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Abstract
Emotion regulation is a core construct of mental health and deficits in emotion regulation abilities lead to psychological 
disorders. Reappraisal and suppression are two widely studied emotion regulation strategies but, possibly due to methodo-
logical limitations in previous studies, a consistent picture of the neural correlates related to the individual differences in 
their habitual use remains elusive. To address these issues, the present study applied a combination of unsupervised and 
supervised machine learning algorithms to the structural MRI scans of 128 individuals. First, unsupervised machine learning 
was used to separate the brain into naturally grouping grey matter circuits. Then, supervised machine learning was applied 
to predict individual differences in the use of different strategies of emotion regulation. Two predictive models, including 
structural brain features and psychological ones, were tested. Results showed that a temporo-parahippocampal-orbitofrontal 
network successfully predicted the individual differences in the use of reappraisal. Differently, insular and fronto-temporo-
cerebellar networks successfully predicted suppression. In both predictive models, anxiety, the opposite strategy, and specific 
emotional intelligence factors played a role in predicting the use of reappraisal and suppression. This work provides new 
insights regarding the decoding of individual differences from structural features and other psychologically relevant variables 
while extending previous observations on the neural bases of emotion regulation strategies.
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Introduction

Emotion regulation is now considered as a core construct 
for mental health. Deficits in emotion regulation may lead 
to psychological disorders (Ochsner and Gross, 2008; Kring 
and Sloan, 2009; Sheppes et al., 2015; Frederickson et al., 
2018; Grecucci et al., 2020; Messina et al., 2021; Monachesi 
et al., under review). Evidence suggests that depression and 
anxiety (Gross and Muñoz, 1995; Campbell-Sills et al., 
2006; Grecucci et al., 2020), bipolar disorder (Johnson 2005; 
Lapomarda et al., 2021a, b), and substance abuse disorder 
(Sher et al., 2007) may all be the result of severe emotion 
dysregulation. Difficulties in emotion regulation within 

social situations are a main feature of borderline personal-
ity disorder (Kring and Werner, 2004; Ochsner and Gross, 
2008). In addition, aggression (Donahue et al., 2014), anger 
outbursts and sleep disorders (Gruber et  al., 2009) are 
believed to stem from emotion dysregulation. Due to the 
pervasive occurrence of emotion regulation problems across 
psychological disorders, clinicians have started incorporat-
ing techniques to regulate emotions in their treatments (Line-
han, 1993; Beauregard, 2007; Leahy et al., 2011; Messina 
et al., 2013; Dadomo et al., 2016, 2018; Frederickson et al., 
2018; De Panfilis et al., 2019; Grecucci et al., 2020). Two 
widely studied emotion regulation strategies are reappraisal 
and suppression. Reappraisal is an antecedent-focused regu-
lation strategy that modifies emotion before full activation of 
the emotional response. Reappraisal thus involves a volun-
tary attempt to reinterpret the meaning of a situation to alter 
its emotional impact (Gross, 1998). Differently, suppression 
is focused on the modification of emotions after their full 
activation and is defined as an attempt to inhibit an ongoing 
emotion-expressive behavior (Gross & Levenson, 1993). A 
few experimental studies examining the effect of reappraisal 
and suppression suggested that reappraisal decreases the 
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behavioral expressions related to negative emotions and does 
not increase physiological responses compared with when 
no regulation is implemented (Gross, 2002, 2015; Goldin 
et al., 2019). In contrast, suppression results in a reduction of 
positive emotion experience, while leaving negative emotion 
experience unchanged and yielding a physiological impact 
(Gross & Levenson, 1993, 1997; Gross, 2002; Mauss et al., 
2005; Brans et al., 2013).

Interestingly, individuals with more negative affect show a 
less habitual use of reappraisal and more frequent use of sup-
pression whereas individuals with more positive affect tend to 
display the opposite pattern (more frequent use of reappraisal 
and a less habitual use of suppression) (Gross & John, 2003; 
John & Eng, 2014). Moreover, neuroticism seems to be asso-
ciated with a reduced use of reappraisal and a more frequent 
reliance on suppression (John & Gross, 2004).

In the past 20 years, researchers have tried to understand 
the neural bases of specific emotion regulation strategies. 
One meta-analysis of 48 task-related fMRI studies focus-
ing on reappraisal (Buhle et al., 2014) reported increased 
activation in bilateral dorsolateral and ventrolateral prefron-
tal cortex (dlPFC, vlPFC), dorsal anterior cingulate cortex 
(dACC), supplemental motor area (SMA), and inferior/supe-
rior parietal cortex during both down- and upregulation of 
emotion. A more recent meta-analysis of 42 fMRI studies 
on reappraisal and acceptance showed decreased activation 
of limbic areas, increased activity in dlPFC and left lPFC 
during reappraisal (Monachesi et al., under review). One 
study showed increased activity in prefrontal cortex (PFC) 
and decreased activity in the insula and in the amygdala 
during reappraisal in response to disgust-eliciting film clips 
(Goldin et al., 2008). In addition, a MRI study showed the 
habitual use of reappraisal is associated with higher activity 
in the fronto-cingulate cortex (Vanderhasselt et al., 2013). 
Importantly, another study revealed that reduced resting-
state functional connectivity between right amygdala and 
medial PFC and posterior cingulate cortex (which are core 
components of the default mode network, DMN) predicted 
success in the use of reappraisal strategies (Uchida et al., 
2015). Relatedly, two resting state functional connectivity 
studies showed that individual differences in reappraisal 
affect DMN’s functional connectivity (Martins and Mather, 
2016; Morawetz et al., 2016). Finally, few studies suggest 
that the activity of DMN increases during reappraisal when 
viewing negative stimuli (Sripada et al., 2014; Xie et al., 
2016). Previous studies have consistently linked DMN to 
semantic and autobiographical memory, thought genera-
tions, self-reflective processes, and cognitive elaboration 
of one’s affective state (Raichle et al., 2001; Crosson et al., 
2002; Cato et al., 2004; Amodio and Frith, 2006; Olsson and 
Ochsner, 2008; Binder et al., 2009; Uchida et al., 2015). In 
line with these observations, we hypothesized that the role 
of DMN in reappraisal may be related to processes such as 

self-reflection and semantic elaboration of the meaning of 
the situation, to tame the affective response.

