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“If science teaches us anything, it teaches us to accept our failures, as well as our
successes, with quiet dignity and grace.”

Dr. Frederick Frankenstein
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by Davide Dal Bosco

The Laser Interferometer Space Antenna (LISA) will be the first gravitational wave
detector in space. The European Space Agency has selected LISA as a large mission
scheduled to launch in the mid-2030s.

The sensitivity of LISA to gravitational waves is limited at low frequencies by
force disturbances acting on the otherwise free-falling test masses. Among the stray
forces relevant to the LISA noise budget, we find the ones that arise from the elec-
trostatic interaction between the test masses and the surrounding capacitive sensor.
Most of such electrostatic forces scale with the electric charge deposited on the test
masses. This problem is aggravated by the fact that isolated objects in space, such as
the floating LISA test masses, accumulate electric charge due to the constant bom-
bardment of cosmic rays and solar energetic particles. We, therefore, understand that
if the test masses were not discharged, the electrostatic disturbances could spoil the
performance of the whole mission at low frequency.

The precursor LISA Pathfinder (LPF) mission proved that the test mass charge
could be successfully managed with a contactless system based on photoelectric charge
transfer. The light sources required for photoemission in LISA Pathfinder were
mercury-vapor lamps emitting photons in the UV range.

In this thesis, we will present our on-ground testing campaign of a prototype
Charge Management System for LISA, which relies on UV-LEDs as light sources.
LEDs, compared to mercury-vapor lamps, can emit short pulses of UV light (∼ 10 ns),
which can be synchronized with the time-varying electrostatic fields around the test
mass. For this reason, we studied new discharge strategies made possible by adopting
UV-LEDs characterized by pulsed illumination synced with the capacitive sensing in-
jection bias. Our measurements indicate that UV-LEDs offer significant advantages
regarding the flexibility and robustness of the Charge Management System. Moreover,
the new illumination patterns offered by UV-LEDs allow fine-tuning the TM equilib-
rium potential without introducing local DC fields, easing the implementation of the
continuous discharge mode to manage the TM potential. Finally, we investigated the
charge noise introduced by the continuous discharge mode and verified that it could
be kept within the LISA requirements.

We will present hereafter the outline of the thesis.

• In the first chapter, we present a mandatory introduction to gravitational waves
and the LISA mission.
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• In the second chapter, we present the instrument used for our experimental
campaign, namely the four-test-masses torsion pendulum at the University of
Trento. We also present the electrostatic model and the measurement techniques
used to evaluate the electric charge on the pendulum test mass.

• In the third chapter, we introduce the concept of apparent yield, which is a
figure of merit of the charge management system performance. We also present
our experimental measurement, which encompasses tests on several UV-LEDs
in different illumination patterns.

• In the fourth chapter, we derive a simple photoemission model, which is useful for
interpreting the apparent yield data acquired. We will also use the model to fit
the experimental data and extract estimates of the microscopic parameters that
affect the photoemission from metallic surfaces, e.g. work function or quantum
yield.

• In the fifth chapter, we present a model and our torsion pendulum measurements
for the charge noise induced on the test masses when continuously illuminated
with UV light. Such noise arises from the discrete and intrinsically stochastic
nature of photoelectric charge transfer.

• Finally, in the last chapter, we will wrap up by presenting the problems encoun-
tered and the “lessons learned” during the years-long experimental endeavor.
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Chapter 1

Introduction

Gravity is the engine that shaped our Universe. All the large scale structures that
we see today, e.g. stars, galaxies and clusters of galaxies, came together because of
gravity. In some sense, also the fact that you are reading these words right now has
been made possible by gravity, which formed a planet that for some twist of fate had
the right parameters to allow intelligent life to develop.

Moreover, we know that 95% of the energy content of the Universe is dark, i.e.
it does not interact with electromagnetic radiation, but it definitely feels the gravita-
tional interaction. If we want to understand our Universe, it is, therefore, fundamental
to understand gravity.

We are living in very exciting times for science and gravitational physics in particu-
lar, because we are now able to measure gravitational waves, which are the messengers
of gravitation, as light is for the electromagnetic interaction.

In 2015, almost one hundred years after the publication of the theory of General
Relativity by Albert Einstein, the first direct detection of gravitational waves [1] by
the LIGO/Virgo collaboration inaugurated the era of gravitational wave astronomy.
The observed gravitational wave signal was in spectacular agreement with Einstein’s
theory of General Relativity.

A couple of years later, the even more important (we dare to say!) observation of
the first binary neutron star merger with an electromagnetic counterpart [2] opened
the era of multi-messenger astrophysics: we now have a new window to observe the
universe and probe its mysteries.

In addition to the ground-interferometer measurements of gravitational waves,
another historic feat of modern science has been achieved in 2019 by the Event Horizon
Telescope collaboration, who announced the first direct image of a super massive black
hole [3]: the strongest evidence to date for the existence of supermassive black holes.
Once again Einstein’s theory did not flinch: the observed image is consistent with
expectations for the shadow of a Kerr black hole as predicted by General Relativity.

The observations and technological breakthroughs of the recent years are just the
tip of the iceberg. The renaissance of gravitational wave physics will continue over
the next decades, as new experiments are proposed and planned.

In this regard, one of the most mature future gravitational wave experiments is the
Laser Interferometer Space Antenna. LISA will be the first detector of gravitational
wave from space. Indeed, at the time of writing the technology to build a gravitational
wave observatory in space is ready, as demonstrated with great success by the LISA
Pathfinder mission.

LISA could potentially unravel some of the deepest mysteries of the Universe,
and, on the other hand, find new and unexpected phenomena, whose interpretation
challenges our current understanding of physics.



2 Chapter 1. Introduction

Figure 1.1: The image of the black hole at the center of galaxy M87
by the Event Horizon Telescope. The bright ring corresponds to the
closed orbits of photons that bend in the stong gravitational field of
the black hole (which is itself not visible at the center of the dark
spot). The size of the light ring gives an estimate of the black hole

mass M ≃ 6.5 · 109M⊙ [4].

Before getting too ahead of ourselves, let us provide the reader with some context.
Let us start from the idea gave birth to the field of gravitational waves physics: the
theory of General Relativity.

1.1 General Relativity and gravitational waves

In 1915, Albert Einstein published a theory that rethinks the previously established
conception of gravitation. Gravity is not considered anymore a force, but a geometry
of spacetime. Massive bodies, or local concentrations of energy, bend the fabric of
spacetime. Test particles, e.g. a planet, are deviated from uniform linear motion when
they approach a massive body, e.g. a star, not because they feel a force, but rather
they still move freely in a spacetime which is no more flat but curved. This equivalence
between gravitational force and geometry of spacetime descends from the equivalence
principle: the equality between gravitational mass and inertial mass makes so that it
is impossible to distinguish the effect of gravitation from the effect of fictitious forces
due to the acceleration of the frame of reference.

The geometry of spacetime is described by the metric tensor gµν , which is related
to the stress-energy tensor Tµν , i.e. a quantity which tells how much momentum and
energy (or mass, which is a just form of energy) is present in a given point of the
spacetime, through the Einstein field equations1

Rµν −
1

2
gµνR = −8πG

c4
Tµν (1.1)

where Rµν is the Ricci tensor and R the Ricci scalar, obtained from a contraction of the
Ricci tensor with the metric, i.e. R = gµνRµν . For the scope of this work, let us just
say that the Ricci tensor is a very complicated differential operator that “measures”
the curvature of spacetime. The meaning of these equations can be summarized by
the potent words of physicist John Archibald Wheeler

1Here we use the sign convention of [5].
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Matter tells spacetime how to curve, and curved spacetime tells matter how
to move.

The solution of Einstein field equations is typically quite challenging and generally
possible only with numerical methods. A special case, which can be solved analyti-
cally, is when the metric tensor is a small perturbation from the flat2, or Minkowski,
spacetime ηµν

gµν = ηµν + hµν where |hµν | ≪ 1 (1.2)

In such weak-field limit it is possible to prove that the Einstein equations (1.1) reduce,
to [5] (

1

c2
∂2

∂t2
−∇2

)
h̄µν =

16πG

c4
Tµν (1.3)

where the quantity h̄ is the trace-reversed metric perturbation3 obtained by

h̄µν = hµν −
1

2
ηµνh. (1.4)

The (1.3) are the field equations in the linearized theory, which correspond to keeping
only the terms linear in the metric perturbation hµν .

If we assume to be outside the source, i.e. in vacuum, the stress energy tensor
vanishes, i.e. Tµν = 0, and the equation (1.3) becomes

(
1

c2
∂2

∂t2
−∇2

)
h̄µν = 0 (1.5)

In (1.5) we recognize a wave equation, similar to Maxwell’s equation for electromag-
netic waves. General Relativity, therefore, predicts the existence of gravitational waves
that propagate at the speed of light. A possible solution of the previous equation is

h̄µν = Aµν exp (ikαx
α) where kα =

(
k0 =

ω

c
,−k

)
(1.6)

which corresponds to a plane-wave with wave-vector k and angular frequency ω. As
in electromagnetic waves in vacuum, the dispersion relation is ω = c|k| and can be
obtained plugging (1.6) into the wave-equation4.

If we choose a specific gauge, which is called traceless-transverse (TT) gauge, is it
possible to prove that the solution (1.6), can be

hTTµν (t, z) =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 exp [i(ωt− kz)] (1.8)

2We chose the convention ηµν = diag(1,−1,−1,−1).
3In order for the (1.3), we also had to assume to be in the Lorentz gauge, i.e. ∂µh̄µν = 0.
4Indeed we have kα = (k0,k), wich contracting with the flat metric gives kα = ηανk

ν = (k0,−k).
If we plug the solution (1.6) into the wave equation we have

0 = Aµν

(
1

c2
∂2

∂t2
−∇2

)
ei(k0ct−k1x−k2y−k3z) =

(
−c

2k20
c2

+ k21 + k22 + k23

)
︸ ︷︷ ︸

0

h̄µν (1.7)

From which we must have k20 = k21 + k22 + k23 = |k|2. If we define k0 = cω, we have the dispersion
relation ω = c|k|.
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which corresponds to a plane gravitational wave propagating in the z-direction, i.e.
k = (0, 0, k). The terms h+ and h× are the two possible polarization of gravitational
waves, which are called plus and cross polarization. By theorems of Fourier analysis,
any solution of (1.5), can be written as a suitable superposition of plane waves.

We notice that the metric is real, hence, as usual also for electromagnetic waves,
at the end of the calculations one has to take the real part of the complex solutions,
i.e. the equation (1.8) actually is intended to be

hTTµν (t, z) =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 cos(ωt− kz)

=




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 cos

[
ω
(
t− z

c

)]
]

(1.9)

where we also used the dispersion relation k = k = ω/c for waves propagating along
the z-direction.

1.1.1 Effect of GW on particles

Let us consider two test particles both at rest, one located at the origin, the other
in the location x = L0, y = 0, and z = 0, with L0 small compared to the spatial
distances at which the metric gµν = ηµν +hµν changes significantly. If a gravitational
wave of the form (1.9) impinges on them, their proper distance will be

L =

∫ √
ds2 =

∫ √
gµν dxµdxν =

∫ L0

0

√
g11 dx ≃

√
g11(x = 0)L0 (1.10)

where we used dxµ = 0 for µ ̸= 1 and the fact that the metric is almost constant in
x = (0, L0). If we consider now that the metric perturbation is small, we can expand
the square root of g11 in a Taylor series

√
g11(x = 0) =

√
1 + hTT11 (x = 0) ≃ 1 +

1

2
hTT11 (x = 0) (1.11)

Hence
L = L0

[
1 +

1

2
hTT11 (x = 0)

]
= L0

[
1 +

1

2
h+ cos(ωt)

]
(1.12)

The proper distance between the particles changes with time as the gravitational wave
impinges on the system. From this equation we also see that the relative variation of
the proper distance ∆L = L−L0 is proportional to the gravitational wave amplitude

∆L

L0
∼ h

2
∼ h. (1.13)

The observable quantity ∆L/L0 is called the strain and can be used as a direct way
to measure the amplitude of gravitational waves. We also see that the change of
distance between the particles is proportional to their initial separation: the effect of
gravitational waves is larger for bigger detectors.

In Figure 1.2 we show the effect of the cross and plus polarization on a ring of
particles.
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Figure 1.2: Effect a plane gravitational wave propagating in the z-
direction on a ring of particles in the xy-plane.

1.1.2 Detecting of GW with light

In this section we will show how light can be used to measure the amplitude of
gravitational waves, the principle at the core of all GW detectors based on laser
interferometry. For this calculation we will follow reference [6].

Let us consider a gravitational wave traveling in the z-direction with pure plus-
polarization for simplicity (h× = 0). The metric element is given by

ds2 = gµν dx
µ dxν

= (ηµν + hTTµν ) dx
µ dxν

= c2dt2 − [1 + h+(t− z/c)] dx2 − [1 +−h+(t− z/c)] dy2 − dz2
(1.14)

Suppose again that we have two test particles: one at the origin, the other at x = L
(as in Figure 1.3). The first particle sends a photon towards the second particle at
x = L, which recieves and sends it back. We can compute the proper time elapsed
for the first particle from the time tem at which the photon is emitted and the instant
treturn at which the photon returns to the first particle.

Note that photons travel on null geodesics, i.e. ds2 = 0. Let us also assume
for simplicity that the problem is one-dimensional, i.e. dy = dz = 0. Under such
hypotheses the previous equation reduces to

0 = c2dt2 − [1 + h+(t− z/c)] dx2 −→
(
dx

dt

)2

=
c2

1 + h+(t)
(1.15)

We would like to notice that the effective speed dx/dt may not be c because that
is only a coordinate speed. A photon emitted at tem will reach the coordinate location
x at the time t(x) obtained integrating the second of (1.15). In our case we want to
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1 2

L

tem tfar

treturn

x

Figure 1.3: Two particles exchanging a photon in a perturbed space-
time gµν = ηµν + hµν .

compute the time at which x = L, that is

tfar = t(x = L) = tem +

∫ L

0

dx

dt
dx = tem +

1

c

∫ L

0

√
1 + h+(t(x)) dx

︸ ︷︷ ︸
t1→2

(1.16)

Now this equation is not as simple as it seems because the time t appears also inside
the integral (h+ is a function of time). However, as the metric perturbation h+ is
small, we can brutally approximate that the time inside the integral is the one that
we would have in the flat spacetime, i.e t(x) = tem + x/c (the error due to this
simplification is higher order in h+ and thus negligible in the linearized treatment).
Let us also expand the square root in a Taylor series at first order

√
1 + h+(t(x)) ≃ 1 +

1

2
h+(t(x)) ≃ 1 +

1

2
h+

(
tem +

x

c

)
(1.17)

If we plug this expression into the (1.16), we have

tfar ≃ tem +
1

c

∫ L

0

[
1 +

1

2
h+

(
tem +

x

c

)]
dx

≃ tem +
L

c
+

1

2c

∫ L

0
h+

(
tem +

x

c

)
dx

(1.18)

Similar arguments allow us to determine the time t2→1 that the photon need for the
return trip once it is reflected by the second particle

t2→1 ≃
L

c
+

1

2c

∫ 0

L
h+

(
tem +

L

c
− x

c

)
dx

≃ L

c
+

1

2c

∫ L

0
h+

(
tem +

L

c
+
x

c

)
dx

(1.19)

where in the last passage we did the change of variables x→ −x. Therefore, the time
at which the photon returns to the first particle is

treturn ≃ tem + t1→2 + t2→1

≃ tem +
2L

c
+

∫ L
0 h+

(
tem + x

c

)
dx

2c
+

∫ L
0 h+

(
tem + L

c + x
c

)
dx

2c

(1.20)

If we derive treturn in terms of tem, we have

dtreturn
dtem

≃ 1 +
1

2c

∫ L

0

dh+
(
tem + x

c

)

dtem
dx+

1

2c

∫ L

0

dh+
(
tem + L

c + x
c

)

dtem
dx (1.21)
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From (1.15), we have that

dx

dt
=

c√
1 + h+(t)

≃ c for h+(t) ≪ 1 (1.22)

so that the integrands can be rephrased as

dh+
dtem

dx = dh+
dx

dtem
≃ dh+ · c (1.23)

In this way the (1.21), reduces to a trivial integration

dtreturn
dtem

≃ 1 +
1

2

∫ L

0
dh+

(
tem +

x

c

)
+

1

2

∫ L

0
dh+

(
tem +

L

c
+
x

c

)

≃ 1 +
1

2

[
h+

(
tem +

2L

c

)
− h+ (tem)

] (1.24)

This result is very important: it tells us that the rate of change in the return time
depends only on the perturbation of the metric due to the gravitational wave at the
time the photon was emitted and at the time it was received back at the origin. The
GW amplitude when the photon is received by the distant particle cancels out at first
order and, hence, plays no role.

Instead of focusing on single photons it is convenient to think in terms of electro-
magnetic waves: a specific phase of an EM waves, such as a “crest” propagates at the
speed of light and hence behaves basically like a photon. As we are in x = 0, the
phase is simply given by ϕ(t) = 2πνemt, where νem is the frequency of the emitted
wave.

The phase of the returning wave after the round trip its the same at which it
started, i.e.

ϕreturn = ϕ(tem) = 2πνemtem, (1.25)

which must be compared to the phase of the light emitted by the first particle at the
time when the initial phase returns to the origin

ϕ(treturn) = 2πνemtreturn (1.26)

The phase difference between emitted and received light at t = treturn is

∆ϕ(treturn) = ϕ(treturn)− ϕ(tem)

= 2πνem(treturn − tem)

≃ ωem

[
2L

c
+

∫ L
0 h+

(
tem + x

c

)
dx

2c
+

∫ L
0 h+

(
tem + L

c + x
c

)
dx

2c

] (1.27)

where the (1.20) was used. We, therefore, see that the gravitational wave has the
effect of introducing a phase shift between emitted and received laser light. This is
actually how real experiments work because interferometers measure naturally phase
shifts instead of photons travel times (or distances). If we define the new frequency

νreturn =
1

2π

dϕ(treturn)

dtem
= νem

dtreturn
dtem

(1.28)
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1 2
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L

νem νfar

νreturn

x

Figure 1.4: Doppler frequency shift for particles which have a non-
zero relative velocity.

From the (1.24), we have

νreturn
νem

=
dtreturn
dtem

≃ 1 +
1

2

[
h+

(
tem +

2L

c

)
− h+ (tem)

]
(1.29)

A similar relation holds for the frequency shift between received and emitted light

∆ν

νem
=

dtreturn
dtem

− 1 ≃ 1

2

[
h+

(
tem +

2L

c

)
− h+ (tem)

]
(1.30)

where we defined ∆ν = νreturn − νem.

Effects that mimic GW

Not only graviational waves are may induce a frequency shift in the electromagnetic
radiation exchanged between two free-falling particles.

Let us consider the configuration depicted in Figure 1.4. Assuming to be in a
perfectly flat spacetime, if the second particle has a relative velocity with respect to
the first particle equal to v = vêx with |v| ≪ c (so to neglect relativistic corrections),
the classical Doppler effect will introduce a frequency shift the emitted and received
frequencies which is indistinguishable from GWs. Indeed the classical Doppler effect
predicts that frequency of light received by the second particle is

νfar =

[
1− v(tem + L/c)

c

]
νem (1.31)

where v(tem + L/c) is the velocity of the second particle when the arrive to it. At
this point the second particle reflects instantaneously the wave that it receives at
frequency νfar towards the first particle. Also for the return trip there is a Doppler
effect because the source (particle two) is moving away from the receiver (particle
one). Hence, the frequency of the wave as it returns to the first particle is

νreturn =

[
1− v(tem + L/c)

c

]
νfar (1.32)

The velocity in the Doppler effect formula is always evaluated at t = tem+L/c, because
we assumed that the wave is reflected as soon as it reached the second particle. Using
(1.31) and expanding at first order in v/c, we have

νreturn =

[
1− v(tem + L/c)

c

]2
νem ≃

[
1− 2

v(tem + L/c)

c

]
νem (1.33)
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or in a more polished form

∆ν

νem
≃ −2

v(tem + L/c)

c
(1.34)

where as usual ∆ν = νreturn − νem.
We have shown that a relative velocity between the particles exchanging the laser

beam will produce the same effect as a curved spacetime (1.30). As we are considering
gravitational waves, i.e. a curvature that changes with time, the previous sentence can
be rephrases as the fact that a variation in the relative velocity between the particles
mimic a GW as they both produce a time-depending Doppler frequency shift in the
emitted and received light.

In a real physical system fluctuations in the relative velocity between the particles
may arise for two reasons:

• The presence of non-gravitational stray forces which accelerate the particles.

• Noise in the interferometric measurement of the distance between the particles
(which can be back-converted into an apparent relative velocity of the particles).

1.1.3 Sources of GW

In reasonable hypotheses that the source of the gravitational waves is very far away
from the observer (compact source approximation) and that the typical velocity of the
source is much smaller than the speed of light, the quadruple formula5 [5] can be used
to estimate the amplitude of the emitted gravitational waves at leading order

h̄ij(t, r) =
2G

c4r
Ïij(t− r/c) (1.35)

where r is the distance between source and observer, h̄ij spatial part of the trace
reversed perturbation of the metric (1.4), i.e. practically the gravitational wave, and
Ï(t − r/c) is the second derivative of the mass quadrupole moment evaluated at the
retarded time. The mass quadrupole moment is defined as

Iij(t) =

∫
ρ(t,x)xixj d3x (1.36)

where ρ is the distribution of the mass density of the source.
The amplitude of the gravitational waves decreases ∝ 1/r as we would expect form

conservation energy.
We, therefore, see that every accelerating mass with non-zero quadrupole mass

moment emits gravitational waves. The quadrupole formula, tells us that in order to
generate gravitational waves with a relatively large amplitude, we need a lot of mass
which is moving very fast and in an asymmetrical fashion. It also tells us that the
measured GW amplitude decreases with the distance r from the source.

For instance, also rotating a pen in your hands radiates gravitational waves. How
come that we never experience GWs in our everyday life? The problem lies in the
fact that GW are absurdly tiny, because in the Einstein field equations (1.1) the
proportionality constant between curvature and stress-energy tensor is 8πG/c4 ∼
10−43 s2 kg−1m−1! Hence, spacetime is immensely rigid: is requires a lot of mass and
energy to be curved even a little bit.

5See Appendix A for justification of the quadrupole formula with the principle of dimensional
analysis.
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m1 = mr1m2 = m

r2
d = 2a

v

v

Figure 1.5: Equal mass binary in a circular orbit.

In the universe, the main systems that pack enough mass moving asymmetrically
into a confined space to produce GW with a reasonable amplitude are binary systems
of compact objects (e.g. white dwarfs, neutron stars and black holes).

Heuristic scaling for binary sources

In this section we will use hand-waving arguments to compute the expected amplitude
and frequency of the gravitational waves emitted by astrophysical compact binary
systems, which as explained previously are the favored sources of GWs.

GW frequency at merger In binary systems, an order of magnitude estimate
for the emitted GW frequency can be found with a classical calculation. Consider
the binary system of Figure 1.5, from Newton’s Law of gravitation we have that the
equation of motion for either mass is

G
m1m2

(2a)2
= mi

v2

a
where i = 1, 2. (1.37)

Since the orbit is circular, we can write the orbital period as Torb = 2πa/v. We also
chose m1 = m2 = m. With this simplifications, the previous equation, solved for the
orbital period, is

Torb = 4π

√
a3

Gm
(1.38)

which is just Kepler’s Third Law. By symmetry arguments, we have that the frequency
at which gravitational waves are emitted is twice the orbital frequency6, we have that

fGW =
2

Torb
=

1

2π

√
Gm

a3
(1.39)

Let us estimate the frequency of gravitational waves at the merger (where the emission
is more intense). We can assume that the merge happens when the surface of the two
bodies touch, that is when d = 2a = r1+r2. If the two bodies are Schwarzschild black

6Indeed, the system is the same if the position of m1 and m2 is flipped, hence the period of the
GW signal must be half the orbital period. This holds also for asymmetric binaries, if the source is
far away from the observer.
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holes, their radius is directly proportional to their mass

r1 = r2 = rs =
2Gm

c2
(1.40)

If we plug this expression into (1.39), using d = 2rs, i.e. a = rs, we have that the
frequency of gravitational waves emitted at merger is

fmergerGW ∼ c3

GMtot
∼
(
104Hz

)
· M⊙
Mtot

(1.41)

where we introduced Mtot = 2m as the total mass of the binary and neglected the
numerical factors. Even if this calculation is utterly simplified, it gives the correct
scaling between GW frequency at merger and mass of the binary. The main message
is that more massive binaries merge at lower frequencies.

GW amplitude during inspiral The amplitude of GW emitted by a binary can be
found with the quadrupole formula (1.35). Here we will informally derive an estimate
considering the simple case of equal mass binary in a circular orbit of radius a. We
will also consider the two bodies to be point-like particles, i.e. the radius of the orbit
is much larger than their spatial dimension. In such case, a rough estimate of the
mass quadrupole moment will be7

I ∼ 2ma2 (1.44)

From the quadrupole formula, we need to take the second derivative of I. We can
roughly estimate it to be

Ï ∼ I

T 2
orb

∼ 2ma2

T 2
orb

=
Mtota

2

T 2
orb

(1.45)

where we introduced the total binary mass Mtot = 2m and Torb is the orbital period
of the binary, which form Kepler Third Law is of the order

Torb ∼
√

a3

GMtot
(1.46)

Therefore, the expected amplitude of GW from the quadrupole formula (1.35) is

h ∼ G2

c4
M2
tot

a

1

r
∼ 10−22

(
Mtot

10M⊙

)2(103 km

a

)(
100Mpc

r

)
(1.47)

7Indeed, assuming that the orbit takes place in the xy-plane and to be at a fixed time in which
the bodies are located in x1 = a and x2 = −a, we can write the density distribution of the source as

ρ(x, y, z) = ρ1(x, y, z) + ρ2(x, y, z) = mδ(x− a)δ(y)δ(z) +mδ(x+ a)δ(y)δ(z) (1.42)

where used the Dirac’s delta for the density distribution of each body, because we assumed that they
are point-like. If we plug this expression in the definition of the quadrupole moment (1.36), we have
for example (choosing i = j = 1)

Ixx =

∫
ρ(x, y, z)x2 d3x = ma2 +m(−a)2 = 2ma2 (1.43)
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This is a very important result. It tells us that the amplitude of GW grows with the
compactness of the source: if we want to produce a large GW amplitudes, we have to
pack a lot of mass into a small volume.

A similar scaling relation can be obtained from (1.45), remembering that the period
is related to the orbital velocity v via the Torb = 2πa/v, and then plugging everything
into the quadrupole formula (neglecting numerical constants)

h ∼ G

c4
Mtotv

2

r
∼ 10−21

(
Mtot

10M⊙

)(v
c

)2(100Mpc

r

)
(1.48)

which suggests that the amplitude of gravitational waves scales with the total binary
mass and the orbital velocity. Only compact binaries can reach large orbital velocities
(up to v ≲ c for BHs in the final moments before merger).

This confirms that the likely sources of GW can be astrophysical system of compact
objects, such as black holes and neutron stars.

1.2 LISA

The Laser Interferometer Space Antenna (LISA) will be the first gravitational waves
observatory in space. LISA has been officially selected by the European Space Agency
(ESA) as a large scale mission with expected launch date in the mid-2030s. The
nominal duration of the LISA mission is four years, with the possibility to extend it
to ten years.

The motivation to build a gravitational wave observatory in space comes from the
fact that gravitational waves in the low-frequency band (below ∼ 10Hz), are likely
inaccessible from ground, because of the rise of the seismic8 and Newtonian noise9 [7].
Moreover, in space there is, as the name suggests, a lot of space to build a extremely
large detector, which is convenient because the effect of gravitational waves on the
test masses scales with the distance among them as we showed in (1.13), thus a large
baseline helps in enhancing the GW signal.

1.2.1 Mission concept

LISA will be a constellation of three satellites at a distance of 2.5 million kilometers
in the shape of an almost equilateral triangle. Each spacecraft is connected to the
other two by laser beams, to form a huge interferometer. See Figure 1.6 to get an
intuition of the sheer size of LISA.

LISA will perform an heliocentric orbit, trialing the Earth around the Sun (see
Figure 1.7).

Inside each spacecraft there are two test masses, which acts as inertial frame of
reference. The spacecraft follows the TMs and protect their geodesic free-fall from
external forces along the science axis, which is directed towards the opposing space-
craft on the same interferometer arm. The spacecrafts act both as receivers and as
transponders: each one emits a laser beam towards the opposing spacecrafts, which
detect it and compare the phase of the light with the local interferometer. At the
same time, the spacecrafts send back a phase locked laser signal to the first one. In
Figure 1.8, we display a conceptual rendering of the spacecraft payload and the LISA
constellation.

8That is noise due to the motion of the ground on the site of the experiment, due to, for example,
earthquakes, wind, ocean waves, or human activities.

9That is noise related to the local fluctuations of the gravitational field.
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Figure 1.6: Size comparison between LISA and our Sun. the white
dot close to the bottom right corner of LISA is not a speckle of dust

on your monitor, but the relative size of the Earth.

Earth

Sun
1 AU (150 million km)

60°
19°– 23°

2.5 million km

Sun 1 AU

Figure 1.7: Orbit for the LISA constellation (not to scale). Adapted
from [8].
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(a) Industrial rendering of the payload of the
LISA spacecrafts [8]

Laser

Test Masses

(b) Schematic representation of the LISA con-
stellation [9]

Figure 1.8: The LISA mission. Left : straw-man payload conceptual
design. One can see the telescope (green) capturing the laser beam
from the distant spacecraft, the optical bench (yellow) and behind the
gravitational reference sensor (orange) hosting the TM. All this in-
strumentation is integrated in a mobile optical sub-assembly (MOSA),
which rotates to maintain the interferometer link with the opposing
spacecraft at all times (a small angular breathing motion is expected
due to the orbit dynamics in the solar system). Right : scheme of the
LISA constellation with the three spacecrafts exchanging laser beams

to synthesize a large triangular interferometer.

Gravitational waves induce a tidal acceleration on the distant test masses and are
detected by the Doppler shift between the frequency of the emitted and the received
laser light.

As argued in Section 1.1.2, the effect of gravitational waves is indistinguishable
from disturbances in the interferometric measurement or from stray forces acting on
the test mass. The LISA design sensitivity plotted in Figure 1.9 can be reached only
if the acceleration noise on the single TM and the interferometer readout noise are
under control.

The current top-level mission requirements for the single TM acceleration noise
with respect to an inertial reference frame in the science direction is [12]

Sg(f) <
(
2.4 fm/s2/

√
Hz
)2
[
1 +

(
0.4mHz

f

)2
][

1 +

(
f

8mHz

)4
]

(1.49)

and the requirement for the one-way TM-to-TM displacement noise is

Sx(f) <
(
10 pm/

√
Hz
)2
[
1 +

(
2mHz

f

)4
]

(1.50)

The LISA sensitivity is limited at low-frequency by the stray forces that act on the
TM, by the interferometric position readout at the minimum and by the signal transfer
function of the instrument at high frequency (when the wavelength of gravitational
waves becomes smaller than the interferometer arm-length).
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Figure 1.9: LISA and Advanced LIGO design sensitivity curves.
The signal of some typical LISA sources is also plotted with the color
corresponding to the time to merger. We can see that a source similar
to GW150914 [1], would be in the LISA band years prior to entering
the LIGO band fractions of second before merger. Obtained with the
method described in [10]. The verification binaries data is from [11].

Gravitational Reference Sensor

The core of the LISA instrument is the so called Gravitational Reference Sensor
(GRS), which host the free falling test masses. The GRS is composed of the fol-
lowing elements [13]

• The Test Mass (TM) itself, which is a cube of side 46mm and weighting ap-
proximately 2 kg made of an gold-platinum alloy with very low magnetic sus-
ceptibility.

• An Electrode Housing (EH), which surrounds the test mass and provides, via
dedicated electrodes, nm-level capacitive sensing of the TM position and nN-
level actuation in all degrees of freedom. The role of the EH is also to shield the
TM from external electrostatic fields and, due to its large thermal conductivity,
temperature gradients. The EH is designed to provide an environment around
the TM that limits all stray forces to the fN level.

• An ultra-high vacuum chamber with the possibility of venting to space once in
orbit.

• A caging system to keep the TM locked during launch vibrations.

• The Grabbing Positioning and Release Mechanism (GPRM), which allows to
delicately set the TM into free fall with very small residual velocity once in
orbit.

The six GRS for LISA will be provided by the Italian Space Agency. LISA Pathfinder
successfully verified in light the performance of the GRS for LISA (see Section 1.3).



16 Chapter 1. Introduction

(a) LISA Pathfinder TM (b) LISA Pathfinder GRS

Figure 1.10: Elements of the LISA Pathfinder Gravitational Refer-
ence Sensor [14].

1.2.2 Science objectives

The milli-hertz region of the gravitational wave spectrum is rich in sources and very
interesting physics. The LISA top-level requirements has been purposely chosen to
have the sensitivity needed to reach the science objectives that will be listed here.

Among the most important science goals of LISA we list [8]

• LISA will be able to trace the origin, growth and merger of massive BHs across all
cosmic ages, possibly enabling to reconstruct how the structure of the Universe
has evolved. The supermassive black holes that we find in today’s galaxies, have
probably formed by coalescence of smaller black holes with masses in the range
104−108M⊙. Such binary systems will merge in the LISA band as indicated by
(1.41). LISA will have a very large signal-to-noise ratio for massive BH binaries,
as evident from Figure 1.11.

• Study of the evolution of compact binary stars10 in our galaxy. LISA is expected
to observe a number so high of such systems, that the ones at low SNR will
be indistinguishable, creating a background noise in the sensitivity curves (see
Figure 1.9). Several verification binaries, i.e. sources that are well constrained
by astrophysical observations and have large SNR, have been identified [11] and
their signal can be used to check that the instrument is working properly. The
observation of GW from galactic binaries would allow to probe the structure of
the Milky Way.

• Study of extreme-mass-ratio inspirals (EMRIs), that is the long-lasting signal
of binary system in which one of the body is a stellar mass BH (m ∼ 10M⊙)
and the other is a super-massive BH (m ∼ 106M⊙). EMRIs are expected to be
a unique way to test General Relativity in the strong-field regime.

• Understand the astrophysics of stellar-origin BHs. LISA would be able to detect
binary system of BHs in the range of masses 10− 30M⊙ months or years prior

10Mainly white dwarf systems, but also composed by neutron stars and stellar black holes in any
combination.
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Figure 1.11: Four-years sky averaged SNR contour plot for equal
mass BH binaries mergers as a function of the total mass and red-
shift. Do not be fooled by the colors: already a bluish shade of green
corresponds to large SNRs. For total binary masses in the range
105 − 106M⊙, the SNR ratio is high up to redshift z ∼ 20, which
corresponds to detecting any such merger in the observable Universe.

Adapted form [8].

to the coalescence. These are the type of black holes mergers observed by the
LIGO/Virgo collaboration. It is therefore possible a joint observation of the
same black hole binary first with LISA and then, close to the merger, with
LIGO (multi-band event).

• Use gravitational wave signals to measure the Hubble parameter independently
from the current (incompatible) values obtained either from the cosmic mi-
crowave background or from local universe standard candles (type Ia super-
novae).

• Possibly measuring the stochastic GW background of cosmological origin. It
is the gravitational equivalent of what the cosmic microwave background is for
electromagnetic interaction. The possibility of detecting the stochastic GW
background is still under debate11, but if proved possible, would allow us to
peer into the first moments of the early Universe after the Big Bang.

Just from this limited list of science goals, we understand that discovery potential
of LISA could be ground-breaking. That is why the astrophysical and cosmological
communities are very excited for the project.

As anticipated in LISA, contrary to LIGO, a large number of GW sources will
overlap at all times. As in a “cocktail party” problem, extracting and singling out the

11The problem lies in the fact that in LISA it would not be easy to characterize the instrumental
noise, because many GW signals will be present at all times. Therefore, it would be hard to disen-
tangle what is the noise of the instrument from a (presumably) faint stochastic GW signal from the
early Universe.
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Figure 1.12: Schematic diagram of the LPF mission. The two TMs
are hosted in their Electrode Housings (EH) and an interferometer
measures not only their relative position, but also the position of TM1
with respect to the spacecraft along the drag-free sensitive x-axis. A
drag-free control loop actuated by µN-thrusters keeps the spacecraft

centered on TM1. Adapted from [9].

individual signals will be quite challenging from a technical and theoretical point of
view.

1.3 LISA Pathfinder

LISA Pathfinder (LPF) was an ESA mission launched in 2015 and decommissioned
in 2017. LPF was envisioned as a dress rehearsal for LISA: it aimed at demonstrating
that the technology for future space-borne gravitational wave detectors is ready [15].
Indeed, no previous space mission (let alone experiment on ground) has ever demon-
strated that the LISA top-level requirements regarding the metrology and residual
TM acceleration could be achieved. Space missions for geodesy, such as GRACE and
GOCE, which are somewhat comparable to LISA in the sense that they fly test masses
which acts as highly precise accelerometers, have performance more than two orders
of magnitude worse than what is required for LISA [16, 13].

The LPF spacecraft contains an equivalent LISA arm shrunk to just ∼ 38 cm.
As shown in Figure 1.12, LISA Pathfinder host two identical Gravitational Reference
Senosors test masses each surrounded by an electrode housing for capacitive actuation
and sensing in all degrees of freedom. The distance between the test masses along the
science x-axis is monitored by a heterodyne interferometer. The GRS instrumentation
and the drag-free attitude control of LPF accurately reflects the needs of LISA.

The LPF spacecraft follows one the test masses, which is in pure free fall and acts
as an inertial reference system. On the other hand, small forces are imparted to the
second test mass by control loops to keep its position fixed with respect to the first
one. In Figure 1.13, we show some pictures of LISA Pathfinder.

The main goal of LISA Pathfinder was to verify that two test masses can be set
into free fall with parasitic acceleration disturbances within the LISA requirements.
In Figure 1.14, we plot the amplitude spectral density of the measured relative acceler-
ation between the LPF test masses, after the subtraction of the forces commanded by
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(a) Spacecraft before launch (b) Exploded view of LPF

(c) Optical bench and interferometer (d) View of the LISA technology package

Figure 1.13: LISA Pathfinder. Credits ESA/ATG medialab [14].
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Figure 1.14: Amplitude spectral density of the residual differential
acceleration of the LPF test masses. The data are below the LISA

requirements at all frequencies [17].

the control loop on the second test mass and other known contributions (e.g. fictitious
forces due to the rotation of the spacecraft, such as Euler and centrifugal force, and
the stiffness due to the coupling of the TMs with the nearby sensor). We see that the
ASD of the differential spurious acceleration between the LPF test masses is below
the (old12) LISA requirement13 at all frequencies. This is the experimental proof that
the LISA acceleration requirement (1.49) can be attained.

LISA Pathfinder also tested several subsystem that would be needed for LISA,
such as

• Caging system for the test masses during launch.

• Grabbing Positioning and Release Mechanism (GPRM), needed for TM release
and re-grabbing in orbit.

• Drag-free attitude control system of the spacecraft based on µN-cold-gas thrusters
to keep the spacecraft centered on one TM.

• Charge Management System bases on UV-light from mercury-vapor lamps to
neutralize the TM charge due to cosmic rays and solar energetic particles.

12The LISA requirement for the single TM acceleration at the time of LPF was

Sg(f) <
(
3 fm/s2/

√
Hz

)2
[
1 +

(
0.4mHz

f

)2
][

1 +

(
f

8mHz

)4
]
. (1.51)

13The LISA requirement has been multiplied by a factor
√
2 because we are considering the relative

TM accelerations between two (uncorrelated) test masses instead of the single TM acceleration.
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Figure 1.15: LPF estimate of the dominant noise contributions. At
low-frequency there is an excess of about a factor two in amplitude

over the budgeted noise sources. Adapted from [9].

The LISA Pathfinder mission was a great success and paved the way for LISA.
Still there are some aspects that are still not completely understood, i.e.

• The presence of spurious transient acceleration events, known as glitches [18].

• An excess noise at low-frequency of unknown origin which exceeds the current
noise model by approximately a factor two in amplitude (see Figure 1.15).

Both these issues are still being investigated to make sure that they will not be a
problem for LISA.

Given the overall success of LISA Pathfinder and the fact that the LPF hard-
ware was tested in space, makes so that the design of the Gravitational Reference
Sensor for LISA is practically frozen to the one of LPF. There are still a few areas,
where modifications are planned: one of them regards the use of UV-LEDs instead
of mercury-vapor lamps as light sources for the Charge Management System. The
on-ground test of the performance of UV-LEDs to discharge the test masses is the
main topic of this thesis.
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Chapter 2

Small-force measurements with
4TM torsion pendulum

Torsion pendulums are unique tools to measure small forces acting on macroscopic
systems. The principle that makes them so special is that they naturally dispose
themselves orthogonal to the local gravitational field. In this way, rotations in the
plane orthogonal to the suspending fiber are almost free, saved for the elastic constant
of the fiber, which could be in principle very small.

In this way forces acting on the “soft” rotational-degree of freedom, easily set the
pendulum into motion. On the other hand, small forces acting on the other “hard”
degrees of freedom are not detectable because they have to fight against gravity which
is many order of magnitudes more intense than the forces we aim to detect.

For this reason, torsion pendulums have been used by physicists for many years.
Charles-Augustin de Coulomb is generally credited as the inventor of torsion pendu-
lums, which he used to measure the electrostatic force between charges and establish
the law that bears his name [19]. Another, probably even more famous, experimental
application of torsion pendulums was due to the British scientist Henry Cavendish
at the end of the eighteenth century [20]. The Cavendish experiment is commonly
regarded as the first measurement of the gravitational constant G, but some recent
review [21] argue that Cavendish’s aim was to measure the average density of the
Earth. Indeed, at the time of Cavendish work, the determination of G was not even
recognized as an open problem, contrary to the determination of the mean density of
our planet. Nevertheless, a modern analysis of Cavendish data, would lead to the first
accurate measurement of the gravitational constant.

In more recent times, torsion pendulums have been used to test the equivalence
principle [22], starting from the acclaimed Eötvös experiment, which placed stringent
upper limits for the violation of the equality between inertial and gravitational mass;
and to test the inverse-square law of gravitation [23].

Focusing on LISA, torsion pendulums have been key instruments to drive the
design of the Gravitational Reference Sensor and to test its performance before the
flight of LISA Pathfinder.

Even after the launch and huge success of LISA Pathfinder, torsion pendulums
remain relevant. Indeed, we can use them to investigate some aspects of LPF that
remain unclear (such as glitches [18] and the excess-noise at low-frequency) or to verify
if proposed modifications to the LISA Pathfinder design are viable.

This is exactly the idea upon which this thesis has been built: in this chapter
we will introduce the reader to our four-test-masses (4TM) torsion pendulum, which
is the primary testbed for the LISA Gravitational Reference Sensor on ground. We
would like to notice that a similar facility has been developed at the University of
Florida [24] to test the performance of ultra-precise inertial sensors for space-based
gravitational wave observatories, including LISA, and geodesy missions.
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Later, in Chapter 3, we will present how we tested with the 4TM torsion pen-
dulum the performance of a prototype charge management system for LISA based
on photoelectric emission from UV-LEDs. Indeed, one of the few planned design
changes moving from LPF to LISA is to employ UV-LEDs, instead of UV-lamps as
light sources for the CMS. Moreover, in Chapter 5 we will show how we used our tor-
sion pendulum to evaluate for the charge noise induced by the continuous discharge
strategy to keep the TM charge under control, which was not routinely implemented
in LPF.

In addition, as an example on how torsion pendulums can help to understand
features in the LISA Pathfinder data which are still unexplained, we will present in
Section 2.1.5 an estimation of the 4TM pendulum sensitivity to LPF glitches.

2.1 4TM torsion pendulum

The four-test masses torsion pendulum, 4TM pendulum for brevity, has been designed
to reproduce as closely as possible the environment around the LISA Pathfinder test
masses [25]. The name of the game is representativity in terms of geometry, hardware
and and environment conditions.

Indeed, in a space mission as LISA Pathfinder or LISA, it is fundamental to test
on ground the performance of all subsystems prior to the flight in an environment
as representative as possible, because there is usually no possibility to fix a malfunc-
tioning, once the instrument is in space. The 4TM torsion pendulum is the primary
testbed for the GRS subsystem on ground.

For this reason, the 4TM pendulum needs to be directly sensitive to forces, and
not just to torques. The only way to detect forces is suspending the test mass not
directly below the fiber, as in the single-mass torsion pendulum [26], but to mount
it off-center. In this way any force acting on the TM with non-zero component in
the direction orthogonal to both the fiber and the pendulum arm (the science axis),
produces a torque that sets the pendulum into motion. The 4TM pendulum arm-
length larm is approximately 10.6 cm.

As the inertial member must lie horizontally (orthogonal to the local gravitational
field), at least another test mass on the opposite side with respect to the one used
for testing is required to balance out the pendulum. The minimal configuration for
the inertial member is a linear shaft with two test masses at its ends and suspended
by its center of mass. Such configuration is, however, quite sensitive to fluctuations
of the local gravity, especially as the arm-length of the pendulum increases. In order
to reduce the coupling with local gravitational field variations, we need to increase
the symmetry of the inertial member1. The inertial member of the 4TM pendulum
is therefore cross shaped, with four identical hollow test masses at the ends. The
symmetry of the inertial member nullifies the mass-quadrupole moment and, hence,
reduces the coupling of the pendulum with local gravity fluctuations. In Figure 2.1,
we show a schematic diagram of the 4TM torsion pendulum.

1So to minimize the multipole expansion of the mass distributions of the system at increasing
orders.
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Figure 2.1: Geometry of the 4TM torsion pendulum. The four test
masses are mounted at the ends of a cross shaped inertial member.
One of the test masses is hosted in the flight model replica of the
LISA Pathfinder Gravitational Reference Sensor (GRS), whereas the
opposite is contained in a simplified capacitive sensor, called Stiffness

Compensator (STC). See Section 2.1.2 for more details.

2.1.1 Measurement concept

As shown in Figure 2.2, the torque on the torsion pendulum along the y-axis due to
a collection of forces Fi acting on the test mass can be computed as

Ny = N · êy

=

(∑

i

Ri × Fi

)
· êy

=

(∑

i

b× Fi

)
· êy +

(∑

i

ri × Fi

)
· êy

(2.1)

where we used Ri = b+ ri with b the vector along the pendulum arm connecting the
fiber with the center of the TM. If we use in the first term the triple product vector
identity2, we have

Ny =

(∑

i

Fi

)
· êy × b︸ ︷︷ ︸

−bêx

+

(∑

i

ri × Fi

)

︸ ︷︷ ︸
NTM

·êy

= −b
∑

i

Fi · êx +NTM · êy

= larm
∑

i

Fi,x +NTM,y

(2.2)

where we used the fact that b = larm. From this equation we can see that our torsion
pendulum is sensitive to both forces along the x-axis and to pure torques along the
y-axis (which are induced by unbalanced couples of forces in the x or z-direction).
However, the sensitivity to pure torques is significantly lower than forces. Indeed, the
average arm of forces acting on the TM in the x-direction is the pendulum arm-length
b = larm, whereas the typical arm of the forces that produce only a torque on the TM

2That is (a× b) · c = (c× a) · b = (b× c) · a.
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Figure 2.2: Diagram illustrating the principle that makes torsion
pendulums directly sensitive to forces: suspending the TM off-center
with respect to the fiber via a rigid connection would allow detection
of forces acting along the x-axis. The black dot is the position of the
suspending fiber. Roughly to scale with our 4TM torsion pendulum.

