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Abstract Statistical model checking uses Monte Carlo simulation to
analyse stochastic formal models. It avoids state space explosion, but
requires rare event simulation techniques to efficiently estimate very low
probabilities. One such technique is Restart. Villén-Altamirano recently
showed—by way of a theoretical study and ad-hoc implementation—that
a generalisation of Restart to prolonged retrials offers improved per-
formance. In this paper, we demonstrate our independent replication of
the original experimental results. We implemented Restart with pro-
longed retrials in the FIG and modes tools, and apply them to the models
used originally. To do so, we had to resolve ambiguities in the original
work, and refine our setup multiple times. We ultimately confirm the pre-
vious results, but our experience also highlights the need for precise doc-
umentation of experiments to enable replicability in computer science.

1 Introduction

In stochastic timed systems, the time between faults, customer interarrival times,
transmission delays, or exponential backoff wait times follow (continuous) prob-
ability distributions. Probabilistic model checking [3] can compute dependabil-
ity metrics like reliability and availability in the Markovian case. To evade state
space explosion and evaluate non-Markovian systems, statistical model check-
ing (SMC [2]) has become a popular alternative. At its core, SMC is Monte
Carlo simulation for formal models. It faces a runtime explosion when estimat-
ing the probability p of a rare event with a sufficiently low error, e.g. an error of
±10−10 for p ≈ 10−9 (i.e. a relative error of 0.1). Rare event simulation (RES)
techniques [17] address this problem. They can broadly be categorised into im-
portance sampling and importance splitting. The former changes the probabil-
ity distributions while the latter changes the simulation algorithm to make the
rare event more likely. Both techniques then compensate for these changes in
the statistical evaluation. RES has garnered the interest of mathematicians and
computer scientists alike. The scientific outcomes range from theoretical studies
of a RES technique’s limit behaviour and optimality [8,14,16] over experimental
validation on Matlab studies or ad-hoc implementations [10,11,19] to application
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reports using larger case studies [5,12,18] as well as automated tools [4,6,15,18]
that accept a loss of optimality in exchange for practicality.

Two recent papers showed theoretically [21] and empirically [19] that pro-
longing retrials in the Restart importance splitting technique [22] reduces the
required number of samples for the same error, with optimal runtime around
prolonging by 1 to 2 levels. The models and parameters used in [19] are de-
scribed in supplementary material [20], but the implementation is not publicly
available. In this paper, we demonstrate our replication of the results of [19,21],
where replication “means that an independent group can obtain the same res-
ult using artifacts which they develop completely independently” in the ACM
terminology [1]. To this end, we implemented Restart with prolonged retrials
(Restart-P) in the FIG rare event simulator [4] and the modes statistical model
checker [7] of the Modest Toolset [13]. We recreated the models in the IOSA
and Modest languages, and ran experiments following the original setup.

Our experiments confirm the behaviour and performance improvements of
Restart-P reported in [19,21]. However, we encountered ambiguities in the tex-
tual and pictorial descriptions of Restart-P and the experimental setup in the
original papers, some of which we could only resolve with input from the author
of [19,21]. Different parts of our work thus reside on different levels between rep-
lication and reproduction (which “means that an independent group can obtain
the same result using the author’s own artifacts” [1]). Throughout the paper, we
document where we achieved fully independent replication, where information
from private communication was needed, and where we had to ultimately resort
to requesting and inspecting the source code for the original implementation.

The contribution of this paper is thus threefold: (1) We provide pseudocode
for Restart-P in Sect. 2 that clarifies the technical details w.r.t. [19,21]. (2) We
demonstrate the new Restart-P capabilities of FIG and modes by replicating
the original experiments in Sect. 3. (3) We reflect on our experience (as prac-
tical computer scientists) in independently replicating existing (theoretically-
flavoured) work.

2 Restart with Prolonged Retrials

Let a stochastic timed discrete-event model be given as a tuple 〈S, s0, step, F 〉
of a set of states S, an initial state s0 ∈ S, a function step : S → [0,∞) × S
where step(s) samples a random path from s to the next event and returns a
pair 〈t, s′〉 of its duration and next state, and a subset of rare event states F ⊆ S.
A simulation run is a sequence of states obtained by repeatedly applying step.
Models with general probability distributions encode their memory in the states.