Concerning suppression, a study showed increased activ-
ity in the PFC, insula, and amygdala during suppression 
in response to disgust-eliciting film clips (Goldin et al., 
2008). The habitual use of suppression has been associated 
with an increase in baseline perfusion of the medial PFC 
(Abler et al., 2008). Also, this tendency was associated with 
decreased activation of the orbital medial PFC while expect-
ing to see unpleasant images (Abler et al., 2010). Moreo-
ver, a fMRI study showed the habitual use of suppression is 
associated with higher activity in amygdala (Vanderhasselt 
et al., 2013). One study on functional connectivity revealed 
a positive correlation between amygdala and dACC and a 
negative one between left centromedial amygdala and the 
SMA when using suppression (Picó-Pérez et al., 2018). 
Interestingly, one study by Sikka et al. (2022) further sug-
gested that some brain regions involved in suppression (e.g., 
insula, frontoparietal, and inferior parietal cortex) may over-
lap with the salience network. In the same vein, Muhtadie 
et al. (2021) suggested that the salience network, especially 
the insular part, may be a major hub for emotional salience 
processing. Indeed, the activity of the insula has been found 
to be modulated during the down-regulation of unpleasant 
stimuli (Grecucci et al., 2013a, b). Such modulation has been 
interpreted as a modulation of the emotive arousal elicited 
by the stimuli. Indeed, information from different parts of 
the brain (such as the amygdala, the anterior cingulate cor-
tex, and the hypothalamus) is integrated inside the insula to 
generate a model of the affective and proprioceptive state of 
the body. As such, we think the network encoding suppres-
sion may show a certain degree of overlap with the salience 
network. Suppression may act upon the map of the bodily/
affective state generated at the level of the insula.

Beside functional task-related studies, researchers also 
have tried to understand how individual differences in emo-
tion regulation strategies usage are mapped onto structural 
properties of the brain. Task-related activity provides real 
time information during cognitive and emotional operations 
(Poldrack and Gorgolewski, 2017). However, most fMRI 
studies consist of less than 50 participants, and often tasks 
vary across studies. Furthermore, for analyzing fMRI data, a 
large amount of information is required, such as the descrip-
tion of the task and the timings of the events. Therefore, 
combining task-based studies is more challenging compared 
to sMRI (Poldrack and Gorgolewski, 2017). Differently, 
structural brain properties and questionnaire measuring 
individual differences may represent a valuable and com-
plementary alternative to cognitive tasks (Poldrack et al., 
2017; Poldrack and Gorgolewski, 2017). In one sMRI study, 
a region of interest (ROI) analyses revealed a positive cor-
relation between the dorsal anterior cingulate cortex volume 
and the use of reappraisal (Giuliani et al., 2011a). In another 
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voxel-based morphometry (VBM) study, a positive correla-
tion between reappraisal and right and left amygdala volume 
was found (Hermann, Bieber et al., 2013a). More recently, 
Pappaianni et al. (2020) conducted a study by using an unsu-
pervised machine learning method based on Independent 
Component Analysis (ICA) known as source-based morpho-
metry (SBM, Xu et al., 2009) to investigate the individual 
differences in structural brain features as a function of reap-
praisal usage. In this study, 37 participants were divided to 
low and high reappraisal groups as a function of their scores 
on the Emotion Regulation Questionnaire (ERQ; Gross & 
John, 2003). The results revealed higher concentration of 
gray matter in a network including the frontal, temporal, 
and parietal regions, among low reappraisers compared with 
high reappraisers. However, this study focused only on reap-
praisal, the sample size was quite small for machine learning 
analyses, and the comparisons were conducted between two 
subsamples instead of considering how individual differ-
ences are continuously mapped onto the brain.

Regarding suppression, a study showed a positive cor-
relation between the right dorsomedial prefrontal cortex 
(dmPFC) volume and suppression usage (Kühn et al., 2011). 
In addition, a study using ROI and VBM analysis showed 
no relation between suppression use and volume of dACC 
(Giuliani et al., 2011a). Another study showed a positive 
correlation between anterior insula volume and use of sup-
pression (Giuliani et al., 2011b). Finally, a VBM study con-
ducted by Hermann et al. (2013a) found a positive correla-
tion between suppression usage and dorsal anterior cingulate/
paracingulate cortex and medial PFC grey matter volume.

The studies summarized above do not offer a clear-cut 
picture of the neural bases of reappraisal and suppression. 
This may be due to several methodological limitations: low 
number of participants, a priori defined ROI analyses, and 
massive univariate approaches. A perhaps more consistent 
picture can be found when examining the relations between 
the use of reappraisal vs suppression and some core psycho-
logical features. Different studies have suggested that some 
strategies may be more linked with specific emotional dys-
regulations (Dadomo et al., 2018; De Panfilis et al., 2019; 
Grecucci et al., 2020). For example, suppression has been 
associated with anxiety (Aldao and Nolen-Hoeksema, 2012), 
and some studies actually revealed that suppression may lead 
to the development of anxiety (Salters-Pedneault et al., 2006; 
Werner et al., 2011). By contrast, reappraisal is thought to 
be negatively associated with anxiety (Martin and Dahlen, 
2005; Garland et al., 2011; Desrosiers et al., 2013; Peh et al., 
2017). Beside anxiety, emotional intelligence (EI) may 
also play a role in the use of different regulation strategies. 
According to Mayer and Salovey (1997) EI is defined as 
“the ability to perceive accurately, appraise, and express 
emotion; the ability to access and/or generate feelings when 
they facilitate thought; the ability to understand emotion and 

emotional knowledge; and the ability to regulate emotions 
to promote emotional and intellectual growth.” Few studies 
have investigated the association between level of EI and use 
of reappraisal and suppression. One study has reported that 
a high score in EI was associated with a less frequent use of 
suppression (Andrei et al., 2016). In addition, other studies 
reported a positive association between EI level and the use 
of reappraisal together with a negative association between 
the use of suppression and EI (Schutte et al., 2009; Cabello 
et al., 2013; Nozaki, 2018). Consistently, a meta-analysis of 
90 studies revealed that the individuals with higher levels 
of EI are more likely to use reappraisal whereas individuals 
with lower levels of EI are more prone to use suppression 
(Peña-Sarrionandia et al., 2015).

