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Abstract 

Climate change is having a profound impact on freshwater ecosystems, with lakes being highly 

sensitive to environmental changes. In recent years, the increasing popularity of machine learning 

techniques in this field can be attributed to their ability to analyze intricate patterns and relationships 

in meteorological data, lake dynamics and their response to climate change. This study aims to 

explore how meteorological variables impact lake surface water temperature and ice thickness. 

First, we evaluate nine machine learning algorithms for lake surface water temperature prediction in 

synthetic lakes, comparing their performance and investigating the effects of input variables on 

accuracy. Our study, based on a numerical model (distinct from a real lake), indicates that considering 

air temperature and day of the year suffices for acceptable outcomes. Additional predictors provide 

minimal improvement. Furthermore, better results can be achieved by pre-processing air temperature 

through time averaging or incorporating past values specially for deep lakes. Despite exploring 

various machine learning algorithms with the same inputs, no single optimal choice emerged 

(although artificial neural networks exhibited slightly better results). 

Second, we select a machine learning technique, artificial neural network, to model the influential 

factors of lake surface water temperature response on 2024 lakes worldwide, based on the CCI Lakes 

dataset. Our analysis reveals that, in general, the day of the year is the most relevant factor, suggesting 

that the mean (climatological) year is already a good approximation. Removing it from the set of 

predictors, air temperature, shortwave and downward longwave radiation and relative humidity gain 

the predominant roles and the incorporation of other meteorological variables could significantly or 

moderately improve the models' performance across different climatic zones. 

Third, we investigate the influence of various meteorological variables on ice thickness prediction in 

two distinct lakes in Sweden using artificial neural network. Among the input variables, the day of 

the year assumes a significant role in simulating ice thickness. Additionally, shortwave radiation and 

specific humidity prove to be pivotal predictors. During the period of ice formation, aside from the 

day of the year, the negative degree days linked to negative air temperature also stand out as 

influential predictors. 

Our findings demonstrate that machine learning techniques offer a promising avenue for studying 

lake dynamics and their response to environmental changes because of being flexible to change the 

input variables and to analyze their importance on the model leading to understand the physics behind 

it. Through the random regeneration of each feature, we can assess its impact on the model by 
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measuring the extent to which it reduces the model's performance compared to the model 

incorporating all variables. The choice of meteorological variables plays a critical role in model 

performance, emphasizing the need to select relevant input variables for optimal results. 
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Chapter 1. Introduction 

1.1. Aims and motivation 

The thermal response of lakes is a complex phenomenon, influenced by several factors, including 

local climate conditions and anthropogenic activities. The current warming trend of lake water 

temperature, as highlighted by Woolway and Merchant (2018) and Woolway et al. (2020), poses a 

significant threat to the biological and chemical processes in aquatic ecosystems, ultimately affecting 

the survival of aquatic life. In this context, it becomes crucial to understand the factors that control 

the thermal response of lakes to changing climate conditions, such as air temperature (AT) and solar 

radiation, and to quantify the expected alterations in water temperature patterns. Such knowledge is 

of paramount importance for effective management of aquatic resources and the preservation of 

freshwater ecosystems. Several studies have indicated that increasing water temperatures can have 

cascading effects on the food web, leading to changes in species composition and distribution, and 

altering the nutrient cycles in the ecosystem (Carnicer et al., 2011). Thus, quantifying the expected 

changes in lake water temperature can enable the identification of potential risks and inform 

management decisions to mitigate the impacts of climate change on freshwater ecosystems (O'Reilly 

et al., 2003). 

Water temperature is a fundamental abiotic factor that influences the ecology of lakes, water quality, 

and human activities. Temperature affects the distribution, abundance, and behavior of aquatic 

organisms in lakes, and changes in temperature can have cascading effects on the entire ecosystem. 

Temperature also affects water quality by influencing the physical, chemical, and biological 

properties of water (Gebrekiros, 2016). Additionally, high water temperatures can promote the growth 

of harmful algal blooms, which can produce toxins and impact the health of humans and animals that 

rely on the lake for drinking water or recreation (Chapra et al., 2017). Finally, water temperature can 

impact various human activities in and around lakes, such as swimming, boating, fishing, and water 

supply. Therefore, it is essential to monitor and understand water temperature dynamics in lakes to 

inform decision-making regarding lake management, water quality, and human activities. By 

understanding the impacts of meteorological variables on lake surface water temperature (LSWT), 

we can develop effective strategies to protect and manage these important ecosystems.  

Ice thickness is another vital indicator of seasonal dynamics, influencing aquatic life, water quality, 

and human activities such as spiritual rituals, competitions in ice skating, tournaments for ice fishing, 

and the extended utilization of winter ice roads in lake ecosystems (Knoll et al., 2019). Predicting 
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and understanding the dynamics of ice thickness (IT) on lakes is scientifically necessary because it 

can analyze the impact of climate on ice phenology, the lake's physical, chemical, and biological 

processes, and can also inform decisions regarding ice-related activities, such as transportation, 

fishing, and recreation, to ensure safety and minimize environmental impacts (Masterson, 2009; 

Obertegger et al., 2017).  

This study also focuses on modelling and understanding the dynamics of IT in lakes and 

understanding the main influential factors affecting them by machine learning techniques. The 

relationship between these factors is intricate, non-linear, and time-varying, making it difficult to 

predict the changes in LSWT and IT accurately. A comprehensive understanding of the complex 

interaction among the factors is essential to develop accurate models for predicting LSWT and IT, 

which is crucial for the management of freshwater resources and aquatic ecosystems.  

1.2. Factors affecting LSWT and IT modeling approaches  

Several models have been developed to forecast LSWT and IT, which can be broadly classified into 

two categories: physically based models and data-driven models. Physically based models rely on 

fundamental equations to simulate the thermal dynamics of lakes, such as heat transfer, mixing, and 

stratification processes, without relying on LSWT or IT data. However, empirical relations are usually 

used for calibration, which require LSWT and IT measurements. In contrast, data-driven models rely 

on statistical and machine learning (ML) techniques to establish relationships between LSWT or IT, 

and various meteorological variables. These models utilize LSWT or IT data for calibration and 

prediction. The application of data-driven models is more straightforward than physically based 

models, and they can provide predictions with a lesser amount of data about the lake’s morphology. 

However, data-driven models do not explicitly include the underlying physical processes governing 

the thermal response of lakes. In contrast, physically based models provide a more comprehensive 

understanding of the thermal dynamics of lakes that require less amount of data in comparison to 

data-driven models but more kinds of input data and a higher computational cost. Therefore, choosing 

the appropriate modeling approach depends on the specific application and the availability of data 

and computational resources. 

Physical models for both LSWT and IT require a variety of input data, including meteorological data, 

lake characteristics such as bathymetry, as well as hydrological data such as water inflow and outflow, 

which can influence IT and LSWT. Siegert et al. (2012) developed a physical model for IT that 

requires detailed meteorological and hydrological data. These models are based on fundamental 

principles of thermodynamics and fluid dynamics and are thus more interpretable and provide a better 

understanding of the underlying physical processes. Physical models for LSWT are typically based 
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on a set of deterministic equations describing the heat budget for a bulk volume (e.g., Ragotzkie, 

1978) or for a discretized version (one-, two-, or three-dimensional, e.g., Irving et al., 2006, Hipsey 

et al., 2019) of the water body. These models require a comprehensive understanding of the physical 

processes that govern the thermal response of lakes, including heat transfer, mixing, stratification, 

and advection processes.  