Adapted from [25].

is lTM/2. Hence the suppression factor of pure torques with respect to forces in the
x-direction is

lTM
2larm

≃ 1

5
(2.3)

for our geometry (larm ≃ 10.6 cm and lTM ≃ 4.6 cm). This quick back-of-the-envelope
calculation convinces us that the 4TM torsion pendulum is mostly sensitive to forces
acting on the TM along the x-direction.

2.1.2 Instrumentation

Not only in terms of geometry, but also hardware, the 4TM pendulum resembles as
closely as possible LISA Pathfinder and, consequently, LISA.

As anticipated the inertial member is cross-shaped with four test masses at its
ends. The four test masses are hollow, to reduce the pendulum weight, as it is crucial
for better noise performance (see Section 2.1.3).

One of the test masses has the same surface finish and features (e.g. domes for
the caging fingers and pyramidal grooves for the GPRM) as the LPF test masses. It
is hosted in a flight-model replica of the LISA Pathfinder electrode housing, which
is fully representative in terms of materials and surface finish. Identical copies of
the unmodified LPF Inertial Sensor UV-Kit (IUSK) are mounted on the electrode
housing. The ISUKs carry the UV-light for charge management inside the GRS. In
our setup we have two IUSKs: one is pointed directly towards the TM and the other
towards the EH (see Appendix B for more details). The main difference between our
setup and LISA Pathfinder is that we do not have the iridium fingers for TM locking
during launch. Otherwise our apparatus resembles closely LPF in terms of geometry,
materials and surface finish.

The test mass on the opposite side of the inertial member with respect to the
FRM, is hosted in a simplified capacitive sensor called the Stiffness Compensator
(STC), which has just one electrode per face. The STC has large gaps (∼ 8mm) to
minimize the electrostatic disturbances induced on its TM. The STC can be used to
compensate for the electrostatic stiffness (hence its name), but we mainly use it in
combination with the replica GRS to achieve a more sensitive measurement of the
rotation angle of the pendulum. Indeed the rotation angle of the pendulum can be
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obtained as
η =

xSTC − xGRS
2larm

(2.4)

This is currently the most sensitive measurement of the pendulum rotational degree
of freedom at low-frequency.

The capacitive readout of the flight-model replica of the EH is carried out by an
engineering model of the LISA Pathfinder front-end electronics (FEE), called ELM-
light, which is representative in terms of design, sensing performance and actuation
patterns (both AC and DC) on all degrees of freedom.

An Elcomat Vario optical autocollimator produced by the company Möller-Wedel
is pointed towards a mirror mounted on the inertial member and provides us with an
independent measurement of the rotational degrees of freedom η and ϕ. As shown
in Figure 2.4b, the autocollimator has better high-frequency readout noise, but at
low-frequency the combination of GRS and STC capacitive sensing (2.4) provides the
more sensitive reading of the pendulum rotation angle.

Naturally, the whole setup is installed into a high-vacuum vessel and kept at low
pressures (∼ 10−5 Pa). Around the vacuum vessel there is a thermal chamber (with the
possibility of having active thermal control) which helps stabilizing the temperature
around the 4TM pendulum.

In Figure 2.3, we show some pictures of the 4TM torsion pendulum facility.

2.1.3 Thermal noise

The main factor that drives the design of torsion pendulums in high-vacuum condition
is the thermal noise floor due to intrinsic damping of the suspending fiber [27].

As the restoring torque exerted by the suspending fiber is given by

Nf = −kη (2.5)

where k is the torsional spring constant and η is the pendulum angular coordinate,
the equation of motion of a torsion pendulum in the domains of time and frequency
are

Iη̈(t) = N(t)− kη(t)
F−−−−→ η̃(ω) =

Ñ(ω)

k̃ − Iω2
(2.6)

where I is the moment of inertia of the inertial member. The period of the pendulum
can be found in analogy with the equation of an harmonic oscillator3 as

T0 =
2π

ω0
= 2π

√
I

k
(2.7)

In the previous equation, we intentionally neglected the dissipation term proportional
to the angular velocity η̇, because in the case of intrinsic damping of the fiber the
dissipation can be modeled introducing an imaginary part in the torsional spring
constant in the frequency domain.

k̃ −→ k(1 + iδ) for intrinsic damping (2.8)
3The equation of a simple harmonic oscillator is ẍ(t) + k

m
x(t) = 0 whose solution has the form

x(t) = A sin(ω0t+ ϕ) with ω0 =
√
k/m.
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(a) Full view of the vacuum chamber (b) Inertial member

(c) Inertial member inside the vacuum chamber (d) New electrode housing identical to LPF

(e) Hollow TM with uncoated domes (f) Stiffness Compensator

Figure 2.3: Pictures of the 4TM torsion pendulum.



2.1. 4TM torsion pendulum 29

0 250 500 750 1000 1250 1500 1750 2000

Time [s]

−4

−3

−2

−1

0

1

2

3
R

ot
at

io
n

an
gl

e
[r

ad
]

×10−6

GRS + STC data

AC data
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Figure 2.4: Comparison between the timeseries and amplitude spec-
tral density of the torsion pendulum rotation angle obtained with the
autocollimator (AC) or combining of GRS and STC readings. The
peaks in the autocollimator data at high frequency are likely due to
vibrations of its mechanical support. The high-frequency spikes in the
capacitive readout are due to cross-talks between the STC and GRS

injection bias and other electrical interferences.

The quantity δ is the loss-angle which can be considered independent of frequency
and it is related to the quality factor Q of the pendulum as

δ =
1

Q
(2.9)

Therefore the transfer function of the torsion pendulum can be written as

H(ω) =
η̃(ω)

Ñ(ω)
=

1

k
(
1 + i

Q

)
− Iω2

=
1

k
(
1− ω2

ω2
0
+ i

Q

) (2.10)

The quality factor of the pendulum Q depends on the losses of the fiber material
and can be measured from the damping time τ of the pendulum

Q = π
τ

T0
(2.11)

Indeed, the damping time τ can be directly measured from the decaying of the ampli-
tude of oscillations which is proportional to e−t/τ (see Figure 2.5). The quality factor
of our torsion pendulum suspended by a tungsten fiber is ∼ 3200, which, consider-
ing the free period of T0 ≃ 1220 s, corresponds to a damping time of approximately
14 days.

The fluctuation-dissipation theorem tells us that whenever a process dissipates
energy in a physical system, turning into heat, there will be a reverse process related to
thermodynamic fluctuations that will induce noise in the observable physical quantity
related to the dissipation process. In the case of our torsion pendulum, the losses in
the fiber induce noise in the torque. The expression for the one-sided power spectral
density of thermal noise in torque is

SthermN (ω) = 4kBT
k

Qω
(2.12)
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t

η η0 · e−t/τ

Figure 2.5: Illustrative plot for the measurement of the pendulum
decay time.

where kB is the Boltzmann constant and T is the pendulum temperature. The tor-
sional elastic constant of the fiber k can be modeled as [25]

k =
πr4f
2Lf

(
Ef +

mg

πr2f

)
(2.13)

where Lf is the length of the fiber, rf its section radius and Ef the Young’s modulus of
its material. From the previous expression, we understand that to reduce the thermal
noise and reach competitive pendulum sensitivity, we need either to have a very long
or a very thin fiber. As the scaling of the torsional constant k is linear in the length
of the fiber (k ∝ 1/Lf ), but it is at least quadratic in the fiber radius (k ∝ r2f ), we see
that for reducing the noise it is more convenient to minimize the section of the fiber
rather than having a very long fiber. As a thin fiber cannot support a lot of weight
(the maximum load scales with the section of the fiber4, hence with r2f ), we need to
reduce the mass of the inertial member as much as possible. This is the reason why
our test masses are hollow5. The fiber mounted in our apparatus is made of tungsten,
has a length of approximately one meter, and a diameter of 50 µm.

From (2.7), we can estimate precisely the spring constant of the pendulum as a
function of directly measurable quantities

k = (2πT0)
2 I (2.14)

If we plug this expression in the thermal noise (2.12), we have

SthermN (ω) = 16π2kBT
I

T 2
0Qω

(2.15)

The torsion pendulum noise floor can be obtained summing the thermal noise with
the readout noise for η converted via the transfer function (2.10) into an equivalent

4The maximum load that a fiber can carry is given by Fmax = πr2fY where Y is the ultimate
tensile strength of the fiber material. Hence, the radius of the fiber must be rf ≥

√
mg
πY

to sustain
an inertial member of mass m.

5This is not a huge problem for the representativeness of our setup, as most of the disturbances
are generated on the surfaces, rather than from the bulk of TM.
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torque noise, i.e.

SminN (ω) = SthermN (ω) +
Sreadη (ω)

|H(ω)|2
(2.16)

where Sreadη (ω) is the readout noise of the angular degree of freedom.

2.1.4 Torque estimation

Once the timeseries of the rotation angle of the torsion pendulum η[ti = i∆t] has been
acquired, the preferred method to recover the external torque acting on the torsion
pendulum is inverting the equation of motion in the time domain

N [ti] = Iη̈[ti] + βη̇[ti] + kη[ti]

= Iη̈[ti] +
I

Q

(
2π

T0

)
η̇[ti] + I

(
2π

T0

)2

η[ti]
(2.17)

where the dot indicates the time derivative. The careful reader will recognize that
we just used the equation of motion for an harmonic oscillator subjected to viscous
damping, whereas our experiment is ideally limited by intrinsic structural damping
of the fiber. We notice, however, that the effect of this approximation turns to be
negligible6 [25]. The first and second derivative of η[ti] are computed by a sliding least-
squares fit of a second order polynomial7 over five consecutive samples as described
in [28].

In Figure 2.6, we plot the 4TM torsion pendulum force noise at low frequency
compared to the LISA acceleration requirement converted into force. Naturally the
readout noise at frequencies close to the pendulum natural frequency is very small
because even small torques produce a large angular displacement if their frequency
resonates with the one of the pendulum.

Our setup is a factor ∼ 8 in noise amplitude above the thermal noise at 1mHz
and a factor ∼ 150 above the LISA requirement at the same frequency.

Even if the noise performance of the 4TM torsion pendulum is worse than the
LISA requirement, our facility can still place stringent upper limits on the force noise
introduced by the inertial sensor surrounding the TM. Moreover, it is possible to
measure the force noise induced on the TM by fluctuations of environmental physical
quantities (such as temperature) by modulating the source of disturbance itself and
then observing the coherent response of the pendulum. In this regard, an estimate of
the sensitivity of the 4TM torsion pendulum to a long-lasting sinusoidal force signal
of frequency fmod is

σA ≃
√
SF (fmod)

∆t
(2.18)

6The transfer function (2.10) and the one we obtain from (2.17) are very close at all frequencies.
7The fit function is ηfit(t) = akt

2 + bkt + ck, where the fit coefficients depend on the
index k of the central point in the five-point stencil used for the fit (we fitted the set
{η(tk−2), η(tk−1), η(tk), η(tk+1), η(tk+2)}). At this point the first derivative at the time tk can be
estimate as

η̇[tk] =
dηfit
dt

∣∣∣∣
t=tk

= 2aktk + bk.

Analogously, the assessment of the second order derivative reads

η̈[tk] =
d2ηfit
dt2

∣∣∣∣
t=tk

= 2ak.
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Figure 2.7: Effect of the Chignik earthquake (Alaska) on the 4TM
torsion pendulum in 2021. The seismic waves traveled for ∼ 12 minutes

before reaching our apparatus at a distance of 8600 km.

where ∆t is the observation time and SF (fmod) is the one-sided PSD of the force noise
on the pendulum at the modulation frequency. At the current performance the 4TM,
the minimum detectable amplitude of a sinusoidal signal at 2mHz is ∼ 10 fN for an
observation time of one hour.

The realistic maximum duration of an interrupted measurement with the tor-
sion pendulum is limited by environmental factors, such as earthquakes happening
somewhere on the Earth, which may cause the oscillation amplitude of the torsion
pendulum to increase significantly (for an example, see Figure 2.7).

2.1.5 Detection of LPF glitches on-ground

An example of a possible application of the 4TM torsion pendulum to help investigat-
ing aspects of LISA Pathfinder that are still not understood is the search for spurious
transient acceleration events, known as glitches [18].

Here we present a sensitivity analysis to the LISA Pathfinder impulse carrying
glitches obtained with the technique of Wiener optimal filtering.

The LPF glitches are divided into

• Impulse carrying glitches of unknown origin;

• Fast, low-impulse carrying glitches, which are likely due to anomalies in the
interferometer.

Here we focus on the impulse carrying glitches. Most of them (89%) are fitted by the
template

h(t) = ∆v
t− t0
τ2

exp

(
− t− t0

τ

)
Θ(t− t0)

︸ ︷︷ ︸
f(t)

(2.19)

where τ is a characteristic time, t0 is the glitch arrival time, and ∆v is the total
impulse per unit mass transferred to the TM and Θ(·) is the Heaviside step function.
We can define the duration parameter ∆ as the time interval that contains 99% of the
glitch energy, that is ∫ t0+∆

t0
h2(t) dt

∫ +∞
−∞ h2(t) dt

= 0.99 (2.20)
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Numerically we find ∆ ≃ 4.2τ .
Assume that we would like to search for a signal of unknown amplitude but de-

scribed by the template (2.19) in a noisy timeseries

g(t) = ∆v · f(t) + n(t) (2.21)

where f(t) is the normalized template, ∆v is the unknown signal amplitude and n(t)
is a zero-mean noise. Assuming that the measured timeseries g(t) is much longer than
the duration of the signal, the Wiener optimal filter to detect f(t) is

Hopt(ω) = σ2∆v
f̃(ω)

Snn(ω)
(2.22)

where f̃(ω) is the Fourier transform of the glitch template normalized so that is carries
unitary impulse per unit mass and Sn(ω) is the acceleration power spectral density
of the instrument that aims at detecting the signal f(t), in our case the 4TM torsion
pendulum. The constant σ2∆v corresponds to the standard deviation of the filtered
data and it is given by

σ∆v =

(
1

2π

∫ |f(ω)|2
Sn(ω)

dω

)− 1
2

(2.23)

The σ∆v corresponds to the minimum detectable signal amplitude8 , i.e. the amplitude
of a glitch that would be measured with 100% relative error (SNR = 1).

In Figure 2.8, we show the sensitivity curves of the 4TM torsion pendulum to
glitch-like signals obtained with (2.23) as a function of the duration parameter ∆. We
see that a fraction of the LPF glitches would be detectable, although with limited
SNR, with the torsion pendulum at the current noise performance.

2.2 Electrostatic model

The core of our experimental work entails the precise estimation of the charge de-
posited on our replica of the LISA test mass via small-force measurements with our
4TM torsion pendulum. Therefore, it is fundamental to present the theory that un-
derlies such measurements and tells us how to convert a force into an assessment of
the TM charge.

In this section, we will present a general model for the electrostatic forces generated
in the LISA gravitational reference sensor, which can be applied to several types of
experiments, such as the aforementioned charge measurement, or to the estimation of
the stray biases on the sensing electrodes.

8In the case of multiple detection channels, the expression of the minimum detectable signal
amplitude is generalized to

σ∆v =

(
1

2π

∫
f†(ω)S−1(ω)f(ω) dω

)− 1
2

(2.24)

where f(ω) = [f1(ω), f2(ω), . . . , fn(ω)]
T is a vector of templates (one for each channel) and S−1 is

the inverse of the cross-spectral-density matrix at each frequency

S(ω) =


S11(ω) S12(ω) . . . S1n(ω)
S21(ω) S22(ω) . . . S2n(ω)

...
...

. . .
...

Sn1(ω) Sn2(ω) . . . Snn(ω)

 (2.25)
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Figure 2.9: A system of isolated conductors.

2.2.1 System of conductors

The LISA sensor is basically a system of conductors. We recall in this section a few
notions that will be useful in the remainder of the chapter.

Let us consider a system of N isolated conductors, each one with electric charge
Qi, as the one displayed in Figure 2.9

The linearity of Electrostatics ensures that the potential on any conductor can be
obtained as

Vi =
N∑

j=1

pijQj for i = 1, . . . , N (2.26)

where pij are the coefficients of potentials, which depend solely on the system geom-
etry. The previous linear system can be inverted, leading to

Qi =
N∑

j=1

cijVj where c = {cij} = {pij}−1 = p−1 (2.27)

The matrix {cij} is the capacitive matrix, obtained inverting the matrix of the coeffi-
cient of potentials. From the symmetry of the Laplace equation in electrostatics, one
can prove that the capacitive matrix is symmetrical, i.e. cij = cji [29]. If we define
now the new coefficients Cij such that [30]

{
cij = −Cij , for i ̸= j

cii =
∑

k ̸=iCik, otherwise
(2.28)

We notice that the matrix of the Cij is also symmetrical, as it is defined just inverting
the sign of cij for i ̸= j. If we substitute the newly defined Cij into the (2.27), we
have

Qi = ciiVi −
∑

j ̸=i
cijVj =

∑

j ̸=i
CijVi −

∑

j ̸=i
CijVj =

∑

j ̸=i
Cij(Vi − Vj) (2.29)

In this way we wrote the charge on the ith conductor as it were the armor of a
capacitor. In other words, we converted the system of conductors into a system of
capacitors. We can interpret Cij as the capacitance between the ith and jth conductor.
As expected the capacitances Cij depend only on the system geometry, as they are
defined from the potentials coefficients pij .
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From the definition of potential, we can now write the internal energy U of the
system as

U = U(r1, . . . , rN ;ϑ1, . . . ,ϑN ) =
1

2

N∑

i=1

QiV (ri) (2.30)

where the factor of one half accounts for the “double counting” of charge pairs and
V (ri) is the electrostatic potential due to all conductors except the one at ri. We
explicitly wrote that the internal energy depends on the positions {ri} and orientation
{ϑi} of all conductors in the system. As the conductors are equipotential surfaces,
we must have V (ri) = Vi, hence

U(r1, . . . , rN ;ϑ1, . . . ,ϑN ) =
1

2

N∑

i=1

QiVi =
1

2

N∑

i=1

N∑

j

cijVjVi (2.31)

where in the last passage we used (2.27). We can rephrase now the expression for the
internal energy just derived in terms of the capacitances Cij defined in (2.28)

U(r1, . . . , rN ;ϑ1, . . . ,ϑN ) =
1

2

N∑

i=1

∑

j ̸=i
cijVjVi +

1

2

N∑

i=1

ciiV
2
i

= −1

2

N∑

i=1

∑

j ̸=i
CijVjVi +

1

2

N∑

i=1

∑

j ̸=i
CijV

2
i

(2.32)

We notice that the last term on the right-hand side of the last equation can be written
as

N∑

i=1

∑

j ̸=i
CijV

2
i =

1

2

N∑

i=1

∑

j ̸=i
CijV

2
i +

1

2

N∑

j

∑

i ̸=j
CjiV

2
j

=
1

2

N∑

i=1

∑

j ̸=i
CijV

2
i +

1

2

N∑

j

∑

i ̸=j
CijV

2
j

=
1

2

N∑

i=1

∑

j ̸=i
Cij
(
V 2
i + V 2

j

)

(2.33)

where we used the symmetry of the capacitances Cij = Cji and the fact that the
order of summation can be flipped. If we plug this expression into the internal energy
(2.32), we obtain

U(r1, . . . , rN ;ϑ1, . . . ,ϑN ) =
1

4

N∑

i=1

∑

j ̸=i
Cij
(
V 2
i + V 2

j − 2VjVi
)

=
1

4

N∑

i=1

∑

j ̸=i
Cij (Vi − Vj)

2

=
1

2

N∑

i=1

∑

j<i

Cij (Vi − Vj)
2

(2.34)

where, in the last passage, we restricted j < i to avoid double counting.



38 Chapter 2. Small-force measurements with 4TM torsion pendulum

From the internal energy for a system of isolated conductors, we can obtain the
force acting on the ith conductor Fi using the principle of virtual works

Fi · dri = δW = −dU =⇒ Fi = −∇iU (2.35)

where dri is the infinitesimal translation of the ith conductor and ∇i is the gradient
with respect to the coordinates of the ith particle9. If we restrict to compute the force
acting along a general direction, that we shall call x, we have that the component of
the force on the ith conductor along the x-axis is

Fi · êx = Fi,x = −∂U
∂xi

(2.37)

where xi is the coordinate of the ith conductor on the x-axis. A similar expression is
also true for the torques10

Ni · êϑ = Ni,ϑ = − ∂U

∂ϑi
(2.41)

Comment for conductors at fixed potential The derivation above assumes that
all conductors in the system are isolated, hence the internal energy is given by the
total electrostatic energy of the conductors.

In the case that the conductors are kept at a constant potential due to the presence
of generators, the formula above is not true anymore, if we do not include the work
done by the generators on the system [31]. Therefore, the principle of virtual work
must include not only the mechanical work, but also the electric work done by the
generators

−dU = δWtot = Fi · dri + δWgen (2.42)

Hence
Fi · dri = −dU − δWgen = −dU + dUgen = −d (U − Ugen) (2.43)

We finally have that in the presence of generators that keep the conductors potential
fixed, we must modify (2.35) as

Fi = −∇i (U − Ugen) = −∇iUtot. (2.44)
9That is, assuming Cartesian coordinates

∇i =
∂

∂xi
êx +

∂

∂yi
êy +

∂

∂zi
êz (2.36)

10One can prove the expression below from the infinitesimal work in terms of the torque

δW = N · dϑ (2.38)

which itself arises from the definition of work

δW = F · ds = F · (dϑ×R) = (R× F ) · dϑ = N · dϑ. (2.39)

where we used the fact that a general infinitesimal displacement ds can be written as the cross
product of the corresponding angular displacement dϑ and the radius vector R. Moreover we used
the vector identity a · (b× c) = (c×a) · b. From the principle of virtual work (restricting to torques
along a specific rotation axis), we have

−dU = δW = Nϑ dϑ (2.40)

which is what we wanted to prove.
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Figure 2.10: Electrode configuration of the gravitational reference
sensor. The colors differentiate the various families of electrodes: blue
for x, green for y, red for z, and yellow for the injection electrodes.
We use here a slightly different convention for the numbering of the

x-electrodes with respect to our reference [32].

Hence, the generic expression for a force (or torque) along a generic q-direction (or
angular coordinate) acting on the ith conductor is

Fi,q = −∂Utot
∂qi

= −∂U
∂qi

+
∂Ugen
∂qi

(2.45)

We notice that Fq,i can be interpreted as either a force or a torque, depending if q is
a linear or angular coordinate.

2.2.2 Electrostatic force model

In this section we will present the electrostatic model for LISA. The main reference
will be the technical note [32]. As anticipated, the LISA sensor can be modeled as
collection of conductors, which may be grouped into four categories

• Sensing and actuation electrodes;

• Injection electrodes;

• Rest of electrode housing;

• Test mass;

In Figure 2.10, we show a diagram of the various electrodes in the LISA sensor,
accompanied by a numbering convention.

We will now derive the expression for the electrostatic forces acting on the test
mass. As the electrode housing is a rigid body, the only element of the system that
can move is the test mass. The expression for the generic force or torque (2.45), can
be simplified as

Fq(r,ϑ) = −∂Utot(r,ϑ)
∂q

= −∂U(r,ϑ)

∂q
+
∂Ugen(r,ϑ)

∂q
(2.46)
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Table 2.1: Conversion between numbering and naming for the sens-
ing/actuation electrodes.

Number Name

1 x−1
2 x+1
3 x−2
4 x+2
5 y+1
6 y+2
7 y−2
8 y−1
9 z+1
10 z+2
11 z−2
12 z−1

where r is a vector specifying the test mass position and ϑ a vector of angles defining
its orientation11. The generic degree of freedom q can be either a position, for which
Fq is to be interpreted a force, or an angle, which would make Fq a torque. The
electrostatic energy of the capacitors can found from (2.34), but before we must explain
what is the meaning the capacitances pairs Cij in the context of the LISA sensor. As
the EH is a rigid body, only the test mass is free to move: the capacitances will depend
solely on the test mass position and rotation

Cij = Cij(r,ϑ) (2.47)

As we divided the GRS into actuation/sensing electrodes, injection electrodes, rest of
EH, and test mass, the Cij can be grouped in following classes12

• Capacitances between electrodes (both actuation/sensing and injection) and the
TM, that we shall call Ci, where i = 1, 2, . . . , 18 (indeed we have 12 actua-
tion/sensing electrodes and 6 injection electrodes).

• Capacitances between electrodes (both actuation/sensing and injection) and the
rest of the electrode housing, that we shall call Ci,h. As before i = 1, 2, . . . , 18.

• Capacitance between TM and rest of the housing (not including the electrodes),
which we call CTM,h.

The scheme in Figure 2.11 is an useful visual aid to understand how we are modeling
the GRS as a capacitive circuit.

Thus, the internal electrostatic energy for the capacitors (2.34), can be written
summing over the capacitances just listed

U =
1

2

18∑

i=1

Ci (Vi − VTM )2 +
1

2

18∑

i=1

Ci,hV
2
i +

1

2
CTM,hV

2
TM (2.48)

where Vi are the voltages on the electrodes and VTM is the test mass potential. We
used the fact that the potential of the housing is always zero, because it is grounded.

11In Cartesian coordinates r = (x, y, z) and ϑ = (θ, η, ϕ)
12In this list we neglect the intra-electrode capacitances, which are two or three orders of magnitude

lower and thus negligible [33].
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Figure 2.11: Schematic representation of the LISA sensor as a cir-
cuit. Indicated are the main capacitances connecting the various ele-

ments. Adapted from [32].
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We notice that the test mass is of course floating, but we have FEE generators
working to keep the potential of all injection and sensing electrodes at the desired
values independently of the test mass position. We need therefore now to compute
the energy provided by such generators, which is given by13

Ugen =

18∑

i=1

Qtot,iVi (2.49)

where Qtot,i is the total charge deposited on the ith electrode, which is composed of
two terms because each electrode is practically formed by two capacitors (see Figure
2.11). One capacitor is the one between electrode and TM (Ci) and the other is the
capacitor between electrode and rest of the grounded housing Ci,h). Hence, we can
write

Qtot,i = Qi +Qi,h = Ci(Vi − VTM ) + Ci,hVi (2.50)

If we substitute this expression into the (2.49), we have that the energy provided by
the generators is

Ugen =

18∑

i=1

[
(Ci + Ci,h)V

2
i − CiVTMVi

]
(2.51)

Consequently, combining (2.51) and (2.48), total internal energy assumes the form

Utot = U − Ugen

= −1

2

18∑

i=1

(Ci + Ci,h)V
2
i +

1

2

(
CTM,h +

18∑

i=1

Ci

)
V 2
TM

= −1

2

18∑

i=1

(Ci + Ci,h)V
2
i +

1

2
CtotV

2
TM

(2.52)

where we defined the total test mass capacitance as Ctot = CTM,h +
∑18

i=1Ci. As in
the scheme of Figure 2.11, we can consider the test mass as an armor of a capacitor.
Hence the TM charge can be found as

QTM =

18∑

i=1

Ci (VTM − Vi) + CTM,hVTM (2.53)

which solving for VTM gives

VTM =
QTM +

∑18
i=1CiVi

CTM,h +
∑18

i=1Ci
=
QTM +

∑18
i=1CiVi

Ctot
(2.54)

This is the familiar expression for the test mass voltage, which includes the TM charge
and the polarization that the electrodes induce on the test mass.

13In this case we do not have the prefactor one-half because we are counting just over the electrodes
capacitances towards the TM (and not also over the symmetrical capacitances of the TM towards
the electrodes).



2.2. Electrostatic model 43

At this point, we can write the expression for the general force (or torque) acting
on the test mass (2.46) as

Fq =
1

2

∂

∂q

[
18∑

i=1

(Ci + Ci,h)V
2
i − CtotV

2
TM

]

=
1

2

(
18∑

i=1

∂Ci
∂q

V 2
i +

18∑

i=1

∂Ci,h
∂q

V 2
i − V 2

TM

∂Ctot
∂q

− 2CtotVTM
∂VTM
∂q

) (2.55)

where we used the fact, due to the presence of the generators, Vi are constant and
do not depend on the coordinate q. Let us compute the partial derivative of the test
mass potential in the coordinate q

∂VTM
∂q

=
∂

∂q

(
QTM +

∑18
i=1CiVi

Ctot

)

=
1

Ctot

∂QTM
∂q

+
1

Ctot

18∑

i=1

Vi
∂Ci
∂q

− QTM +
∑18

i=1CiVi
C2
tot

∂Ctot
∂q

=
1

Ctot

18∑

i=1

Vi
∂Ci
∂q

− VTM
Ctot

∂Ctot
∂q

(2.56)

where we used ∂QTM
∂q = 0 since the test mass is electrically isolated. Plugging this

expression into (2.55) leads us to

Fq =
1

2

(
18∑

i=1

∂Ci
∂q

V 2
i +

18∑

i=1

∂Ci,h
∂q

V 2
i + V 2

TM

∂Ctot
∂q

− 2VTM

18∑

i=1

Vi
∂Ci
∂q

)

=
1

2

[
18∑

i=1

(
∂Ci
∂q

+
∂Ci,h
∂q

)
V 2
i +

+V 2
TM

(
∂CTM,h

∂q
+

18∑

i=1

∂Ci
∂q

)
− 2VTM

18∑

i=1

Vi
∂Ci
∂q

]

=
1

2

[
18∑

i=1

∂Ci
∂q

(Vi − VTM )2 +
18∑

i=1

∂Ci,h
∂q

V 2
i + V 2

TM

∂CTM,h

∂q

]

(2.57)

where, in the second passage, we decomposed Ctot = CTM,h +
∑18

i=1Ci. This is the
general expression for the electrostatic force (or torque) on the LISA test mass along
the general direction (or angle) q.

More general formulation The result (2.57) is consistent with the actuation
model in [30], where the force along a general q coordinate is given by

Fq =
1

2

∑

i

∑

j<i

∂Cij
∂q

(Vi − Vj)
2 (2.58)

Equivalently, the formula for the torque around a general angle β is

Nβ =
1

2

∑

i

∑

j<i

∂Cij
∂β

(Vi − Vj)
2 (2.59)
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where the summations span in general over all the sensor and test mass surfaces.
Analogously, the test mass potential is given by

VTM =
QTM
Ctot

+

∑
i(S)Ci(S)Vi(S)

Ctot
(2.60)

where the summation index i(S) runs over all the sensor surfaces, excluding the ones
belonging to the test mass. In this way Ci(S) represent the capacitance between the
ith surface of the sensor and the TM and Vi(S) represent the potential of this surface
with respect to ground. Dealing with the most general form of equations (2.58) and
(2.59) is pretty difficult. Usually, instead of referring to single surface elements, one
makes the assumption that coherent and uninterrupted areas if the sensor, such as a
given sensing electrode or the TM, are associated with a mean potential, as we did
previously, following the model of reference [32].

2.2.3 Capacitance model

We would like to highlight that the capacitances and their derivatives in the previous
equations dependent upon the TM displacement and rotation. In the general case
the test mass is not necessarily centered, hence we need to known the value of the
capacitance and their derivatives at the specific test mass position. As we are usually
dealing with very small displacements and rotations from a centered test mass, a first
order Taylor expansion provides with enough accuracy. The reference [32] presents a
second order model for the capacitances. Here we focus only on the expansion of the
x-electrodes capacitance and the total capacitance along the x-direction, which, as we
shall see, are the quantities of interest for our analysis.

x-electrodes capacitance We are mainly interested in the expression for the ca-
pacitance of x-electrodes because that is the sensitive axis of LISA and our torsion
pendulum. The Taylor expansion of the x-electrodes capacitance at second order
reads

C1(x, y, z, ϕ, η, θ) ≃ Cx −
∣∣∣∣
∂Cx
∂x

∣∣∣∣x−
∣∣∣∣
∂Cx
∂ϕ

∣∣∣∣ϕ+

+
1

2

∣∣∣∣
∂2Cx
∂x2

∣∣∣∣x2 +
1

2

∣∣∣∣
∂2Cx
∂ϕ2

∣∣∣∣ϕ2 +
1

2

∣∣∣∣
∂2Cx
∂η2

∣∣∣∣ η2+

+

∣∣∣∣
∂2Cx
∂ϕ∂x

∣∣∣∣xϕ−
∣∣∣∣
∂2Cx
∂ϕ∂y

∣∣∣∣ yϕ+

∣∣∣∣
∂2Cx
∂η∂z

∣∣∣∣ zη (2.61)

C2(x, y, z, ϕ, η, θ) ≃ Cx +

∣∣∣∣
∂Cx
∂x

∣∣∣∣x+

∣∣∣∣
∂Cx
∂ϕ

∣∣∣∣ϕ+

+
1

2

∣∣∣∣
∂2Cx
∂x2

∣∣∣∣x2 +
1

2

∣∣∣∣
∂2Cx
∂ϕ2

∣∣∣∣ϕ2 +
1

2

∣∣∣∣
∂2Cx
∂η2

∣∣∣∣ η2+

+

∣∣∣∣
∂2Cx
∂ϕ∂x

∣∣∣∣xϕ+

∣∣∣∣
∂2Cx
∂ϕ∂y

∣∣∣∣ yϕ−
∣∣∣∣
∂2Cx
∂η∂z

∣∣∣∣ zη (2.62)
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C3(x, y, z, ϕ, η, θ) ≃ Cx −
∣∣∣∣
∂Cx
∂x

∣∣∣∣x+

∣∣∣∣
∂Cx
∂ϕ

∣∣∣∣ϕ+

+
1

2

∣∣∣∣
∂2Cx
∂x2

∣∣∣∣x2 +
1

2

∣∣∣∣
∂2Cx
∂ϕ2

∣∣∣∣ϕ2 +
1

2

∣∣∣∣
∂2Cx
∂η2

∣∣∣∣ η2−

−
∣∣∣∣
∂2Cx
∂ϕ∂x

∣∣∣∣xϕ−
∣∣∣∣
∂2Cx
∂ϕ∂y

∣∣∣∣ yϕ+

∣∣∣∣
∂2Cx
∂η∂z

∣∣∣∣ zη (2.63)

and

C4(x, y, z, ϕ, η, θ) ≃ Cx +

∣∣∣∣
∂Cx
∂x

∣∣∣∣x−
∣∣∣∣
∂Cx
∂ϕ

∣∣∣∣ϕ+

+
1

2

∣∣∣∣
∂2Cx
∂x2

∣∣∣∣x2 +
1

2

∣∣∣∣
∂2Cx
∂ϕ2

∣∣∣∣ϕ2 +
1

2

∣∣∣∣
∂2Cx
∂η2

∣∣∣∣ η2−

−
∣∣∣∣
∂2Cx
∂ϕ∂x

∣∣∣∣xϕ+

∣∣∣∣
∂2Cx
∂ϕ∂y

∣∣∣∣ yϕ−
∣∣∣∣
∂2Cx
∂η∂z

∣∣∣∣ zη (2.64)

where the values the Cx and its derivatives have been computed for a centered TM in
[33] with a FEM model of the GRS. Similar relations hold also for the Ci,h capacitances
for i = 1, 2, 3, 4.

At this point we would like to make a couple of observations:

• The sign of the capacitance first derivative in the direction x is positive for the
electrodes on the x+ face of the test mass and negative for the electrodes on the
x− face

∂C1

∂x

∣∣∣∣
x=0

=
∂C3

∂x

∣∣∣∣
x=0

= −
∣∣∣∣
∂Cx
∂x

∣∣∣∣ (2.65)

and
∂C2

∂x

∣∣∣∣
x=0

=
∂C4

∂x

∣∣∣∣
x=0

= +

∣∣∣∣
∂Cx
∂x

∣∣∣∣ (2.66)

The reason for this behavior is simple: if the TM moves from x = 0 to x = dx,
we have that it will be closer to the electrodes on the face x+ face than to the
ones on the x− face. As the capacitance is expected to scale with the inverse
of the distance between the armors, this causes the C2 and C4 capacitance to
increase and, conversely, the C1 and C3 to decrease. See Figure 2.12 for a visual
aid.

• We would like to point out that, at first order, the capacitance of the x-electrodes
does not depend on the rotation angle η (see Figure 2.13 for a simple explana-
tion)

∂Ci
∂η

∣∣∣∣
η=0

= 0 for i = 1, 2, 3, 4 (2.67)

Consequently, if the test mass is centered in η, and some potentials are applied
to the x-electrodes, there will be no pure torque acting on the pendulum but
just a force along the x-direction (this is important for our charge measurement
technique that will be discussed in Section 2.3).

Notice also that here we used a slight different numbering of the x-electrodes with
respect to [32]. We did this trick, in order to write the capacitance of a general
x-electrode when we are centered all DOF except for x, as

Ci(x) = Cx + (−1)i
∣∣∣∣
∂Cx
∂x

∣∣∣∣x+
1

2

∣∣∣∣
∂2Cx
∂x2

∣∣∣∣x2 +O(x2) (2.68)
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δx

x−1

x−2

x+1

x+2

Figure 2.12: The capacitance of the electrodes on the x+ face in-
crease for a displacement δx of the TM from its centered position. The

opposite is true for the electrodes on the x− face.

TM

x

z
δη

x− x+

Figure 2.13: The capacitance of the x-electrodes does not change for
small rotations δη, because the distance of the TM from one side of the
electrodes increases, whereas on the other side, it decreases, giving, at

first order, no contribution.

where i = 1, 2, 3, 4. A similar relation holds for the Ci,h electrodes, but with the sign
of derivative inverted. This arises from the fact that, if the test mass approaches one
of the x-electrodes, a larger fraction of the electrostatic field lines would connect to
the TM, rather than fall back to the EH region around the electrodes, i.e.

Ci,h(x) = Cx,h + (−1)i+1

∣∣∣∣
∂Cx,h
∂x

∣∣∣∣x− 1

2

∣∣∣∣
∂2Cx,h
∂x2

∣∣∣∣x2 +O(x2) (2.69)

Total TM capacitance From symmetry reasons we can see that the first derivative
of the total capacitance in all DOF is zero. Indeed starting from a centered TM, the
symmetry of the electrode housing makes so that a displacement in any direction or
angle will produce a variation of the total capacitance equal to a displacement in the
opposite direction or angle

Ctot(δq) = Ctot(−δq), (2.70)

which means that the value of the total capacitance for a centered test mass q = 0 is
a stationary point

∂Ctot
∂q

∣∣∣∣
q=0

= 0 =⇒ ∂Ctot
∂x

∣∣∣∣
x=0

= 0 (2.71)

Hence, the expansion of the total TM capacitance along the x-coordinate is

Ctot(x) = Ctot(x = 0) +
1

2

∂2Ctot
∂x2

∣∣∣∣
x=0

x2 +O(x2) (2.72)

We notice that the second order derivative are not zero.
The numerical values for the capacitances and their derivatives have been com-

puted for a centered test mass in [33] with a FEM model including the exact geometry
of LISA Pathfinder GRS.
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Figure 2.14: Schematic representation the capacitances needed to
compute the electrostatic force the x-direction. The commanded ac-
tuation potentials are indicated with V act

i and the stray biases as δVi.

2.2.4 Force along the science axis

In LPF and in LISA the main sensitive direction is the x-axis, along which the test
masses are free falling and no actuation is applied. For this reason, let us compute
the expression for the electrostatic force acting on the TM along the x-direction. The
scheme in Figure 2.14 shows the quantities relevant for calculations throughout the
section.

In an ideal sensor14, the only the electrodes on the x-faces have a non-vanishing
capacitance derivative in the test mass x-position, i.e.

∂Ci
∂x

=
∂Ci,h
∂x

= 0 for i ̸= 1, 2, 3, 4 (2.73)

where we used the numbering of Figure 2.10. Therefore, the expression for the force
(2.57) in the x-direction, reduces to

Fx =
1

2

[
4∑

i=1

(
∂Ci
∂x

+
∂Ci,h
∂x

)
V 2
i + V 2

TM

∂Ctot
∂x

− 2VTM

4∑

i=1

Vi
∂Ci
∂x

]
(2.74)

If we assume that no potentials are applied to any of the electrodes except for the
unavoidable stray biases δVi, the previous equation would reduce to

Fx,noise =
1

2

4∑

i=1

(
∂Ci
∂x

+
∂Ci,h
∂x

)
δV 2

i +
1

2
V 2
TM

∂Ctot
∂x

− VTM

4∑

i=1

δVi
∂Ci
∂x

(2.75)

From this expression we can find all the possible electrostatic disturbances on the test
mass that are listed in the LISA noise budget [12]. Let us notice that if the test mass
is centered, the term proportional to V 2

TM is negligible because of the (2.71).
Let us introduce the very important quantity ∆x as

∆x =

∑4
i=1 δVi

∂Ci
∂x∣∣∂Cx

∂x

∣∣ (2.76)

The ∆x is often referred as DC stray bias and it is an effective potential on a single
x-electrode that would explain the entire average residual electrostatic field felt by

14Here, with ideal we mean a sensor with perfect geometry and a test mass which is perfectly
equipotential.
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the TM in the x-direction [12, 30]. Actually the definition just given, reduces to
∆x = −δV1 + δV2 − δV3 + δV4 for a centered TM15, i.e. ∆x is the difference between
the stray potentials on the x+ face on the x− face. On the other hand, the definition
(2.76) in the less ideal case that the GRS geometry is not perfect and that the TM is
a patchwork of different potentials, according to (2.58), must be generalized to

∆x =
1∣∣∂Cx
∂x

∣∣
∑

i(TM)

∑

j(S)

(Vj − δVi)
∂Cij
∂x

(2.77)

If we plug the definition of ∆x (2.76) and the expression for VTM (2.54) into (2.75),
we have

Fx,noise =
1

2

4∑

i=1

(
∂Ci
∂x

+
∂Ci,h
∂x

)
δV 2

i +

+
1

2

(
QTM +

∑18
i=1CiVi

Ctot

)2
∂Ctot
∂x

−
(
QTM +

∑18
i=1CiVi

Ctot

)∣∣∣∣
∂Cx
∂x

∣∣∣∣∆x (2.78)

From this expression we see that the leading term of the force noise in the charge for
a centered16 test mass is

FQTM
x,noise = −QTM

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣∆x (2.79)

This equation shows that the force scales with the TM charge: any noise on the stray
potentials is translated into a noisy force with coupling coefficient proportional to the
TM charge. We, therefore, understand that it is important to keep the TM charge as
close to neutrality as possible, otherwise significant sources of force noise may arise.

2.3 Charge measurement technique

In this section we will explain how we can measure the test mass charge by applying
modulation voltages to the x-electrodes.

We would like to make a few assumptions to simplify the calculation

• The test mass is centered in all degrees of freedom, except for the x-position.
Consequently, according to the observation in Section 2.2.3, a potential applied
to the x-electrodes generates a pure force Fx and no pure torque on the test mass
around the angle η. In this way the signal induced on our torsion pendulum is
due to only the electrostatic forces acting on the TM.

• The amplitude of the modulation is equal to the commanded value on all x-
electrodes. Measurement with our FEE in [34], seem to suggest that the stability
of the actuation amplitudes is remarkable (relative variations ∼ 1000 ppm).

For the 4TM torsion pendulum we decided to apply a modulation only to the x+2
and x−2 electrodes (number 3 and 4 in Figure 2.10), which are the farther from the
region illuminated by the ISUKs bringing UV-light into the GRS for charge manage-
ment.

15From now on, in this section, we will assume that the test mass is centered if not otherwise
specified.

16If the test mass is centered from (2.71) we have that ∂Ctot
∂x

∣∣
x=0

= 0.
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We make this choice because we did not want to alter the photoelectron trajec-
tories and, hence, the GRS discharge characteristics by applying local time-varying
potentials of amplitude ∼ 1V close to the area illuminated with the UV light.

The actuation pattern applied to the x-electrodes during our charge management
reads 




V1 = δV1

V2 = δV2

V3 = δV2 − Vmod sin(2πfmodt)

V4 = δV2 + Vmod sin(2πfmodt)

(2.80)

The modulation frequency fmod is chosen to be ∼ mHz to exploit the band where our
torsion pendulum is most sensitive (see Figure 2.6). The modulation amplitude Vmod
is chosen to be either 1V for the apparent yield measurements (for which the charge
signal is large) or 5V for the continuous discharge measurements (for which we need
to enhance the sensitivity).

The potential on all other EH sensing/actuation electrodes is supposed to be
zero17. We notice that the modulation applied has opposite sign on electrode 3 with
respect to electrode 4, in order not to polarize significantly the test mass (at least
when it is centered). Indeed, from (2.54), considering the actuation pattern (2.80),
we have

VTM (x) =
QTM
Ctot(x)

+
1

Ctot(x)

4∑

i=1

Ci(x)δVi−

− C3(x)Vmod
Ctot(x)

sin(2πfmodt) +
C4(x)Vmod
Ctot(x)

sin(2πfmodt) (2.81)

Notice that in general VTM depends on the x-position because the capacitances Ci
and Ctot are function of the x-coordinate. However, if the test mass is centered in x,
from (2.68) we have C3(x = 0) = C4(x = 0) = Cx and the test mass potential reduces
to

VTM (x = 0) =
QTM +

∑4
i=1CxδVi

Ctot(x = 0)
(2.82)

If we plug the actuation pattern (2.80) and the corresponding test mass potential
(2.81), into the general expression for the force along the x-direction (2.74) and we
expand the result18 at first order in the x coordinate, remembering equations for the
expansion of the capacitances (2.68), (2.69) and (2.72), we obtain that the in-phase

17We do not consider in this calculation the potential on the injection electrodes, because it is
modulated at frequencies completely different from the one of charge measurement (100 kHz versus
∼ mHz).

18We let Mathematica [35] the pleasure of performing the calculation because, given the large
number of terms, the probability of making an error in an hand-made calculation is practically unity.
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(I) force component at the modulation frequency is

F fmod
x,I = −2Vmod

{[
QTM + Cx(δV1 + δV2 + δV3 + δV4)

Ctot
− δV3 + δV4

2

] ∣∣∣∣
∂Cx
∂x

∣∣∣∣+

+
δV3 + δV4

2

∣∣∣∣
∂Cx,h
∂x

∣∣∣∣
}
+

+ Vmod

[
4(δV1 − δV2 + δV3 − δV4)

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣
2

+

+(δV4 − δV3)

(∣∣∣∣
∂2Cx
∂x2

∣∣∣∣−
∣∣∣∣
∂2Cx,h
∂x2

∣∣∣∣
)]

(x− x0)+

+O
[
(x− x0)

2
]

(2.83)

Another relevant force term that comes out of the expansion is

FDC,2fmod
x = K(x− x0) · sin2(2πfmodt) +O

[
(x− x0)

2
]

(2.84)

where

K =
V 2
mod

Ctot

[
Ctot

(∣∣∣∣
∂2Cx
∂x2

∣∣∣∣−
∣∣∣∣
∂2Cx,h
∂x2

∣∣∣∣
)
− 4

∣∣∣∣
∂Cx
∂x

∣∣∣∣
2
]
. (2.85)

Using the trigonometric duplication formula 2 sin2(α) = 1− cos(2α), we can rephrase
(2.84) as

FDC,2fmod
x =

K

2
(x− x0)−

K(x− x0)

2
cos(4πfmodt) +O

[
(x− x0)

2
]
. (2.86)

Therefore, we can see that the force FDC,2fmod
x gives rise to a quadrature (Q) force

component at twice the modulation frequency

F 2fmod
x,Q = −K

2
(x− x0) +O

[
(x− x0)

2
]

(2.87)

and to a DC force
FDCx =

K

2
(x− x0) +O

[
(x− x0)

2
]

(2.88)

The forces in (2.87) and (2.88) can be interpreted as an AC and DC stiffness term
because they produce a force that is proportional to the TM displacement. Both
terms scale with the square of the modulation voltage Vmod, hence they can become
quickly relevant if larger Vmod are chosen.

