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a b s t r a c t 

There is an astounding growth in the adoption of machine learners (MLs) to craft intrusion detection 

systems (IDSs). These IDSs model the behavior of a target system during a training phase, making them 

able to detect attacks at runtime. Particularly, they can detect known attacks, whose information is avail- 

able during training, at the cost of a very small number of false alarms, i.e., the detector suspects attacks 

but no attack is actually threatening the system. However, the attacks experienced at runtime will likely 

differ from those learned during training and thus will be unknown to the IDS. Consequently, the ability 

to detect unknown attacks becomes a relevant distinguishing factor for an IDS. This study aims to eval- 

uate and quantify such ability by exercising multiple ML algorithms for IDSs. We apply 47 supervised, 

unsupervised, deep learning, and meta-learning algorithms in an experimental campaign embracing 11 

attack datasets, and with a methodology that simulates the occurrence of unknown attacks. Detecting 

unknown attacks is not trivial: however, we show how unsupervised meta-learning algorithms have bet- 

ter detection capabilities of unknowns and may even outperform classification performance of other ML 

algorithms when dealing with unknown attacks. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

It is widely acknowledged that modern ICT systems such as in- 

ustrial control systems ( Cruz et al., 2015 ), medical support sys- 

ems ( Dey et al., 2018 ), virtual environments ( Cotroneoet al., 2017 ),

nd the Internet of Things ( Akyildiz and Kak, 2019 ) can be the tar-

et of attackers ( ABC n.d. ; Chou and Jiang, 2021 ; Buczak and Gu-

en, 2015 ). There is significant evidence on the risk of cyberattacks, 

oth in terms of the likelihood of being targeted and the cost and 

mpact of a successful attack. 

The number of computer security incidents has been 

teadily growing over the past few years: in 2021, SonicWall 

 Connell, 2022 ) reported an average of 28 million cyberattacks de- 

ected daily, with 140 0 0 0 of them being novel malware samples. 

tarting from 2020, the European Union Agency for Cybersecurity 

ENISA) observed a spike in nonmalicious incidents, most likely 

ecause the COVID-19 pandemic became a multiplier for human 

rrors and system misconfigurations, and attributed them as the 
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oot cause for the majority of security breaches ( Ardagna et al., 

021 ). 

The consequence of a successful cyberattack (simply termed an 

ttack from now on) may range ( Avizienis et al., 2004 ) from con-

dentiality issues to availability reduction or the loss of sensitive 

ata and thus integrity concerns. Importantly, security threats may 

lso have a safety impact; for example, an attack that aims at mak- 

ng the automatic braking system of a vehicle unavailable may also 

ave severe impacts on the health of the driver, the infrastructures 

nd the surrounding environment. Consequently, systems must be 

onceptualized, designed, and implemented to ensure that appro- 

riate security requirements are met. Among the possible coun- 

ermeasures, the detection of ongoing attacks is typically included 

n the mandatory security requirements ( Chou and Jiang, 2021 ; 

uczak and Guven, 2015 ). 

Intrusion detection systems (IDSs) are well-known means to 

romptly detect attacks. Given a target system to protect, an IDS 

onitors its performance indicators: examples include memory us- 

ge ( Cotroneoet al., 2017 ), throughput of buses ( Cruz et al., 2015 ),

ctive sessions ( T. Zoppi et al., 2019 ), and system calls ( Al and

ener, 2021 ). The set of monitored values (i.e., features) gathered 

y an IDS at a given instant is called a data point : collections of

ata points are typically collected in the form of tabular datasets. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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n IDS contains a machine learning (ML) algorithm that performs 

inary classification ( Zhang et al., 2022 ; Erickson et al., 2020 ) (i.e.,

t is a binary classifier) discerning between data points correspond- 

ng to an attack and data points corresponding to the normal be- 

avior of a system. The ML algorithm undergoes a training phase 

n which it processes a training dataset: it learns a model, which 

t a later stage will be deployed in the production environment to 

etect attacks occurring at runtime. 

Unfortunately, data points collected in the production environ- 

ent may differ from the data points in the training dataset. This 

s a very frequent scenario for two reasons. First, systems are be- 

oming increasingly more complex and dynamic, committing up- 

ates and reconfigurations. Consequently, training may quickly be- 

ome obsolete ( Casas et al., 2012 ) and reduce the effectiveness of 

he model learned. Second, during its operational life, a system 

ay be targeted by attacks that were not known at training time, 

hich we call unknown attacks . Unknown attacks are significant 

hreats, with the same effect as zero days ( ABC n.d. ; T. Zoppi et al.,

021 ), i.e., new attacks or variations of existing attacks that are 

pecifically created to exploit new vulnerabilities. It is credible that 

uring its life, a system will be the target of unknown attacks 

 T. Zoppi et al., 2021 ; Ardagna et al., 2021 ; Connell, 2022 ; Chou and

iang, 2021 ); therefore, IDSs must be prepared to deal with them 

o avoid major security issues. 

This paper reviews classifiers for intrusion detection, evaluat- 

ng their capability to detect unknown attacks. We organize clas- 

ifiers into five categories: unsupervised (UNS), supervised (SUP), 

eep learning (DEEP), supervised meta-learning (META-SUP), and 

nsupervised meta-learning (META-UNS). UNS classifiers do not 

se labels during training, i.e., they are not aware of whether a 

ata point is an attack. In contrast, SUP and DEEP classifiers need 

abeled data points during training. The SUP and DEEP classifiers 

re both supervised classifiers, and the latter uses deep neural net- 

orks. We apply this distinction because the literature on ML for 

abular data shows different classification performance between 

eep neural networks and other supervised classifiers. Often, DEEP 

lassifiers are considered to perform worse than SUP on tabu- 

ar data ( Shwartz-Ziv and Armon, 2022 ; Gorishniy et al., 2021 ). 

ast, META-SUP and META-UNS are supervised and unsupervised 

lassifiers, respectively, that employ meta-learning: meta-learning 

ses knowledge acquired during base-learning episodes, i.e., meta- 

nowledge, to improve classification capabilities at the meta-level 

 Brazdil et al., 2009 ). META-SUP classifiers require labeled data for 

raining, while META-UNS classifiers do not. 

We exercise a total of 47 classifiers on 11 public attack datasets, 

hich we manipulate to simulate the occurrence of unknown at- 

acks. Very briefly, the procedure is as follows. Some attacks are re- 

oved from the training datasets and used only for testing, which 

akes them unknown attacks. The whole procedure is repeated 

or all the attack categories and all the datasets. We analyze and 

ompare the detection performance when the number of unknown 

ttacks increases, and we explain which classifiers are more suited 

o detect unknown attacks. Our analysis reveals the following: 

• Classifiers suffer the introduction of unknown attacks, either 

because unknowns are undetected (especially when using DEEP 

and SUP classifiers) or because many false alarms are raised 

(this mostly occurs with UNS). 

• SUP, META-SUP, and, to a lesser extent, DEEP classifiers are ef- 

fective in detecting known attacks, but their detection perfor- 

mance drops significantly when unknown attacks occur. 

• Instead, UNS classifiers have better detection performance of 

unknown attacks but are clearly outperformed by DEEP, SUP, 

and META-SUP when dealing with known attacks. 