Present study

Building on the considerations above, the purpose of the pre-
sent study was to provide new evidence of how individual 
differences in the use of reappraisal and suppression can be 
predicted by structural properties of the brain. Also, the role 
of emotional intelligence, anxiety, and the use of other strate-
gies will be jointly considered in the same predictive model. 
By considering these different classes of predictors together, 
one of our goals is to assess their relative contribution in pre-
dicting the use of different strategies of emotion regulation.

Given the fact that reappraisal and suppression are dif-
ferent in their supposed psychological mechanisms (Gross, 
2002), we expect different brain regions to be involved. 
Building on previous studies on this topic (Pappaianni et al., 
2020; Giuliani et al., 2011b; Kühn et al., 2011), we hypoth-
esized that the individual differences in reappraisal usage 
involve a network consisting of cognitive, semantic, and top-
down control regions, such as ventral medial PFC, parahip-
pocampus, and temporal regions of the brain. One additional 
hypothesis is that the network predicting reappraisal may at 
least partially overlap with the DMN, as the latter has been 
previously associated with self-referential processes and 
self-generated thoughts (Andrews-Hanna, 2012; Andrews-
Hanna et al., 2014), as well as with conceptual processing 
and perspective-taking. All these processes are thought to 
be involved in reappraisal. The prediction is that the greater 
the grey matter concentration inside this network, the greater 
the reappraisal usage. We also expect EI to have a positive 
association, and anxiety a negative association with the use 
of reappraisal.

By contrast, on the basis of previous studies (Giuliani 
et al., 2011a; Kühn et al., 2011; Hermann et al., 2013), we 
hypothesize that individual differences in the usage of sup-
pression are related to a network including the insula, for its 
relationship with arousal and bodily awareness, and parietal-
cerebellar regions more linked with response control and 
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monitoring. We also predict this network to overlap with the 
salience network in which the insula is the main hub. The 
salience network may be related to the generation and modu-
lation of the affective bodily map generated during emotional 
experiences. Here, the prediction is that the greater the grey 
matter concentration in this network, the greater the suppres-
sion usage. We also expect EI to have a negative association, 
and anxiety to have a positive association, in predicting the 
frequency of usage of suppression. Moreover, together with 
the psychological features, in the final model we also will 
include the ERQ score of the other strategy as a predictor 
(suppression for reappraisal, and reappraisal for suppres-
sion). Previous studies (Benson et al., 2019) suggested that 
the usage of one strategy may be predictive of usage of the 
other. Building on this, we expect individuals who frequently 
use one strategy to frequently also use the other.

In the present study, we incorporated these psychological 
features (together with the structural brain features) in the 
same predictive models to assess their relative contribution 
in a cohesive predictive model jointly capturing structural 
brain measures and psychological features. From a meth-
odological point of view, a combination of unsupervised 
and supervised machine-learning algorithms was used with 
a twofold purpose. First, we aimed to decompose the brain 
into naturally grouping independent grey matter circuits 
using ICA, an unsupervised machine learning approach. 
Second, we aimed to predict individual differences in the 
use of reappraisal and suppression by using the independ-
ent circuits of the first analysis by using a regression-based 
supervised machine learning approach (boosted decision 
trees) and including EI and anxiety scores as predictors. 
We believe that this approach may display several advan-
tages or, at least, an important and complementary source 
of information concerning the issues at stake. ICA is a mul-
tivariate method that considers the statistical dependency 
among voxels (Xu et al., 2009). Accordingly, the brain is 
separated into independent brain circuits based on regions 
with covarying grey matter concentration. In other words, 
the brain is decomposed into naturally grouping networks 
with lower and consistent dimensionality (Grecucci et al., 
under review). Such approach also is more coherent with a 
network perspective in neuroscience (Hamann, 2012).

Additionally, previous studies used correlations or regres-
sions to find association between networks parameters and 
emotion regulation variables. One limit of such frequentist 
approach is that results are strictly dependent on the sam-
ple and cannot be generalized to new cases. In the current 
paper, we used a supervised machine learning algorithm to 
see which structural features of the brain networks better 
predicts the use of reappraisal or suppression within new 
cases. In other words, the statistical model derived from the 
training sample is then tested on a different subset of data to 
assess generalization to unobserved cases (hold-out method). 

As such, this model directly tackles the predictive ability of 
the variables considered.

Method

Participants

Brain scans and questionnaires scores of 135 participants 
were included in the present study. The data were selected 
from “Leipzig study for mind-body-emotion interac-
tions” (OpenNeuro database, accession number ds000221, 
LEMON) and were collected at the Max Planck Institute for 
Human Cognitive and Brain Sciences (MPI CBS) in Leipzig 
(Babayan et al., 2019). The participants were prescreened 
by telephone interviews. The exclusion criteria for data col-
lection were as follows: no cardiovascular disease, history 
of psychiatric diseases, history of neurological disorders, 
history of malignant diseases, intake of the following medi-
cations: centrally active medication, beta- and alpha-blocker, 
cortisol, any chemotherapeutic, or psychopharmacological 
medication. We extracted a subset of participants with neg-
ative drug test and no alcohol use. Seven participants of 
the original sample of 135 were excluded due to corrupted 
data. Therefore, the final number of participants was 128 (36 
females) with mean age 29.72 ± 12.43 and average 12.73 
± 0.87 years of education. Participants provided written, 
informed consent, and they agreed to their data being shared 
anonymously. Participants received compensation for partic-
ipating in the study after the completion of all assessments.

Image acquisition

Structural images were acquired using a 3 Tesla scanner 
(MAGNETOM Verio, Siemens Healthcare GmbH, Erlan-
gen, Germany) equipped with a 32-channel head coil.