Data-driven models for predicting LSWT and IT are characterized by a wide range of stochastic 

methods, including both linear and non-linear regression models as well as more advanced 

approaches such as autoregressive, periodic autoregressive (Benyahya et al., 2007), and evolutionary 

polynomial regression models (Doglioni et al., 2008). These models are developed to establish 

relationships between the observed output and other influential factors, such as AT (Assel, 1976). 

These data-driven models require an extensive repository of both input factors and desired outcomes. 

Presently, acquiring finely detailed data in terms of spatial and temporal resolution is more convenient 

compared to the past. The use of ML algorithms, such as artificial neural networks (ANN), decision 

trees (DT), and support vector regression (SVR), has also gained popularity in recent years as a 

general-purpose computational tool for developing data-driven models (Mohri et al., 2018). These 

ML algorithms can handle large and complex datasets and are capable of capturing non-linear 

relationships between variables, which makes them suitable for modeling the highly non-linear 

dynamics of LSWT and IT. However, the performance of these models depends on the quality and 

quantity of the available data, as well as the accuracy of the selected input variables and the chosen 

parameters used to optimize the model. 

The reason we use ML models is primarily driven by their exceptional flexibility. ML models can 

autonomously learn complex patterns and relationships from data. This adaptability allows them to 

handle various situations and accommodate changing information. ML models enable us to make 

sense of intricate data patterns and understand the importance of predictors.  

1.3. List of symbols 

The symbols used in this study are presented in Table 1.1. This table serves as a reference, facilitating 

readers' comprehension of the assorted terms and symbols employed throughout our research. 

Table 1.1. List of symbols used in the thesis. 

AI Artificial Intelligence  

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Neural Network 

AP Air Pressure 

AT Air Temperature 

BOM Beginning Of the Month 

BPNN Backpropagation Neural Network 
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CDOY Cosine of Day Of the Year 

CWT Continuous Wavelet Transform 

DL Deep Learning 

DOY Day Of the Year 

DT Decision Tree 

DWT Discrete Wavelet Transform 

ESA European Space Agency's 

ERT Extremely Randomized Tree 

GA Genetic Algorithm 

GAM Generalized Additive Model 

GBT Gradient Boosting Trees 

GEP Gene Expression Programming, a variant of Genetic Programming 

GP Genetic Programming 

KNN K-Nearest Neighbor 

LSTM Long Short-Term Memory 

LSWT Lake Surface Water Temperature 

LWR Longwave Radiation 

MAMM Moving Average with Min-Max  

ML Machine Learning 

MLPNN Multi-Layer Perceptron Neural Network 

PGRNN Physics-Guided Recurrent Neural Network 

PSO Particle Swarm Optimization 

R Rainfall 

RF Random Forest 

RH Relative Humidity 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

RT Regression Tree 

SCDOY Sine and Cosine of Day Of the Year 

SDOY Sine of Day Of the Year 

SMHI Swedish Meteorological and Hydrological Institute  

SVM Support Vector Machine 

SVR Support Vector Regression 

SWR Shortwave Radiation 

T Temperature 

WS Wind Speed 

IT Ice thickness 

AI Artificial Intelligence 

WT Wavelet Transform 

 

1.4. Thesis outline 

The following list highlights and summarizes the main contributions of this thesis and its outline. 

Each following chapters contain an introduction, literature review, and methodology specific to that 

section. This comprehensive approach ensured a thorough examination of each aspect of the research 

topic, including the identification of key research gaps and the development of novel methodology. 

1.4.1. Chapter 2 – Materials and methods 

Chapter 2 presents the datasets and methodology used for the accurate modeling and prediction of 

LSWT and IT. For LSWT models, two synthetic lakes are used to explore how lake depths impact 

the analysis. Besides, LSWT data for 2024 lakes from CCI datasets (derived from the satellite 
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observations for more than 2000 water bodies) are considered to analyze the effect of different climate 

regions. For IT model, we focused on two lakes in Sweden. In the methodology section, ML 

methodologies, such as ANN, DT, K-nearest neighbors (KNN), and SVR, to model and predict LSWT 

and IT are explained. These ML algorithms are capable of detecting complex nonlinear relationships 

between various input variables, such as AT, solar radiation, wind speed, and the output variables, 

LSWT and IT. The performance of the ML models is highly dependent on the selection of appropriate 

hyperparameters (parameters that are determined by users), which are determined by the user and 

affect the algorithms' learning behavior and prediction accuracy. 

In this section, the optimization of hyperparameters for each ML model is explained in detail. This 

involves selecting the optimal values for hyperparameters. The chosen hyperparameters for each 

model are elaborated in Appendix A, providing transparency and reproducibility of the modeling 

process. Each section of the methodology is presented with a thorough elaboration of its respective 

materials, including preprocessing steps, and model evaluation metrics. 

Additionally, this study provides a comprehensive explanation of several crucial aspects related to 

ML performance evaluation. Notably, the concept of feature ranking (FR) is extensively discussed, 

wherein each feature is assigned a rating that indicates its relevance in the ML model. The intricate 

details of this method, including the implementation and significance, are elucidated in this study, 

facilitating a comprehensive understanding of its applicability and effectiveness in ML-based 

prediction tasks. 

To evaluate the ML performance, we used specific metrics to assess the effectiveness and accuracy 

of the models and explained them in detail. These metrics serve as quantitative measures to gauge the 

performance of ML algorithms in solving a given task. They provide insights into how well the 

models are able to generalize and make predictions based on the available data. 

1.4.2. Chapter 3 – Selecting machine learning techniques and the features 

affecting LSWT by using a synthetic lake 

Chapter 3 delves into the application of various ML techniques for LSWT prediction and modeling. 

The evaluation of different preprocessing techniques and ML approaches is discussed in detail, 

highlighting the strengths of each approach. The memory of the forcing, which refers to the influence 

of meteorological data from previous days on LSWT, is also examined to provide a more 

comprehensive understanding of the factors that affect LSWT. 

To evaluate the influence of lake depth on LSWT, a synthetic case study is used. We used a physically 

based model named General Lake Model (GLM; Hipsey et al., 2019) to generate artificial time series 
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of LSWT data based on the general morphological and climatological features of Lake Caldonazzo 

(Italy) but considering different depths. The thermal dynamics of the synthetic lake is assumed to 

reproduce the main characteristics of real-world lakes, but in perfectly controlled conditions, 

providing a reliable testing ground for the ML models. A literature review is also conducted, 

summarizing the previous studies that employed ML approaches for LSWT prediction and modeling. 

This review serves as a foundation for the current study and provides insights into the current state-

of-the-art in this field. 

A large number of ML techniques are employed in this study: ANN methods including 

backpropagation neural network (BPNN), multi-layer perceptron neural Network (MLPNN) and long 

short-term memory (LSTM), DT and its derivatives, KNN, and SVR. The evaluation of the results 

demonstrates that ANN just slightly outperforms the other ML techniques in terms of prediction 

accuracy. In addition, a critical analysis of role of preprocessing is developed, considering techniques 

like normalization and wavelet decomposition to preprocess the input data and improve the 

performance of the ML models.  

1.4.3. Chapter 4 – The influence of climate on the lakes’ thermal response 

In Chapter 4, the developed ML model is applied to CCI dataset (http://cci.esa.int/lakes), obtained 

from satellite observations consisting of 2024 lakes worldwide. This large dataset allows for a robust 

evaluation of the model's performance, as well as an exploration of the influence of regional climate 

differences on the predictors of LSWT. To achieve this, the most influential predictors in each region 

are identified using a feature importance analysis. 

The feature importance analysis is performed to identify the most significant predictors of LSWT, 

considering the meteorological inputs as well as the day of the year (DOY), which has the greatest 

impact on LSWT values. The methods used for retrieving the features' importance are explained in 

detail. This involves ranking the predictors based on their contribution to the model's performance, 

which is measured using evaluation metrics. The identified predictors can provide insights into the 

drivers of LSWT variability.  

