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In this article we deal with the Cauchy problem for the quasi-linear scalar 
conservation law

ut + F(u)t + ux = 0,

where F is a specific hysteresis operator, namely the Play operator. Hysteresis 
models a rate-independent memory relationship between the input u and its output. 
Its presence in the partial differential equation gives a particular non-local feature 
to the latter allowing us to capture phenomena that may arise in some application 
fields. Riemann problems and the interactions between shock lines are studied and 
via the so-called Wave-Front Tracking method a solution to the Cauchy problem 
with bounded variation initial data is constructed. The solution found satisfies 
an entropy-like condition, making it the unique solution in the class of entropy 
admissible ones.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

In this work we deal with the Cauchy problem for a conservation law with hysteresis nonlinearities as 
follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + wt + ux = 0 on R× [0, T ),
w(x, t) = F [u(x, ·), w0(x)](t) ∀ t ∈ (0, T ), a.e. x ∈ R,

u(x, 0) = u0(x) in R,

w(x, 0) = w0(x) in R,

(1.1)
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where: F is a so-called hysteresis operator, namely representing a memory-dependent input-output relation-
ship between the pair of scalar functions (t �→ u(x, t), t �→ w(x, t)), one for almost every x; u0 is the initial 
datum for the solution u; w0 is a suitable space-dependent function for the initial values of the output w. 
The memory dependence represented by F is rate-independent, which is the main characterization of the 
hysteresis phenomena. We are going to consider the case where F is the so-called Play operator.

The presence of the hysteretic term w gives (1.1) a particular non-local feature which, up to the knowledge 
of the authors, for this kind of equation was not investigated before in the framework of characteristics, wave-
front tracking and the corresponding limit procedure. More precisely, due to the rate-independent memory, 
the functional input-output relationship u �→ w = F [u, w0] is highly non-linear and non-differentiable and 
this fact leads to abrupt changes of characteristics after any possible time t when, in dependence on x, the 
pair (u, w) reaches suitable regions of the phase-space u −w. In the case of the Play operator, such abrupt 
changes can be somehow seen as the case of a discontinuity in the derivative of the flux function f for a 
generic conservation law ut + f(u)x = 0. For the Riemann problem, (1.1) is then seen as a conservation law 
with a piece-wise linear flux function f , where the alternation of the values of f ′ depends on the hysteretic 
relationship u �→ w and is different for different points x.

Our main goal is the study of a generic Cauchy problem for (1.1) with initial data u0, w0 just bounded 
variation functions (BV ). We then approximate u0 and w0 by piece-wise constant functions, solve the 
corresponding Riemann problems and, suitably adapting the wave-front tracking method, we pass to the 
limit. In doing that we face several non-standard problems:

i) with respect to the classical wave-front tracking method in our case the number of discontinuity waves 
after an interaction may increase, while the total variation of the solution remains constant.

ii) for the Riemann problem the solution u is discontinuous in time and this is in general a problem for 
the hysteresis relation which is usually defined for continuous inputs u; we need to extend the definition of 
the Play operator to time-piece-wise constant inputs in the spirit of the so-called regulated functions (see 
Brokate-Sprekels [3], Krejci-Laurencot [13] and Recupero [18]);

iii) for the Cauchy problem, being the solution only BV , we need further relaxations of the hysteresis 
relation writing it as a suitable measure-dependent variational integral inequality (suitably adapting the 
one in Visintin [21]). In particular, such variational inequality will be maintained to the limit, giving the 
existence of a weak solution for the Cauchy problem with hysteresis.

Our main results are the existence of a solution of (1.1) with BV data and the uniqueness in the class of 
functions satisfying an entropy condition.

In the article [21], Visintin studies equation (1.1) with different hysteresis operator (namely, the delayed 
relay). However, the PDE problem is there dealt by a time discretization method, without focusing on 
characteristic curves. In our article instead we use a different approach which is more constructive and gives 
a concrete idea on how the discontinuities behave and how the solution evolves in time.

Hysteresis is a phenomenon often observed in various natural and engineered systems, typically char-
acterized by a lag or delay in the response of a system to changes in the input. Well-known examples of 
hysteresis are in the behavior of ferromagnetic materials, stress-strain relationship in plasto-elastic materials 
and behavior of thermostats. For a comprehensive account for mathematical models for hysteresis and their 
use in connection with PDEs, we refer to Krasnoselskii-Pokrovskii [12] and Visintin [19].

Hyperbolic and scalar conservation laws with hysteresis for some specific applied motivations were studied 
in [16], [17], [10], [11], [4], [15], [5], [8]. In particular, the models studied by Peszynska and Showalter in [16]
and [15] come from applications in transport with adsorption in porous media, where hysteresis is a common 
feature. Kordulova in [11] summarizes the results known for such equations and Kopfova in [10] focuses on 
entropy conditions. Corli and Fan in their works [4] and [5] investigate a conservation law with hysteresis 
relation in the flux given by a parametric family of curves which are followed subject to the monotonicity 
of the input and to the trajectory of an auxiliary ODE. The model is motivated by application in traffic 
flow, where hysteresis is due to a delay in change of drivers behavior. Fan in the recent article [8] studies 
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Fig. 1. Play operator.

the same model as in [4], [5] and considers the Wave-Front tracking method, proving an estimate on the 
total variations of the solutions. However, the limit procedure, in order to have existence of a weak solution 
for more general initial data, is not completely performed especially for what concerns the passage to the 
limit into the hysteresis relationship.

For general basic theory on scalar conservation laws we refer for example to the book by Evans [7]. For 
more specific results, such as the solution of Riemann problems for scalar conservation laws with piecewise 
linear flux and the classical Wave Front Tracking Method, we refer to the books by Bressan [2] and by 
Holden-Risebro [9] or to the seminal paper by Dafermos [6].

The article is structured as follows. In Section 2 we introduce the mathematical formalization of hysteresis 
and we define the Play operator F and its suitable extensions. In Section 3 we recall some results for scalar 
conservation laws and in particular we focus on the case when the flux is piece-wise linear. In Section 4 we 
introduce a suitable formulation of (1.1) and in Section 5 we study the corresponding Riemann problem. 
In Section 6 we prove existence of weak solutions for the case of BV initial data, in particular we perform 
the limit in the wave-front-tracking procedure. In Section 7 we give an entropy condition, showing that the 
solution constructed in the previous section is the only entropy solution.

2. The Play Operator for hysteresis and its extensions

Fig. 1 represents the so-called input-output Play hysteresis relationship between a time-dependent scalar 
input u and a time-dependent scalar output w. Here the amplitude a > 0 is fixed, and we denote by L the 
strip {(u, v) : |u − w| ≤ a} which is going to represent the feasible states of the system. If at certain time 
t the pair (u(t), w(t)) satisfies |u(t) − w(t)| < a, that is if it belongs in the interior of L, and if the input 
changes in time, then the output will not change, until the pair (u, w) will possibly reach one of the two 
boundary lines of L. If w(t) = u(t) −a, that is the pair (u, w) is on the lower boundary of L and if the input 
increases, then the output will increase together with u; if instead u decreases then w stays constant and 
the pair (u, w) enters the interior of L. If (u, w) belongs to the upper boundary of L, then the behavior is 
symmetric, reversing the role of the monotonicity of u.

Given an initial state (u(0), w(0)) ∈ L and the evolution of u we can then trace the evolution w. We 
can notice that the value of w(t) is not determined pointwisely by u(t), indeed for fixed u(t) we have more 
than one possible value w, depending on the past evolution of u. Hence w(t), besides its initial value w(0), 
is determined by the whole history u|[0,t], i.e. there is a memory effect involved.