Importance splitting uses an importance function fI : S → [0,∞) indicating
“how close” a state is to the rare event. Partition the range of fI into k+1 non-
empty intervals to obtain a level function fL : S → { 0, . . . , k } with fL(s1) <
fL(s2) ⇒ fI(s1) < fI(s2). For simplicity, assume fI(s0) = 0 and step(s) =
〈t, s′〉 ⇒ fL(s

′) ≤ fL(s)+1 (a step moves up by at most one level). Let Ci
def= { s |

fL(s) ≥ i }. Then “thresholds Ti of fI are defined so that each set Ci is associated
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Input: model 〈S, s0, step, F 〉, fL, fS , prolongation depth j, max. sim. time Tmax

tF := 0, list ξ := {| 〈s0, 0, 0, 0〉 |} // 〈state, time, creation level, last-split level〉
while ξ 6= ∅ do // run all trials to end
〈s, t, `create , `split〉 := ξ.get-remove() // data of current trial
while t < Tmax do
〈t′, s′〉 := step(s) // simulate to next change in state
t′ := min{ t′, Tmax − t }, t := t+ t′ // advance time, at most to Tmax

if s ∈ F then tF := tF + t′/
∏`split

i=1 fS(i) // accumulate weighted rare time
〈`, `′〉 := 〈fL(s), fL(s′)〉, s := s′

if `′ < ` then // trial went down:
if `′ = 0 = `create then `split := 0 // reset main trial at level 0
else if `′ = 0 ∨ `′ < `create − j then break // end retrial if 0 or j down
else `split := min(`split , `

′ + j) // else update last-split level

else if `′ > `split then // trial went up far enough:
`split := `′ // update last-split level
foreach i ∈ {1, . . . , fS(`′)−1} do ξ.add(〈s′, t, `′, `split〉) // split off retrials

return tF // return accumulated weighted time spent in rare states

Algorithm 1: Restart with prolonged retrials of depth j (Restart-Pj)

with fI ≥ Ti” [21]. Function fS : { 1, . . . , k } → N \ { 0 } defines splitting factors.
fI , fL, and fS are specified by experts or derived automatically [6]. Importance
splitting with Restart starts a run (the main trial) from s0 that, whenever it
moves up from s in current level l − 1 to s′ in level l, spawns fS(l)− 1 new child
runs (retrials of level l) from s′. Retrials end when they move down below their
creation level. The trials’ weights in probability estimation are appropriately
reduced to compensate. Restart with prolonged retrials of depth j, denoted
Restart-Pj , is defined as follows in [21] (shortened and adapted to our notation):

In Restart-Pj , each of the retrials of level i finishes when it leaves set
Ci−j ; that is, it continues until it down-crosses the threshold i− j. If one
of these trials again up-crosses the threshold where it was generated (or
any other between i− j+1 and i), a new set of retrials is not performed.
If j ≥ i, the retrials are cut when they reach the threshold 0. The main
trial, which continues after leaving set Ci−j , potentially leads to new sets
of retrials if it up-crosses threshold Ti after having left set Ci−j . If the
main trial reaches the threshold 0, it collects the weight of all the retrials
(which has been cut at that threshold) and thus, new sets of retrials of
level 1 are performed next time the main trial up-crosses threshold T1.

In addition, [21, Fig. 1] graphically illustrates the behaviour of Restart-P1. The
original Restart [22] is Restart-P0. The above textual description clearly con-
veys the core idea of Restart-P, but we found it to omit three technical details:
– The condition for when an up-going retrial spawns new retrials is more com-

plex than with Restart. We became aware of this when comparing the tex-
tual description with the graphical depiction in [21, Fig. 1]. In fact, we need
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to keep track of the last level at which a retrial will split, and decrement that
value when it moves more than j levels down. (Independent replication.)

– The definitions in [19,21] do not include 0 in the range of values for i in Ci

and Ti. Our definitions would associate T0 with states s where fI(s) = 0. Im-
plemented in FIG, this lead to increasing underestimation as the prolongation
depth j increased. Only once we interpreted threshold 0 to refer to level 0
(i.e. states s where fL(s) = 0) did we obtain consistent estimations across
different j. The correctness of this interpretation was confirmed by the author
of [19,21] in private communication. (Semi-independent replication.)