In the previous equations, we introduced x0 as the zero-force point, that where
the first derivatives of the capacitances of the x-electrodes on the plus side to the TM
are exactly opposite to the ones on the minus side19

− ∂C1

∂x

∣∣∣∣
x=x0

= − ∂C3

∂x

∣∣∣∣
x=x0

=
∂C2

∂x

∣∣∣∣
x=x0

=
∂C4

∂x

∣∣∣∣
x=x0

(2.89)

From (2.65) and (2.66), we would expect x0 = 0. However, in general, the sensing
zero position x = 0 does not necessarily coincides with the zero-force point x = x0
because of imperfections in the geometry of the GRS.

19Similar relations hold for the derivative of the capacitance Ci,h of the electrodes with respect to
the housing.
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Even if we are theoretically expanding around x = x0 in the previous equations,
we still use the numerical values for the capacitances and their derivatives from the
FEM model [33] which assumes a perfect geometry, i.e. x0 = 0 (anyhow a correction
is not needed because it would be second, or higher, order).

Estimation of zero-force point We can use the quadrature component at twice
the modulation frequency as a clean measure of the distance from the zero-force point
x0. Indeed it does not depend on the unknown stray potentials δVi on the electrodes.
From (2.87), we have

x− x0 = −
2F 2fmod

x,Q

K

= −
2F 2fmod

x,Q

V 2
mod
Ctot

[
Ctot

(∣∣∣∂2Cx
∂x2

∣∣∣−
∣∣∣∂

2Cx,h

∂x2

∣∣∣
)
− 4

∣∣∂Cx
∂x

∣∣2
]

(2.90)

In general, if we adjust the x-position of the TM in the EH so to null the force
component at 2fmod, we are sure to be in x = x0.

During the charge measurements with our torsion pendulum we took care to be
approximately centered in x ≃ x0. This configuration was, however, possible only
for a limited amount of time, as the unwinding of the suspending fiber, causes an
unavoidable secular drift in the equilibrium point of the pendulum.

Simplification for negligible stray biases If we assume that the stray biases
on the x-electrodes are small (δVi ≃ 0 for i = 1, 2, 3, 4), the previous equations can
be simplified. Let us introduce the number of electrodes used for the x-modulation
(either 2 or all 4) with the symbol Nel. The in-phase force component (2.83) for
negligible stray biases becomes

F fmod
x,I = −NelVmod

∣∣∣∣
∂Cx
∂x

∣∣∣∣
QTM
Ctot

+O
[
(x− x0)

2
]
. (2.91)

In the 4TM torsion pendulum, the estimated force along the x-direction is obtained
from the torque

Fx = − N

larm
(2.92)

where the minus comes from the sign convention in the coordinate system of the torsion
pendulum (a positive x-forces produces a negative torque). Hence from (2.91), we have
that demodulating the amplitude of the in-phase torque at fmod gives an estimate of
the test mass potential

VTM =
QTM
Ctot

=
Nfmod
x,I

larmNelVmod
∣∣∂Cx
∂x

∣∣ (2.93)

The quadrature force component at twice the modulation frequency (2.87) and
the DC force (2.88) do not depend on the stray potentials. Let us just rephrase the
stiffness K including explicitly the number of modulation electrodes

K =
N2
elV

2
mod

4Ctot

[
Ctot

(∣∣∣∣
∂2Cx
∂x2

∣∣∣∣−
∣∣∣∣
∂2Cx,h
∂x2

∣∣∣∣
)
− 4

∣∣∣∣
∂Cx
∂x

∣∣∣∣
2
]
. (2.94)
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These are the equations actually employed in the torsion pendulum for the charge
measurement. The hypothesis of negligible stray bias on the electrodes has to be
checked with dedicated DC stray bias measurements, which are presented in the next
section.

Subtraction of AC and DC stiffness In our torsion pendulum the DC force
(2.88) acts as an extra stiffness that opposes to the fiber restoring torque, causing
the period of the pendulum to increase. On the other hand, the AC stiffness (2.87)
produces a peak in the torque spectrum at 2fmod, which could potentially spoil our
charge signal at the modulation frequency (due to, for example, spectral leakage).

In order to have a cleaner charge measurement when we are not perfectly centered20

on x0, we subtracted the contributions of the AC and DC stiffness terms in (2.84)
from the total torque.

In Figure 2.15 we show the effect of the stiffness subtraction on the torsion pendu-
lum torque spectra during a charge management. The procedure is quite effective: the
peaks at twice the modulation frequency due to (2.87) (an its beatings with the pen-
dulum natural frequency) are significant lower. We also suppress the low-frequency
peak, which is caused by the fact that the DC stiffness (2.88) reduces the natural
frequency of the pendulum.

Observations Now that we derived all important equations for the charge measure-
ments, let us make a couple of observations:

• Even if we are in the zero-force point (x = x0), the in-phase force component
at fmod (2.83) does not give a measurement of just the test mass potential,
but includes a term proportional to the stray biases on the electrodes used for
modulation

V meas
TM = −

F fmod
x,I

2Vmod
∣∣∂Cx
∂x

∣∣ = VTM (x0)−
δV3 + δV4

2


1−

∣∣∣∂Cx,h

∂x

∣∣∣
∣∣∂Cx
∂x

∣∣


 (2.95)

where
VTM (x0) =

QTM + Cx(δV1 + δV2 + δV3 + δV4)

Ctot
(2.96)

is the TM potential when centered on the zero-force point x0.

• From the second term in (2.83), we see that, if the x-coordinate changes with
time, we will observe a change in the amplitude of the in-phase force component
at the modulation frequency, which is in turn directly converted into a drift of
the measured TM potential.

2.4 DC stray bias measurements

As argued in the previous sections, the presence of a large, uncompensated, DC stray
bias ∆x may introduce complications and excess noise in our charge measurements.
This is particularly critical for the continuous discharge campaign (see Chapter 5),
that is focused on estimating charge noise induced by the UV-illumination. We,

20This is, to some extent, unavoidable due to the unwinding of the fiber, which causes a slow drift
of the pendulum x-coordinate.
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Figure 2.16: Flowchart illustrating the charge measurement proce-
dure: once the timeseries of the pendulum rotation angle has been
acquired, it is converted into torque and subsequently demodulated to
recover the in-phase component at the modulation frequency. The test

mass potential is then computed with (2.93).
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therefore, decided to estimate the stray DC bias of our flight model replica GRS with
two different methods, namely

• Test mass potential modulation technique;

• Charge burst technique.

which will be presented in the next sections.

2.4.1 TM potential modulation technique

The idea of this measurement is to simulate a time-varying charge by polarizing the
test mass with the y-electrodes.

A sinusoidal potential with amplitude Vmod and frequency fmod is applied coher-
ently to n ≤ 4 electrodes on the y-faces of the EH. Assuming that the test mass is
geometrically centered in the y- and θ-coordinates21 and that no potentials are present
on all other electrodes, except for the stray bias on the x-electrodes22, from (2.54), we
have that

VTM (t) =
QTM
Ctot(x)

+
8∑

i=5

Ci
Ctot(x)

Vi(t) +
4∑

k=1

Ck(x)

Ctot(x)
δVk

=
QTM
Ctot(x)

+
n∑

j=1

Cy
Ctot(x)

Vmod sin(2πfmodt) +
4∑

k=1

Ck(x)

Ctot(x)
δVk

=
QTM
Ctot

+ nVmod
Cy

Ctot(x)︸ ︷︷ ︸
Amod

sin(2πfmodt) +

4∑

k=1

Ck(x)

Ctot(x)
δVk

(2.97)

The force along the sensitive x-axis is given by the equation (2.74). If we expand
this equation at first order in x − x0, remembering that in the zero-force point the
derivative of the capacitances on opposite sides of the test mass have flipped sign,
it is possible to prove that the in-phase component of the force at the modulation
frequency is

F fmod
x,I =

Amod
Ctot

(δV1 − δV2 + δV3 − δV4)

∣∣∣∣
∂Cx
∂x

∣∣∣∣+

+
Amod
C2
tot

(x− x0)

[(
Cx

∣∣∣∣
∂2Ctot
∂x2

∣∣∣∣− Ctot

∣∣∣∣
∂2Cx
∂x2

∣∣∣∣
) 4∑

i=1

δVi +QTM

∣∣∣∣
∂2Ctot
∂x2

∣∣∣∣

]
+

+O
[
(x− x0)

2
]

(2.98)

The quadrature component of the force at twice the modulation frequency is

F 2fmod
x,Q = −A

2
mod

4C2
tot

∣∣∣∣
∂2Ctot
∂x2

∣∣∣∣ (x− x0) +O
[
(x− x0)

2
]

(2.99)

and can be again used as an estimate of the distance from the zero-force point x0.
If we are reasonably close (∼ 10 µm) to x0, we see that the second term in (2.98) is

21In this way, we can simply use the nominal value Cy for the y-electrode capacitance, without the
need of expanding it in a Taylor series.

22That is Vi = δVi for i = 1, 2, 3, 4.
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negligible, hence

F fmod
x,I ≃ Amod

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣ (δV1 − δV2 + δV3 − δV4)

≃ −Amod
Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣∆x

(2.100)

where we recognized the definition of DC stray bias ∆x. If we solve for ∆x, we have

∆x ≃ −
F fmod
x,I

Amod
Ctot

∣∣∂Cx
∂x

∣∣ (2.101)

This equation gives a way to estimate the ∆x from the in-phase component of force
acting on the pendulum at the modulation frequency23.

It is convenient to repeat the measurement of ∆x applying some artificial compen-
sating potentials on the x-electrodes in the pattern

V act
1 = V act

3 = −Vcomp and V act
2 = V act

4 = Vcomp (2.103)

so that in equation (2.101), we would measure

∆meas
x (Vcomp) = ∆x + 4Vcomp (2.104)

In this way we can obtain a series of measured DC stray biases as a function of the
compensating voltage. Given the linear dependence of the measured ∆meas

x on the
Vcomp, the intercept of a linear fit gives an estimate the true DC stray bias ∆x of the
sensor in absence of any compensation voltage. We present the data acquired with our
torsion pendulum for several combination of the y-electrodes used for the modulation
in Figure 2.17.

This procedure, although convenient from an experimental point of view, is in-
trinsically flawed by the presence of shear forces that arise when you consider a non-
equipotential TM model [30], or due to the misalignment of the TM in the GRS
(especially with respect to the y-electrodes used for the modulation).

The error due to the presence of such shear forces can be naively estimated by
repeating the same procedure with different combinations of the y-electrodes used for
modulation.

Previous experimental campaigns showed that the systematic errors on ∆x with
the TM potential modulation technique can be as large as the DC stray bias itself.
Our data, obtained by modulating five different combinations of the y-electrodes, seem
to confirm this fear. We observe completely different estimates of the DC stray bias
in the range −10mV to +10mV. The weighted mean of all measurements lead to the
following estimate of the DC stray bias for our sensor

∆x = (−2± 2)mV for y-electrodes modulation technique (2.105)
23Notice that, for the choice of coordinates in the torsion pendulum, a force with positive x-

component produces a negative torque, hence when converting the torque into a force along the
x-direction a minus sign must be applied

Fx = − N

larm
. (2.102)
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The considerations above regarding the unreliability of this measurement tech-
nique, pushed us to try the charge-burst method to measure the DC stray bias, which
should be immune to the aforementioned systematic errors.

2.4.2 Charge burst technique

The charge burst technique allows for a more direct measurement of the stray DC
bias and is not affected by the systematic error related the shear forces. The idea is to
measure the force step associated with a rapid change in the test mass charge induced
by UV-illumination.

The measurement is less convenient then the method described in the previous
section because it requires to estimate variations in the DC level of the force acting
on the torsion pendulum, instead of demodulating a signal.

Assuming, as previously, that there are no potentials applied to the electrodes,
except for the stray biases δVi on the x-electrodes, and that we are centered in all
DOF, except for x, we have that the test mass potential is

VTM (x) =
QTM +

∑4
i=1Ci(x)δVi

Ctot(x)
(2.106)

If we expand at linear order in x − x0 the expression for the general force in the
x-direction (2.74), we obtain

Fx(QTM ) = C +QTM

[
δV1 − δV2 + δV3 − δV4

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣+

+
x− x0
Ctot

(
Cx
Ctot

∣∣∣∣
∂2Ctot
∂x2

∣∣∣∣−
∣∣∣∣
∂2Cx
∂x2

∣∣∣∣
) 4∑

i=1

δVi

]
+

+
Q2
TM

2C2
tot

∣∣∣∣
∂2Ctot
∂x2

∣∣∣∣ (x− x0) +O
[
(x− x0)

2
]

(2.107)

where C is a constant term that does not depend on the test mass charge. If we are
reasonably close to x0, we can ignore the term proportional to

∑4
i=1 δVi. Hence

Fx(QTM ) ≃ C −QTM
∆x

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣+
Q2
TM

2C2
tot

∣∣∣∣
∂2Ctot
∂x2

∣∣∣∣ (x− x0) (2.108)

where we recognized the definition of the DC stray bias, i.e.

∆x = −δV1 + δV2 − δV3 + δV4 (2.109)

The expression of the derivative of the force in the TM charge is

dFx
dQTM

≃ − ∆x

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣+
QTM
C2
tot

∣∣∣∣
∂2Ctot
∂x2

∣∣∣∣ (x− x0) (2.110)

If we estimate the value of the derivative of the force in the charge for several values
of QTM , we can obtain the ∆x as the intercept of the linear fit on the data.

Experimental procedure Induce with UV illumination a rapid change in the test
mass charge and measure the associated force step.

1. Perform a charge measurement to estimate the charge V init
TM before the illumi-

nation;
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2. Switch off the charge measurement and leave the pendulum oscillate freely (with
small amplitude);

3. Switch on the UV illumination to rapidly change the test mass charge;

4. Leave the pendulum oscillate for some time, in order to have the force step ∆Fx
associated with the illumination in the middle of a stretch of data where the
pendulum is quiet;

5. Perform a charge measurement to estimate the charge V fin
TM after the illumina-

tion;

6. The derivative of the force in the test mass voltage can be estimated as

dFx
dQTM

≃ ∆Fx(
V fin
TM − V init

TM

)
Ctot

(2.111)

7. Repeat for several values of the test mass potential.

In Figure 2.18, we plot a force step due to the rapid change in the test mass
charge as measured by the sensitive channels of the 4TM torsion pendulum. A low-
pass Blackman-Harris filter with cutoff-frequency fc = 8mHz has been applied to the
force timeseries in order to make the steps stand out.

The amplitude of the step ∆Fx has been reconstructed from a linear piecewise fit
of the data before and after the illumination time window.

As we have two channels to estimate the force on the pendulum, i.e. the autocol-
limator and the combined capacitive readings of GRS and STC, we actually estimate
the force step ∆Fx as the mean of signal measured by the AC and GRS + STC chan-
nels. The same holds for the error on ∆Fx, which is found as the standard deviation
of the force step amplitude by the two channels.

In Figure 2.19, we plot the derivative of the force in the test mass potential. A
least squares fit is performed on the data. The value of the DC stray bias is estimated
from (2.110) as

∆x = − Ctot∣∣∂Cx
∂x

∣∣
dFx

dQTM

∣∣∣∣
QTM=0

= − 1∣∣∂Cx
∂x

∣∣
dFx
dVTM

∣∣∣∣
VTM=0

= (23± 6)mV

(2.112)

where dFx
dVTM

∣∣∣
VTM=0

is the intercept of the linear fit in Figure 2.19.

Limitations This was the first time we measured the stray DC bias with the charge
burst technique. We would line to make a few observations to improve the experi-
mental procedure for future measurements

• It would have been advisable to repeat the measurement applying a compensa-
tion voltages as in the Section 2.4.1. In this way a more accurate determination
of ∆x could be obtained from a linear fit over multiple sets of charge burst
measurements.
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• The amplitude of the charge steps was probably too large (∼ 250mV): ideally
in order to estimate correctly the derivative we would need infinitesimal charge
variations, but that would produce a force step which is not detectable. Given
the 4TM pendulum sensitivity, we advise variations of the test mass potential
in the range of 50− 100mV.

• The infamous and unavoidable low-frequency drift of the x-position of the test
mass in the pendulum (due to unwinding of the suspending fiber), spoils a bit
the measurement, as the derivative of the force (2.110) depends on x− x0. The
only solution would be to perform the measurement in a relatively short amount
of time to limit the x-drift amplitude.

• The data analysis could be improved with an optimal filter to detect steps in
the force timeseries.

2.4.3 Conclusions

The more charge-burst technique grants a more reliable measurement of the DC stray
bias, which reads

∆x = (23± 6)mV for charge-burst method. (2.113)

The estimated stray DC bias for our GRS is comparable to the values measured on
LISA Pathfinder24 [36]. The value measured for ∆x is expected not to hinder the
charge measurements with the 4TM pendulum.

24The sensors that flew in LPF are nominally identical copies of the one installed in our torsion
pendulum, as they are produced by the same company.
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Chapter 3

Charge Management System
testing for LISA

A known issue in astronautics is that isolated objects in space tend to accumulate
electrical charge over time due to the constant bombardment of cosmic rays and solar
energetic particles. The free-floating LISA test masses are no exception: an average
net charging of around +25 e/s is expected [36].

Already in the mid-nineties the team of the space mission Gravity Probe B was
aware of the environmental charging problem and proposed solutions to measure and
manage the charge build-up on their gyroscopes based on UV photoelectric emis-
sion [37].

Space mission for geodesy [38], such as GRACE1, implement a spectacularly sim-
pler solution to keep the charge on their test masses under control: a grounding wire.

This solution is not feasible for LISA, as the thermal acceleration noise induced
by the mechanical damping from the wire would exceed the noise budget by orders of
magnitude. As shown in [39], the fluctuation-dissipation theorem allows to compute
the expected one-sided PSD of the thermal acceleration noise due to the grounding
wire

Swireg (ω) = 2 · 2kBT
MTM

kW
Q(ω)

1

ω
, (3.1)

where kW and Q(ω) are, respectively, the elastic constant and the quality factor of
the wire. If we model the wire as a cylindrical cantilever subjected to a shear force
perpendicular to its principal axis and applied at its free end, we can estimate the
elastic constant kW as

kW = 3π
Er4

l3
, (3.2)

where r is the wire radius, l its length, and E is the Young’s modulus of the wire
material. Even in the very optimistic case that the wire is made of gold (E ≃ 80GPa)
with a radius of just 5 µm, a length of 1 cm, and with quality factor of 100 at all
frequencies, we have that the thermal noise due to the grounding wire (3.1) at 1mHz
for T = 300K is almost three orders of magnitude in amplitude above the LISA
acceleration requirement at the same frequency

Swireg (f) ≃
(
1.8 pm/s2/

√
Hz
)2( 2 kg

MTM

)(
T

300K

)(
100

Q

)(
E

80GPa

)
·

·
(

r

5 µm

)4(1 cm

l

)3(1mHz

f

)
(3.3)

1Others are GRACE-FO, CHAMP, GOCE and MICROSCOPE (which aims at testing the Equiv-
alence Principle).
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For this reason, LISA needs a contactless system to keep the test mass charge under
control.

In this chapter, we will present an experimental campaign to explore the perfor-
mance of a prototype Charge Management System for LISA based on photoelectric
emission induced by the UV-light generated by light-emitting diodes (LEDs).

3.1 Electrostatic noise

In this section we will explain the reason why a non-neutral TM is a problem for
LISA.

If the charge build-up on from cosmic rays and solar energetic particles on the
LISA test masses were not counteracted, sources of force noise would start to become
relevant. Indeed, in Section 2.2.4 we showed that the electrostatic force along the
science axis is

Fx,noise =
1

2

4∑

i=1

(
∂Ci
∂x

+
∂Ci,h
∂x

)
δV 2

i +

+
1

2

(
QTM +

∑18
i=1CiVi

Ctot

)2
∂Ctot
∂x

−
(
QTM +

∑18
i=1CiVi

Ctot

)∣∣∣∣
∂Cx
∂x

∣∣∣∣∆x (3.4)

This expression clearly depends on the test mass charge QTM . If the TM is centered,
so that ∂Ctot/∂x = 0, the leading force term in QTM is

FQTM
x,noise = −QTM

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣∆x (3.5)

As described in the following, once the TM charge overcomes the threshold of 1.5·107 e,
it is expected that the electrostatic force disturbances would exceed their allocation in
the LISA noise budget, potentially spoiling the performance of the whole observatory.

3.1.1 Electrostatic budget

As anticipated in Section 1.2, the top-level requirements that must be met to achieve
the design LISA sensitivity are:

• Overall single TM acceleration noise requirement along the science axis

Sg(f) <
(
2.4 fm/s2/

√
Hz
)2
[
1 +

(
0.4mHz

f

)2
][

1 +

(
f

8mHz

)4
]

(3.6)

• Overall one-way displacement sensitivity requirement along the science axis

Sx(f) <
(
10 pm/

√
Hz
)2
[
1 +

(
2mHz

f

)4
]

(3.7)

In the LISA noise budget [12], the current allocation for the acceleration noise on the
TM due to all electrostatic force noise sources is

SESg (f) ≤
(
3 fm/s2/

√
Hz
)2(0.1mHz

f

)
+
(
0.3 fm/s2/

√
Hz
)2

(3.8)
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The breakdown of such allocation into the relevant individual noise sources is described
hereafter and visually displayed in Figure 3.1. For a more complete list of disturbances,
which includes other (very) minor contributions to the electrostatic noise budget, see
[12]. Most of the noise terms can be directly obtained2 from the equation for a
general electrostatic force along the x-axis (3.5), or its simplification for a centered
test mass (3.4).

Noisy stray electric fields The allocated acceleration noise due to the interaction
of a charged TM with noisy stray bias reads

S∆x
g (f) ≃

[
1

MTM

∂Cx
∂x

QTM
Ctot

]2
S∆x(f)

≃
(
2 fm/s2/

√
Hz
)2( QTM

1.5 · 107 e

)2 S∆x(f)(
0.2mV/

√
Hz
)2

(3.11)

2Remembering that for linear systems the power spectral density at the output depends from the
PSD at the input as

Sout(f) = |H(f)|2Sin (3.9)

where h(f) is the transfer function of the linear system. In our case the transfer function for the
various force noise contributions can be obtained linearizing the electrostatic force (3.4) in the relevant
quantity, i.e.

SI
Fx

=

∣∣∣∣∂Fx

∂q

∣∣∣∣2 SI (3.10)

where I is a generic noisy quantity at the input.
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where the allocation for noise in the stray bias ∆x is

S∆x(f) =
(
4.5 µV/

√
Hz
)2

+
(
75 µV/

√
Hz
)2(0.1mHz

f

)
+

+
(
190 µV/

√
Hz
)2(0.1mHz

f

)2

(3.12)

which is comparable to the level measured by LPF [36].

Random TM charging The allocated acceleration noise due to the interaction of
TM charge fluctuations with the DC stray bias is

SQTM
g (f) ≃

[
1

MTM

∂Cx
∂x

∆x

Ctot

]2
SQTM

(f)

≃
[

1

MTM

∂Cx
∂x

∆x

Ctot

]2 2e2λeff
2πf

≃
(
0.3 fm/s2/

√
Hz
)2( ∆x

5mV

)2( λeff
1300 s−1

)(
0.1mHz

f

)2

(3.13)

In the second passage, we assumed that the charge accumulation on he test mass can
be described by a Poisson process with effective rate λeff , to which corresponds to
the power spectral density3

SQTM
(f) =

2e2λeff
2πf

(3.14)

where λeff is effective charging rate, for which a value comparable to LPF measure-
ment has been chosen (see Table 3.1).

Random charge noise with charged, off-center TM The allocated acceleration
noise due to a non-centered charged TM reads

SOCg (f) ≃
[

1

MTM

∂2Ctot
∂x2

Ctot
(x− x0)

]2(
QTM
Ctot

)2

SQTM
(f)

≃
[

1

MTM

∂2Ctot
∂x2

Ctot
(x− x0)

]2(
QTM
Ctot

)2 2e2λeff
2πf

≃
(
0.2 fm/s2/

√
Hz
)2(x− x0

10 µm

)2( λeff
1300 s−1

)(
0.1mHz

f

)2

(3.15)

This noise contribution can be obtained expanding the second term in (3.4) for small
displacements from the zero-force point x0. Here we also assumed that the charging
of the TM can be modeled as a Poisson process. LPF showed that the test mass
displacement from x0 can be measured and corrected with accuracy better than 10 µm.
For the plot in Figure 3.1, we considered x− x0 ≃ 10 µm and QTM ≃ 1.5 · 107 e.

Individual electrode actuation fluctuations The allocated acceleration noise
due to individual electrode potential fluctuations coupled with residual electrode DC

3See Appendix F for the detailed derivation of the power spectrum of a Poisson process.
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biases
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This noise contribution arises directly from the first term of (3.4). For the plot in
Figure 3.1, we considered Vel ≃ 40mV and

SVel(f) =
S∆x(f)

4
(3.17)

Extra continuous discharge noise In the electrostatic budget includes an allo-
cation for an unmodeled TM acceleration noise caused by continuous discharge (see
Section 3.2.2) with power spectral density

SCDg =
(
1 fm/s2/

√
Hz
)2(0.1mHz

f

)2

+
(
0.2 fm/s2/

√
Hz
)2

(3.18)

3.2 LPF heritage

The precursor mission LISA Pathfinder successfully demonstrated that effective charge
management could be achieved with a system that relies on photoelectric charge trans-
fer between the TM and EH surfaces under illumination by UV light4. Mercury-vapor
lamps were the UV-light sources chosen for LISA Pathfinder.

3.2.1 TM charging processes

If the test masses are captured by the Grabbing, Positioning and Release Mechanism
(GPRM), they are electrically grounded via the spacecraft. However, once the TMs
are released, they are electrically floating and subjected to the environmental charging.

First of all we must notice that the release itself of the test mass deposits a signif-
icant charge on the test mass (in the range −10mV to −500mV for LISA Pathfinder
data) as reported in [40]. The current explanation for the large TM charge induced
by the release is the triboelectric charging due to breaking of the adhesion between
the GPRM fingers and the test mass at release.

Once the test masses are released the expected dominant sources of charging
are [41]

• A permanent background of cosmic rays of galactic origin (mainly protons and
light nuclei). The flux of cosmic rays is modulated by the 11-years-long solar
cycle: when the solar activity is at its minimum, the interplanetary magnetic
field, which acts as a shield, is at its weakest and, hence, the flux of cosmic rays
is expected to increase. In other words, the cosmic ray flux in the inner solar
system is anti-correlated with the solar activity [42].

4It is remarkable to notice that in order to build a working gravitational wave observatory in space
to test the so-far-glorious theory of General Relativity devised by Albert Einstein, we need to exploit
the photoelectric effect, which is completely unrelated to General Relativity apart for the fact that
Einstein himself gave its theoretical explanation, which granted him the physics Nobel prize in 1921.
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Figure 3.2: Rendering of a LISA Pathfinder GRS. It is possible to
see the optical fiber vacuum feedthroughs (ISUK) that shine UV-light

into the GRS for charge management. Adapted from [14].

• Solar energetic particles (SEP) events: temporary increases in the flux of high-
energy particles (primary protons) originating from solar eruptions. The number
of SEP events is correlated with the solar activity. The number of typical SEP
events is estimated to be 10−20 per year. The effect of such events is increasing
momentarily, but significantly, the charging rate on the LISA test masses. Ex-
traordinary5, although rare (one every 60 years), SEP events are possible and
expected to cause the charging rate on the TM to increase by several orders of
magnitude with respect to that induced by cosmic rays [41, 43].

The detailed models behind the TM charging require as inputs precise estimates of the
galactic cosmic rays and SEP fluxes, together with a realistic geometric model of the
LISA spacecraft. Moreover the physics of the interaction of high-energy particles with
the spacecraft materials is quite complicated. Indeed, as high-energy particles hit the
spacecraft a shower of low-energy secondary particles is produced. Several production
channels for secondaries particles have been identified and investigated, among them
the dominant ones are expected to be ionization by the incident particles and kinetic
electron emission [44]. The role of low-energy particles (E ≲ 100 eV) is thought to be
relevant. The only way to precisely model the environmental charging process is via
dedicated numerical simulations.

LISA Pathfinder also measured accurately the properties of the environmental
charging process, in the assumption that it has a Poissonian nature. Let us introduce
two quantities, which are useful to characterize the properties of environmental charg-
ing, namely the net charging rate and the effective charging rate6, which are defined
as

λenvnet =
∑

j

jλj and λenveff =
∑

j

j2λj . (3.19)

5The most extreme may cause malfunctioning of electronic equipment also on the surface of the
Earth.

6The effective charging rate is important because it determines PSD of the noise on the physical
quantity that is described as a Poisson process.
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Table 3.1: Net and effective charging rates at neutral TM measured
by LPF [36].

Quantity Symbol TM1 TM2 Units

Net charging rate λenvnet +22.9 +24.5 s−1

Effective charging rate λenveff 1060± 90 1360± 130 s−1

The index j runs over all integer numbers and represents the multiplicity, i.e. the
number of elementary charges carried by each charging event. LPF measured (at
neutral TM) the values reported in Table 3.1. Net and effective charging rate do not
coincide because the environmental charging is composed by a positive and a negative
current, which oppose one another, and because events with multiplicity larger than
unity are possible.

Detailed simulations to estimate the TM charging rate have been performed for
LPF [45] and showed a good estimate for the net charging rate, but underestimated
the effective charging rate of about a factor three. The mismatch between measured
and expected λenveff is still under investigation with more refined simulations that trace
subatomic particles (in particular electrons) down to energies lower than 100 eV [43],
which are the suspected culprits for the measured excess in LPF.

3.2.2 Discharge strategies

Two alternative strategies have been envisioned to keep the test masses charge under
control during the LISA mission. The first one is known as the intermittent, or fast
discharge and it entails letting the test mass accumulate environmental charge until a
threshold is reached (currently this limit is 1.5 · 107 e, or 70mV, which corresponds to
approximately a couple of weeks of science operation under the reasonable cosmic ray
charging rate of 25 e/s), and then discharging it quickly (∼minutes) with UV-light.
In LISA Pathfinder the intermittent discharge was the default strategy to control the
test mass charge. However, in LISA one would like to keep the gaps7 in the science
data at a minimum. Indeed, during the fast discharge the LPF data are polluted by
transients8 and extra noise9, causing an unavoidable degradation of the instrument
performance.

To solve this issue a second charge management strategy, namely the continuous
discharge, was proposed. As the name suggests, in continuous discharge scheme UV-
light is shone at all times on the test masses. The illumination pattern is accurately
chosen to have an equilibrium potential close to neutrality. As the environmental net
charging rate λenvnet due to cosmic rays and solar energetic particles is positive, we need
a negative photocurrent at neutral TM to ensure an effective charge management.

The LISA noise budget [12] allocates a maximum TM acceleration noise due to
electrostatic forces and charge management in the continuous discharge mode. During
the fast discharge procedure we may violate the mission requirements (3.6) and (3.7),
causing a temporary interruption in the science data taking. On the other hand, the

7Or, rather, the time windows in which the data quality is degraded.
8From (3.5), a rapid variation in the TM potential from the threshold value +70mV to −70mV

would cause a force step of approximately 0.2 pN if ∆x ≃ 5mV, which corresponds to an acceleration
step of ∼ 0.1 pm s−2 (clearly detectable in LISA).

9An illumination with high UV power induces Poissonian charge fluctuations, which is converted
into force noise with the (3.5). This is related to the discrete nature of charge transfer (see Chapter 5
for the full details).
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Figure 3.3: Form factor comparison between a mercury-vapor lamp
used in LISA Pathfinder and the UV-LEDs currently tested for LISA.

continuous discharge mode must be compatible with the previous top level mission
requirements.

3.2.3 New UV-sources for LISA

LPF proved that mercury-vapor lamps are valid light sources for the management of
the test mass charge. However, for LISA, it is currently envisioned to use UV-LEDs,
since they are expected provide great advantages in terms of weight, volume, and
power saving without compromising on the reliability10.

More importantly, the photon emission from UV-LEDs follows quasi instanta-
neously to the driving current, allowing them to produce pulses of light that can be
synchronized with the 100 kHz-polarization voltage which biases the TM for capacitive
sensing [49, 50, 51].

In this way, one can choose to illuminate the GRS surfaces when it is most favorable
in terms of TM polarization and configuration of the surrounding electrostatic fields
due to both injection and (possibly) actuation.

The possibility of choosing the phase of the illumination provides with flexibility
in the discharge strategy, allows to tune finely the equilibrium voltage and, finally,
makes the Charge Management System overall more robust11.

Finally, we would like to comment on the feasibility of continuously discharging
the test masses. Although the continuous discharge strategy is, in principle, possible12

10A mass lifetime testing of candidate UV-LEDs for LISA has been conducted at the University
of Florida [46]. The results indicate that UV-LEDs can fulfill all requirements of the LISA UV-light
sources. Previous studies on a smaller sample size reached the same conclusion [47] and suggest that
UV-LEDs can withstand high levels of ionizing radiation typical of the space environment [48].

11With the pulsed illumination the only condition we need to discharge the TM is that the EH
emits some photo-electrons. Adjusting phase of the illumination or the DC fields, we can block the
photo-electrons emitted form the TM and thus achieve a net negative current. A more robust CMS
means that the requirements for the emission properties of the GRS surfaces can be relaxed and still
be able to obtain a negative UV equilibrium potential.

12As stated previously the continuous discharge strategy can work only if the equilibrium potential
of the illumination is negative to ensure a current opposing to cosmic rays at neutrality. This depends
on the emission properties of the TM and inner surfaces of EH. Such properties cannot be kept entirely
under control during manufacturing and storage of the sensor and they could be quite different from
expected: in LPF the continuous discharge experiment could be performed only with one of the two
GRSs.
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with UV lamps, as showed in LPF [52], it is greatly eased by the adoption of LEDs
as the LISA UV-sources for the reasons stated previously.

3.3 Apparent yield measurements

3.3.1 Qualitative behavior of the LISA Charge Management System

The LISA sensor can be seen as a capacitor with two plates: the test mass and the
electrode housing. The illumination with UV-light generates a charge transfer, i.e.
a current, via the photoelectric effect. We consider the photo-current to be positive
when elementary charges reach the test mass (i.e. when electrons leave the TM) and
negative when elementary charges leave the TM (i.e. when electrons reach the TM).

In LISA we expect the cosmic rays to charge the test masses positively, so the
Charge Management System needs to generate a net negative current at neutral test
mass.

As shown in Figure 3.4, a net negative current can be achieved by illuminating
the electrode housing with the corresponding ISUK: in this way photo-electrons are
emitted from the EH and propagate towards the TM. Even if the majority of UV-
photons is absorbed by the electrode housing when we illuminate with the EH ISUK, a
fraction is inevitably reflected towards the TM, where such photons are absorbed and
may extract photoelectrons. Therefore, even if we illuminate the electrode housing,
we still have a (typically smaller) photo-current with opposing sign (from the TM to
the EH).

A similar reasoning holds for TM illumination, albeit the dominant current this
time is from the TM towards the EH, as we depict in Figure 3.5.

From the Einstein equation for the photoelectric effect, we expect that the max-
imum kinetic energy of the emitted photoelectrons is equal to the energy of the in-
coming photons minus the work function of the emitter

Emax =
hc

λUV
−W (3.20)

As the work function of the gold surfaces is of the order ∼ 5 eV and the energy of the
UV-light sources is also in the same ballpark, we expect that the maximum kinetic
energy of the emitted electrons to be ∼ 1 eV. This means that a potential barrier of
the order ∼ 1V between the surface emitting and the one collecting the electrons may
have a critical impact on the magnitude of the photo-currents described previously.
Such potential barrier arises not only from the DC and AC actuation voltages that
may be applied locally to the actuation/sensing electrodes, but also from the overall
test mass potential itself (EH is grounded), i.e.

VTM (t) =
QTM (t)

Ctot
+
CinjVinj
Ctot

sin (2πfinjt) +
1

Ctot

∑

i

CiVi(t) (3.21)

where the summation runs over all EH electrodes that with their potential may po-
larize the TM apart from the injection electrodes, whose effect has been explicitly
isolated in the second term. We have to notice that the actuation scheme for LISA,
inherited from LPF, does not polarize significantly the TM, hence the last term is
usually negligible.

In order to understand the qualitative behavior of the net photocurrent as a func-
tion of the TM potential, let us consider two extreme cases
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Test Mass

Electrode Housing

IEH

ITM

ISUK

(a) Qualitative scheme showing the UV-light injected into the GRS and the photo-electron trajec-
tories for EH illumination

Equilibrium potential

Saturation −

Saturation +

VTM

I ITM
IEH
Itot

(b) Expected qualitative functional dependence of the photocurrents from the test mass potential
for EH illumination

Figure 3.4: Qualitative behavior of the photocurrents for illumina-
tion with the ISUK pointing towards the EH.
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(a) Qualitative scheme showing the UV-light injected into the GRS and the photo-electron trajec-
tories for TM illumination
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(b) Expected qualitative functional dependence of the photocurrents from the test mass potential
for TM illumination

Figure 3.5: Qualitative behavior of the photocurrents for illumina-
tion with the ISUK pointing towards the TM.
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Figure 3.6: Comparison of the expected photocurrent for EH and
TM illuminations as a function of the test mass voltage.
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• If the test mass potential tends to very large positive values (VTM → +∞),
we have that all photo-electrons emitted from the TM encounter a very large
potential barrier and do not reach the EH, whereas all photo-electrons emitted
from the EH are attracted by the electrostatic field of the TM, where they are
collected. This case is defined positive saturation as the EH current saturates
to its maximum value and the TM current is completely suppressed.

• On the other hand, if the test mass potential assumes very large negative values
(VTM → −∞), we have that all photo-electrons emitted from the TM are pushed
towards the EH, whilst the electrons emitted from the EH are blocked by the
large potential barrier. This situation is called negative saturation since the TM
photo-current reaches it maximum value and the EH current vanishes.

For intermediate TM potentials, we expect to have a mixture of the opposing pho-
tocurrents. See the bottom panels of Figures 3.4 and 3.4, where we plot the qualitative
behavior of the TM and EH photocurrents.

No matter which is the TM charge at the start of the UV illumination, it will
evolve with time under the effect of the photocurrents, until a steady state is reached:
the potential at which this happens is called equilibrium potential, because it realizes
the equilibrium between the opposing EH and TM currents.

From equation (3.21), we see the test mass potential is modulated by the polar-
ization effect of injection bias. If we manage to shine UV-light with a specific delay
with respect to the zero-crossing of the injection, the discharge behavior will be al-
tered because the photocurrents critically depend on the instantaneous TM potential,
as argued previously. Therefore, the effect of a synchronized illumination with the
injection bias is a critical aspect to be experimentally investigated.

3.3.2 Charge management instrumentation

In this section we will briefly describe the specific hardware used for the apparent
yield measurements in our laboratory. See Figure 3.7b for a general scheme of the
experimental apparatus.

In our torsion pendulum it is installed a flight model replica of the LISA Pathfinder
electrode housing which is fully representative in terms of geometry and surface finish-
ing. The test mass hosted inside the EH and connected to the torsion pendulum iner-
tial member has also the same geometry and surface finishing of the LISA Pathfinder
TM, but it is hollow.

Two ISUKs identical to the baseline13 one in LPF are mounted on the torsion
pendulum: one points the TM corner and the other the EH. They are mounted with
the same inclination angle as in LPF (see Figure 3.8).

Our setup differs from LPF because the iridium fingers of the caging mechanism
are not installed. This difference is expected not to be critical, because iridium seems
to have very low emissivity, as showed by direct measurements at the University of
Modena [53].

The capacitive readout and actuation of our GRS is provided by the ELM-light
unit, an engineering model of the LPF front-end electronics. This unit is a realistic
copy of the LPF-FEE in terms of noise and performance. Moreover, it provides the
same DC and AC actuation patterns on the electrodes.

Here we will not discuss the Charge Management System currently being developed
for LISA, as it is quite more complicated as it requires a high level of redundancy,

13One of the EH ISUK designed for LPF was modified with a small mirror-like optical element.
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(a) GRS hardware relevant to charge management in LISA
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(b) Hardware relevant for the Charge Management System testing campaign with the 4TM torsion
pendulum

Figure 3.7: Comparison between the Charge Management System
hardware for LISA and the one used for our experimental testing cam-

paign with the 4TM torsion pendulum.
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(a) ISUKs positioning from y− face (b) ISUKs positioning from z− face

(c) Detail of the TM ISUK (d) Detail of the EH ISUK

Figure 3.8: ISUK positioning in the 4TM torsion pendulum.

but rather we will discuss the setup specific for our experimental campaign. We will
state, however, where our apparatus differs from what is currently planned for LISA.

Charge Management Device

The central component of the Charge Management System (CMS) is the Charge
Management Device (CMD), that is the unit that controls and generates the UV light
needed for the photoelectric charge transfer between EH and TM. It is composed by a
programmable control box and by the UV light sources themselves, contained in the
UV-Light Unit (ULU).

The charge management device (CMD) used for this work is a prototype manufac-
tured by the INFN/Roma Tor Vergata group (see Figure 3.9). The prototype CMD
is composed of a control box and several separated UV units, each containing a LED.
In this way with just one electronics, we can control several light sources. The control
box contains an FPGA, programmable via a software interface and the electronics
needed to drive one LED at the time (single output). The prototype CMD has two
modes

• Continuous light mode: a programmable DC current is sent to the LED. The
light power emitted by the LEDs scales with the current.

• Pulsed light mode: bursts of current are sent to the LEDs, which as a result
produce pulses of light. As shown in Figure 3.10, the user can control the
duration and delay of the pulsed with respect to an input reference (which is in
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Figure 3.9: Prototype charge management device provided by the
INFN/Roma Tor Vergata group. The control box contains a FPGA
to program the duration, delay and decimation of the light pulses.
Separate units contain each a UV-LED and can be connected to the
control box with a LEMO cable. In this picture a PMT is directly
connected to the LED, but this configuration is never used in our
measurements: we always connected LEDs and power sensitive device

through the short optical fiber.

our case is the FEE injection bias). Moreover, one can set a decimation, that is
the number of cycles of the reference in which the illumination is skipped between
a light pulse and the subsequent. In the pulsed mode it is not possible to control
the current flowing through the LED during the pulses due to limitations of the
electronics14: the current is always the maximum allowed, that is approximately
32mA.
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− Cinj

Ctot
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QTM
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+
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Ctot
Vinj
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Duration Decimation

Delay

t [µs]

VTM

Figure 3.10: Parameters that can be controlled for the illumination
with UV-LEDs.

The University of Florida provided us with the TRL4 prototype CMD with similar
(or better) features [54]. We conducted only few and preliminary tests with this unit,

14An updated version of the prototype INFN/Roma Tor Vergata CMD added the possibility of
setting a specific current across the LEDs also in the pulsed light mode.
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Figure 3.11: Oscilloscope measurement of the light pulses for the
UV-LED Crystal 250. The cyan data is the UV-light intensity mea-
sured by a calibrated PMT (whose signal is negative if some light is
detected). In this case the chosen illumination pattern has a duration
of 1 µs and a nominal delay of 2 µs (one can observe however a fur-
ther systematic delay of about 0.2 µs). To obtain a cleaner signal the

oscilloscope is operated in the waveform averaging mode.
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Table 3.2: Peak wavelength and full width at half maximum
(FWHM) of the UV-sources spectra.

UV-source Peak wavelength [nm] FWHM [nm]

Hg-lamp 253.64 0.04
Crystal 250 249.97 10.43
SETi 255 258.71 9.88
SETi 240 247.15 10.28
UVphotonics 230 233.78 11.04

because of some problems in measuring accurately the UV power in the pulsed setting
mode when the number of pulses per second was reduced15.

Our current prototypes of CMD connect directly to the front-end electronics
(through the “plunger”) to get the 100 kHz-injection bias that they use as a refer-
ence for the pulsed-light mode.

This will not be the case for LISA, since it is not advisable to connect directly
FEE and CMD from a noise and risk mitigation perspective. Therefore, as shown in
Figure 3.7a, the LISA charge management device will receive a clock signal common
for all spacecraft instruments (including FEE), which may be either a pulse per second
(PPS) or a signal in the MHz-frequency band (this aspect is still being discussed).
Systematic phase-delays may be arise due to the fact that both FEE and CMD have
to generate their own 100 kHz-injection bias signal.

Light sources

In the experimental campaign we focused on UV-LEDs as light sources for the CMD.
Four different models of UV-LEDs are available in our laboratory

• OPTAN-250J-BL, which we will call Crystal 250 from now on, produced by
Crystal IS, Inc.

• SETi 255 produced by Sensor Electronic Technology, Inc.

• SETi 240 produced by Sensor Electronic Technology, Inc.

• UVphotonics 230 produced by the German company UVphotonics.

A heritage engineering model of the LISA Pathfinder UV-light unit (ULU) based on
Hg-lamps was also employed for some preliminary and testing measurements, but the
data quality is not particularly good (we wanted to repeat some of the measurements
but, after some years of disuse, the Hg-lamps failed to emit any light).

The spectra of our UV-light sources obtained with our AvaSpec-ULS2048XL-EVO
spectrometer are displayed in Figure 3.12.

The LEDs spectra over a wider range of wavelengths have also been acquired
by our INFN/Roma Tor Vergata colleagues and there are hints that at low driving

15Indeed with the TRL4 unit of the University of Florida it is possible to control the number of
pulses per second instead of the decimation: the maximum number of pulses is, of course, 105 s−1,
which corresponds to no decimation (a light pulse every cycle of the 100 kHz-injection bias). If the
number of pulses per second is reduced, the pulses are produced at every cycle of the injection until
the desired value is reached, and then the LED stays off for the rest of the time until the full second
is reached. As our way to measure the UV power consists of making the difference between the DC
signal when the light is on and off (“darks & lights”), we do not have a clean light signal because the
LED keeps switching on and off with a period of one second, which for us is a pretty short timescale
with respect to sampling rate of our facility, i.e. 10Hz.
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Figure 3.12: Spectra of the UV-light sources normalized to have unit
height for an easier comparison.

currents, the LEDs may emit a fraction of their light at larger wavelengths. This
effect is particularly evident for the SETi 255 LED as shown in Figure 3.13 and it
may be due to the fact that at low currents the LEDs may be operating outside their
optimal range (i.e. on the “knee” of its current voltage characteristics instead of the
linear region). This may have minor consequences in the apparent yield estimate, as a
fraction of the measured UV power lies at photon energies that are too low to extract
photoelectrons16.

UV-power measurement devices

The assessment of the UV-light power during the illuminations is critical for the
apparent yield measurements, that will be presented in the remainder of the chapter.

In our laboratory we have three instruments to measure the light power:

• Hamamatsu S1337-1010BQ : uncalibrated photodiode (PHD) with in-house read-
out circuit. The photodiode is the heritage power measuring device used in our
laboratory since 2014.

• Hamamatsu H6780-03 : uncalibrated PMT module with integrated power sup-
ply. We paired it with the Hamamatsu C6438-01 amplifier. It is characterized
by a fast response to follow the time evolution of the light pulses.