The dataset used in this study consists of meteorological inputs from the ERA5 reanalysis dataset 

(Hersbach et al., 2020) and LSWT data from the CCI LSWT dataset. The ERA5 dataset provides 

global meteorological data with high spatial and temporal resolution, making it a valuable resource 

for LSWT prediction and modeling. The CCI dataset is also a reliable source of LSWT data.  

http://cci.esa.int/lakes
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1.4.4. Chapter 5 – Ice dynamics in boreal lakes 

In Chapter 5, the ML model is applied to predict IT in lakes located in Sweden, northern Europe. We 

study how the predictors are related by analyzing their correlations. Furthermore, we incorporate the 

concept of memory of predictors to better understand its impact on the analysis. The feature 

importance is used to assess the effect of each predictor variable on the IT model and prediction.  

The identified predictors can provide insights into the drivers of IT variability. Furthermore, 

understanding the key drivers of IT variability can help identify potential climate change impacts on 

ice cover and inform mitigation and adaptation strategies. The dataset used in this study includes 

meteorological data from the ERA5 reanalysis dataset and IT from Swedish Meteorological and 

Hydrological Institute (SMHI, https://www.smhi.se).  

1.4.5. Chapter 6 – Conclusions 

In this section, general conclusions are drawn based on the findings of the study. The concluding 

remarks were developed by synthesizing the results of the different sections and identifying common 

themes and patterns. The conclusions emphasized the strengths and weaknesses of ML methodologies 

to model and predict LSWT and IT, as these variables play a critical role in climate change impacts. 

The study demonstrated the effectiveness of various ML algorithms in predicting LSWT and IT and 

highlighted the key predictors influencing these variables in different regions. 

The study also highlighted the need for reliable data sources, such as meteorological data for accurate 

predictions and model validation. Additionally, the importance of considering the memory of 

previous days of the data was emphasized, as it improved the accuracy of predictions.  

1.4.6. Appendix 

At the end of the thesis, the hyperparameters that we used for the ML models are briefly explained 

and the values and methods for each model are written in order to be able to redo the analysis. 

Moreover, the review of the papers using machine learning to simulate and forecast water temperature 

in rivers is written in a table. The metrics used to evaluate the performance of ML in synthetic models 

are included, together with the hypsographic curves defining the synthetic case studies.  



Yousefi, ML Models for Lake Surface Water Temperature and Ice Thickness 13/155 

Chapter 2. Materials and methods 

2.1. Available data 

Various types of datasets were employed based on the distinct sections of the research. The data 

concerning lake surface water temperature (LSWT) were obtained from a physically based model 

and the satellite observations, and ice thickness (IT) datasets are measurement data which will be 

elaborated upon in the subsequent sections. 

2.1.1. Generation of LSWT for a synthetic lake 

To select the features affecting the machine learning (ML) models, we employed a synthetic example, 

giving us complete control over variables for comparing and evaluating diverse approaches. This 

constructed instance allows us to examine how lake depth affects LSWT responses, while ensuring 

consistent meteorological inputs, enabling us to assess the capabilities of ML models under varying 

circumstances. 

The synthetic case study employed the General Lake Model (GLM; Hipsey et al., 2019) to generate 

LSWT data. While specific model intricacies are of less concern, this approach lets us concentrate on 

ML model performance without the intricacies of actual data. This artificial scenario enables us to 

delve into the significance of depth while fixing the other parameters, thereby isolating its impact. 

The study selected Lake Caldonazzo, a medium-sized peri-alpine lake as a reference, incorporating 

realistic morphology and climatic conditions. 

2.1.2. LSWT from the CCI-lakes database 

This dataset consists of processed satellite observations covering global inland water bodies from 

1992 to 2020. It's a product of the European Space Agency's (ESA) Lakes Climate Change Initiative 

(Lakesa_cci; http://cci.esa.int/lakes) project, encompassing over 2000 water bodies. The dataset 

includes the Lakes Essential Climate Variable with six interconnected parameters describing the 

lake’s physical condition, including, lake surface temperature, water level and extent, ice cover and 

thickness, and lake water leaving reflectance which LSWT derived from the satellite observations. 

LSWT data come with associated per-pixel quality levels, indicating an evaluation of the accuracy of 

the data and its estimated level of uncertainty. The validation process for LSWT relies on comparing 

satellite data with in-situ measurements, gathered through direct communication with limnologists 

and organizations willing to provide data for validation objectives (Carrea et al., 2022). 

http://cci.esa.int/lakes
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2.1.3. Ice thickness for Swedish lakes 

Two lakes located in Sweden were selected as the focal points for our case studies for IT model. The 

data for these investigations were sourced from the database maintained by the Swedish 

Meteorological and Hydrological Institute (SMHI). Notably, SMHI engages in the comprehensive 

measurement and documentation of various hydrological parameters, including water discharges, 

lake levels, IT, and the temporal evolution of ice freeze-up and break-up events. The lakes we have 

chosen are Lake Runn (in southern part of Sweden) and Lake Gouta (in the northern part of Sweden) 

because both had larger amount of IT data. 

2.1.4. Retrieval of meteorological information from ERA5 

The meteorological variables were acquired from ERA5 (Hersbach et al., 2020), which is the fifth 

generation of the ECMWF reanalysis of global climate and weather. ECMWF introduced an 

extension of ERA5, encompassing an additional 21 years of global atmospheric reanalysis data, 

effectively extending the dataset back to 1979, making it an increasingly comprehensive tool for 

climate research and analysis. ERA5 is accessible at 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived-near-surface-meteorological-variables. 

The dataset encompasses a range of meteorological parameters extracted based on the latitude and 

longitude of the lakes. These parameters include air temperature (K) 2 meters above the lake surface, 

wind speed (m/s), air pressure (Pa), rainfall (kg/m²/s), specific humidity (kg/kg), and downward 

longwave and shortwave radiations (W/m²). The values were originally recorded on an hourly basis, 

but we converted them into daily mean values. 

2.1.5. Koppen’s climate classification 

The Köppen climate classification classifies climates into five primary categories, and each of these 

categories is further segmented based on distinctive patterns of temperature and precipitation 

throughout the seasons. These major divisions are designated as tropical, dry, temperate, snow and 

polar (Köppen, 1918). We classified the performance (explained in section 2.3) of our model based 

on Köppen regions to evaluate the effect of climate on LSWT (Chapter 4).  

2.2. Machine learning algorithms 

Machine learning (ML) is a subfield of artificial intelligence (AI) that involves the development of 

algorithms that can automatically learn patterns and relationships in data, without being explicitly 

programmed. ML algorithms utilize statistical and mathematical techniques to analyze data and 

identify patterns that can be used to make predictions or decisions. There are several types of ML 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived-near-surface-meteorological-variables
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algorithms, including supervised learning, unsupervised learning, and reinforcement learning, which 

are applied depending on the nature of the problem and the available data. ML algorithms have been 

extensively applied in diverse fields, such as natural language processing, image recognition, and 

predictive modeling, to provide solutions to complex problems. In this work, we used supervised ML 

approaches because of having the observed values to evaluate the model. For the sake of ensuring the 

reliability and consistency of the outcomes, it is recommended to execute the model multiple times, 

given that the initial weights and biases are randomly assigned in each iteration. In this research, we 

carried out the model running procedure 20 times and then computed the mean of the results obtained. 

In this chapter, we review the main features of the ML algorithms that we analyzed in this study. 