• Meta-learning enhances the classification performance of both 

SUP and UNS classifiers. Most noticeably and contrary to 
2 
common knowledge, META-UNS classifiers based on bagging 

( Breiman, 2001 ) and boosting ( Rätsch et al., 2001 ) ensembles 

improve detection performance to a point at which they are 

slightly worse than SUP, META-SUP, and DEEP classifiers against 

known attacks but have superior ability to detect unknown at- 

tacks. 

The rest of the paper is structured as follows. Section 2 re- 

orts background notions that are used in the subsequent sections. 

ection 3 reviews the related literature, describing the differences 

rom our work. Section 4 illustrates the methodology we applied. 

ection 5 presents our experimental results. Section 6 discusses 

hreats to validity. Section 7 concludes the paper. 

. Intrusion detection 

Recent trends ( Zhang et al., 2022 ; He et al., 2017 ; Chou and

iang, 2021 ) show how data-driven detection may provide a means 

o detect intrusions, as opposed to traditional rule- and signature- 

ased mechanisms. Data-driven detectors are usually implemented 

s binary classifiers (simply called classifiers in the rest of the pa- 

er) that assign either a positive or a negative class to each data 

oint. Typically, they act as anomaly detectors : they identify pat- 

erns that do not conform to a well-defined notion of normal be- 

avior ( Chandola et al., 2009 ), and these patterns are the symptom 

f intrusions or upcoming failures. The negative class is mapped to 

he normal class (no attack), whereas the positive class is known 

s the anomaly (or attack) class. 

.1. Machine learning and intrusion detection 

Traditionally, the vast majority of anomaly detectors for tabular 

ata are implemented through SUP and DEEP classifiers ( Liao and 

emuri, 2002 ; Zhao et al., 2019 ). They require training data for 

hich the label is known and build a model that is usually accu- 

ate, i.e., only a few misclassifications occur. SUP are usually par- 

itioned into 4 families: i) tree-based, mostly decision trees, ii) 

tatistical techniques ( Srivastava et al., 2007 ), iii) distance-based 

earners ( Liao and Vemuri, 2002 ), and iv) support vector machines 

 Hearst et al., 1998 ). 

DEEPs are neural network classifiers structured with many hid- 

en layers and are referred to as deep neural networks or deep 

earners ( Zhang et al., 2022 ; Li et al., 2021 ; LeCun et al., 2015 ).

eep learners are the de facto standard for classifying unstruc- 

ured data such as images, audio, lidar point clouds, and videos; 

owever, they often struggle when classifying tabular data. For 

nstance, recent works ( Zhang et al., 2022 ; Shwartz-Ziv and Ar- 

on, 2022 ; Li et al., 2021 ; LeCun et al., 2015 ) advocate that deep

eural network classifiers applied to tabular data have worse clas- 

ification performance than other supervised classifiers. There are 

lso studies that convert tabular data into images to fully exploit 

he potential of deep learners in processing images ( Zhu et al., 

021 ), but classification performance does not benefit much. Re- 

earch effort s have escalated in proposing libraries such as Auto- 

luon ( Erickson et al., 2020 ), FastAI ( Howard and Gugger, 2020 ),

nd TabNet ( Nishida et al., 2017 ), which provide implementations 

f deep learners to process tabular data. However, a benchmark of 

EEP classifiers for tabular data against other intrusion detectors 

as yet to be published. 

Intrusion detectors can also be implemented using UNS classi- 

ers, which do not require labels in the training data: they build 

heir model under the assumption that ongoing attacks manifest 

s observable deviations from the nominal behavior. The implica- 

ions are twofold: on the positive side, it makes UNS classifiers 

ore capable of detecting unknown attacks than supervised clas- 

ifiers, either SUP or DEEP. On the downside, they usually gener- 
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te a higher number of misclassifications – especially false pos- 

tives – than supervised classifiers ( Sathya and Abraham, 2013 ; 

ee et al., 2005 ). Clustering ( Hamerly and Elkan, 2004 ; Amer and

oldstein, 2012 ) is probably the most widespread among all fam- 

lies of UNS classifiers, although statistical ( Goldstein and Den- 

el, 2012 ), angle ( Kriegel and Zimek, n.d. ), density ( Vázquez et al.,

018 ), unsupervised variants of neural networks ( Kohonen, 1997 ), 

eighbor-based ( Hautamaki et al., 2004 ), and other ( Liu et al., 

008 ) classifiers have been proven to be valid alternatives. 

In addition, meta-learning is the study of methods that exploit 

nowledge acquired during base-level learning to build a strong 

eta-level learner ( T. Zoppi et al., 2021 ). A base-learning process 

eeds dataset features into many classifiers to be used for classifi- 

ation at the first stage: those are called base learners. Outputs of 

ase learners are orchestrated together to compute the classifica- 

ion result of the whole meta-learner. On the downside, the com- 

lexity of the classification problem usually increases when adopt- 

ng meta-learning because it requires training and running multi- 

le classifiers. 

Various meta-learners, namely, bagging, boosting, stacking, cas- 

ading, delegating, voting, and arbitrating, are summarized in 

 T. Zoppi et al., 2021 ; van Rijn et al., 2015 ). Bagging creates base-

earners as instances of the same classifier that are trained using 

ifferent bootstrap replicas of the training set ( Breiman, 2001 ). The 

nified result of the ensemble is derived by majority voting the 

ndividual results of base learners. Instead, boosting builds ensem- 

les of weak learners, which are instances of the same classifier 

hat undergo a quick training process using a small subset of the 

raining set. The detection performance of a single weak learner 

s poor; however, the proper composition of several weak learn- 

rs builds a strong meta-learner ( Rätsch et al., 2001 ; Chen and 

uestrin, 2016 ). Similar to bagging, the meta-level output is ob- 

ained through majority voting of the outputs of individual weak 

earners. Bagging and boosting meta-learners are widely used for 

upervised learning in the form of random forests ( Breiman, 2001 ) 

bagging) and ADABoost ( Rätsch et al., 2001 ), gradient boosting, 

nd XGBoost ( Chen and Guestrin, 2016 ) (boosting), respectively. 

hey also show promising applications to unsupervised learning 

 T. Zoppi et al., 2021 ). Other meta-learners, i.e., voting, cascading, 

tacking, delegating, and arbitrating, employ a heterogeneous set 

f classifiers and have many possible configurations. Consequently, 

e are not considering them further in this study. 

Overall, we consider two groups of meta-learning classifiers for 

ntrusion detection: META-SUP classifiers, which are bagging and 

oosting meta-learners whose base learners are supervised, and 

ETA-UNS classifiers, which instead use unsupervised base learn- 

rs. 

.2. Features and monitored performance indicators 

Features provide the knowledge that makes ML algorithms 

earn models and perform classification. For intrusion detec- 

ion, features are usually obtained by monitoring the perfor- 

ance indicators at the hardware or low level ( do Nasci- 

ento et al., 2021 ), system level ( T. Zoppi et al., 2019 ; Al and

ener, 2021 ), input/sensor ( Robles-Velasco et al., 2020 ), envi- 

onment ( Cotroneoet al., 2017 ), application level (e.g., SCADA 

 Cruz et al., 2015 )) or even coding level ( Li et al., 2021 ). Features

an be textual or numeric: textual features (e.g., the name of a 

rotocol) are always categorical, while numeric features may ei- 

her be categorical = (e.g., the ID of a system call) or continuous, 

escribing a continuous ordinal range of values, e.g., the percent- 

ge of memory used, or the number of packets received from the 

etwork interface in a time frame. 