– When a trial reaches, or spends time in, a state in F , we must weight this
event’s influence on the statistical estimate by a factor of 1/

∏fL(s)
i=1 fS(i) in the

original Restart. With this weight calculation, FIG produced subtle under-
estimations on some of the models from [20] when j > 0. We finally requested
the source code for the original experiments and found that fL(s) must be
replaced by the level on which the current trial was last split, i.e. the value
must not change when moving down ≤ j levels. (Resembles a reproduction.)

We make these details explicit in Algorithm 1, for the case of estimating the
long-run average time spent in F (i.e. steady-state simulation). FIG evolved as
described above and is thus mostly a replication. modes was extended with pro-
longations later, using a recursive formulation of the algorithm gleaned from the
original code. It thus lacks the complete independence of a replication as per [1].

3 Experiments

Table 2 in [21] provides steady-state estimates, numbers of samples, and runtimes
obtained using Restart-Pj on a Jackson (i.e. Markov) 2-tandem queueing net-
work for j ∈ { 0, . . . , 4 }. The same data is given in [19] for j ∈ { 0, . . . , 2 } on a
similar system with three queues and a seven-node network, in Jackson and non-
Jackson (using Erlang and hyperexponential distributions) variants. The original
articles and extra material [20] describe the models, and the experimental setup:
– The set F is characterised. E.g. for the 3-tandem network, it contains the states

where the third queue has ≥ L = 30 (Jackson) or 14 packets (non-Jackson).
– All probability distributions and the fI , fL, and fS functions are characterised.
– Tmax time values for the steady-state simulations are specified for all models.
– The statistical evaluation aims for a relative error of 0.1 with 95% confidence

(except for the tandem queue, where the error is 0.005); Restart-P runs are
performed sequentially until the half-width of the 95% confidence interval is
below 10% (resp. 0.5%) of the current estimate. (Note that this guarantees
the requested confidence only asymptotically for decreasing width [9].)

In our replication attempt, we had to resolve the following unspecified aspects:
– The queue capacities C > L are not documented, but influence the estimate:

for C close to L, the steady-state probability is underestimated. We settled for
C = 20 ·L in FIG’s IOSA models (replication); the influence of C −L rapidly
diminishes beyond small values. Later, from inspecting the original source
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Table 1. Experimental results for the examples considered in [19,21]

model
(type)
p

original [19,21] adapted orig. code modes FIG

j p̂ n time p̂ n time p̂ n time p̂ n time
2-tandem
(Jackson)
4.86E-15

0 4.85E-15 3909 2906 4.84E-15 2731 1930 4.88E-15 2542 988 4.85E-15 2537 4202

1 4.86E-15 3032 2107 4.93E-15 1905 1654 4.87E-15 1859 939 4.82E-15 1969 4000

2 4.86E-15 2660 2091 4.80E-15 1831 1959 4.85E-15 1845 1175 4.86E-15 1700 4379

3 4.87E-15 2476 2287 4.86E-15 1691 2319 4.83E-15 1626 1322 4.84E-15 1656 5448

4 4.85E-15 2458 3188 4.88E-15 1562 2638 4.85E-15 1610 1626 4.86E-15 1580 6402

3-tandem
(Jackson)
4.86E-15

0 4.66E-15 120 54 4.90E-15 89 28 4.24E-15 116 9 4.58E-15 122 43

1 4.61E-15 88 35 4.84E-15 44 20 4.90E-15 97 10 5.63E-15 80 36

2 4.66E-15 78 38 4.84E-15 49 19 4.83E-15 79 11 5.23E-15 65 39

3-tandem
(non-J.)

0 7.08E-15 95 137 8.38E-15 728 180 8.87E-15 1002 256 8.28E-15 1293 715

1 7.03E-15 65 90 8.50E-15 661 181 8.10E-15 650 182 8.65E-15 618 436

2 7.03E-15 55 90 8.34E-15 388 191 8.53E-15 386 157 9.59E-15 386 402

7-nodes
(Jackson)
2.54E-15

0 2.53E-15 42 16 2.33E-15 44 18 2.59E-15 36 10 2.34E-15 52 277

1 2.46E-15 28 12 2.50E-15 34 14 2.34E-15 26 11 2.47E-15 32 248

2 2.46E-15 27 12 2.41E-15 20 13 2.63E-15 25 15 2.42E-15 32 332

7-nodes
(non-J.)