The ML algorithms listed below are applied to forecast LSWT as a comparative analysis in Chapter 

3. In Chapter 4, where the dataset involves 2024 lakes and we aim for efficient performance with the 

sparse observed LSWT data, we opt for the Backpropagation Neural Network (BPNN). In Chapter 5, 

considering the outcomes of Chapter 3 and having two distinct case studies, the Long Short-Term 

Memory (LSTM) model exhibits relatively superior performance, especially for IT prediction where 

memory of previous days is crucial. Despite taking more time to run compared to BPNN, LSTM 

proves more robust in IT prediction, providing an additional reason for its selection. 

2.2.1. Artificial Neural Network (ANN) and derived algorithms 

ANN algorithms are intricate systems that consist of interconnected processors and follow 

organizational principles resembling the recognition of patterns, prediction, and optimization of 

weights and biases (Jain et al., 1996). The algorithm of the network comprises interconnected nodes, 

referred to as neurons, arranged in parallel layers (Figure 2.1). The initial layer, known as the input 

layer, receives input data, which then propagates through a variable number of intermediate layers, 

called hidden layers, until it reaches the final layer, known as the output layer. The output layer 

provides the simulation results. The links between nodes in adjacent layers transfer signals from 

upstream neurons to downstream neurons. Within each hidden and input layer, the neurons are 

provided with an additional parameter known as biases. The signal emitted by a neuron is 

appropriately weighted before being transmitted to the subsequent neuron. It is then summed with 

signals from other neurons and the bias of the same layer. This sum is then processed by an activation 

function, which produces the output signal that is transmitted downstream. 
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Figure 2.1. The general scheme of an Artificial Neural Network (ANN). 

ANN involves determining the number of hidden layers and the number of neurons within each layer, 

as well as selecting the activation function type and the optimization parameters for weight and bias 

calibration. The optimization procedure employed defines the specific approach within the ANN 

framework. Typically, the optimization process commences with the assignment of random values to 

the weights and biases. During the initial run, the ANN generates an output that is then compared to 

the desired target. Subsequently, the weights and biases are updated. This iterative process continues 

until the discrepancy between the output and the target is minimized. 

Within our analyses, we included three distinct ANN types: the multi-layer perceptron neural network 

(MLPNN), the backpropagation neural network (BPNN), and the Long Short-Term Memory (LSTM), 

which is under the category of recurrent neural networks (RNN). Additionally, we considered the 

adaptative neuro-fuzzy inference system (ANFIS), which comprises a single layer of neural network. 

Subsequent sections of this study delve into the further examination of these methodologies. 

The MLPNN is an ANN architecture characterized by the presence of multiple hidden layers. In the 

context of this study, we employ the term "MLPNN" specifically to describe a feed-forward neural 

network. The notable characteristic of the MLPNN is its weight updating process, which is based on 

the error propagated from the input layer to the output layer in a unidirectional manner. 

The BPNN approach is distinguished by its weight and bias update algorithm, which aims to minimize 

errors (Li et al., 2012). Initially, the value of each neuron is computed using the initial weights. 

Subsequently, the weights are adjusted in a backward direction, starting from the output layer and 

moving towards the input layer. This adjustment is guided by the understanding of how much each 
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node contributes to the prediction error, considering observed data (Hecht-Nielsen, 1992). Unlike in 

the MLPNN, where weights are updated solely based on the error and move in a forward direction 

(Dudek, 2019), in BPNN, the weights are updated in a backward manner from the output layer 

towards the input layer.  

LSTM method belongs to the category of RNN, a subset of ANN that exhibits sequential connections 

between time steps (Sainath et al., 2015). Compared to standard RNNs, LSTM has the capability to 

retain information for extended durations. Within the hidden layers of LSTM, specialized units called 

memory blocks are employed. These memory blocks consist of memory cells responsible for storing 

and regulating the flow of information through three gates (Figure 2.2). These gates are the forget 

gate, responsible for deciding whether to retain or discard information; the input gate, which allows 

the addition of new information to the cell; and the output gate, which outputs the pertinent 

information. The hidden state, which encapsulates the neural network's memory, preserves the prior 

information (Gonzalez-Dominguez et al., 2014). 

 

Figure 2.2. The scheme of long short-term memory (LSTM), a branch of ANN. 

ANN is a versatile modeling approach that effectively captures intricate, nonlinear relationships 

among dependent and independent variables, as well as predictor variables. It utilizes a diverse 

training algorithm, allowing for comprehensive analysis. Liu and Chen (2012) highlighted the cost-

effectiveness of ANN compared to the three-dimensional semi-implicit Eulerian-Lagrangian finite-

element method (Zhang and Baptisa, 2008), making it suitable for water quality prediction and 

ecological management. Despite these advantages, the ANN is regarded as a black box model, 

necessitating significant computational resources and being prone to overfitting (Tu, 1996). To 

address overfitting concerns, dropout techniques have been proposed (Piotrowski et al., 2020; Zhu 

and Piotrowski, 2020), whereby nodes and their corresponding connections are randomly dropped 

during the training phase (Srivastava et al., 2014). 
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2.2.2. The Adaptative Neuro-Fuzzy Inference System (ANFIS)  

The ANFIS is a specific subcategory of ANN that is based on the Takagi-Sugeno-type fuzzy inference 

system (Anikin and Zinoviev, 2015). ANFIS utilizes fuzzy logic principles to train a model set and 

calculate the parameters of the membership function, which represents the degree of truth in fuzzy 

logic (Opeyemi and Justice, 2012). There are three widely employed ANFIS methods: (i) ANFIS with 

grid partition method known as ANFIS_G, (ii) ANFIS with subtractive clustering (SC) referred to as 

ANFIS_S, and (iii) ANFIS with fuzzy c-means clustering (FCM) called ANFIS_F. The primary 

difference among these algorithms lies in the optimization of the fuzzy rules. ANFIS_G requires a 

larger number of fuzzy rules, while ANFIS_S and ANFIS_F aim to provide a model with fewer fuzzy 

rules. For instance, ANFIS_G cannot be used with more than six input variables. In our study, we 

employed ANFIS_G, taking into consideration its rules and limitations. Based on a first order Sugeno 

model, the fuzzy logic involves two if-then rules. The ANFIS network comprises five layers (Figure 

2.3). Layer 1, known as the fuzzification layer, consists of adaptive nodes that determine the degree 

of fuzzy membership of the inputs. In our study, the triangular membership function yields more 

accurate results compared to other functions. Layer 2 involves the multiplication of connected signals 

(𝑤𝑖), and the output of this node represents the firing strength of the rule. In layer 3, node N 

normalizes the firing strength (𝑤  𝑖). Layer 4 computes the output of the adaptive nodes as the product 

of the previous layer’s results and a first-order polynomial (𝑓𝑖) according to the first order Sugeno 

model. Finally, in layer 5, the summation of all connected signals is calculated (Opeyemi and Justice, 

2012). 

 

Figure 2.3. The scheme of Adaptative Neuro-Fuzzy Inference System (ANFIS), a branch of ANN that exploits 

fuzzy logic (adapted from Opeyemi and Justice, 2012). 

2.2.3. Decision Tree (DT) and derived algorithms 

DT are utilized in classification or regression scenarios to discern and forecast by means of 

partitioning, thereby enabling the identification of features and extraction of patterns. DTs are 
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commonly employed in prediction models and exploratory data analysis (Myles et al., 2004). As 

illustrated in Figure 2.4, internal nodes and root nodes traverse the tree structure to obtain accurate 

outputs, referred to as leaf nodes, which represent categories or patterns (Navada et al., 2011). In our 

investigation, we assessed three approaches: (1) the standard DT method, along with two derived 

algorithms, namely (2) extremely randomized tree (ERT) and (3) random forest (RF). 

 

Figure 2.4. The scheme of Decision Tree (DT). 