Categorical features usually require preprocessing before be- 

ng fed to a classifier. In fact, classifiers may compute algebraic 
3 
alculus such as Euclidean distance ( Liao and Vemuri, 2002 ) or 

he estimation of angles in a multidimensional space ( Kriegel and 

imek, n.d. ), which delivers misleading results when processing 

ategorical features. This can be easily understood considering our 

revious examples: there is no meaning in computing the distance 

etween the IDs of system calls or between the names of network 

rotocols. Commonly, categorical features are preprocessed using 

ither one-hot encoding ( Rodríguez et al., 2018 ) or entity embed- 

ing ( Guo and Berkhahn, 2016 ). One-hot encoding replaces a cat- 

gorical feature with new features, one for each possible value of 

he categorical feature. Given a data point, each of the new fea- 

ures is set to 0, except for the feature that corresponds to the 

alue in the data point, which is set to 1 ( Rodríguez et al., 2018 ). In

ther words, each categorical feature is converted into an array of 

eatures: only one of the new features has a value of 1, leaving all 

he others at 0. Entity embedding represents categorical values in 

 continuous way, aiming to retain the relationship between differ- 

nt data values. Each value (entity) of a categorical feature is repre- 

ented by a vector of floating-point numbers. This avoids creating 

parse matrices, which are the likely result of one-hot encoding. 

.3. Metrics to evaluate intrusion detectors 

The classification performance of intrusion detectors is typi- 

ally expressed using metrics ( Chicco and Jurman, 2020 ) that com- 

ute correct classifications, True Positives (TPs) and True Negatives 

TNs), and misclassifications, False-Positives (FPs) and False Nega- 

ives (FNs). These metrics can be aggregated into a wide variety of 

ompound metrics ( Boughorbel et al., 2017 ). In this paper, we will 

se the following. 

Accuracy (ACC) calculates the percentage of correct classifica- 

ions (TPs and TNs) over all classifications. Importantly, 1 - ACC 

s usually referred to as the misclassification rate. 

CC = 

T P + T N 

T P + T N + F P + F N 

 − ACC = 

F P + F N 

T P + T N + F P + F N 

The Matthews correlation coefficient (MCC) ( Boughorbel et al., 

017 ) is particularly suited when the dataset is unbalanced 

 Chicco and Jurman, 2020 ), i.e., the numbers of normal data points 

nd anomalous data points are significantly different. This situa- 

ion occurs quite frequently in the security domain, where normal 

ata points are many and easy to collect, but only a few anomalies 

re present. 

CC = 

T P ∗ T N − F P ∗ F N √ 

( T P + F P ) ( T P + F N ) ( T N + F P ) ( T N + F N ) 

Recall (REC) ( Campos et al., 2016 ) is an FN-oriented metric that 

hows the fraction of detected attacks out of all attacks in a given 

ataset. It is also called coverage. 

EC = 

T P 

T P + F N 

. Related works 

The ever-growing demand for security mechanisms has led to 

he design of many intrusion detectors that embed ML-based clas- 

ifiers. This is repeatedly confirmed in the literature; for example, 

he reader may refer to recent surveys on intrusion detection sys- 

ems that employ ML ( Khraisat et al., 2019 ; Chou and Jiang, 2021 ;

uczak and Guven, 2015 ). 

In this paper, we carefully review the related works based on 

he following three subjects. 
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• Classifiers for intrusion detection : We seek the most relevant 

applications of supervised (SUP, DEEP) and unsupervised UNS 

classifiers for intrusion detection. 

• Performance in the case of unknown attacks : We review the most 

relevant strategies to evaluate intrusion detectors in the pres- 

ence of unknown attacks and the results. 

• Meta-learning for detecting intrusions : We discuss the most re- 

cent applications of META-SUP and META-UNS to intrusion de- 

tection and the results achieved. 

.1. Classifiers for intrusion detection 

Several works argue for the successful usage of SUP classifiers 

or intrusion detection. The study in ( Chkirbene et al., 2020 ) com- 

ares 6 tree-based supervised classifiers for detecting intrusions 

n the UNSW-NB15 ( Moustafa and Slay, 2015 ) dataset, conclud- 

ng that decision trees with pruning often outperform other ap- 

roaches (random forests and J48, among others). The authors of 

 Taher et al., 2019 ) compare support vector machines (SVMs) and 

 deep convolutional neural network (CNN). They conclude that se- 

ecting features helps increase classification accuracy on the NSL- 

DD dataset and that the deep CNN outperforms SVM by a fair 

mount. Additionally, the work in ( Vinayakumar et al., 2019 ) eval- 

ates the performance of deep learning models on six datasets. 

At the same time, recent studies ( Zhang et al., 2022 ; Shwartz- 

iv and Armon, 2022 ; Li et al., 2021 ; LeCun et al., 2015 ) question

he efficiency of DEEP classifiers in processing tabular data, show- 

ng how they often underperform with respect to SUP classifiers. 

articularly, the work in ( Shwartz-Ziv and Armon, 2022 ) compares 

 state-of-the-art deep learners for tabular data against a nonneu- 

al network classifier and shows that the latter has better classifi- 

ation performance than the former. In our study, we separate SUP 

rom DEEP, and we evaluate both on a wide variety of datasets for 

ntrusion detection, unraveling doubts about their detection perfor- 

ance. 

.2. Addressing unknown attacks 

The papers reviewed in Section 3.1 analyze the behavior of 

DSs under the condition that all attacks are known at training 

ime, and the IDSs are evaluated against the same attack categories 

hat have been used for training. As acknowledged in many works, 

 Khraisat et al., 2019 ; T. Zoppi et al., 2021 ; Liao and Vemuri, 2002 ;

. Zoppi et al., 2021 ; Catillo et al., 2022 ), a system may be targeted

y unknown attacks during its operational life. Detecting those at- 

acks is fundamental for the security of the target system; there- 

ore, it is of utmost importance to quantify to what extent an IDS 

an detect unknown attacks. 

In ( Khraisat et al., 2019 ), the authors review existing datasets 

nd classifiers for attack detection. Among other findings, they 

onclude that classifiers may have the problem of generating and 

pdating the information about new attacks, and they may raise 

any false alarms or have poor accuracy. Similarly, the study 

 Liao and Vemuri, 2002 ) applies the k-th nearest neighbor (kNN) 

lassifier to a dataset of system calls and measures a clear degra- 

ation in the detection performance of kNN, whose Recall drops 

rom 100% to 75% in the presence of unknown attacks. The stud- 

es ( T. Zoppi et al., 2021 ; T. Zoppi et al., 2021 ) measure the im-

act that zero-day attacks have on UNS classifiers and conclude 

hat zero-day attacks have a limited impact on the detection per- 

ormance. Last, the work in ( Catillo et al., 2022 ) trains different ML

lgorithms with CICIDS17 ( Sharafaldin et al., 2018 ) and evaluates 

hem using an unseen dataset, measuring a clear drop in accuracy. 

To summarize, the occurrence of unknown attacks has a notice- 

ble impact on the detection performance. The performance degra- 

ation is less evident in the case of UNS rather than SUP. However, 
4

he extent and performance of SUP and UNS are still not unan- 

mous. One of the goals of our study is to clearly state the per- 

ormance differences between UNS and SUP in the case of both 

nown and unknown attacks. 

