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A B S T R A C T   

The energy design of a building is often an activity of finding trade-offs between several conflicting goals. 
However, a large number of expensive simulation runs is usually required to complete a Building Performance 
Optimization (BPO) process with a high confidence of the optimal solutions. Although evolutionary algorithms 
have been enhanced with surrogate models, complex BPO problems with many design variables still require a 
prohibitive number of expensive simulations, or lead to solutions with related low accuracy. Hence, performing 
multi-objective optimizations of actual building designs is still one of the most challenging problems in building 
energy design. A novel efficient multi-objective algorithm for expensive models based on a probabilistic 
approach is presented in this work. The new algorithm reduces the computational time needed for the optimi
zation process, while increasing the quality of the solutions found. The algorithm was tested on the optimization 
problem of three groups of analytical test functions and on the BPO problem related to the refurbishment of three 
reference buildings. For the latter case, the efficiency, efficacy, and quality of the Pareto solutions found with the 
proposed algorithm were compared with the true Pareto front previously sought with a brute force approach. The 
results show that, for the most complex case among the three reference buildings, the algorithm can find about 
50 % of the solutions on the true Pareto front with 100 % accuracy. In comparison, other algorithms tested on the 
same problem and with the same number of expensive simulations, are able to find at best 5 % of solutions on the 
true Pareto front with an accuracy around 5–10 %.   

1. Introduction 

The European Directive 2010/31/EU [1] mandates member states to 
reduce the energy demand of buildings in Europe through cost-effective 
design solutions known as the “cost-optimal approach.” However, 
achieving high-efficiency building refurbishment standards can some
times lead to poor comfort conditions [2–3]. Therefore, designers need 
to consider additional performance aspects, resulting in multi-objective 
optimization problems with conflicting goals. 

The number of research papers focusing on building performance 
optimization (BPO) has significantly increased [4]. Deterministic 
methods like linear or non-linear programming are not efficient for 
solving BPO problems due to the specific characteristics of building 
simulation models. Hence, three main categories of stochastic multi- 
objective algorithms are commonly used namely evolutionary algo
rithms (EA), swarm-based algorithms (PS) [5–6], and hybrid algorithms 
that combine both approaches. These techniques incorporate decision- 

making mechanisms based on probabilistic concepts. EA algorithms 
simulate natural evolution by using generations, parents, children, and 
mutations. The best solutions (parents) are selected to create the next set 
of solutions (children) in an iterative and probabilistic process. On the 
other hand, PS algorithms are inspired by biological systems and col
lective intelligence behavior. Stochastic algorithms are suitable for 
various optimization problems, including high-dimensional, integer or 
real parameters, and continuous or discrete variables. In the BPO pro
cess, a detailed building model, often referred to as an expensive model, 
is typically used for dynamic simulations and to collect new data 
necessary for the optimization process. This approach is known as 
simulation-based optimization. However, obtaining optimal solutions 
with high confidence requires a large number of expensive simulation 
runs, which can hinder the initial adoption of optimization in practice 
[7]. 

Several literature reviews focus on the optimization process for 
building design problems. Evins [8] provides a review of computational 
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optimization models for sustainable building design problems. 
Machairas et al. [4] note that the number of papers addressing building 
design optimization is still relatively small compared to building control 
optimization. Shi et al. [9] approach the same topic from an architect’s 
perspective and find that 60 % of the works on building optimization 
utilize evolutionary algorithms. According to these reviews, one of the 
main challenges in BPO is the requirement for many expensive simula
tions before obtaining satisfactory results. Efficient optimization is 
crucial to find trade-off solutions in building design and refurbishment 
and to promote the practical application of BPO. However, an effective 
algorithm should also avoid premature convergence, which occurs when 
local optimal solutions (or dominated solutions) are selected instead of 
global optimal solutions. This limitation often arises from an incomplete 
analysis of the solution space. 

Functional approximation is a common method to improve the op
timization’s efficiency while maintaining good accuracy. It consists of 
approximating the expensive model of a building with a mathematical 
function, hereafter named metamodel, which is then optimized by 
means of an optimization algorithm [10–17]. Among the different types 
of metamodels used as surrogate for building models, the most used are:  

• Polynomial Regression, a popular metamodel that approximates the 
relationship between the input variables and the objective function 
or constraints. It is a simple and widely used approach, but it may 
struggle to capture complex nonlinear relationships [18–19]. 

• Kriging, known as Gaussian process regression, is a powerful meta
model that uses a stochastic process to model the objective function 
or constraint surface. It provides a flexible framework to capture 
complex and nonlinear relationships. Kriging models estimate the 
mean and covariance of the process using training data and generate 
predictions along with confidence intervals. Kriging is commonly 
used in engineering design optimization and simulation-based opti
mization problems [20–21].  

• Radial Basis Functions (RBF) metamodels use a set of radial basis 
functions to approximate the objective function or constraints. These 
functions are centered at training points and their influence on the 
metamodel is defined by their shape and spread. RBF metamodels 
can capture both global and local behavior and have been success
fully applied in various domains, including engineering design, 
finance, and environmental modeling [22–23].  

• Support Vector Machines (SVM) is a well-known machine learning 
algorithm that can also be used as a metamodel for optimization 
problems. SVM constructs a hyperplane in a high-dimensional 
feature space that maximally separates the data points. In the 
context of metamodeling, SVM is trained on the input–output pairs 
generated by the original function and can approximate both linear 
and nonlinear relationships. SVM-based metamodels have been 
applied in various fields, including engineering design, finance, and 
computer science [24–25].  

• Artificial neural networks (ANN) have gained increasing attention in 
recent years [26]. For instance, Kalogirou [27] combined an ANN 
with a GA to optimize a solar energy system, reducing the time 
required to find an optimal solution. Yizhe Xu et al. [28] also used an 
ANN coupled with an optimization algorithm to optimize the 
building envelope. 

Metamodels, which are surrogate models, have been employed to search 
for optimal solutions by coupling them with either an EA or PS algo
rithm, and the results have been compared. In this case, the chosen al
gorithm is a Genetic Algorithm called NSGA-II [29]. Similarly, Yujun 
Jung et al. [30] successfully performed multi-objective optimization of a 
residential building by combining an ANN with NSGA-II, achieving ac
curate and efficient identification of optimal solutions. Other types of 
metamodels can be found in the literature. For example, Jianli Chen 
et al. [31] compared the performance of a Gaussian Process and Multiple 

Linear Regression in terms of computational time and reliability when 
applied to a calibration process. 

Among the various strategies for integrating metamodels into the 
optimization process [32], a common approach involves fitting the 
metamodel to the available data (collected before the start of the opti
mization process) and then optimizing the metamodel using an EA to 
find a set of global solutions. These solutions are subsequently evaluated 
by the expensive model, and the results are added to the existing data 
set. The process is repeated iteratively until convergence is reached. The 
works of Xu et al. [17] and Brownlee and Wright [16] follow this 
strategy. Nonetheless, some challenges may arise regarding the number 
of design variables and/or the complexity of the metamodel, especially 
when it is a global approximation of the expensive model [33]. The 
higher the complexity of the costly model, the lower the accuracy with 
which the metamodel can approximate the model throughout the space 
of variables. For this, Knowles [34], applied the Chebyshev function to a 
multi-objective optimization problem guiding the selection of new 
offspring towards a portion of the objective space, thus avoiding po
tential issues associated with a globally approximate model. Nguyen 
et al. [35] analyzed works dealing with simulation-based optimization 
and concluded that future research should focus on enhancing the effi
ciency of search techniques. 