In particular this memory effect is rate-independent which means that the relation between u and w
does not depend on the speed of u(t), i.e. it does not depend on its derivative. Notice that this requirement
is essential if we want to draw hysteresis relations as in Fig. 1 and it is a general feature of hysteresis 
phenomena.
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When the input u is in W 1,1(0, T ), for some T > 0, the Play hysteresis relationship described above can 
be characterized by the following variational inequality for almost every t ∈ [0, T ]:

|u− w| ≤ a, w′(u− w − v) ≥ 0 ∀v, |v| ≤ a. (2.1)

Conditions (2.1) can be interpreted in the following way. If |u − w| < a then the term u − w − v can 
have either positive or negative sign depending on v. Since the inequality has to hold true for every v then 
necessarily w′ = 0. Whereas, if for example u = w + a, then u −w− v is always non negative for all v, then 
also w′ has to be non negative. The opposite happens when u = w − a. In [19] (see also [12]) it is shown 
how (2.1) well defines an operator on the space of Sobolev functions which, by a density argument, can 
be uniquely extended to an operator which maps continuous inputs to continuous outputs. Hence the Play 
operator is proved to be as an operator continuously (with respect to the uniform convergence) acting as

F : L̃ ⊂ C0([0, T ]) ×R → C0([0, T ])

(u(·), w0) → [F(u,w0)](·) =: w(·)

where

L̃ =
{

(u,w0) ∈ C0([0, T ]) ×R
∣∣∣(u(0), w0) ∈ L

}
.

Moreover such an operator satisfies

i) Causality: ∀ (u1, w0), (u2, w0), such that u1 = u2 in [0, t] then

F(u1, w0)](t) = [F(u2, w0)](t).

ii) Rate-independence: ∀ (u, w0) ∈ L̃, ∀ t ∈ [0, T ] if s : [0, T ] → [0, T ] is an increasing homeomorphism, 
then

[F(u ◦ s, w0)](t) = [F(u,w0)](s(t)). (2.2)

iii) Semigroup property: ∀ (u, w0) ∈ L̃, ∀ t1 < t2 ∈ [0, T ] setting w(t1) := [F(u, w0)](t1) then we have that

[F(u,w0)](t2) = [F(u(t1 + ·), w(t1))](t2 − t1). (2.3)

In the following, we will need to consider F as applied to u, with u solution to a Riemann problem for 
a conservation law. Hence we have to extend the definition of F to piece-wise constant inputs with a finite 
number of jumps.

Definition 2.1. A function g : [0, T ] → R is piece-wise constant if we can find 0 = t0 < t1 < · · · < tN = T

and gi ∈ R such that

g(t) =
N∑
i=1

gi1(ti−1,ti). (2.4)

We denote by PC([0, T ]) the space the piece-wise constant functions on [0, T ].

Let us consider the simple case of a function u : [0, T ] → R consisting of two constant states, u−, u+, 
separated by discontinuity at t = t∗, and let us suppose that u− < u+. The idea is to suitably approximate 
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u with continuous functions uε and then apply the operator F to these functions and let ε go to 0. So, for 
ε > 0, let us define

uε(t) =

⎧⎪⎪⎨
⎪⎪⎩
u− 0 ≤ t < t∗ − ε,

fε(t) t∗ − ε ≤ t ≤ t∗ + ε,

u+ t∗ + ε < t ≤ T,

(2.5)

with

fε : [t∗ − ε, t∗ + ε] → [u−, u+] continuous and increasing and

fε(t∗ − ε) = u− fε(t∗ + ε) = u+.
(2.6)

We can notice that, by the rate-independence (2.2), for every ε > 0 the value of output wε(t∗ + ε) does 
not depend on the choice of the function fε satisfying (2.6) (see also Remark 2.2). Moreover, the value 
wε(t∗ + ε) =: w∗ is constant for every ε. Indeed changing ε in (2.5) is just a time rescaling and hence the 
output of the play operator does not change in t∗ + ε. Hence, trivially, limε→0 wε(t∗ + ε) = w∗. We can then 
define the output w for the discontinuous input u as

w(t) =
{
w0 0 ≤ t < t∗,

w∗ t∗ < t ≤ T,
(2.7)

which of course coincides for t 
= t∗ with

w(t) := lim
ε→0

wε(t) = lim
ε→0

[F(uε, w0)](t).

Note that the output w is also a piece-wise constant function with at most one jump in t∗, where both u
and w do not need to be defined.

Then with the above construction it is straightforward to extend F to the piece-wise constant function 
so

F : PC([0, T ]) ×R → PC([0, T ]).

Remark 2.2. The monotonicity property required to fε as in (2.6) is not indeed necessary, due to some 
suitable properties of the Play hysteresis operator (see [19]).

Also for piece-wise constant inputs and outputs the semigroup property holds as: ∀ (u, w0), ∀ t1 <

t2 ∈ [0, T ] such that w(t1) := [F(u, w0)](t1) is defined, then (2.3) holds as equality for piece-wise constant 
functions.

The way to extend the Play operator to piecewise continuous inputs, as we sketched above, can be seen 
as a special case of a more general issue concerning the extension to the so-called regulated functions (see [3]
and [18]).

In the sequel of the paper we will also perform a limit of solutions of approximating Riemann problems, 
and hence we will need an extension of the Play operator to even less regular inputs, as BV . In view of this 
fact, here we give a further characterization of F for piecewise constant inputs which will inspire a weak 
formulation for BV inputs (see Remark 4.2).

Proposition 2.3. Let w0 ∈ R and u, w : [0, T ] → R be piecewise constant functions with a finite number of 
discontinuities. Moreover, denote by ũ and w̃ the right-continuous representatives of u and w respectively 
and suppose u(0) = ũ(0) and w(0) = w̃(0). Then the following are equivalent:
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t∗ T
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w

t∗ T

u

w

(u−, w0)

(u+, w∗)

(uε(·), wε(·))

Fig. 2. An explicit example of the operator F applied to piecewise constant u. Here a = 1, u− = w0 = 0 and u+ = 2 consequently 
w∗ = 1. In red we highlight the path followed by the couple (uε, wε) which, after the limit procedure, collapses to (u−, w0) for 
t < t∗ and (u+, w∗) for t > t∗.

1. w = F [u, w0] for almost every t;
2. |w̃ − ũ| ≤ a for every t and

∫
(0,t)

(ũ− w̃)d(Dw) ≥ a|Dw|((0, t)) for every t ∈ (0, T ], (2.8)

where Dw denotes the measure associated to distributional derivative of w, and |Dw| its total variation.

Proof. First notice that, since w̃ is of the following form w̃ =
∑N

i=1 wi1[ti−1,ti) then its distributional 
derivative (and the distributional derivative of w) can be represented by a finite sum of Dirac’s delta. In 
particular

Dw =
N−1∑
i=1

(wi+1 − wi)δti , (2.9)

and

|Dw|((0, t)) =
∑

{i | ti<t}
|wi+1 − wi|. (2.10)

(1 ⇒ 2) By definition of F of course |w̃ − ũ| ≤ a everywhere. Let us now consider t ∈ (0, t1], then 
|Dw|((0, t)) = Dw((0, t)) = 0 hence (2.8) holds trivially. Now if t ∈ (t1, t2] we have that

∫
(0,t)

(ũ− w̃) d(Dw) = (ũ(t1) − w̃(t1))(w2 − w1)

and

a|Dw|((0, t)) = a|w2 − w1|.

Now since w2 −w1 
= 0, i.e. w did not remain constant, then the arriving point after the jump, (ũ(t1), w2), 
must be on the boundary of L (see Fig. 2), hence ũ(t1) −w̃(t1) = ±a (recall that by definition limt→t+ u(t) =
1
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ũ(t1) and limt→t+1
w(t) = w̃(t1)). In particular we can also write ũ(t1) − w̃(t1) = sign(w2 − w1)a and so 

(2.8) holds as an equality. Now we can extend recursively the proof on the whole interval (0, T ].
(2 ⇒ 1) Consider first t ∈ (0, t1] then we have w ≡ w1 in (0, t) and so the constraint |w̃ − ũ| ≤ a tells us 
that |u −w1| ≤ a for almost every t ∈ (0, t1) so even if u may change values it can not exceed the threshold 
w1±a which would imply a change in w. Hence the hysteresis relation F [u, w0] holds. If instead we consider 
t ∈ (t1, t2] then (2.8) tells us that

(ũ(t1) − w̃(t1))(w2 − w1) ≥ a|w2 − w1|

which, because of |w̃ − ũ| ≤ a, is equivalent to

(ũ(t1) − w̃(t1)) = sign(w2 − w1)a.