.3. Meta-Learning for detecting intrusions 

In general, bagging and boosting meta-learners are commonly 

nd successfully used in supervised learning ( Breiman, 2001 ; 

ätsch et al., 2001 ). Especially in the case of bagging, a whole sur- 

ey ( Resende and Drummond, 2018 ) recaps the last 20 years of re- 

earch works that used random forests to detect intrusions. 

Most recently, it has been proven that meta-learning has 

he potential to reduce misclassifications of UNS classifiers 

 T. Zoppi et al., 2021 ). The study ( T. Zoppi et al., 2021 ) applies a

otal of 8 different meta-learners that use unsupervised base learn- 

rs, showing how bagging and boosting ensembles of UNS classi- 

ers significantly reduce misclassifications. However, the work fo- 

uses only on unsupervised classifiers and does not specifically 

hallenge the detection of unknown attacks. 

No other works are identified that exploit meta-learning to 

uild intrusion detectors. In the adjacent domain of error detec- 

ion, the work in ( Medico et al., 2018 ) evaluates the application 

f meta-learning. The authors investigated whether a kNN and a 

radient boosting supervised meta-learner can detect anomalies in 

ransient susceptibility tests. Lighting anomalies define dangerous 

peration conditions for machinery, and gradient boosting ended 

p detecting a significant number of anomalies with few missed 

etections, with a very high recall and low false-positive rate. From 

 different perspective, the work in ( Zhao et al., 2019 ) pairs gradi-

nt boosting with feature preprocessing to build detectors that are 

obust against unreliable labels due to careless annotations or ma- 

icious data transformation. 

To the best of our knowledge, our study is the first to compare 

upervised and unsupervised classifiers with and without meta- 

earning (i.e., SUP, DEEP, UNS, META-SUP, META-UNS) to detect 

nown and unknown attacks. In this way, we provide a solid eval- 

ation of the detection performance of all the major families of 

lassifiers according to the same experimental methodology. 

. Experimental plan 

This section details the experimental setup to compare the de- 

ection performance of supervised and unsupervised classifiers, 

ith and without meta-learning, addressing known and unknown 

ttacks. 

.1. Methodology to execute experiments 

We designed and performed a quantitative evaluation organized 

nto steps M1 to M5. 

M1 We collect public datasets containing data about intrusion 

detection. These datasets contain features collected by mon- 

itoring real or simulated systems during their normal opera- 

tion and when they are under attack. In total, we identified 

11 datasets, which we describe in Section 4.2 and Table 1 . 

M2 We preprocess each dataset to obtain tabular CSV files (see 

Section 4.3 ). Each row of the CSV file represents a data point, 

and each column represents a feature, except for the last 

column, which is the binary label (normal/attack) and de- 

scribes whether a row corresponds to an attack or the nor- 

mal operation. 

M3 Preprocessed datasets are used to generate training variants 

according to the procedure in Section 4.4 . Very briefly, given 

a dataset split into a training set and a test set and one at- 

tack category, we remove all the attacks of such categories 
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Table 1 

Selected datasets: name, release year, size, number of ordinal and categorical features, number and percentage of attacks, training variants. 

Name Year # Data Points Features Attacks TrainingVariants 

Ord. Cat. # % 

ADFANet 2015 132 002 5 6(0) 3 11.3 3 

AndMal17 2017 100 000 77 5(0) 4 15.5 4 

CICIDS17 2017 500 000 77 5(1) 5 79.7 5 

CICIDS18 2018 200 000 77 5(1) 8 26.2 8 

CIDDS 2015 400 000 5 7(2) 4 14.4 4 

IoT-IDS 2019 210 425 8 1(1) 8 42.3 8 

ISCX12 2012 600 000 4 10(3) 4 43.5 4 

NSLKDD 2009 148 516 37 5(3) 4 40.7 4 

SDN20 2020 205 167 63 5(1) 5 66.6 5 

UGR16 2016 207 256 4 6(2) 5 3.3 5 

UNSW-NB15 2015 165 461 38 6(5) 8 6.5 8 
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from the training set; this way, we obtain a training variant . 

We repeat this procedure for all 11 training sets and all at- 

tack categories contained in each dataset. In total, we obtain 

58 training variants. Classifiers are trained on the 11 training 

sets and the 58 training variants. The 11 training sets include 

all the attacks that are in the test sets, meaning that all at- 

tacks are known by the classifier. The training variants miss 

one attack category each, which instead appears in the test 

sets; this is equivalent to having unknown attacks. 

M4 Afterward, we select classifiers from the categories SUP, 

DEEP, UNS, META-SUP, and META-UNS. In total, we select 6 

SUP, 4 DEEP, 11 UNS, 4 META-UNS, and 22 META-UNS clas- 

sifiers. We train each of the 47 classifiers on each of the 11 

training sets and each of the 58 training variants. The clas- 

sifiers and their parameters are explained in Section 4.5 . 

M5 Finally, we collect the metric scores of all classifiers, and we 

create tables and plots to drive discussions and analyses. Our 

experimental setup, metrics, and tools used in the paper are 

reported in Section 4.6 . 

.2. M1 - dataset collection 

There is a wide variety of tabular datasets related to intrusion 

etection, ranging from device data in Internet of Things (IoT) sys- 

ems to network data for intrusion detection. Among many alter- 

atives, we seek datasets that include more than one attack in ad- 

ition to normal data. This is necessary to apply step M3. 

We select 11 datasets of network intrusion detection. The 

atasets are identified by consulting recent surveys on datasets 

 Khraisat et al., 2019 ; Ring et al., 2019 ) and querying online por-

als. Our selection process resulted in the following datasets: NSL- 

DD ( Tavallaee et al., 2009 ), ISCX12 ( Shiravi et al., 2012 ), UNSW-

B15 ( Moustafa and Slay, 2015 ), UGR16 ( Maciá-Fernández et al., 

018 ), ADFA-Net ( Haider et al., 2017 ), AndMal17 ( Lashkari et al.,

018 ), CIDDS001 ( Ring et al., 2017 ), CICIDS17 ( Sharafaldin et al.,

018 ), CICIDS18 ( Sharafaldin et al., 2018 ), IoT-IDS ( Kang et al., 2019 )

nd SDN20 ( Elsayed et al., 2020 ). Table 1 summarizes the datasets 

onsidered in this study, reporting domain, name, publication year, 

umber of data points, ordinal and categorical features, types, and 

ercentages of attacks. The Training Variants column indicates the 

umber of variants that are created in step M3. The datasets are 

istributed in the period from 2009 to 2020, and they are well- 

nown reference datasets in the domain. 

.3. M2 - dataset processing 

The selected datasets have heterogeneous structures; for in- 

tance, ISCX12, IoT-IDS, and UNSW-NB15 are available only as a 

ollection of network packets stored as PCAP files. Consequently, 
5 
e first converted the PCAP files into CSV files: this way, all 11 

atasets had the same tabular structure. 

Then, we analyzed all datasets to remove the following features 

hen present: IP address, port number, timestamp, and ID number 

 T. Zoppi et al., 2021 ). In the majority of cases, these features can

islead the analysis. For example, let us consider the IP address. 

he intrusion detector learns from the training set that a specific IP 

s malicious, and it classifies all the data points that contain such 

Ps in the test set as attacks. This would result in a high attack 

etection rate, but it is unrealistic because the intrusion detector 

annot assume to know from which IP address attackers will at- 

ack. Consequently, it should not use the information on the IP for 

raining: it describes a very specific setup of the system used to 

enerate the dataset and does not provide useful information on 

he system behavior. 