Nevertheless, even an efficient algorithm may mistakenly identify 
local solutions as global or yield a set of solutions that do not signifi
cantly differ from each other during the optimization process. Not only 
does the algorithm evaluation consider the efficiency, but it takes into 
account also the efficacy and solution quality. Efficiency measures the 
computational cost of the algorithm, while efficacy quantifies the dis
tance between the predicted Pareto front (the set of solutions found by 
the algorithm at the end of the optimization process) and the true Pareto 
solution (the global solutions to the optimization problem). Finally, 
solution quality assesses the uniformity of the Pareto front in the 
objective space. 

Efficiency can be affected by the sampling technique chosen for the 
selection of the initial sample. Sobol Sequence Sampling (SSS) is among 
the most frequently used techniques. It is based on Sobol low- 
discrepancy sequences designed to cover the entire search space more 
evenly compared to random sampling methods. They have a determin
istic and quasi-random nature and are well-suited for high-dimensional 
problems. The Latin Hypercube Sampling (LHS) is also a widely used 
method to determine the initial population. LHS is a stratified sampling 
method that ensures a more even coverage of the search space compared 
to simple random sampling. Finally, the Simple Random Sampling (SRS) 
is a basic and widely used sampling technique where each candidate 
solution is selected independently and with equal probability from the 
search space. Although it lacks the systematic coverage of LHS or Sobol 
sequences, simple random sampling is computationally efficient and 
easy to implement. 

The comparison of optimization algorithms in BPO processes is often 
challenging due to the absence of known true solutions. As a result, 
different authors employ various methods to evaluate and compare al
gorithms. One common approach is to set a simulation budget and 
compare the optimal solutions obtained by each algorithm against the 
best solution found within that budget. Multiple simulation runs are 
often performed, and the best solution, along with the standard devia
tion or average solution, is reported. Alternatively, some authors 
compare algorithms based on the number of iterations required for a 
solution to reach a tolerance error compared to a reference value. 
Nevertheless, there is no guarantee that algorithms will find any optimal 
solution within a finite number of iterations when algorithms are eval
uated using noisy estimates of solutions, as. This issue can impact the 
conclusions drawn when comparing two or more suboptimal solutions 
and may lead to incorrect assessments of the final performance of al
gorithms applied to BPO problems, as highlighted by Kämpf et al. [36]. 

The nature of the parameters influencing building optimization often 
lends itself to discrete optimization [37]. While geometric building 
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features are typically continuous, most other parameters have discrete 
commercial options. This characteristic enables the evaluation of the 
true solution in BPO through a brute force approach, where all possible 
combinations of discrete options are exhaustively evaluated. 

The literature review shows that there is room for improvement in 
the efficiency, effectiveness and quality of optimization algorithms, 
especially when employed in the optimization of expensive functions. 

This paper presents a new efficient algorithm for the multi-objective 
optimization process of expensive models based on the local approxi
mation method (i.e., the metamodel replaces the expensive model only 
for a portion of the objective space). The novelty in this work is achieved 
through a combination of different approaches. Firstly, a metamodel is 
employed to search for optimal solutions on behalf of the expensive 
models. This helps in simulating only the most promising solutions 
within the search space using the expensive models. The fitting process 
of the metamodel is based on a Bayesian probabilistic approach. This 
ensures a high-quality fitting process by fitting a multi-variate poly
nomial on each iteration without restricting the search to specific zones 
within the design variables space. Secondly, the metamodel fitting 
process changes its strategy as the optimization process progresses. 
Instead of using all available points, only the most promising ones are 
utilized. This narrows down the search specifically to the Pareto front 
zone within the design variable space, thereby improving approximation 
accuracy and training efficiency. Finally, the quality of the fitting pro
cess is greatly enhanced by moving from a multi-objective optimization 
to a single objective optimization. Consequently, the number of expen
sive simulations performed with design variables that are far from the 
Pareto front is significantly reduced. The main objective of this work is 
to reduce the computational time needed for the optimization process to 
be carried out, while increasing the quality of the solutions found. 
Considering that the algorithm’s runtime is negligible compared to the 
time needed for an expensive simulation, reducing the number of such 
simulations directly leads to a decrease in optimization time. Conse
quently, the focus of the problem shifts towards minimizing the number 
of expensive simulations required by the process to achieve satisfactory 
results. The new algorithm is therefore tested on a series of multi- 
objective problems and the results compared to other optimization al
gorithms in terms of efficiency, efficacy and solution quality by means of 
several metrics. For the comparison process, the solutions of an integer 
optimization problem found by a brute force approach, regarding the 
refurbishment of three simplified reference buildings, is utilized as a 
reference for the evaluation of the algorithm’s results. In a previous 
contribution, the effectiveness of SSS, LHS and SRS sampling methods in 
creating diverse initial populations was examined [32]. Since the Latin 
Hypercube Sampling (LHS) method consistently outperformed the other 
approaches, it has been chosen as the only sampling strategy in this 
work. However, different population sizes are used to evaluate the 
sensitivity of the algorithm performance to the characteristics of the 
initial sampling. 

2. Method 

The new algorithm is a multi-objective genetic algorithm imple
mented in MATLAB to solve computationally expensive optimization 
problems. The following paragraph provides a brief overview of the 
working principles of the algorithm (Fig. 1). 

Solving an optimization problem involves finding the optimal com
bination or configuration of variables (referred to as design variables) 
that leads to the desired objective function value, representing a specific 
aspect of system performance or behavior. In multi-objective optimi
zation problems, multiple objective functions or performance aspects 
are considered simultaneously, resulting in multiple sets of optimal 
configurations for the design variables. These sets of optimal configu
rations form the Pareto front. Each set of values for the design variables 
can be seen as a point in the variable space Rp+n, where p is the number 
of design variables and n is the number of objective functions. 

The optimization process begins with the random sampling of an 
initial population of combinations of design variables, represented as a 
set of points in the variable space. Each point’s performance is evaluated 
using the expensive model, associating each point with a set of values 
corresponding to the objective functions. The evaluation process gen
erates a dataset consisting of the points and their respective objective 
function values. At this stage, a matrix of weights is created and used to 
calculate the weighted mean value of the objective functions for the 
entire dataset during each iteration of the loop. By calculating the 
weighted mean value, the multi-objective optimization problem is 
transformed into a single-objective problem, simplifying the optimiza
tion process. Multiple sets of weights are generated randomly using 
Latin Hypercube Sampling (LHS) to explore the objective space of each 
objective function multiple times. The dataset obtained with the 
weighting process is then searched for points with a weighted mean 
value closer to the desired value, typically defined as the minimum or 
maximum. For sake of simplicity, optimization problems are considered 

Fig. 1. Algorithm’s diagram representing the main phases of the optimiza
tion process. 
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as minimization problems from this point onward. Then, the points with 
the lowest weighted mean value are used to fit the metamodel. Since a 
different set of weights is used for the weighting process in each iteration 
of the loop, a new metamodel is created and fitted each time with a 
different set of points. This ensures a higher quality of the metamodel 
fitting process, as only the most suitable points are selected for its cre
ation. The minimum of the metamodels is determined using a genetic 
algorithm (GA) at this stage. The values of the design variables associ
ated with the minimum found by the GA are then used in the expensive 
simulation model to obtain the corresponding objective function values. 
Finally, the new point found by the GA and its related objective function 
values are added to the dataset. The algorithm checks if the iteration 
budget is exceeded and/or if the convergence criterion is met. If either 
condition is fulfilled, the main loop ends, and the Pareto front is 
evaluated. 