16This fact should not impact excessively our apparent yield measurements, as they were all taken
in the pulsed mode (to control the power, we used mainly the decimation). Indeed, in the pulsed
mode the current across the LEDs due to limitations of the CMD prototype cannot be controlled and
it is the maximum possible, that is 32mA. The LED emission at longer wavelengths may have an
impact on the continuous-light measurements performed at low driving current, i.e. low power (mainly
calibration measurements of the photodiode or measurements of the optical fibers transmission).
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Figure 3.13: Spectra of the SETi 255 LED at low driving current.
A secondary peak at ∼ 425 nm is visible. Credits to the INFN team
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Figure 3.14: The Hamamatsu R9875U PMT system: the gain is
controlled by the Vs provided by a high-voltage power supply. The
anode current IUV is converted by the amplifier into a voltage signal

VUV , which is acquired with our ADC.

• Hamamatsu R9875U : calibrated PMT. It is paired with the Hamamatsu E13643
PMT socket, the Hamamatsu C12789 high-voltage power supply, and the Hama-
matsu C6438 amplifier. The time resolution of the system is ≲ 7 ns. We acquired
this PMT at the beginning of 2021. A scheme of the full PMT setup is depicted
in Figure 3.14.

The preferred instrument to measure the UV light power is the Hamamatsu
R9875U, as it is factory calibrated. The measured anode radiant sensitivity for our
device is

scal =
dI

dP
(λcal, Vcal) = 2.11 · 104AW−1 (3.22)

The calibration was performed at a wavelength of 253.7 nm with a total potential
difference between the dynodes (supply voltage) of Vcal = 1000V. However, for the
power range of interest for our experiments (0.1 − 100 nW), we needed to lower the
potential drop across the dynodes to 600V, otherwise we would saturate the output
amplifier during the measurements at the maximum LED power. The Hamamatsu
PMT handbook [55] reports the following formula to rescale the PMT radiant sensi-
tivity as a function of the supply voltage

s(Vs) = scal ·
(
Vs
Vcal

)kn
(3.23)

where n is the number of dynodes (in our PMT model n = 10) and k is a parameter
depending on the their material and typically has values between 0.7 and 0.8. A power
law fit of the form

s(Vs) = s0 ·
(

Vs
1000V

)10k

(3.24)

on the PMT output as a function of the supply voltage for a constant UV-power,
returns the optimal parameters s0 = (2.14±0.13)·104A/W and k = 0.787±0.004 (see
Figure 3.15a). Using this relation we could scale the PMT anode radiant sensitivity
for a supply voltage of 600V.

Secondly, we applied a correction to the radiant anode sensitivity due to the non-
monochromatic spectrum of our LEDs. Indeed, as one can see in Figure 3.15b, the
nominal radiant anode sensitivity of the PMT is not constant in the wavelength range
of interest. In order to find the correct radiant anode sensitivity, we need to average
it over the spectra of our LEDs

⟨s⟩ = scal
sDS(λcal)

∫
sDS(λ) · fUV (λ) dλ∫

fUV (λ) dλ
(3.25)
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where sDS(λ) is the radiant anode sensitivity interpolated from the data sheet and
fUV (λ) is the emission spectrum of the UV-source considered.

The prefactor scal/sDS(λcal) is there to rescale the data sheet sensitivity at the
wavelength λcal = 253.7 nm to the number actually measured at calibration.

Finally, in order to find the average response function, we need to include the role
of the amplifier Hamamatsu C6438, which is basically a current-to-voltage converter
with a bandwidth from DC to 50MHz, with a conversion factor dV

dI = 1000VA−1 if
connected high-impedance load (as our ADC is).

Putting all together, we have that the transfer function from signal to UV-power
of the PMT can be found as

HV→P (λ, Vs) =
dP

dV
(λ, Vs)

=
dI

dV
· dP
dI

(λ, Vs)

=

(
dV

dI

)−1
[
scal · sDS(λ)
sDS(λcal)

(
Vs
Vcal

)kn]−1

(3.26)

Or, when averaging over the UV-sources spectra

⟨HV→P (Vs)⟩ =
〈
dP

dV
(Vs)

〉

=
dI

dV
·
〈
dP

dI
(Vs)

〉

=

(
dV
dI

)−1

⟨s⟩
(
Vs
Vcal

)kn

(3.27)
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Figure 3.15: Spectral response and measured gain of the calibrated
Hamamatsu R9875U PMT.

For the first part of the experimental campaign, only the photodiode was available,
as we acquired the calibrated PMT only at the beginning of 2021. We re-calibrated a
posteriori the photodiode with respect to the PMT R9875U.

The photodiode and its in-house readout circuit, are not an ideal measurement
device, because its sensitivity is not great and the output signal shows trends and
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Table 3.3: Calibration coefficients of PMT and photodiode.

UV-source Calibrated PMT [V/W] Photodiode [V/W]

Hg-lamp (3.80± 0.04) · 105 (9.3± 0.4) · 104
Crystal 250 (3.84± 0.04) · 105 (1.08± 0.05) · 105
SETi 255 (3.62± 0.04) · 105 (7.60± 0.18) · 104
SETi 240 (3.91± 0.04) · 105 (9.0± 0.3) · 104
UVphotonics 230 (4.08± 0.04) · 105 (1.87± 0.09) · 105

instabilities17. Moreover, as shown in Figure 3.16, the ADC resolution itself limits
our sensitivity as the photodiode signal is centered around approximately −0.8V and
the typical signal induced by UV-light is ∼ mV (we could not lower the ADC full-scale
to appreciate better the small variations over the background).

The calibrated PMT proved to be a much more reliable choice, saved for a small
hysteresis [55] when measuring high light intensity.

Power measurements The experimental procedure for the power measurements
consists in exposing periodically the power sensitive device either to the UV-light
source or to a dark cavity. Such procedure is informally called “darks & lights”. Sam-
ples of the UV-power signal VUV are obtained as the difference between consecutive
light and dark levels. There are two modalities for executing the “darks & lights”

• On-off method : the light and dark level are obtained by switching on and off
the LED, without removing the short fiber.

• Attach-detach method : the LED is kept on at all times and we intermittently
connect the short fiber either to the light source or to a distinct dark cavity.

As argued in Section 3.4.3, the loose machining of in-house SMA connectors on the
LED housing, caused a variability of ∼ 8% on average in the light injected in the fiber,
whenever it was detached and re-attached to the LED. Hence, the on-off method tends
to underestimate the uncertainty on the UV-power as it does not sample the effect
of detaching the fiber to the LED housing. Sadly, for convenience the on-off method
was used for most apparent yield measurements in 2019 and 2021, because we did not
realize the issues related to the unreliability of the connections until mid 2020.

Spectrometer We also have a compact spectrometer AvaSpec-ULS2048XL-EVO
produced by the company Avantes B.V. to measure the emission spectra of the LEDs
in the range 220 − 290 nm. The measurements of the spectra of our specific light
sources proved to be very useful.

Fiber optic harness

The optical fibers and vacuum feedthroughs installed in our facility have been supplied
by the company MDC Vacuum Limited EU, now MDC Precision. The fibers used are
designed to be used with UV light (wavelength range 180− 1200 nm) and have single
core made of high purity silica with a diameter of 600 µm. The nominal attenuation
coefficient at 248 nm is less than < 1.2 dBm−1). The fibers are rated for optical
powers way higher than our application (up to 100 kWm−2).The outer fibers are

17Such instabilities may be related to temperature fluctuations or to loose electrical connections.
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(a) Short fiber configuration for the power measurements
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Figure 3.17: Optical fiber configurations in our experimental setup.

armored for extra durability. At the flange of the vacuum vessel we have ultra-high-
vacuum optical feedthroughs always supplied by MDC Vacuum and equipped with
SMA-905 connectors. The inner optical fiber terminates into an exact replica of the
LISA Pathfinder ISUK, which is also in the same geometric position as LPF ISUK
JF01 (TM illumination) and ISUK JF02 (EH illumination). A scheme of the TM and
EH optical chains is depicted in Figure 3.17.

As we shall see, the apparent yield measurements presented later in this chapter
require to know the optical power injected into the GRS. Therefore, we need to es-
timate the transmission coefficient of the optical fiber chain. Such characterization
can be performed in the following way. Assume that the UV source emits a constant,
but unknown, power Psource. When the short fiber is connected between source and
a photosensitive device, such as a photodiode or a PMT, we would measure

PmeasSF = αSF · Psource, (3.28)

where 0 ≤ αSF ≤ 1 is the transmission coefficient of the short fiber. This is the
configuration for the power measurements (see Figure 3.17). If the whole TM optical
chain is now connected to the photosensitive device (of course the same applies for
the EH chain as well) while the source power is kept constant, we would measure

PmeasTM = αTM,out · αFT · αTM,in · αISUK︸ ︷︷ ︸
αTM

·Psource. (3.29)

If we combine the previous equations, we can estimate the transmission coefficients
ratio directly from the ratio of the measured powers

aTM =
αTM
αSF

=
PmeasTM

PmeasSF

(3.30)

Once the transmission coefficients have been obtained with dedicated measurements,
we can estimate the power at the GRS as

PTM = αTM · Psource =
αTM
αSF

PSF = aTM · PSF (3.31)
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Obviously a similar relation hold for EH illuminations as well

PEH = aEH · PSF where aEH =
αEH
αSF

(3.32)

We have to notice that we assumed that the absorption coefficient of the fibers is
independent of the wavelength, at least in the range of emission of our UV sources
(220− 280 nm).

The transmission of the complete TM and EH optical fiber chains, has been quickly
measured at integration in 2014 (more careful measurements would have been prefer-
able).

The fiber setup is not entirely representative for LISA. It is currently planned to
use fiber bundles for LISA to carry the UV-light from the nominal and redundant
LEDs to the corresponding ISUK. We recently acquired a representative fiber bundle
built by the company Molex/Fiberguide but we still have to integrate it on the torsion
pendulum.

Comment for outer fiber substitution During our years-long experimental cam-
paign the external fibers have been substituted. Here we will explain how the transmis-
sion coefficients can be corrected for the new fibers without having to re-characterize
the whole optical chain (which would require to open the vacuum vessel). See Table
3.4 for a list of the recent transmission coefficients.

If, for example, the long external TM fiber and the short fiber have been substi-
tuted, we just need to estimate the new transmission ratio between the new short
fiber and the new TM long fiber18

{
P̃measSF = α̃SF · Psource
P̃measTM,out = α̃TM,out · Psource

−→ α̃TM,out

α̃SF
=
P̃measTM,out

P̃measSF

(3.33)

The new absorption ratio can be found re-scaling the old absorption ratio by the
characteristics of the new fibers

ãTM =
α̃TM,out · αFT · αTM,in · αISUK

α̃SF
=
α̃TM,out

α̃SF

αSF
αTM,out

aTM (3.34)

where used the fact that the transmission ratio of the original short and outer TM
fiber αSF /αTM,out has been measured at integration in a similar way as described in
(3.33). Of course an equivalent relation may be applied if the EH fiber is substituted
as well

ãEH =
α̃EH,out · αFT · αEH,in · αISUK

α̃SF
=
α̃EH,out
α̃SF

αSF
αEH,out

aEH (3.35)

3.3.3 Definition of apparent yield

As the number of photo-electrons extracted scales with the number of photons that
are absorbed by the emitting surface, if we normalize the observed photo-currents by
the UV power during the illumination, we obtain a quantity that it is independent of
the light power itself. This is the idea behind the definition of the quantity known as
apparent yield.

The apparent yield Y is defined as the net number of elementary charges that are
deposited on the TM per photon injected in the GRS. Obviously, the definition does

18We indicate with a superscript tilde the quantities relative to the new fibers.
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Table 3.4: Transmission coefficients of the TM and EH optical chains
over the years.

Quantity 2014 2019 2021 2023

aTM 0.218± 0.003 0.203± 0.006 0.171± 0.003 0.253± 0.005
aEH 0.211± 0.004 0.179± 0.009 0.209± 0.006 0.407± 0.010

αTM,out

αSF
0.977± 0.010 0.91± 0.02 0.765± 0.008 1.133± 0.009

αEH,out

αSF
0.721± 0.010 0.61± 0.03 0.714± 0.007 1.387± 0.004

not change if we consider both of these quantities per unit time

Y =
# charges
# photons

=
# charges/s
# photons/s

(3.36)

The apparent yield is a photo-electron current normalized by light power and, nat-
urally, is an useful quantity to estimate the performance of a Charge Management
System based on photo-emission.

The charge rate can be rephrased as

# charges/s =
1

e

dQTM
dt

=
Ctot
e

dVTM
dt

. (3.37)

If we consider, for the moment, that the light is monochromatic, the number of photons
injected into the GRS per unit time is

# photons/s =
PUV
EUV

=
PUV
hc
λUV

(3.38)

where PUV is the true power of the UV light at the ISUK output and EUV is the
single photon energy. As we will explain more accurately in the next sections, the
measurement of PUV is absolutely crucial to determine the apparent yield.

The power PUV at the GRS can be estimated from the signal of a calibrated
photosensitive device VUV , such as a photodiode or a PMT, considering also that a
fraction of the light from the source is lost due to absorption in the optical chain. In
a formula

PUV = a ·HV→P (λ = λUV ) · VUV (3.39)

where HV→PUV
(λ) is the spectral response of the photosensitive device (which is in

general a function of the photons wavelength), a is the fiber optic harness transmission
coefficient19 from the UV light source to the GRS, and VUV is the output signal of the
photosensitive device. Once again, in the case of monochromatic light the function
HV→PUV

(λ) reduces to just a constant calibration factor, which can be indicated as

HV→P (λ = λUV ) =
dP

dV

∣∣∣∣
λ=λUV

= const. (3.40)

19In general also the transmission coefficient depends on the light wavelength a = a(λ). We
do not have the spectral dependence of the transmission for our optical fibers, so we consider it
to be constant in the range of wavelength of interest. This assumption is reasonable because the
transmission coefficients are a smooth function of the wavelength, unless close to absorption edges of
the fiber core material.
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Therefore, we have that the photon rate (3.38) can be expressed as

# photons/s =
λUV
hc

·
(
a
dP

dV

∣∣∣∣
λ=λUV

)
· VUV

= EUV ·
(
a
dP

dV

∣∣∣∣
λ=λUV

)
· VUV

(3.41)

If we plug (3.37) and (3.41) into the definition of apparent yield (3.36), we get

Y = EUV
Ctot
e

·
dVTM
dt(

a dP
dV

∣∣
λ=λUV

)
· VUV

(3.42)

Generalization for non-monochromatic light

If the light sources of the Charge Management System are not monochromatic, as it
is for the UV-LEDs that we considered in our experimental campaign, the previous
equation must be slightly modified.

Let fUV (λ) be the spectrum of the light emitted by the UV source considered20.
As the spectral response of the photosensitive device is in general not constant, the
true light power injected into the GRS is

PUV = a ·
∫
HV→P (λ)fUV (λ) dλ∫

fUV (λ) dλ
· VUV

= a ⟨HV→P ⟩ · VUV

= a

〈
dP

dV

〉
· VUV

(3.43)

where with ⟨·⟩ we denoted the average over the light spectrum. Here we assumed
again that the transmission coefficient of the optical fibers a does not depend on the
light wavelength, at least in the spectral range of our sources. We also introduced a
notation similar to (3.40) for the average spectral response of the photo-detector.

On the other hand, the power injected PUV can be obtained as simply the time
derivative of the number of photons N entering the GRS multiplied their mean energy

PUV =
d

dt

[
N ·

∫
hc
λ · fUV (λ) dλ∫
fUV (λ) dλ

]

=
dN

dt
·
〈
hc

λ

〉

=
dN

dt
· ⟨EUV ⟩

(3.44)

where dN/dt is the rate of injected photons and ⟨EUV ⟩ is the average energy of a
photon in the spectrum. If we compare (3.43) and (3.44), we have that

dN

dt
= # photons/s =

a
〈
dP
dV

〉
· VUV

⟨EUV ⟩
(3.45)

20We do not consider any specific normalization for fUV (λ).
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Unsurprisingly, if we want to estimate correctly the number of photons injected into
the GRS per unit time, we have to average both the response of the instrument used
to estimate the light power and the energy of the photons emitted by the light source.

Therefore, the expression for the apparent yield (3.42) in the case of a light source
which cannot be treated as monochromatic becomes

Y = ⟨EUV ⟩
Ctot
e

·
dVTM
dt

a
〈
dP
dV

〉
· VUV

(3.46)

Parameters that affect the apparent yield

With the geometry of the system fixed to the LISA gravitational reference sensor (in
our case), the apparent yield may depend on

• The microscopic photoemission properties of the illuminated surfaces, such as
the Fermi energy, work-function, or the quantum yield.

• The photon spectrum of the light source.

• The instantaneous test mass potential during the illumination, which depends
not only on the charge deposited on it, but also on the 100 kHz-injection bias,
needed for the capacitive sensing

VTM =
QTM
Ctot

+
Cinj
Ctot

Vinj sin(2πfinj · t) (3.47)

In this sense, the delay and duration of the synchronized illumination affect the
apparent yield just because we shine light when the TM potential is shifted
with respect to the pure charge term QTM/Ctot due to the injection-electrodes
polarization. In other words, the behavior of the apparent yield does not depend
on the TM charge, but only on the difference of potential between TM and EH.

• The configuration of constant and time-varying actuation potentials around the
TM.

A very simple photoemission model, which nevertheless proved to be quite accurate
in interpreting our data, will be described in Chapter 4.

3.3.4 Experimental procedure

The experimental procedure for a typical apparent yield measurement is described
hereafter.

1. Bring the TM potential to large positive or negative values by illuminating in
the presence of DC bias to polarize the TM;

2. Turn on the charge measurements by coherently modulating the chosen combi-
nation of x-electrodes (see 2.3);

3. Estimate the UV power before the apparent yield measurement with the pho-
todiode or the PMT;

4. Start illuminating either the TM or the EH with the charge measurement on;

5. Stop illuminating when the TM potential is reasonably close to the equilibrium
potential;
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Figure 3.18: Scheme of LISA test mass surrounded by the actua-
tion/sensing electrodes (blue) and the injection electrodes (red).

6. Measure again the UV power after the apparent yield measurement.

Such procedure is repeated for each branch composing an apparent yield measurement,
that is from large positive TM potentials (positive branch) to the equilibrium and from
large negative TM potentials to the equilibrium (negative branch).

3.3.5 Data analysis

Once the timeseries of test mass potential has been obtained by coherently demod-
ulating the torque induced by the modulation potentials applied to the x-electrodes.
We decided to modulate the x+2 and x−2 electrodes because they are the farthest away
from the region where the ISUKs illuminate the GRS (only a small fraction of the
UV-photons is absorbed by the x+2 and x−2 electrodes21. See Appendix B for the table
of the absorption coefficients considered for the torsion pendulum. The charge mea-
surement modulation has a frequency of 5.3mHz and an amplitude of of 1V. Even if
the frequency of the modulations was significantly above the resonance of the torsion
pendulum (whose free period is ∼ 1215 s), the instrumental noise was not a limiting
factor for our AY measurements, because the charge signal is quite large (VTM ∼ V).

As depicted in Figure 3.19, the derivative of the TM potential has been computed
by linear fitting non-overlapping sets of n consecutive points22 of the TM potential
timeseries: the slope parameter of the linear fit (and its error) gives a direct estimate
of the derivative (and its random uncertainty).

The errorbars in Figure 3.19a include not only the random error due to the pen-
dulum noise at the modulation frequency fmod of the charge measurement, but also
systematic uncertainties due to the conversion factors needed to estimate the TM
potential from the in-phase torque component at fmod (see Section 2.3). More pre-
cisely, the random error due to the pendulum torque noise is set equal to the standard
deviation of the quadrature component at fmod. Such way to estimate the random

21And so even if the photocurrent emitted from these electrodes is altered by the potentials applied
for the charge measurement, it is still small compared to all other sensor surfaces.

22The number n, always odd, ranged from 3 to 15 approximately, depending on the duration of
the measurement.
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Figure 3.19: Visualization of the data analysis procedure to estimate
the time derivative of the TM potential: the data is split into non-
overlapping stretches of n points (n = 5 in the case depicted), and
fitted with a linear dependence to estimate the time derivative and its

uncertainty from the slope of the fit.

uncertainty is entirely correct only if we are measuring a signal whose amplitude is
constant. On the other hand, if the signal amplitude varies with time, it could lead
to an overestimate of the actual uncertainty, because some of the signal may leak into
the quadrature component (this is especially true if VTM changes rapidly). Anyhow,
such possible overestimate does not impact the error on the derivative of the test mass
potential, because in the linear fit23 the data are not weighted by their uncertainty
and the error on the parameters is computed from the covariance matrix of the fit.
Hence, the errors on the single TM potential points VTM,i do not play any role to
determine the uncertainty24 on the time derivative dVTM,i/dt.

Once the timeseries of the time derivative of the test mass potential has been
obtained, we normalize it by the UV power measured by either the PHD or PMT to
compute the apparent yield. In the figures it is customary to plot the apparent yield
as a function of the test mass voltage, to give a sort of current-voltage characteristics
of the LISA sensor.

The measure of the UV power for each illumination is obtained averaging the dark
and light samples.

We remember that the formula for the apparent yield for non-monochromatic light
(3.46) is

Yi = ⟨EUV ⟩
Ctot
e

·
dVTM,i

dt

a
〈
dP
dV

〉
· V̄UV

(3.48)

where we introduced the average signal from the photosensitive device as the arith-
metic mean of the dark and lights

V̄UV =
1

N

N∑

j=1

VUV,j . (3.49)

23Provided by the MATLAB function polyfit [56].
24Only the scatter of the VTM,i points from the “true” slope matters.
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The statistical, or random, error on the apparent yield measurements is due to the
error on the estimate of the test mass derivative and can be found as

σstat (Yi) =
∣∣∣∣∣⟨EUV ⟩

Ctot
e

· 1

a
〈
dP
dV

〉
· V̄UV

∣∣∣∣∣ · σ
(
dVTM,i

dt

)
, (3.50)

where σ
(
dVTM,i

dt

)
indicates the error on the slope parameter of the linear fit. On the

other hand, the systematic error is related to the uncertainty in the power measure-
ment

σsyst (Yi) = |Yi|

√√√√
[
σ(a)

a

]2
+

[
σ
(〈

dP
dV

〉)
〈
dP
dV

〉
]2

+

[
σ (VUV )

V̄UV

]2
(3.51)

The uncertainty σ (VUV ) can be found as the standard deviation of the dark and light
samples

σ (VUV ) =

√√√√ 1

N − 1

N∑

j=1

(
VUV,j − V̄UV

)2 (3.52)

We did not use the uncertainty on mean of the dark and light samples, because for
each discharge curve, in the moment we connect the long TM or EH fiber, we extract
only one possible power from the distribution sampled with the dark and lights (we
do not average repeated discharge curves taken at the same illumination setting).

We observe that the systematic uncertainty is proportional to the apparent yield
itself, hence it tends to zero as we approach the equilibrium voltage. This is not the
case for the random uncertainty, which depends on the noise of the charge measure-
ment and hence it is more or less independent of the test mass voltage.

3.3.6 Experimental data

As one can notice from Figure 3.20, the apparent yield experimental campaign has
been truly an endeavor lasting almost four years. As anticipated, we considered four
different types of LEDs and for each one we acquired data for several illumination
patterns. Moreover, we had to withstand and overcome two hardware failures of the
Electric Ground Support Equipment (EGSE), i.e. the computer controlling our FEE,
and an infamous global pandemic. The effort of such an extensive experimental work
has been shared with Giuliana Russano, Antonella Cavalleri and Francisco Rivas.

In the following plots we show the apparent yield curves as a function of the
measured TM voltage25. The statistical uncertainty on the data is represented by
the errorbars (which is usually quite small), whereas the systematic uncertainty is
represented by the shaded area.

For each UV-LED and in the case of both TM and EH illumination, we generally
acquired apparent yield curves in the following settings

• Duration 10 µs and no delay (100%-duty cycle) with low injection voltage (Vinj =
0.54V);

25Actually, as evident from (2.95), we measure not just the potential on the TM due to charge, but
also terms related to the stay biases on the electrodes. There may be, therefore, a systematic offset
on the x-axis of all plots. As the DC bias in our sensor are quite small, we expect this offset to be
of the order ∼ 10− 50mV.
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Figure 3.20: Timeline of the apparent yield experimental campaign:
the red and cyan bands corresponds to periods where we could not
acquire data because either the FFE was inoperative, or because the
pumping of the vacuum vessel was interrupted (we never vented to
atmosphere, just closed the gate valve between pump and vacuum
vessel). The green band corresponds to the time dedicated to the

continuous discharge measurement campaign (see Section 5).

• Duration 10 µs and no delay (100%-duty cycle) with nominal injection voltage26

(Vinj = 5.4V);

• Duration 1 µs and delay 2 µs (10%-duty cycle, in-phase) with nominal injection
voltage (Vinj = 5.4V);

• Duration 1 µs and delay 7 µs (10%-duty cycle, out-of-phase) with nominal injec-
tion voltage (Vinj = 5.4V);

The first setting is meant to represent the cleanest measurement: minimal electro-
static fields around the TM and small excursion of the TM voltage due to injection
polarization. We did not set the injection voltage to zero, because we still wanted use
the combined capacitive sensing of STC and GRS to read the rotation angle of the
pendulum during the charge measurements, which grants better noise performance
than the autocollimator.

The measurements with pulse duration of 10 µs and nominal 5.4V injection are
aimed at evaluating the smearing effect of illuminating during the whole cycle of the
injection.

The measurements with delay 2 µs and 7 µs are meant to evaluate two extreme
cases of synchronization with the injection bias: they correspond, respectively, to
illuminations almost centered on at the maximum and minimum of the injection po-
tential. As the TM voltage oscillates of ±Cinj

Ctot
Vinj ≃ ±0.6V if Vinj = 5.4V during the

injection cycle, we expect that the apparent yield curves at delays equal to 2 µs and
7 µs to resemble the apparent yield curve at low-injection, but shifted of approximately

26In the 4TM torsion pendulum the injection voltage is slightly larger than in LISA Pathfinder
(V LPF

inj = 4.88V) to compensate the extra capacitance due to the pendulum shaft. In this way the
potential induced on the TM by the injection bias is approximately the same, i.e.

Vinj
Cinj

Ctot
≃ V LPF

inj
Cinj

CLISA
tot

≃ 0.6V. (3.53)
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±0.6V respectively27. In Figure 3.21, we show the equilibrium voltage as a function
of the delay for pulses of 1 µs duration for the Crystal 250 LED. The equilibrium
potential does not depend on the power of the UV light, but just on the illumination
pattern, and the properties of the surfaces.

We notice that by controlling the phase of the illumination, we can achieve a
bipolar discharge (negative equilibrium potential for TM illumination and positive
for EH illumination), with clear advantages in terms of the robustness of the Charge
Management System. Indeed, as the net environmental charging is expected to be
positive, it is important that we can achieve a negative photocurrent at VTM = 0V
for the TM illumination channel as well, in the (very unlikely) case that both EH
illumination channels28 fail during the mission. In this way we add a further level of
redundancy to the CMS.

The Figures from 3.22 to 3.24 show the apparent yield data in the case of TM and
EH illumination for the LEDs considered in the first part (2019-2021) of the testing
campaign.

Overall the data in the case of EH illumination do not seem to reach complete
saturation for high test mass voltages: this may be due to geometry effect. Indeed,
the geometry of the GRS is such that the electrode housing surrounds completely the
TM, hence, at neutral TM, most of the electrons emitted by the TM will reach the
EH. On the other hand, only a fraction of the electrons emitted from the EH will
ballistically reach the TM at VTM ≃ 0V. However, if VTM increases, a larger fraction
of the electrons emitted will land on the test mass, because their trajectories will be
deviated by the electrostatic field due to the TM charge.

In Figure 3.25 we compare the apparent yield curves for TM illumination with
a pulse duration of 1 µs and a delay of 2 µs for three LEDs discussed up to now.
We see that the saturation levels increase when considering light sources with higher
mean photon energy. We notice that not all data series follow this expected behavior,
because our UV-power measurements is not always very reliable (for more details in
Section 3.4).

We acquired the UVphotonics 230 LED at the end of 2021 and we did only few
measurements. It is the LED with the highest average photon energy available. The
power measurements for the AY data of UVphotonics 230 have been performed with
the new PMT. For the data with UVphotonics 230 LED, it is not possible to compare
directly the apparent yield at saturation with the other light sources, because the
measurements were taken in 2022, around two years after the other measurements
presented so far. Indeed in 2020-2021, we noticed a change in the saturation levels for
all light sources (see Section 3.4.2 for more details and a possible explanation). Taken
this into account, the UVphotonics 230 still gives the largest apparent yield, which is
expected as it has the highest mean photon energy.

27The shift of exactly ±0.6V is an upper limit and would be possible if we illuminated with pulses
of very small duration centered on precisely the maximum or minimum of the injection voltage. As
the considered light pulses have a duration of 1 µs, we expect the shift to be smaller than ±0.6V.
Other factors, that make the data deviate from the ideal case, are:

• There is a contribution to the photocurrent from the injection electrodes (especially true for
the case of EH illumination);

• Geometry and border effects.

28As in LPF, the LISA GRS will be equipped with a nominal and redundant ISUK pointing towards
the EH. On the other hand, there will only be one ISUK pointing towards the TM.
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Figure 3.21: Dependence of the equilibrium voltage on the phase
of the illumination with the Crystal 250 for light pulses of 1 µs dura-
tion. An empirical sinusoidal fit has been performed on the data and
the resulting amplitude is (0.566 ± 0.004)V for EH illumination and
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Figure 3.22: Crystal 250 apparent yield data.
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Figure 3.23: SETi 255 apparent yield data.
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Figure 3.24: SETi 240 apparent yield data.
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Figure 3.25: Comparison of the apparent yield curves for different
light sources (TM illumination with duration of 1µs and delay of 2 µs).
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Effect of DC and AC actuations

It is important to evaluate how the apparent yield curves depends on the actuation
voltages applied to the electrodes. Indeed, in LISA actuation potentials will be applied
on all degrees of freedom, except the science axis, to keep the test masses centered in
their electrode housings.

We decided to apply DC and AC actuations on the z-electrodes because, as ev-
ident from the light absorption coefficients of Appendix B, are the ones that collect
most light (besides the x-electrodes, that we prefer not to use, apart for the charge
measurement itself, because they lie on the sensitive axis of the pendulum).

In all cases the actuation pattern was chosen so that the TM was not polarized.

DC actuation To evaluate the effect of actuation in an extreme case, we applied
equal ±5V DC to z−1,2 electrodes and an opposing ∓5V DC to z+1,2 electrodes. In this
way the polarization on the TM is negligible.

As shown in Figure 3.27, we acquired two sets of measurements with DC actuation,
one with nominal and one with low injection (Vinj = 0.54V). All the data were taken
within one month time.

From the absorption coefficients in Appendix B, we see that, in the case of EH
illumination, only the electrode z−1 absorbs a significant fraction of the total light
injected (∼ 5.6%). The other z-electrodes absorb only tiny amount of light. It is,
therefore, reasonable to focus only on the z−1 to explain the effect of DC actuation.
As expected we have that

• If +5V are applied to the z−1,2, the photoelectrons emitted from the correspond-
ing region of the electrode housing encounter a large potential barrier. This
causes a suppression of the EH photo-current.

• If −5V are applied to the z−1,2, the photo-electrons emitted from the correspond-
ing region of the test mass encounter a large potential barrier. This causes a
suppression of the TM photo-current.

Overall DC actuations have a significant but not dramatic effect on the apparent
yield curves: at neutral TM we still have a negative current, although reduced when
+5V are applied to the electrodes on the z− face.

AC actuation For the case of AC actuation we still focused on the patterns that
affect the z-electrodes only, i.e. V1z, V2z, V1η, and V2η. The amplitude chosen for
the AC actuation is always 3V. We always applied the actuations in a way that
they cancel each other out. Hence, the TM polarization was negligible even at the
audio-frequency of the AC voltages.

We have observed that in our version of the front-end electronics AC actuations
seem not to be synchronized with the injection voltage and consequently with the
CMD light pulses.

As evident form the Figures 3.28 – 3.30, the effect of AC actuation is smearing the
apparent yield curves. The change in the equilibrium voltage is limited.

Our data show that there is a dependence of the apparent yield curves form the
AC actuation, hence we suggest for LISA to develop illumination strategies that take
into account also the potential applied instantaneously to the sensing electrodes. A
possibility would be to illuminate only when the actuation potential of the relevant29

electrodes is reasonably close to zero.
29Namely the electrodes close to the regions where a significant fraction of the UV-photons is

absorbed.



102 Chapter 3. Charge Management System testing for LISA

−1.5 −1.0 −0.5 0.0 0.5 1.0

VTM [V]

−3

−2

−1

0

1
A

p
p

ar
en

t
yi

el
d

×10−6

V DC
z− = +0 V, duration 10 µs, delay 0 µs, Vinj = 5.40 V

V DC
z− = +5 V, duration 10 µs, delay 0 µs, Vinj = 5.40 V

V DC
z− = −5 V, duration 10 µs, delay 0 µs, Vinj = 5.40 V

(a) Data for Vinj = 5.4V

−1.5 −1.0 −0.5 0.0 0.5 1.0

VTM [V]

−4

−3

−2

−1

0

1

A
p

p
ar

en
t

yi
el

d

×10−6

V DC
z− = +0 V, duration 10 µs, delay 0 µs, Vinj = 0.54 V

V DC
z− = +5 V, duration 10 µs, delay 0 µs, Vinj = 0.54 V

V DC
z− = −5 V, duration 10 µs, delay 0 µs, Vinj = 0.54 V

(b) Data for Vinj = 0.54V

Figure 3.27: Apparent yield data for EH illumination with SETi 255
in the presence of DC actuation on the z-electrodes.
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Figure 3.28: Apparent yield curve for EH illumination with SETi
255 in the presence of AC actuation on z-electrodes. The illumination

patterns are the same as in Figure 3.23b.

In Figure 3.29 we compare the effect of AC actuation on the apparent yield data
in the patterns V1z and V2z (cyan curve) and when also the patterns V1η and V2η
were applied (red curve). Surprisingly the data show no significant difference between
the two settings. This is likely related to the fact that, as stated previously, only z−1
electrode absorbs a significant fraction of the UV-light among all electrodes activated
by the actuation pattern.

3.4 Experimental problems

During the experimental campaign some unexpected problems arose. Such issues
mainly affect our ability to measure the UV power injected into the GRS.

3.4.1 Degradation of the optical fibers

The testing campaign subjected the optical fibers to an intensive use. Indeed, for each
apparent yield measurement, we needed to connect and disconnect the optical fibers
several times to measure the light power and to bring the UV light to either the TM
or EH ISUK. Over time the wear and tear caused damages and dirt build-up at the
termination of the optical fibers and, consequently, a reduction of their transmission
coefficient. The timescale of such degradation is several months. In Figure 3.31, we
show the condition of one of the fibers after a couple of years of use.

A change in the optical properties of the fibers affects the accuracy of our power
measurements, as they are based on a transmission coefficient measured at the be-
ginning of the experimental campaign. This induces an unmodeled systematic error
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Figure 3.30: Apparent yield data for illuminations with Crystal 250
in the presence of AC actuation on the z-electrodes. The illumination

patterns are the same as in Figure 3.22.
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(a) TM long fiber before cleaning (b) TM long fiber after cleaning

Figure 3.31: Status of the TM long fiber before and after cleaning
with optical paper.

in the apparent yield measurements, that cannot be distinguished from a coherent
change of the emission properties of TM and EH over time.

In addition, two of the six fibers used during these years failed completely30.
The environment in our laboratory is quite dusty and no specific care has been

put in keeping the LED housing and connectors clean. They just have been closed
after use with some rubber caps. Later these caps have been substituted with metal
ones to avoid the dispersion of rubber fragments.

We advise to maintain a high level of cleanliness while working with the optical
fibers and the light sources. Ideally one should keep the optical equipment in a clean
environment, or at least, clean31 it at regular intervals. Indeed, after cleaning the
fibers we observed a significant increase in their transmission coefficient (+80% and
+50% for respectively the EH and TM fiber and only +11% for the short fiber32).
Still, the transmission coefficients did not reach the values measured at the beginning
of the experimental campaign due to the presence of some scratches and permanent
damage on the ends of the fibers. For this reason we decided to substitute and re-
characterize all external optical fibers in the spring of 2021. Naturally also the freshly
installed fibers, especially the short and most used one, accumulated dirt and damage
over the years (see Table 3.6).

3.4.2 Variation in the measured apparent yield over time

Repeating the same measurements after years resulted in a general increase of the
apparent yield. As an example, see Figure 3.32, where we plot some apparent yield
curves for the Crystal 250 which have been repeated after a couple of years. Another
example is depicted in Figure 3.33, where we plot the time evolution of the apparent

30One of the fiber used was not armored and, hence, less resistant to mechanical stress.
31At first we just dusted the terminations of the fibers and the LED housing with a flux of helium.

This non-aggressive method was not super effective, as some of the grime was firmly attached to the
surfaces. We then used optical paper and ethanol which proved more adequate to remove the dirt.

32The scarce increase of the transmission coefficient in the short fiber after cleaning, despite being
by far the one subjected to the most use, is probably due to a some permanent damage, i.e. some
scratches, on the dielectric interface of the short fiber.
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Table 3.5: Transmission coefficients of the TM and EH optical chains
before and after cleaning the external fibers in 2021.

Quantity Before cleaning After cleaning Variation

aTM 0.158± 0.003 0.189± 0.003 +19%
aEH 0.100± 0.003 0.157± 0.004 +57%

αTM,out

αSF
0.708± 0.004 0.845± 0.006 +19%

αEH,out

αSF
0.339± 0.002 0.534± 0.003 +57%

Table 3.6: Comparison between the transmission coefficient of the
optical fibers installed in 2021 when new and after two years of use.

Quantity New (2021) Used (2023) Variation

aTM 0.171± 0.003 0.253± 0.005 +48%
aEH 0.209± 0.006 0.407± 0.010 +95%

αTM,out

αSF
0.765± 0.008 1.133± 0.009 +48%

αEH,out

αSF
0.714± 0.007 1.387± 0.004 +95%

yield at positive saturation for a measurement which has been repeated several times
over the years. Comparable increases in the saturation levels have been observed
across the board for all LEDs.

As we measure the transmission coefficient of the fibers only rarely, we cannot
determine with certainty if the change in the apparent yield saturation levels are
due to a change in the emission properties of the surfaces, or, to the aforementioned
deterioration of the optical fibers (which cause to systematically underestimate the
UV-power injected into the GRS).

We also observe that the equilibrium voltages are almost constant over the years,
which indicates that the change in the saturation may be due to a wrong estimate
of the UV-power injected in the GRS, or to the (unlikely) possibility that the mod-
ification of the emissivity of TM and EH surfaces is symmetrical. If we pair this
observation with the fact that the discrepancy in the apparent yield at saturation is
reduced when we consider an updated fiber transmission coefficient, we have strong
evidence that the culprit of our inconsistencies may be an inaccurate assessment of
the UV-power due to the progressive degradation of the optical fibers.

It should also be noted that no significant variation in the surface emission prop-
erties (i.e. apparent yield) was observed during the LISA Pathfinder mission [52].

Anyhow, even in the unlikely case that the change in the apparent yield were
completely due to a modification of the emission properties of the sensor surfaces,
this would no be dramatic because we dealing with “just” a factor two33. It would
have been bad news if after years the emissivity of either TM or EH would have
dropped to zero, which is not the case from our data.

33Comparable variations of the apparent yield from gold surfaces have been observed in dedicated
experiments with the same class UV-LEDs as light sources [57].
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Figure 3.32: Apparent yield curves with Crystal 250 obtained in 2019
and in 2022. We see a pretty large change in the saturation levels. If we
analyze the latest data with an updated fiber transmission coefficient
measured few weeks afterwards (last column of Table 3.4), we obtain

saturation levels closer to the original data acquired in 2019.
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Figure 3.33: Measured apparent yield value at positive saturation
for EH illumination with the SETi 255 LED (duration 1 µs, delay 2 µs
and Vinj = 5.4V). The blue data points correspond to apparent yield
measurements with the UV power estimated via the photodiode, the
yellow one are the few data for which a power measurement with the
calibrated PMT was also available. We observe an increase in the last
year of about a factor two in the saturation levels. Unfortunately, we
also see that the saturation levels for the same measure may vary sig-
nificantly if the power measurement is performed with the photodiode
or the calibrated PMT. This is probably due an improper calibration
or to the insufficient sensitivity of the photodiode at low UV-power
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(a) Old SMA connector (b) New SMA connector

Figure 3.34: SMA connectors that couple the optical fibers with the
UV light source.

3.4.3 SMA connector between LED and optical fiber

The CMD prototype provided was equipped with SMA-905 connectors to couple the
UV-LEDs with the optical fibers. Such connectors were manufactured in house and
lacked the mechanical precision to provide a reliable fitting with the fibers. We ob-
served typical variations of ∼ 8% (with upper limit around 30%) in the light power
whenever the fiber was removed and reconnected. This represents, again, a problem
in correctly estimating the UV power during the illumination. Indeed, in an appar-
ent yield measurement the UV power is estimated with the short fiber connecting
the LED to the power measuring device (either photodiode or PMT). Afterwards the
short fiber is removed and the LED is connected to either the TM or the EH optical
chain. As there is this disconnection, it may happen that the measured power does
not reflect the real value that is injected into the GRS, as the fiber coupling through
the connector is different.

As shown in Figure 3.35, we did not realize the severity of this problem until
summer 2020. Indeed in the first part of the experimental campaign, we estimated
the light power just by switching on and off the LEDs via the software interface (on-
off method) without disconnecting the short fiber between the LED and the power
measuring device. This caused an underestimation of the systematic uncertainty in
the power measurement.

Afterwards, we performed the power measurements by keeping the LED on at
all times and by switching periodically between the light source and a dark cavity
(detach-attach method). In this way we were able to sample the effect of attaching
and detaching the fiber.

In the month of November 2022, we installed new SMA-905 connectors produced
by Diamond SA, a company specialized in optical fiber assemblies, which ensured a
typical coupling error of the order 2% (with a maximum measured value of 4%). We
have to point out that we performed only a handful of measurements with the new
connectors, hence the statistics is pretty low, but the data available indicate that the
new connector provide a more reliable coupling between the light sources and the
optical fiber.
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Figure 3.35: Timeline of the “darks & lights” measurements: the
data in 2018 obtained with the detach-attach method refer to the Hg-
lamp, which could not be switched on and off rapidly, hence we were
forced to unknowingly use the more correct detach-attach procedure.
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The mounting of the LEDs in the UV-light Unit is not recognized as significant
problem for the reproducibility of the power measurements. Indeed, the LED is in-
serted into a recess34 of the metal base rigidly coupled to the SMA connector for the
optical fibers. Supposedly the mounting pressure does not allow significant residual
motion, once the LED is integrated. Moreover, we basically never removed the LEDs
from their housing, except when we needed to mount the new SMA connectors.

3.5 Conclusions

The most important takeaway of our experimental testing is that the flight-model
replica of the LISA electrode housing integrated in our torsion pendulum allows to
achieve a net negative photocurrent for both EH and TM illuminations, just by con-
trolling the phase of the UV-light pulses without the need of adding local DC fields.
In Section 4.5, we will use the photoemission model developed in Chapter 4 to argue
why we think that this would have been possible also for the inertial sensors that flew
in LISA Pathfinder, if we had had the potentiality of pulsed illumination.

The possibility of realizing a bipolar discharge of the test masses made possible
by the pulsed illumination scheme, increases greatly the robustness of the Charge
Management System for the LISA mission. Indeed, we would still be able to discharge
the TM in the case that the optical channel supplying UV-light to the EH ISUK failed.

Furthermore, being able to set the duration and delay of the illumination with
respect to the injection bias, allows us to tune finely the equilibrium voltage, which
eases the implementation of the continuous discharge mode.

We also investigated the role of DC and AC actuations on the apparent yield
curves. This is particularly important because in LISA actuation potentials will be
imparted on all degrees of freedom, except that on the science x-axis, to keep the TM
centered inside the EH. Our measurements indicate that volt-level actuation potentials
have an impact on the apparent yield curves, especially in the case of EH illumina-
tion (for which a larger fraction of the UV-light is absorbed by sensing/actuation
electrodes).

Unfortunately the apparent yield values at saturation are not very reliable also
because of the problems in estimating the UV power (especially with the photodiode)
and because, for the first part of the experimental campaign, we were not sampling
correctly the effect of detaching and re-attaching the optical fibers, when we used the
on-off method for the “darks & lights”.

We would like to wrap up with a comment on the change of apparent yield observed
over time: a systematic increase of the apparent yield at saturation of approximately
a factor two may be either due to an increment of the emissivity of the surfaces, or
due to a progressive degradation of the optical fibers, whose transmission properties
decreases with time. This second explanation is favored at the moment.

The observed increase of approximately a factor two in the apparent yield data
at saturation, although not optimal, is, in itself, not terribly bad news, as it does not
compromise the capability of the Charge Management System, even if it were entirely
due to a change in the microscopic properties of the surfaces.

34The recess is approximately fitted to the outer dimension of the LED casing.
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Chapter 4

Photoemission model

In this chapter we will present a simple photo-emission model that could be useful to
interpret the experimental apparent yield data presented in Chapter 3.

We would like to remember that our photo-emission model, remains a model and,
hence, a simplification of the reality, which is way more complex. Every model is an
imperfect description of reality, but if they are appropriate, they can be helpful in
highlighting the most important aspects of the physical system under study.

This work has been inspired by the research of Dr. Daniel Hollington for the
Pathfinder data [58, 59]. We somehow approached the photo-emission process in a
different way, as we developed also a small theory for the photo-electron emission
spectra instead of using the semi-empirical model that assumes a triangular distribu-
tion for the spectrum of the emitted photo-electrons. Our approach has been inspired
by [60].

Moreover, previous research always considered photo-emission from metallic sur-
faces for monochromatic light sources (single energy photons). This was the case
for LISA Pathfinder, as the photons emitted from the mercury-vapor lamps can be
reasonably treated as monochromatic. UV-LEDs, contrary to mercury lamps whose
spectrum is practically a line, emit photons with a broader energy distribution.

Finally, we applied the photo-emission model developed to fit the experimental
apparent yield data, in an attempt to extract an estimate of the microscopic properties
of the GRS surfaces.

4.1 Free-electron model for metals

Electrons in metal, as all Fermions, obey Pauli exclusion principle, hence they follow
the Fermi-Dirac distribution

F (ε) =
1

exp
(
ε−µ
kBT

)
+ 1

, (4.1)

which gives the probability of an energy level being occupied. In (4.1) we indicated
with ε the energy and with µ the chemical potential.