Last, we removed duplicated label columns (if any), zero-filled 

ll blank values resulting from the conversion from PCAP to CSV 

les, and split each dataset: 50% for training and 50% for testing. 

.4. M3 - creation of training variants 

We create training variants of each dataset as follows. First, we 

emind that an attack category that does not appear in the training 

et is unknown to the classifier. 

For this reason, we remove specific attack categories from the 

raining set of each dataset: this way, we create as many training 

ariants as the attack categories (# Attacks in Table 1 ) contained 

n each dataset. We label the training variants of each dataset as 

n_NO(att), where i) dn is the dataset name and ii) att is one of the

ttack categories (contained in the dn dataset), which is removed 

rom the training set. For example (see Fig. 1 ), ISCX12_NO(DoS) in- 

icates a training variant of the ISCX12 dataset where i) the train- 

ng set contains normal data and data related to all attacks but 

oS, i.e., Brute-Force, DDoS, and Infiltration attacks, and ii) the test 

et contains normal data and data related to all the attacks DoS, 

DoS, Infiltration, and Brute-Force. Notably, the test set is unal- 

ered: classifiers trained on different training sets or training vari- 

nts of a specific dataset will be validated using the same test set. 

e iterate this process for all 11 datasets, obtaining a total of 58 

raining variants. 

.5. M4 - selection of classifiers and categories 

Selecting a heterogeneous and relevant set of classifiers is of ut- 

ost importance for our study. As such, we select 6 SUP, 4 DEEP, 4 

ETA-SUP, 11 UNS, and 22 META-UNS classifiers as described be- 

ow and grouped in Table 2 . 
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Table 2 

Classifiers used in this study. 

Uses Meta-Learning 

No Yes 

Supervised DEEP SUP META-SUP 

AutoGluon, FastAI, Py-Custom, TabNet kNN, LDA, Naïve Bayes, Logistic 

Regression, SVM 

Bagging : Random Forest 

Boosting : ADABoost, Gradient 

Boosting, XGBoost 

Unsupervised UNS META-UNS 

COF, FastABOD, G-Means, 

K-Means, LOF, ODIN, One-Class SVM, HBOS, LDCOF, SDO, SOM, iForest 

Bagging : ensembles of each UNS 

Boosting : ensembles of each UNS 

Fig. 1. Creation of 4 training variants from the ISCX12 training set. The same ap- 

proach is applied to the 11 datasets. The normal data (no attacks) in the training 

set and in the training variants are the same. Each training variant has one attack 

category less than the training set. The test set is the same for the training set and 

the training variants. 
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.5.1. Supervised classifiers (SUP) 

We select 6 SUP classifiers that are widely used in the litera- 

ure: decision trees (tree-based family), k-nearest neighbors (kNN, 

 Liao and Vemuri, 2002 ), neighbor family), support vector ma- 

hines (SVMs, ( Hearst et al., 1998 ), support vector family), logistic 

egression ( Robles-Velasco et al., 2020 ), linear discriminant analy- 

is ( Srivastava et al., 2007 ), and naïve Bayes ( Sri vastava et al., 2007 )

statistical family). The configuration parameters, selected through 

rid searches, are described below. 

• Decision Tree: We adopt different depth limits in the range {5, 

10, no limit} to build the tree. 

• K-NN was use with values of k ε {1, 3, 5, 9, 19, 49, 99} and

Euclidean distance as a reference distance function. The usage 

of odd k values avoids ties in binary classification. 

• SVM: We individually instantiate three different SVMs using 

linear, RBF, or polynomial (quadratic) kernels. 

• Logistic regression, LDA and naïve Bayes: We use default pa- 

rameters from Scikit-Learn ( Scikit-Learn Library 2022 ). 

.5.2. Deep learners (DEEP) 

Additionally, we select 4 deep learning approaches specific for 

he analysis of tabular data. We choose three approaches that are 

urrently deemed the most promising in the state of the art, and 

or comparison, we also implement a by-the-book approach. 

AutoGluon ( AutoGluon Repository 2022 ) implements a deep 

eural network whose core structure is composed of densely 

onnected layers of neurons ( Erickson et al., 2020 ). TabNet 

 TabNet GitHub online ) selects the most relevant features at each 

raining epoch through a process that the authors call sequential at- 

ention . FastAI ( Howard and Gugger, 2020 ) provides a built-in Tab- 
6 
lar Learner that implements entity embedding of categorical fea- 

ures. Py-Custom is a custom model that we build using PyTorch 

nd is available at ( ABC 2022 ). We implement a deep neural net- 

ork with two hidden linear layers of 200 and 100 neurons, and 

e apply one-hot encoding to process categorical features. 

Autogluon, FastAI, and TabNet perform automatic parameter 

uning. Py-Custom is trained with different weight decays of the 

dam optimizer from the set {0.01, 0.02, 0.1, 0.2}. Notably, FastAI 

rovides the lr_finder callback that trains the model over a few it- 

rations and automatically finds the starting learning rate, which 

e also use in Py-Custom. 

.5.3. Supervised meta-learners (META-SUP) 

We applied meta-learning to supervised classifiers as follows: i) 

agging through random forests ( Breiman, 2001 ) and ii) boosting 

sing ADABoost ( Rätsch et al., 2001 ) and extreme gradient boost- 

ng (XGBoost) ( Chen and Guestrin, 2016 ). The parameters of clas- 

ifiers, whose best configuration is selected through grid searches, 

re described below. 

• Random Forest: 6 parameter combinations by using {10, 30, 

100} trees and depth limit set to {10, no limit }. 

• AdaBoostM2 with {10, 30, 100, 200} trees. 

• Gradient boosting with {10, 30, 100} trees, learning rate of {0.5, 

1.0}, and depth limit set to {10, no limit }, i.e., 3 ∗ 2 ∗ 2 = 12

combinations of parameters. 

• eXtreme gradient boosting (XGBoost) with different functions 

to estimate residual error, namely, { default(logistic), squared- 

error, hinge, Poisson}. 

.5.4. Unsupervised classifiers (UNS) 

We select a pool of UNS classifiers that are as het- 

rogeneous as possible and belong to the 7 main families 

 Goldstein and Uchida, 2016 ; T. Zoppi et al., 2021 ). We disre-

ard heavy classifiers (e.g., ABOD ( Kriegel and Zimek, n.d. ) has cu- 

ic time complexity for training), which require huge resources 

o achieve adequate time performance. We select one classifier 

or each family: K-Means (clustering, ( Hartigan and Wong, 1979 )), 

BOS (statistical, ( Goldstein and Dengel, 2012 )), SOM (neural- 

etwork, ( Kohonen, 1997 )), FastABOD (angle-based, ( Kriegel and 

imek, n.d. )), ODIN (neighbor, ( Hautamaki et al., 2004 )) , LOF (den-

ity, ( Breunig et al., 20 0 0 )) and Isolation Forests (iForest ( Liu et al.,

008 ), other family). Moreover, we select well-known classifiers 

uch as COF ( Tang et al., 2002 ), LDCOF ( Amer and Goldstein, 2012 ),

ne-class SVM, G-means ( Hamerly and Elkan, 2004 ), and sparse den- 

ity observers (SDO, ( Vázquez et al., 2018 )) to complete the selec- 

ion of UNS classifiers. 