Behavioral data

To address our experimental questions, beside sMRI data, 
scores from three questionnaire were considered. The  
German version of the ERQ (Abler and Kessler, 2009) was 
selected to measure the frequency of usage of reappraisal 
and suppression. This questionnaire consists of ten questions. 
Six of the questions measure the tendency to use reappraisal 
and four questions measure suppression. Each response is on 
7-point Likert-type scale ranging from 1 (strongly disagree) 
to 7 (strongly agree). The German version (Laux et al., 1981) 
of State-Trait Anxiety Inventory (STAI-G-X2, Spielberger et  
al., 1970) was used to assess the trait anxiety levels of par-
ticipants. It consists of 20 questions on a 4-point Likert 
scale ranging from 1 (almost never) to 4 (nearly always). 
Finally, the German adaptation (Freudenthaler et al., 2008)  
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of Trait Emotional Intelligence Questionnaire-Short Form 
(TEIQue-SF, Petrides and Furnham, 2006) was used to assess 
the EI of the participants, and its subscales Well-Being, Self-
Control, Emotionality, and Sociability. This questionnaire 
consists of 30 items, including two items from each of the 
15 facets of the TEIQue.

Data analysis

Pre‑processing

First, the quality of structural MRI data was assessed to 
exclude any possible artifacts. Data were then pre-pro-
cessed using Computational Anatomy Toolbox (CAT12, 
http://www. neuro.uni-jena.de/cat/), a toolbox for statis-
tical Parametric Mapping (SPM12) in MATLAB envi-
ronment (The Mathworks, Natick, MA). The structural 
images were manually reoriented to the anterior commis-
sure as the origin. Then, the images were segmented into 
grey matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF) using CAT12. Next, the GM image registra-
tion was conducted with Diffeomorphic Anatomical Reg-
istration using Exponential Lie algebra (DARTEL) tools 
for SPM12 instead of traditional whole brain registration 
(Yassa and Stark, 2009; Grecucci et al., 2016; Pappaianni 
et al., 2018) Finally, the DARTEL images were normal-
ized to MNI-152 standard space and each image were 
smoothed with a 12-mm, full-width at half-maximum 
(FWHM) Gaussian kernel [12, 12, 12].

Unsupervised machine learning to decompose 
the networks

ICA was applied to the structural MR images of participants 
to identify independent circuits across the whole brain (Xu 
et al., 2009; Pappaianni et al., 2018; 2020; Sorella et al., 
2019; Saviola et al., 2020; Lapomarda et al., 2021a). ICA, 
part of Blind Sources Separation methods (Karhunen and 
Malaroiu, 1999), is an unsupervised machine learning 
procedure, which can be used to decompose the brain into 
naturally grouping networks based on covariations in the 
grey matter concentration. The resulting circuits represent 
specialized and partially segregated networks. In this study, 
the GroupICA toolbox (GIFT, http:// mialab. mrn. org/ softw 
are/ gift/) was used inside MATLAB environment (The 
Mathworks, Natick, MA). Following default parameters, 20 
independent components were extracted. Infomax algorithm 
was used to minimize the mutual information of the network 
outputs (Bell and Sejnowski, 1995; Lee et al., 1999). Then, 
we selected ICASSO, a GIFT toolbox to investigate the reli-
ability of the ICA algorithm. RandInit and Bootstrap were 
selected in ICASSO to provide stability of the components 

(Kubera et al., 2014). As suggested by the authors, ICA was 
set to run 100 times, and the minimum and maximum clus-
ter sizes were set at 80 and 100 respectively. ICA returned 
a matrix with the number of participants (row) and a vector 
of loading coefficients (columns), the columns indicate how 
each network is expressed in every participant. These load-
ing coefficients were then entered into supervised machine 
learning to see which circuits correctly predict the use of 
reappraisal and suppression.

Supervised machine learning to build a predictive model

The loading coefficients found by ICA were entered into 
supervised machine learning to predict the use of reappraisal 
and suppression. The MATLAB Statistical and Machine 
Learning toolbox was used to conduct such analysis. The 
purpose of this analysis was twofold: to build a model that 
correctly predicts reappraisal and suppression usage, and 
to allow generalization of our results to predict new cases. 
The feature selected to build a predictive model for reap-
praisal usage were: STAI, TEIQue-SF subscales, ERQ sup-
pression scores, and the ICs loading coefficients. To build a 
predictive model for suppression usage, the same predictors 
were selected, except for ERQ suppression scores, which 
were used instead of the reappraisal ones. Specifically, we 
used boosted regression tree model, which involves two 
techniques, namely decision tree algorithms and boosting 
methods. Decision trees are fit to improve the accuracy of 
the model and the boosted decision tree trains the model. 
Boosting algorithm is an adaptive method for combining 
many trees to improve the predictive model. Specifically, 
boosted regression trees are additive regression models in 
which simple trees are fitted in a forward, stepwise fashion. 
The error in each tree is calculated by a loss function and it 
is corrected in the next tree. Boosted regression trees have 
a number of advantages over tree-based methods. First, this 
model handles different types of predictors and accommo-
dates missing data. In addition, prior data transformation or 
elimination of outliers are not required. Finally, fitting mul-
tiple trees solves the relatively poor predictive performance 
(Elith et al., 2008).

Further analyses

To check the consistencies of our results and to further 
explore the direction of the effects (not visible with the boost 
trees method), we also entered the predictors (ERQ-, STAI-, 
tEI-scores, loading coefficients of the ICs) in two separate 
stepwise regressions, one for each strategy to test whether 
they converge with the previous machine learning results. 
The regression module of JASP Team (2021). JASP (Version 
0.16.0) was used to this aim (Fig. 1).

http://mialab.mrn.org/software/gift/
http://mialab.mrn.org/software/gift/
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Results

Unsupervised machine learning

ICA was applied to structural data (Xu et al., 2009; Pap-
paianni et al., 2018, 2020; Sorella et al., 2019; Saviola 
et al., 2020; Lapomarda et al., 2021a) and returned a matrix 
containing 128 rows (number of participants) and 20 col-
umns (number of independent components). The number 
of components was suggested as default number by GIFT. 
Only ICs with quality index (Iq) > 0.9 were included (from 
IC1 to IC17) for further analysis. The other components 
(IC18,19,20) were excluded (Fig. 2).