So we conclude that if a jump in w occurs then we reach the upper or lower boundary of L, depending 
whether the jump of w is increasing or decreasing, and of course, due also to the constraint (u, w) ∈ L, u
must jump with the same monotonicity sign. Hence an approximation uε as in (2.5) is easily constructed 
and the corresponding output wε almost everywhere converges to w, showing that w = F(u) (see again 
Fig. 2).

Remark 2.4. In the proof we saw how (2.8) actually holds as an equality. Sometimes, in the sequel, it will 
be convenient to write it as an inequality, nevertheless, because of the necessary condition |w̃− ũ| ≤ a the 
two formulation are equivalent.

Remark 2.5. When we introduce the operator F in a PDE, we have to define it on functions u both depending 
on a space variable x ∈ Rn, for some n, and on time t. In this case, for every fixed x ∈ Rn, we see u(x, ·) as 
a function of time only, and then we define the output as

w(x, t) := [F(u(x, ·), w0(x))](t), a.e x,∀ t, (2.11)

where the initial state of the output is now a given function depending on x.

3. Solution to scalar Riemann problems with piecewise linear flux

In this section we will briefly recall some results for the Riemann problem for a conservation law with 
piecewise linear flux function which will be used in Section 5. Let us deal with the Cauchy problem

{
ut + f(u)x = 0 (x, t) ∈ R× [0,+∞),
u(x, 0) = u0(x) x ∈ R,

(3.1)

with f : R → R continuous and piecewise linear and

u0(x) =
{
ul x < 0,
ur x > 0.

With u0 as above, (3.1) is usually called Riemann problem.
A weak solution for (3.1), even for more general f and u0 (at least integrable), is here defined.

Definition 3.1. We say that u : R × [0, +∞) → R, is a weak solution of (3.1) if u is continuous as a function 
from [0, +∞) into L1

loc(R) and
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+∞∫
0

+∞∫
−∞

[uφt + f(u)φx] dx dt +
+∞∫

−∞

u0(x)φ(x, 0) dx = 0, (3.2)

for every C1 function φ : R × [0, +∞) → R with compact support.

It is known that a weak solution with a jump discontinuity along a curve C parametrized by t �→ s(t)
with s derivable, should satisfy the so called Rankine-Hugoniot condition (see e.g. [7]):

f(u−(t)) − f(u+(t)) = s′(t)(u−(t) − u+(t)) (3.3)

on C, where u−(t), u+(t) are respectively the limits from the left and right parts of the domain separated 
by discontinuity curve C.

In general for conservation laws there is not uniqueness of the weak solution. The introduction of the 
so-called entropy condition allows us to select a unique solution. In particular one can require that u satisfies

+∞∫
0

+∞∫
−∞

{|u− k|φt + sign(u− k)(f(u) − f(k))φx} dxdt ≥ 0, (3.4)

for every k ∈ R and for every non negative smooth φ with compact support. It is proven, [14] (see also [2], 
[9]), that for a scalar conservation law there exists one and only one weak solution satisfying (3.4). Such 
unique solution is usually called the entropy solution.

For piece-wise constant weak solutions, using also the Rankine-Hugoniot condition (3.3), the entropy 
condition (3.4) simply reduces to (see [2])

f(u) − f(u+)
u− u+

≤ f(u+) − f(u−)
u+ − u−

≤ f(u) − f(u−)
u− u−

, (3.5)

for every value u between u− and u+.
For the case of piecewise linear flux, the entropy solution of the Riemann problem can be explicitly 

constructed, see [6], [2] and [9]. Such solution is piecewise constant with a finite number of values. For the 
purposes of next sections we sketch here such construction.

We recall that f : R → R is piecewise linear if f is continuous and there is a finite family of disjoint 
intervals, covering R, where f is affine. Moreover u : R × [0, +∞[→ R is piecewise constant if the domain 
can be partitioned in a finite family of subsets where u is constant.

In (3.1), let us suppose ul < ur, and consider fc the greatest convex minorant of f on the interval [ul, ur], 
which we recall to be

fc := sup{h convex in [ul, ur] | h ≤ f}. (3.6)

It is easy to see that fc is a piecewise linear function hence the graph is a polygonal curve. Let us denote the 
vertices in the following way: (ul, f(ul)), (u1, f(u1)), . . . , (uk, f(uk)), (ur, f(ur)) where ul < u1 < · · · < ur

and (ui, f(ui)), by construction, are some of the vertices of f . Because of the convexity we have

f(u1) − f(ul)
u1 − ul

<
f(u2) − f(u1)

u2 − u1
< · · · < f(ur) − f(uk)

ur − uk
, (3.7)

hence we define the following function, see Fig. 3,
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u

fc(u)

ul u1 u2 u3 ur

x

t

ul

u1

u2

u3

ur

Fig. 3. An example of solution with piecewise linear flux.

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ul −∞ < x
t < f(u1)−f(ul)

u1−ul

u1
f(u1)−f(ul)

u1−ul
< x

t < f(u2)−f(u1)
u2−u1

. . .

. . .

ur
f(ur)−f(uk)

ur−uk
< x

t < +∞.

(3.8)

It can be proved that u ∈ C0([0, +∞); L1
loc(R)) and that, by construction, the Rankine-Hugoniot condition 

holds, hence we have a weak solution (as it is known, it is easy to see that a piecewise constant function 
satisfying the Rankine-Hugoniot condition is a weak solution). Moreover for every u ∈ [ui, ui+1] the entropy 
condition (3.5) holds as an equality, due to the piecewise linearity. When ul > ur we consider instead the 
least concave majorant, which again is a piecewise linear function and by considering the vertices of its 
graph we construct the solution similarly as above.

4. Weak formulation for the Cauchy problem with Play hysteresis

In this section we consider the following problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + wt + ux = 0 in RT ,

w = [F(u,w0)],
u(x, 0) = u0(x) in R,

w(x, 0) = w0(x) in R,

(4.1)

where RT := R × [0, T ), and the state-dependent hysteresis operator is defined as in Remark 2.5, starting 
from the Play operator (with amplitude a > 0) applied to t �→ u(x, t) for almost every x fixed.

Definition 4.1. A couple of functions (u, w) with u, w : RT → R, continuous as functions from [0, T ) into 
L1
loc(R), is a weak solution to (4.1) if:

i) it satisfies the following weak formulation of the PDE

+∞∫ +∞∫
[(u + w)φt + uφx] dx dt +

+∞∫
(u0(x) + w0(x))φ(x, 0) dx = 0, (4.2)
0 −∞ −∞
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for every C1 function φ with compact support in RT ;
ii) for almost every (x, t) ∈ RT it holds

|u(x, t) − w(x, t)| ≤ a; (4.3)

iii) for almost every x, the distributional derivative ∂w∂t is a measure on RT (denoted in the same way) that 
satisfies

1
2

∫
R

(u(x, t)2 − u0(x)2) dx + 1
2

∫
R

(w(x, t)2 − w0(x)2) dx ≤ −a
∣∣∣∂w
∂t

∣∣∣(R× (0, t)), (4.4)

for almost every t ∈ (0, T ).

Remark 4.2. Similarly to [21], equation (4.4) can be interpreted as an equivalent formulation of (2.8), in the 
case of H1 functions which also depend on the state x. Indeed suppose that both u, w are H1(RT ) solution 
of the PDE (4.1) then (4.4) reads as follows

+∞∫
−∞

t∫
0

utu + wtw dtdx + a

+∞∫
−∞

t∫
0

|wt| dtdx ≤ 0,

so, by the PDE,

+∞∫
−∞

t∫
0

−(wtu + uxu) + wtw dtdx + a

+∞∫
−∞

t∫
0

|wt| dtdx ≤ 0.