We use the following combinations of parameters for training 

hose classifiers. Values k of neighbor-based classifiers, samples s 

nd trees t of iForest, number hist of histograms in HBOS, and ob- 

ervers obs of SDO are chosen in the set {1, 2, 3, 5, 10, 20, 50, 100}.

Other classifiers have specific parameters as follows: 

• One-class SVM may be created either with {linear, quadratic, 

cubic, radial basis function} kernels and ν ε {0.01, 0.02, 0.05, 
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0.1, 0.2}, where ν contributes to the definition of bounds on the 

number of support vectors to create. 

• In addition to obs , SDO also needs the q ε {0.05, 0.1, 0.2, 0.5} 

threshold that the classifier uses to derive the closest observers 

during the training phase. 

.5.5. Unsupervised meta-learners (META-UNS) 

Additionally, we create bagging and boosting meta-learners of 

ach UNS classifier: we create ensembles of {10, 20, 50} boost- 

ng and bagging instances of the same unsupervised classifier. For 

oosting, we vary the learning rate to update the sampling weights 

f train data points in the {0.5, 1, 2} range. This results in 22 META-

NS classifiers, i.e., a bagging and a boosting classifier for each of 

he 11 UNS classifiers. 

.6. M5 - Execute and compute scores 

Experiments are executed on a Dell Precision 5820 Tower with 

n Intel I9–9920X, GPU NVIDIA Quadro RTX60 0 0 with 24 GB 

RAM, 192 GB RAM, and Ubuntu 18.04, and they required approx- 

mately 6 weeks of 24 h execution. We provide GPU support to 

xercise DEEP classifiers. 

The Scikit-Learn ( Scikit-Learn Library 2022 ) and xgboost 

 XGboost package 2022 ) Python packages contain all the code 

eeded to exercise SUP and META-SUP classifiers, including mech- 

nisms for grid searches. Instead, we exercised UNS and META- 

NS classifiers through RELOAD ( T. Zoppi et al., 2019 ), a Java open-

ource tool that includes many implementations of unsupervised 

lassifiers and supports the creation of meta-learners. These frame- 

orks allow the easy calculation of ACC, MCC, and REC metric val- 

es. Classifiers were trained using the combination of parameters 

hat resulted in the highest MCC after grid searches, embracing all 

ossible configurations from Section 4.5 . Overall, we trained each 

f the 47 classifiers on each of the 11 training sets and the 58 

raining variants. Models obtained at the end of this process are 

sed to evaluate detection performance. 

Notably, ACC, MCC, and REC metrics do not quantify detection 

apabilities with respect to unknown attacks. Therefore, we define 

wo new quantities TU and FU similar to TP and FN but related to 

he occurrence of unknown attacks. 

TU (True Unknown): an unknown attack is detected. 

FU (False Unknown): an unknown attack is not detected. 

Then, we combine TU and FU into the Recall-Unknown (Rec- 

nk) metric as follows: 

ec − Unk = 

T U 

T U + F U 

Rec-Unk shows the fraction of unknown attacks detected by the 

lassifier out of all the unknown attacks. The higher the Rec-Unk is, 

he better coverage a classifier has in detecting unknown attacks. 

omputing Rec-Unk required writing a simple Python function that 

lters out normal data and known attacks from the test set. This 

ay, it becomes easy to compute TU and FU. 

The code to reproduce steps M1-M5 and the detailed result re- 

ort are available in the repository ( ABC 2022 ) and are anonymous 

or double-blind submission. 

. Results and discussion 

Section 5.1 investigates which classifiers show better detection 

erformance across all datasets and training variants and illustrates 

he difference between supervised (i.e., SUP, DEEP, META-SUP) and 

nsupervised (i.e., UNS, META-UNS) approaches. Section 5.2 dis- 

usses the ability to detect unknowns and their impact on detec- 

ion performance. Then, we compare the performance of the best 

upervised classifier (XGBoost) against the best unsupervised clas- 

ifier (boosting of FastABOD) in Section 5.3 , and we discuss the 
7 
onditions upon which unsupervised classifiers are preferable to 

upervised classifiers for intrusion detection (and vice versa). 

.1. On the detection performance of classifiers 

Table 3 reports the ACC, MCC, Recall, and Rec-Unk achieved 

y all classifiers used in this study, averaged across datasets and 

raining variants. The table shows the metric scores for each SUP, 

ETA-SUP, DEEP, UNS, and META-UNS classifier. We put in bold 

he lines corresponding to classifiers that resulted in the highest 

verage MCC of each category. Underlined items point to classi- 

ers (and metric scores), which we will extensively compare in 

ection 5.3 , because they achieve either the highest MCC or the 

ighest Rec-Unk. 

Classifiers of the same category usually show slight variations. 

n particular, the ACC, MCC, and REC of the META-SUP classifiers 

random forests, ADABoost, gradient boosting, and XGBoost) do not 

uctuate much. The same applies to UNS classifiers, whose met- 

ic values are in the ranges ACC ε [0.838; 0.876], MCC ε [0.511; 

.591], and REC ε [0.58; 0.65]. The largest variability of scores be- 

ween classifiers of the same category occurs with SUP classifiers 

n the top left of Table 3 . Scores achieved by Decision Trees and

NN are clearly better than those of LDA, Logistic Regression, Naïve 

ayes, and SVM. A possible explanation is that LDA, naïve Bayes, 

nd logistic regression heavily rely on a correct characterization 

f a statistical distribution that describes training data. A poor fit- 

ing of this distribution to the training data creates a model that 

utputs many misclassifications. Specifically, for supervised classi- 

ers in the top half of Table 3 , we observe that the META-SUP XG-

oost and random forest have better ACC and MCC scores than the 

UP and DEEP classifiers. In particular, DEEP classifiers are outper- 

ormed by META-SUP classifiers and by some SUPs. This confirms 

he known difficulties of deep learners in operating with tabular 

ata ( Shwartz-Ziv and Armon, 2022 ). 

The ACC and MCC scores of the UNS classifiers are lower than 

hose of the DEEP and META-SUP classifiers. In particular, the ACC 

nd MCC of the UNS classifiers never exceed 0.88 and 0.60, re- 

pectively. The difference with respect to META-SUP is remarkable: 

he best UNS classifier generates on average more than 12 misclas- 

ifications out of 100 classifications (ACC of ODIN, the best UNS, 

s below 0.88), while with META-SUP, we have only half of those 

isclassifications (5.2 out of 100, since XGBoost has ACC = 0.948). 

hese results are not surprising: supervised classifiers are known 

o be more accurate than unsupervised classifiers when detecting 

nown attacks. However, Table 3 also shows that META-UNS im- 

roves all metric scores with respect to UNS classifiers. Particu- 

arly, the Boosting ensemble of FastABOD (on the right of Table 3 , 

old, underlined) generates ACC scores that outperform DEEP clas- 

ifiers; this halves the accuracy gap between META-SUP and UNS 

lassifiers. This is important because UNS classifiers are tradition- 

lly considered to perform much more poorly than SUP, DEEP, and 

ETA-SUP classifiers and much less used in practice. 