2.1. Weights creation and sampling process 

The sets of weights are created with an LHS process before the start of 
the main loop to investigate the entire objective space. This approach 
enables the dynamic prioritization of various objective functions during 
different stages, thereby addressing the potential issue of the algorithm 
persistently converging to identical solutions when similar weight 
values are used. Nevertheless, the weights for the objective functions are 
determined in a manner that ensures their sum always equals one. 

In each iteration of the loop, each set is utilized to calculate the 
weighted mean value of the objective functions for the available dataset. 
To ensure compatibility with the maximum number of possible itera
tions, the total number of weights’ sets must equal nimax. Within each set, 
a weight is randomly generated for each objective function, nfobb, using 
the Latin Hypercube Sampling (LHS) process. This weight is then applied 
to the entire dataset during the corresponding iteration. 

Additionally, the weights are created in groups of nLHS elements 
using the LHS process. Each group is designed to cover the entire 
objective space independently. This approach enables multiple searches 
for the Pareto front within the same optimization process. Consequently, 
a matrix of weights, denoted as W, is constructed. The matrix has a size 
of nimax by nfobb, obtained by concatenating submatrices of weights’ sets 
in an iterative process. Each submatrix is derived through an adjusted 
LHS design process and has dimensions of nLHS by nfobb. 

The ratio between nimax and nLHS defines how many times the Pareto 
front is searched for. The typical relationship between the two quantities 
is: 

nLHS =
nimax

10
(1) 

this means that if no ending conditions is met during the process, the 
Pareto front is then searched for a total of 10 times (nimax/nLHS). 

In a similar process, the Latin Hypercube Sampling (LHS) method is 
employed to sample the values of the design variables to create the 
initial population. These sampled values are stored in the matrix X. If 
any constraints exist, all points in the sampling set are checked. If a point 
violates any constraints, it is randomly replaced with another set of 
values. This replacement process continues until all points satisfies the 
constraints. Once the sampling set is constraint-compliant, it is evalu
ated using the expensive model. This evaluation results in the creation of 
a matrix Y which contains the values of the objective functions corre
sponding to each point in the sampling set. The sampled design variable 
points and their respective objective function values obtained during the 
sampling process are then combined to form the initial dataset, denoted 
as D = [XY]. The dataset matrix is not fixed in size, as in each iteration of 
the main loop, a new set of design variable values and their corre
sponding objective function values are appended to the dataset. This 
iterative process allows for the continuous expansion of the dataset 
throughout the optimization procedure. 

2.2. Main loop 

The main loop in the algorithm consists of several steps. Firstly, the 
weighted mean value of the objective functions is calculated by taking 
the scalar product of matrix Y and the corresponding row of weights 
from matrix W. This calculation is performed for each point in the 
dataset D. The resulting vector Ŷ contains the weighted mean values for 
each point in the search space Rp present in the dataset. 

Next, a set of points in matrix X is chosen based on their related 
values in Ŷ, sorted in descending order. The selected points are the top 
ones with the lowest weighted mean values, up to a predetermined 
number set before the optimization process begins. These selected points 
are then used for the metamodel fitting process. The metamodel fitted on 
the selected points during each iteration of the main loop is a multi- 
variate polynomial. The polynomial fitting is performed using the 
Horseshoe method, a Bayesian approach [38]. 

Once the metamodel is fitted, a Genetic Algorithm (GA) is employed 
to search for the minimum of the metamodel. If there are constraints, the 
GA avoids the infeasible region of the search space by penalizing the 
associated objective functions. The coordinates of the minimum ob
tained from the GA are then checked. If these coordinates are not already 
present in the dataset, they are evaluated using the expensive simulation 
model, and the resulting objective function values are appended to the 
existing dataset. However, if the new solution is already in the dataset, 
the loop proceeds to the next iteration. 

In some cases, when many design variables are integers, finding new 
coordinates that are not already in the dataset may require additional 
effort. As a solution, the algorithm can optionally search for a new 
minimum within the hammering distance: if a new solution found with 
the GA matches a solution in the dataset, a random design variable from 
the newly found solution is adjusted by adding or subtracting a relative 
step value. The sign (positive or negative) of the step value is randomly 
determined. The choice of using the hammering distance option is 
arbitrary and is decided during the algorithm initialization. 

Finally, the ending conditions are checked. If none of the ending 
criteria are met, the loop proceeds to the next iteration, selecting a new 
set of weights, calculating the new objective mean values, and repeating 
the entire process. Once an ending condition is met, the algorithm stops, 
and the Pareto front is evaluated. 

2.3. Convergence criteria 

Ending conditions are utilized to interrupt the main loop and 
advance the algorithm to the next stage, that is the calculation and 
printing of the outputs. The code stops if it meets at least one of the three 
convergence criteria.  

1. The first condition requires no new point is found on the Pareto front 
in nend iterations (excluding the simulations of the sampling process). 
nend is calculated with different equations dependently on whether 
the hammering distance option is enabled or not, to ensure that the 
entire Pareto front is searched at least once after the sampling pro
cess, with an arbitrary precision related to the choice of the param
eter nLHS (i.e., the number of weights’ sets created within a LHS 
instance of the iterative process that leads to the weights’ matrix W); 

nend =
nLHS

10
if Hammering − distance is enabled (2)  

nend = nLHS if Hammering − distance is disabled (3)    

2. The second condition is met if all the objective functions’ values are 
less than an arbitrary threshold, defined as the maximum acceptable 
value for each objective function 

3. Finally, the last ending condition is related to the expensive simu
lation budget. The code stops if the number of expensive simulations 
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exceed the maximum number arbitrarily allocated before the start of 
the optimization process (i.e., nimax). When this final condition is 
met, the algorithm displays a warning about the accuracy of the 
solutions found, which may not be satisfactory. 

3. Testbench 

The efficiency and efficacy of the proposed algorithm are assessed 
through evaluations on multiple multi-objective problems. Initially, the 
algorithm is tested on three analytical functions chosen from Deb’s work 
[39]. These functions are specifically selected to include constraints, two 
objective functions, and a well-defined Pareto front that is densely 
populated. Furthermore, since other widely used and validated algo
rithms have been tested on the same optimization problems, it was 
possible to provide a comparison for the results found with the proposed 
algorithm. 

While analytical benchmarking solutions do not always align with 
the characteristics of building simulation codes, which can result in 
misleading conclusions [36], the algorithm is further tested on a multi- 
objective optimization problem based on building simulation as 
described in Prada et al.’s study [32]. This problem involves discrete 
design variables and the non-linearity of the energy balance, which 
present additional challenges for the proposed algorithm [40]. 