Since for almost every t, u is in H1(R) so

+∞∫
−∞

uxu dx = 0 for almost every t,

we can conclude that

+∞∫
−∞

t∫
0

(w − u)wt dtdx + a

+∞∫
−∞

t∫
0

|wt| dtdx ≤ 0,

which is indeed (2.8) extended to space-dependent H1 functions. Finally, as in Section 2 for time-dependent 
piecewise constant functions, and arguing as in [20] and [21], (4.4) can be seen to be a suitable weak extension 
of the Play operator to time-space dependent integrable functions.

If the weak solution has a jump discontinuity on a curve (s(t), t), e.g. say u−(t) 
= u+(t) or w−(t) 
= w+(t)
then we get the following extended Rankine-Hugoniot condition

u−(t) − u+(t)
u−(t) − u+(t) + w−(t) − w+(t) = s′(t). (4.5)

The entropy condition (3.4) is also extended to the following one
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∫
RT

(|u− k| + |w − k̂|)φt + |u− k|φx dxdt ≥ 0, (4.6)

for every φ non negative, smooth and with compact support in R × (0, T ) and for every couple (k, ̂k) ∈ L.

5. The Riemann problem with Play hysteresis

We study the Riemann problem for (4.1) where u0(x), w0(x) consist of two constant states separated by 
a discontinuity in the origin. We recall that, for regular input and output, if (u, w) belongs to the interior 
of L then wt = 0, whereas when (u, w) is on the boundary of L then wt = ut whenever wt 
= 0. Note that 
on the boundary, we may have wt = 0 and ut 
= 0 only for negligible times t (because in such a case, the 
pair would immediately enter the interior of L or move along the boundary).

By the cases discussed here above, we can rewrite (4.1) as follows
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut + ux = 0 |u− w| < a,

ut + 1
2ux = 0 |u− w| = a,

w = [F(u,w0)],
u(x, 0) = u0(x),
w(x, 0) = w0(x).

(5.1)

Of course the initial data must satisfy |u0(x) − w0(x)| ≤ a for almost all x. Our goal is to rewrite (5.1) as 
a unique conservation law with piece-wise linear flux. We consider two different cases, a) |u0(x) −w0(x)| <
a and b) |u0(x) − w0(x)| = a. Of course a further case c) |u0(x) − w0(x)| < a for some values x and 
|u0(x) −w0(x)| = a for some others, might by lacking at a first glance. However, since we are considering a 
Riemann problem with waves moving towards right (see the positives coefficients for ux in the first two lines 
of (5.1)) the cases a) and b) are the only significant ones. We refer to Remark 5.3 for further explanation.

a) |u0(x) − w0(x)| < a a.e. x
Let us consider initial data

u0(x) :=
{
ul x < 0,
ur x > 0,

(5.2)

with ul < ur and

w0(x) :=
{
wl x < 0,
wr x > 0,

(5.3)

hence in this case it is |ul − wl| < a and |ur − wr| < a. At the initial time t = 0 the PDE is then

ut + ux = 0, ∀x ∈ R. (5.4)

If there was no hysteresis the PDE above is solved by the traveling wave solution u(x, t) = u0(x − t). Hence, 
if we fix x ∈ R we are expecting our solution u either to remain equal to ul for x < 0 or to decrease from 
ur to ul after a time t = x, when x > 0.

We have two subcases.
a1) If a is such that wr − a ≤ ul then the jump from ur to ul is such that the couple (u, w) will always 

remain in the internal region of hysteresis, and so wt = 0 for all x and t. Hence we do not experience the 
effect of hysteresis and so we get the trivial solution, u(x, t) = u0(x − t) and w(x, t) ≡ w0(x).
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u

w

urulwr − a

wr

u

w

urul wr − a

wr

Fig. 4. In the first picture we see that if wr − a < ul then we remain inside the hysteresis region when jumping from ur to ul; in 
the second picture, when wr − a > ul, instead we hit the boundary, so we have wt = 0 initially and then wt = ut.

a2) Suppose instead wr − a > ul. For x < 0, u remains constantly equal to ul and so does w. For x > 0, 
we expect our solution to decrease, so if we look at the hysteresis diagram we notice that for wr−a < u < ur

we have wt = 0, whereas for ul < u < wr − a we are on the boundary and so wt = ut. See Fig. 4.
Let us define the following function

h(x, u) :=
{

1 x < 0 or (x > 0 and ur > u > wr − a),
1
2 x > 0 and ul < u < wr − a.

(5.5)

As already pointed out, for x < 0, the solution is constantly equal to ul (and the output to wl), hence 
we can focus on h defined only when x > 0, which is then only dependent on u ∈ [ul, ur]. Moreover, the 
switching rule (5.5) for h actually encodes the hysteresis behavior between u and w. We can then rewrite 
our initial problem as follows

{
ut + h(u)ux = 0,
u(x, 0) = u0(x).

(5.6)

We can see h as the weak derivative of some piecewise linear flux g : [ul, ur] → R of the following form

g(u) :=
{

1
2u ul ≤ u ≤ wr − a,

u + c wr − a ≤ u ≤ ur,
(5.7)

where the constant c makes the flux Lipschitz continuous. Also note that g is convex. Our PDE then reads 
as the following conservation law with piecewise linear flux (compare with (3.1))

ut + g(u)x = 0, (5.8)

for which we consider the Riemann problem with datum (5.2). As in Section 3, we find the solution to (5.8)

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
ul

x
t < 1

2 ,

wr − a 1
2 < x

t < 1,
ur 1 < x

t .

(5.9)

We then compute w(x, t) = [F(u(x, ·), w0(x))](t) that, as explained in Section 2 is, see also Fig. 5.
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x

t

u:

ul

wr − a

ur

x

t

wl

ul + aw:

wr

Fig. 5. The solution u and corresponding w.

w(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
wl x < 0,
ul + a 0 < x

t < 1
2 ,

wr
1
2 < x

t .

(5.10)

Note that the pair (u, w) as above constructed, satisfies the Rankine-Hugoniot condition (4.5). Indeed 
we have two discontinuities on u: the one from ur to wr − a is such that w remains constant so

s′(t) = ur − (wr − a)
ur − (wr − a) = 1;

the one from wr − a to ul is such that also w jumps from wr to ul + a hence

s′(t) = wr − a− ul

wr − a− ul + wr − (ul + a) = 1
2 .

We also have a discontinuity on w with slope 0 between wl and ul + a but it still satisfies the Rankine-
Hugoniot condition; indeed u is continuous implying that s′(t) = 0. Being the Rankine-Hugoniot condition 
satisfied by the piece-wise constant pair (u, w), then the latter satisfies the weak formulation of (4.1), that 
is (4.2).

Remark 5.1. The argumentation above on the Rankine-Hugoniot conditions, works well not only because 
we have posed w = F(u) but mainly because u solves (5.8) where, as already pointed out, hysteresis is 
somehow encoded in the flux g.

As said, (u, w) can be seen as a weak solution of the Riemann problem (4.1), (5.2), (5.3). Also note 
that, as we already know, the relation w(x, ·) = F(u(x, ·), w0(x)), for piece-wise constant functions t �→
(u(x, t), w(x, t)), is equivalent to (2.8). In the proof of Theorem 6.4, we will show that (2.8) for piece-
wise constant functions, together with the hypothesis of integrability on R × [0, T ) (which is not satisfied 
by the solution of the Riemann problem), implies condition (4.4), giving a weak solution in the sense of 
Definition 4.1.