.2. Detection of unknown attacks 

We evaluate the ability to detect unknown attacks of DEEP, 

ETA-SUP, and META-UNS. We avoid considering SUP and UNS 

lassifiers because their meta-learning counterparts, META-SUP 

nd META-UNS, respectively, are definitely better. 

The capability of detecting unknown attacks is quantified by the 

ec-Unk metric in Table 3 , which represents the percentage of un- 

nown attacks being detected by the classifier, averaged across all 

atasets. DEEP classifiers do not exceed 36% of Rec-Unk (on av- 

rage, at least 3 out of 5 unknown attacks remain undetected). 

nstead, META-UNS classifiers are intrinsically more likely to de- 
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Table 3 

Average ACC, MCC, Recall, Rec-Unk obtained by classifiers when trained on the 11 training sets and the 58 training variants. 

Type Classifier 

no Meta-Learning Bagging Boosting 

ACC MCC Recall Rec-Unk ACC MCC Recall Rec-Unk ACC MCC Recall Rec-Unk 

Supervised Decision Tree SUP 0.935 0.745 0.73 0.40 

kNN 0.936 0.742 0.76 0.28 

LDA 0.862 0.473 0.46 0.26 

Logistic Regression 0.808 0.296 0.30 0.16 

Naïve Bayes 0.803 0.296 0.31 0.32 

SVM 0.820 0.539 0.63 0.35 

Random Forest META-SUP 0.945 0.781 0.74 0.35 

ADABoost 0.921 0.700 0.65 0.30 

Gradient Boosting 0.935 0.743 0.71 0.38 

XGBoost 0.948 0.796 0.82 0.38 

AutoGluon DEEP 0.901 0.691 0.70 0.36 

FastAI 0.883 0.587 0.56 0.27 

Py-Custom 0.895 0.614 0.62 0.30 

TabNet 0.879 0.451 0.45 0.26 

Unsupervised COF UNS 0.874 0.589 0.63 0.57 META-UNS 0.889 0.638 0.70 0.58 0.890 0.632 0.73 0.59 

FastABOD 0.853 0.544 0.65 0.64 0.870 0.588 0.67 0.60 0.908 0.674 0.76 0.65 

G-Means 0.859 0.532 0.61 0.53 0.884 0.596 0.64 0.57 0.907 0.652 0.68 0.56 

K-Means 0.871 0.551 0.60 0.54 0.887 0.601 0.66 0.55 0.904 0.643 0.69 0.57 

LOF 0.838 0.514 0.58 0.56 0.844 0.500 0.54 0.51 0.847 0.530 0.66 0.52 

ODIN 0.876 0.591 0.65 0.58 0.898 0.625 0.68 0.61 0.905 0.657 0.72 0.60 

One-Class SVM 0.871 0.555 0.59 0.54 0.874 0.574 0.62 0.57 0.887 0.616 0.67 0.57 

HBOS 0.875 0.565 0.63 0.62 0.855 0.537 0.63 0.55 0.899 0.637 0.68 0.56 

LDCOF 0.854 0.511 0.58 0.54 0.872 0.580 0.64 0.55 0.901 0.643 0.68 0.54 

SDO 0.867 0.549 0.59 0.50 0.890 0.643 0.64 0.56 0.895 0.645 0.71 0.58 

SOM 0.853 0.512 0.58 0.55 0.885 0.624 0.64 0.55 0.889 0.609 0.64 0.54 

iForest 0.876 0.587 0.63 0.55 0.881 0.594 0.64 0.53 0.889 0.640 0.62 0.58 

Fig. 2. Box-plots showing the MCC scores of META-SUP XGBoost, DEEP AutoGluon 

and META-UNS FastABOD - Boosting classifiers when i) all attacks are known, ii) at 

most 10% are unknown attacks, iii) between 10 and 20% are unknown attacks, and 

iv) more than 20% are unknown attacks. 
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ect unknown attacks due to the way they learn the model during 

raining. 

Furthermore, Fig. 2 shows box plots for the META-SUP XGBoost, 

EEP AutoGluon, and META-UNS FastABOD - Boosting classifiers 

ith varying numbers of unknown attacks. These three classifiers 
8 
ave the best ACC and MCC scores in their groups. The blue box 

n the left of the figure draws MCC scores when no unknowns oc- 

ur: XGBoost and AutoGluon scores are higher than those of FastA- 

OD. However, increasing the percentage of unknowns in the test 

et makes the MCC of supervised and deep classifiers drop by a 

oticeable amount, whereas the MCC of FastABOD suffers only a 

inor degradation (see red, green, and purple boxes). 

We elaborate on this with the aid of Fig. 3 , which we built ac-

ording to the following procedure. We train all classifiers using 

 training set, evaluate them on the test set and select the su- 

ervised (SUP, META-Sup, or DEEP) and unsupervised (UNSUP or 

ETA-UNS) classifiers with the highest MCC. These two classifiers 

re considered the best supervised and unsupervised approaches 

or a given training set. We repeat this process by training all clas- 

ifiers using training variants, evaluating them on the test set, and 

electing the supervised and unsupervised classifiers that have the 

ighest MCC. Last, we repeat the procedure but measure Rec-Unk 

nstead of MCC. In total, this produces 69 points in the figure, ob- 

ained from the 11 training sets and the 58 training variants. 

For each training set and the training variants, we compute the 

ifference in MCC ( Fig. 3 a) and Rec-Unk ( Fig. 3 b) between the two

est classifiers previously selected. These differences are ultimately 

epicted in a scatterplot against the percentage of unknowns in 

he test set. As previously discussed, there are no unknowns when 

raining on the training sets: the corresponding results are on the 

 = 0 axes. In the other cases, the ratio of unknowns differs de- 

ending on the training variant, from 0.5% to almost 40%. Both 

catterplots contain 69 items, i.e., one item for each training (on 

he 11 datasets and 58 variants). Items above the x-axis point to 

atasets or training variants where a supervised classifier is better 

han an unsupervised classifier. 

Clearly, different classifiers may be selected when varying the 

raining sets and training variants. Particularly, the META-SUP XG- 

oost is selected in 36 out of 69 cases, the META-SUP Random 

orests in 18 out of 69, and the DEEP AutoGluon in 10 out of 69.

or unsupervised classifiers, FastABOD outperforms others in 26 

ut of 69 cases, SDO in 12 out of 69, HBOS in 7 out of 69, and

DIN in 6 out of 69. 
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Fig. 3. Differences in MCC ( Fig. 3 a) and Rec-Unk ( Fig. 3 b) of the best supervised 

classifier versus the best unsupervised classifier when trained on the 11 training 

sets and the 58 training variants. Differences are plotted against the% of unknowns 

in the test set. 
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Fig. 3 a highlights that SUP, DEEP and META-SUP classifiers usu- 

lly result in higher MCC scores, with fewer misclassifications –

oth FPs and FNs – than UNS and META-UNS classifiers. This trend 

ecomes progressively less evident as the number of unknowns in 

he test set increases: on the right of the plot, the difference in 

CC scores becomes almost negligible or even negative, meaning 

hat there is a turning point at which unsupervised classifiers be- 

ome better overall. 

Fig. 3 b shows the superior capabilities of UNS and META-UNS in 

etecting unknown attacks. The difference in Rec-Unk is almost al- 

ays negative: unsupervised classifiers are better than supervised 

lassifiers in identifying unknown attacks. 