In order to compute any property of the physical system under study, one has to
combine the probability that an energy level is occupied, i.e. the Fermi-Dirac distri-
bution, with the density of states g(ε), i.e. the number of solutions of the Schrödinger
equation for the physical system considered per unit volume and energy1. More pre-
cisely, the product of the Fermi-Dirac distribution (i.e. the probability of a state to
be occupied) and the density of states

n(ε) = F (ε)g(ε) (4.2)
1The quantity g(ε) dε is the number density of single-particle states in the energy range (ε, ε+dε).
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gives the density of states actually populated by particles at each energy.
A trivial application is to find the numeric particle density in the system, which

can be obtained by integrating2 the density of occupied single-particle states n(ε) over
all energies

N

V
=

∫
n(ε) dε =

∫
F (ε)g(ε) dε (4.3)

A slightly more complicated example is the internal energy density u, i.e. the
internal energy per unit volume u = U/V , which can be computed as

u =

∫
ε F (ε) g(ε) dε (4.4)

which is the sum of the energy of all occupied single-particle states.
The expression of the density of states g(ε) depends on the physical system con-

sidered.
In our case we want to derive the formula for the velocity distribution of electrons

in a metal, considering them as free and non-interacting fermions (independent electron
approximation). It is possible to find the following calculation in any solid state physics
textbook, a personal favorite is Ashcroft-Mermin [61]. We will outline a sketch of the
calculation in the remainder of this section.

Schrödinger equation for the free-electron gas Assume that we are considering
a cubic sample of volume V = L3. A single non-interacting electron can be described
by a wave function ψ(r), which obeys the following time-independent Schrödinger
equation3

− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

︸ ︷︷ ︸
∇2

ψ(r) = εψ(r), (4.5)

whose solution is the familiar plane-wave expression

ψ(r) =
1√
V
eik·r (4.6)

with energy eigenvalue

ε = ε(k) =
ℏ2k2

2m
. (4.7)

We have to notice that k is the position-independent wave vector and the prefactor
1/

√
V in (4.6) is related to the normalization of the wave function4.
If we now impose the infamous Born-von Karman periodic boundary conditions

ψ(x+ L, y, z) = ψ(x, y, z)

ψ(x, y + L, z) = ψ(x, y, z)

ψ(x, y, z + L) = ψ(x, y, z)

(4.8)

2In general the energy levels are quantized, hence it would be more formal to use a discrete sum
instead of an integral. However, for typical solid state systems, the energy levels are so close to each
other that they become, with excellent approximation, a continuum.

3There is no potential term because the sample can be considered as an infinite potential well
where the electrons are free to move. Therefore, the potential in the cubic sample is a constant,
which we can set to zero without loss of generality.

4Indeed we must have
∫
V
|ψ(r)|2dr = 1, which means that we have unit probability of finding the

electron inside the volume V .
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2π/L

kx

ky

Figure 4.1: Allowed k-points in a two-dimensional space. The area
per point, highlighted by the red dashed square, is (2π/L)2. If the
space were d-dimensional the generalized volume would be (2π/L)d

per allowed point.

where L is the side of the cubic volume of the sample, to our family of solutions (4.6),
we must have that

eikxL = eikyL = eikzL = 1 (4.9)

Therefore, only certain discrete values of the wave vector k = (kx, ky, kz) are allowed,
namely

kx =
2π

L
nx, ky =

2π

L
ny, kz =

2π

L
nz with nx, ny, nz = 0,±1,±2, . . . (4.10)

This means that the solutions of the (4.5), i.e. the allowed states (neglecting spin-
degeneracy), can be labeled with the wave vectors k whose components are an integer
multiple of 2π/L. In Figure, 4.1 we represent the allowed k-states in two dimensions.

Now we can estimate the number of allowed k-vectors, contained in a large5 (3-
dimensional) volume Ω in the k-space. If the volume is not too oddly shaped6, we can
approximate the number of points contained in Ω as the ratio of the volume and the
volume per point

N =
Ω

(2π/L)3
=

ΩV

(2π)3
(4.11)

If we are considering particles with spin s, we have to multiply this value by the
spin degeneracy (2s+1) to account for all possible spin orientations of each solution.

5That is with linear extension much bigger than the length-scale 2π/L.
6So that not too many points lie on the surface.
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Therefore the overall number of states, including spin, can be found as:

N = (2s+ 1)N = (2s+ 1)
ΩV

(2π)3
(4.12)

The number density in the k-space of allowed stated for a given volume V in real
space is

ρN =
N

Ω
= (2s+ 1)

V

(2π)3
. (4.13)

Calculation of the velocity distribution of a free-electron gas Now we have
all ingredients to sketch the computation for the velocity distribution of a free-electron
gas.

1. Consider a sample of volume V = L3 in real space. The number of free-electrons
levels in the momentum space, or k-space, about a point k of volume dk for
this sample is

dN = ρN dk = 2
V

8π3
dk, (4.14)

where the 2 is due to the twofold spin degeneracy (2s+1) of spin-1/2 particles.

2. The free-electron energy density in the k-space, can be written as

g[ε(k)] =
1

V

dN

dk
= 2

1

8π3
(4.15)

3. Of course, for the free electron gas, the energy corresponds to the kinetic energy

ε(k) =
ℏ2k2

2m
(4.16)

4. If we multiply the density of states g[ε(k)] with the Fermi-Dirac distribution (i.e.
the probability of each level to be occupied), we obtain the density of electrons
with momentum in the volume element dk per unit volume of real space

n(k) = g[ε(k)] · F [ε(k)] = 2
1

8π3
1

exp

(
ℏ2k2
2m

−µ
kBT

)
+ 1

(4.17)

5. As the number of particles must be conserved, we must have that the number
of electrons in an element of volume dv about v is the same as the number of
electrons in an element of volume dk about k:

n(k) dk = n(v) dv, (4.18)

where the velocity is given by v = ℏk
m . In Cartesian coordinates the equation

above becomes
n(k) dkx dky dkz = n(v) dvx dvy dvz (4.19)
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From here we can easily find that

n(v) = n(k)
dkx
dvx

dky
dvy

dkz
dvz

= n(k)
(m
ℏ

)3

= 2
( m

2πℏ

)3 1

exp

(
ℏ2k2
2m

−µ
kBT

)
+ 1

= 2
(m
h

)3 1

exp

[
m
2 (v2x+v2y+v2z)−µ

kBT

]
+ 1

(4.20)

We just derived the expression for the velocity distribution of a free-electron gas.

Note on Fermi energy and chemical potential If we start building, according
to Pauli’s exclusion principle, the ground state (at T = 0K) of N electrons, we will
start by placing two electrons with opposite spin orientation in the state with zero
momentum k = 0, making our way up to a maximum wave vector kF , which is called
the Fermi wave vector. If N is very big, the region in the momentum space occupied
by the ground state will be essentially a sphere7 centered around k = 0. The volume
ΩF = 4

3πk
3
F in the momentum space occupied by the ground state is known, due to

its shape, as Fermi sphere.
As showed in (4.12), the number of states in the Fermi sphere is

N = (2s+ 1)
ΩFV

(2π)3
= (2s+ 1)

4

3
πk3F

V

(2π)3
=

k3F
3π2

V, (4.21)

where, in the last passage, we used the fact that for electrons s = 1/2. It is convenient
to divide the last expression for the volume V in the real space, so that we find the
relation between the electron number density n and the Fermi wave vector

n =
N

V
=

k3F
3π2

. (4.22)

We can now define the Fermi energy EF as

EF =
ℏ2k2F
2m

=
ℏ2(3π2n)2/3

2m
. (4.23)

The Fermi energy can be computed from the density of free electrons per unit volume.
We must notice that for us to correctly estimate the Fermi energy of metals, which will
be our focus later, we need to consider only the density of the conduction electrons,
rather than the overall density of all electrons. Indeed, in the metallic bounds, only a
few electrons per atom can be realistically considered free.

We have debated that in the ground state only and all the states with energy
ε ≤ EF are occupied. We also know that in the low temperature limit (T → 0),
the Fermi-Dirac distribution (4.1), tells us that the states with energy lower than the
chemical potential µ have occupation number equal to unity, whereas the states with

7Indeed, as the energy for the free electron case goes as ε ∝ k2, if there were states with the
modulus of the momentum lower than ℏkF unoccupied, we would not be in the ground state, as the
total energy would not be minimized.
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energy larger than µ have occupation number identical to zero.

lim
T→0

F (ε) = Θ(µ− ε), (4.24)

where Θ(·) is the Heaviside step function.
If we want to reconcile these two observations we must have that, at least in the

ground state, the chemical potential µ is equal to the Fermi energy. Therefore, the
following limit must hold

lim
T→0

µ = EF . (4.25)

One can prove that the leading order expression for the dependence of the chemical
potential from the temperature is [61, 62]

µ(T ) = EF

[
1− 1

3

(
πkBT

2EF

)2

+O
(
T 4
)
]

(4.26)

The temperature scale at which the chemical potential becomes quite different from
the Fermi energy is

Tc =
2
√
3EF
πkB

∼ 6.5 · 104 K
(
EF
5 eV

)
. (4.27)

Typically the Tc is much larger than the typical temperature of the sample8.
We notice that the Fermi energy is a constant defined at T = 0K. As we have

shown that the Fermi energy and the chemical potential for the metals have very
close values up to high temperatures, we will fail to distinguish between the two. In
precise calculations it is essential to take into account how much the chemical potential
µ = µ(T ) differs from its value at zero temperature, i.e. the Fermi energy EF .

4.2 Fowler’s theory of photo-emission

R. H. Fowler assumed that electrons in a metal behave like a free-electron gas, following
a Fermi-Dirac distribution [63, 64]. Therefore, each electron in the sample has a
velocity which is randomly distributed in direction and modulus according to (4.20).

If photons are shone on the sample, they are absorbed by the free electrons. At
this point Fowler assumed that an electron is emitted if the sum of its initial kinetic
energy in the direction normal to the metal surface and of the photon energy is larger
than the potential barrier to transit to the vacuum-state, which is equal to the sum
work function and the chemical potential of the sample.

The crucial idea at the base of this model is reducing photo-emission to a one
dimensional problem. This is reasonable if the interface between sample and vacuum
can be approximated an infinite plane surface compared to the geometric scales of the
photo-emission event.

4.2.1 Energy spectrum of the photo-electrons

In the previous section, we derived that the number of electrons per unit volume with
velocity components in the ranges (vx, vx + dvx), (vy, vy + dvy) and (vz, vz + dvz) is

n(vx, vy, vz) dvx dvy dvz = 2
(m
h

)3 dvx dvy dvz

exp

[
m
2 (v2x+v2y+v2z)−µ

kBT

]
+ 1

. (4.28)

8This is particularly true for our torsion pendulum experiment which is at ∼ 300K.
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Figure 4.2: Coordinates system of the photo-emission model.

The factor two is, once again, due to the degeneracy of spin-1/2 particles and µ is as
usual the chemical potential. We can choose, without loss of generality, that vx is the
velocity component normal to the surface (as shown in Figure 4.2).

If we integrate the number density n(vx, vy, vz) for all velocities parallel to the
emission surface, that is in the y and z directions, we have9

n(vx) =

∫ +∞

−∞

∫ +∞

−∞
n(vx, vy, vz) dvy dvz

=
4πkBT

m

(m
h

)3
log

[
1 + exp

(
−

1
2mv

2
x − µ

kBT

)]
.

(4.29)

We have found the expression for the number density of the electrons in the emitter,
which have velocity vx in the direction normal to the emission surface. For reasons
that will be soon clear, it is convenient to go back to expressing n(vx) as a function of
the energy. Considering that the energy of a free electron in the direction normal10

to the surface is En = 1
2mv

2
x, we have

vx =

√
2En
m

−→ dvx =
1

2

(
2En
m

)−1/2 2

m
dEn =

1√
2Enm

dEn. (4.30)

The number of electrons with normal velocity in the range (vx, vx+dvx) must be equal
to the number of electrons whose longitudinal energy lies within (En, En + dEn), i.e.

n (En) dEn = n (vx) dvx, (4.31)

which leads to

n (En) dEn =
4πkBT

m

(m
h

)3
log

[
1 + exp

(
−En − µ

kBT

)]
1√

2Enm
dEn

=
4πkBT√
2Enm3

(m
h

)3
log

[
1 + exp

(
−En − µ

kBT

)]
dEn.

(4.32)

This is the expression for the distribution of the energy normal to the sample-vacuum
interface in the free electron gas.

Let hν be the energy of the photons shone on the sample. At this point Fowler
assumed that there is photo-emission if the sum of the electron energy in the direction

9We verified this expression with Wolfram Mathematica [35].
10The expression kinetic energy in a particular direction would make any Physics 101 professor

shiver. We will use this unfortunate name, because it is convenient to reason in term of energy
instead of velocity. At the end this matter is just yak shaving, because our model is fundamentally
one dimensional, hence the normal energy is simply “the energy” because that is the only direction
that exists in our problem.
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Figure 4.3: Visualization of the physical quantities relevant for
photo-emission at low-temperatures, for which we have that the Fermi
energy coincides with the chemical potential. We introduce here for

later use the contact, or Volta, potential ϕ =
EF,c+Wc−EF,e−We

e .

normal to the sample-vacuum interface plus the energy of the absorbed photon hν is
larger than the sum of the chemical potential µe and the work function of the emitter
We (the potential barrier to reach the vacuum-state). This can be expressed with the
following condition

(En − µ) + hν ≥We =⇒ Photo-emission (4.33)

See Figure 4.3 for an energetic scheme of the photoemission event.
In other words the transmission coefficient across the sample-vacuum surface is

unity if (4.33) is verified, zero otherwise. In Section 4.2.2, we will propose a modifi-
cation to this condition.

There are a couple of crucial assumptions behind such hypothesis:

• The entire photon energy is used to increase the normal energy of the electron. If
we are close to threshold, i.e. if the energy of the incoming photons is just enough
to overcome the work function and to create photo-electrons, this assumption
is not as unreasonable as it may sound. Indeed close to threshold, the electrons
are emitted, only if most of the photon energy is used to increase the kinetic
energy in the direction normal to the emitting surface.

• The probability of absorbing a photon does not depend on the initial energy
state of the electrons inside the emitter.

As discussed previously, at low temperatures the chemical potential is almost equal
to the Fermi energy. From (4.23), it is possible to estimate easily the Fermi energy
from the number density of electrons in the sample, which can be reasonably treated
as non-interacting. For the relevant case of gold, which is the material chosen for the
coating of the LISA GRS, the Fermi energy is approximately 5.53 eV.

If we model the sharp cutoff given by (4.33) as a transmission coefficient11, whose
functional expression is an Heaviside step function, we conclude that the emitted

11We will use the term transmission coefficient as synonym for transmission probability.
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photo-electron spectrum12 ñ is

ñ (En) dEn =
4πkBT√
2Enm3

(m
h

)3
log

[
1 + exp

(
−En − µ

kBT

)]
·

·Θ(En − µ+ hν −We) dEn. (4.34)

We define now the new quantity ϵ as

ϵ = En − µ+ hν −We −→ En = ϵ+ µ− hν +We and dEn = dϵ, (4.35)

which can be physically interpreted as the (kinetic) energy of the emitted photo-
electrons in the direction normal to the emitting surface. In this way, we can rephrase
(4.34) as

ñ(ϵ) dϵ =
4πkBT√

2(ϵ+ µ− hν +We)m3

(m
h

)3
·

· log
[
1 + exp

(
−ϵ− hν +We

kBT

)]
Θ(ϵ) dϵ. (4.36)

4.2.2 Transmission across the metal-vacuum interface

As mentioned before, in the Fowler’s theory for the photoelectric effect, we consider
that if an electron after absorbing a photon has an energy in the longitudinal direction
larger than the potential barrier, it is automatically emitted form the material. In
this way the transmission coefficient T , is

T = Θ(En − µ+ hν −We) =

{
1, if En − µ+ hν ≥We

0, otherwise
(4.37)

This is the expression for the transmission coefficient that we would expect from a
classical theory. In the following we propose a modification to such transmission
coefficient to take into account the quantum mechanical nature of electrons.

This is justified by the fact that if the electrons are treated quantum-mechanically
when they are inside the emitter, a quantum mechanical approach should be preferable
to a classical one when modeling their transition across the sample-vacuum interface.

Quantum mechanical transmission coefficient for a potential step

The safest approach is to consider the potential barrier between emitter and vacuum as
a step. Indeed, more sophisticated models, would require extra (unknown) parameters.

The quantum mechanical transmission coefficient across a potential step can be
found by solving the one-dimensional Schrödinger equation [65]

[
− ℏ2

2m

d2

dx2
+ U(x)

]
ψ(x) = Eψ(x) for U(x) =

{
0, if x ≤ 0

U0, if x > 0
(4.38)

12The quantities here have no strict normalization, we will address this thorny matter later. The
expression for ñ would be the number of emitter electrons if all free-electrons in the emitter would have
absorbed a photon of energy hν. The calculation for the true flux of emitted electrons would require
us to develop a significantly more complex model, which involves the cross-section of the photoelectric
effect and the rate at which photons impinge on the target. Let us ignore this complicated physics,
and consider from now on the quantity ñ as the spectrum of the photoelectrons as a function of the
normal energy En up to a normalization constant.
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Figure 4.4: Example of the QM transmission coefficient for a poten-
tial step as a function of the ratio E0/U0.

The transmission coefficient, i.e. the probability of overcoming the potential step of
height U0, is a function of the energy of the incident particles E0 and reads (see
Appendix C for the calculations)

T (E0, U0) =





4
√
E0(E0−U0)

(
√
E0+

√
E0−U0)

2 , if E0 ≥ U0

0, otherwise
(4.39)

Now we wish to apply the transmission coefficient just computed to the case of
the photoelectric effect. The energy of the incoming particle E0 corresponds to the
normal energy of the photoelectron in the emitter plus the energy of the photon

E0 = En + hν (4.40)

and the height of the potential step U0 is equal to the Fermi energy plus the work
function of the emitter

U0 = µ+We. (4.41)

Therefore, the transmission coefficient (C.17) for the photoelectric effect becomes

T (En + hν,We + µ) =

=





4
√

(En+hν)(En+hν−We−µ)

(
√
En+hν+

√
En+hν−We−µ)

2 , if En − µ+ hν ≥We

0, otherwise
(4.42)
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Comment on more complex models The interface between the crystal lattice of
the metallic sample under consideration and the vacuum could be modeled with more
sophisticated potentials, rather than the simple potential step. For now we decide not
to investigate them, because a more complex functional dependence of the potential
barrier would introduce more parameters. Probably with our experimental data we
do not have the resolution necessary to distinguish between them13.

In general, the QM transmission coefficient of more exotic potentials could be
computed with standard techniques, such as the WKB approximation.

4.2.3 Fowler’s theory including the QM transmission coefficient

Our photo-emission model is strongly based on Fowler’s theory, with the modification
that we consider that the emission of the exited electrons across the sample-vacuum
interface to be regulated by the QM transmission coefficient for a step potential. In
particular we assume, as Fowler did, that the whole energy of the absorbed photon
goes to increase the velocity of the electron in the direction normal to the emitting
surface.

From equation (4.32), we have that the energy spectrum of the electrons that have
been excited by a photon of energy hν is

n∗ (En + hν) dEn = n (En) dEn

=
4πkBT√
2Enm3

(m
h

)3
log

[
1 + exp

(
−En − µ

kBT

)]
dEn

(4.43)

The excited electrons are emitted only if their normal energy is sufficient for them
to cross the potential barrier of height We + µ that separate the internal states of
the emitter and the vacuum-state. This means that the spectrum of the emitted
photo-electrons is given by the product of the excited electron spectrum n∗ (En + hν)
with the probability of crossing the sample-vacuum interface, i.e. the transmission
coefficient

ñ(En + hν −We − µ) dEn = T (En + hν,We + µ)n∗ (En + hν) dEn

= T (En + hν,We + µ)n (En) dEn.
(4.44)

where the transmission coefficient T in our model is given by (4.42). Introducing the
energy of the emitted electrons ϵ as in (4.35), we have that the previous equation
becomes

ñ(ϵ) dϵ = T (ϵ+ µ+We,We + µ)n∗ (ϵ+ µ+We) dϵ

= T (ϵ+ µ+We,We + µ)n (ϵ+ µ− hν +We) dϵ
(4.45)

In Figure 4.5 we plot the expected emitted photo-electron spectra ñ(ϵ) for several
values of the incident photon energy (monochromatic). We observe that if the energy
of the absorbed photons increases not only a larger fraction of the excited electrons in
the emitter is able to reach the vacuum-state, but also their average emission energy
is larger.

Normalization The quantities we introduced in this section have no strict normal-
ization: all the spectra are meant to be interpreted up to a normalization constant

13For the same reason we do not consider a transport coefficient that model the propagation of the
excited electrons from the bulk of the emitter to the surface, or the more refined three-step model
for photoemission
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Figure 4.5: Photo-electron spectrum ñ(ϵ) as a function of the emis-
sion energy in the normal direction for several values of the incident
photon energy (monochromatic). It has been normalized by the to-
tal number of free-electrons per unit volume of the sample. For this
plot we set µ = 5.53 eV (nominal value for gold), T = 300K, and

We = 4 eV.
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that hides all the complicated physics that we neglected (e.g. cross-section of the
photoelectric effect).

The n(En) is defined as the number density of free-electrons per unit volume of
the emitter that have energy in the direction normal to the sample-vacuum interface
in the range (En, En + dEn).

The n∗ (En + hν) would be the spectrum of the exited electrons in the emitter if
each one had absorbed a photon of energy hν.

The ñ(ϵ) would be the spectrum of the photoelectrons as a function of the emission
energy if all free-electrons in the emitter absorbed a photon of energy hν and impinged
on the QM potential step at the emitter surface.

The total number of free-electrons per unit volume of the emitter is given by the
integral of the Fermi function

N

V
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
n(vx, vy, vz) dvx dvy dvz

= −4
√
2π3/2

(m
h

)3(kBT
m

)3/2

Li3/2

(
−e

µ
KBT

) (4.46)

where Lis(z) indicates the polylogarithm function. Computing the polylogarithm is
quite unpleasant. Fortunately an excellent approximation [66] comes to the rescue

lim
Re(z)→∞

Lis (±ez) = − zs

Γ(s+ 1)
for s ̸= −1,−2,−3, . . . (4.47)

where Γ(·) is the Gamma function. In our case s = 3/2 and, as we are in the
low-temperature limit T ≪ EF /kB = µ/kB, we have z = µ/(KBT ) ≫ 1. The
approximation is legitimate. Hence

N

V
≃ 4

√
2π3/2

Γ (5/2)

(mµ

h2

)3/2
(4.48)

If we normalize ñ(ϵ) with the number of free electron per unit volume N/V , we would
obtain the energy spectrum of the fraction of all excited electrons that actually exit
the emitter and reach the vacuum state. This quantity is plotted in Figure 4.5.

Generalization for non-monochromatic light

As the UV-LEDS are not monochromatic, we shall adapt (4.45) to account for the
specific spectra of the incident photons.

In order to estimate the photo-electron energy distribution for broad-band UV-
sources, we need to sum monochromatic emission spectra as the one in (4.45) over all
photon energies and weighted by the source-specific probability of having a photon at
the considered energy.

If the functional dependence of the photon spectrum as a function of energy
fUV (hν) were completely known, the procedure described would reduce to computing
the following integral

ñfUV
(ϵ) =

∫
fUV (hν) · ñ[ϵ(ν)] dν∫

fUV (hν) dν

=

∫
fUV (hν) · T [ϵ(ν) + µ+We,We + µ]n [ϵ(ν) + µ− hν +We] dν∫

fUV (hν) dν

(4.49)
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Figure 4.6: Spectra of the UV-light sources as a function of the
energy and normalized to have unit height for an easier comparison.

where we indicated explicitly the dependence of the normal emission energy of the
photo-electrons on the photon energy ϵ = ϵ(ν) as defined in (4.35).

In practice, our spectrometer samples the true photon spectrum fUV over a discrete
array of energies (hν0, hν1, . . . , hνN ), i.e. it outputs a series of counts for each energy

ci = fUV (hνi) (4.50)

From the raw counts we can find the probability of having a photon at the energy hνi
is given by

pi = p(hνi) =
fUV (hνi)∑
i fUV (hνi)

=
ci∑
i ci

. (4.51)

At this point we can rephrase (4.49), as a discrete sum

ñfUV
(ϵ) =

∑

i

pi · T (ϵ+ µ+We,We + µ)n (ϵ+ µ− hνi +We)

=

∑
i fUV (hνi) · T (ϵ+ µ+We,We + µ)n (ϵ+ µ− hνi +We)∑

i fUV (hνi)

(4.52)

Given the LED spectra shown in Figure 4.6, choosing µ = 5.53 eV, T = 300K,
We = 4 eV, we obtain the effective spectra displayed in Figure 4.7.

4.2.4 Apparent yield and photocurrents

The final goal of our photo-emission model is to simulate the apparent yield curve
for a user-defined set of microscopic parameters of the emitting surfaces (e.g. work-
function, chemical potential), illumination pattern (e.g. delay and duration of the light



4.2. Fowler’s theory of photo-emission 127

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Emission energy [eV]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

N
or

m
al

iz
ed

p
h

ot
o

el
ec

tr
on

sp
ec

tr
u

m
Hg-lamp

SETi 255

Crystal 250

SETi 240

UVphotonics 230

Figure 4.7: Photo-electron spectra ñfUV
(ϵ) for the UV-light sources

available in our laboratory normalized by the total number of the elec-
trons per unit volume of the sample. For this plot we set µ = 5.53 eV

(nominal value for gold), T = 300K, and We = 4 eV.

pulses with respect to the injection bias), and spectrum of the incident photons. In
order to achieve this goal we have to convert the spectrum of the photo-electrons into
an electrical current flowing from the emitter to the collector.

Let us consider the simple one-dimensional model presented in Figure 4.8. Once
a photon has been absorbed by an electron in the emitter, it is extracted only if the
sum of its initial energy in the normal direction En and the photon energy is larger
than the surface barrier given by the sum of the Fermi energy µ = EF,e and the
work-function We, as we can see from (4.42). If this condition is satisfied, the energy
of the photo-electron in the direction normal to the emitter surface will be

ϵ = En + hν −We − µ if En + hν ≥ µ+We. (4.53)

hν

En + hν −We − µ ∆V = Vc − Ve + ϕ

Emitter

Collector

Figure 4.8: Photoemission in an idealized geometry. Scheme of the
basic element of the model: an emitting surface with work function
We is illuminated with a photon of energy hν, which may lead to
the production of a photo-electron (black dot). ∆V is the potential
difference between emitter and collector including the contribution of

the contact potential ϕ.
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Assuming that between emitter and collector there is a stopping potential

∆V = Ve − Vc + ϕ, (4.54)

where Ve and Vc are the electrostatic potential of, respectively, the emitter and the
collector and ϕ is the contact potential14 (see also Figure 4.3)

ϕ =
Wc + µc −We − µ

e
=
Wc + EF,c −We − EF,e

e
, (4.55)

we have that only those photoelectrons which have normal kinetic energy larger than
−e∆V (minus because the electric charge of electrons is negative) reach the collector
and hence generate a photo-current. In a formula

P(∆V ) =

∫∞
−e∆V ñfUV

(ϵ) dϵ∫
ñfUV

(ϵ) dϵ
, (4.56)

where we normalized by the total number of photo-electrons, so that P(∆V ) can be
interpreted as the probability of the emitted electrons to reach the collector and hence
contribute to the photo-current.

At this point we can compute the observed number of electrons that reach the
collector per photon shone on the emitter, i.e. the apparent yield of the emitter Ye,
as

Ye(∆V ) = Ae · Qe · P(∆V ) (4.57)

where Ae is the fraction if the injected light absorbed by the emitter and Qe is the
(intrinsic) quantum yield of the emitter that is the number of photoelectrons per
absorbed photon

Qe =
# charges emitted

# photons absorbed
. (4.58)

The quantum yield is the rug under which we swept all the complex photoemission
physics such as the cross-section of the photoelectric effect. It is a measurable quantity
that depends on the microscopic properties of the emitter and of the incident light
(energy, angle of incidence, etc.). We expect that the apparent yield grows as the
wavelength of UV-light decreases, simply because a larger amount of photons has
enough energy to extract an electron.

In order to compute a current, we have to multiply the apparent yield by the
number of photons shone on the emitter per unit time

Ie(∆V ) = eYe(∆V )
PUV
⟨EUV ⟩︸ ︷︷ ︸

# photons/s

(4.59)

Comment on Schottky effect In principle we should take into account the Schot-
tky effect, that is the lowering of the work function due to the presence of a DC electric
field outside the metal sample. Indeed we have that the nominal work function W in
the presence of external DC fields, has to be substituted by the effective work function

Weff =W −∆WShottky (4.60)
14As usual the chemical potential is equal to the Fermi energy in the low-temperature limit.
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where ∆WShottky is of the order [67]

∆WShottky =

√
e3

4πε0
E (4.61)

where E is the modulus of the external electric field. In the case of the LISA sensor
we can reasonably assume that E = ∆V/d, as in a plane parallel capacitor. A worst
case scenario for LISA is ∆V ∼ 5V and d ∼ 2mm, so that WShottky ∼ 2 · 10−3 eV,
hence the Schottky effect is negligible.

4.3 Computational model for LISA

We now have all the elements to build a photo-emission model for the LISA sensor.
Indeed, fixed the light source (i.e. spectrum of light) and the surface parameters (i.e.
work function, chemical potential, temperature), we can compute the photoelectron
spectrum with (4.52). Once the photoelectron spectrum is known, we can obtain the
EH and TM photo-currents under the following assumptions:

• The LISA sensor is divided into pairs of overlooking surfaces, one belonging
to the TM and one to the EH. The number of such surfaces can be arbitrary.
Generally, we choose to use the minimum number of surface pairs needed to
reproduce the senor configuration in terms of injection and actuation voltages.
For example, if we consider the case where there is no injection bias and no
actuation potential on the electrodes, we just need a surface pair to describe the
system, namely the EH and the TM. On the other hand, if we add the injection
bias, we would have to consider two surface pairs: a pair is composed of the
injection electrodes and the part of the test mass facing the injection electrodes,
the other surface pair encompasses of the rest of TM and EH. If we add, on top
of the injection bias, AC or DC actuation on one or more sensing electrodes, we
would have to add surface pairs to match the number of electrodes activated.

• Even if the geometry of these surfaces can be quite complex, they are treated
as infinite plane parallel sheets.

• The amount of light absorbed by the sensor surfaces for the case of EH and TM
illumination is considered fixed15 and equal to the data provided by the Astrium
simulation (see Appendix B).

• The quantum yield is assumed uniform over the surface element considered. As
our model is one-dimensional, we do not consider a dependence of the apparent
yield on the incident angle of the surfaces.

• The model considers that the DC and AC actuation one the electrodes is ap-
plied in pattern such that they do not induce a polarization of the TM. This is
important to keep in mind, because the model do not check explicitly for the
above to be true. If we apply an unbalanced potential to the electrodes the
result of the model could be inaccurate.

• In the case of AC actuations, the model assumes that there is no fixed relative
phase between the actuation voltage and the 100 kHz-injection bias.

15The absorption coefficients are obtained via ray-tracing simulation for a centered test mas. There-
fore, motion of the TM in the sensor, would, in principle, make such coefficients vary with time. We
assume that this effect is small.
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• The transmission of the photoelectrons from emitter to collector is instanta-
neous, if they have enough energy to overcome the electrostatic stopping poten-
tial ∆V .

The basic building block of our photo-emission model for the LISA sensor is the one
depicted in Figure 4.8. However, it is important to notice that, as the inner GRS
surfaces are quite reflective, TM and EH both act at the same time emitters (and
collectors), even if the illumination is conducted via only the TM or EH fiber.

Let us make an example for the sake of clarity. Considering, for simplicity, only
one surface pair, namely an element of the EH and the overlooking TM area.

Case 1: EH is emitter and TM is collector The electrostatic stopping potential
encountered by the electrons emitted from the EH to the TM is

∆V = ∆VEH→TM = VTM − VEH + ϕEH (4.62)

where VTM is the test mass potential

VTM (t) =
QTM
Ctot

+
CinjVinj
Ctot

sin (2πfinjt) +
1

Ctot

∑

i

CiVi(t)

︸ ︷︷ ︸
0

. (4.63)

The last term is zero because we assume that the actuation pattern does not polarize
significantly the TM. On the other hand VEH , is the potential of the EH surface
considered which is

VEH(t) =





Vi(t), for sensing/actuation electrodes
Vinj sin(2πfinjt), for injection electrodes
0, for rest of EH

(4.64)

Finally, ϕEH is the EH contact potential16

ϕEH =
WTM + µTM −WEH − µEH

e
. (4.65)

As the TM and EH potentials are, in general, a function of time, we have that also
the electrostatic barrier ∆V (t) will depend on time.

If we consider that the UV illumination has a delay tUV with respect to the zero-
crossing of the injection bias and a duration ∆tUV , we can write form (4.57), the
apparent yield of solely the EH surface as

YEH [∆V (t), tUV ,∆tUV ] = −AEH · QEH

∫ tUV +∆tUV

tUV
PEH [∆V (t)] dt

∫ f−1
inj

0 PEH [∆V (t)] dt

(4.66)

where, similarly to (4.56), PEH is given by

PEH [∆V (t)] =

∫∞
−e∆V (t) ñ

EH
fUV

(ϵ) dϵ
∫
ñEHfUV

(ϵ) dϵ
, (4.67)

16The contact potential acts as an additional potential term that can either aid or hinder the
motion of the photoelectrons.
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Here ñEHfUV
is the spectrum of the photoelectrons emitted from the EH, which depends

on its microscopic properties (i.e. the work function WEH and the chemical potential
µEH).

In practice we averaged the probability of the photo-electrons emitted form the EH
to reach the collector (in this case the TM) over the period of the illumination. The
minus sign in front arises form the fact that conventionally apparent yield is positive
when electrons leave the TM.

Case 2: TM is emitter and EH is collector At the same time, also the TM
emits photo-electrons towards the EH. Since we swapped the surface that acts as
emitter and collector with respect to the previous case, the stopping potential that
electrons emitted from the TM encounter is the opposite

∆VTM→EH = VEH − VTM + ϕTM

= VEH − VTM +
WEH + µEH −WTM − µTM

e
= −∆V

(4.68)

From (4.66) considering the new electrostatic barrier, we have that the expression for
the TM apparent yield17 is

YTM [∆V (t), tUV ,∆tUV ] = ATM · QTM

∫ tUV +∆tUV

tUV
PTM [∆V (t)] dt

∫ f−1
inj

0 PTM [∆V (t)] dt

(4.69)

where, similarly to before,

PTM [∆V (t)] =

∫∞
e∆V (t) ñ

TM
fUV

(ϵ) dϵ
∫
ñTMfUV

(ϵ) dϵ
, (4.70)

In this case ñTMfUV
is the spectrum of the photoelectrons emitted from the TM, which

is a function of the microscopic properties WTM and µTM .
The total apparent yield is the sum of the individual apparent yields

Y(∆V ) = YEH(∆V ) + YTM (∆V ) (4.71)

At this point we are able to simulate apparent yield curves with our model and
compare them to the experimental data18.

4.3.1 Parameters of the model

For a matter of clarity, we summarize in Table 4.1 the information or parameters that
we need to provide to our photo-emission model, in order to generate the apparent
yield curves. These parameters must be defined for each emitting surface. For example
in the minimal model of just a surface pair, we have to define two sets of parameters:
one for the EH element, the other for the TM.

17In the next equation there is no minus sign because the electron leaving the TM give rise to a
positive apparent yield.

18Provided that we express the simulated Y as a function of the test mass voltage due to charge
VTM = QTM/Ctot.
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Table 4.1: Parameters of our photo-emission model.

Name Symbol Known? Comments

Quantum yield Qe No Quantum yield of the surface
element.

Work function We Partially We have measurements for
clean gold samples, but we ex-
pect the GRS surfaces to be
contaminated.

Light-absorption
coefficient

Ae Mostly We base our analysis on the
Astrium ray-tracing data (see
Appendix B), which are in
agreement with the GEANT4
data by Dr. Hollington [59].

Chemical poten-
tial

µ Partially We can compute it theoreti-
cally from (4.26) for a given
material, but it could vary
from the ideal case if contam-
ination is present. Anyhow, it
is not critical, as the model de-
pends very weakly on µ. We
assume µ = 5.53 eV, i.e. the
nominal value for gold [61].

Temperature T Yes It is not a crucial parameter
(no significant impact on the
curves for kBT ≪ EF ≃ µ).
We assume T = 300K.

Injection voltage Vinj Yes Amplitude of injection bias for
capacitive sensing.

Potential applied Vi(t) Yes Potential applied to the elec-
trode considered (DC or AC).

Delay tUV Yes Delay of the illumination from
the zero-crossing of the injec-
tion bias.

Duration ∆tUV Yes Duration of the illumination.

Spectrum fUV Yes Spectrum of the incident light.
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(a) EH illumination
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(b) TM illumination

Figure 4.9: Simulated apparent yield curves for monochromatic pho-
tons at various energies (see colormap). To produce the plots we as-
sumed µ = 5.53 eV and WEH =WTM = 4 eV. The injection voltage is
set to zero (Vinj = 0V). The y-axes of both plots have same arbitrary
units that are intended to be proportional to the number of elementary

charges transferred per injected photon.

4.3.2 Simulations with the photoemission model

We can apply the photoemission model to simulate the apparent yield curves in some
relevant configurations, assuming the light absorption coefficients of Appendix B and
reasonable values for the model parameters.

Effect of the photon energy

We can investigated how the photon peak energy affects the apparent yield curves.
In Figure 4.9 we plot some simulated apparent yield data considering monochromatic
incident light with photon energy ranging from 4.1 eV to 5.6 eV. In addition we fixed
the workfunction of EH and TM to WEH =WTM = 4 eV.

The quantum yield of TM and EH is the same and proportional to the integral of
the total number of emitted photo-electrons

QEH = QTM ∝
∫
ñ(ϵ) dϵ, (4.72)

where ñ(ϵ) is the photoelectron spectrum defined in (4.45). As we consider the same
photon energies, the apparent yield curves of Figure 4.9 have the same color corre-
spondence of the spectra in Figure 4.5.

As expected, we observe that the magnitude of the apparent yield increases with
the incident photon energy: this is due to the fact that a larger pool of the electrons
inside the emitter can reach an energy sufficient to overcome the potential barrier when
a more energetic photon is absorbed. Moreover, we notice that the equilibrium voltage
moves towards more negative or more positive values for EH and TM illumination
respectively.

We notice that this simulation may be oversimplified because we assumed that
the quantum yield scales proportionally to the number of emitted photoelectrons.
In reality the physical quantities that underlie the photo-emission, such as the cross
section of the photoelectric effect, may depend on the incident photon energy and
hence influence the emission spectrum.
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Effect of the injection bias

In the case that the injection bias is null (Vinj = 0V), the current generated from the
injection electrodes does not differ from the other areas of EH and TM. Indeed in this
case, it was not even necessary to define the injection electrodes as a separate surface
pair from the EH and TM: they could be included in the rest of TM and EH.

On the other hand, if the injection voltage is different from zero (in particular
we focus on the case Vinj = 5.4V used for the torsion pendulum measurements), the
current coming from the injection electrodes (and the area of the TM facing them)
will be quite different from the rest of the sensor. This is due to the fact that close
to the injection electrodes the electrostatic fields are quite intense (∼ Vinj/d, where
d ∼ mm is the distance between injection electrodes and TM).

More precisely, from equations (4.62)–(4.65) the potential barrier between EH and
TM in the region of the injection electrodes will be

∆Vinj(t) = VTM (t)− Vinj sin(2πfinjt) + ϕEH

=
QTM
Ctot

− Vinj

(
1− Cinj

Ctot

)

︸ ︷︷ ︸
≃1

sin(2πfinjt) + ϕEH (4.73)

The approximation is valid because for the LISA sensor the total capacitance is ap-
proximately a factor 8 larger than the injection electrodes one, i.e. Ctot ≫ Cinj . On
the other hand, the rest of the EH is grounded, hence the potential barrier will just
be

∆Vrest(t) = VTM (t) + ϕEH

=
QTM
Ctot

+ Vinj
Cinj
Ctot

sin(2πfinjt) + ϕEH .
(4.74)

Considering that Ctot ≫ Cinj and the nominal Vinj = 5.4V for the 4TM torsion pen-
dulum, we see that the electrostatic field in the region close to the injection electrodes
is generally quite different19 from the rest of the electrode housing and hence must be
treated separately by the numerical model.

100%-duty cycle illuminations In Figure 4.10 we plot the predicted discharge
curves for the Crystal 250 LED for EH illumination with 100%-duty cycle.

The effect of the 100 kHz-injection voltage on the apparent yield curve with illu-
mination duty cycle equal to 100% is, as expected, also to smear out the discharge
curves, because at each value of the test mass charge the resulting apparent yield is
the average over an oscillating potential barrier20 between EH and TM.

Out-of-phase and in-phase illuminations Next we evaluate the effect of the
synchronization of the light pulses with the 100 kHz-injection bias. In Figure 4.11, we
compare the apparent yield curve obtained at zero-injection with the curves obtained
with a pulse delay of 2 µs and 7 µs (duration always 1 µs). Such configurations are also
called in-phase and out-of-phase illumination because the pulse of light is centered on,
respectively, the maximum and minimum of the injection bias.

The main effect of a pulsed illumination synchronized with the injection bias is
to shift the apparent yield curve obtained at Vinj = 0V by an amount equal to the

19In particular when the sinusoidal injection bias approaches the maximum or minimum.
20This effect is enhanced in the areas close to the injection electrodes, where the amplitude of the

applied potential is larger.
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(b) Injection voltage Vinj = 5.4V

Figure 4.10: Predicted discharge curves for the Crystal 250 LED in
the case of EH illumination for a light pulse duration of 10 µs. The
value of other relevant parameters chosen for this plot are µ = 5.53 eV,
WEH =WTM = 4 eV, and QEH = QTM = 10−5. In the bottom panel,

we plot the contribution of just the injection electrodes.
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Figure 4.11: Predicted Crystal 250 discharge curves for EH illu-
mination with duration 1µs and delays 2 µs and (red) 7 µs (yellow)
compared to the data zero-injection case (cyan). The model parame-
ters are µ = 5.53 eV, WEH =WTM = 4 eV, and QEH = QTM = 10−5.
In the bottom panel, we plot the contribution of just the injection

electrodes.
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Figure 4.12: Simulated apparent yield curves for EH illumination
with Crystal 250 with Vinj = 5.4V. The duration of the light pulses
is 1 µs and the delay varied in the range 2 − 7 µs (see colorbar). The
vaues of the model parameters are µ = 5.53 eV, WEH =WTM = 4 eV,

and QEH = QTM = 10−5.

polarization potential imparted by the injection electrodes during the illumination
window (see also Figure 4.12). This is due to the fact that for the photocurrents, the
only relevant quantity is the potential difference between EH and TM, and not the
TM charge. The injection bias modulates this potential barrier with time.

A secondary effect is a change in the saturation levels, due to the contribution
of the injection electrodes to the apparent yield. As we can see from the bottom
panel of Figure 4.11, we have that the apparent yield from the injection electrodes is
equal to its negative and positive saturation in the case of, respectively, the in-phase
and out-of-phase illuminations. This effect is more severe for illumination of the EH
compared to the TM because in the former case a larger fraction of the “useful” light
is absorbed in the area of the injection electrodes.

We can explain the change in the saturation levels by observing that if we illumi-
nate in phase with the injection bias, the potential barrier for electrons emitted from
the injection electrodes from (4.73) will be

∆V

(
t =

1 + 4k

4finj

)
=
QTM
Ctot

− Vinj

(
1− Cinj

Ctot

)
+ ϕEH ≪ 0 (in-phase) (4.75)

where k = 0,±1,±2, . . .. The negative and large in magnitude potential barrier
causes a suppression of the EH photocurrent. The opposite is true for out-of-phase
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Figure 4.13: Simulated equilibrium potentials in the case of EH and
TM illuminations for light pulses of duration 1 µs and variable delay.
The injection voltage is Vinj = 5.4V. The model parameters chosen

are µ = 5.53 eV, WEH =WTM = 4 eV, and QEH = QTM .

illuminations: the potential barrier between EH and TM will be

∆V

(
t =

3 + 4k

4finj

)
=
QTM
Ctot

+ Vinj

(
1− Cinj

Ctot

)
+ ϕEH ≫ 0 (out-of-phase) (4.76)

which causes a suppression of the TM photocurrent.
We would like to point out that this change in the saturation currents is ap-

parent only because we can explore a limited range of possible TM potentials21: at
|QTM/Ctot| ≫ Vinj (1− Cinj/Ctot) ≃ Vinj we would observe the in-phase and out-of-
phase saturation reach the ones of the zero-injection case, because the electric field
due to the test mass charge will be much stronger than the local electric field close to
the injection electrodes. The reference [68] confirms independently this supposition.

Quantitatively the true positive saturation is attained when no photoelectron gen-
erated anywhere on the TM (hence also in front of the injection electrodes) reaches
the EH, which happens when they encounter a potential barrier larger than the max-
imum emission energy. Conversely, we are in complete negative saturation when the
potential barrier is larger than the maximum emission energy of the photoelectrons
emitted from any domain of the EH (including the injection electrodes).

Equilibrium potentials Of course our model is able to estimate the equilibrium
potential, i.e. the value of VTM at which the apparent yield vanishes Y(VTM = Veq) =
0, for any illumination pattern. In Figure 4.13, we plot the equilibrium potential as a
function of the pulse center delay for EH and TM illuminations with the LEDs at our
disposal (duration of the pulses is 1 µs and Vinj = 5.4V). The simulation confirms
that with the phase of the illumination we can control the equilibrium voltage for
both TM and EH illumination approximately22 in the range

Veq ∈ Veq(Vinj = 0) ± Cinj
Ctot

Vinj (4.77)

where Veq(Vinj = 0) is the equilibrium potential when the injection bias is null.
21Here we neglect the contact potential ϕEH , because it is expected to be small.
22Small deviations are expected due to the non-negligible pulse duration and from the contribution

to the apparent yield from the injection electrodes.



138 Chapter 4. Photoemission model

−1

0

1

A
p

p
ar

en
t

yi
el

d

×10−6

V DC
z− = +0 V

V DC
z− = +5 V

V DC
z− = −5 V

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

VTM [V]

−6

−4

−2

0

z
-e

le
ct

ro
d

es
ap

p
ar

en
t

yi
el

d

×10−7

V DC
z− = +0 V

V DC
z− = +5 V

V DC
z− = −5 V

Figure 4.14: Discharge curves with DC actuation on the z-electrodes
for the EH illumination of duration 10µs with the Crystal 250 LED
(Vinj = 5.4V). In the legend we report the DC potential on both the
z−-electrodes, but and equal and opposite potential is applied to the
z+-electrodes in order not to polarize the test mass. The model param-
eters are µ = 5.53 eV,WEH =WTM = 4 eV, and QEH = QTM = 10−5.
In the bottom panel, we plot the contribution of just the z-electrodes.

Effect of DC and AC actuation

In this section we simulate the effect of the DC and AC actuation on the discharge
curves. For all the results presented here, there is the fundamental assumption that
the actuation does not polarize the TM.

The effect of DC actuation on the z-electrodes is displayed in Figure 4.14 for
EH illumination with the Crystal 250 LED. From the table of the torsion pendulum
absorption coefficients in Appendix B, we see that in the case of EH illumination only
the z−1 electrode receives a significant amount of light (∼ 5.6%, which becomes ∼ 19%
if we consider only the fraction of “useful” light23). Hence we have that apparent
yield curves will be mainly influenced by the potential applied to such electrode. If
Vz−1

= −5V, the electrons emitted from the area of the TM in front of the electrode
will be repelled, causing a suppression in the TM photocurrent. On the other hand,
the EH photocurrent will be reduced if Vz−1 = +5V This is confirmed by the simulated
data.