This section introduces the analytical test functions as well as the 
case study from Prada et al.’s work [32]. Furthermore, the metrics used 
for comparing the algorithms are defined. 

3.1. Analytical test cases 

Three multi-objective test cases were selected for the testbench of the 
algorithm. The first test case is relative to the BNH test problem, from 
Binh and Korn [41]. This simple case does not have a practical appli
cation and consists of two objective functions (Equation (4) and (5), 
which must be minimized while also considering two constraints 
(Equation (6) and (7). The search space is defined by two continuous 
variables (x,y), which feasible ranges are set in Equation (8) and (9). 

minimize f1(x, y) = 4*
(
x2+y2) (4)  

minimize f2(x, y) = (x − 5)2
+(y − 5)2 (5)  

constraint C1(x, y) = (x − 5)2
+ y2 ≤ 25 (6)  

constraintC2(x, y) = (x − 8)2
+(y + 3)2

≥ 7.7 (7)  

0 ≤ x ≤ 5 (8)  

0 ≤ y ≤ 3 (9) 

While the second constraint function is redundant as it is not in the 
feasible range of values for both variables x and y, the first constraint 
function does not eliminate any solution from the feasible search space, 
but rather reduce the density of feasible points present in it [39]. 

The second test case is relative to the Two-Bar truss design originally 
studied by Palli et al., [42]. In this case, three variables (x, y) repre
senting geometrical properties of a two-bar system (i.e., the cross- 
sectional area of the two bar and the vertical distance between the 
two ends of the bars respectively – Fig. 2) are used to minimize the 
volume of the truss (Equation (10) as well as the stresses along each of 
the two bars (Equation (11). Also in this case, the variables are contin
uous. The constraint function ensures that the truss does not go under 
elastic failure if a load specified in Equation (12) is applied to the 
system. 

minimize f1(x, y) = x1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
16 + y2

√
+x2

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + y2

√
(10)  

minimize f2(x, y) = max(σ1, σ2) (11)  

constraint C1(x, y) = max(σ1, σ2) ≤ 105 (12)  

x ≥ 0 (13)  

1 ≤ y ≤ 3 (14)  

withσ1(x1, y) =
20

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
16 + y2

√

yx1
; σ2(x2, y) =

80
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + y2

√

yx2
(15) 

The last test case utilized for the algorithm benchmark is relative to 
the Gear Train Design problem [43] (Fig. 3). The aim of the two ob
jectives functions is to minimize the error given by the obtained gear 
ratio in relation to a required one of 1/6.931 and the dimensions of four 
gears, by changing their number of teeth. Given the nature of the 
problem, four variables are considered (x = xa, xb, xd, xf ), representing 
the number of teeth for each gear and so, admitting only integers values. 

minimize f1(x) =
(

1
6.931

−
x1x2

x3x4

)2

(16)  

minimize f2(x) = max(x1, x2, x3, x4) (17)  

12 ≤ x ≤ 60 (18)  

3.2. Building simulation optimizations 

The optimization process for the refurbishment of three buildings 
was used as a secondary testbench to evaluate the proposed algorithm. 
In a previous study by Prada et al. [32] conducted in 2018, they 

Fig. 2. Two-bar truss problem [39].  

Fig. 3. Gear train design problem[39].  
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developed an algorithm that combined the multi-objective Genetic Al
gorithm NSGA-II with various metamodels. The BPO deals with the 
refurbishment of three specific buildings (Fig. 4): a penthouse (PH), an 
intermediate flat (IF), and a semi-detached house (SD). 

The three reference buildings present different compactness ratios S/ 
V, where S represent the dispersing surface and V the conditioned vol
ume: 0.97 for the detached house, 0.63 for the penthouse, and 0.3 for the 
intermediate flat in multi-story building. 

The typical envelopes of constructions built before the first Italian 
energy legislation in 1976, which have not undergone renovation, have 
been chosen for all three reference buildings. They are characterized by 
an opaque envelope resistance of 0.97 m2K W− 1 and single pane glass 
with a standard timber frame. The thermal bridges in these reference 
cases have two-dimensional thermal coupling coefficients calculated 
according to EN ISO 10211. This calculation results in a linear trans
mittance of 0.098 W m− 1K− 1 for corners, 0.182 W m− 1K− 1 for inter
mediate floors and walls, and 0.06 W m− 1K− 1 for the perimeter of 
windows. 

The infiltration rate for all the building reference configurations is 
determined based on the calculations specified in UNI EN 12207 and EN 
15242. The heating system in the reference buildings consists of a 
standard boiler coupled with radiators and an on–off control system. To 
represent a climate typical of Northern Italy (Climatic zone E in the 
Italian classification), the weather conditions of Milan was chosen. 

The design variables related to the optimization process of the three 
buildings are relative to the energy-saving measures (ESMs) that it is 
possible to apply to the non-renovated buildings:  

1. Placement of an additional layer of expanded polystyrene with 
varying thicknesses (ranging from 0 to 20 cm) to the vertical walls, 
roof, and floor independently. Different initial costs were considered.  

2. Replacement of windows: this measure focuses on replacing existing 
windows with more efficient glazing systems, such as double or triple 
pane windows, with either high or low solar heat gain coefficients.  

3. Boiler replacement: the existing boiler is replaced with either a 
modulating or condensing boiler that includes an outside tempera
ture reset control. 

4. Installation of a mechanical ventilation system: this measure in
volves installing a mechanical ventilation system equipped with a 
cross-flow heat recovery system. 

A cost-optimal framework utilizing a multi-objective optimization 
approach has been employed to determine the performance of different 
retrofit strategies. The first objective focuses on enhancing energy effi
ciency by minimizing the Primary Energy for Heating (EPH). The second 
objective involves minimizing the total cost of the building, following 
the comparative framework methodology of cost-optimal levels. To 
measure the total cost of the building over a 30-year lifespan, the Net 
Present Value (NPV) indicator is used. The NPV is calculated by sum
ming the cash flows associated with each intervention over time. The 

initial costs, derived from a regional price list, are considered for all the 
energy-saving measures (ESMs), along with annual energy costs, main
tenance costs, replacement costs, and residual values for equipment with 
longer lifespans. 

A brute force approach was employed to evaluate all possible com
binations of the variables listed earlier. For the intermediate flat, there 
were 630 potential combinations, while for the penthouse, there were 
13,230 combinations. In the case of the semi-detached house, the 
number of combinations reached 277,830. By evaluating all possible 
combinations, it was possible to assess the effectiveness of the models in 
accurately identifying the true Pareto front. 

3.3. Metrics 

In this study, some of the metrics proposed by Prada et al. [32] were 
used to evaluate the performance of the algorithm in solving the 
building refurbishment optimization problems. However, these metrics 
could not be applied to the three test functions optimization problems 
due to the continuous nature of some design variables and the inability 
to use brute force methods to search for the true Pareto front solutions 
required for metric assessment. 

The metrics are categorized into efficacy, efficiency, and quality 
metrics. Efficiency metrics aim to assess the effort required by the al
gorithm to converge, while efficacy metrics measure the distance be
tween the true Pareto front and the one found by the algorithm. Quality 
metrics evaluate the variety or dissimilarity of solutions generated by 
the algorithm [32]. It is important to note that all objective values were 
normalized with respect to the objective functions of the existing 
buildings before evaluating these metrics. 

