generated at least tH step ŝ−1messages

with v
(ŝ−1)
k,c = 1 and ŝ − 1 ≡ 1 mod 3 (hence ŝ is a Coin-Fixed-To-1
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step) and that no honest player could have seen more than tH messages

for 0. Thus each honest player i ∈ HP(ŝ) sets v
(ŝ)
i,c = 1 and propagates

its message m(ŝ)
i at time αi + t(ŝ). Similar to Case 2.2.a, within 3 steps

user i will finalize their c-th component.
Then c-agreement is reached over �

(s)
i for all s ≥ ŝ, and the component

c is finalized setting fi,c = 1 within step ŝ + 3 and v
(s)
i,c = 0 for all steps

s, s ≥ ŝ + 3.

Combining the four sub-cases, we obtain:

– Tc ≤ t(ŝ) + λ in Case 2.1.a and Case 2.1.b;
– Tc ≤ t(ŝ+3) + λ in Case 2.2.a and Case 2.2.b;

but we also have that they all are in agreement at the end of step ŝ, and that
c-agreement is reached over �

(s)
i for all s ≥ ŝ.

��
Now we can prove Proposition 4.3.

Proof of Proposition 4.3 Given the results of Lemma 4.6, it remains to upper-bound ŝ
and thus Tc. We do that by considering how many times the Coin-Genuinely-Flipped
steps are executed by at least one honest player.

If no honest player flips the coin in a Coin-Genuinely-Flipped step s, it means
that they all have received more than tH messages with v

(s−1)
k,c = b ∈ {0, 1} and c-

agreement has been reached, letting them finalize the component in at most 2 more
protocol steps. Moreover if they reach c-agreement over 0, this means that they agree
on the same value Ok,c to insert as c-th component of the list �(s)

k . Once c-agreement
is reached in step s, the honest players will finalize the c-th component either in step
s + 1 or step s + 2 depending on whether b = 0 or b = 1.

By Lemma 4.5, at every Coin-Genuinely-Flipped step c-agreement is reached with
probability at least h

2 , so we can compare this step to a Bernoulli trial that outputs 1 if
c-agreement is reached. This means that, before step ŝ (the first step in which a user
can finalize the c-th component), the distribution of the number of times the Coin-
Genuinely-Flipped steps are executed to finalize a component c can be upper-bounded
by to the random variable L , which we recall represents the number of Bernoulli trials
needed to see a 1 when each trial gives 1 with probability h

2 > 1
3 . Letting s′ be the

last Coin-Genuinely-Flipped step before the finalization of the c-th component, then
we have, by the protocol construction, s′ = 3 + 3L .

Assuming that the adversary knows the outcome of L in advance, when should the
adversary make step ŝ happen to maximize the delay of the finalization time Tc of the
c-th component by an honest user?

If ŝ > s′ (hence ŝ = s′ + 1 or ŝ = s′ + 2) then this means that we are in Case 2.1.a
or Case 2.1.b of Lemma 4.6 since at the end of step s′ the honest players are already
in agreement, so when a malicious player could finalize, also the honest users can,
hence

Tc ≤ t(ŝ) + λ ≤ t(s
′+2) + λ.
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If ŝ < s′ − 3, that is ŝ is before the second to last Coin-Genuinely-Flipped step,
then by the analysis of Case 2.2.a or Case 2.2.b we get

Tc ≤ t(ŝ+3) + λ ≤ t(s
′) + λ,

that is, the Adversary is making the agreement on component c happen faster.
If ŝ = s′ − 1 or ŝ = s′ − 2, then ŝ is the Coin-Fixed-To-0 or Coin-Fixed-To-1 step

before s′. By the analysis of the 4 sub-cases we know that the honest players never
flip the coin and finalize the c component within the next two steps. Therefore, the
following holds:

Tc ≤ t(ŝ+3) + λ ≤ t(s
′+2) + λ.

To summarize, no matter what ŝ is, we have:

Tc ≤ t(s
′+2) + λ = t (3L+5) + λ,

which upper-bounds the time needed to reach agreement on the c-th list component.
��

Now we will prove Theorem 4.1, using the results of the previous lemmas and
propositions. We will prove that all the honest users will agree on the same �, that no
malicious user can build a valid certificate for a different �̂, and that the honest users

will be able to produce a certificate for � within time t

(
5+3χ

�, h2

)

+ λ. We also prove
that only one list can be certified, therefore the nodes will reach agreement on a list
and it is not possible for the malicious users to produce a valid certificate for another
list. This guarantees the consistency property of Cob.