Finally, we analyze the effect of AC actuation. We chose AC actuation in the V1z,
V2z, V1η and V2η pattern, which activate the z-electrodes only. The waveform on the

23That is light which is not considered lost in Appendix B and can actually produce a photocurrent.
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Figure 4.15: Example of the z-electrodes potential with AC actua-
tion pattern V1z = V2z = V1η = V2η = 1V.

individual electrodes24 is [32]




Vz+1
(t) = +V1z sin(2π · 90Hz · t) + V1η sin(2π · 240Hz · t) + V DC

z+1

Vz+2
(t) = −V1z sin(2π · 90 Hz · t) + V2η cos(2π · 240 Hz · t) + V DC

z+2

Vz−1
(t) = −V2z cos(2π · 90 Hz · t)− V2η cos(2π · 240 Hz · t) + V DC

z−1

Vz−2
(t) = +V2z cos(2π · 90 Hz · t)− V1η sin(2π · 240 Hz · t) + V DC

z−2

(4.78)

As mentioned before, we assume that there is no specific phase between the injection
bias and the AC actuation voltages. We include this fact in our model averaging the
estimated apparent yield for a given illumination pattern over an array of the electrode
potentials sampled from its actuation waveform.

An example of the potential on z-electrodes as a function of time is shown in
Figure 4.15.

The predicted effect of AC actuation on the apparent yield curved of the Crystal
250 LED are displayed in Figure 4.16.

The effect of AC actuation on the apparent yield curved for TM illumination is
small because only a minor fraction of light is absorbed in the area close to the z-
electrodes (∼ 1.6%, or ∼ 2% if we consider only the useful light) with respect to the
case of EH illumination (∼ 6.5%, or a significant ∼ 22% of the useful light25), as one

24The frequency of the AC actuation is different from LPF, because in our torsion pendulum we
use the FEE-electronics z-channels to read the EH y-electrodes and vice-versa. This swap caused us
a few headaches.

25In the case of EH illumination most of the light is considered lost, whereas for TM illumination
the fraction of light lost is minor.
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Figure 4.16: Predicted discharge curves for the Crystal 250 LED in
the case of EH illumination with AC actuation V1z = V2z = V1η =
V2η = 3V. The value of other relevant parameters chosen for this plot
are µ = 5.53 eV, WEH = WTM = 4 eV, and QEH = QTM = 10−5.
Here we simulate the apparent data for the illumination with duration
10 µs and Vinj = 0.54V (continuous lines) and the in-phase (dashed
lines) and out-of-phase (dash-dotted lines) illumination with duration

1 µs and Vinj = 5.4V.

can see from the absorption coefficients in Appendix B.

4.4 Fit of the experimental data

The examples presented in the previous section convinced us that the model has the
potential to produce pretty accurate apparent yield curves. Therefore, we decided to
try and fit the experimental apparent yield data with our model. A fit is technically
feasible, because our simple photoemission model is not computationally intensive.
The time required to generate an apparent yield curve is of the order of tens of
milliseconds.

4.4.1 Likelihood for the fit

The apparent yield data acquired have two kind of uncertainty: the random error, due
to the noise in the charge measurement with the torsion pendulum and the dominant
systematic error, due to the UV-power measurement. We have to be careful when
building a likelihood that accounts correctly for the systematic uncertainty.

Indeed, it would be not formally correct to add together systematic and random
errors for each data point into a total uncertainty, which is then used in, say, a
Gaussian likelihood to fit the data.

The statistically correct way to perform the fit requires to disentangle random
and systematic uncertainty. In order to do so, we do not fit directly the experimental
apparent yield data, but rather the photo-current, which can be modeled as

Î(VTM ) = Ctot
dV̂TM
dt

= e
P̂UV
⟨EUV ⟩

· Ŷ(VTM ;θ) (4.79)

where the vector θ includes all the parameters that are needed by our photoemission
model to compute the apparent yield (e.g. workfunctions, quantum yields, etc.). The
quantity P̂UV is the fit estimate for the UV-power injected into the GRS can be
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modeled as
P̂UV = β̂V̂UV (4.80)

where we introduced the conversion factor β̂ that translates the fit estimate for the true
signal in the photodetector V̂UV into the power injected into the GRS. The conversion
factor β̂ includes both the optical fiber transmission and the calibration of the power
sensitive device.

Therefore, the fit parameters are:

• The array of parameters θ needed by our photoemission model to compute the
apparent yield.

• The true signal V̂UV at the output of the photosensitive device.

• The true conversion factor β̂ between the photodetector signal and the power
injected into the GRS.

Let us spend some words on the data that we are going to fit.

• A set of measurements of the discharge rate
{

dVTM,i

dt

}
M

with their associated

causal error
{
σ
(
dVTM,i

dt

)}
M

, which are primarily due to the noise in charge
measurement with the torsion pendulum.

• A series of “darks & lights” {VUV,j}N , i.e. samples of the signal measured by the
photodiode or PMT . The uncertainty is estimated as the standard deviation of
the samples

σ(VUV ) =

√∑N
j=1

(
VUV,j − V̄UV

)2

N − 1
where V̄UV =

∑N
j=1 VUV,j

N
(4.81)

• The measured value of the overall conversion factor β, which includes both the
transmission of the optical fibers a and the calibration of the photosensitive
device ⟨dP/dV ⟩

β = a

〈
dP

dV

〉
(4.82)

with error

σ(β) =

√[
σ(a) ·

〈
dP

dV

〉]2
+

[
a · σ

(〈
dP

dV

〉)]2
(4.83)

The value of ⟨dP/dV ⟩ depends on the photodetector (PMT and photodiode
have different calibration coefficients) and on the spectrum of the light-source
(we averaged the response of the photodetector over the spectra of our light-
sources). The value of the transmission coefficient a depends on the optical
chain considered (EH illumination or TM) and on the year of the measurements
(we characterized the optical fibers repeatedly).

Now we have all ingredients to cook up the likelihood for the fit. We decided to go for
a safe choice and use a Gaussian log-likelihood (ignoring an additive constants which
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play no role)

LL
(
θ, V̂UV , β̂

)
= −

Model for Î(VTM ;θ)︷ ︸︸ ︷
1

2

M∑

i=1


Ctot

dVTM,i

dt − e β̂V̂UV

⟨EUV ⟩ Ŷ(VTM,i;θ)

Ctot σ
(
dVTM,i

dt

)



2

−

− 1

2

N∑

j=1

[
VUV,j − V̂UV
σ(VUV )

]2

︸ ︷︷ ︸
Model for V̂UV

− 1

2

[
β − β̂

σ(β)

]2

︸ ︷︷ ︸
Model for β̂

(4.84)

For each apparent yield measurement, we have just one true signal V̂UV that we
estimate from the “darks & lights” samples, associated with several charge rate mea-
surements

{
dVTM,i

dt

}
M

. We do not learn anything from the estimate of β̂, as it is just
a normalization constant equal to all data in the fit, we include it so to simulate the
error in the power calibration and in the optical fiber transmission coefficient.

Actually for each apparent yield curve, we have generally two set of measurements
(the negative and positive branches), each one characterized by its own UV-power.
Hence in the typical case that an experimental apparent yield curve is composed of
two branches, the total likelihood is

LLtot
(
θ, V̂ +

UV , V̂
−
UV , β̂

)
= −1

2

∑

♭=+,−

M♭∑

i=1



Ctot

dV ♭
TM,i

dt − e
β̂V̂ ♭

UV
⟨EUV ⟩ Ŷ(V ♭

TM,i;θ)

Ctot σ

(
dV ♭

TM,i

dt

)




2

−

− 1

2

∑

♭=+,−

N♭∑

j=1

[
V ♭
UV,j − V̂ ♭

UV

σ(V ♭
UV )

]2
− 1

2

[
β − β̂

σ(β)

]2
(4.85)

where the index ♭ runs over the positive and negative branch. The likelihood above
can be generalized immediately to any number of sub-measurements that compose the
experimental apparent yield data at the cost of increasing the number of parameters.

We decided to consider a model with a reduced number of parameters. We assumed
that the microscopic properties such as workfunction and quantum yield are uniform
on all TM surfaces and on all EH surfaces, in order not to make the number of
parameters explode. No matter the number of surface pairs that we consider to model
the GRS, we assign to all surfaces belonging the EH same quantum yield and work
function. The same holds for the TM surfaces, but of course with possibly different
values for such properties. In this way the fit parameters are always the ones reported
in Table 4.2.

4.4.2 Bayesian fit

We sampled the log-likelihood with the NUTS Hamiltonian Monte Carlo sampler [69]
implemented in the PyMC probabilistic programming library for Python [70].

The advantages of using such a technique rely on the fact that it formally always
converges and that it provides a posterior distribution (i.e. an assessment of the un-
certainty) for the fit parameters. The disadvantages of a Bayesian fit are that it is
more computational intensive than traditional methods, especially when the number
of parameters grows.
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Table 4.2: Parameters for the fit of the apparent yield data.

Name Symbol Comments

TM quantum yield QTM Assumed uniform on all
TM surfaces

EH quantum yield QEH Assumed uniform on all
TM surfaces

EH work-function WEH Assumed uniform on all
TM surfaces

Difference in EH and
TM work-function

∆W =WTM −WEH This gimmick reduces the
correlation with WEH

UV-signal for posi-
tive branch

V̂ +
UV True signal that we should

have measured

UV-signal for nega-
tive branch

V̂ −
UV True signal that we should

have measured

Conversion coeffi-
cient for UV-power

β̂ Includes the power calibra-
tion of the power sensitive
device and the fiber trans-
mission coefficient

For what regards the priors of the fit parameters reported in Table 4.2, we chose
broad Gaussian distributions centered on reasonable theoretical values for the quanti-
ties that we could not measure directly (e.g. the quantum yields and work functions).
On the other hand, for the quantities that we did experimentally measure, that is the
UV signal VUV and the overall conversion factor β, we chose informative Gaussian
distributions centered on the measured value and with standard deviation equal to
the measurement uncertainty.

Once the MCMC algorithm has found the posterior distributions of the fit param-
eters θ, we could obtain an unbiased26 estimate of the apparent yield as

Ŷ(VTM ,θ) =





⟨EUV ⟩
eβV̄ +

UV

Î(VTM ;θ), for positive branch (Î ≤ 0)

⟨EUV ⟩
eβV̄ −

UV

Î(VTM ;θ), for negative branch (Î > 0)
(4.86)

where β and V̄ ±
UV are the experimentally measured quantities for each AY branch.

The MCMC algorithm samples the likelihood by finding candidate values for the
model parameters at each iteration. The arrays of such values for each parameter
are called posteriors of the model. If we plug the posteriors into the model, we
obtain a collection of fits (posterior predictive checks), each characterized by a set
of parameters. The posterior predictive checks are helpful to make sure that the
model describes the observed data well. For an example, see Figure 4.17, where we
show the posterior predictive checks for a fit of an apparent yield curve obtained
illuminating the TM with the Crystal 250 LED with a duration of 10 µs and a delay
of 0 µs (Vinj = 5.4V).

The agreement between data and samples of the fit is quite good and we explored
the whole uncertainty region due to systematic errors.

26Indeed the fit will always force β̂ and V̂UV towards values which are not exactly the ones measured.
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Figure 4.17: Posterior predictive checks for the Bayesian fit of an
apparent yield curve obtained illuminating the TM with the Crystal
250 LED with a duration of 10 µs and a delay of 0 µs (Vinj = 5.4V).

We observe a nice agreement between data and fits.

In Figures 4.18 and 4.19, we display, respectively, the trace and the pair plot for
the model parameters that characterize the microscopic properties of the surfaces.

The plots on the right-hand side of Figure 4.18 represent the MCMC values of the
parameters as a function of the iteration of the fit. The four distinct lines correspond to
different MCMC chains. The plots on the left-hand side represent the Gaussian kernel
density estimates of the parameter traces (this conceptually similar to a smoothed
histogram). The trace plot is useful to check the convergence of the MCMC algorithm:
if we see that all chains provide similar estimate for the posterior distribution of the
parameters, we are confident that the algorithm is exploring effectively the likelihood.
Moreover, the posterior distributions give an indication of the uncertainty on the fit
parameters.

The pair plot in Figure 4.19 is useful to evaluate the correlation between the model
parameters.

In the Figures 4.20 – 4.26, we show the comparison between fit and experimental
data for most of the apparent yield data acquires experimentally in our laboratory.
In such plots we decide to plot the median of the fit samples with uncertainty band
given by the area within the 15.9th- and the 84.1th-percentiles (which correspond to
±1σ-confidence intervals).

Moreover, we also plot the posterior distributions of selected parameters27. In
Appendix D, we report the summary tables for the fit parameters that give information
on the microscopic properties of the TM and EH surfaces.

For more detailed plots of each fit see Appendix E.
27Indeed the parameters we are interested to estimate are the ones that characterize the microscopic

properties of the surfaces (e.g. quantum yield and workfunction)
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Figure 4.18: Traces of the MCMC samples of selected model param-
eters for the data in Figure 4.17. We observe a good convergence of

the NUTS algorithm.
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Figure 4.20: Crystal 250 apparent yield data for TM illumination.
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Figure 4.21: Crystal 250 apparent yield data for EH illumination.
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Figure 4.22: SETi 255 apparent yield data for TM illumination.
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Figure 4.23: SETi 255 apparent yield data for EH illumination.
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Figure 4.24: SETi 240 apparent yield data for TM illumination.
The data at 10 µs duration and Vinj = 0.54V (cyan) were acquired in
2022, hence not directly comparable to the other curves regarding the

quantum yield values (see Section 3.4.2).
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Figure 4.25: SETi 240 apparent yield data for EH illumination.
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Figure 4.26: UVphotonics 230 apparent yield data for TM and EH
illumination. The distribution of posterior parameters may look dif-
ferent with respect to previous plots because we are comparing a mea-

surements illuminating different sides of the GRS.
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We notice that a few measurements has been taken in 2022 and can not directly
compared to the majority of the AY yield measurements (acquired two years previ-
ously), because of the systematic increase in the saturation levels described in Section
3.4.2. Such measurements are

• The apparent yield curve with SETi 240 for TM illumination with injection
Vinj = 0.54V (cyan in Figure 4.24).

• The apparent yield data with UVphotonics 230 (see Figure 4.26).

We suppose that the increase in the apparent yield at saturation is mostly due to a
reduction in the transmission coefficient of the optical fibers due to their degradation
with use, which makes us underestimate the UV-power injected into the GRS. In the
case of the data with the UVphotonics 230, we expect to measure an increase in the
quantum yield also because it is the light source that emits the highest-energy photons.
We are unable to single out such effect, because it is polluted by the before-mentioned
systematic error in the estimate of the UV-power, due to wear of the fibers.

We decided not to re-scale the newer data to match the old ones, because we
cannot exclude a change in the emission properties of the surfaces over the years.

DC actuation data

As we can see from Figure 4.27, we were also able to fit reasonably well the data with
DC actuation without the need of introducing a specific quantum yield for the actu-
ation electrodes. This fact increases our confidence in the accuracy of the absorption
coefficient Ai of the GRS surfaces, as they are completely correlated to the quantum
yields Qi in the determination of the apparent yield, as evident from (4.66) and (4.70).

In this data set, the only measurements that seems not to be fitted well is the
measurement with injection Vinj = 0.54V and DC actuation V DC

z− = −5V (cyan data
in Figure 4.27). In this case the data seem not to saturate completely at negative TM
potentials, whereas the fit seem to have reached saturation already at VTM ≲ −0.7V.

AC actuation data

We were not able to fit the data with AC actuation because the evaluation of a more
complex model, causes increases dramatically the computational time of the fit. We,
therefore, just simulate the predicted apparent yield data for a reasonable choice of
the model parameters. This is a nice benchmark to see if our model is also predictive.

During the experimental campaign, we considered only AC actuations in the V1z,
V2z, V1η and V2η patterns, which interest the z-electrodes. The waveform of the single
z-electrodes potential can be found from (4.78).

In Figure 4.28 we compare the experimental apparent yield data with the model
prediction for EH illumination with SETi 255 when AC actuation is applied on the z-
electrodes. In accordance with the experimental data, the model forecasts that there
is no significant difference between having just the V1z and V2z AC actuation patterns
and adding also the V1η and V2η waveforms.

In Figure 4.29 we plot a comparison between experimental and predicted appar-
ent yield data for TM and EH illumination with Crystal 250 in the presence of AC
actuation.

Overall the agreement between predicted and experimental data is pretty satisfac-
tory, considering that we did not fine tune the model parameters for each measure-
ment, but we considered the same values for all data that share the same source and
illumination channel (TM or EH ISUK).
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Figure 4.27: SETi 255 apparent yield data for EH illumination in
the presence of DC actuation on the z-electrodes.
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Figure 4.28: Comparison between model prediction and experimen-
tal apparent yield data for EH illuminations with the SETi 255 in the
presence of AC actuation on the z-electrodes. The value of the param-
eters chosen is WEH = 4.0 eV, ∆W = −0.3 eV, QEH = 2.1 · 10−5, and

QTM = 1.0 · 10−5.
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Figure 4.29: Comparison between model prediction and experimen-
tal apparent yield data for illuminations with the Crystal 250 in the

presence of AC actuation on the z-electrodes.
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4.5 Conclusions

Our photoemission model, despite its simplicity, is able to fit the experimental data
quite accurately. We are able to extract from the fits, information on the microscopic
properties of the surfaces, such as the work function and the quantum yield, which
cannot be measured directly.

Regarding the numerical values of the fit parameters we observe:

• Generally the estimated work function is lower than the nominal value for pure
gold, which is WAu ≳ 5.3 eV [71]. We must notice, however, that the work
function depends critically on the status and contamination of the surfaces.
Measurement of the workfunction of gold samples exposed to air showed values
in the range 3.7− 4.5 eV [58], which matches nicely our estimates for WEH .

• The order of magnitude of the estimated quantum yield is consistent with the
in-flight measurements of LISA Pathfinder [59], even if a direct comparison is
not immediately possible because of the different spectra of the light sources.

• The work function of the EH surfaces is consistently estimated to be within the
range 3.6− 4.0 eV. We find values of the TM work function approximately the
same range for TM illumination, but persistently ∼ 0.5 eV lower for EH illumi-
nations. Such low-values for the TM work function only for EH illuminations
are suspect and may indicate that our model is missing some effects, most likely
related to the complex 3D geometry of the LISA sensor. Indeed, geometric effect
are expected to be particularly significant for EH illumination28, as evident from
the experimental data that seem not to reach complete positive saturation.

• Leaving aside the UVphotonics 230 data, we have that the EH quantum yield
values are compatible for both the TM and EH illuminations with the same
LED. Instead, the TM apparent yield is larger by approximately a factor two
for TM illuminations with respect to EH illuminations. We could explain such
difference invoking the fact that, in the case of TM illumination, a large fraction
of the light is absorbed by the TM domes, which are not gold-coated (and so they
could have different emission properties). A possible alternative explanation is
that we assumed the wrong light absorption coefficient ATM .

• The parameters estimated for the SETi 255 in the case of EH illumination with
DC actuation are compatible with the ones obtained without actuation: this is
an important confirmation of the reliability of our photoemission model.

• Even if we restrict to just the data taken in the same time period (years 2019-
2020), the fits suggest that the quantum yield increases, as expected, with the
energy of the incident photons. This is evident if we compare the quantum yields
of the SETi 255 with the ones of Crystal 250 and SETi 240 (a much smaller
difference is found between the latter LEDs, since they have spectra with very
close peak energies as we can see from Figure 4.6). We notice that a direct com-
parison with the UVphotonics 230 data is not possible, as these data series were
taken in mid 2022, when we observed a general increase of all saturation levels.
We should notice that the determination of the quantum yield is a little tricky
because of the problems we had with the UV power measurements (degradation
of the optical fibers and uncertainties related to the loose SMA connectors).

28The area illuminated with the electrode housing ISUK is geometrically complex because it has
groves and holes for the GPRM fingers. Assuming that it can be modeled as infinite plane, as we did
in our model, is probably too optimistic.
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Figure 4.30: Simulated equilibrium potentials for the in-phase TM
illumination with Crystal 250 (duration 1 µs and delay 2 µs) as a func-
tion of the workfunction (assumed equal for TM and EH) and the
quantum yield ratio between TM and EH. The dashed white line cor-
responds to the level Veq = 0V. The parameters for LISA Pathfinder

inertial sensors have been obtained form [52].

Apart from the success of our simple photoemission model to interpret the appar-
ent yield data, we suggest also developing more advanced 3D models that take into
account the complex geometry of the LISA sensor, the photo-electron trajectories,
and the precise locations at which photons are absorbed (via ray-tracing simulations).
Our hope is that the data produced by such more complex and computationally de-
manding simulation, would be in accordance with our simple model, so to have an
external confirmation of its reliability.

Comment on LISA Pathfinder In LISA Pathfinder, the UV-lamps did not allow
the pulsed illumination scheme. Consequently, it was not possible to control the
equilibrium potential by adjusting the phase and delay of the light with respect to the
injection bias.

As argued in Section 3.5, an interesting application of the model developed in this
Chapter is investigating whether we could achieve a negative equilibrium potential
(or, equivalently, a net negative photocurrent at neutrality) also for TM illuminations
just by controlling the phase and duration of the light pulses also for the emission
parameters of the LISA Pathfinder inertial sensors. This is particularly interesting
because the LPF apparent yield curves for both LPF sensors, in the case of TM
illumination, showed a TM quantum yield ∼ 3 times larger than the EH one [52]. In
comparison, the GRS installed in our torsion pendulum is more benevolent, as the
data generally suggest an apparent yield ratio QTM/QEH ≃ 1.3 for TM illuminations.

The results of the simulation, shown in Figure 4.30, indicate that the pulsed illu-
mination scheme would accomplish a marginally negative equilibrium potential also
in the case of TM illumination for both LISA Pathfinder sensors.
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Chapter 5

Continuous discharge model and
measurements

In this chapter, we will present a model and the experimental results obtained with the
4TM torsion pendulum for the charge noise introduced by the continuous discharge
strategy to keep the test mass potential under control.

The continuous discharge would be the preferred CMS mode, because it allows
to eliminate (or at least reduce) the interruptions in the science observation due to
charge management. Indeed, the fast discharge strategy, routinely implemented in
LPF, degrades the data quality during the illumination window. The continuous
discharge is eased by the use of LEDs as CMS light sources because, by adjusting
the phase and the duration of the illumination, it is possible to tune finely the TM
equilibrium potential without the need of local DC fields.

Our measurements of the charge noise during continuous discharge mode indi-
cate that the projected acceleration noise on LISA is within the electrostatic budget
requirement.

We will also present the spurious effects that limit our sensitivity and a possible
way to subtract the dominant one, which is related to the variation of the equilibrium
potential with a drift of the TM x-coordinate inside the GRS.

5.1 Linear model for TM charging and discharging pro-
cesses

The reference for the discharge model presented here is the technical note [72]. The
charging rate on test masses can be naïvely modeled as

dQTM
dt

=
∑

i

Ii(QTM ), (5.1)

where the summation is intended over all possible charging processes. As the GRS
can be interpreted as a capacitor, it is convenient to replace the test mass charge,
with the test mass voltage (indeed C = Q/V ), hence we have

dVTM
dt

=
∑

i

Ii(VTM )

Ctot
=

1

Ctot
[Ienv(VTM ) + IUV (VTM )] , (5.2)

where in the last passage we highlighted the fact that there are two charging mecha-
nisms acting on the LISA test masses

• The environmental charging Ienv, which is due to mainly cosmic rays and solar
energetic particles impinging on the LISA spacecrafts;
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• The charging, or rather, discharging IUV due to the Charge Management Device
(CMD), which related to the use of UV illumination to counteract the environ-
mental charging and keep the test mass voltage under control.

The current due to UV-illumination can be expressed as

IUV (VTM ) = Y(VTM ) · ePUV , (5.3)

where e is the elementary charge, Y is the apparent yield1 of the chosen illumination
pattern, and PUV is the UV power2.

If we suppose that we are close to the equilibrium voltage V UV
eq of the illumination,

we can linearize the apparent yield curve as (see Figure 5.1)

Y(VTM ) ≃ Y
(
V UV
eq

)
︸ ︷︷ ︸

0

+α
(
VTM − V UV

eq

)
= α(VTM − V UV

eq ), (5.4)

where
α =

dY
dVTM

∣∣∣∣
VTM=V UV

eq

≤ 0. (5.5)

As evident from the experimental data, the slope α of the apparent yield at the
equilibrium is negative. This is an experimental fact and, as we shall see better later,
makes the charge management system intrinsically stable.

Of course we must have that the apparent yield vanishes at the equilibrium voltage,
i.e. Y

(
V UV
eq

)
= 0, otherwise it would not be the equilibrium voltage.

Let us introduce, for reasons that will be clear later, the new quantity τUV as

τUV = − 1

α

Ctot
ePUV

≥ 0. (5.6)

1We consider here the apparent yield in units of the net number of elementary charges transferred
from TM to EH per unit time and per unit power, i.e. # charges/s/W.

2In units W.
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The typical scaling for τUV is

τUV ≃ 6.3 hours ·
(
1 nW

PUV

)(
104 s−1 nW−1V−1

−α

)
(5.7)

In this way using the linearization (5.4) and the definition (5.6), we can rephrase
equation (5.3), as

IUV (VTM ) ≃ α
(
VTM − V UV

eq

)
· ePUV

≃ − 1

τUV

Ctot
PUV

(
VTM − V UV

eq

)
· PUV

≃ −Ctot
VTM − V UV

eq

τUV
.

(5.8)

The solution of this differential equation is an exponential decay to the equilibrium
potential V UV

eq with characteristic time τUV . Note that from (5.6) τUV is inversely
proportional to PUV : the larger is the UV-light power during illumination, the faster
will the TM reach the equilibrium potential.

For what regards the cosmic ray charging, LPF observed [36] that the net charging
at neutral test mass is approximately +25 e/s and that the environmental equilibrium
voltage, i.e. the test mass voltage at which the net cosmic ray charging becomes zero,
is at about V env

eq = 1V. As we do not exactly know the functional behavior of the
environmental current Ienv as a function of the test mass voltage, except for the two
LPF results just outlined, the safest bet is to assume a linear dependence3 (see Figure
5.2)

Ienv(VTM ) = eλenvnet −
eλenvnet

V env
eq

VTM = −eλ
env
net

V env
eq

(
VTM − V env

eq

)
. (5.9)

If we define the new quantity τenv, which is the characteristic time of the environmental
charging, as

τenv =
V env
eq Ctot

eλenvnet

≥ 0, (5.10)

The typical scaling for τenv is

τenv ≃ 100 days ·
(
V env
eq

1V

)(
25 s−1

λenvnet

)
(5.11)

we can rephrase (5.9) as

ICR(VTM ) = −Ctot
VTM − V CR

eq

τCR
(5.12)

Putting together the newly found expressions for the UV current due to the illumina-
tion (5.8) and for the environmental charging (5.12), we can express the dynamics of
the test mass potential (5.2) close to the voltage V UV

eq as

dVTM
dt

≃ −
VTM − V env

eq

τenv
−
VTM − V UV

eq

τUV

≃ −VTM − Veq
τ

(5.13)

3This behavior seem to be confirmed by the very recent publication [40].
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where we defined

τ =

(
1

τenv
+

1

τUV

)−1

and Veq =
τenvV

UV
eq + τUV V

env
eq

τenv + τUV
. (5.14)

We recognize the equation of a simple RC circuit relaxing to the equilibrium voltage
Veq with characteristic time τ ≥ 0.

Typically we have that τUV ≪ τenv, hence the previous equations can be simplified
to

τUV ≪ τenv =⇒ τ ≃ τUV and Veq ≃ V UV
eq +

τUV
τenv

V env
eq (5.15)

If we define ∆Veq = Veq − V UV
eq , we have

τUV ≪ τenv =⇒ ∆Veq ≃
τUV
τenv

V env
eq =

eλenvnet

Ctot
τUV = − λenvnet

αPUV
(5.16)

where we used the definitions (5.10) and (5.6). This last equation tells us that fluc-
tuations in the net environmental charging rate λenvnet or in the UV-power during illu-
mination, cause a variation in the equilibrium potential.

Note on stability The differential equation (5.13) represents a linear time invariant
autonomous system.

A linear autonomous system is a set of differential equations that can be written
in the form

dx

dt
= Ax, (5.17)

where x = x(t) is, in general, a n-dimensional array and A is a n×n coefficient matrix.
A criterion for the stability of a linear autonomous system, known as Routh–Hurwitz
stability criterion, is that all the eigenvalues of the matrix A have negative real part.
Our case is comically trivial as the differential equation (5.13) is one-dimensional: we
simply have A = −τ−1 ≤ 0 and, therefore, the Routh–Hurwitz criterion is met.

The fundamental reason for the stability of the discharge mechanism is to be
ascribed to the fact that experimentally the apparent yield curves have a negative
slope (α ≤ 0).

5.1.1 Intrinsic current noise

As the nature of charge transfer is discrete, both the environmental and the UV
currents are intrinsically noisy. We can model the noisy part of the currents as extra
additive terms in the differential equation (5.13) that defines the system dynamics

dVTM
dt

≃ −VTM − Veq
τ

+
ienv
Ctot

+
iUV
Ctot

, (5.18)

where ienv and iUV are the noisy part of, respectively, the environmental and CMD
currents. At equilibrium they can be treated as zero-mean stochastic processes.

The balance in the number of charges deposited on the LISA test mass due to the
various charging processes can be treated as a counting process. As the number of
charges deposited on the TM due to either environmental charging or UV illumination
can be reasonably assumed to be independent Poisson processes, we have that the
corresponding currents are the time derivative of Poisson processes, i.e. independent
sources of shot noise.
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The one-sided power spectral density of a shot noise is frequency independent and
reads4

Sshot(ω) = 2j2λ (one-sided) (5.19)

where λ is the rate parameter of the associated Poisson process and j ∈ Z is the
multiplicity, i.e. the number of unitary increments that characterize the arrival event
in the Poisson process.

A property that will be useful later is the merging of Poisson process5 [73], which
states that the sum of independent Poisson processes Ni(t), each one with a rate
parameter λi is a still a Poisson process with rate λ =

∑
i λi. Therefore, by comparison

with (5.19), the PSD of the shot noise associated with the merging of the independent
Poisson processes {Ni(t)} is

Sshot(ω) = 2
∑

i

j2i λi (one-sided) (5.20)

where ji is the multiplicity of the ith Poisson process.

Environmental charging noise

The detailed physical models behind the TM charging due to cosmic rays and solar
energetic particles are quite complicated. Indeed, as high-energy particles hits the
LISA spacecraft a shower of low-energy secondary particles is produced. The role
of particles with energy ≲ 100 eV is thought to be relevant. For such reasons, the
charging process of the LISA test masses is still being investigated with dedicated
numerical simulations [43].

For the sake of our model we can neglect most of the details and assume that
the environmental charging is composed of a positive and a negative current. The
number of positive and negative charging events per unit time is assumed to follow a
Poisson distribution. Hence, the positive and negative photocurrents can be treated
as independent sources of shot noise.

Normally the positive current dominates over the negative current, i.e. the net
charging rate is positive, but, as anticipated before, at quite large values of the test
mass potential (∼ 1V), we reach an equilibrium and the two currents balance them-
selves out.

We repeat the definition of the net charging rate and the effective charging rate,
which are useful quantities to characterize the environmental charging process

λenvnet =
∑

j

jλj and λenveff =
∑

j

j2λj . (5.21)

The index j runs over all integer numbers and represents the multiplicity, i.e. the
number of elementary charges carried by each charging event. LPF measured (at
neutral TM) the values reported in Table 5.1.

From (5.20), the noise power spectra density of the current noise associated with
the environmental charging is

Sienv = 2e2
∑

j

j2λj = 2e2λenveff (one-sided) (5.22)

4See Appendix F for more details.
5See Section F.1.7 of Appendix F for the proof.
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Table 5.1: LPF results for the net and effective environmental charg-
ing rates at neutral TM [36].

Quantity Symbol TM1 TM2 Units

Net charging rate λenvnet +22.9 +24.5 s−1

Effective charging rate λenveff 1060± 90 1360± 130 s−1

The typical scaling of the current noise Sienv is

Sienv ≃ (8.2 aA)2 ·
(

λenveff

1300 s−1

)
(5.23)

This is a zero-order approximation as it does not consider that the environmental
charging noise is non-stationary, as it depends on the test mass potential itself.

Comment on non-stationarity If we consider the potential of the LISA test
masses to be nearly constant, the noise properties do not significantly change over
time and we can consider the noise as stationary. As stated previously, this is, of
course, only an approximation. Here we propose a simple way to take into account
the non-stationarity of the environmental charging process.

In the assumption that the charging events deposit on the TM only one elementary
charge6 (that is j = ±1), we can split the net and effective rate from (5.21), into their
positive and negative contributions

λenvnet = λ+ − λ− and λenveff = λ+ + λ− (5.24)

Hence

λ+ =
λenvnet + λenveff

2
and λ− =

λenveff − λenvnet

2
(5.25)

As we know that the net charging rate vanishes at V env
eq , we can assume, coherently

with (5.9), that it decreases linearly with the TM potential

λenveff (VTM ) =
V env
eq − VTM

V env
eq

λenvnet (VTM = 0) (5.26)

We do not know the dependence of the effective charging rate from the test mass
potential, so we will just assume it to be constant, i.e.

λenveff (VTM ) = λenveff . (5.27)

If we combine these two assumptions into (5.25), we must have




λ+(VTM ) = 1
2

[
λenveff (VTM = 0) +

V env
eq −VTM

V env
eq

λenvnet (VTM = 0)
]

λ−(VTM ) = 1
2

[
λenveff (VTM = 0)− V env

eq −VTM

V env
eq

λenvnet (VTM = 0)
] (5.28)

This equations mean that the arrival rate of negative particles λ− increases linearly
with VTM , whereas the arrival rate of positive particles λ+ decreases linearly with

6This assumption may be a little strong. If, on one hand, detailed simulations [41] show that the
majority of events carry indeed only one elementary charge, on the other hand, the effective charging
rate λeff grows with the square of the multiplicity, hence rare events that carry a lot of charge could
contribute significantly to λeff .



5.1. Linear model for TM charging and discharging processes 167

VTM . Hence, a more realistic expression for the PSD of the noisy environmental
current is

Sienv(VTM ) = 2e2 [λ+(VTM ) + λ−(VTM )] (one-sided) (5.29)

These simple observations can be useful to simulate numerically the charge noise on
the LISA test mass, without neglecting the dependence of the noise from the test mass
voltage itself. We notice that the correction (5.28) is small because λenvnet ≪ λenveff (see
Table 5.1).

UV photoelectric charging noise

Also in the case of the charging due to UV illumination, we have two competing
currents. As the UV photons are absorbed both from the EH and the TM due to the
non-zero reflectivity of the GRS inner surfaces, we will have a photo-electron current
coming from the EH and an opposing photoelectron current coming from the TM.

A simple statistical model to describe the processes that generates the photocur-
rents, or rather their integral in time, i.e. the number of charges deposited on the
TM, can be summarized as

1. The number of photons arriving in the GRS per unit time can be assumed as
a Poisson process (see Appendix G for some measurements that justify this
assumption);

2. The absorption of photons by either the EH or the TM can be modeled as a
Bernoulli trial7;

3. The production of a photo-electron can be also thought as a Bernoulli trial (any
absorbed photon may either produce or not a photoelectron).

4. The probability that a photo-electrons emitted by either the TM or the EH
reaches the opposing surface can be modeled also as a Bernoulli trial.

Fortunately, the extraction of points in a Poisson process with rate λ according to
the outcome of a Bernoulli random variable with success probability η generates a
stochastic process which is still Poisson, but characterized by a reduced rate λ′ =
λη (see Appendix F.1.6 for more details). Hence, despite the underlying statistical
processes, the number of photoelectrons arriving or leaving the TM can be simply
modeled as independent Poisson processes with suited rates.

The photocurrents, are the derivative of the number of charges, i.e. of a Poisson
process. Hence they can be treated as a shot noise.

5.1.2 Torsion pendulum discharge model

In the 4TM torsion pendulum we do not observe an environmental charging of the
test mass (i.e. λenvnet = 0), hence we have Ienv = 0, so the discharge dynamics (5.13)
simply reduces to

dVTM
dt

= −
VTM − V UV

eq

τUV︸ ︷︷ ︸
deterministic part

+
ishot
Ctot︸ ︷︷ ︸

noisy part

(5.30)

7Success may be interpreted as being absorbed by EH and failure being absorbed by the TM. The
reader may rightly think that this means that some correlation may arise between the TM and EH
currents. This is actually not true because of the properties of Poisson processes: splitting a Poisson
process results in two independent Poisson processes (see Appendix F.1.6).
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As V UV
eq is supposed to be a constant, the previous equation can be equivalently

rephrased as
d
(
VTM − V UV

eq

)

dt
= −

VTM − V UV
eq

τUV
+
ishot
Ctot

(5.31)

Introducing the voltage fluctuations as δVTM = VTM − V UV
eq , we get

dδVTM
dt

= −δVTM
τUV

+
ishot
Ctot

. (5.32)

If we apply a Fourier transform ot the previous equation, we obtain

iωδṼTM = −δṼTM
τUV

+
ĩshot
Ctot

(5.33)

If we solve for δṼTM , we have

δṼTM =
ĩshot

Ctot

(
iω + 1

τUV

) . (5.34)

The transfer function δṼTM /̃ishot behaves like an integrator up to a given cutoff fre-
quency, given by fc = (2πτUV )

−1.
If we assume that the current driving the system is noisy with power spectral

density Sishot , we have that the PSD of the test mass voltage noise is

SshotVTM
(ω) =

Sishot∣∣∣Ctot
(
iω + 1

τUV

)∣∣∣
2 =

Sishot

C2
tot

(
ω2 + 1

τ2UV

) (5.35)

We know that the photocurrent can be modeled as shot noise, hence its power spectral
density is

Sishot = 2
∑

j=±1,±2,...

j2e2λj = 2e2λeff (one-sided) (5.36)

where j ∈ Z is the number of particles or counts per event (multiplicity), e is the
elementary charge, and λj the rate of the events with multiplicity j. The expression
for the characteristic time τUV was already calculated in (5.6).

Of course, in the case of UV illumination, we actually have two independent cur-
rents: one corresponding to the photoelectrons that are extracted from the TM and
reach the EH and the opposite one, corresponding to the photoelectrons that travel
from the EH towards the TM. For the merging property of Poisson processes, their
sum is still a Poisson process.

For this reason, from (5.3) the λeff can be reasonably approximated to be

λeff ≃ PUV (|YTM (Veq)|+ |YEH(Veq)|) , (5.37)

where we ignore variations of the apparent yield due to small deviations form the
equilibrium8. Unfortunately we cannot measure directly YTM (Veq) or YEH(Veq), that

8This is or course an approximation, but a good one: the observed test mass voltage fluctuations
in the continuous discharge measurement are much smaller than the typical scales needed to cause
a significant variation of the individual TM or EH currents. In more formal terms, as the rate
depends slightly on the test mass voltage, which in turn depends on time, we are dealing with an
in-homogeneous Poisson process, but we approximate it as an homogeneous one.
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Figure 5.3: Simulated apparent yield data separated into the TM
and EH contributions. At the equilibrium voltage the TM and EH
currents must be equal and opposite. More precisely, the magnitude
of the current at the equilibrium voltage is very close to the smaller

saturation current.

is the TM or EH contributions to the apparent yield at the equilibrium voltage.
However, the following observations are certainly true

• Obviously if we are at the equilibrium the test mass potential stays constant:
this means that the TM and EH photocurrents and, consequently, the apparent
yields must be equal and opposite.

|YTM (Veq)| = |YEH(Veq)| (5.38)

• The values of the TM and EH contributions to the apparent yield at the equi-
librium voltage must be smaller than the apparent yield at, respectively, very
small and very large test mass potentials (saturation values)

{
|YTM (Veq)| ≤ limVTM→−∞ |Y(VTM )| = Y−

sat

|YEH(Veq)| ≤ limVTM→+∞ |Y(VTM )| = Y+
sat

(5.39)

Considering (5.38) and (5.39) we have that a reasonable upper limit the equal and
opposite TM and EH apparent yield contributions at the equilibrium voltage is the
smaller saturation value

|YTM (Veq)| = |YEH(Veq)| ≲ min
(
Y+
sat,Y−

sat

)
. (5.40)

Simulated data seem to suggest that the true value for the TM or EH contributions
to the apparent yield at the equilibrium |YTM (Veq)| = |YEH(Veq)| is very close to this
upper limit (see Figure 5.3). We put forward two effects that may (slightly) reduce
the apparent yield contributions of EH and TM at the equilibrium potential from the
proposed upper limit: the contribution of the injection electrodes, which may cause a
residual slope9 of the AY curves even at |VTM | ≳ 2V (see for example Figure 4.10b)

9This effect may be reduced if we consider (as we will, but for another reason) pulsed illuminations
centered on the maxima or minima of the injection bias (see Figure 4.11).
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and geometric effects10.
From these considerations, we have that a reasonable upper limit for the effective

charge rate (5.37) is
λeff ≲ 2PUV min

(
Y+
sat,Y−

sat

)
. (5.41)

The positive and negative saturation values can be directly measured from the
apparent yield data. If the emission properties of TM and EH are not too different
from each other we expect that in the case of EH illumination the negative saturation
value of the apparent yield is smaller than the AY value at positive saturation. Vice
versa is true for TM illumination. In a formula

{
min

(
Y+
sat,Y−

sat

)
= Y−

sat for EH illumination
min

(
Y+
sat,Y−

sat

)
= Y+

sat for TM illumination
(5.42)

On the basis of these observations, we have that (5.35) becomes

SshotVTM
(ω) ≲

4e2PUV min
(
Y+
sat,Y−

sat

)

C2
tot

(
ω2 + 1

τ2UV

) (one-sided) (5.43)

From the previous equations, we see that the current shot noise is proportional
to the effective rate and hence the UV power (Sishot ∝ λeff ∝ PUV ), whereas the
characteristic time is inversely proportional to the UV power (τUV ∝ 1/PUV ). More
precisely, combining the definition of τUV (5.6) and the expression for λeff (5.37), we
have

λeff (τUV ) ≃ −Ctot
αe

|YTM (Veq)|+ |YEH(Veq)|
τUV

= A · (τUV )−1 , (5.44)

where A ≥ 0 is a positive constant. From the equation (5.43), we see that if we increase
the UV power, the shot noise will be larger, but at the same time the response time
of the system will be shorter (i.e. the system is more rigid): charge fluctuations that
bring the TM farther away from the equilibrium potential will be suppressed. On the
other hand, if the UV power is lowered, larger low-frequency charge fluctuations will
be permitted, but the overall shot noise level will be smaller.

As the TM potential noise SVTM
depends both on the shot noise level and the

response time τUV , one has to chose carefully the UV power to optimize the trade-off
between these two quantities.

As we are interested in measuring the charge noise SVTM
introduced by the il-

lumination, we have to carefully choose the UV power to enhance the charge noise
above the noise floor of the torsion pendulum, while keeping the length of the mea-
surements to an acceptable duration (hence the frequencies available are in the band
10−5 Hz ≤ f ≤ 10−3 Hz).

Of course this is exactly the opposite of what we want to do for LISA. Indeed,
during the mission one wants to manage the test mass charge while minimizing the
extra noise added by the continuous illumination.

A projection of the expected TM potential noise SVTM
as a function of the UV

power is showed in Figure 5.4 for TM and EH illuminations with the UV-LED Crystal
250. As one can see the charge noise is generally a factor 2−4 in amplitude above the
instrumental noise floor at 0.1mHz. The detection limits are quite tight: the expected

10For instance if we illuminate with the test mass ISUK, we expect that not all photoelectrons
emitted from the EH will ballistically reach the TM at VTM = Veq ≃ 0V, but only for VTM ≫ 0V ≃
Veq. Hence, the absolute value of the apparent yield at positive saturation is expected to be larger
than the equilibrium value.
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noise start to dominate over the pendulum noise floor only at very low frequencies.
This requires to perform very long11 measurements to have some statistics for the
PSD estimation.

5.2 Torsion pendulum measurements

5.2.1 Experimental technique

The experimental method that we applied to measure the noise introduces by the
continuous discharge of the test mass is quite simple: we choose an illumination
pattern that keeps the TM very close to neutrality (within ±5mV) and then acquire
a long timeseries of the test mass potential (several days). In conjunction with the
charge noise measurement, we also estimated the response time τ of the system, as
well as the mean UV power during the illumination, to better constrain the model
described in the previous section.

The experimental method is summarized in the following checklist

1. Measure the UV power before the illumination;

2. Acquire a charge time-series when shining UV light on either the TM or the EH
with the desired illumination pattern;

3. In order to measure the characteristic response time τUV , we need to displace
the TM potential form the equilibrium. We can achieve that by changing the
phase of the illumination. Once we reach the desired displacement from the
equilibrium voltage, we resume the illumination with the same pattern as the
long continuous discharge measurement. We record the time-series of the decay
to equilibrium and we estimate τUV with a fit of the following exponential model

VTM (t) = V1 · e−t/τUV + V2 (5.45)

In Figure 5.5 we plot an example of such exponential fit on a real data series to
estimate the characteristic time τUV .

4. We check the UV power a second time at the end of the measurement.

We decided to use the Crystal 250 UV-LED as the light source for the continuous
discharge measurements.

5.2.2 Extra noise sources

We present in this section further noise sources not directly related to the Poissonian
nature of charge transfer that may affect the continuous discharge measurements.
Such disturbances can be grouped into two categories:

• Disturbances related to the CMD and the light emission:

– Phase noise of CMD light pulses;

– Power stability noise of the CMD light;

• Disturbances related to the TM position inside the GRS:
11We decided to do measurements of approximately five days in duration. Longer data acquisitions

were hard to obtain for practical reasons and by the presence of environmental disturbances (such as
earthquakes).
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Figure 5.4: Estimates of the TM potential noise introduced by the
continuous discharge for TM and EH illuminations with Crystal 250
LED as a function of the selected UV power. The dashed line corre-
sponds to the 4TM torsion pendulum force sensitivity at the modula-

tion frequency converted into TM potential.
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Figure 5.5: TM potential time-series for a direct measurement of the
characteristic response time τUV .

– Dependence of the charge measurement on TM position;

– Dependence of equilibrium voltage on TM position;

Phase noise

A fluctuation in the phase of the illumination causes a change in the equilibrium
voltage.

The typical dependence of the equilibrium voltage from the phase of the illumi-
nation for light pulses of duration 1 µs with the Crystal 250 LED as light source is
depicted in Figure 5.6.

As customary, for small variations of the phase with respect to a central value ϕ0,
we can express the dependence of the equilibrium voltage Veq at the linear order as

Veq(ϕ) ≃ Veq(ϕ0) +
dVeq
dϕ

∣∣∣∣
ϕ=ϕ0

(ϕ− ϕ0) for ϕ≪ ϕ0 (5.46)

From Figure 5.6, we can observe that if we choose an illumination pattern such
that the light pulses are centered around the maxima or minima of the 100 kHz injec-
tion bias, we minimize dependence of the equilibrium voltage with the phase of the
illumination. In other words, the sensitivity factor dVeq

dϕ is minimum if we center the
light pulses on the maxima or minima of the injection bias.