 The conventional DT follows a top-down approach, starting from the root and extending 

towards the leaf nodes, where no further splitting occurs (Figure 2.4). The root and internal nodes are 

divided into branches that terminate at child nodes. In regression scenarios, the attribute or feature 

used for splitting aims to minimize the variance at each split by considering the weighted average 

variance of the child nodes (Sharma, 2020). 

 The ERT method adopts a randomized approach by randomly selecting features and cutting 

points (threshold values) for splitting (Geurts et al., 2006). It undergoes repetitive training processes, 

constructing a model comprising multiple trees utilizing the entire dataset (Alswaina and Elleithy, 

2018; Heddam et al., 2020). ERT exhibits superiority over conventional DT due to its ability to 

prevent overfitting, efficient computational performance, random feature selection and cut point 

values, and improved prediction accuracy (Galelli and Castelletti, 2013). In the context of predicting 

water temperature in shallow lakes, Heddam et al. (2020) discovered that ERT demonstrates greater 

robustness compared to ANN and RF. 

RF is a versatile approach that encompasses both classification and regression tree groups. It 

operates by randomly selecting features and training them using bootstrap sampling, which involves 

random samples with replacement (Figure 2.5). The final decision of the RF is determined by the 

majority consensus among the individual trees. RF offers several advantages, including accurate 
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prediction, the integration of favorable features, built-in performance evaluation, assessment of 

feature importance and relative weights based on compositional similarity (Svetnik et al., 2003). To 

reliably estimate the significance of features, a large number of trees should be utilized. Although the 

measurement of feature significance may vary in each run, the relative importance rankings of the 

features remain relatively stable (Liaw and Wiener, 2002). 

 

Figure 2.5. The scheme of Random Forest (RF) (Aldrich, 2020). 

2.2.4. Support Vector Machines (SVM) 

SVM is a machine learning approach used for classification and regression analysis, where the 

regression variant is known as support vector regression (SVR). SVM offers several advantages, 

including good performance with a small number of data points, low computational requirements, 

and robustness in the presence of outliers in the model (Steinwart and Christmann, 2008). Figure 2.6 

illustrates a classifier that utilizes hyperplane division, which needs to be optimized not only for the 

training data but also for any other test data (Gunn, 1998). In an n-dimensional Euclidean space, a 

hyperplane is a flat subset with a dimension of n-1, effectively dividing the space into two separate 

parts (Veling et al., 2019). SVR aims to minimize the differences (offsets) between the features and 

the hyperplane, while SVM seeks to maximize the separation distances between the features (Quan 

et al., 2020). In Figure 2.6, the circles and triangles represent the features that are divided by the 

hyperplane with the best margin. Since SVR only relies on a subset of the training data and is 

independent of the input space dimensions, it is advantageous to use it for high-dimensional input 

spaces (Drucker et al., 1997). The hyperparameters of the kernel function, which maps the 

nonlinearity in regression algorithms to optimize the hyperplane’s location, and the penalty can be 

fine-tuned using optimization algorithms such as genetic algorithm (GA) to achieve more accurate 

results (Quan et al., 2020).  

https://sciprofiles.com/profile/367134
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Figure 2.6. The scheme of support vector machines (SVM). The circles and triangles are the features that need 

to be divided by a hyperplane with the best margin. 

2.2.5. K-Nearest Neighbor (KNN) 

The KNN algorithm is employed when there is limited prior knowledge about the data distribution 

(Peterson, 2009). Classification in KNN involves assessing the similarity or distance between 

samples (Keller et al., 1985). By identifying the nearest neighbors among the training data (as shown 

in Figure 2.7), candidates for a particular category are evaluated based on their similarities to the 

categories of the K nearest neighbors (each category is represented by black circles in Figure 2.7). 

The category with the highest score corresponds to the category assigned to the sample (Jiang et al., 

2012). 

 

Figure 2.7. The scheme of KNN scheme. Small circles, squares and stars represent different categories. 

https://en.wikipedia.org/wiki/Support_Vector_Machines
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
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2.3. Metrics used to evaluate ML performance 

Our analysis of the ML performance is based on the values of the root mean square error (RMSE) 

between the simulated and observed target variable, and due to the specific requirements of each 

project, we found it necessary to utilize additional metrics. RMSE is computed for both the training 

and test data using the standard definition. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)2
𝑁

𝑖=1

 (2.1) 

Where 𝑖 is the time index, 𝑁 is the number of samples, 𝑠𝑖𝑚𝑖 (simulated) is the variable (either LSWT 

or IT) modelled by ML, and 𝑜𝑏𝑠𝑖 is the observed value (obtained from GLM simulation). Perfect fit 

is obtained for RMSE = 0 (°C or cm, depending on the variable). 

The Nash-Sutcliff efficiency index (NSE) accounts for the variability of the observations to rescale 

the RMSE: 

𝑁𝑆𝐸 = 1 −
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)2𝑁
𝑖=1

= 1 −
𝑅𝑀𝑆𝐸2

𝜎𝑜𝑏𝑠
2  (2.2) 

where 𝑜𝑏𝑠̅̅ ̅̅ ̅ is the mean of the observations. NSE = 1 indicates perfect fit, while using the mean of the 

observations as a predictive model would lead to NSE = 0. The information is equivalent to that 

obtained by RMSE if the variance of the observations, 𝜎𝑜𝑏𝑠
2 , does not change. 

Considering the distinctive seasonal patterns inherent in the LSWT series, we opted for a modified 

definition of the NSE index (Schaefli and Gupta, 2007; Piccolroaz et al., 2016). In this adaptation, 

we employed the inter-annual mean value corresponding to each day of the year, commonly known 

as the mean year, as a benchmark model. This departure from using the overall mean of the target 

series allows for a more accurate assessment of the model's performance within the context of the 

specific seasonality observed in the data. In order to delve into the model's efficiency in capturing 

these non-seasonal dynamics, it is advisable to utilize a modified version of NSE. The Nash-Sutcliffe 

Efficiency with inter-annual mean year. 

𝑁𝑆𝐸∗ = 1 −
𝑅𝑀𝑆𝐸2

1
𝑛
∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅

𝑤)
2𝑛

𝑖=1

 
(2.3) 

where 𝑜𝑏𝑠̅̅ ̅̅ ̅
𝑤 describes the annual variability of the mean year which is predicted LSWT by ML model 

using only sine and cosine of day of the year (DOY) as input (presented in Figure 2.8). This metric 
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provides valuable insights regarding the model's ability to account for variations that are not 

encompassed within the seasonal component. 

 

Figure 2.8. Mean year value obtained by ML model, using sine and cosine of DOY as input for Lake Garda. 

Notably, an NSE* value of 1 serves as an indication of an impeccable match between the model and 

the data (equivalent to NSE=1), signifying a remarkable level of accuracy in capturing the underlying 

dynamics. Conversely, an NSE* value of 0 suggests that the model's performance is comparable to 

assuming the mean year of measurements as a predictor. This implies that the model fails to exhibit 

any superior predictive capability beyond a simplistic approach based on the inter-annual day-to-day 

average of the observed values. This metric is employed in Chapter 4 to gain a more profound 

understanding of the influence of meteorological variables on LSWT prediction, in addition to those 

obtained using only the Day of the Year (DOY). 

2.4. Averaging 

Lakes display a filtering tendency when subjected to external influences, owing to the heat capacity 

of water mass. To effectively capture this phenomenon, we introduced a temporal averaging feature 

during the pre-processing stage. By strategically considering various window sizes, we pinpointed 



Yousefi, ML Models for Lake Surface Water Temperature and Ice Thickness 24/155 

the optimal temporal averaging duration. This selection was based on its profound impact on our 

analysis, allowing us to capture the memory of previous days. Due to this, we explored three different 

averaging methods to retain the memory of meteorological variables from previous days. In all the 

analyses that we performed; we used a daily time step. 