Proof of Theorem 4.1 It is sufficient to note that, since t (s+1) = t (s) + 2λ for all s ≥ 3,
we have that:

t

(
5+3χ

�, h2

)

= t (1) +
5+3χ

�, h2∑
s=2

(
t (s) − t (s−1)

)
(1)

= t (1) +
(
t (2) − t (1)

)
+

(
t (3) − t (2)

)
+

5+3χ
�, h2∑

s=4

(
t (s) − t (s−1)

)

= � + � + λ + � + λ +
5+3χ

�, h2∑
s=4

2λ

= � + 2� + 2λ +
(
2 + 3χ

�, h2

)
2λ

= � + 2� +
(
6 + 6χ

�, h2

)
λ. (2)
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Letm−�be the number of unambiguous components,we have shown inProposition
4.1 that these components will reach agreement in at most 5 steps. The same will
happen for some of the � ambiguous components according to Proposition 4.2, while
the others, as shown in Proposition 4.3, will reach agreement within a number of steps
whose distribution is upper-bounded by the random variable 3L + 5.

Cob runs until a certificate for a list� ∈ V is created, this happens no later than the
moment in which every component is finalized by the honest players, which happens
once c-agreement is reached on each of the � ambiguous components.

Since we have shown in Lemma 4.5 that with probability at least h
2 the honest

players will reach c-agreement on a single component, and once agreement is reached
it is maintained for the whole protocol run, then agreement will be reached in at
most χ

�, h2
Coin-Genuinely-Flipped steps (accordingly to the analysis in Proposition

4.3, malicious users might speed the consensus process up!) where χ
�, h2

is the same
random variable described in [9].

Every honest user will be able to obtain a certificate for a block at the end of the two
steps following the χ

�, h2
-th Coin-Genuinely-Flipped step according to the definition

and analysis of Cob shown above. Therefore it holds that T ≤ t

(
5+3χ

�, h2

)

+ λ.
Now we show that if a certificate is created for the first time in step s for a list

� ∈ V , then any certificate created will be for the same list �.
Let step s be the first step in which a user k is able to collect a certificate Ck for

�. We recall that, by the assumptions in Definition 2.4, given two distinct players
i, j ∈ P(s) of the same step, it is negligible the probability that i collects tH messages
for a list �(s−1)

i and j collects tH messages for a distinct list �(s−1)
j .

As before, we can assume that the user k is malicious and the certificate is made of
step s − 2 and step s − 1 messages, where step s is a Coin-Fixed-To-1 step.

We distinguish two cases:

– There is an honest user k′ who also can collect a certificate Ck′ for � in step s.
In this case k′ has propagated the messages which let it certify the list �, hence
all honest users will be in possession of a certificate (possibly a different one)
for the same list �, so the honest users will agree on the same list �. Also, the
honest users will end the protocol execution, so there is no chance that another
certificate is produced in the following steps since with overwhelming probability
MP(s) < tH ∀s.

– There is no honest user k′ who also can collect a certificate Ck′ for � in step s.
In this case the honest users will keep executing the protocol until they can create
a certificate for a block �̂ or until they receive from k the messages that allowed
k to create the certificate in step s.
We will show that if they do not receive the certificate from k, then they will build
a certificate for �̂ = �. This guarantees that honest users will agree on the same
list, since there are no two valid certificates around the network for two distinct
lists.
If the user k has built a certificate for � in step s, it means that k has received
tH messages from step s − 2 and step s − 1 for �. In particular, k collected tH
step s − 2 messages for 0 in every component c such that �c �= ⊥. We will
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call I0 = {c : �c �= ⊥, 1 ≤ c ≤ m}. By the assumptions in Definition 2.4, no
honest user has received at least tH messages from step s − 2 that sponsors 1 in a
component c ∈ I0. This implies that all the honest players have sent in step s − 1
a message with 0 in each component c ∈ I0. This brings all the honest users in
c-agreement on such components and it will keep holding in the following steps.
We also know that the user k has received tH messages from step s − 1 for �.
This means that k has received at least tH messages for 1 in every component c
such that �c = ⊥. We will call I1 = {c : �c = ⊥, 1 ≤ c ≤ m}. Again, by the
assumptions in Definition 2.4, no honest user has received at least tH messages
from step s − 1 that sponsor 0 in a component c ∈ I1. Therefore, all the honest
players send, in step s, a message with 1 in each component c ∈ I1. This brings
all the honest users in c-agreement on such components and it will keep holding
in the following steps.
Nowwe note that I0∪ I1 = {1, . . . ,m}, hence all the honest users are in agreement
on all list components. Therefore, in step s + 3, which is again a Coin-Fixed-To-1
step, they will be able to build a certificate for the list of relevant information �

using their messages of step s + 1 and step s + 2. ��

5 Performance analysis

Given Problem 1.1 and the context of application of Cob, described in Sect. 1.2 (i.e.
a consensus protocol for incomplete networks with millions of nodes), we present
a comparison which highlights the advantages of using the leaderless and parallel
protocol Cob instead of executing � instances of Algorand to achieve the same result.

For the evaluation we will consider the most relevant use case of Cob, namely the
example in Sect. 1 of a blockchain implementing sharding where the network must
agree on the blocks created by each shard.

In our performance analysis we will compare the total amount of data that is broad-
cast by the nodes to let the network reach consensus with the two approaches. We
quantify the amount of data broadcast by the network to reach consensus on a list
of � ambiguous events (which are the most problematic case, hence the worst case
scenario) when the ratio of honest users is 80% (i.e. h = 0.8) and the expected number
of players in each step is n = 4000, this choice of parameters which reflects the one
used in [7].

First, we will determine the expected number of steps in which the elected players
broadcast their messages before producing a certificate both for Cob and for Algorand.
Then, we will approximate the weight of the messages broadcast in both protocols,
and finally we will compare the total amount of data broadcast as the parameter �, the
number of ambiguous components, changes.

5.1 Expected number of steps

Starting with Cob, let us make explicit the probability distribution of the random
variable χ

�, h2
used to upper-bound the number of steps needed to reach consensus.
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In the analysis of protocol MBA [9], the probability distribution of χ
�, h2

is shown to
be:

P

(
χ

�, h2
= w

)
=

(
1 −

(
1 − h

2

)w)�

−
(
1 −

(
1 − h

2

)w−1
)�

,

from which it is possible to compute the expected number of loops of Coin-Fixed-
To-0, Coin-Fixed-To-1 and Coin-Genuinely-Flipped steps the network must execute
if the adversary manages to delay as much as possible the consensus achievement.
Theorem 4.1 states that the number of steps needed to produce a certificate for the
agreed upon list is 5+ 3χ

�, h2
, therefore the last step in which messages are broadcast

is step 4+3χ
�, h2

. This means that the expected number of protocol steps with message
broadcasting that are needed to produce a certificate can be computed as:

E

[
Cob steps

�, h2

]
= 4 + 3E

[
χ

�, h2

]
= 4 + 3

∞∑
w=1

wP

(
χ

�, h2
= w

)
.

In Fig. 1we plot the expected value of the number of steps of CobE
[
Cob steps

�, h2

]
,

according to some possible values of h.
With Algorand, the expected number of loops required to bring the nodes to agree-

ment is 2
h . Before entering the loop that performs the binary consensus (Binary

Byzantine Agreement [23]), the nodes execute 4 extra steps (Graded Consensus [24]).
Finally, in the worst case, the nodes will be able to produce a certificate 2 steps after

Fig. 1 Expected number of steps with message broadcasting that are needed to produce a certificate using
Cob Protocol, in terms of the number of components � and ratio of honest users h.
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the last Coin-Genuinely-Flipped step. This means that wemust consider onemore step
with message broadcasting after the last Coin-Genuinely-Flipped step. Therefore, the
expected number of steps with message broadcasting required by Algorand is:

E

[
Alg steps h

2

]
= 4 + 3

2

h
+ 1 = 5 + 6

h
.

This is the expected number of steps to reach consensus on a single event. Note that
the networkmust execute an instance ofAlgorand for each of the � events they observe.