Supervised machine learning

The statistical and machine learning toolbox of MATLAB 
(The Mathworks, Natick, MA) built a predictive model 
for reappraisal and suppression usage. In this analysis, the 
boosted tree algorithm was chosen. The result revealed that 
suppression score, IC13 (temporo-parahippocampal-orbit-
ofrontal network), STA1 score, and tEI (all subscales) were 
relevant features in the boosted tree model for reappraisal 
usage. Moreover, Reappraisal Score, IC7 (insular network), 
STA1 score, tEI (all subscales) were relevant features in the 

boosted tree model predicting suppression usage (Fig. 3; 
Tables 1, 2, and 4).

Further analysis

To ensure the goodness of the boosted regression trees and 
to find a possible convergence across different methods, 
we also used regression to predict reappraisal and suppres-
sion scores. This method allows to estimate the weight of 
each factor in predicting the variables of interest. Multiple 
linear regression using stepwise data entry showed that 
STAI, ERQ-suppression, tEI (wellbeing subscale) and IC13 
(temporo-parahippocampal-orbitofrontal network) signifi-
cantly predicted reappraisal usage F (4,123) = 11.404, p < 
0.001 (Bonferroni corrected threshold), following the equa-
tion: reappraisal usage = 3.758 − (0.038 * STAI) + (0.277 
* IC13) + (0.250 * ERQ (suppression score) + (0.230 * 
Tei_wellbeing). Multiple linear regression using stepwise 
data entry showed that STAI, ERQ-reappraisal scores, tEI 
(emotionality subscale), and IC8 (frontopariatal and cere-
bellar network) significantly predicted suppression scores F 

Fig. 1  Schematic diagram of the methodology. First the T1 weighted 
images were preprocessed. Then 20 independent components were 
extracted using an unsupervised machine learning approach (ICA). 

Finally, the prediction model for reappraisal and suppression usage 
was obtained via a supervised machine learning method (boosted 
decision trees) and stepwise regression.

Fig. 2  Independent components from 1 to 17. ICA was able to 
decompose the brain into 20 covarying grey matter networks. Three 
ICs were excluded for their reliability (Iq<0.9)

◂
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(4,123) = 6.926, p < 0.001 (Bonferroni corrected threshold), 
following the equation: suppression usage = 3.405 + (0.024 
* STAI) − (0.235 * IC8) + (0.264 * ERQ reappraisal score) 
− (0.304 * tEI_emotionality). Moreover, the result depicted 
that reappraisal and suppression strategies covary (Fig. 3; 
Tables 3 and 4).

Discussion

The purpose of the current study was to provide new 
evidence of how individual differences in the use of two 
different strategies of emotion regulation, reappraisal vs. 
suppression, can be predicted by stable structural features 
of the brain and by relevant psychological features, such 
as anxiety and emotional intelligence. We first applied an 
unsupervised machine learning algorithm to sMRI scans 
of 128 healthy individuals to decompose the brain into 
naturally grouping independent grey matter circuits (ICs). 
The unsupervised machine learning algorithm returned 17 
distinct brain networks. Among these, IC13 captured a 
higher grey matter concentration within a temporo-para-
hippocampal-orbitofrontal network and was predictive of 
the use of reappraisal. Differently, IC7 reflected a higher 
concentration of gray matter within an insular network and 
was predictive of suppression. Notably, the subsequent 
stepwise regression analysis confirmed the role of IC13 
(together with the other psychological variables consid-
ered) for reappraisal, whereas IC8, capturing the network 
of higher gray matter concentration within fronto-tem-
poro-cerebellar regions (together with the other psycho-
logical variables considered), appeared to predict the use 
of suppression. Although the IC8 was not the component 
highlighted in the winning model (i.e., the model with 
higher R and lower RMSE; Table 2) of the boosted trees, 
it was the second component in order of importance just 
after the IC7. So, we consider both good candidates for 
the neural bases of suppression. In the following sections, 
we discuss our results in detail.

Temporo‑Parahippocampal‑orbitofrontal network 
for reappraisal

The supervised machine learning approach and the stepwise 
regression both provide converging evidence that IC13 pre-
dicts individual differences in the use of reappraisal. IC13 is 
mainly composed of temporal, parahippocampal, and orbito-
frontal regions. Concerning temporal regions, evidence from 
various neuroimaging studies converges on the importance 
of these areas in semantic and linguistic processes, particu-
larly with reference to the lateral and ventral temporal cortex 
(middle temporal, inferior temporal, fusiform, and parahip-
pocampal gyri) in reappraisal implementation (Ochsner & 

Gross, 2005, 2007; Ochsner et al., 2004, 2012; Buhle et al., 
2014; Forseth et al., 2018).

Considering the role of the frontal regions, a greater suc-
cess with the use of reappraisal has been shown to be posi-
tively correlated with resting state functional connectivity 
between the right amygdala and the left ventrolateral PFC 
(Morawetz et al., 2016) and negatively correlated with the 
functional connectivity between the right amygdala and the 
medial PFC (Uchida et al., 2015). Concerning the involve-
ment of this frontotemporal network, it nicely dovetails with 
a well-established psychological model of emotion regula-
tion (Ochsner and Gross, 2008), suggesting that prefrontal 
control regions may intervene to regulate and adjust seman-
tic and perceptual representations of the stimuli in lateral-
temporal regions during reappraisal (Ochsner & Gross, 
2005, 2007; Ochsner et al., 2012; Messina et al., 2015, 
2016). Another frontal region that is considered pivotal for 
successful reappraisal is the orbitofrontal cortex (Wager 
et al., 2008). In fact, a few studies suggest it plays a role in 
cognitive control functions that are critical for reappraisal, 
such as inhibition (Ochsner et al., 2004; Banks et al., 2007; 
Kanske et al., 2011). It is further interesting to note that 
recent evidence highlights the relevance of the connectiv-
ity between the OFC and the amygdala—a critical region 
for emotion processing—in the context of reappraisal. For 
example, Gao et al. (2021) have showed that the functional 
coupling between orbitofrontal cortex and amygdala is 
associated with use of reappraisal. Also, Kanske and col-
leagues (2021) showed decrease activity in the amygdala and 
increased activity in the orbitofrontal cortex during reap-
praisal. Possibly, these links between OFC and amygdala are 
an important neural underpinning of emotional regulations 
strategies and reappraisal in particular.