0 7.57E-15 54 56 7.96E-15 149 52 8.98E-15 135 88 8.55E-15 202 1305

1 7.40E-15 44 52 7.37E-15 92 45 7.46E-15 103 84 8.03E-15 142 1323

2 7.64E-15 30 32 7.29E-15 79 52 8.31E-15 91 119 7.45E-15 126 1495

code, we found that the queues are practically unbounded (implemented as
32-bit integer counters), which we reproduce in the Modest models for modes.

– FIG by default uses the batch means technique for steady-state simulation,
where a single run is partitioned into equal-duration batches, each of which
provides one sample value. In communication with the original author, we
found that each of their samples results from an independent run. We adapted
FIG to do the same. It is the default in modes. (Semi-independent replication.)

– We also found in this communication that the original runs perform no split-
ting for the first 40 clients served; this part of the run is ignored as an initial
transient phase. We confirmed this in the source code. We measured the av-
erage time to serve 40 clients for each model and use the result as transient
phase duration with FIG and modes since neither tool supports a transient
phase based on clients served. (Semi-independent replication.)

The original experiments were realised in a single file of C code that represents
both the algorithm and the models, specialised to queueing models with trans-
ition probabilities and service rates specified in constant arrays. In fact, the code
we received implemented the 2-tandem queueing network only. We extended this
code with a compile-time choice among the models described in [20], and fixed
few small bugs. We thus have four sets of results to compare, shown in Table 1:
the original numbers given in [19,21], plus those from our new executions of the
adapted code, modes, and FIG. In the table, time is in seconds, p̂ is the estimate,
p is the true steady-state probability where it can be derived, and n is the num-
ber of samples needed by the statistical evaluation. The adapted code and FIG
ran on an Intel Xeon E5-2630 v3 (2.4-3.2GHz), and modes ran on a Core i7-4790
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(3.6-4.0GHz, 4 physical/8 logical cores) system. The adapted code and FIG are
single-threaded whereas modes used 7 simulation threads. The adapted code is
tailor-mode for these models, while FIG has to encode them in the more general
IOSA framework, making it slower; modes in turn profits from a special-case im-
plementation for CTMC to speed up the Markovian cases. Comparing runtimes
between tools is thus of limited use. The estimates are the centers of confidence
intervals returned by the tools with confidence and relative width as described
above. Each 〈estimate, n, time〉 triple was selected from 5 tool executions by pick-
ing the one with the median runtime. We underline the best runtimes among
values for j. However, the wide confidence intervals (except for 2-tandem), few
executions, and in principle unsound stopping criterion that we reproduce from
the original experiments mean that results, including best values of j, vary a lot
for different random seeds. The original experimental setup is thus insufficient
for drawing conclusions about the precise tradeoffs between specific values of j,
but may at most expose an overall trend.

Nevertheless, our estimates are mostly within the margin of error around the
original or true results. We confirm the main experimental conclusion of [19,21]:
as j increases, n decreases, but from some point—mostly j > 1 or 2—runtime
increases, due to the overhead of more retrials surviving longer. For the non-
Jackson triple tandem network, none of our results matches the numbers of [19].
Since the original code, albeit adapted, agrees with FIG and modes rather than
with the original results, we suspect an error in [19] or [20] w.r.t. this one model.

4 Conclusion

We demonstrated the extension of the FIG and modes rare event simulation tools
to support prolonged retrials in rare event simulation using Restart import-
ance splitting. These implementations and experiments were the outcome of an
exercise in independently replicating experimental research originally performed
in mathematics, from a computer science perspective. We confirm the key find-
ings of the earlier work. At the same time, we document several issues—small
but critical technical details of the algorithm and experimental setup—where
the publicly available information was insufficient for a completely independ-
ent replication. We in particular noticed that replicating randomised/statistical
algorithms poses a particular challenge since small errors may result in subtle
mis-estimations that are often drowned in the overall statistical error. In the end,
however, all issues could be resolved due to the exceptional support, respons-
iveness, and openness of the original author, José Villén-Altamirano, whom we
thank earnestly. However, such support cannot be expected for experimental
work in general, in particular where temporary staff like Ph.D. students—who
eventually graduate and move to new institutions or industry—perform the bulk
of the experiments. This paper thus also highlights the need for computer science
and the formal verification community to continue their push for artifact eval-
uation and archived, publicly available reproduction packages. A reproduction
package for our experiments is archived at DOI 10.6084/m9.figshare.12269462.

https://doi.org/10.6084/m9.figshare.12269462
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