5.2 Weight of themessages

We begin with Algorand: in the first step Algorand selects a small number of nodes
(e.g. 35 potential leaders) who must broadcast their proposal, namely the hash of a
block created by a shard plus a verifiable credential. The following steps are expected
to be performed by 4000 nodes who broadcast messages of 200 bytes as specified in
[7]. Since in this use case the weight of the step 1 messages is close to the weight of
the other steps, but the number of messages broadcast is much less, we can neglect
it while determining the whole amount of broadcast data. The messages created from
step 4 onwards weigh around 200 bytes (see [7]) and contain the signature of a single
bit, the signature of a digest and a verifiable credential. Finally, the messages created
in step 2 and step 3, contain the signature of a digest (the digest of the block created
by a shard) together with the verifiable credential of the selected player, therefore we
approximate the weight of credential and signature to around 100 bytes, and add the
weight of the digest, i.e. 32 bytes, for a total of 132 B.

With Cob, in the first two steps the nodes of the network broadcast a message con-
taining the signature of the list of digests of the blocks created by the shards, together
with the verifiable credential of the node who created the message. The weight of such
messages can be approximated, with the same reasoning as before, to 32�+100 bytes.
In the following steps, the nodes producemessages containing the signature of a list of �
bits, the signature of a digest and a verifiable credential. Thesemessagesweight around
�
8 +200 bytes, because they contain the same data as a message of a step s, with s ≥ 4,
of Algorand, once we substitute the single bit of Algorand with the � bit list of Cob.

In Tables 1 and 2 we summarize the weight of the messages for each step of both
Algorand and Cob applied to the sharding use case. In Table 1 the weights are associ-
ated to the single steps of each protocol, while in Table 2 the weight of messages are
associated to the corresponding protocol phase.

5.3 Comparison

We recall that the choice of using a different instance of Algorand for each list com-
ponent comes from the considerations of Sects. 1.1.1 and 1.1.2. Recall that Algorand
is a leader-based consensus protocol, so it is preferable to have one leader (and one
protocol instance) for each single event, in order to let consensus achievement on each
single component to be independent from the others. In fact, if we used Algorand
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Table 1 Weight of messages of
each step in a single run of Cob
and Algorand

Step Cob Algorand

step 1 32� + 100 bytes 200 bytes (�)

step 2 32� + 100 bytes 132 bytes

step 3 �
8 + 200 bytes 132 bytes

following steps �
8 + 200 bytes 200 bytes

The symbol (�) recalls that the first step of Algorand will not be con-
sidered in our comparison. The parameter � is the number of events
the network must observe. The dimensions reported are derived from
the analysis of [7]

Table 2 Weight of messages of
each step in the corresponding
phase of the Cob and Algorand
protocols

Phase Cob Algorand

Leader selection No leader 200 bytes (�)

graded consensus 32� + 100 bytes 132 bytes

binary agreement �
8 + 200 bytes 200 bytes

See also Table 1

on the whole list (only a single instance of Algorand), then disagreement on a single
component would cause the whole list to be discarded. Therefore, we proceed with
the comparison between the execution of Cob and the multiple instances of Algorand.

5.3.1 Algorand

We can put the information of Table 1 together and compute the amount of data
broadcast in the network in a single Algorand run. As we mentioned earlier, we will
not consider the messages broadcast in the first step because their contribution is
practically negligible.

We also recall that, sinceAlgorand is a leader-based consensus protocol, amalicious
leader might deliberately produce a proposal which finds all (or the majority) of the
nodes in the network at odds. In this case the consensus process drops to the symbol
⊥ and a certificate is built with step 5 messages. This means that even if the event the
network observes is ambiguous, if a leader acts maliciously, agreement will be reached
fast. Therefore, since it is not possible to predict how a malicious leader will act, in
our comparison we will consider the two border cases: the case when the leader acts
honestly, and the case in which every malicious leader will broadcast a controversial
message making the consensus drop to ⊥ in 5 steps.

Case 1 If all leaders (i.e. the players of step 1) act honestly, the amount of data
broadcast in the network in a single run is expected to be:

E[weight(Alg1,h,n,honest)] = n ·
(
2 · 132 +

(
E

[
Alg steps h

2

]
− 3

)
200

)

= n ·
(
264 +

(
2 + 6

h

)
· 200

)
.
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Multiplying this value by � we obtain the amount of data broadcast in the
network by the nodes to reach consensus on � ambiguous events:

E[weight(Alg�,h,n,honest)] = � · n ·
(
264 +

(
2 + 6

h

)
· 200

)
.