Concerning the parahippocampal gyrus, evidence sug-
gests that this area plays a key role in memory processes, 
including coding and retrieval, as well as in emotional pro-
cesses (Hamann, 2001; Gosselin et al., 2006; Van den Stock 
et al., 2012; Frank et al., 2014). In particular, according to 
Deak et al. (2017), increase activity in the parahippocam-
pal area during reappraisal may be due to the semantic pro-
cesses recruited when shaping a different interpretation of 
the same context. Consistently, a few studies have shown a 
link between parahippocampus and amygdala, in terms of 
functional connectivity. This link possibly mediates the con-
nection between semantic/contextual processing and emo-
tion (Aminoff et al., 2013; LaBar & Cabeza, 2006).

As expected, this temporo-parahippocampal-orbitofrontal 
network (IC13) partially overlaps with the DMN. The DMN 
includes brain regions that are active when individuals are 

Fig. 3  Top: brain plot reconstruction of C13 predicting reappraisal. 
Central part: brain plot reconstruction of IC7 predicting suppression. 
Bottom: brain plot reconstruction of IC8 predicting suppression
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not engaged in a specific task or during self-referential pro-
cesses and self-generated thoughts (Andrews-Hanna, 2012; 
Andrews-Hanna et al., 2014). Core regions of the DMN 
indeed consist of posterior cingulate cortex, parts of the 
precuneus, medial PFC, bilateral inferior parietal lobule, 
and parts of the posterior temporal areas. In addition, hip-
pocampus, medial temporal lobe, lateral temporal cortex and 
temporal pole also are often believed to be part of the DMN 
(Buckner et al., 2008; Broyd et al., 2009; Andrews-Hanna 
et al., 2010; Power et al., 2011). Interestingly, the dorsal 
medial PFC, the angular gyrus, the middle temporal gyrus, 
and the anterior temporal region that are part of DMN are 
involved in semantic processing (Binder et al., 2009; Wirth 
et al., 2011). The DMN may be involved in conceptual 
processing, perspective-taking, and reasoning; all these 
processes are crucial in reappraisal (Buhle et al., 2014). In 

conclusion, the greater the grey matter concentration inside 
this network, the greater these underlying abilities and, thus, 
the larger the reappraisal usage.

Insular network and Fronto‑parietal‑cerebellar 
network predict suppression

The supervised machine learning approach returned the IC7 
to be the best neural predictor of suppression usage. This 
network involves the insula and other key regions. The insula 
receives and combines inputs from various limbic and cor-
tical regions, such as the amygdala the anterior cingulate 
cortex and the orbitofrontal cortex. The integration of these 
regions produces a coherent model of self that consist of 
bodily states (Craig, 2002; 2009; 2010), which are essential 
elements when asked to suppress our emotions. Notably, a 

Table 1  Winning models, IC13 for reappraisal and IC7 for suppression usage

We additionally report the IC8 as the second winning model for suppression as confirmed by stepwise regression.
RS = reappraisal score; SS = suppression score;  R2 = coefficient of determination; RMSE = standard deviation of the residuals; MSE = mean 
squared error; MAE = mean absolute error; MLS = minimum leaf size; NoL = number of learners; LR = learning rate; BT = boosted tree; Tei 
SS = Tei subscales; STAI S = STAI score.

Target Features Model R2 RMSE MSE MAE MLS NoL LR

RS (ERQ) SS,STA1S, IC13, Tei SS BT 0.32 0.8489 0.7206 0.6786 8 30 0.1
SS (ERQ) RS,IC7, STA1S, Tei SS BT 0.16 1.0315 0.9522 0.764 8 30 0.1
SS (ERQ) RS, IC8, STA1 S, Tei SS BT 0.12 1.0068 1.0136 0.7931 8 30 0.1

Table 2  IC features for reappraisal and suppression, R-squared and RMSE values ordered from best to worse

R2 = coefficient of determination; RMSE = standard deviation of the residuals.

Target Feature R2 RMSE Target Feature R2 RMSE

Reappraisal (ERQ) Score IC13 0.32 0.8489 Suppression (ERQ) Score IC7 0.16 0.97582
IC8 0.09 0.97268 IC8 0.12 1.0068
IC1 0.08 0.9654 IC4 0.08 1.0199
IC16 0.08 0.97462 IC3 0.07 1.0255
IC4 0.06 0.97561 IC5 0.06 1.0315
IC5 0.06 0.98135 IC13 0.06 1.046
IC10 0.06 0.97761 IC17 0.05 1.0415
IC7 0.05 0.99257 IC15 0.04 1.0487
IC12 0.05 0.98817 IC9 0.02 1.066
IC6 0.04 0.98159 IC14 0.02 1.0566
IC11 0.04 1.0079 IC6 0.01 1.0608
IC2 0.03 0.99897 IC2 0.01 1.0641
IC15 0 1.0109 IC12 -0.01 1.0848
IC3 -0.04 1.0256 IC10 -0.01 1.0679
IC17 -0.04 1.0257 IC16 -0.07 1.1128
IC14 -0.08 1.0621 IC11 -0.08 1.1224
IC9 -0.09 1.0504 IC1 -0.15 1.1426
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previous experiment on the regulation of emotions elicited 
during interpersonal situations reported significant modula-
tion of the insula during emotion regulation (Grecucci et al., 
2013a; b). These authors hypothesized that the modulation 
of activity at the level of the insula may represent the regula-
tion of the emotion-driven physiological arousal.