It is important to notice that we can still obtain equilibrium potentials close to
zero by controlling the duration of the illumination: consider for example the case
of TM illumination, we can achieve an equilibrium voltage close to neutrality if we
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Figure 5.6: Dependence of the equilibrium voltage with the delay
with respect to the 100 kHz-injection bias in the case of illumination
with the Crystal 250 UV-LED. An empirical sinusoidal fit has been
performed on the data. The maximum slope has been estimated from

such fit computing the derivative at the zero-crossing.
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illuminate with light pulses centered around a delay of 2.5 µs with respect to the zero-
crossing of the injection bias12 and increasing gradually the duration of the pulse until
the equilibrium potential is sufficiently close to neutrality13.

The model to convert the phase noise into a test mass voltage noise can be imme-
diately obtained from (5.30). The discharge dynamics, neglecting the noisy Poisson
current, can be expressed as

dVTM
dt

= −
VTM − V UV

eq (ϕ)

τUV

≃ −
VTM −

[
Veq(ϕ0) +

dVeq
dϕ

∣∣∣
ϕ=ϕ0

(ϕ− ϕ0)

]

τUV
,

(5.47)

where we explicitly indicated the dependence of the equilibrium voltage on the phase of
the illumination and, in the second passage, we used the linear approximation (5.46).
If we now introduce δVTM = VTM − Veq(ϕ0) and δϕ = ϕ− ϕ0, we can rephrase14 the
previous equation more conveniently as

dδVTM
dt

≃ −δVTM
τUV

+
1

τUV

dVeq
dϕ

· δϕ (5.48)

A quick Fourier transform leads us to
(
iω +

1

τUV

)
δṼTM ≃ 1

τUV

dVeq
dϕ

· δϕ̃ (5.49)

If we consider that the variations in the phase of the illumination δϕ are noisy with
PSD Sϕϕ(ω), we have that the expression of the induced voltage noise on the TM is

SphaseVTM
(ω) ≃

(
dVeq
dϕ

)2

|1 + iωτUV |2
Sϕ(ω) =

(
dVeq
dϕ

)2

1 + ω2τ2UV
Sϕ(ω) (5.50)

From the last equation we see that, as expected, the transfer function to convert the
phase noise into test mass potential noise is just the one of a first order low-pass filter
with roll-off frequency fc = (2πτUV )

−1 and gain equal to dVeq
dϕ .

We performed direct measurement of the dependence of the equilibrium potential
on the phase of the light pulses for illumination patterns otherwise identical to the
continuous discharge measurements presented in Section 5.2.3. Such data allow a pre-
cise estimate the factor dVeq

dϕ for each measurement. The phase stability measurements
are obtained connecting the fast PMT output to a lock-in amplifier Stanford Research
Systems SR-830 with reference the 100 kHz injection bias coming from our engineering
model of the LISA Pathfinder FEE electronics (ELM-light).

Once a time-series of the in-phase X and quadrature Y components of the lock-in
output have been acquired, it is immediate to compute the phase time-series with

12In this way we are centered on the minimum of the injection bias.
13Similarly, for the case of EH illumination we can repeat the same trick but with the light pulses

centered on the maximum of the injection bias (that is with a delay of 7.5µs) and choosing a suitable
duration.

14Allow us also to simplify the notation by dropping the explicit indication of the phase at which
the derivative is computed, i.e.

dVeq

dϕ

∣∣∣∣
ϕ=ϕ0

=
dVeq

dϕ
.
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Figure 5.7: Scheme for the phase stability measurements. The injec-
tion bias produced by the FEE serves as a synchronization signal for
the prototype charge management device (CMD) and as the reference
for the SR830 DSP lock-in amplifier. After choosing a illumination
pattern, the LED output is measured with the calibrated PMT. The
PMT signal is the input for the lock-in amplifier. The in-phase and
quadrature components of the signal are then digitized and acquired

with our DAQ.

respect to the reference as

ϕ(t) = arctan

[
Y (t)

X(t)

]
(5.51)

From the time-series ϕ(t), we can estimate its power spectral density Sϕ(ω) with stan-
dard techniques (e.g. Welch’s method). In Figure 5.8 we show a typical spectrum of the
phase of the light pulses generated by the CMD prototype provided by INFN/Roma
Tor Vergata.

Unfortunately, we were not able to monitor the phase of the light pulses with
respect to the injection bias during the illumination, hence a subtraction of the phase
noise is impossible. In order to measure the UV-light phase during illumination, we
would have needed an optical fiber that splits the light coming from the UV sources
into two outputs (one to illuminate the GRS, one for the light-sensitive device). Such
hardware is not available at the moment in our laboratory.

We estimate that the extra noise in the continuous discharge measurement due to
fluctuations in phase of the illumination is generally small when the light pulses are
centered around the maxima or minima of the injection bias (see Section 5.2.3). The
phase noise is, however, not negligible if we illuminate with a short pulse centered on
the zero-crossing of the injection bias (worst case scenario).

Worst case scenario As we explained previously for the continuous discharge mea-
surement we chose the illumination pattern to suppress the contribution of the phase
noise while keeping the equilibrium voltage as close to neutrality as possible. However,
during the LISA mission we may have to chose an illumination pattern which does
not minimize the dependence of the equilibrium voltage with respect to the phase of
the illumination.

From the data of Figure 5.6, we can reasonably obtain a worst-case value for the
sensitivity factor dVeq

dϕ , or for dVeq
dtUV

= 2πfinj
dVeq
dϕ , which is the same quantity expressed

in terms of the delay of the light pulses with respect to the zero-crossing of the injection
voltage instead of the phase, when illuminating with the Crystal 250. Such values for
EH and TM illuminations are reported in Table 5.2.
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Figure 5.8: Amplitude spectral density of the phase timeseries for
the CMD prototype provided by INFN/Roma Tor Vergata used in
the continuous discharge experimental campaign. The ASD has been
computed averaging nine Blackman-Harris windows with 50% over-
lap. The points with errorbars are Bayesian estimates of the ASD at
independent frequencies computed as described in [74]. The phase re-
quirement is set to 7mrad/

√
Hz [72] and it is marginally violated only

at frequencies ≲ 5 · 10−5 Hz. During this measurement the tempera-
ture in the laboratory hall was not exceptionally stable, so the data

could be polluted by temperature induced disturbances.

Table 5.2: Reasonable upper limits for the sensitivity factor dVeq

dϕ ,

or the equivalent dVeq

dtUV
, in the case of TM or EH illuminations with

Crystal 250.

Illumination dVeq
dtUV

[V/s]
dVeq
dϕ [V/rad]

TM (3.74± 0.02) · 105 0.595± 0.003
EH (3.55± 0.03) · 105 0.566± 0.004
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UV-power stability

If an environmental charging is present, fluctuations in the UV-power during illumi-
nation cause a variation of the equilibrium voltage. Indeed, from (5.13), we have

dVTM
dt

= −VTM − Veq(PUV )

τ
(5.52)

where PUV is the UV-power during the illumination. If the assume that the UV-power
is noisy

PUV = ⟨PUV ⟩+ δPUV (5.53)

where ⟨·⟩ represents the mean operator, we can now expand at linear order the equi-
librium potential as

Veq(PUV ) ≃ Veq(⟨PUV ⟩) +
dVeq
dPUV

∣∣∣∣
PUV =⟨PUV ⟩

δPUV

≃ Veq(⟨PUV ⟩) +
λenvnet

α ⟨PUV ⟩2
δPUV

(5.54)

In the last passage we assumed for simplicity τUV ≪ τenv so to use (5.16). If we
substitute this expression into the differential equation defining the dynamics of the
system (5.52), we have

dVTM
dt

≃ −
VTM − Veq(⟨PUV ⟩)− λenv

net

α⟨PUV ⟩2 δPUV

τ
(5.55)

At this point we can remember that we just assumed τUV ≪ τenv, so that τ ≃
τUV (⟨PUV ⟩) hence the previous equation becomes

dVTM
dt

≃ −VTM − Veq(⟨PUV ⟩)
τUV (⟨PUV ⟩)

− λenvnet

α ⟨PUV ⟩2 τUV (⟨PUV ⟩)
δPUV

≃ −VTM − Veq(⟨PUV ⟩)
τUV (⟨PUV ⟩)

+
eλenvnet

Ctot

δPUV
⟨PUV ⟩

(5.56)

where we used the definition (5.6). If we define δVTM = VTM − Veq(⟨PUV ⟩), we have

dδVTM
dt

≃ − δVTM
τUV (⟨PUV ⟩)

+
eλenvnet

Ctot

δPUV
⟨PUV ⟩

(5.57)

whose Fourier transform is

δṼTM ≃ eλenvnet τUV
Ctot

δP̃UV
⟨PUV ⟩

1 + iωτUV
(5.58)

where we dropped the dependence of τUV from the mean power to simplify the nota-
tion. In terms power spectral densities

SpowerVTMVTM
(ω) =

(
eλenvnet τUV
Ctot

)2 SδP̃UV /⟨PUV ⟩(ω)

1 + ω2τ2UV
(5.59)

where SδP̃UV /⟨PUV ⟩(ω) is the PSD of the relative fluctuations of the UV-power.
The torsion pendulum measurements are not directly affected by fluctuations in the

light power emitted by the UV source because on ground the net charging from cosmic
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rays and solar energetic particles is zero, i.e. λenvnet = 0. In our setup power fluctuations
affect only the statistics of the Poissionian charge transfer and the system response
time τUV = τUV (PUV ). Unfortunately, we cannot evaluate this effect because we
measure the UV power only before and after the continuous discharge measurement.
That is why it would be ideal to measure the phase and the power of the UV-light
during the illumination with, for example, a splitting fiber.

The noise (5.59) due to fluctuations in the UV-power can be relevant for LISA.
The reference [72] places are requirement for the relative UV-power stability of the
CMD at 0.1Hz−1/2.

Measurements of the power stability As in the previous section, we cannot
measure the power fluctuations while illuminating the torsion pendulum, but we can
perform dedicated stability measurements. From the lock-in amplifier outputs X(t)
and Y (t), we can compute the UV power relative amplitude as

δPUV (t)

⟨PUV ⟩
=

√
X(t)2 + Y (t)2〈√
X(t)2 + Y (t)2

〉 (5.60)

In Figure 5.9 we show the ASD of the relative power fluctuations. The data show that
the prototype CMD may violate the requirement at frequencies below 4 ·10−5 Hz. We
have to point out that the measured relative power noise may have been overestimated
at low-frequency due to temperature fluctuations in the laboratory hall.

Dependence of the charge measurement on the TM position

We investigated the dependence of the charge measurement (without UV illumination)
on the x-position of the pendulum TM inside the EH.

As shown in Figure 5.10, we noticed a correlation between the measured test mass
voltage and ist x-position.

We could change the pendulum x-position by either rotating the round platform
on which the GRS flight model replica and the STC are mounted with the dedicated
stepper motors, or, alternatively by simply changing manually the equilibrium position
of the pendulum with the micro-manipulator that allows rotate the suspension point
of the torsion pendulum. From now on we will refer informally to these two methods
to alter the TM x-position as motor and manual rotations.

At first we thought that using the stepper motors was the most convenient proce-
dure to perform such measurements as it allowed for a precise change in the x-position
and because it did not require us to access the thermal chamber around the torsion
pendulum. We later noticed that the use of the motors caused pretty substantial
temperature variations (∼ 1K) as measured by the thermometers mounted directly
on the GRS: this most likely causes the extra scattering of the data points of Figure
5.10.

We, therefore, switched later to rotating the torsion pendulum manually with the
micro-manipulator. Such procedure was slower and somewhat burdensome, but it did
not induce significant temperature variations in the GRS.

Therefore, we can convert directly the noisy x(t) time-series, into an equivalent
readout noise of the test mass potential, as

SVTM
(ω) =

(
dVTM
dx

)2

Sx(ω) (5.61)
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Figure 5.9: Amplitude spectral density of the relative power fluc-
tuations of the UV light emitted by the CMD prototype provided
by INFN/Roma Tor Vergata used in the continuous discharge ex-
perimental campaign. The ASD has been computed averaging nine
Blackman-Harris windows with 50% overlap. The points with error-
bars are Bayesian estimates of the ASD at independent frequencies
computed as described in [74]. The relative amplitude requirement is
set to 0.1Hz−1/2 [72]. During the measurement in August 2022 the
temperature in the laboratory hall was not exceptionally stable, so the
low-frequency noise may be worse due to temperature induced distur-
bances. We repeated the measurement in October 2022 (yellow data)
and we could achieve a relative amplitude noise within the require-

ments across the whole LISA band.
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Figure 5.10: Dependence of the measured TM charge on its x posi-
tion in the GRS for the case of no UV illumination (test mass charge
is constant). The bands around the fits represent the 1σ-confidence
intervals. The blue data correspond to changing the TM position by
rotating manually the pendulum suspension point, whereas the red
data are obtained by rotating with the motors the round platform on

which the sensor is mounted.
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The coupling coefficient is estimated to be dVTM/dx = −2.99 ± 0.15V/m. As one
will see in Section 5.2.3, the charge noise introduced by this effect is below the torsion
pendulum sensitivity and can be neglected.

The origin of the dependence of measured test mass potential on the x-position
in the GRS is to ascribe to the presence of stray biases on the x-electrodes. Indeed,
in Section 2.3 we have shown that the in-phase force component at the modulation
frequency during charge measurement is

F fmod
x,I = −2Vmod

{[
QTM + Cx(δV1 + δV2 + δV3 + δV4)

Ctot
− δV3 + δV4

2

] ∣∣∣∣
∂Cx
∂x

∣∣∣∣+

+
δV3 + δV4

2

∣∣∣∣
∂Cx,h
∂x

∣∣∣∣
}
+

+ Vmod

[
4(δV1 − δV2 + δV3 − δV4)

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣
2

+

+(δV4 − δV3)

(∣∣∣∣
∂2Cx
∂x2

∣∣∣∣−
∣∣∣∣
∂2Cx,h
∂x2

∣∣∣∣
)]

(x− x0)+

+O
[
(x− x0)

2
]

(5.62)

we notice that the term depending on the x-coordinate is

F fmod
x,I (x) = Vmod

[
4(δV1 − δV2 + δV3 − δV4)

Ctot

∣∣∣∣
∂Cx
∂x

∣∣∣∣
2

+

+(δV4 − δV3)

(∣∣∣∣
∂2Cx
∂x2

∣∣∣∣−
∣∣∣∣
∂2Cx,h
∂x2

∣∣∣∣
)]

(x− x0) +O
[
(x− x0)

2
]

(5.63)

As 1
Ctot

∣∣∂Cx
∂x

∣∣2 ≪
∣∣∣∂2Cx
∂x2

∣∣∣−
∣∣∣∂

2Cx,h

∂x2

∣∣∣ and assuming that all stray biases δVi are the same
order of magnitude, we can approximate the previous expression as

F fmod
x,I (x) ≃ Vmod(δV4 − δV3)

(∣∣∣∣
∂2Cx
∂x2

∣∣∣∣−
∣∣∣∣
∂2Cx,h
∂x2

∣∣∣∣
)
(x− x0) (5.64)

Hence from equation (2.93), that converts a force into a measure of the TM potential,
we have

dVTM
dx

= − 1

NelVmod
∣∣∂Cx
∂x

∣∣
dF fmod

x,I

dx

≃ −δV4 − δV3

Nel

∣∣∂Cx
∂x

∣∣

(∣∣∣∣
∂2Cx
∂x2

∣∣∣∣−
∣∣∣∣
∂2Cx,h
∂x2

∣∣∣∣
) (5.65)

From the measured dVTM/dx, we estimate

δV4 − δV3 = (11.7± 0.6)mV (5.66)

The value found is consistent from what we would have expected from the ∆x mea-
surement with the charge-burst technique (see Section 2.4.2).

Dependence of the equilibrium voltage on the TM position

We subsequently investigated the dependence of the equilibrium voltage of the illu-
mination pattern on the TM x-position. The data are displayed in Figure 5.11. The
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Table 5.3: Coupling coefficients between measured charge or equi-
librium potential during illumination and TM x position.

Illumination Rotation method Value Units

None Motors −4.22± 0.17 V/m
None Manual −2.99± 0.15 V/m
TM Motors +93.7 ± 0.9 V/m
EH Motors −11.3 ± 1.1 V/m

data were acquired keeping the same illumination pattern and by changing the pen-
dulum x-coordinate by rotating the round platform with the motors under the sensor
(the same considerations as before for the temperature fluctuations apply also in this
case). We found a strong correlation between the x-position and the equilibrium
voltage, especially in the case of TM illuminations.

This effect can be explained from the fact that, depending on the TM position, the
photon are absorbed and reflected in different locations inside the GRS. This causes
a variation of the photon absorption ratios between EH and TM, and in turn of the
photo-currents, with respect to the case of a centered TM. This explanation is further
supported by the fact that we observe a stronger variation of the equilibrium voltage
when we illuminate the TM. Indeed displacements of the test mass produce a more
significant effects on the photocurrents when a larger fraction photons are absorbed
by the TM. On the other hand, when we illuminate the EH, the relative position
of EH and ISUK does not change for variations of the test mass position. In this
case the displacement of the TM affects only the absorption location of the reflected
photons. We recommend to perform some dedicated simulations with numerical tools,
e.g. GEANT4, to check quantitatively the soundness of such observations.

In the 4TM torsion pendulum we cannot avoid a secular drift in the TM position
inside the GRS because of the unwinding of the tungsten fiber suspending the pen-
dulum15. As the unwinding speed is thought to depend on the temperature, a better
thermal stability could help in regularizing this effect.

A dependence of the equilibrium voltage also on the other coordinates of the torsion
pendulum is not to be excluded, but both y and z do not suffer of a low frequency
drift as much as x for the unwinding. We see only a variation of the y coordinate with
temperature due to a thermal expansion of the pendulum neck16. However, the main
reason that lead us to focus only on x is the fact that we do not have (for now) any
measurement correlating cleanly the equilibrium voltage with just variations of the y
or z coordinates of the TM.

The model to convert the change of the equilibrium voltage from the variation
of the x-coordinate is conceptually equivalent to the one described in the previous
section regarding the phase noise, provided that one replaces the dependence on the
phase of the illumination with the test mass x-position. Substituting ϕ with x into

15The 1TM torsion pendulum does not suffer of this problem because it is suspended by a silica
fiber.

16The “neck” is the elongated upper section of the vacuum chamber of the torsion pendulum that
contains the suspending fiber. In order to keep the temperature stable around the torsion pendulum
we have a thermal chamber which isolates it from the lab and an active temperature control device
(JULABO heating/cooling refrigerator).
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Figure 5.11: Dependence of the TM equilibrium potential on the x
position for the case of TM and EH illuminations. The band around

the fits corresponds to 1σ-confidence.
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equation (5.50), we have

S
V UV
eq

VTM
(ω) =

(
dV UV

eq

dx

)2

1 + ω2τ2UV
Sx(ω) (5.67)

As the time-series of the x-coordinate during the continuous discharge measurement
is available, we can try to subtract such effect. A simple method to achieve that is
explained hereafter.

Subtraction The data suggest a linear dependence of the TM potential for both
TM and EH illuminations, we can try to subtract this effect from the data. Using the
observed linear dependence V UV

eq = β1x+ β0, we can modify equation (5.30) as

dVTM
dt

= −
VTM − V UV

eq (x)

τUV
+
ishot
Ctot

= −VTM − [β1x(t) + β0]

τUV
+
ishot
Ctot

= −VTM
τUV

+
β1
τUV

x(t) +
β0
τUV

+
ishot
Ctot

,

(5.68)

The subtraction can be obtained by least-squares fitting17 the x(t) time-series plus a
constant to the time-series of the discrete derivative18 of the TM potential dVTM (t)

dt .
The residual time-series after subtraction is

dV res
TM

dt
=

dVTM
dt

− β1
τUV

x(t)− β0
τUV

(5.69)

At this point the time-series of the test mass potential can be reconstructed by nu-
merical integration

V res
TM (t) = VTM (t = 0) +

∫ t

0

dV res
TM

dt′
dt′ (5.70)

The subtraction method just presented could be extended immediately to the y- and
z-coordinates as well.

We tried also the subtraction method presented in [75]. We preferred the simple
least-squares fitting described before because it produces charge time series which are
visually more sounded.

Comment for LISA The investigations of the dependence of the charge measure-
ment and of the equilibrium voltages on the x-position of the TM were triggered from
the fact that in the 4TM-torsion pendulum there is an unavoidable low-frequency
unwinding of the suspending tungsten fiber.

In LISA we may expect that the TM position inside the GRS will be remarkably
stable, but still there are some occasions in which a significant test mass motion is
possible. One clear example could be the repetition in LISA of the LPF free-fall
experiment [76], where all actuation voltages on the LPF test masses were set to zero.

17As the time derivative of the TM charge have a reasonably white spectrum, it is not terribly
wrong to do a least-squares fit in the time domain to attempt a subtraction of this effect.

18Obtained with the method of second order accurate central differences.
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We must notice that in LISA the control systems keep constant the distance from
the TM and the optical bench. Therefore, eventual mechanical relaxations and ther-
mal effect may lead to a change of the test mass position with respect to the GRS
(including the ISUKs).

We define the distance along the x-axis of the TM with respect to the optical bench
(OB) as XOB

TM = xTM − xOB and the distance of the GRS with respect to the optical
bench as XOB

GRS = xGRS − xOB. The noise on such distances has completely different
origin: the former is related to imperfections in the performance of the DFACS, the
latter to deformations in the MOSA due to thermo-mechanical stress. The LISA
performance model [12] states that the current best estimates for the power spectral
density of such quantities is

SXOB
TM

(f) =
(
0.95 nm/

√
Hz
)2
[
1 +

(
0.2mHz

f

)2
]

1 +
(

f
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)4
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(

f

8
√
10mHz

)4 (5.71)

and

SXOB
GRS

(f) =
(
0.3 nm/

√
Hz
)2
[
1 +

(
1.5mHz

f

)2
]

(5.72)

As the position of the TM with respect to the GRS is given by

x = xTM − xGRS = XOB
TM −XOB

GRS , (5.73)

we have that

SLISAx = SXOB
TM

+ SXOB
GRS

− 2ℜ
[
SXOB

TMXOB
GRS

]

≤ SXOB
TM

+ SXOB
GRS

+ 2
√
SXOB

TM
· SXOB

GRS

(5.74)

where ℜ
[
SXOB

TMXOB
GRS

]
is the real part of the cross-covariance. The upper limit is true

in the unlikely case that the two displacements are fully anti-correlated. From (5.67),
we have that

SLISAVTM
(ω) =

(
dV ill

eq

dx

)2

1 + ω2τ2UV
SLISAx (ω) ≤

(
dV ill

eq

dx

)2

SLISAx (ω) (5.75)

where we considered the limit of a very strong discharge, i.e. τUV → 0. If we convert
the test mass voltage noise of equation (5.75) into an acceleration noise due to the
presence of an uncompensated DC bias ∆x = 5mV using (3.13), we have, as shown
in Figure 5.12, a ridiculously small contribution, even in the triple worst case scenario
of very fast discharge, TM illumination, and fully-correlated stray displacements.

5.2.3 Experimental data

We present in this section the continuous discharge data we acquired with the 4TM
torsion pendulum.

The charge measurements have been performed with the method described in
Section 2.3, that is by modulating only the x+2 and x−2 electrodes with sine voltages
of opposite phase at a frequency of fmod = 2mHz and amplitude 5V. We decided
to modulate only the x±2 electrodes because they are far from the point where the
ISUKs inject the light into the GRS (only a minor fraction of the light is absorbed
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Figure 5.12: Worst case estimate for the acceleration noise due to
a change in the equilibrium voltage induced by a fluctuation of the x
position of the TM inside the GRS for LISA. We considered ∆x = 5mV

and dV ill
eq

dx ≃ 94Vm−1 as measured for TM illuminations.
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Table 5.4: Experimental settings for the continuous discharge measurement in the case of EH illumination.

Start day Length [days] Delay ill. [µs] Duration ill. [µs] Decimation [kHz] τUV [s] PUV [nW]

2022-04-15 4.8 4.785 5.425 10.00 6920± 30 1.8 ± 0.2
2022-04-24 4.8 4.785 5.425 0.50 95 000± 3000 0.089 ± 0.008
2022-04-29 4.6 4.785 5.425 3.03 20 940± 40 0.56 ± 0.08
2022-05-12 3.4 4.785 5.425 50.00 1481± 3 7.8 ± 0.5
2022-11-09 5.8 4.785 5.425 0.20 210 700± 200 0.0408± 0.0013
2022-05-20 4.9 5.235 1.000 50.00 6951± 13 1.72 ± 0.07

Table 5.5: Experimental settings for the continuous discharge measurement in the case of TM illumination.

Start day Length [days] Delay ill. [µs] Duration ill. [µs] Decimation [kHz] τUV [s] PUV [nW]

2021-12-24 5.7 1.510 1.925 9.09 5510 ± 50 0.73 ± 0.05
2021-12-30 5.6 1.510 1.925 50.00 1109 ± 9 4.6 ± 0.4
2022-01-14 4.6 1.510 1.925 100.00 583.3± 1.6 8.9 ± 1.2
2022-01-21 5.6 1.535 1.875 100.00 600 ± 100 8.1 ± 0.7
2022-02-11 4.5 1.510 1.950 100.00 458.2± 1.1 7.6 ± 0.9
2022-10-31 6.6 1.510 1.925 1.00 28 900 ± 400 0.081± 0.003
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in the region where they are located). Moreover, we took care of placing the torsion
pendulum reasonably close to the zero force position x0 for all measurements (where
the 2fmod component of the force vanishes).

In Tables 5.4 and 5.5, we present the value of the experimental parameters chosen
for the continuous discharge measurements.

The charge time-series before and after the subtraction proposed in Section 5.2.2
are visually presented in Figures 5.13 and 5.14 for EH and TM illuminations, respec-
tively. The residual time series after the subtraction make sense: we observe in the
initial part an exponential decay that settles around an equilibrium voltage. On the
other hand, the raw time-series show a low-frequency drift of the equilibrium voltage.
In Figures 5.15 and 5.16, we plot the expected contributions of the spurious noise

sources described in Section 5.2.2.
We remember that the phase noise has been obtained with a dedicated lock-in

measurement and they are not simultaneous with the continuous discharge data.
Moreover, as anticipated before, the phase data may be subjected to additional noise
sources, among which we list readout noise of PMT, lock-in, or ADC and the tem-
perature dependence of the whole measurement chain (the thermal control in the
laboratory hall was not particularly stable during the experimental campaign). The
overall contribution of such noise sources is expected to be limited, apart from maybe
the temperature fluctuations that may contribute at low-frequencies. Anyhow the
projected phase noise is be intended as reasonable upper limit.

The last measurement in the set of EH illuminations (Figure 5.15f) has different
settings from the others: we reduced the duration of the illumination to 1 µs and set
a delay of 5.235 µs (including systematic delay). This placed the illumination close to
the zero crossing of the injection voltage, causing the sensitivity to the phase noise
to be much higher than the other measurement where we illuminated centered on the
maxima or minima of the injection bias (see Figure 5.6). Indeed the projected phase
noise for this measurement is much higher than the other measurements.

The PSD of the TM potential timeseries have been obtained with the Welch
method with Blackman-Harris windows and 50% overlap. The number of averages
is always three. The bands around the spectra correspond to 1σ-confidence. The
points with error-bars are Bayesian estimates of the ASD at independent frequencies
computed as described in [74].

The noise floor has been estimated converting the torsion pendulum force ASD
at the modulation frequency into an equivalent test mass voltage ASD. It may be a
slightly optimistic, i.e. underestimated, limit for the instrumental sensitivity to TM
voltage variations.

The spectra can be compared to the model given by (5.35) and the subsequent
equations. The numerical values for τUV have been obtained by a direct measurement
right after the each continuous discharge measurement (as explained previously) and
for Y+

sat and Y−
sat have been obtained by dedicated apparent yield measurements with

same illumination pattern as the continuous discharge measurements19 and performed
in close temporal proximity of the continuous discharge campaign (mid-2022), to avoid
systematic errors due to the measured change in the apparent yield with time (see
Section 3.4.2).

We observe that not only the EH illuminations produce a shot noise which is
generally higher than the TM illuminations, they also are less sensitive to the change

19In this way we can estimate directly the numerical parameters relevant for the estimation of
the continuous discharge independently from the UV power calibration. There are two possible
approaches: relate the apparent yield at saturation with the system response time though the (5.44),
or consider an apparent yield normalized by the uncalibrated signal of the PMT or the photodiode.
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Figure 5.13: Continuous discharge timeseries for EH illumination
before and after the subtraction of the change in the equilibrium volt-
age due to a drift in the pendulum x position. The visual behavior of
the residual time series is the one expected: in the first part we see
(possibly) an exponential decay that settles around a constant equi-

librium voltage.
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Figure 5.14: Continuous discharge timeseries for TM illumination
before and after the subtraction of the change in the equilibrium volt-
age due to a drift in the pendulum x position. The visual behavior of
the residual time series is the one expected: in the first part we see
(possibly) an exponential decay that settles around a constant equi-

librium voltage.
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Figure 5.15: Amplitude spectral density of the continuous discharge
timeseries for EH illumination with projected contributions of the noise

sources described in Section 5.2.2.
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Figure 5.16: Amplitude spectral density of the continuous discharge
timeseries for TM illumination with projected contributions of the
noise sources described in Section 5.2.2. Do not worry if the noise
due to a change in the equilibrium potential due to a drift of the x-
coordinate (cyan) may be above the total charge noise, because we

subtracted it with the method proposed in the Section 5.2.2.
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in the equilibrium voltage due to the low-frequency drift of the x-coordinate. Overall
the noise level measured in the case of EH illuminations closely matches the one we
expect. On the other hand, TM illuminations seem to be spoiled by an excess noise
above the model that we cannot subtract entirely.

Fit of the data

We can try and fit the continuous discharge spectra with the model (5.35) plus a
positive constant c to take into account the noise floor of the torsion pendulum

SfitVTM
(ω; τUV , λeff , c) = SshotVTM

(ω; τUV , λeff ) + c

=
2e2λeff

C2
tot

(
ω2 + 1

τ2UV

) + c
(5.76)

The fit parameters are

• The characteristic time of the illumination τUV ;

• The effective charging rate λeff of the illumination;

• The constant c, that models the instrumental noise floor.

The statistics of the power spectral density tells us that the ratio of the experi-
mental PSD and the true PSD at each frequency is distributed (up to a multiplicative
constant) as a chi-squared distribution with number of degrees of freedom equal to
two times the number of averaged periodograms Navr used for the spectral estimation
(see, for example, the book by M. B. Priestley [77], also known as the bible of spectral
estimation). In a formula the previous property translates to

qk =
2Navr · ⟨Sexp[k]⟩

SfitVTM
(ωk; τUV , λeff , c)

∼ χ2 (2Navr) (5.77)

where SfitVTMVTM
is our theoretical model for the true PSD, and ⟨Sexp[k]⟩ is the ex-

perimental PSD from our data at the angular frequency ωk obtained averaging Navr

periodograms. The spectral data ⟨Sexp[k]⟩ considered for the fits are the independent
Bayesian estimates (i.e. the darker points with error-bar in Figure 5.15 and 5.16). We
notice that the numerical recipe [74] followed to estimate the PSD dictates that the
number of averaged periodograms increases with the frequency, hence Navr = Navr[k].

From the considerations above, we understand that the log-likelihood of the chi-
squared distribution is the correct choice for the fit

LL (qk) =
∑

k=1,2,...

{
Navr[k]− 2

2
log (qk)−

−Navr[k]

2
log(2)− log Γ

(
Navr[k]

2

)
− qk

2

}
(5.78)

where qk = qk (τUV , λeff , c) is the quantity defined in (5.77) and log Γ(·) is the loga-
rithm of the Gamma function.

We obtained a Bayesian estimate of the fit parameters by sampling the log-
likelihood with the NUTS Hamiltonian Monte Carlo sampler [69] implemented in
the PyMC probabilistic programming library for Python [70]. The priors for the fit
parameters are
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Table 5.6: Values of the parameters ln(A) and B obtained from a
linear fit in the log-log space of the data (τUV , λeff ) obtained from
continuous discharge measurement sets in the case of EH or TM illu-

mination.

Illumination ln(A) B

EH +18.1± 0.5 −0.90± 0.06
TM +18.4± 1.0 −0.92± 0.14

• For the characteristic time τUV we used a Gaussian prior with mean and stan-
dard deviation equal to the values measured for the specific continuous discharge
timeseries under consideration;

• For the pendulum noise floor c we considered an exponential prior with mean
equal to the pendulum noise floor for that specific measurement;

• For the effective rate λeff we opted for a weakly-informative Gaussian prior (i.e.
standard deviation ∼ mean) centered on the theoretical value from (5.41), but
with a large standard deviation to account for the fact that the experimental
data may be more noisy than what we may expect from the model.

A comparison between experimental data and fits is presented in Figure 5.17 for
EH illuminations and in Figure 5.18 for TM illuminations.

Once the optimal parameters have been obtained from the fit of each measurement,
it is interesting to plot the effective rate λeff as a function of the system response
time τUV , as shown in Figure 5.19. In this way, we can see how the parameters
that characterize the continuous discharge noise relate to one another. The expected
functional dependence of λeff on τUV was derived in (5.44), hence we opted to fit the
data with a power-law functional dependence

λeff (τUV ) = A · (τUV )B (5.79)

We notice that the parameter A depends on the illumination pattern chosen, whereas
B is always expected to be −1 if the model developed in Section 5.1.2 is correct.

A linear fit on the logarithm of the data, leads to the results reported in Table 5.6.
The fit results for the exponent B gives for both EH and TM illumination a value
which is compatible within 2σ with the expected model λeff ∝ 1/τUV .

5.3 Conclusions

We measured experimentally the charge noise introduced by the continuous illumina-
tion of either the EH, or the TM.

The experimental data (especially for the set of EH illuminations) are in good
agreement with the expectations: we measure charge noise levels that match nicely
with the model predictions. We were also able to show that if we illuminate with
low power we could achieve an effective UV charging rate below the current LISA
requirement. This is remarkable for two reasons:

• The experimental setup of the 4TM torsion pendulum is representative in terms
of geometry, readout electronics and CMS hardware, hence the results obtained
can be promptly applied to LISA;
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Figure 5.17: Fit of the EH spectra with the correct statistics.
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Figure 5.18: Fit of the TM spectra with the correct statistics.
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Figure 5.19: Dependence of the fitted effective charging rate from
the characteristic discharge time. The current requirement for the allo-
cated maximum continuous discharge rate for LISA is 3000 elementary
charges per second [72]. Left: results for EH illuminations. The data
point with the triangular marker indicates the measurement with dif-
ferent illumination pattern and has been excluded form the fit. Right:

results for TM illumination.

• The 4TM torsion pendulum has a lower sensitivity (i.e. more noise) with re-
spect to LISA. Hence, if we proved that we can achieve on ground a continuous
discharge of the TM with charge noise within the requirements, it will be, in
principle, feasible also in space.

On the other hand, the TM illumination measurements often show excess noise
with respect to the model. This is likely due to the fact that for the TM illumination
we found a strong coupling between the TM x position and the equilibrium voltage.
Although a subtraction method for this spurious effect is proposed, we were probably
not able to remove it completely20.

If we convert the measured charge timeseries for EH illumination at the lowest
UV power into an acceleration timeseries, considering the main electrostatic noise
sources21 listed in Section 3.1.1, we have the result presented in Figure 5.20. The
projected acceleration noise for LISA during continuous discharge is within the current
requirement for the maximum acceleration noise due to electrostatic disturbances. We
demonstrated that the continuous discharge procedure can be successfully employed
to keep the TM charge under control in LISA without adding excessive acceleration
noise.

At the conclusion of our experimental campaign, we need to remember that the
equilibrium potential during the continuous discharge remains within the required
±70mV from neutrality [72] only if the emission properties of the GRS, the illumina-
tion pattern, and the environmental charging do not change dramatically over time.
For instance, it is possible that the phase of the CMD light pulses may show a low-
frequency drift with respect to the GRS injection bias, or that the quantum yield of
either TM or EH diminish with time.

20As discussed before, for TM illuminations there may be a strong dependence of the equilibrium
voltage not only on the x coordinate, but also on y and z.

21Except for the unmodeled extra continuous discharge noise allocation, because at the moment
of writing, we have no evidence that there are further noise sources associated with the continuous
discharge procedure.
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Figure 5.20: Estimated acceleration noise due to electrostatic dis-
turbances described in Section 3.1.1 during continuous discharge. The
data show a projected noise level within the requirements. To pro-
duce the acceleration PSD in this plot we assumed ∆x = 5mV, a
displacement from the zero-force point x − x0 = 10µm, noisy stray
bias level and single electrodes noise level equal to the requirements
in [12], finally the environmental net charging rates considered are

λenvnet = 24.5 s−1 and λenvnet = 1360 s−1.
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Fortunately, the LISA Pathfinder data showed that the apparent yield of both
sensors did not change significantly (relative variations less than 25%) over the mission
lifetime[52], however the limited statistics of just two GRSs may not give the full
picture. Moreover, the nominal mission duration of LISA is four years, more than two
times the duration of LPF (∼ 600 days).

In LISA will, therefore, be necessary to measure the charge of all test masses at
regular intervals, to be sure that it remains within the requirements and, eventually,
adjust the continuous discharge illumination pattern.
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Chapter 6

Lessons learned

6.1 Experimental problems

In this section we will list the main experimental problems encountered during our
years-long testing campaign. We will address each problem with a proposed solution
in the hope to ease and increase the quality of future measurements.

The main area of improvement for future apparent yield measurements concerns a
more accurate measurement of the UV power injected into the GRS. As anticipated,
the main problems are:

• The SMA connectors on the LED housings do not fit tightly with the optical
fiber connector: detaching the fiber produces changes in the relative transmitted
UV power of the order 10%.

• The cleanliness of the environment where the UV fibers are operated is not
great. We observe a degradation of their transmittivity over time, indicating
that the optical fibers get dirty and are damaged with use.

• The photodiode is not sensitive enough to provide accurate power measurements
at low power. Moreover, its calibration may not be so accurate, especially
when considering that the source have different emission spectra (introducing
systematic errors in the power measurements).

• The transmission coefficients of the optical chain sections inside the vacuum
vessel may not be reliable because the measurement performed at integration in
2014 were sloppy.

• The UV-light power is noisy: not only do LEDs degrade over time with use, but
also the current produced by the electronics to feed the LEDs may change over
time due to the variation of some environmental parameters such as temperature
(see Figure 6.1). The measurement in Figure 6.2 is a more direct proof that this
effect is not just the readout of our instruments varying with temperature, but
the actual UV-light power.

6.2 Proposed improvements

Possible solutions of the problems listed before are:

• Use higher quality SMA connectors on the LED housing, or move to a different
type of connector: in fiber optics SMA are generally indicated for high power
applications (lasers with ∼ mW power), which is not exactly our case. There
are other standard connectors that offer better optical coupling for low-power
sources.
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(a) PMT H6780-03 (not-calibrated)
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(b) PMT R9875U (calibrated)

Figure 6.1: Correlation between PMT output signal and laboratory
temperature. The PMT signal has been detrended with an second

order polynomial.
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Figure 6.2: Anti-correlation between of the TM equilibrium voltage
during double illumination and the laboratory temperature: we con-
tinuously illuminated both TM and EH ISUKs with two LEDs, setting
the light power of the two UV-sources so to have equilibrium voltage
close to neutrality. The variations in the equilibrium voltage indicate
a dependence of the light-output from the laboratory temperature.
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• Keep the optical fibers in a clean environment and avoid stressing them. Future
experimenters may consider using of optical switches that allow to divert the
light into a specific channel without the need of mechanically removing the fibers.

• Acquire splitting fibers, i.e. optical fibers that have one input and multiple
outputs, which would allow to monitor in real time the fluctuations of the UV
power (which is relevant especially for the apparent yield measurements) and
the the phase of the light pulses (which is relevant for the continuous discharge
measurements).

• Characterize better the transmission of the optical chain from UV-source to
ISUK, including its possible dependence on wavelength of the light.

• Characterize the emission envelope from the ISUK: this would lead to a better
estimation of the locations where the UV-photons are absorbed inside the GRS.

• Always keep an eye on the status of cables and connectors. Unstable lectures
on the instruments are often due to flimsy contacts or bad grounding.

• Improve overall the temperature stability of the lab (unfortunately everything
depends on temperature).

We also suggest to operate the LEDs at the nominal values for the polarization po-
tential and driving currents: measurements with a broad band spectrometer hint that
the LEDs may emit a photons at unexpected wavelengths if the current supplied is
outside the optimal design range for the LED under consideration (see Figure 3.13).
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Appendix A

Derivation of the quadrupole
formula from dimensional analysis

In this appendix we will derive the quadrupole formula for the amplitude of gravita-
tional waves from the principles of dimensional analysis.

Let us assume that the measured amplitude of gravitational waves h depends on

• A nth order time derivative of the mass quadrupole moment I;

• The distance of the observer form the source r;

• The gravitational constant G;

• The speed of light c.

We, therefore, assume for a h generic expression of these quantities

h ∼ caGbrm
∂nI

∂tn
(A.1)

The flux of power1 from the source (i.e. flux of radiated energy per unit area per
unit time) is proportional to the square of the product between wave frequency ν and
amplitude h.

Flux ∼ ν2h2 ∼ h2 (A.2)

From conservation of energy, we must have that the amount of power crossing any
surface surrounding the source must be conserved.

const. = Flux · Area ∼ h2 · r2 =⇒ h ∼ r−1 (A.3)

Therefore, we can set m = −1 from conservation of energy. In this way, equation
(A.1) becomes

h ∼ caGb

r

∂nI

∂tn
(A.4)

Now we can apply the principle of dimensional analysis to obtain the remaining expo-
nents. The GW amplitude h is dimensionless, because it can be measured as a strain,
i.e. a ratio of lengths. The gravitational constant G has units of the cube of a length
divided by a mass and a time. Converting this in a self-explaining formula

[G] =
[L]3

[M ][T ]2
(A.5)

1More formally known as irradiance.



206 Appendix A. Derivation of the quadrupole formula from dimensional analysis

The quadrupole moment has units of a mass multiplied for the square of a distance.

[I] = [M ][L]2 (A.6)

Hence its time-derivative of order n will have units
[
∂nI

∂tn

]
=

[M ][L]2

[T ]n
(A.7)

Finally, the speed of light c has units of distance divided by a time

[c] =
[L]

[T ]
(A.8)

If we put all together we have the following dimensional equation for the quadrupole
formula

[L]0[M ]0[T ]0︸ ︷︷ ︸
[h]

=

(
[L]

[T ]

)a
[L]−1

(
[L]3

[M ][T ]2

)b
[M ][L]2

[T ]n
(A.9)

which solved for each dimension gives the system




[L]0 = [L]a+3b+1

[M ]0 = [M ]−b+1

[T ]0 = [T ]−a−2b−n
(A.10)

which has solution a = −4, b = −1 and n = 2. Therefore, from (A.4), we have

h ∼ G

c4r

∂2I

∂t2
(A.11)

which is the correct scaling for the quadrupole formula.
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Appendix B

4TM pendulum light absorption
coefficients

In this appendix we list the UV-light absorption coeffcients considered for our analysis.
The tabulated values are taken by the Astrium technical note Discharge Model

Predictions for the UTN 4Mass Torsion Pendulum [78]. We decided to use the LPF
predictions for the absorption coefficients, because the LPF geometry reflects more
realistically the present-day the torsion pendulum setup (the pendulum prediction in
the Astrium technical note are based on and outdated geometry and the EH installed
currently in our facility is an exact copy of the LPF one, except for the absence of the
iridium caging fingers). We also have to point out that in the Astrium technical note
the ISUK in the same position as the torsion pendulum are JF01 (TM illumination)
and JF02 (EH illumination), but the latter is modified with the mirror. Therefore,
we take the data relative to the third ISUK JF03 (always EH illumination), which is
mounted on the opposite corner of the EH with the care of adapting the coordinates,
as it were in the position of the JF02 ISUK. Figure B.1 is an useful visual aid to
navigate through the difficulties of imagining a 3D geometry.

Results obtained by the ray-tracing method based on the software GEANT4 by Dr.
Daniel Hollington [58] give very similar values. As in the work by Daniel Hollington,
the light that hits the sides of the electrodes or the groves and holes of the guard
rings has been considered lost, because it is assumed to produce photoelectrons that
for geometry reasons do not contribute to the photocurrents. Also the fraction of
light that is absorbed by the caging fingers is considered lost because of the very low
emissivity of iridium [53].

Figure B.1: Astrium coordinate system of torsion pendulum model
and naming of electrodes [78].
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Table B.1: Absorption coefficients 4TM torsion pendulum.

Surface TM illumination [%] EH illumination [%]

TM injection 0.33 0.78
EH injection 0.45 0.68
TM x−1 el. 0.00 0.08
TM x+1 el. 1.17 0.00
TM x−2 el. 0.01 0.01
TM x+2 el. 0.13 0.01
TM y−1 el. 1.03 0.04
TM y+1 el. 0.01 0.01
TM y−2 el. 0.00 0.00
TM y+2 el. 0.00 0.00
TM z−1 el. 0.07 0.69
TM z+1 el. 0.00 0.00
TM z−2 el. 1.07 0.13
TM z+2 el. 0.00 0.00
EH x−1 el. 0.00 0.15
EH x+1 el. 1.82 0.00
EH x−2 el. 0.01 0.01
EH x+2 el. 0.15 0.01
EH y−1 el. 1.97 0.10
EH y+1 el. 0.01 0.01
EH y−2 el. 0.01 0.01
EH y+2 el. 0.00 0.00
EH z−1 el. 0.08 5.59
EH z+1 el. 0.00 0.00
EH z−2 el. 0.42 0.14
EH z+2 el. 0.00 0.00
TM rest 61.82 9.46
EH rest 10.27 11.62
Lost 19.18 70.47
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Appendix C

Solution of the Schrödinger
equation for a step potential

The one-dimensional Schrödinger equation for a step potential reads [65]

[
− ℏ2

2m

d2

dx2
+ U(x)

]
ψ(x) = Eψ(x) for U(x) =

{
0, if x ≤ 0

U0, if x > 0
(C.1)

Here we assumed that there is a flux of particles all with same mass m and initial
energy E0 moving along a generic x-axis and impinging on a potentiality step U0

located in x = 0.
The solution of this problem depends on the energy E0 of the of the incoming

particle with respect to the height U0 of the potential step.

Case E0 ≥ U0 As shown in Figure C.1, we can divide the problem in two regions:
the first being the space before the barrier (x ≤ 0) and the second is, of course, the
region of the barrier (x > 0).