For efficiency, the ratio between the number of costly building en
ergy simulations and the total number of combinations in the variable 
search space (NE) was chosen. NE allows for comparing different algo
rithms regardless of computational time, as the time required for 
executing the MATLAB code or the computational time of the code itself 
is negligible compared to the time needed for each expensive simulation. 

Efficacy is quantified by two metrics: the fraction of true Pareto front 
solutions found by the algorithm (PS) and the number of wrong optimal 
solutions identified by the algorithm (C). 

Finally, the selected quality metric is the pure diversity of the Pareto 
front, which is normalized based on the pure diversity of the true Pareto 
front (nPD). 

4. Results 

This section presents the results obtained applying the proposed al
gorithm to both the analytical test cases and the optimization process for 
refurbishing the three buildings. 

Firstly, the optimization of the analytical test cases is presented, and 
the algorithm’s performance is evaluated based on the minimum rela
tive objectives. Whenever possible, the results obtained from applying 

Fig. 4. Reference buildings used in the optimization problems: from the left - intermediate flat (IF), penthouse (PH) and semidetached house (SD) [32].  
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other algorithms to the same test cases are reported to allow for com
parison. Additionally, graphical representations of the Pareto fronts 
obtained using the proposed algorithm are provided for a direct com
parison against the results reported in Deb’s work [39]. 

Subsequently, the optimization of the computationally expensive 
building models is discussed. In this section, the metrics described 
earlier are used to compare the performance of the new algorithm 
against existing literature. 

By presenting these results and conducting the performance com
parisons, this section aims to demonstrate the effectiveness and capa
bilities of the proposed algorithm in addressing the optimization 
challenges posed by both analytical test cases and real building refur
bishment scenarios. 

4.1. Analytical test cases 

The algorithm parameters selected for each test case are shown in 
Table 1. These values were chosen arbitrarily in order to limit the 
number of expensive simulations with respect to the number of possible 
combinations of the design variables. A reduced number of weights’ sets 
has been selected for the last test case, to focus the search of optimal 
solutions on the Pareto front extremities. This was required given the 
wide range of possible values related to the first objective of the gear 
train design problem (see Table 2 and Table 3). 

The first test case/problem to which the algorithm was applied is the 
BNH problem. The solutions found by Binh and Korn [41] are min(f1) =
0 and min(f2) = 4, respectively when x1, x2 = 0 and x1 = 5,x2 = 3. 

The Pareto front found by the proposed algorithm is reported in 
Fig. 5. The black markers represent the objective functions of the points 
evaluated by the algorithm, while the red dots are the points of the 
Pareto front. The proposed algorithm was able to quickly find the two 
objective functions’ minimums as well as many solutions on the Pareto 
front before reaching the maximum number of possible evaluations 
selected for the problem. The graph highlights the high percentage of 
points found by the algorithm belonging to the Pareto front, thus 
highlighting the algorithm’s effectiveness in simulating only those so
lutions that are near the Pareto front. It is important to highlight that, 
among the black markers, are also present the points of the initial 
population, coming from the sampling process. 

The second test case is relative to the two-bar truss design problem. 
In the original study [42], the ε-constraint method was used to minimize 
the volume and the tensional stresses in each of the two bars, with a 
minimum of min(f1) = 0.00445 m3 and min(f2) = 83268 kPa respec
tively. The NSGA-II algorithm was also applied to the same problem, 
which was able to find the following minimums: min(f1) = 0.00407 m3 

and min(f2) = 8439 kPa. 
The proposed algorithm was able to find lower values for both 

minimum with respect to NSGA-II results, within the maximum number 
of possible expensive evaluations: min(f1) = 0.00385 m3 and min(f2) =
8433 kPa, with relative coordinates x1 = 5.0*10− 4 m2, x2 = 9.0* 
10− 4m2, y = 1.6m and x1 = 5.6*10− 3m2,x2 = 1.0*10− 2m2,y = 3m. It is 
worth noting that the minimum of f1 is lower than what was identified 
by ε-constraint method and NSGA-II. Furthermore, it is possible to notice 
that also in this case, the solutions are mainly located near the Pareto 
front (Fig. 6). In this case, the algorithm did not reach convergence 
within the maximum number of evaluations. The reason is most likely 
the continuous nature of the variables related to the problem, which 
leads to a high number of possible combinations of the decision 

variables’ values. 
Finally, the results relative to the gear train design problem are 

presented. In this case, the task was to minimize the error between the 
required and calculated gear ratios, as well as the size of the gears. 
NSGA-II was able to find the following solutions: min(f1) = 1.83*10− 8 

and min(f2) = 13 cm, with coordinates equal to xa = 12, xb = 12, xd =

27, xf = 37 relative to min(f1), and xa = 12, xb = 12, xd = 13, xf = 13 to 
min(f2). 

The minimums reached for the two objective functions are: min(f1) =
7.78*10− 7 and min(f2) = 12 cm, respectively at xa = 12, xb = 12, xd =

32, xf = 31 and xa = 12, xb = 12, xd = 12, xf = 12. In this case, the 
proposed algorithm was able to cover most of the Pareto front before 
meeting a stopping condition and so, without reaching the maximum 
value of evaluations, nimax. The total number of evaluations performed 
was 499, including the initial sampling, while the number of possible 
combinations is 5 764 801. The Pareto front is represented in Fig. 7. 

4.2. Building simulation optimizations 

The optimization problem related to the refurbishment of three 
building models - i.e., the penthouse (PH), the intermediate flat (IF), and 
the semi-detached house (SD) – has been used to test the new algorithm 
starting from different samples sets, which are the same used for the 
benchmark tests in Prada et al., [32]. 

For all building typologies a number of weights’ sets (i.e., nLHS) of 
200, a maximum number of allowed coordinates which lie outside the 
Pareto front (nend) of 200 (no Hamming distance) or 20 (Hamming dis
tance) are set. The maximum number of evaluations (nimax) was set to 
500 for the intermediate flat (to be less than the number of possible 
combinations, i.e., 600) and to 1000 for the two other cases. Given the 
discrete nature of the design variables and the high step on feasible 
range ratio for some of them, the optimization problem has been solved 
with and without the hammering distance option enabled. The increase 
of nLHS from 100 to 200 allows to densify the solutions in the central part 
of the Pareto front. 

The results’ figures are presented by means of the metrics described 
in section 3.3 for each building and initial sampling size. Furthermore, 
the Pareto front found with the new algorithm and the true Pareto front 
found through a brute force method are shown for the smallest initial 
sampling size without the hammering distance. The Pareto front found 

Table 1 
Values of the algorithm’ parameters for each test case.  

Analytical test case nLHS nimax nend Initial Population Size 

BNH problem 100 1000 100 20 
Two-bar truss design problem 100 1000 100 20 
Gear train design problem 10 1000 100 20  

Table 2 
Efficiency (NE), efficacy (PS and C) and quality (nPD) metrics related to the 
optimal solutions found by applying the proposed algorithm to the IF optimi
zation problem both with and without hammering distance option enabled.   