For what entails the frontal regions included in IC7, 
Hayes et al. (2010) highlighted the association between the 
activation of the middle frontal gyrus and the ability to sup-
press facial expressions. Hence, the increased grey matter 
concentration in this area for frequent users of suppression 
strategies might stem from an enhanced awareness of facial 
expression. In addition, this network included superior tem-
poral regions and the middle temporal gyrus. These areas 
may be involved in mentalizing, especially with reference to 
the awareness of others’ intentions through the decoding of 
facial expressions or head and body motion (Frith and Frith, 
2003; Dörfel et al., 2014). Remarkably, this network greatly 
overlap with the so-called salience network, which indeed 
involves the insula, but also portions of the dorsal anterior 
cingulate cortex, the amygdala, the ventral striatum, and the 
substantia nigra/ventral tegmental area (Seeley et al., 2007; 
Menon and Uddin, 2010). Suppression relies on the integra-
tion of interoceptive awareness, proprioceptive awareness, 
social awareness, and personal salience (Muhtadie et al., 
2021). The salience network is active during salient emo-
tional stimuli, social behavior, and self-awareness (Craig, 
2009; Menon and Uddin, 2010; Gogolla et al., 2014). For 
these reasons, the salience network may play a role in the 
use of suppression. A representation of the state of the body 
as encoded in the insula (Muhtadie et al., 2021) may be 
necessary for suppression to modulate the bodily affective 
state (Grecucci et al., 2013a, b). Again, the greater the grey-
matter concentration inside this network, the greater these 
abilities, thus the enhanced use of suppression.

Stepwise regression revealed IC8 to play a major role 
in predicting the use of suppression, although with a 
negative relation. This circuit also was highlighted by the 
supervised machine-learning analysis (just after the IC7 

for importance). IC8 consists of a large frontopariatal and 
cerebellar network. Frontal regions of the brain are consid-
ered to be very important for cognitive strategies of emo-
tion regulation (Buhle et al., 2014; Kohn et al., 2014) but 
also in coordinating motor areas and in general cognitive 
monitoring of other functions (Aron et al., 2014; DePue 
et al., 2016). Moreover, frontopariatel regions have been 
shown to support attentional control functions (Cole et al., 
2013, 2014; Dodds et al., 2011; Power et al., 2011; Scolari 
et al., 2015). The negative relation between such cognitive 
control/attentional regions (IC8) and suppression may be 
interpreted as indicating that suppression may rely less on 
top-down control mechanisms, which are instead pivotal 
when deploying cognitive control and attentional strate-
gies. Both attention and cognitive control would thus not 
be involved in suppression. Building on this finding, one 
can conclude that the lesser the grey matter concentration 
inside this network, the lesser cognitive control abilities 
displayed, the larger the usage of suppression.

Emotional intelligence and anxiety in predicting 
reappraisal and suppression

Our analyses (both boosted trees and stepwise regression) 
confirmed the additional role of anxiety and EI in predict-
ing the use of reappraisal. Reappraisal has been generally 
considered an adaptive strategy, associated with healthiness 
and personal satisfaction (Aldao et al., 2010), that success-
fully modulates the affective state (Webb et al., 2012). Our 
analyses confirmed a positive relationship between EI and 
reappraisal (Hertel et al., 2009; Fernández-Berrocal and 
Extremera, 2016). Also, reappraisal has been long consid-
ered a protective factor over anxiety disorders (Hofmann 
et al., 2009). Our results confirm the negative relationship 
between anxiety and reappraisal. Importantly, the analyses 
also confirmed the role of anxiety and EI in suppression, 
although the direction, as expected, was the opposite com-
pared with reappraisal. For what concerns EI (emotionality 
subscale), we have found that it is negatively correlated with 

Table 3  Result from stepwise regression analysis with winning models IC13 for reappraisal and IC8 for suppression usage

SE = standard error.

Variable β SE t p 95% CI

STAI_Trait_Anxiety −0.038 0.011 −3.525 <0.001 [−0.059, −0.017]
ICA 13 0.277 0.078 3.54 <0.001 [0.122, 0.432]
ERQ_suppression 0.25 0.075 3.347 0.001 [0.122, 0.432]
TeiQueSF_well_being 0.23 0.104 2.201 0.03 [0.122, 0.432]
TeiQueSF_emotionality −0.364 0.11 −3.318 0.001 [−0.581, −0147]
ICA 8 −0.235 0.087 −2.692 0.008 [−0.408, −0.062]
ERQ_reappraisal 0.264 0.093 2.852 0.005 [0.081, 0.448]
STAI_Trait_Anxiety 0.024 0.012 2.103 0.037 [0.001, 0.047]
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the use of suppression. This further confirms previous obser-
vations according to which suppression comes with several 
costs in terms of physiological, cognitive, and emotional 
functioning (Nezlek and Kuppens, 2008; Brans, et al., 2013). 
Indeed, suppression has been associated with decreased 
emotional well-being and difficulties in the recognition and 
expression of emotions (Petrides, 2009). Thus, our study 
confirms previous investigations and suggests a relationship 

between low EI and maladaptive emotion regulation pro-
cesses (Peña-Sarrionandia et al., 2015).

Reappraisal and suppression are complementary 
strategies

Finally, our results suggest that reappraisal and suppression, 
respectively considered as adaptive and maladaptive strategies, 

Table 4  Independent Component 13, 7, 8

Talairach labels of regions of interest, Brodmann area, volume (expressed in cc) and max values coordinates are shown

Network Area Brodmann area Volume
(cc)

Random effects: max value (x, y, z)

Reappraisal (IC13) Inferior temporal gyrus 20, 37 0.5/2.1 5.1 (−40, −12, −27)/7.1 (53, −29, −17)
Sub-gyral 20 0.4/2.3 4.7 (−40, −16, −21)/6.8 (50, −31, −16)
Fusiform gyrus 20, 37 0.4/2.3 5.2 (−40, −14, −25)/6.6 (40, −11, −26)

(IC13) Middle temporal gyrus 20, 21 0.8/1.3 4.2 (-58, -51, 0)/6.5 (39, −6, −31)
Uncus 20, 34 0.2/0.4 4.2 (−37, −14, −27)/5.9 (36, −7, −29)
Cerebellar tonsil * 0.0/1.4 −999.0 (0, 0, 0)/5.1 (25, −56, −38)
Parahippocampal gyrus 20, 28, 34, 36 0.0/0.6 −999.0 (0, 0, 0)/4.9 (13, −5, −17)
Superior temporal gyrus 22 0.0/0.6 −999.0 (0, 0, 0)/4.5 (52, −29, 6)
Lentiform nucleus * 0.0/0.3 −999.0 (0, 0, 0)/4.3 (28, −9, 2)
Extra-nuclear * 0.0/0.2 −999.0 (0, 0, 0)/3.9 (31, −6, 0)
Rectal gyrus 11 0.2/0.0 3.6 (−9, 32, −26)/−999.0 (0, 0, 0)
Thalamus * 0.1/0.0 3.5 (−18, −19, 8)/−999.0 (0, 0, 0)