In the first region, where U(x) = 0, we have to solve the simple Schrödinger
equation

− ℏ2

2m

d2ψ1

dx2
= E0ψ1(x) for x ≤ 0 (C.2)

E = E0

U(x) = U0

U(x) = 0

x = 0Region 1 Region 2

ψA = Ae+ik1x

ψB = Be−ik1x

ψC = Ce+ik2x

x

E

Figure C.1: QM potential step problem for E0 ≥ U0.
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which can be rephrased more conveniently to
(

d2

dx2
+ k21

)
ψ1(x) = 0 with k1 =

√
2m

ℏ2
E0 (C.3)

The most general solution is a superposition of an incident and a reflected plane wave

ψ1(x) = Ae+ik1x︸ ︷︷ ︸
ψA

+Be−ik1x︸ ︷︷ ︸
ψB

(C.4)

In the second region, where U(x) = U0, we have to solve
[
− ℏ2

2m

d2

dx2
+ U0

]
ψ2(x) = E0ψ2(x) for x > 0 (C.5)

which, again, can be rearranged as
(

d2

dx2
+ k22

)
ψ2(x) = 0 with k2 =

√
2m

ℏ2
(E0 − U0) (C.6)

As, in this case, the energy of the incoming particle is larger than the potential
barrier, the wave vector k2 is real and positive. The most general solution is once
again a superposition of plane waves

ψ2(x) = Ce+ik2x +De−ik2x, (C.7)

However in this case we must have D = 0 because we assumed that particles are
impinging on the barrier only from the negative direction of the x-axis, hence

ψ2(x) = Ce+ik2x︸ ︷︷ ︸
ψC

. (C.8)

Therefore, the complete wave-function is

ψ(x) =

{
ψ1(x) = Ae−ik1x +Be+ik1x, if x ≤ 0

ψ2(x) = Ce−ik2x, if x > 0
(C.9)

The requirement of the wave-function to be continuous and differentiable in x = 0
leads us to

ψ1(x = 0) = ψ2(x = 0) −→ A+B = C (C.10)

and
dψ1

dx

∣∣∣∣
x=0

=
dψ2

dx

∣∣∣∣
x=0

−→ k1(A−B) = k2C (C.11)

Combining (C.10) and (C.11) gives us

A = C
k1 + k2
2k1

and B = C
k1 − k2
2k1

(C.12)

The transmission coefficient is defined as the ratio of the probability current density1

in the direction normal to the potential step (i.e. along the x-axis) of the transmitted
1The probability current density associated with a wavefunction is defined as

J =
ℏ

2mi
(ψ∗∇ψ − ψ∇ψ∗) , (C.13)
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ψC = Ce−κ2x
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Figure C.2: QM potential step problem for E0 < U0.

wavefunction ψC and of the incident wavefunction ψA

T =
Jtrans · x̂
Jinc · x̂

=
Jtrans,x
Jinc,x

=
ψ∗
C

dψC
dx − ψC

dψ∗
C

dx

ψ∗
A

dψA
dx − ψA

dψ∗
A

dx

=
k2C

2

k1A2
=

4k1k2
(k2 + k1)2

, (C.15)

where in the last passage we used the first of (C.12).
In a similar way, we can define the reflection coefficient as the ratio of the proba-

bility current density of the reflected wavefunction ψB along the negative direction of
the x-axis (because the reflected wavefunction is propagating backwards) and of the
incident wavefunction ψA along the x-axis

R =
Jrefl · (−x̂)

Jinc · x̂
=

−Jrefl,x
Jinc,x

=
ψB

dψ∗
B

dx − ψ∗
B

dψB
dx

ψ∗
A

dψA
dx − ψA

dψ∗
A

dx

=
B2

A2
=

(k1 − k2)
2

(k2 + k1)2
, (C.16)

where in the last passage we used (C.12). Naturally R + T = 1, as expected from
the law of total probability (it is certain that the particle will be either transmitted
or reflected).

If we substitute the expression for the wave-vectors k1 and k2 in the formula for
the transmission coefficient, we have

T (E0, U0) =
4
√
E0(E0 − U0)(√

E0 +
√
E0 − U0

)2 for E0 ≥ U0. (C.17)

Case E0 < U0 As we can see in Figure C.2, when the energy of the incoming
particle is less than the height of the potential step U0, the solution in the region
x ≤ 0 remain unchanged. On the other hand, we must find the new solution for the
region x > 0, where the Schrödinger equation reads

[
− ℏ2

2m

d2

dx2
+ U0

]
ψ2(x) = E0ψ2(x) for x > 0 (C.18)

where ψ∗ denotes the complex conjugate of the wavefunction. In our one-dimensional problem, the
definition above reduces to

J = Jx x̂ =
ℏ

2mi

(
ψ∗ dψ

dx
− ψ

dψ∗

dx

)
x̂ (C.14)
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which can be rephrased as
(

d2

dx2
− κ22

)
ψ2(x) = 0 with κ2 =

√
2m

ℏ2
(U0 − E0) (C.19)

where the wave vector κ2 is a positive real, as in this case E0 < U0. The most general
solution of the previous equation is

ψ2(x) = Ce−κ2x +De+κ2x. (C.20)

We must have thatD = 0, otherwise the wavefunction ψ2(x) would diverge for x→ ∞.
The solution in the region x > 0, therefore is

ψ2(x) = Ce−κ2x︸ ︷︷ ︸
ψC

(C.21)

As the solution ψ2(x) is purely real, the probability current density of the transmitted
wavefunction vanishes. Indeed

Jtrans,x = ψ∗
C

dψC
dx

− ψC
dψ∗

C

dx
= ψC

dψC
dx

− ψC
dψC
dx

= 0 (C.22)

where we used the fact that for a real function ψ∗ = ψ. As the probability current
density of the incident wavefunction Jinc,x is different from zero (as in the case E0 ≥
U0), we must have the transmission coefficient is null

T =
Jtrans,x
Jinc,x

= 0 for E0 < U0. (C.23)

Therefore, if the energy of the incoming particle E0 is lower that the height of the
potential step U0, the transmission coefficient is zero.

On the other hand, for the law of total probability, we must have

R = 1 for E0 < U0, (C.24)

as the only possibility for the incoming particles is to be reflected.
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Appendix D

Summary tables of the Bayesian fit

In this appendix, we present the tables of the fit parameters relevant for the estimation
of the microscopic properties of the TM and EH surfaces. All the values are to be
interpreted as the mean of the corresponding posterior distribution with uncertainty
given by the standard deviation.
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Table D.1: Table of the fit posterior parameters for Crystal 250 data.

Measurement WEH [eV] ∆W [eV] QEH

[
×10−5

]
QTM

[
×10−5

]

EH ill. duration 10 µs, delay 0 µs, Vinj = 5.4V 3.86± 0.02 −0.384± 0.013 3.8± 0.2 1.48± 0.07
EH ill. duration 10 µs, delay 0 µs, Vinj = 0.54V 3.922± 0.008 −0.360± 0.005 4.1± 0.2 1.42± 0.07
EH ill. duration 1 µs, delay 2 µs, Vinj = 5.4V 3.665± 0.007 −0.460± 0.004 4.2± 0.2 1.93± 0.09
EH ill. duration 1 µs, delay 7 µs, Vinj = 5.4V 3.836± 0.009 −0.326± 0.005 4.1± 0.2 1.88± 0.09
TM ill. duration 10 µs, delay 0 µs, Vinj = 5.4V 4.087± 0.019 +0.021± 0.009 3.74± 0.16 4.5± 0.2
TM ill. duration 10 µs, delay 0 µs, Vinj = 0.54V 4.02± 0.02 +0.081± 0.008 2.58± 0.10 3.94± 0.16
TM ill. duration 1 µs, delay 2 µs, Vinj = 5.4V 3.887± 0.019 +0.084± 0.008 3.41± 0.14 4.21± 0.18
TM ill. duration 1 µs, delay 7 µs, Vinj = 5.4V 3.949± 0.010 +0.109± 0.004 2.99± 0.13 4.9± 0.2

Table D.2: Table of the fit posterior parameters for SETi 240 data.

Measurement WEH [eV] ∆W [eV] QEH

[
×10−5

]
QTM

[
×10−5

]

EH ill. duration 10 µs, delay 0 µs, Vinj = 0.54V 3.948± 0.007 −0.370± 0.004 4.18± 0.18 1.41± 0.06
EH ill. duration 1 µs, delay 2 µs, Vinj = 5.4V 3.484± 0.013 −0.469± 0.005 3.27± 0.15 1.94± 0.09
EH ill. duration 1 µs, delay 7 µs, Vinj = 5.4V 3.698± 0.006 −0.366± 0.006 2.33± 0.11 1.36± 0.06
TM ill. duration 10 µs, delay 0 µs, Vinj = 5.4V 3.81± 0.02 +0.140± 0.008 2.83± 0.11 4.30± 0.16
TM ill. duration 10 µs, delay 0 µs, Vinj = 0.54V 3.928± 0.019 +0.086± 0.008 6.7± 0.2 11.3± 0.4
TM ill. duration 1 µs, delay 2 µs, Vinj = 5.4V 3.594± 0.016 +0.200± 0.008 3.90± 0.14 5.5± 0.2
TM ill. duration 1 µs, delay 7 µs, Vinj = 5.4V 3.797± 0.016 +0.186± 0.007 2.26± 0.10 4.53± 0.16
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Table D.3: Table of the fit posterior parameters for SETi 255 data.

Measurement WEH [eV] ∆W [eV] QEH

[
×10−5

]
QTM

[
×10−5

]

EH ill. duration 10 µs, delay 0 µs, Vinj = 5.4V 3.90± 0.02 −0.290± 0.012 2.04± 0.08 0.90± 0.04
EH ill. duration 10 µs, delay 0 µs, Vinj = 0.54V 3.898± 0.010 −0.309± 0.006 2.24± 0.09 0.84± 0.03
EH ill. duration 1 µs, delay 2 µs, Vinj = 5.4V 3.813± 0.004 −0.325± 0.003 1.98± 0.08 0.97± 0.04
EH ill. duration 1 µs, delay 7 µs, Vinj = 5.4V 3.920± 0.007 −0.234± 0.005 1.85± 0.08 0.89± 0.04
TM ill. duration 10 µs, delay 0 µs, Vinj = 5.4V 3.966± 0.014 +0.110± 0.005 1.36± 0.04 1.96± 0.06
TM ill. duration 10 µs, delay 0 µs, Vinj = 0.54V 3.96± 0.02 +0.095± 0.008 1.31± 0.04 1.71± 0.05
TM ill. duration 1 µs, delay 2 µs, Vinj = 5.4V 3.898± 0.011 +0.116± 0.004 1.22± 0.04 1.94± 0.06
TM ill. duration 1 µs, delay 7 µs, Vinj = 5.4V 3.982± 0.011 +0.094± 0.004 1.31± 0.04 1.67± 0.05
EH ill. V DC

z− = −5V, duration 10 µs, Vinj = 5.4V 3.795± 0.014 −0.364± 0.008 1.90± 0.06 1.30± 0.04
EH ill. V DC

z− = −5V, duration 10 µs, Vinj = 0.54V 3.968± 0.011 −0.308± 0.006 1.94± 0.06 1.20± 0.04
EH ill. V DC

z− = +5V, duration 10 µs, Vinj = 5.4V 3.616± 0.016 −0.505± 0.008 2.31± 0.09 0.90± 0.04
EH ill. V DC

z− = +5V, duration 10 µs, Vinj = 0.54V 3.962± 0.011 −0.284± 0.006 1.99± 0.08 0.87± 0.04

Table D.4: Table of the fit posterior parameters for UVphotonics 230 data.

Measurement WEH [eV] ∆W [eV] QEH

[
×10−5

]
QTM

[
×10−5

]

EH ill. duration 10 µs, delay 0 µs, Vinj = 0.54V 3.703± 0.010 −0.610± 0.006 19.0± 0.4 6.36± 0.15
TM ill. duration 10 µs, delay 0 µs, Vinj = 0.54V 3.777± 0.017 +0.150± 0.007 8.65± 0.14 16.0± 0.3
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Appendix E

Diagnostic plots for the Bayesian
fits

In this appendix, we plot the traces and the pair plots for all apparent yield fits.
We also show the comparison between experimental data and median of the posterior
predictive checks (with ±1σ-confidence intervals).
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Figure E.1: EH illumination with Crystal 250 (duration 10 µs, delay
0 µs, and Vinj = 5.4V).
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Figure E.2: EH illumination with Crystal 250 (duration 10 µs, delay
0 µs, and Vinj = 0.54V).
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Figure E.3: EH illumination with Crystal 250 (duration 1 µs, delay
2 µs, and Vinj = 5.4V).
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Figure E.4: EH illumination with Crystal 250 (duration 1 µs, delay
7 µs, and Vinj = 5.4V).
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Figure E.5: TM illumination with Crystal 250 (duration 10 µs, delay
0 µs, and Vinj = 5.4V).
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Figure E.6: TM illumination with Crystal 250 (duration 10 µs, delay
0 µs, and Vinj = 0.54V).



224 Appendix E. Diagnostic plots for the Bayesian fits

3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96

WEH [eV]

P
ro

b
ab

ili
ty

d
en

si
ty

0 200 400 600 800

Sample

3.85

3.90

3.95

W
E

H
[e

V
]

0.06 0.07 0.08 0.09 0.10 0.11

∆W [eV]

P
ro

b
ab

ili
ty

d
en

si
ty

0 200 400 600 800

Sample

0.06

0.08

0.10

∆
W

[e
V

]

3.0 3.2 3.4 3.6 3.8 4.0

QEH ×10−5

P
ro

b
ab

ili
ty

d
en

si
ty

0 200 400 600 800

Sample

3.0

3.5

4.0

Q
E

H

×10−5

3.8 4.0 4.2 4.4 4.6 4.8 5.0

QTM ×10−5

P
ro

b
ab

ili
ty

d
en

si
ty

0 200 400 600 800

Sample

4.0

4.5

5.0

Q
T

M

×10−5

(a) Trace plot

0.06

0.08

0.10

∆
W

[e
V

]

3.25

3.50

3.75

4.00

Q
E

H

×10−5

3.85 3.90 3.95

WEH [eV]

4.0

4.5

Q
T

M

×10−5

0.06 0.08 0.10

∆W [eV]
3.5 4.0
QEH

×10−5

(b) Pair plot

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

VTM [V]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

A
p

p
ar

en
t

yi
el

d

×10−5

MCMC fit

Duration 1 µs, delay 2 µs, Vinj = 5.4 V

(c) Comparison between data and fit

Figure E.7: TM illumination with Crystal 250 (duration 1 µs, delay
2 µs, and Vinj = 5.4V).
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Figure E.8: TM illumination with Crystal 250 (duration 1µs, delay
7 µs, and Vinj = 5.4V).
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Figure E.9: EH illumination with SETi 255 (duration 10 µs, delay
0 µs, and Vinj = 5.4V).
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(c) Comparison between data and fit

Figure E.10: EH illumination with SETi 255 (duration 10 µs, delay
0 µs, and Vinj = 0.54V).
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Figure E.11: EH illumination with SETi 255 (duration 1 µs, delay
2 µs, and Vinj = 5.4V).
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(c) Comparison between data and fit

Figure E.12: EH illumination with SETi 255 (duration 1µs, delay
7 µs, and Vinj = 5.4V).
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Figure E.13: TM illumination with SETi 255 (duration 10 µs, delay
0 µs, and Vinj = 5.4V).
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(c) Comparison between data and fit

Figure E.14: TM illumination with SETi 255 (duration 10 µs, delay
0 µs, and Vinj = 0.54V).
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Figure E.15: TM illumination with SETi 255 (duration 1 µs, delay
2 µs, and Vinj = 5.4V).
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Figure E.16: TM illumination with SETi 255 (duration 1 µs, delay
7 µs, and Vinj = 5.4V).
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Figure E.17: EH illumination with SETi 240 (duration 10 µs, delay
0µs, and Vinj = 0.54V).
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(c) Comparison between data and fit

Figure E.18: EH illumination with SETi 240 (duration 1µs, delay
2 µs, and Vinj = 5.4V).
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Figure E.19: EH illumination with SETi 240 (duration 1 µs, delay
7 µs, and Vinj = 5.4V).
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(c) Comparison between data and fit

Figure E.20: TM illumination with SETi 240 (duration 10 µs, delay
0 µs, and Vinj = 5.4V).
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Figure E.21: TM illumination with SETi 240 (duration 10 µs, delay
0 µs, and Vinj = 0.54V).
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Figure E.22: TM illumination with SETi 240 (duration 1 µs, delay
2 µs, and Vinj = 5.4V).
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Figure E.23: TM illumination with SETi 240 (duration 1 µs, delay
7 µs, and Vinj = 5.4V).
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Figure E.24: EH illumination with UVphotonics 230 (duration 10 µs,
delay 0 µs, and Vinj = 0.54V).
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Figure E.25: TM illumination with UVphotonics 230 (duration 10 µs,
delay 0 µs, and Vinj = 0.54V).
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Figure E.26: EH illumination with SETi 255 (duration 10 µs, delay
0µs, and Vinj = 5.4V) in the presence of DC actuation Vz−
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Figure E.27: EH illumination with SETi 255 (duration 10 µs, delay
0 µs, and Vinj = 0.54V) in the presence of DC actuation Vz−
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Figure E.28: EH illumination with SETi 255 (duration 10 µs, delay
0µs, and Vinj = 5.4V) in the presence of DC actuation Vz−
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Figure E.29: EH illumination with SETi 255 (duration 10 µs, delay
0 µs, and Vinj = 0.54V) in the presence of DC actuation Vz−
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Appendix F

Statistical complements

F.1 Poisson processes

In this Section we will present the definition of Poisson process and some statistical
properties, which have been used in our analyses. The main references for this Ap-
pendix are [73, 79]. As common for statistics textbooks, in this appendix we use the
symbol ∼ with the meaning “distributed as”.

F.1.1 Counting processes

A stochastic, or random, process is a collection of random variables indexed by a
continuous parameter t, usually time, N = {N(t), t ≥ 0}.

Among all stochastic processes the counting processes are particularly important.
Indeed, often it is needed to count the occurrences of some type of events which
happen at random times, e.g. the number of clients entering in a shop, the number of
photons hitting a detector, or the charges deposited on the LISA test masses.

Let us call ti the time at which the ith occurrence of an event takes place. As
the events happen at random times, the sequence {t1, t2, . . . , tn}, denoted shortly as
{ti}, is a random sequence. We assume that the arrival times are non-overlapping
(i.e. ti ̸= tj if i ̸= j), that is

t0 < t1 < t2 . . . tn → ∞ as n→ ∞, (F.1)

where t0 is the time from which we start keeping track of the arrival of charges on
the TM (we can assume without loss of generality that t0 = 0, although we do not
consider t0 as an arrival time). We shall denote with N(t) the number of arrivals in
the interval (0, t]. As the arrival times are random, also N(t) is a stochastic variable,
which can be represented as

N(t) =
∑

ti<t

Θ(t− ti), (F.2)

where Θ(·) is the Heaviside step function (see Figure F.1).

Definition A random process {N(t), t ≥ 0} is a counting process if N(t) is the
number of event occurred from the origin of the time axis up to the time t (included).
A counting process is characterized by values that are non-negative, integer, and non-
decreasing. Hence we can assume

• N(0) = 0;

• N(t) ∈ {1, 2, 3, . . .}, for all t ∈ [0,+∞);
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t1 t2 t3 t4 t5

1
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t

N(t)

Figure F.1: Example of a counting process.

• If s ≤ t then N(s) ≤ N(t).

An obvious consequence of such definition is that if 0 ≤ s < t the quantity N(t)−N(s)
corresponds to the number of events that occur in the time interval [s, t).

In the following we will simplify the notation and indicate with just N(t) a general
counting process.

F.1.2 Definition of Poisson process

Let λ be a positive constant. A counting process {N(t), t ≥ 0} is called a Poisson
process with rate λ if

• N(0) = 0;

• The increments are independent, i.e. the number of arrivals in any non-overlapping
(disjoint) intervals are independent random variables;

• The number of events (or points) in any interval of length τ > 0 is a Poisson
random variable with parameter λτ .

The last property tells us that in a Poisson process the distribution of the number
of arrivals in any interval depends only on its length and not on its exact location
on the time axis. This means that Poisson processes are stationary, i.e. the random
variable N(t + τ) − N(t) has the same distribution as N(τ) − N(0) = N(τ) for any
t ≥ 0 and τ > 0

N(t+ τ)−N(t) ∼ N(τ) ∼ Poi(λτ) (F.3)

F.1.3 Expected value and variance

The fact that the number of arrivalsN(t) follows a Poisson distribution with parameter
λt implies that the expected value and the variance of a Poisson process are equal
grow with time

N(t) ∼ Poi(λτ) =⇒ E {N(t)} = Var {N(t)} = λt (F.4)
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F.1.4 Auto-correlation

We can compute the auto-correlation of a Poisson process from the definition1

RNN (t, s) = E {N(t)N(s)} (F.5)

Let us consider the case t ≥ s separately from the case t < s.

Case t ≥ s

The definition of auto-correlation can be rewritten as

RNN (t, s) = E {[N(t)−N(s) +N(s)]N(t)}
= E

{
[N(t)−N(s)]N(s) +N2(s)

} (F.6)

From the hypothesis of independence, we have that the random variable N(s) is
independent from N(t)−N(s), because the time interval [0, s) does not overlap with
[s, t). A nice property of independent random variables is that the expected value of
their product is equal to the product of their respective expected values, i.e. E {XY } =
E {X}E {Y } if X and Y are independent2

RNN (t, s) = E {[N(t)−N(s)]}E {N(s)}+ E
{
N2(s)

}

= E {[N(t)−N(s)]}E {N(s)}+ E {N(s)}2 +Var {N(s)}
= λ(t− s)λs+ λ2s2 + λs

= λ2ts+ λs,

(F.8)

where we used the definition of variance, i.e. E
{
x2
}
= E {x}2 +Var {x}.

Case t < s

With a similar reasoning we can write the auto-correlation in the case t < s as

RNN (t, s) = E {N(t) [N(s)−N(t) +N(t)]}
= E

{
N(t) [N(s)−N(t)] +N2(t)

} (F.9)

In this case we have that the time interval (t, s] does not overlap with (0, t], hence the
counts N(s)−N(t) and N(t) are independent. Therefore

RNN (t, s) = E {N(t)}E {[N(s)−N(t)]}+ E
{
N2(t)

}

= E {N(t)}E {[N(s)−N(t)]}+ E {N(t)}2 +Var {N(t)}
= λtλ(s− t) + λ2t2 + λt

= λ2ts+ λt

(F.10)

1The definition of auto-correlation is actually RXX(t, s) = E {X(t)X∗(s)}, where the star indi-
cates the complex conjugate. However, since we are considering real stochastic processes, we can
drop the operation of complex conjugation.

2This follows immediately from the fact that the joint-probability distribution function of two
independent random variables X and Y can be factorized fXY (x, y) = fX(x)fY (x), hence

E {XY } =

∫∫
xyfXY (x, y) dxdy =

∫
xfX(x) dx ·

∫
yfY (y) dy = E {X}E {Y } . (F.7)
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General expression

If we combine (F.8) and (F.10), we can obtain the general expression

RNN (t, s) = λ2ts+ λmin (t, s) (F.11)

As the expression for the auto-correlation is not invariant for shifts in the origin of the
time coordinate, i.e. RNN (t, s) ̸= RNN (t − s), we conclude that the Poisson process
is not stationary.

F.1.5 Power spectrum of a Poisson process

In a strict mathematical sense, it does not make sense to talk about the power spec-
trum of a Poisson process, since it is not a wide-sense stationary (WSS) process3. We
can be convinced of the non-stationarity of the Poisson process by simply noticing
that its expected value is not constant but it depends on time (F.4).

On the other hand, it makes sense to compute the power spectral density of the
time derivative of a Poisson process, which is usually referred to as shot noise [80]

S(t) =
dN(t)

dt
=

d

dt

[∑

i

Θ(t− ti)

]
=
∑

i

δ(t− ti) (F.12)

where Θ(·) is the Heaviside step function. In the last passage we used the fact that
the derivative of the step function is the Dirac’s delta, i.e.

dΘ(x)

dx
= δ(x). (F.13)

Since the differentiation is a linear operator4, we can write

E {S(t)} = E
{
dN(t)

dt

}
=

d

dt
E {N(t)} =

d(λt)

dt
= λ (F.15)

Analogously for the auto-correlation of the shot noise, we can write

RSS(t, s) = E {S(t)S(s)}

= E
{
dN(t)

dt

dN(s)

ds

}

=
d

dt

(
d

ds
E {N(t)N(s)}

)

=
∂

∂t

∂RNN (t, s)

∂s
,

(F.16)

3A stochastic process is strict-sense stationary (SSS) if all its statistical properties do not change
for shifts of the time axis. A stochastic process is wide-sense stationary (WSS) if its expected value
and auto-correlation do not change for shifts of the time axis. In order to define the power spectrum
of a stochastic process it is required to be at least wide-sense stationary.

4A fundamental lemma in statistics is that the expected value E {·} commutes with any linear
operator L, i.e.

E {L(x)} = L (E {x}) . (F.14)
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where used the linearity of the differentiation and the expected value. If we remember
the expression for the auto-correlation of the Poisson process (F.11), we have

RSS(t, s) =
∂

∂t

∂

∂s

[
λ2ts+ λmin (t, s)

]

=

{
∂
∂t

(
λ2t+ λ

)
, if t ≥ s

∂
∂t

(
λ2t
)
, if t < s

=
∂

∂t

[
λ2t+ λΘ(t− s)

]
.

(F.17)

If we now use the fact that the derivative of the step function is the Dirac’s delta,
equation (F.17) becomes

RSS(t, s) = λ2 + λδ(t− s) (F.18)

We conclude that the shot noise S(t) is a wide-sense stationary (WSS) process because
its mean does not depend on time and its autocorrelation is independent on shifts of
the time axis, i.e. it depends only on the time delay between the temporal points
considered RSS(t, s) = RSS(t − s). Therefore, we can compute the two-sided power
spectrum of shot noise, which is the Fourier transform of its auto-correlation function

SSS(ω) = F {RSS(τ)}

=

∫ +∞

−∞
RSS(τ) e

−iωτ dτ

=

∫ +∞

−∞

[
λ2 + λδ(τ)

]
e−iωτ dτ

= 2πλ2δ(ω) + λ

(F.19)

The power spectral density of shot noise is white, i.e. independent of frequency, except
for a line at zero frequency (inaccessible by real-life experiments).

Although the power spectrum is well defined only for wide-sense stationary stochas-
tic processes, we can still try to obtain an expression for the PSD of Poisson processes.

As a Poisson process is just the integral of shot noise, we can obtain its two-sided
power spectral density as5

SNN (ω) =
SSS(ω)

|iω|2 =
2πλ2δ(ω) + λ

ω2
−−→
ω ̸=0

λ

ω2
(two-sided) (F.22)

In the last passage we neglected the term proportional to the Dirac’s delta (relevant
only at zero frequency). Despite our quite unorthodox derivation, the expression for
the PSD of a Poisson process with rate λ is accurate, as the reader can prove with a
numerical simulation.

5We use here the fact that the transfer function of an integrator is H(ω) = 1
iω

. One way to
prove this is by observing that the integral of a Dirac’s delta is the Heaviside step function, whose
respective Fourier transforms are

F {δ(t)} (ω) = 1 and F {Θ(t)} (ω) = πδ(ω) +
1

iω
. (F.20)

The transfer function of the integral operator can be obtained divinding the Fourier transform of the
output (the step function) by the Fourier transform of the input (the Dirac’s delta), i.e.

H(ω) =
F {Θ(t)} (ω)
F {δ(t)} (ω) = πδ(ω) +

1

iω
−−−→
ω ̸=0

1

iω
, (F.21)

where, in the last passage, we neglected the term containing the Dirac’s delta (relevant only at DC).
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Comment for processes with event multiplicity In the derivation above we
assumed that each event in the Poisson process carries just an unit increment, but it
can be simply generalized to processes with any multiplicity j ∈ Z. It is just necessary
to observe that a Poisson process Nj(t) with event multiplicity j can be interpreted
as a Poisson process with unit increments multiplied by the constant j, i.e.

Nj(t) = jN(t) (F.23)

Hence, the auto-correlation in this case can be written as

RNjNj (t, s) = E {Nj(t)Nj(s)}
= E {jN(t) jN(s)}
= j2E {N(t)N(s)}
= j2RNN (t, s)

= j2
[
λ2ts+ λmin (t, s)

]

(F.24)

where we used (F.11). If we repeat the calculation presented previously, we have that
the two-sided power spectral density of the associated shot noise is

SSjSj (ω) = 2πj2λ2δ(ω) + j2λ (two-sided) (F.25)

whereas the two-sided PSD of the Poisson process with event multiplicity j is

SNjNj (ω) =
j2λ

ω2
(two-sided) (F.26)

F.1.6 Thinning theorem

In this section we will prove that if we select points from a Poisson process according
to the outcome of a Bernoulli random variable, we generate a new Poisson process.
In other words, the Poisson processes are closed to random draws according to a
Bernoulli variable.

This is a known result (actually it is a special case of the more general Thinning
theorem) and we will present it here only for the sake of completeness.

Suppose that we have a Poisson process with rate λ. By definition, the number
of events N in any interval of length t is a random variable that follows a Poisson
distribution with parameter λt. Therefore, the probability of counting n ∈ N events
in the time window of duration t is

PPoi(λt) {N(t) = n} =
(λt)n

n!
e−λt. (F.27)

Let us consider now the child stochastic process obtained by extracting points from
the initial Poisson process according to the outcome of a Bernoulli trial with success
probability η ∈ [0, 1]. The probability of measuring d ≤ n events in the time window
of length t can be computed as

P {N(t) = d} =
∞∑

n=d

PPoi(λt) {N(t) = n} · PBin(η) {d, n} . (F.28)
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where we used the fact that the probability of having d successes in n independent
Bernoulli trials is the given Binomial distribution PBin(η) {d, n}, which reads

PBin(η) {d, n} =

(
n

d

)
ηd(1− η)n−d =

n!

d!(n− d)!
ηd(1− η)n−d (F.29)

which gives the probability of having d successes in n trials each one with success
probability equal to η.

If we substitute (F.27) and (F.29) into (F.28), we have

P {N(t) = d} =

∞∑

n=d

(λt)n

n!
e−λt

n!

d!(n− d)!
ηd(1− η)n−d

=
∞∑

n=d

(ληt)n

d!(n− d)!
ηd−n(1− η)n−de−λt

(F.30)

We can now define k = n− d, so that the previous equation becomes

P {N(t) = d} =
∞∑

k=0

(ληt)k+d

d!k!
η−k(1− η)ke−λt

=
(ληt)d

d!
e−λt ·

∞∑

k=0

(
1− η

η

)k (ληt)k
k!

=
(ληt)d

d!
e−λt ·

∞∑

k=0

(λt− ληt)k

k!

(F.31)

We notice that the series corresponds to the Taylor expansion of eλt−ληt, therefore we
have

P {N(t) = d} =
(ληt)d

d!
e−λt · eλt−ληt

=
(ληt)d

d!
· e−ληt

= PPoi(ληt) {N(t) = d} ,

(F.32)

which is indeed a Poisson process with reduced rate λη.
This property can be also verified with a simple simulation, as shown in Figure F.2.

F.1.7 Merging of independent Poisson processes

Let N1(t) and N2(t) be two independent Poisson processes with rates λ1 and λ2
respectively. We can define the process N(t) as

N(t) = N1(t) +N2(t). (F.33)

More precisely, N(t) is the counting process obtained combining the arrivals of N1(t)
and N2(t). The hypothesis is that N(t) is still a Poisson process with rate λ = λ1+λ2.

Proof Let us notice that if N1(t) and N2(t) are Poisson processes we have that

N(0) = N1(0) +N2(0) = 0 + 0 = 0. (F.34)
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Figure F.2: Right: the blue line is a timeseries of a Poisson process
with rate λ, whereas the red line is obtained thinning the previous
Poisson by extracting points according to the outcome of a Bernoulli
random variable with success probability η. In this picture we sub-
tracted for clarity the linear trend from the two timeseries. The col-
ored band correspond to the 1σ-confidence. Left: we compute the
amplitude spectral density of the simulated timeseries. We see a good
agreement between the experimental data an the theoretical spectra

(except for some aliasing close to the Nyquist frequency).

Secondly, since N1(t) and N2(t) are independent between each other and both have
independent increments, we must have that also N(t) has independent increments.

Finally, let us consider a time interval of length τ , such as I = [t0, t0 + τ) for any
t0. The number of arrivals in the interval I associated with the processes N1(t) and
N2(t) are respectively

N1(t) ∼ Poi(λ1τ) and N2(t) ∼ Poi(λ2τ) (F.35)

and they are independent. The number of arrivals in I for the stochastic process N(t)
will be

N(t) ∼ Poi(λ1τ) + Poi(λ2τ) = Poi(λ1τ + λ2τ) (F.36)

where we used the fact that the sum of independent Poisson random variables is still
Poisson with parameter equal to the sum of their respective parameters.

Proof The probability of finding N(τ) = n is given by

P {N(τ) = n} =
n∑

n1=0

PN1(τ)N2(τ) {N1(τ) = n1, N2(τ) = n− n1}

=

n∑

n1=0

PPoi(λ1τ) {N1(τ) = n1}PPoi(λ2τ) {N2(τ) = n− n1}
(F.37)

where we immediately used the fact that N1(t) and N2(t) are independent Poisson
processes. Let us substitute in the previous equation the explicit expression for the



F.1. Poisson processes 255

probability mass function of Poisson random variables

P {N(τ) = n} =
n∑

n1=0

e−λ1τ (λ1τ)
n1

n1!

e−λ2τ (λ2τ)
n−n1

(n− n1)!

=

n∑

n1=0

n!

n1!(n− n1)!

e−λ1τ (λ1τ)
n1e−λ2τ (λ2τ)

n−n1

n!

=
e−(λ1+λ2)τ

n!

n∑

n1=0

(
n

n1

)
(λ1τ)

n1(λ2τ)
n−n1

=
e−(λ1+λ2)τ

n!
[(λ1 + λ2)τ ]

n

= PPoi((λ1+λ2)τ) {N(t) = n}

(F.38)

where we used the definition of binomial coefficient and later the of the binomial
formula (in reverse).

We, therefore, proved that the process N(t) respects all properties of Section F.1.2
and hence it is a Poisson process with rate λ = λ1 + λ2.

Difference of Poisson processes

We observe that the difference of two Poisson processes is not a Poisson process [79]:
an informal way to see this is that in a Poisson process we cannot have N(t) < N(s)
for s > t, but this condition is surely possible if we subtract one Poisson process
form another. However, we can compute the power spectral density of the process
N(t) = N1(t) +N2(t) as

SNN (ω) = SN1N1(ω) + (−1)2SN2N2(ω)

= SN1N1(ω) + SN2N2(ω)

=
λ1
ω2

+
λ2
ω2

=
λ1 + λ2
ω2

(F.39)

where we used (F.22). This result can be generalized to any linear combination of
independent Poisson processes as

N(t) =
∑

i

jiNi(t) =⇒ SNN (ω) =
∑

i

j2i SNiNi(ω) =
1

ω2

∑

i

j2i λi

︸ ︷︷ ︸
λeff

(F.40)

where we defined the effective rate λeff consistently with the treatment in Chapter 3.

F.1.8 Splitting of a Poisson process

An interesting consequence of the Thinning theorem is that if we divide the original
Poisson process with rate λ into two child processes according to the outcome of
Bernoulli trial with success probability η, we obtain two Poisson processes with rates
ηλ and (1− η)λ, which are also independent from each other.

Let N(t) be a Poisson process and X(t) and Y (t) the child processes obtained
splitting each point in the original Poisson process according to the outcome of a
Bernoulli variable (with success probability η). We can demonstrate the independence
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starting by writing the joint probability mass function of X(t) and Y (t)

fX(t)Y (t)(i, j) = P {X(t) = i, Y (t) = j}

=

∞∑

n=0

P {X(t) = i, Y (t) = j |N(t) = n} · P {N(t) = n} , (F.41)

where we used the law of total probability. We note that the points of the original
Poisson process N(t) can be categorized either in the process X(t) or Y (t), hence
we must have n = i + j, or, equivalently, P {X(t) = i, Y (t) = j |N(t) = n} = 0 if
n ̸= i+ j. In this way, the previous equation reduces to

fX(t)Y (t)(i, j) = P {X(t) = i, Y (t) = j |N(t) = i+ j } · P {N(t) = i+ j}
= P {X(t) = i |N(t) = i+ j } · P {N(t) = i+ j} .

(F.42)

The last passage is justified by the fact that if in a time window of length t the original
Poisson process N(t) has i+ j events and i of them are assigned to the child process
X(t), the remainder j events must be necessarily assigned to Y (t). On the other
hand, the term P {X(t) = i |N(t) = i+ j } corresponds to the probability of counting
i events in the child process X(t) within a time window of length t provided that the
parent process N(t) has i+j events in the same window. As the selection criterion for
the point to belong in the X(t) process is the outcome of Bernoulli trial with success
probability η, this corresponds to having i successes in i+j independent trials. Hence

P {X(t) = i |N(t) = i+ j } = PBin(η) {i, i+ j} =

(
i+ j

i

)
ηi(1− η)j . (F.43)

Moreover, since we know that N(t) is a Poisson process with rate λ, we have

P {N(t) = i+ j} = PPoi(λt) {N(t) = i+ j} =
(λt)i+j

(i+ j)!
e−λt. (F.44)

If we substitute (F.43) and (F.44) into (F.42), we have that

fX(t)Y (t)(i, j) =

(
i+ j

i

)
ηi(1− η)j · (λt)

i+j

(i+ j)!
e−λt

=
(i+ j)!

i! j!
ηi(1− η)j · (λt)

i+j

(i+ j)!
e−λt

=
(λt)i

i!
e−ηλt · [(1− η)λt]j

j!
e−(1−η)λt

= PPoi(ηλt) {X(t) = i}
︸ ︷︷ ︸

fX(t)(i)

· PPoi((1−η)λt) {Y (t) = j}
︸ ︷︷ ︸

fY (t)(j)

.

(F.45)

As we can write the joint probability mass function as a product, we demonstrated
that the child processes X(t) and Y (t) are independent Poisson processes.

F.2 Interrupted Poisson processes

Another complication in our experiment comes from the fact that we are not con-
tinuously illuminating, but rather we are using pulses of light at ∼ kHz frequency
(depending on the decimation chosen for the measurement). Indeed, we would not be
able to obtain an equilibrium voltage close to neutrality with DC illuminations.
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Hence, the noisy photo-currents is not exactly a shot noise, but rather a shot noise
with interruptions, with gaps where photons do not arrive because the illumination
is off. Such interruptions violate the hypotheses at the basis of the definition of a
Poisson process and could, in principle, change all the statistical properties of the
charge noise.

This makes the stochastic process non-stationary : its statistical properties depend
obviously on time. In the literature such processes are called evolutionary processes.
A detailed treatment of evolutionary processes is beyond the scope of this thesis (and
beyond the mathematical savvy of the PhD candidate writing this thesis).

However, we did a small simulation to investigate this issue from a numerical point
of view. We simulated a Poisson process with interruptions. The result is showed in
Figure F.3.

As we see from Figure F.3, the spectrum of the interrupted Poisson process re-
sembles the PSD of a normal Poisson process with reduced rate, except for the peaks
at frequencies that are integer multiples of the interruptions frequency.

One could expect the presence of those peaks from the Fourier transform of a
rectangular wave between 0 and 1 with duty cycle (T0 − Tp)/T0, that is

f(t) =

+∞∑

n=−∞
Π

(
t− nT0
T0 − Tp

)
(F.46)

where Π(t) is the rectangular function. The Fourier transform of such square wave
is a sum of Dirac’s deltas centered at multiples of the fundamental frequency of the
interruptions

f̃(ω) = 2π
T0 − Tp
T0

δ(ω) +
+∞∑

n=−∞
n̸=0

2

n
sin

(
T0 − Tp
T0

πn

)
δ

(
ω − 2π

T0
n

)
. (F.47)

In our case the period of the light pulses is in the ∼ kHz range (depending on
the decimation, but the lowest frequency of the light pulses that we chose for the
continuous discharge measurements is 500Hz). Therefore, we conclude that those
peaks are way outside the band of the continuous discharge measurement (which is
≲ 1mHz) and we should only see the smooth part of the noise spectrum ∝ f−2 (typical
of Poisson processes).
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Figure F.3: Simulation of a Poisson process with rate 50 s−1 without
(blue) and with (red) interruptions. The interruptions last for Tp =
9.5 s every T0 = 10 s. The peaks are at frequencies multiples of the
fundamental one f0 = 1/T0 = 0.1Hz, below which the spectrum of the
data matches the one of the original Poisson process re-scaled by the

duty cycle (T0 − Tp)/T0.
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Appendix G

Light source poissonianity

Our PMT setup has the energy resolution to detect the single photon in the UV range.
We decided to conduct some measurements to check the arrival statistics of single

photons from our Crystal 250 UV-LED. This may seem a tedious and unnecessarily
check, but the reader should be aware that not all light sources are poissonian, there
are also sources that produce photons with sub- or super-poissonian statistics.

Poissionian sources are characterized by the fact that, given the event rate λ, in
any time window of length t, one expects the variance in of the number of events to be
σ2n = ⟨n⟩ = λt. On the other hand for sub-poissonian sources we expect σ2n < ⟨n⟩ = λt
and for super-poissonian sources we have σ2n > ⟨n⟩ = λt.

The idea of the measurement is very easy: we want to record the detection1 times
of the photons from our UV light source and check if they are compatible with a
Poisson process. In order to count the single photons, we need to attenuate the light
emission from the LED so to have very low chance of two detection overlapping within
the time resolution of our PMT system. We acquired a time-series of the PMT output
with a fast oscilloscope2.

The PMT handbook by Hamamatsu Photonics [55] gives an insight on how to
correctly choose the photon rate to perform a photon counting experiment.

The photon counting mode offers excellent linearity over a wide range.
The lower limit of the count rate linearity is determined by the number
of dark current pulses, and the upper limit by the maximum count rate.
The maximum count rate further depends on pulse-pair resolution, which
is the minimum time interval at which each pulse can be separated. The
reciprocal of this pulse pair resolution would be the maximum count rate.
However, since the events in the photon counting region usually occur
at random, the counted pulses may possibly overlap. Considering this
probability of pulse overlapping (count error caused by pulse overlapping),
the actual maximum count rate will be about one tenth of the calculated
above. Here, if we let the true count rate be N (in the units s−1), the
measured count rate be M (in the units s−1) and time resolution be δt (in
the units s), the loss of count rate N−M , i.e. the number of missed points
per unit time, can also be expressed using the dead time M · δt caused by
pulse overlapping, as follows:

N −M = N ·M · δt (G.1)

1Emission rate and detection rate of a photon in our PMT setup are not the same because of the
not perfect quantum efficiency of our device. The datasheet lists a typical quantum efficiency of 13%
and a minimum of 8% at 254 nm wavelength.

2We used a Teledyne-Lecroy Wavesurfer oscilloscope (bandwidth up to 1GHz and sampling rate
of 4GS/s.
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Figure G.1: Photon counting experiment.

The calculation by Hamamatsu although reasonable, in our opinion, assumes that the
inter-arrival times ∆Ti of the photons, that is the time that passes between a photon
arriving on the detector and the subsequent, are uniformly distributed. However, in
our case we expect the photon emission (and detection) to be Poisson process3, hence
the inter-arrival times are exponentially distributed.

∆Ti ∼ Ne−N ·t, (G.2)

where once again N is the true rate of photons. The exponential distribution tells
us that small inter-arrival are more likely than long inter-arrival times. This means
that in the time window δt where the detector is still blind from the previous pulse
statistically it is more likely to have a second photon compared to a time window of
the same length at later times.

If the inter-arrival times of the photons are exponentially and not uniformly dis-
tributed, the dead time counts proportionally more.

We, therefore, propose to correct the loss counts rate formula (G.1) by Hamamatsu
Photonics in the case that the inter-arrival times of the photons are exponentially
distributed with the following

N −M = N ·M · δt Nδt

1− e−Nδt
N→ 0−−−−−−−→ N ·M · δt (G.3)

As showed, in the limit of the rate N going to zero, the exponential distribution tends
to an uniform distribution and we recover, as expected, the formula (G.1). In Figure
G.2 we show the relative count error (M − N)/N as a function of the true photon
rate in units of the pair resolution time δt.

The factor that limits the pulse-pair resolution is the rise time of the amplifier
that converts the output current of the PMT into a voltage signal. The typical rise
time of the amplifier is ≤ 7 ns, but the data showed that a more realistic value for our
experimental setup of δt ≃ 2.5 ns. A conservative upper limit for the photon detection
rate in order not to underestimate the rate more than 1% is Nmax = 0.01/δt ≃ 4MHz.
The lower limit for the photon detection rate is that it has to be significantly larger
than the dark count rate, which for our device is pretty low (from the datasheet
typically 15 s−1, with a maximum value of 50 s−1 counts per second).

We acquired the signal from the PMT for a few photon rates (always below Nmax

computed before) for the Crystal 250 UV-LED. We employed three checks to investi-
gate the poissonianity of the data.

• We checked if the inter-arrival times between photons follow an exponential
distribution;

3Or, at least, not to deviate too much from a Poisson process.
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Figure G.2: Prevision of the relative count error as a function of the
photon detection rate. The blue line correspond to the formula (G.1),
whereas the light blue to our correction (G.3), which should be more
accurate is the light source is approximately poissonian. As expected
the two formulae give the same result for Nδ · t≪ 1. If we have a true
rate equal to the pair resolution time δt, we underestimate the number
of photon detected by ∼ 60%. The relative count error drops to less

than 1% if we set rates below 0.01/δt.
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Figure G.3: Investigation of the poissonian nature of the photons
emitted by the Crystal 250 UV-LED.

• We computed the power spectral density of the time-series of the cumulative
photon count and checked if it has the expected ∝ f−2 functional behavior;

• We performed a Poisson dispersion test. In a Poisson process with rate λ we
have that the number of events in a time window of duration t is a random
variable that follows a Poisson distribution with parameter λt. If we chop our
experimental PMT time-series into n non-overlapping windows of duration t,
we will have a series (c1, c2, . . . , cn) of counts in each window. The numbers ci
will be random draws from a Poisson distribution with parameter λt. As the
mean and variance of a Poission distribution are also equal to λt, the following
quantity

D =

n∑

i=1

(ci − ⟨c⟩)2
⟨c⟩ where ⟨c⟩ = 1

n

n∑

i=1

ci (G.4)

is expected to follow a chi-squared with n− 1 degrees of freedom provided that
the experimental data are poissonian. Hence, to summarize, we expect

D ∼ χ2(n− 1) if data belong to a Poisson process. (G.5)

We show in Figure G.3 the result for the distribution of the photon inter-arrival
times and for the PSD of the time-series obtained from the cumulative photon count.
The agreement between data and models is very good. We performed the Poisson
dispersion test for each data series with several time windows ranging from a duration
of 1µs to 500µs. At a 2σ-significance level (∼ 95%), the data passed the test the great
majority of times, saved for a few outliers that were marginally outside the acceptable
interval of the chi-squared distribution.

In general the experimental data obtained with the Crystal 250 LED show no
significant deviation from a Poisson process.
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Appendix H

LISA Consortium logo contest

During the spring 2020, the Advoreach working group announced a competition to
design the LISA Consortium logo open to the whole LISA community.

I took part into the logo contest with my personal design that is depicted in Figure
H.1a. With my logo I wanted to convey the ideas of technology, dynamism and space
exploration that characterize the LISA mission.

I also desired to include the unique identity of the LISA mission into the design and
the perfect opportunity was to replace the letter A in LISA with a triangle representing
the three spacecrafts of the constellation connected by laser beams.

I was lucky enough that my logo received the most preferences during the com-
munity vote that took place online from the 18th to the 27th of November 2020.

My design was given as a reference to a professional designer that created the final
logo shown in Figure H.1b.

The professional version of the logo has a siplified color scheme and replaced the
rocket with the Ariane 6.4 (at the request of ESA) which will launch LISA. As the
professional design opted for more bold lines, the satellite tracks were removed. This
version was adopted as the official LISA Consortium logo in 2021.
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L S
(a) My original design

(b) The final LISA Consortium logo

Figure H.1: Comparison between my design and the final LISA Con-
sortium logo.
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