A backward weighted average can be defined, in general, as 

𝑋�̅� =
∑ 𝛾

𝑖
 𝑋𝑡−𝑖

𝑁𝑎𝑣𝑒
𝑖=0

∑ 𝛾
𝑖

𝑁𝑎𝑣𝑒

𝑖=0

 
(2.4) 

where 𝑋𝑡̅̅ ̅ represents the average of the variable at time 𝑡, 𝑁𝑎𝑣𝑒 denotes the number of days defining 

the averaging window, the subscript 𝑖 refers to the day number (with 𝑖 = 1 the day before 𝑡 and 𝑖 =

𝑁𝑎𝑣𝑒 the earliest and furthest day in the time window), so that 𝑋𝑡−𝑖 represents the value of the variable 

on the 𝑖th day before time 𝑡, and 𝛾𝑖 is the weight. 

The first method employs a straightforward averaging technique by assuming ‘uniform’ weights 

𝛾
𝑖
= 1 (2.5) 

and corresponds to the standard average. 

The second method adopts weights that are inversely proportional to the number of days before the 

current time, 

𝛾
𝑖
=
1

𝑖
 

(2.6) 

so, we term it as ‘hyperbolic’ average. 

The third method assigns an exponential decay to the weights, 

𝛾
𝑖
= exp (−

𝑖

𝑇𝑒
) 

(2.7) 

where 𝑇𝑒 is the e-folding time scale; this method will be termed ‘exponential’. In order to have a 

simple comparison with the previous approaches, we fixed 𝑇𝑒 = 𝑁𝑎𝑣𝑒 3⁄ , so that the furthest value 

(the earliest day in the averaging window) has a weight 𝛾𝑖 = exp(−3) ≅ 0.05.  

Both in the second and third method, the use of variable weights allows us to account for the historical 

progression of the forcing, but with greater emphasis placed on more recent values. The main 

difference is that the hyperbolic weights are characterized by a fixed decay rate with the temporal 

distance, while the use of a small weight for the furthest value in the exponential average determines 
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a smooth transition between values inside and outside the averaging window, whose extension (𝑁𝑎𝑣𝑒) 

however determines the decay rate of the weights. 

We investigated the effect of using a weighted average of the forcing variables. This approach enabled 

us to consider the influence of past forcing events on the present system state, leading to a more 

comprehensive understanding of the dynamics involved. We conducted a comprehensive analysis for 

the two types of datasets considered in this work (synthetic lakes and lakes belonging to the CCI 

database) by examining various window sizes, with 𝑁𝑎𝑣𝑒 ranging from 0 to 100 days, to obtain the 

average of all variables. The results are presented in Figures 2.9, 2.10 and 2.11, showing the RMSE 

obtained by the BPNN model applied to reconstruct the LSWT. We note that this analysis anticipates 

the results discussed in chapters 3, 4, and 5, because of the need to introduce a general framework for 

the use of weighted averages. More details about the ML application are provided in the respective 

chapters. 

For the synthetic lake (see Chapter 3), as depicted in Figure 2.9, the hyperbolic averaging 

demonstrated superior performance (lower errors) compared to the two other methods, which are 

however satisfactory. Selecting the optimal window size for uniform and exponential averaging is 

crucial to decrese the error efficiently. Based on our findings, approximately 8 days for the shallow 

(5 m depth) lake and 15 days for the deep (60 m depth) lake proved to be the most suitable window 

size choices. A more extensive analysis on the best averaging window in the case of the uniform 

averaging is developed in Chapter 3 for AT. In such analysis, we did not apply all the methodologies, 

but only the uniform averaging, to determine the window size across various depths, obtaining a 

shorter window size for shallower lakes. Anyway, further analyses (not shown) suggest that the 

qualitative behaviour is consistent among the different approaches.  
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(a) (b) (c) 

 
  

(d) (e) (f) 

   

Figure 2.9. The results of using averaged meteorological data in synthetic lakes simulated by BPNN where the 

results refer to: (a, d) uniform averaging, (b, e) hyperbolic averaging, and (c, f) exponential averaging, for 

lakes with depth 5 m and 60 m, respectively. The window size is 𝑁𝑎𝑣𝑒, used in equation (2.4). 
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Within the CCI dataset (see Chapter 4), we selected representative lakes from distinct Köppen 

regions: Lake Victoria (maximum depth of 83 m) for the tropical region, Dead Sea (maximum depth 

of 306 m) and Lake Chad (maximum depth of 2 m) as a shallow lake for the dry region, Lake Garda 

(maximum depth of 346 m) for the temperate region, Lake Erie (maximum depth of 64 m) for the 

snow region, and Lake Zhari Namco (maximum depth of 71.55 m) for the polar region. Figure 2.9 

illustrates the results, indicating that uniform and exponential averaging consistently performs best 

based on higher performances (explained in section 2.3), even with a window size of up to 100 days. 

Moreover, when examining shallower lakes such as Lakes Victoria, Chad, and Erie, we observe that 

the minimum values for both uniform and exponential averaging align with our expectations, reaching 

to minimum error, especially when considering the training set. At approximately a window size of 

40, we attain the lowest errors for these instances, and the optimal window size is notably smaller 

when compared to deeper lakes.  It worths noting that Lake Zhari Namco (Figure 2.10, p, q, r) exhibits 

more noises compared to the other lakes, possibly due to a smaller available dataset in comparison to 

the other lakes. Different from Chapter 3, in the analysis of Chapter 4 we employed exponential 

averaging to define the best window size for each lake but, as already discussed, the results are 

consistent with all methods. 
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(a) (b) (c) 

  
 

(d) (e) (f) 

  
 

(g) (h) (i) 

   

(j) (k) (l) 
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(m) (n) (o) 

  
 

(p) (q) (r) 

   

Figure 2.10. The results of using averaged meteorological data in CCI lakes simulated by BPNN; where the 

first column from left is according to the uniform averaging, the second column for hyperbolic averaging and 

third column for exponential averaging. The results refer to: (a, b and c) Lake Victoria in tropical region, (d, e 

and f) Dead Sea and (g, h and i) Lake Chad in dry region, (j, k and l) for Lake Garda in temperate region, (m, 

n and o) for Lake Erie in snow region and (p, q and r) for Lake Zhari Namco in polar region. The window size 

is 𝑁𝑎𝑣𝑒, used in equation (2.4). 

In the case of ice-covered lakes (Chapter 5), Lakes Runn and Gouta are are the objects of the analysis, 

and they are both deep lakes (32 m and 58 m, accordingly). As shown in Figure 2.11, the uniform and 

exponential averaging seem to more clearly select an optimal value of the time window. Accordingly, 

in Chapter 5, we implemented exponential averaging to define the optimal window size. 
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Generally, the results of this section suggests that there is not a best averaging method for all cases, 

but the uniform and exponential methods hold a notable advantage and are consequently 

recommended for averaging the meteorological variables. 

(a) (b) (c) 

     

(d) (e) (f) 

   

Figure 2.11. The results of using averaged meteorological data in ice covered lakes simulated by BPNN where 

the results refer to: (a, d) the uniform averaging, (b, e) the hyperbolic averaging, and (c, f) the exponential 

averaging for Lake Runn and Lake Gouta, respectively. The window size is 𝑁𝑎𝑣𝑒, used in equation (2.4). 