– Hammering distance 

nsamp NE 
(%) 

PS 
(%) 

C 
(%) 

nPD 
(%) 

NE 
(%) 

PS 
(%) 

C 
(%) 

nPD 
(%) 

32 15 47 7 130 39 73 5 93 
64 19 45 4 87 44 84 2 94 
128 26 33 4 66 52 78 2 91 
256 44 24 20 82 74 53 13 83  

Table 3 
Efficiency (NE), efficacy (PS and C) and quality (nPD) metrics related to the 
optimal solutions found by applying the proposed algorithm to the PH optimi
zation problem both with and without hammering distance option enabled.   

– Hammering distance 

nsamp NE 
(%) 

PS 
(%) 

C 
(%) 

nPD 
(%) 

NE 
(%) 

PS 
(%) 

C 
(%) 

nPD 
(%) 

32  1.1 35 0 98  2.3 62 0 149 
64  1.5 42 0 95  2.5 58 0 127 
128  1.7 46 0 100  2.8 58 0 146 
256  2.4 17 0 89  3.8 56 0 98  
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by the algorithm is represented by red dots, while the true Pareto front 
by blue circles, and the black marks represent the coordinates evaluated, 
including the sample. 

4.2.1. Intermediate flat (IF) 
The intermediate flat case is characterized by a high percentage of 

costly building simulations (up to 44 % and 74 % respectively for the 

simulations with and without the hammering distance) with respect to 
the maximum number of possible combinations of design variables’ 
values. The high percentage of costly building simulations however is 
balanced by a high number of true Pareto solutions found, especially 
when the hammering distance is used (Fig. 8). Furthermore, if the 
hammering distance option is not used, the number of costly simulations 
increases as well as the number of true Pareto solutions found decreases 

Fig. 5. Pareto front found by applying the proposed algorithm to the BNH problem.  

Fig. 6. Pareto front found by applying the proposed algorithm to the two-bar truss design problem.  
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(Table 2). This result highlights the key role of the initial sample size and 
the dependence on the number of possible combinations. Indeed, 
increasing the sampling size from 64 to 128 does not improve the al
gorithm accuracy, but rather worsens its efficiency due to more expen
sive simulation runs. Similarly, as the initial population increases, the 

value of the C metric increases, identifying suboptimal solutions that are 
in reality dominated by others. A clear trend on the quality of the front is 
not easily identifiable. In fact, while for an initial sample of 32 points the 
hammering distance worsens the diversity (nPD) of front solutions, there 
are weak improvements in the other cases. 

Fig. 7. Pareto front found by applying the proposed algorithm to the gear train design problem.  

Fig. 8. Solutions found related to the IF optimization problem both with the proposed algorithm (red dots) and with the brute force approach (blue circles – true 
Pareto front). The black marks represent the non-optimal solutions found with the proposed algorithm. 
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4.2.2. Penthouse (PH) 
In the PH case the number of available combinations increases thus 

stressing the efficiency metric of the algorithm which converges with 
higher accuracy with respect to the cases of the other buildings, simu
lating less than 3 percent of the possible combinations. Again, the in
crease in the initial sampling size does not always contribute to solution 
accuracy if the hammering option is not enabled (Table 3). The Coverage 
metric (C) always equal to 0 % indicates that all the solutions found by 
the algorithm are part of the true Pareto front. The case with an initial 
sampling size of 32 points outperforms all the other cases, characterized 
by a bigger sampling size, lower percentage of true Pareto solutions 
found and similar diversity metric (Fig. 9). In this test case, unlike the 
previous one, there is an improvement in solution diversity when the 
hammering distance is adopted. 

Overall, with respect to the previous cases, the efficiency has 
increased substantially without compromising both efficacy and quality, 
compared to the previous building case. 

4.2.3. Semidetached house (SD) 
The third test case is certainly the most challenging given the 

greatest number of combinations available (Fig. 10). The data reported 
in Table 4 show the identification of about 25 % of the Pareto front 
solutions with less than 1 % of combinations simulated with the 
expensive model. The reduced percentage of costly simulation per
formed does not affect the number of true Pareto solutions found and if 
the hammering distance option is enabled, the PS metrics are compa
rable with those obtained for PH although NE is significantly lower. 

Again, C metric highlights the algorithm’s ability to identify only 
those solutions that actually belong to the Pareto front, thus avoiding the 
identification of false optimums. As in PH, there is a benefit of 
hammering distance, that leads to a greater diversity of front solutions. 

4.3. Performance compared with other efficient optimization frameworks 

In the final step, the results obtained in this study are compared with 

the results from the previous work conducted by Prada et al. [32]. Since 
in the previous work multiple metamodels were tested for the same 
cases, to facilitate the comparison, the process is divided into two steps. 
In the first step, the results for each building category are graphically 
represented for the metrics NE (number of expensive simulations), PS 
(efficacy), and C (accuracy). Fig. 11 illustrates these graphical repre
sentations, showcasing the comparison between the results obtained in 
the present work and those from the previous study. In the second step, 
the comparison focuses on each building typology and each sampling 
size. The results from the present work are compared with the results 
from the previous study, taking into consideration the proximity in 
terms of the number of expensive simulations (NE). By matching the NE 
number, a direct comparison can be made in terms of efficacy (PS), 
accuracy (C), and quality (nPD). This two-step comparison process al
lows for a comprehensive evaluation of the results, enabling a mean
ingful assessment of the effectiveness, accuracy, and quality of the 
optimization algorithm employed in the present study in relation to the 
findings of the previous work conducted by Prada et al. [32]. 

In Fig. 11, the results of the present work are represented by red dots, 
while the results of the previous work are represented by light blue dots. 
The metric PS is reported as the complement to the unit value (1-PS), 
meaning that the best solutions are in the left-bottom corner of all 
graphs. The results related to the IF show similarities in terms of NE, but 
significant differences in terms of PS. This indicates that while the 
proposed algorithm quickly identified the best solutions within the 
initial simulations, it struggled to find new solutions that were different 
from the ones already present in the dataset. This behavior is highlighted 
by the C-NE graphs, which demonstrate high accuracy that is indepen
dent of the number of simulations performed. Moving on to the PH, the 
new algorithm consistently outperforms the previous work in terms of 
the number of solutions found on the true Pareto front (PS) when NE 
values are similar. However, due to the relatively small number of 
possible combinations, if some solutions from the true Pareto front are 
already found through the sampling process or within a few simulations, 
the presented algorithm faces difficulties in finding solutions that are not 

Fig. 9. Solutions found related to the PH optimization problem both with the proposed algorithm (red dots) and with the brute force approach (blue circles – true 
Pareto front). The black marks represent the non-optimal solutions found with the proposed algorithm. 
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yet present in the dataset. As a result, in some cases, certain algorithms 
from Prada et al. [32] outperform the new algorithm in terms of PS. This 
observation is validated by the last building category, where the larger 
number of possible combinations leads to better results for all the al
gorithms in terms of PS. The sampling process initially struggles to find 
solutions that are close or directly on the true Pareto front. However, the 
new algorithm’s greater efficiency and effectiveness in identifying the 
front can be better appreciated given the limited impact of the initial 
sampling size. Moreover, the Pareto front found by the new algorithm is 
almost always included within the true Pareto front (C metric equal to 
zero). This outcome allows the decision-maker to avoid considering 
suboptimal solutions, even though they are generally close to the true 
front. Furthermore, the accuracy of the algorithm is not strongly 
dependent on the sampling size or the number of expensive simulations 
(NE). 