Remark 5.2. If the initial datum satisfies ul > ur, then we end up with a similar situation as above but this 
time the piecewise linear flux g will be concave, coherently with what said in Section 3. The construction 
of the solution then goes similarly as above.

b) |u0(x) − w0(x)| = a a.e. x
Consider the initial states (5.2), (5.3) with ul < ur. We have two subcases.
b1) Suppose wr = ur + a, that is (ur, wr) belongs to the upper boundary of L. Here we expect the 

solution u to decrease from ur to ul for x > 0. Then we can notice that the pair (u, w) will always remain 
on the upper boundary w = u + a, see Fig. 6. The solved PDE is then
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u

w

ul ur

wr

Fig. 6. If we start on the upper boundary and we jump from ur to ul then we will always remain on that boundary.

x

t

u:

ul

ur

x

t

wl

ul + aw:

ur + a

Fig. 7. The solution u and corresponding w for the subcase b1).

ut + 1
2ux = 0. (5.11)

The solution u(x, t) = u0(x − 1/2t), and its output w, see Fig. 7 are then

u(x, t) =
{
ul 0 < x

t < 1
2 ,

ur
1
2 < x

t ,
w(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
wl 0 < x,

ul + a 0 < x
t < 1

2 ,

ur + a 1
2 < x

t .

(5.12)

b2) Suppose (ur, wr) to be on the lower boundary of L, that is wr = ur − a. In this case for x > 0 we 
have u decreasing from ur to ul so the couple (u(x, ·), w(x, ·)) will move internally possibly reaching the 
upper boundary and following it until u = ul, see Fig. 8. We then have two further subcases.

b2i) Suppose ul ≥ wr − a, that is the left-case in Fig. 8. By (5.1), when u = ur or ul < u < ur the PDE 
is, respectively,

ut + 1
2ux = 0 or ut + ux = 0. (5.13)

So if we define

h(u) :=
{

1
2 u = ur,

1 ul ≤ u < ur,
(5.14)

and as in the case a2) consider a conservation law with g piecewise linear flux, then the solution is u0(x − t), 
that is
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u
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urulwr − a

wr
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urul wr − a
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Fig. 8. The two possible cases whether wr − a ≤ ul or wr − a > ul.

x

t

u:

ul

wr − a

ur

x

t

wl

ul + aw:

ur − a

Fig. 9. The solution u and corresponding w in subcase b2ii).

u(x, t) =
{
ul

x
t < 1,

ur
x
t > 1,

(5.15)

which generates the constant output w(x, t) ≡ w0(x).
b2ii) Suppose now ul < wr−a so for x > 0 when u decreases from ur to ul we hit also the upper boundary 

at u = wr − a, see the right-case in Fig. 8. Again by (5.1) we have

h(u) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 u = ur,

1 wr − a < u < ur,
1
2 ul < u < wr − a,

(5.16)

which is the derivative of the flux. Then, by solving as in case a2) and subcase b2i) a conservation law with 
piece-wise linear flux and after computing w = F(w, w0), see Fig. 9, we find the pair

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
ul

x
t < 1

2 ,

wr − a 1
2 < x

t < 1,
ur

x
t > 1,

w(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
wl x < 0,
ul + a 0 < x

t < 1
2 ,

ur − a x
t > 1

2 .

(5.17)

As for the case a), Rankine-Hugoniot conditions can be also derived for case b) and moreover similar 
remarks as Remark 5.1 and Remark 5.2 hold.

Remark 5.3. Since we are dealing with a Riemann problem, the possible case c): |u0(x) − w0(x)| < a for 
some values x and |u0(x) −w0(x)| = a for some others, just reduces to either |ul−wl| < a and |ur−wr| = a

or |ul − wl| = a and |ur − wr| < a. Since for x < 0, u(x, t) ≡ ul and so w(x, t) ≡ wl (the waves are moving 
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towards right) the only significant study is for x > 0. Hence the conditions for the cases a) and b) reduce 
respectively to |ur − wr| < a and |ur − wr| = a, and hence, their study also covers case c).

Remark 5.4. For the subcases a1) and b2i), as said, the solution is just a rigid movement of the initial data. 
Instead for the subcases a2) and b2ii) we easily see that ul < wr − a ≤ ur and also ul + a is between 
wr and wl, since wl ∈ [ul − a, ul + a]. For the subcase b1) again holds that ul + a is between wr and 
wl. These facts are important as they imply that for every case V ar(u(·, t)) = ur − ul = V ar(u0(·)) and 
V ar(w(·, t)) = wr − wl = V ar(w0(·)) for every t, where V ar denotes the total variation on R with respect 
to the spacial variable. The fact that the total variation does not increase in time is important and will give 
a compactness tool to prove the existence to the general Cauchy problem as in Section 6.

6. The general initial data Cauchy problem

The goal of this section is to construct weak solution in the sense of Definition 4.1 by using the Wave 
Front Tracking Method.

As already said, such method consists of approximating initial data with piece-wise constant function, 
so we consider first

u0(x) =
N∑
i=1

ui1(xi−1,xi) (6.1)

and

w0(x) =
N∑
i=1

wi1(xi−1,xi) (6.2)

such that |u0(x) − w0(x)| ≤ a where −∞ = x0 < x1 < · · · < xN = +∞.
In order to solve the Cauchy problem (4.1), (6.1), (6.2), we give the following heuristics idea, which differs 

from a classical one by the presence of the hysteretic term w, see Fig. 10:

1. We solve N − 1 Riemann problems at time t = 0 centered in the points x1, . . . , xN−1, which generate 
discontinuity lines for u and w; by the analysis in Section 5, we know that the discontinuity lines for u
are lines with slopes 1 or 1/2 (in the plane t − x), whereas the ones for w with slope 0 or 1/2; moreover 
the discontinuity lines of slope 1/2 are always discontinuity lines for both u and w.

2. Let us denote by τ1 the first time that either a discontinuity line of u impinges a discontinuity line of w
with slope 0 or two discontinuity lines of u impinge themselves. The pair (u, w) found in the previous 
point is a weak solution of (4.1) for t ≤ τ1 (i.e. (4.2) and w = F(u)); note that τ1 > 0 exists since the 
number of constancy intervals is finite;

3. we consider u(·, τ1) and w(·, τ1) as new initial conditions, since they are still piecewise constant, we can 
solve again a finite number of Riemann problems at {t = τ1}. So we extended u and w for small times 
after τ1;

4. we proceed in way extending at each step the solution for larger times.

Next lemma formalizes the heuristics above.

Lemma 6.1. For the Cauchy problem (4.1), (6.1), (6.2), with T = +∞, arguing as above, we can construct 
two piece-wise constant functions u, w : R × [0, +∞) such that:
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x

t

τ1

τ2

u:
w:

x1 x2 x3 x4

Fig. 10. A possible solution generated by the above procedure, where we have interactions at time τ1 and τ2. In black the discontinuity 
lines of slope 1 of u, in red ones of w with slope 0, and both colors for the common lines with slope 1/2.

i) The couple (u, w) satisfies the weak formulation of the PDE (4.2) and the relation w = F(u, w0) for 
almost every x.

ii) For fixed t ∈ [0, +∞) we have that

V ar(u(·, t)) ≤ V ar(u0(·)), V ar(w(·, t)) ≤ V ar(w0(·)), (6.3)

where V ar denotes the total variation on R of the functions with respect to the space variable.
iii) For t, t′ ∈ [0, +∞) the following estimates hold

+∞∫
−∞

|u(x, t) − u(x, t′)| dx ≤ V ar(u0(·))|t− t′| (6.4)

and

+∞∫
−∞

|w(x, t) − w(x, t′)| dx ≤ 1
2V ar(w0(·))|t− t′|. (6.5)