2.5. Training and test sets selection 

Splitting the dataset into training and test sets is an essential step in ML, as it allows the model's 

performance to be evaluated on data that the model has not seen before. There are several ways to 

split the dataset, each with its own advantages and limitations. Cross-validation is a resampling 

method that divides the dataset into multiple partitions, creating various combinations of training and 

test sets to comprehensively assess model performance.  Its advantage lies in maximizing the 

utilization of all available data for both testing and training, ensuring diversity and adequacy in 

evaluation. There are several options for cross-validation. In random cross-validation, data is 

randomly partitioned into training and test sets in each assessment iteration. Although by randomly 

selecting data points for the training and test sets this method helps ensure that both sets are 

representative of the overall dataset, random cross-validation faces challenges when dealing with 
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autoregressive models. In fact, in these cases the same values are used for both input and reference 

data, compromising the independence of training and test sets. Last block evaluation is another 

option, particularly useful for time-ordered data where the model is trained on the first part of the 

time series and tested on the last part. The drawback of last block evaluation is that it does not 

maximize the utilization of available data, as the last fold (block) is excluded from the model training 

process. This limitation becomes apparent when only one forecast per time series can be calculated. 

In such cases, the forecast might reflect characteristics specific to the test set rather than capturing 

the broader patterns present in the entire dataset (Bergmeir & Benítez, 2012).Another option is the k-

fold cross validation method (Anguita et al., 2012), which is one of the successful ways that help to 

choose the best set for training and test in a non-random manner, thus being appropriate also for 

autoregressive models. This method involves partitioning the available data into k equally sized 

subsets or folds, where each fold is used once as the validation data while the remaining k-1 folds are 

used for training. This process is repeated k times, with each fold being used as the validation data 

once. This allows for a more accurate assessment of the model’s performance, as it is evaluated on 

multiple test sets rather than a single test set as in the last block evaluation. In addition, the k-fold 

approach helps to mitigate issues such as overfitting and biased training, as it provides a more 

representative sample of the data for training and validation. The choice of k is typically based on the 

size of the available data and computational resources, with a larger k resulting in a more 

computationally intensive process but potentially providing a more accurate assessment of model 

performance (Yadav and Shukla, 2016).  

Regarding the IT model (Chapter 5), we opted for the k-fold cross validation technique to determine 

the optimal divisions for test and training sets. Across all the models, we partitioned our dataset into 

five folds because this configuration yielded more robust results for both simulation (using the 

training set) and prediction (with the test set) compared to other fold numbers. We initially split the 

entire dataset into five folds, including the missed observed IT. Subsequently, we provided the model 

with the training set, including the days for which we had IT data, and conducted predictions for all 

days within both the training and test sets.  

In the case of the LSWT models, we used last fold as the test set (last block approach). In the CCI 

dataset (Chapter 4), the distribution of the data was uneven, with more frequent data in the final fold. 

Consequently, the final fold is selected as the test set, while the remaining dataset was used as the 

training set. Additionally, we observed a more efficient model using the last block approach compared 

to other folds as the test set, avoiding overfitting. For the synthetic lakes (Chapter 3), as our primary 

focus was on assessing ML techniques, we employed a straightforward data splitting approach. 
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Although this method could not assess other folds as the test set, it produced satisfactory results 

without encountering the issue of overfitting. 

2.6. Optimizing the hyperparameters 

The learning process of a neural network involves various hyperparameters (parameters determined 

by the user), such as the number of hidden layers, the number of nodes in each layer, the choice of 

activation function, optimizer, learning rate, and others. Detailed information of hyperparameters for 

each ML technique is explained in Appendix A. Optimizing these hyperparameters is essential to 

achieve more accurate forecasts. In this study, we have selected the GA as an optimization method to 

approximate the best set of hyperparameters. GA is a powerful optimization technique capable of 

handling both discrete and continuous problems with multiple objectives. Its robustness in finding 

solutions makes it suitable for avoiding local optima. 

GA is an adaptive algorithm originally proposed by Holland et al. (1992), inspired by evolutionary 

theory, where stronger genes have a higher likelihood of being preserved in subsequent generations. 

It begins with a set of random solutions, evaluate their fitness using a predefined function, and favor 

the selection of superior solutions for reproduction. New solutions are created through crossover and 

mutation, augmenting the population while replacing weaker solutions. This process continues until 

a specific termination condition is met.  

The optimization's goal is to minimize the RMSE for both the training and test sets. Additionally, we 

provide a range for the hyperparameters to expedite and streamline the optimization process. We 

employed the GA method to optimize the hyperparameters of the models in Chapter 3, ensuring a fair 

comparison of the ML methods. In Chapter 4, optimization was initially conducted in an independent 

way for all lakes; then, the most frequently occurring values or methods for hyperparameters were 

chosen to create a model with identical hyperparameters to be used for all cases. Chapter 5 involved 

not only optimization for each lake but also a trial-and-error approach to attain identical model 

hyperparameters that are effective for both lakes. By effective, we refer to the hyperparameters that 

yield efficient performance for both lakes. 

2.7. Feature selection 

2.7.1. Feature ranking  

Feature ranking (FR) falls under the category of feature selection algorithms and serves as a valuable 

tool in ML. While one might assume that incorporating more features (inputs) would lead to greater 

specificity, this is not always the case, as highlighted by Koller and Sahami (1996). Reunanen (2003) 
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discusses several reasons for employing feature extraction techniques to reduce the number of inputs. 

Firstly, measuring only a subset of data proves to be more cost-effective. Secondly, excluding 

unnecessary features can potentially enhance prediction accuracy. Thirdly, utilizing fewer input 

features allows for the development of simpler and faster predictors. Lastly, determining the 

importance of features aids in comprehending the challenges associated with prediction tasks. 

Consequently, the identification of the most important forcing has become increasingly important in 

the realm of ML in order to increase the efficiency of the model (Blum and Langley, 1997; Vivencio 

et al., 2007). 

In essence, the FR algorithm assigns a rating to each feature, reflecting its significance in determining 

the model's performance. In our study, we employed the feature importance approach (Izetta Riera 

and Granitto, 2009) to rank the predictors. This approach involves evaluating how the performance 

(explained in section 2.3) of the calibrated ML model changes when compared to the reference case 

(i.e., the performance achieved during training) after shuffling (rearranging) the values of a specific 

feature to obtain a random sequence of that predictor (presented in Figure 2.12). The decline in model 

error indicates the model's dependence on that particular feature: the greater the decline, the more 

relevant the feature. We conducted the shuffling (rearranging) process independently for all features 

used as predictors, repeating it 30 times for each feature. 

 

Figure 2.12. Scheme of feature ranking approach. 

By ranking the features based on their relevance and importance, we can identify those that convey 

the most valuable information to the model. This ranking allows us to prioritize the retention of high-

ranking features while discarding lower-ranking or irrelevant ones. By doing so, we can eliminate 

unimportant features, reduce dimensionality, and enhance the model's ability to extract meaningful 

patterns from the data. This approach is applied in Chapters 4 and 5. However, in Chapter 3, we 

approached feature selection differently, focusing on individual features as well as analyzing various 
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combinations. In Chapter 3 we aimed at emphasizing the discovery of the most efficient feature 

combinations, while the focus in the other two chapters was on identifying significant features in 

distinct climate regions (Chapter 4) and various simulation periods (Chapter 5). 

2.7.2. Correlation 

There are different methods for feature selection that can be categorized as ad-hoc, where inputs are 

chosen arbitrarily or based on domain knowledge, and analytical, where statistical measures like 

correlation or mutual information assess the relationship between potential inputs and outputs (Maier 

et al., 2010). Therefore, examining the correlation among input variables, the target variable, and the 

inputs themselves can provide insights into feature selection and reveal how the variables are 

interrelated. 