Table 5, 6 and 7 show the metrics relative to the results obtained with 
the proposed algorithm with hammering distance compared with the 
results of the previous contribution in case of similar NE values. By 
matching the results in terms of NE it is possible to have a quantitative 
comparison on the accuracy and quality of the Pareto fronts. 

In the case of the IF, when comparing the results in terms of NE, both 
the nPD and PS metrics are similar to those obtained in the previous 
work (Table 5). However, the C metric tends to be significantly lower, 

except for the case with a sampling size of 256 points where the algo
rithm performs worse with respect to all metrics. The lower accuracy 
observed in the C metric can be attributed to the true Pareto solutions 
found within the sampling process. Since the algorithm has difficulties in 
finding new solutions close to points that are already on the Pareto front, 
it struggles to improve upon the solutions obtained through the initial 
sampling. As a result, the algorithm may not explore the full extent of the 
Pareto front, leading to lower accuracy compared to the previous work. 
Overall, while the new algorithm shows similar results to the previous 
work in terms of nPD and PS when matched in terms of NE, the lower 
accuracy observed in the C metric highlights the algorithm’s limitations 
in finding new solutions in proximity to the Pareto front. 

In the penthouse case, the results with the hammering distance op
tion enabled show significant improvements in terms of PS and C found 
by the proposed algorithm for almost all initial population sizes 
(Table 6). The only exception is the case with a sampling size of 256 
points, where the results differ. In this scenario, characterized by a 
higher number of possible combinations if compared to the intermediate 
flat, there could be two possible explanations why the proposed algo
rithm cannot perform as well as for the other initial population sizes. 
Firstly, it is possible that some solutions were found during the sampling 
process that were already on or close to the true Pareto front. This would 
explain the greater values in PS and C metrics found in the previous 
contribution, which heavily depend on the quality of the initial popu
lation. Alternatively, the points selected during the sampling process 
might have influenced the metamodel to develop with a wrong “shape,” 
affecting the accuracy of the results. This observation is further sup
ported by the trend observed across all three building typologies. The 
solutions obtained with a sampling size of 256 points are consistently 
worse compared to the other cases, indicating that a smaller initial 
population size generally leads to better results. Overall, the hammering 
distance option proves beneficial in improving the efficacy (PS) and 
accuracy (C) of the algorithm for the penthouse case, while the quality 
(nPD) remains comparable. The exception with the sampling size of 256 
points suggests that caution should be exercised when selecting the 

Fig. 10. Solutions found related to the SD optimization problem both with the proposed algorithm (red dots) and with the brute force approach (blue circles – true 
Pareto front). The black marks represent the non-optimal solutions found with the proposed algorithm. 

Table 4 
Efficiency (NE), efficacy (PS and C) and quality (nPD) metrics related to the 
optimal solutions found by applying the proposed algorithm to the SD optimi
zation problem both with and without hammering distance option enabled.   

– Hammering distance 

nsamp NE % PS % C % nPD % NE % PS % C % nPD % 

32  0.11 25 0 78  0.17 51 0 91 
64  0.12 27 0 77  0.19 49 0 74 
128  0.13 22 0 76  0.19 52 0 75 
256  0.15 16 0 81  0.24 54 0 67  

R. Albertin et al.                                                                                                                                                                                                                                



Energy & Buildings 297 (2023) 113433

12

initial population size, as a smaller size may generally yield better 
results. 

From the analysis of the semidetached house (Table 7), the presented 
algorithm excels in finding a higher number of true Pareto front solu
tions with high accuracy compared to the previous work, especially in 
relation to high-dimensional problems, while the quality of the Pareto 
front found by the algorithm is comparable, considering the same 
number of expensive simulations. 

The semidetached house case presents a higher number of possible 
combinations compared to the other building typologies but despite this 
increased complexity, even with a sampling size of 256 points, the al
gorithm can achieve better performance compared to the previous work. 
This indicates the effectiveness and robustness of the presented algo
rithm in tackling more challenging optimization problems. 

Overall, the algorithm demonstrates its ability to generate a larger 
number of solutions on the true Pareto front with high accuracy since no 
suboptimal solutions were selected as part of the Pareto front. These 
results underscore the algorithm’s improved performance and its suit
ability for handling complex optimization problems with a higher 
number of possible combinations. 

5. Discussion 

The results presented in this section reveal several features of the 
new algorithm, as well as its advantages and disadvantages, especially 
when compared to the outcomes of a previous contribution on the same 
optimization problems. 

The application of the algorithm to the three analytical test functions 
demonstrates its capability to find the same or even better solutions 

Fig. 11. Efficiency (ne) and efficacy (ps and c) metrics related to the solutions found with the proposed algorithm (red dots) and with the algorithm in prada et al. 
[32], for all three reference buildings (IF, PH and SD). 

Table 5 
Metrics related to the solutions of the proposed algorithm with hammering 
distance option enabled compared with those similar in terms of ne found with 
the algorithm in prada et al., [32] for the IF case.  

Intermediate flat (IF)  

Algorithm in Prada et al., [32] New algorithm 

nsamp NE % PS % C % nPD % NE % PS % C % nPD % 

32 44 44 56 86 39 73 5 93 
64 26 84 16 101 44 84 2 94 
128 66 56 44 99 52 78 2 91 
256 93 94 6 99 74 53 13 83  

Table 6 
Metrics related to the solutions of the proposed algorithm with hammering 
distance option enabled compared with those similar in terms of ne found with 
the algorithm in prada et al.,[32] for the PH case.  

Penthouse (PH)  

Algorithm in Prada et al., [32] New algorithm 

nsamp NE % PS % C % nPD % NE % PS % C % nPD % 

32  2.6 44 56 173  2.3 62 0 149 
64  1.6 12 89 146  2.5 58 0 127 
128  1.5 15 85 145  2.8 58 0 146 
256  4.5 69 31 154  3.8 56 0 98  

Table 7 
Metrics related to the solutions of the proposed algorithm with hammering 
distance option enabled compared with those similar in terms of ne found with 
the algorithm in prada et al.,[32] for the SD case.  

Semidetached house (SD)  

Algorithm in Prada et al., [32] New algorithm 

nsamp NE % PS % C % nPD % NE % PS % C % nPD % 

32  0.14 0 100 69  0.17 51 0 91 
64  0.16 0 100 80  0.19 49 0 74 
128  0.14 5 91 76  0.19 52 0 75 
256  0.23 3 96 87  0.24 54 0 67  
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compared to well-established algorithms such as NSGA-II and the 
ε-constraint method. The Pareto fronts depicted in the respective figures 
further confirm the algorithm’s ability to focus on the region of the 
search space characterized by points near the global minimum. This 
enables the algorithm to avoid unnecessary expensive simulations, 
resulting in improved efficiency. 

Considering the gear train design problem, even for cases with a wide 
range of objective function values, the algorithm successfully identifies 
the Pareto front with a limited number of simulations compared to the 
total number of possible combinations. This showcases the algorithm’s 
effectiveness in handling complex optimization problems. 