Proof. At t = 0, we solve N−1 Riemann problems as described previously and we compute the couple (u, w)
for t smaller than τ1. By the results of Section 5, we know that (4.2) holds and w = F(u, w0) for every x
possibly except x1, . . . , xN−1. By Remark 5.4, (6.3) holds for t ∈ [0, τ1) as an equality. Inequality (6.4) also 
holds for t, t′ ∈ [0, τ1). Again, a possible proof of it differs from a standard case ([6], [2], [9]) by the presence 
of the hysteresis in the equation. We give here an idea of that for the single Riemann problem centered at 
0 with values ul and ur as in Section 5. Considering the set R := {(x, s) | 1/2 ≤ x/s ≤ 1, 0 ≤ s ≤ τ1}, we 
can notice that u(·, t) and u(·, t′) are equal to ul at the left of R and to ur at the right of R. Internally they 
may be equal either to ul, ur or w1 ± a (see for example (5.9) or (5.12)), here we will denote this internal 
value with u∗. Note that, in any case, u∗ is in between ul and ur. It is easy to see that if we only have one 
discontinuity u− 
= u+, with slope 1 then

+∞∫
−∞

|u(x, t) − u(x, t′)| dx = |t− t′| |u− − u+|. (6.6)

If instead we have only one discontinuity with slope 1/2 then



18 F. Bagagiolo, S. Moreti / J. Math. Anal. Appl. 543 (2025) 128900
+∞∫
−∞

|u(x, t) − u(x, t′)| dx =
∣∣∣∣ t2 − t′

2

∣∣∣∣ |u− − u+| ≤ |t− t′| |u− − u+|. (6.7)

Since we may have at most 2 discontinuities then (6.4) follows from (6.6) and (6.7), indeed

+∞∫
−∞

|u(x, t) − u(x, t′)| dx ≤ |t− t′|(|ur − u∗| + |u∗ − ul|) = |t− t′| |ur − ul|,

where |ul − ur| = V ar(u0).
Inequality (6.5) is treated in the same way with the difference that discontinuities of w have either slope 

0 or 1/2 so the maximum is 1/2. Notice that (6.4) and (6.5) imply u, w ∈ C0([0, τ1); L1
loc(R)).

The lemma is proven for t ∈ [0, τ1) now we need to define u and w for t = τ1 and use them as new initial 
data. As a standard non-hysteresis case, the piece-wise constant functions u(·, τ1), w(·, τ1) can be constructed 
as limits as t → τ−1 without increasing the total variations (see again [6]). Moreover, for x 
∈ {x1, ..., xN−1} ∪
{y|(y, τ1) belongs to discontinuity lines started at t = 0}, it holds w(x, τ1) = [F(u(x, ·), w0(x)](τ1) as u and 
w are constant in (x, t) for t < τ1 sufficiently close to τ1, see Fig. 10. Also note that the excluded values of 
x are a finite quantity.

Taking the piece-wise constant functions u(·, τ1), w(·, τ1) as initial conditions at τ1 and repeating the 
reasoning above, we are able to find a new instant τ2 > τ1 and to extend u, w for t ∈ [τ1, τ2), satisfying 
(6.3), (6.4) and (6.5) in [0, τ2). Also note that, by the semigroup property (see Remark 2.2), w = F(u, w0)
in [0, τ2) for every x different from the one excluded previously.

Then we apply such extension procedure recursively, getting a sequence of instants τ1 < τ2 < τ3 < . . . . 
Next two lemmas imply that the number of such instants (and hence of recursive cases) is finite and hence 
we actually may perform the extension up to whole time-line [0, +∞). Finally note that at each step we 
exclude a finite number of x such that w 
= F(u, w0), hence w = F(u, w0) in [0, +∞) for almost every x.

Lemma 6.2. The number of discontinuity lines of u intersecting each other is finite.

Proof. Let us denote by u1, . . . , uN and w1, . . . , wK the initial values of u and w respectively. At every step-
instant τk, by solving the Riemann problems, we end up with u taking values in the sets {initial values of u}
and {w ± a} remaining always between um := min ui and uM := max ui, see e.g. (5.9) or (5.12). Similarly, 
w takes values in the sets {initial values of w} and {u ± a}. We conclude that, at every time-step τk, for 
almost every (x, t) ∈ R × [0, τk) u(x, t) belongs to

⋃
i=1,...,N
j=1,...,K

⋃
k∈N

({ui ± ka} ∪ {wj ± ka})
⋂

[um, uM ] =: IM(u)

which does not depend on the time-step τk and necessarily consists of a finite number of points. In particular

δ := min
{
|x− y|

∣∣∣∣ x, y ∈ IM(u), x 
= y

}
> 0. (6.8)

If two discontinuity lines of u cross each other, then the (lower) one must have slope 1/2 and the (upper) 
one slope 1 (see Fig. 11-right). We denote by ul, ur and u∗ the values of u on the left, on the right and 
between the two curves, respectively. Such setting tells us that the first jump between ur and u∗ implies 
a jump for the corresponding pair (u, w) between two points belonging to the same boundary of L, and 
in particular that w changes accordingly to u; whereas the second one, from u∗ to ul, implies a jump for 
(u, w) between two points with the same ordinate w (see Fig. 11-left). From this we conclude that u∗ can 
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Fig. 11. Explaining figure for Lemma 6.2. We see how u∗ cannot be between ul and ur so after the interaction the total variation 
of u decreases. Moreover we generate a 0-slope discontinuity in w as w∗ �= wl.

not be between ul and ur. Also note that the Riemann problem solved at the intersecting point results in a 
single discontinuity wave between ul and ur with either slope 1/2 or 1, depending on the mutual position of 
ur and ul and on their distance. In particular, by what said above, we have that the total variation of the 
solution u, in x for t fixed, after the intersection point decreases at least by 2δ, with δ as in (6.8). Indeed, 
before it was |ur − u∗| + |u∗ − ul| and after it is |ur − ul|, being |ur − u∗| + |u∗ − ul| − |ur − ul| ≥ 2δ > 0.

Since the total variation of u at time t = 0 is finite and it is non increasing in time (see (6.3)) then we 
cannot have an infinite number of such interactions.

We finally note that the corresponding jump of w before the intersection was a jump between two values 
wr and wl and after becomes a jump between wr and a new intermediate value w∗ (see Fig. 11). In particular 
new 0-slope discontinuity in w may arise.

Lemma 6.3. The number of discontinuity lines of u intersecting the discontinuity lines of w is finite.

Proof. Since the discontinuity lines for w with slope 1/2 are also discontinuity lines for u, we restrict ourselves 
to the discontinuity lines for w with slope 0.

The discontinuities of w with slope 0 starting at time t = 0 are finite and a new discontinuity with slope 
0 for w may arise only by the interactions of two discontinuity lines for u, as in Lemma 6.2. Hence the 
total number of discontinuities of w with slope 0 that may be generated during the whole process is a-priori 
bounded. Now when a discontinuity line of u crosses a 0-slope discontinuity of w, we may generate a new 
discontinuity of u but the number of 0-ones for w does not increase, see the example in Fig. 12.

Since the discontinuity lines for u have positive slope, it is not possible that one of them, say r1, intersects 
a vertical discontinuity line for w that has already generated discontinuity lines from which, after a finite 
number of new intersections, r1 itself is generated.

Concluding, since at time 0 the number of discontinuities for u is finite, then there is a finite number of 
intersection with w-discontinuity of 0 slope.

Now, we prove the existence of a solution for the Cauchy Problem (4.1), with general initial conditions 
u0, w0.

Theorem 6.4. Consider (4.1) with T > 0 and u0, w0 ∈ BV (R) ∩ L1(R), satisfying |u0(x) − w0(x)| ≤ a for 
almost every x. Then there exists a couple (u, w) ∈ L1(RT ) weak solution in the sense of Definition 4.1.

Proof. Since u0, w0 ∈ BV (R) then they are bounded (|u0(x)|, |w0(x)| ≤ M a.e. x), their limits at infinity 
exist and such limits are null as u0, w0 are also in L1(R). Moreover, there are sequences {u(n)

0 }n and {w(n)
0 }n

of piece-wise constant functions approximating u0 and w0 respectively in L1(R) with
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u

w

urul

w∗

wr

τk

ul

ur

u∗

wl

wr

w∗

Fig. 12. Explaining figure for Lemma 6.3. We see how the number of discontinuities of u can increase while the total variation 
V ar(u(·, t)) remains constant in time.