Suppression (IC7) Insula 13, 40, 41 6.0/6.0 8.1 (−40, −28, 18)/7.1 (45, −25, 19)
Superior temporal gyrus 13, 22, 41, 42 1.4/0.7 7.3 (−43, −28, 15)/6.0 (48, −27, 17)
Sub-gyral * 0.4/0.4 6.6 (−40, −31, 22)/5.5 (42, −28, 24)

(IC7) Transverse temporal gyrus 41 1.2/0.4 6.6 (−40, −29, 12)/5.2 (45, −20, 12)
Inferior parietal lobule 40 2.4/1.6 6.4 (−43, −28, 22)/6.4 (46, −28, 22)
Postcentral gyrus 2, 40, 43 0.3/1.7 5.0 (−49, −25, 18)/6.2 (52, −24, 18)
Extra-nuclear * 0.1/0.4 4.1 (−34, −28, 24)/5.3 (40, −21, 22)
Claustrum * 0.0/0.1 −999.0 (0, 0, 0)/4.6 (37, −5, 7)
Middle frontal gyrus 8, 46 0.0/0.4 −999.0 (0, 0, 0)/4.2 (24, 22, 42)
Supramarginal gyrus 40 0.2/0.0 4.0 (−49, −39, 30)/−999.0 (0, 0, 0)
Precentral gyrus 6, 13, 44 0.1/0.4 3.6 (−45, −8, 6)/3.9 (49, −7, 7)
Middle temporal gyrus 19, 39 0.0/0.2 −999.0 (0, 0, 0)/3.9 (45, −63, 18)
Superior parietal lobule 7 0.0/0.1 −999.0 (0, 0, 0)/3.7 (28, −50, 43)
Medial frontal gyrus 25 0.1/0.2 3.6 (−1, 27, −13)/3.6 (4, 25, −18)
Superior frontal gyrus 8 0.0/0.1 −999.0 (0, 0, 0)/3.6 (21, 25, 43)

Suppression (IC8) Cerebellar tonsil * 2.8/2.4 11.5 (−3, −56, −38)/11.2 (3, −56, -38)
Inferior semilunar lobule * 2.4/1.7 11.3 (−3, −59, −40)/11.0 (3, −59, −40)
Fourth ventricle * 0.1/0.3 4.8 (−3, −52, −25)/9.9 (0, −53, −33)
Nodule * 1.2/1.2 8.4 (−3, −52, −30)/8.5 (0, −55, −30)
Uvula of vermis * 0.3/0.2 7.4 (−3, −61, −32)/7.0 (3, −61, −32)
Uvula * 0.8/0.4 5.3 (−6, −67, −34)/6.4 (0, −61, −30)
Culmen * 3.2/0.4 5.0 (−30, −52, −23)/3.8 (28, −52, −21)
Declive * 0.4/0.0 4.3 (−27, −59, −21)/−999.0 (0, 0, 0)
Pyramis of Vermis * 0.1/0.0 3.5 (−3, −70, −29)/−999.0 (0, 0, 0)
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are not mutually exclusive. In our model, the usage of one pre-
dicts the other, and they covary in a positive way. This means 
that individuals using one strategy also may be prone to use 
the other (Ferschmann et al., 2021), suggesting that an adaptive 
regulation may be built upon a wide range of strategies to be 
selected according to the context (Sahdra et al., 2020).

It is worth mentioning that previous studies separately 
assessed the association between one strategy and factors, 
such as anxiety, EI, and the use of other strategies. In our 
study, instead, we included all these variables in one unique 
model, thus enabling the evaluation of their relative influ-
ence. This model thus provides information concerning the 
joint role of these factors in predicting reappraisal or sup-
pression. From our results, it is clear that EI and the use of 
the other strategy both outperform anxiety in their ability 
to predict the use of specific strategies (see the equations in 
the Results section).

Conclusions and limitations

The purpose of this study was to decode individual differ-
ences in the use of reappraisal and suppression from struc-
tural brain networks, EI, and anxiety scores by using super-
vised and unsupervised machine-learning techniques. The 
result revealed a temporo-parahippocampal-orbitofrontal 
network predicting the habitual use of reappraisal. Differ-
ently, an insular network and a fronto-parietal-cerebellar 
network significantly predicted the use of suppression. In 
addition, the results reveal that EI and anxiety are both sig-
nificant predictors of the use of reappraisal and suppression, 
although in opposite directions. Finally, the results suggest 
that reappraisal and suppression are complementary strate-
gies, and the use each strategy is positively associated with 
the use of the other one. From the results of this study, we 
can conclude that independent neural circuits, EI, and anxi-
ety jointly predict individual differences in the use of two 
important strategies of emotion regulation.

There are some limitations to note. Self-report question-
naires were used, and biases in these types of assessments 
due to the lack of awareness might have affected the results. 
Also, whereas the sample size of our study is in line with the 
recent literature focusing on similar issues in terms of struc-
tural neuroimaging data (Picó-Pérez et al., 2019; Baltruschat 
et al., 2021), it is smaller compared to investigations focusing 
on behavioural and psychological measures and predictors 
(Martin and Dahlen, 2005; Andrei et al., 2016; Nozaki, 2018). 
This warrants some caution when interpreting the individual 
differences at the level of psychological dimensions.

Furthermore, we only used structural data limited to grey 
matter. Future studies may want to extend these results to 
with matter and functional data. Finally, we used boosted 
regression trees to predict strategies usage. Other machine 

learning approaches are available and could have been used 
to predict the variable of interest. Because we do not know 
yet which algorithm works better for what kind of data, the 
present study may pave the way for additional methodologi-
cal research on the comparison between different algorithms.
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