By comparing the results with the algorithms in Prada et al. [32] for 
the optimization problems regarding the refurbishment of three refer
ence buildings, certain advantages and disadvantages can be observed. 
One notable difficulty of the algorithm is in finding new solutions near 
the ones already identified on the true Pareto front. When the number of 
possible combinations is low, optimal solutions can be found early on, 
even during the sampling process. In such cases, the algorithm faces 
challenges in discovering different solutions, and the results deteriorate 
as the number of sampled points increases. On the other hand, the po
tential of the new algorithm becomes more apparent when dealing with 
problems of increased complexity, characterized by a high number of 
possible combinations and/or design variables. For simpler cases, such 
as the intermediate flat, the algorithm typically finds initial solutions on 
the true Pareto front within the first 100 expensive simulations. The 
initial Pareto front identified by the algorithm may consist of sparse 
solutions but still effectively covers a significant portion of the objective 
space. As the iterations progress, the algorithm achieves higher PS but at 
the expense of an increase in NE. The trade-off between PS and NE is 
influenced by the setting of nend, which needs to be carefully determined 
based on whether the goal is to find as many solutions as possible on the 
true Pareto front or to limit the number of expensive simulations. 

It is noteworthy that even with a low number of simulations, the 
Pareto front identified by the algorithm is generally accurate, indicating 
that the solutions lie on the true Pareto front. This observation is re
flected in the C metric, which is typically close to zero and shows weak 
correlation with the initial population density or NE. Thus, even with a 
limited number of expensive simulations, the solutions found by the new 
algorithm are typically reliable. Additionally, the relationship between 
PS and NE is weak, particularly for complex cases. More expensive 
simulations do not always lead to increased PS, especially if the increase 
is due to a larger number of sampling points. Regardless of the settings, a 
wider initial population often leads to suboptimal results. This consid
eration may vary depending on the case, particularly in relation to the 
number of design variables, but it highlights that a high number of 
sampling points is often unnecessary or even unfavourable. 

In summary, the new algorithm demonstrates promising features and 
advantages in terms of finding optimal solutions, accurately identifying 
the Pareto front, and managing the trade-off between PS and NE. 
However, it also exhibits challenges when encountering solutions near 
the true Pareto front and in balancing the initial population density and 
the number of expensive simulations. Understanding these characteris
tics allows for better utilization and optimization of the algorithm in 
different problem scenarios. 

6. Conclusion 

A novel probabilistic optimization algorithm has been developed, 
leveraging metamodels to reduce the computational burden of expen
sive simulation runs in optimization processes. The algorithm in
corporates multiple approaches to mitigate the number of expensive 
simulations required to achieve satisfactory results:  

• the optimization algorithm employs a metamodel to explore the 
search space on behalf of the expensive models. By utilizing the 
metamodel, only the most promising solutions are selected for 

further evaluation using the expensive models. This selective 
approach significantly reduces the number of expensive simulations 
required.  

• the metamodel fitting process is based on the Horseshoe method, 
which is a Bayesian probabilistic approach. This method ensures 
high-quality fitting by employing a multi-variate polynomial fitting 
process in each iteration, without constraining the search to specific 
regions within the design variable space.  

• as the optimization process progresses, the metamodel fitting process 
adapts its strategy. Instead of considering all available points, it fo
cuses on the most promising ones, specifically targeting the region 
around the Pareto front within the design variable space. This 
adaptive approach further narrows down the search, reducing the 
reliance on expensive simulations.  

• by transitioning from a multi-objective optimization to a single 
objective optimization, the quality of the fitting process is signifi
cantly enhanced. As a result, the number of expensive simulations 
performed with design variables that are far from the Pareto front is 
greatly reduced. 

By incorporating these strategies, the new algorithm showcases its 
ability to effectively reduce the number of expensive simulations 
required to achieve satisfactory results, while maintaining or even sur
passing the performance of established methods like the ε-constraint 
method and NSGA-II. The algorithm’s applicability and advantages are 
demonstrated across various optimization scenarios, validating its effi
cacy and highlighting its potential for practical use. To this end, the 
algorithm’s performance is evaluated on three multi-objective test 
functions with constraints, as well as on the optimization problems 
relative to the refurbishment of three reference buildings. The results are 
compared with those obtained using the ε-constraint method and NSGA- 
II for selected test functions, and, by means of several metrics, with 
NSGA-II coupled with different metamodels for the three reference 
building optimization problems. 

Through the comparison of test functions and building optimization 
problems results, it was possible to highlight several key capabilities of 
the new algorithm:  

• the new algorithm successfully identifies minimum values for all test 
functions that are on par with those obtained using extensively 
validated algorithms like NSGA-II and the ε-constraint method. This 
demonstrates the algorithm’s ability to achieve competitive optimi
zation results.  

• the algorithm exhibits a general ability to focus on the portion of the 
objective space near the Pareto front. This significantly reduces the 
need for a large number of expensive simulations, making the opti
mization process more efficient.  

• the application of the algorithm is not limited to problems with 
objective functions of different magnitudes or specific types of design 
variables. It can effectively handle continuous, discrete, and cate
gorical variables, making it versatile for a wide range of optimization 
problems.  

• solutions on the true Pareto front are found with a limited number of 
expensive evaluations. Across all building optimization problems, 
including the sampling process, fewer than 100 expensive simula
tions are required to find the minimum values of the objective 
functions.  

• increasing the number of expensive simulations tends to result in 
densification of the solutions on the true Pareto front. The number of 
design variables has a weak relationship with this characteristic, as 
the complexity of the problems increases without significantly 
impacting the number of solutions found on the true Pareto front.  

• the new algorithm achieves a significantly higher level of accuracy 
while maintaining a comparable diversity of solutions found. This 
indicates that the algorithm not only generates solutions with a wide 
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range of characteristics but also ensures their accuracy and high 
quality. 

• the Pareto front identified by the new algorithm in the initial simu
lations generally covers a significant portion of the objective space. 
This indicates that the algorithm quickly explores and captures 
important regions of interest. 

For what concerns the optimization problems of the three reference 
buildings, the number of solutions found by the proposed algorithm on 
the true Pareto front is generally equal to or greater than those found in a 
previous contribution, except if specific conditions are met. Specifically, 
for the intermediate flat and penthouse cases, if the initial population 
size is 256, there is a potential issue where the algorithm may consis
tently find the same solutions when encountering the true optimal so
lutions during the sampling process or early iterations. As a result, the 
number of unique solutions on the true Pareto front may be smaller 
compared to the previous contribution in these specific cases. However, 
in other scenarios characterized by a smaller initial population or a 
greater number of design variable possible combinations, the proposed 
algorithm demonstrates its ability to find a comparable or even greater 
number of solutions on the true Pareto front with respect to results 
available in literature. It is important to note that the accuracy of the 
algorithm is not significantly affected by the number of expensive sim
ulations, since the solutions found by the algorithm are usually part of 
the true Pareto front. 

From the results, it is possible to conclude that the proposed algo
rithm excels at finding satisfying results with great accuracy within a 
limited number of expensive simulations, especially for high- 
dimensional optimization problems. In cases where a higher density of 
solutions on the Pareto front is desired, the algorithm can provide 
additional solutions at the expense of efficacy, by increasing the number 
of expensive simulations. 

Overall, the algorithm can successfully reduce the number of 
expensive simulations, and so, the computational time required to 
complete an optimization process, while maintaining a high level of 
accuracy, which was the main objective of this work. 
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