V ar(u(n)
0 ) ≤ V ar(u0) and V ar(w(n)

0 ) ≤ V ar(w0) ∀n ∈ N. (6.9)

Let (un, wn) be the weak solution to the problem with initial data u(n)
0 and w(n)

0 as in Lemma 6.1. Since 
u

(n)
0 and w(n)

0 , in order to approximate u0 and w0 in L1(R), must vanish at infinity (actually, being the 
number of pieces finite, their last interval of constancy is a semi-line where they are null, they vanish outside 
a compact set), hence it is easy to see that also un(·, t) and wn(·, t) have the same property, for every fixed 
t. Applying standard procedures for the wave-front tracking method, (see [6], [2]) we get the existence of a 
function u ∈ L1(RT ), continuous from [0, T ] into L1

loc(R), such that (up to a subsequence)

un −→ u, in L1(RT ), as n → ∞. (6.10)

By the same argument, there exists w ∈ L1(RT ), continuous from [0, T ] into L1
loc(R), such that (up to a 

subsequence) wn → w in L1(RT ).
We have to prove that u and w satisfy the weak formulation of the PDE (4.2) and the hysteresis relations 

(4.3), (4.4).
Since (4.2) is solved by every (un, wn) then it is also true for the limit because of the L1 convergence on 

RT . Moreover wn = F(un, w0) for a.e. x, consequently |wn − un| ≤ a a.e. and hence (4.3) comes from a.e. 
point-wise convergence.

It remains (4.4). Because of Proposition 2.3, since wn = F(un), we have that for all n and almost every 
x and t ∫

(0,t)

(ũn(x, t) − w̃n(x, t)) d
(
∂wn

∂t
(x, ·)

)
≥ a

∣∣∣∣
(
∂wn

∂t
(x, ·)

) ∣∣∣∣((0, t)). (6.11)

Here with 
(
∂wn

∂t (x, ·)
)

we denote the measure associated to the distribution w′
n(x, ·), with fixed x seen as 

function of time, and with tilde the right continuous with respect to time representative of un and wn.
Now we fix t ∈ (0, T ) such that (6.11) holds for a.e. x. Since for every fixed x, w̃n(x, ·)|[0,t] =∑N(x,t)
i=1 w̃

(i)
n (x)1[ti−1,ti) then

∫
(0,t)

(w̃n(x, t)) d
(
∂wn

∂t
(x, ·)

)
=

N(x,t)−1∑
i=1

w̃(i+1)
n (x)(w̃(i+1)

n (x) − w̃(i)
n (x)).

Now, if we exclude the 0 measure set of all the points x given by the union of the discontinuity points of 
w

(n)
0 with the points x such that (x, t) lies on a discontinuity line of wn then it holds that
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w̃(1)
n (x) = lim

s→0+
wn(x, s) = w

(n)
0 (x)

and

w̃(N)
n (x) = lim

s→t−
wn(x, s) = wn(x, t).

So by the inequality

N−1∑
i=1

w̃(i+1)
n (x)(w̃(i+1)

n (x) − w̃(i)
n (x)) ≥ 1

2((w̃(N)
n )2 − (w̃(1)

n )2)

and by integrating (6.11) over R we deduce

+∞∫
−∞

∫
(0,t)

(ũn(x, t)) d
(
∂wn

∂t

)
≥ 1

2

+∞∫
−∞

(wn(x, t)2 − w
(n)
0 (x, t)2) dx + a

∣∣∣∣∂wn

∂t

∣∣∣∣(R× (0, t)). (6.12)

Here with ∂wn

∂t we denote the measure on R × (0, t) associated to the distributional derivative of wn with 
respect to t seen as function of both x and t. It exists since wn is a function of bounded variation of two 
variables (finite number of constant pieces), moreover it is ∂wn

∂t = L1 ⊗
(
∂wn

∂t (x, ·)
)
, see [1].

Now for every φ smooth with compact support in R × (0, t) because of (4.2) we have
〈
∂un

∂t
+ ∂wn

∂t
+ ∂un

∂x
, φ

〉
= 0

in a distributional sense and, since un, wn are of bounded variation as functions of two variables, we can 
see this relation as an equality between the measures associated to the distributions i.e.

∂wn

∂t
= −∂un

∂t
− ∂un

∂x
(6.13)

as measures on R × (0, t). We then have

+∞∫
−∞

∫
(0,t)

ũn(x, t) d

(
∂wn

∂t

)
= −

+∞∫
−∞

∫
(0,t)

ũn(x, t) d

(
∂un

∂t

)
−

+∞∫
−∞

∫
(0,t)

ũn(x, t) d

(
∂un

∂x

)

= −
+∞∫

−∞

∫
(0,t)

ũn(x, t) d

(
∂un

∂t
(x, ·)

)
dx−

∫
(0,t)

+∞∫
−∞

ũn(x, t) d

(
∂un

∂x
(·, t)

)
dt

≤ −1
2

+∞∫
−∞

(un(x, t)2 − u
(n)
0 (x)2) dx− 1

2

∫
(0,t)

(un(+∞, t)2 − un(−∞, t)2) dt

= −1
2

+∞∫
−∞

(un(x, t)2 − u
(n)
0 (x)2) dx.

(6.14)

Here we have applied similar steps as above (between (6.11)–(6.12)), also exploiting the fact that ũ for fixed 
t is left continuous with respect to x and that un(+∞, t) = un(−∞, t) = 0.
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Then from (6.12) and (6.14) we conclude that for all n ∈ N and a.e. t ∈ (0, T )

1
2

+∞∫
−∞

(un(x, t)2 − u
(n)
0 (x)2) dx + 1

2

+∞∫
−∞

(wn(x, t)2 − w
(n)
0 (x)2) dx + a

∣∣∣∣∂wn

∂t

∣∣∣∣(R× (0, t)) ≤ 0. (6.15)

We know by construction and by the wave-front tracking method we have applied (see [6], [2]) that for 
every fixed t the sequences un(·, t), wn(·, t), u(n)

0 and w(n)
0 converge respectively to u(·, t), w(·, t), u0 and 

w0 in L1(R), and since they are all equibounded in L∞(R) we get the convergence also in L2(R). This in 
particular means that

0 ≤ lim sup
n→∞

∣∣∣∣∂wn

∂t

∣∣∣∣(R× (0, t)) ≤ C < +∞,

and so, up to a subsequence, there exists a measure weak star limit of the sequence ∂wn/∂t which must then 
coincide with ∂w/∂t by the convergence of wn to w in L1(RT ). Finally, thanks to the lower-semicontinuity

∣∣∣∣∂w∂t
∣∣∣∣(R× (0, t)) ≤ lim inf

n→∞

∣∣∣∣∂wn

∂t

∣∣∣∣(R× (0, t)),

taking the liminf in (6.15), we infer our desired condition (4.4).

Remark 6.5. We note that in [21] similar arguments, as in the proof above, are used but for approximating 
H1 functions, generated by a time-discretization. Here instead the functions are much less regular, the 
discretization is in space for the initial data, and the derivatives are just measures.

7. Uniqueness

Let us recall that the couple (u, w) weak solution is an entropy solution if it satisfies the following 
inequality

∫
RT

(|u− k| + |w − k̂|)φt + |u− k|φx dxdt ≥ 0, (7.1)

for every φ non negative, smooth and with compact support in R × (0, T ) and for every couple (k, ̂k) ∈ L.
Now we show how in our problem with hysteresis this entropy condition can be characterized in the case 

of piecewise constant solutions (see e.g. [2] for the case without hysteresis).