.3. In-Depth comparison of boosting meta-learners 

Here, we directly compare the two classifiers shown in 

able 3 that have the highest ACC and MCC scores for supervised 

nd unsupervised intrusion detection. These are the META-SUP XG- 

oost and the META-UNS FastABOD - Boosting, respectively. 

XGBoost ( Chen and Guestrin, 2016 ) is an optimized distributed 

lassifier that builds ensembles of decision trees that cooperate 

o perform classification. Notably, XGBoost was proven to outper- 

orm many DEEP classifiers in a recent study ( Shwartz-Ziv and Ar- 

on, 2022 ). Instead, FastABOD is an unsupervised classifier that 

ecides on anomalies by calculating the variance of the ampli- 

ude of the angles where a given data point is the vertex, and 

he other two external items are any couple of neighboring data 

oints. FastABOD was primarily meant to be used as a regular UNS 
9 
lassifier, but it can be adapted to build META-UNS boosting meta- 

earners that improve classification performance. 

As shown in Table 3 , XGBoost outperforms FastABOD - Boost- 

ng when looking at average ACC, MCC, and Recall scores. Instead, 

astABOD - Boosting almost doubles the Rec-Unk score of XGBoost. 

ig. 4 elaborates more on this comparison. The approach is the 

ame we followed for Fig. 3 , but we compute the difference in MCC 

nd Rec-Unk between XGBoost and FastABOD - Boosting. Fig. 4 a 

hows how FastABOD - Boosting generates fewer misclassifications 

han XGBoost when unknowns in the test set exceed 10%. Items in 

he figure are either close to the y = 0 value or below. This is es-

ecially evident when the unknowns exceed 10% of attacks: points 

n the right of the dashed vertical line in Fig. 4 b mostly fall below

he x-axis. 

To summarize, our results show that when the percentage of 

nknowns in the test set exceeds 10%, the META-UNS FastABOD 

 Boosting is likely to be more accurate than the META-SUP XG- 

oost. More generally, META-UNS classifiers have better detection 

apabilities of intrusions when the percentage of unknown attacks 

s above a given threshold. With few unknown attacks, the results 

re more unpredictable, but there is still evidence of the superior 

bility to detect unknowns of unsupervised classifiers: the differ- 

nces in Fig. 4 b are mostly negative, highlighting how Rec-Unk 

cores achieved by FastABOD - Boosting are higher than those of 

GBoost. 

. Threats to validity 

Here, we report possible limitations to the validity and appli- 

ability of our study. These are not to be intended as showstop- 

ers when considering the conclusions of this paper. Instead, they 

hould be interpreted as boundaries that may affect the validity of 

his study. 

.1. Internal validity 

Internal validity is concerned with factors that may have influ- 

nced the results, but they have not been thoroughly considered in 

he study. 

• First, public datasets i) are often collected from heterogeneous 

systems, ii) may have been documented poorly, limiting the 

understandability of data, and iii) are not under our control 

( Catillo et al., 2021 ); therefore, actions such as considering 

more features, rebalancing classes or improving the quality of 

data to improve detection scores are out of consideration. We 

believe that the usage of many datasets, the creation of vari- 

ants and the employment of a wide variety of different classi- 

fiers allowed us to reduce the adverse effect of this threat on 

this study as much as possible. 

• Second, almost all 47 classifiers have hyperparameters whose 

optimal values have to be derived for each dataset as a result of 

sensitivity analyses. When applying DEEP, SUP, META-SUP, UNS, 

and META-UNS classifiers to different datasets, sensitivity anal- 

yses may not always find the optimal combinations of param- 

eter values: as a result, metric values could be slightly inferior 

with respect to using a classifier with optimal parameter val- 

ues. We tried our best to minimize this last aspect by exercising 

sensitivity analyses for the main parameters of all 47 classifiers 

considered in this study. 

• Third, each classifier may encounter a wide variety of problems 

when learning a model for each dataset during training (e.g., 

under/overfitting, poor quality of features, feature selection to 

leave out noisy features). It was not possible to examine each 

single case to detect and eventually solve these problems, but 

we believe that these events are mostly situational and do not 
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Fig. 4. Differences in MCC ( Fig. 4 a) and Rec-Unk ( Fig. 4 b) of XGBoost against the Boosting ensemble of FastABOD (FastABOD - Boosting) when trained on the 11 training sets 

and the 58 training variants. Differences are plotted against the% of unknowns in the test set. 
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have a noticeable impact when looking at the detection perfor- 

mance of the same classifier over a span of many datasets. 

.2. External validity 

External validity is concerned with to what extent the results 

f the study can be generalized. 

We conclude that META-UNS classifiers have better detection 

apabilities than others when the likelihood of unknown attacks 

xceeds 10%. This conclusion was obtained at the end of an exper- 

mental study embracing many public datasets and many ML algo- 

ithms for binary classification. It was not feasible to exercise all 

ossible classifiers using all available attack datasets; however, we 

elieve that the subset of classifiers includes algorithms belonging 

o all the most widespread families and, as such, does not have a 

etrimental impact on the generalization capabilities of this study. 

.3. Reproducibility of the study 

Reproducibility is concerned with to what extent the study is 

ependent on the researcher(s), i.e., if other researchers conducted 

he exact same study, the result should be almost the same. 

The usage of public data and public tools to run algorithms was 

 prerequisite of our analysis to allow reproducibility and to rely 

n proven-in-use data. We publicly shared scripts, methodologies 

nd all metric scores, allowing any researcher or practitioner to re- 

eat the experiments. 

. Conclusions and future works 

Supervised classifiers and, to a lesser extent, deep learners are 

sually accurate in detecting known attacks, but they cannot effec- 

ively detect unknown attacks (either brand new attacks, variants 

f existing exploits, or threats against which the intrusion detector 

s unprepared). Conversely, unsupervised classifiers are usually less 

ccurate than supervised classifiers, because their learning process 

oes not rely on labelled train data. However, the accuracy of un- 

upervised classifiers does not suffer major degradation in case of 

nknown attacks. 

This paper conducted an experimental analysis to compare su- 

ervised and unsupervised classifiers, with and without the adop- 

ion of meta-learning, to quantitatively analyze their ability in de- 

ecting known and unknown attacks. Results showed that unsuper- 

ised meta-learners are the best solution to detect unknown at- 

acks, and can detect known attacks similarly to several supervised 

lassifiers. Summarizing, unsupervised meta-learning is a promis- 
10 
ng approach to implement IDSs: it offers satisfactory detection ac- 

uracy in case of both known and unknown attacks. 

However, the detection of unknown attacks is still an open chal- 

enge, and more research is needed. Among the many alternatives, 

ur current and future works are focusing on crafting intrusion de- 

ectors that can detect known and unknown attacks even if mini- 

al to no information on attacks is provided in the training data. 

his happens frequently in many applications, when creating an 

ttack dataset to train the intrusion detector is not possible or ex- 

eedingly expensive. Consequently, we foresee the application of 

tatistical methods ( Moller et al., 2021 ) and generative adversar- 

al networks ( Ashrapov, 2020 ) to generate out-of-distribution data, 

hich we will use to enrich the training set and train accurate 

ntrusion detectors even if only normal data is provided. We will 

ompare the detection performance of this approach with intru- 

ion detectors crafted using zero-shot learning, experimenting with 

pproaches similar to ( Zhang et al., 2020 ), which show promising 

esults in setups where the availability of data for training intru- 

ion detectors is scarce. 
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