Case 2 If all malicious leaders cause the drop of their event data, the total weight
slightly decreases. Recall that, inAlgorand, a leader is honestwith probability
at least ph = h2(1 + h − h2) (see [7]). In this case every instance of the
protocol whose leader is malicious will end after the broadcast of step 5 and
the consensus drops to ⊥. This means that:

E[weight(Alg1,h,n,drop)]
≥ n ·

(
132 · 2 + 200 · 2 + 200 ·

(
E

[
Alg steps h

2

]
− 5

)
· h2

(
1 + h − h2

))

= n ·
(
264 + 200 ·

(
2 + 6h

(
1 + h − h2

)))
.

Again, multiplying by � we obtain the total amount of data broadcast in the
network:

E[weight(Alg�,h,n,drop)] ≥ � · n ·
(
264 + 200 ·

(
2 + 6h

(
1 + h − h2

)))
.

5.3.2 Cob

With Cob, the amount of data broadcast in a single protocol run (which covers all the
� components) can be computed as:

E[weight(Cob�,h,n)] = n

(
2(100 + 32�) +

(
E[Cob steps

�, h2
] − 2

) (
�

8
+ 200

))
.

To give the idea of how Cob can outperform Algorand, we compute the amount
of data broadcast by a network where the percentage of honest users is 80% (i.e.
h = 0.8), and the expected number of players that must broadcast a message, in each
step is n = 4000 (recall that we are not considering the first step of Algorand). Figures
2 and 3 show the expected total amount of data broadcast for different values of the
parameter �, the number of ambiguous components.

We recall that, for the analysis of Algorand, we considered the two border cases,
namely all the malicious leaders drop their components to ⊥ and no malicious leader
makes its component to drop to⊥. Therefore, in general, the number of MB broadcast
in the network in any Algorand protocol execution will reasonably be between the two
corresponding lines.

6 Conclusions

We presented Cob, an extension of the MBA protocol [9] which allows the nodes of
a wide gossiping network to reach consensus on a list of arbitrary values, working in
parallel on each component.
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Fig. 2 Amount of data broadcast in the network (in MB) using Algorand or Cob with parameters h = 0.8
and n = 4000 in terms of the number of components �, logarithmic scale in both axes

Fig. 3 Amount of data broadcast in the network (in MB) using Algorand or Cob with parameters h = 0.8
and n = 4000 in terms of the number of components �, linear scale in both axes

This generalization widens the applications of the original protocol thanks to the
sortition mechanism that limits the number of messages to be broadcast and processed
at each step when there are many players, and the relaxed network assumptions which
model real-case scenarios more closely. Notice that the protocol retains the leaderless
approach of the MBA protocol, a democratic feature that is valued in permission-
less distributed settings and thwarts attacks from malicious leaders. Moreover, it also
preserves the parallel approach that enhances efficiency with respect to multiple exe-
cutions of protocols designed to work in the same environment, such as Algorand.
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As we explained in Sect. 1, we believe that one of the most relevant use cases of
Cob is as consensus layer to allow the reconciliation of transactions in blockchain
platforms implementing sharding. In this context, we proposed a comparison between
Cob and the execution of multiple instances of the well-known protocol Algorand,
supposing that a network of nodes must reach consensus on which blocks have been
legitimately created by different shards. As shown in Figs. 2 and 3, Cob remarkably
reduces the amount of data broadcast in the networkwith respect tomultiple executions
of Algorand, and this would reasonably speed up the consensus process.

6.1 Future works

Cob guarantees to reach consensus if the assumptions are met, and its leaderless and
parallel approach maximizes the number of list components that are finalized on a
meaningful value (i.e. �= ⊥). However its execution is probabilistic, and although it
halts with probability 1, the number of steps necessary to halt have only an upper
bound in the form of a Bernoulli-like distribution.

An interesting research direction could focus on extending the protocol by intro-
ducing some termination steps, in order to have a fixed upper bound on its execution,
whichwould benefitmany concrete applications. Specifically, such an extensionwould
see the protocol running normally up to a pre-determined number of steps, then, if
the execution has not halted yet, the protocol starts a sequence of termination steps
that guarantee to reach a consensus in a fixed number of steps. In this phase it is quite
tricky to try to preserve as much meaningful agreement as possible: the trivial solution
is to collapse the agreement on ⊥ if consensus is not reached in time, but avoiding to
do so has to account for a wide array of attacks with which malicious players could
try to disrupt agreement.
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