Proposition 7.1. Suppose that the couple of functions u, w : R × [0, +∞) → R, satisfying |u − w| ≤ a, 
consists of two constant states (ul, wl) 
= (ur, wr) separated by a line of discontinuity (s(t), t). Then (u, w) is 
an entropy solution if and only if it is constructed as in Section 5 i.e. the following conditions are verified:

i) s′(t) =: λ is constant and satisfies the generalized Rankine −Hugoniot condition (4.5);
ii) λ is either 0, 1 or 1/2;
iii) if ul = ur then λ = 0 i.e. we have a discontinuity only on w with slope 0;
iv) if wr = wl then λ = 1 so the jump is not on the boundary of the hysteresis region and w remains 

constant;
v) if ur > ul and wr 
= wl then λ = 1/2 and wr = ur + a, wl = ul + a, i.e. the jump occurs in both u and 

w and the couple is on the upper boundary of the hysteresis region;
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vi) if ur < ul and wl 
= wr then λ = 1/2 and wr = ur − a, wl = ul − a, i.e. the jump occurs in both u and 
w and the couple is on the lower boundary of the hysteresis region;

Proof. First notice that integrating by parts (7.1) with (u, w) piece-wise constant we can rewrite such 
entropy condition as follows

s′(t)[(|ur − k| + |wr − k̂|) − (|ul − k| + |wl − k̂|)] − [|ur − k| − |ul − k|] ≥ 0. (7.2)

So the couple (u, w) is an entropy solution if and only if (7.2) holds for every (k, ̂k) ∈ L.
( =⇒ ) Suppose that the pair (u, w) is an entropy solution. Then, for any ur, ul, wr, wl, we can always find 
a pair (k, ̂k) ∈ L with k, ̂k large enough such that (7.2) reads as follows

s′(t)[ul + wl − ur − wr] − [ul − ur] ≥ 0 (7.3)

and, by inserting in (7.2) their opposite values, it becomes

−s′(t)[ul + wl − ur − wr] + [ul − ur] ≥ 0. (7.4)

We then infer that s′(t) has to satisfy the Rankine-Hugoniot condition (4.5) that is

[ul − ur + wl − wr]s′(t) = ul − ur, (7.5)

hence s′(t) =: λ has to be constant, so we proved i). Notice that ul − ur + wl − wr cannot be equal to 0
otherwise from (7.5) we would get also ul − ur = 0 and so wl −wr = 0. This means ul = ur, wl = wr which 
we excluded by hypothesis.

We can now rewrite (7.5) as follows

λ[wl − wr] + (λ− 1)(ul − ur) = 0. (7.6)

So if ul = ur then λ = 0, and the left-hand-side of (7.2) becomes 0, independently from (k, ̂k). So the couple 
(u, w) is still an entropy solution and we imply case iii).

If wl = wr then λ = 1 so we infer case iv). Notice that even in this case (7.2) is trivially satisfied.
Suppose now instead wr 
= wl and ur 
= ul and recall that ul−ur +wl−wr is either positive or negative. 

Keeping this in mind and recalling (7.5) we write (7.2) as follows

(ul − ur)(|wr − k̂| − |wl − k̂|) + (wr − wl)(|ur − k| − |ul − k|)
ul − ur + wl − wr

≥ 0. (7.7)

Now, for (k, ̂k) ∈ R2 we study the function

h(k, k̂) := (ul − ur)(|wr − k̂| − |wl − k̂|) + (wr − wl)(|ur − k| − |ul − k|),

which is the numerator appearing in (7.7). We can split the plane R2 in 9 regions, representing the cases 
when k is above, below or between ul, ur combined with the cases k̂ above, below or between wl, wr, see 
Fig. 13. It is easy to prove that h is constant in R1, R3, R7 and R9 as in these parts both k and k̂ cancel 
out. In particular, in R1 it is h ≡ 2(ul − ur)(wl − wr) which is strictly positive if the jump between ul and 
ur has the same monotonicity of the jump between wl and wl and strictly negative otherwise. In R9 instead 
h ≡ −2(ul − ur)(wl −wr), and in R3 and R7 it holds h ≡ 0. It is easy so see then that in the other regions 
h is affine, connecting continuously the constant parts, so we can deduce that it has the same constant sign 
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Fig. 13. The sign of h, when the jump between ul and ur has the same monotonicity as the jump between wl and wr. Here 
A = (min(ul, ur), min(wr, wl)) and B = (max(ul, ur), max(wr, wl)). Note that if the jump between ul and ur has different 
monotonicity to the jump between wl and wr, then the picture remains the same but with opposite signs, in particular, the 
segment AB is the same. In this case the pairs (ul, wl), (ur, wr) lie on the highlighted points.

in R2 and R4 and the opposite one in R6 and R8. In R5 we have a change of sign on the segment AB

connecting (min(ul, ur), min(wl, wr)) to (max(ul, ur), max(wl, wr)).
With this in mind we then conclude that if the jump in w has opposite sign with respect to the jump in 

u then this violates our condition (7.2). This is because both the pairs (ur, wr) and (ul, wl) are contained 
in L and, see Fig. 13, we can find multiple pairs in L (e.g. (ul, wl), (ur, wr) themselves) such that h is 
either positive or negative. Since the denominator ul − ur +wl −wr 
= 0 has fixed sign this means that the 
inequality (7.2) cannot be true for all (k, ̂k) ∈ L.

So we can only have jumps in w with the same sign of jumps in u. If ul > ur then the denominator 
ul − ur + wl − wr is positive, hence it must be h ≥ 0 for all (k, ̂k) ∈ L. But the only possibility is that the 
points A = (ur, wr), B = (ul, wr) (see Fig. 13) both belong to the lower boundary of L. Otherwise at least 
one of them has a neighborhood containing points (k, ̂k) in L where h is negative. So positive jumps occur 
only on the lower boundary of L. Similarly, if ul < ur, then the points must lie on the upper boundary of 
L. So negative jumps occur only on the upper boundary of L. Also note that, in both cases, u and w must 
have a jump of the same amplitude.

So we checked that for ul 
= ur and wl 
= wr, (7.2) implies λ = 1/2 (see (7.5)) and either case v) or vi).
As there are no other possible choices of (ul, wl), (ur, wr) we also infer ii).

( ⇐= ) Now suppose i), . . . , vi) to hold. If ul = ur then we are in case iii) with λ = 0. As already said, the 
left-hand-side of (7.2) becomes 0, hence the inequality is trivially satisfies for every (k, ̂k) ∈ L.

If wl = wr then we are in case iv) with λ = 1 and again (7.2) is trivially satisfies.
Suppose instead λ = 1/2, and notice again, because of i), that ul − ur +wl −wr 
= 0 otherwise we would 

get ul = ur and wl = wr which we excluded by hypothesis. This allows us to rewrite (7.2) as (7.7). Applying 
the same reasoning as for the previous implication, it can be verified that for both the cases v) and vi), 
(7.7) holds true for every (k, ̂k) ∈ L.

Thanks to Proposition 7.1, it is easy to see that the sequence of piece-wise constant solutions (un, wn) of 
the Cauchy problem with u(n)

0 and w(n)
0 as initial data constructed via the Wave-Front Tracking, is entropy 

admissible, so it satisfies (7.1). Finally, since we have L1(RT ) convergence, we can conclude that the solution 
(u, w) as constructed in the proof of Theorem 6.4 also satisfies (7.1). As a consequence of the next theorem, 
we then deduce that such a solution is also the only entropy solution.

Theorem 7.2. Consider the Cauchy problems with initial conditions u1
0, w

1
0 and u2

0, w
2
0 respectively, where 

ui
0, w

i
0 ∈ L1(R) ∩ BV (R). Let us denote by (u1, w1) and (u2, w2) two entropy solutions to the respective 

problems. Then it holds that
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+∞∫
−∞

(|u1 − u2|(x, t) + |w1 − w2|(x, t)) dx ≤
+∞∫

−∞

(|u1
0 − u2

0| + |w1
0 − w2

0|) dx, (7.8)

for almost every t ∈ [0, T ].

Proof. Adapting the standard method by Kruzkov [14], in [21] an analogous result is proven for the case of 
delayed-relay hysteresis. The adaptation to our case with Play hysteresis is not difficult.
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