To explore these relationships in our cases, we conducted Pearson and Spearman's rank-order 

correlation analyses. Spearman's rank-order correlation measures the strength and trend of monotonic 

relationships between variables (Spearman, 1910), while Pearson correlation evaluates the strength 

of linear correlation. Spearman's measures are suitable when dealing with variables measured on an 

ordinal scale, unlike Pearson's, which requires continuous variables. The choice between these 

measures may also depend on theoretical considerations, ease of comparison with previous studies, 

or specific research needs. In Chapter 3, we performed correlation analyses using both Pearson and 

Spearman's rank-order methods to assess various correlation approaches. Chapters 4 utilized 

Spearman's method to account for the non-linearity of variables. We skipped performing the 

correlation analysis for the ice model because we verified that the results of correlation and feature 

ranking align in Chapter 4, and we wanted to avoid redundant analyses. 

Collinearity arises when two or more variables exhibit strong correlations, potentially impacting 

classifier performance by introducing additional weight to input variables or introducing noise into 

final outcomes (Gómez-Escalonilla et al., 2021). In the study of Ferreira et al. (2021), the pairs of 

predictors exhibiting a Pearson's correlation exceeding 95% were assessed for collinearity with all 

other predictors (multicollinearity). The predictor displaying the highest correlation with other 

predictors within each pair was then removed. 

Permutation importance, a method used to assess variable importance, may face challenges in 

correctly identifying significant predictors in datasets with highly correlated variables, as highlighted 

by Strobl et al. (2008). The act of randomly permuting a variable disrupts its correlative links with 

other predictors, potentially impacting the model's ability to discern important features. This issue 

becomes particularly pertinent in datasets with environmental variables, characterized by strong 
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multicollinearity (e.g., elevation and precipitation). In such cases, permutation importance may not 

be the optimal choice for evaluating variable importance (Wade et al., 2023). 
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Chapter 3. Selecting machine learning 

techniques and the features affecting 

LSWT by using a synthetic lake1 

3.1. Introduction and literature review 

Local climate conditions have a profound influence on the lake surface water temperature (LSWT), 

and the ongoing warming trend is posing a significant threat to the biological and chemical processes 

within aquatic ecosystems (Woolway and Merchant, 2018; Woolway et al., 2020; O'Reilly et al., 

2003). Consequently, it is of utmost importance to gain a comprehensive understanding of the 

underlying factors controlling the thermal response of lakes to climate change and accurately assess 

the expected changes (O'Reilly et al., 2003). In pursuit of this goal, a diverse range of models has 

been proposed, spanning from simple correlations to intricate numerical models. 

This study focuses specifically on the LSWT due to its convenient observability through in-situ 

measurements or remote sensing techniques. However, predicting LSWT presents notable challenges 

due to the complex interplay among various meteorological factors, including wind speed, air 

temperature (AT), radiation, heat fluxes, as well as lake bathymetry and inflows/outflows 

(Livingstone, 2003; Piccolroaz et al., 2015). Despite these challenges, several effective models have 

been developed for forecasting LSWT, which can be broadly classified into two main categories: 

physically based models and data-driven models. As the following paragraphs have been discussed 

in section 1.1, we elaborated on them here as well. 

Physically based models aim to solve the fundamental equations that govern the exchange and 

transport of heat in lakes. These models have the potential to provide outcomes without relying solely 

on LSWT data, although the calibration of empirical relations using LSWT data remains an integral 

part of the modeling process (Ragotzkie, 1978; Hipsey et al., 2019; Irving et al., 2006).  

The data-driven modeling category encompasses a wide range of stochastic methods, including linear 

and non-linear regression, autoregressive models, periodic autoregressive models (Benyahya et al., 

2007), and evolutionary polynomial regression (Doglioni et al., 2008). These models establish 

 
1 The contents of this chapter have been derived from: Yousefi, A. and Toffolon, M., 2022. Critical factors for 

the use of machine learning to predict lake surface water temperature. Journal of Hydrology, 606, 127418. 

https://doi.org/10.1016/j.jhydrol.2021.127418 
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relationships between LSWT and influential factors, with AT being a predominant factor, in order to 

forecast the thermal dynamics of water. Additionally, this category includes the application of 

machine learning (ML) algorithms, which have gained significant popularity as versatile 

computational models (Mohri et al., 2018). In recent years, there has been a notable increase in 

endeavors to predict LSWT using supervised learning approaches based on available data, 

particularly since 2019. Table 3.1 provides an overview of previous studies on LSWT prediction using 

ML in lakes, highlighting the various ML algorithms employed and the features of the lakes 

investigated. 

Among the ML algorithms, artificial neural network (ANN) has emerged as the most widely used and 

successful approach for LSWT prediction (Sharma et al., 2008; Liu and Chen et al., 2012; Sener et 

al., 2012; Samadianfard et al., 2016; Read et al., 2019; Saber et al., 2020; Heddam et al., 2020; Jia et 

al., 2019 and 2021; Quan et al., 2020; Zhu et al., 2020a; Table 3.1). 

Appendix B includes an examination of the relevant literature on ML-based water temperature 

prediction in rivers (Table B.1), as there are similarities between this problem and the prediction of 

water temperature in lakes. It is worth noting that lakes, being lentic water bodies, are less influenced 

by the advection of water from upstream regions, which is often a significant factor in rivers. 

However, the thermal behavior of lakes is complicated by the development of thermal stratification 

throughout the year. 

Hybrid models, which lie at the intersection of physically based and data-driven models, encompass 

various approaches. According to Karpatne et al. (2017), hybrid models can be implemented in 

different ways. One approach involves utilizing data from physically based models as input for data-

driven models, often used for downscaling climate variables. Additionally, the outputs of physically 

based models can be employed to control the training phase of data-driven models by providing initial 

estimations of target outputs (Read et al., 2019). Another approach is the integration of data-driven 

methods within the framework of physically based models, aiming to improve parameter estimates 

or replicate complex processes with greater accuracy. 

In their study, Read et al. (2019) employed traditional physically based models to estimate weights 

and biases for pre-training ML models, as well as to calibrate the model using physical laws during 

the pre-training and training phases. They conducted a comparison between their hybrid model, which 

combined ML and physically based models, and the two methods used individually. The results 

demonstrated that ML outperformed the physically based model when the number of training data 

exceeded a specific threshold, which varied depending on the dataset. Conversely, the performance 
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of the process-based model did not exhibit further improvement beyond a certain number of training 

data, highlighting the notion that ML approaches require and benefit from a larger quantity of data. 

Furthermore, Read et al. (2019) conducted an analysis using different datasets grouped based on 

seasonal or climatic scales. Their findings emphasized that ML yielded more accurate results when 

the data exhibited similar patterns. The study confirmed that, in their case studies, the hybrid model 

emerged as the most successful approach compared to the individual ML and process-based methods. 

A distinct form of hybrid model known as air2water has been developed for predicting LSWT 

(Piccolroaz et al., 2013, 2018, 2020, 2021; Toffolon et al., 2014; Piccolroaz, 2016). This model 

employs simplified equations derived from physical laws, condensing intricate details into a reduced 

set of parameters that are calibrated against measurements. Notably, air2water only requires AT as 

input, rendering it as user-friendly as other data-driven models while surpassing the performance of 

many such models (Heddam et al., 2020). Its simplicity and effectiveness also make it suitable for 

comparative evaluations of ML algorithms. 

This research addresses gaps in existing studies by investigating the use of ML methods with 

optimization to predict water temperature, specifically concentrating on LSWT. Notably, the studies 

outlined in Table 3.1 did not encompass such a comprehensive exploration of methods as well as 

implementing an optimization. Previous studies, like Read et al. (2019), have compared hybrid versus 

ML models, but they did not explore optimizing the integration of physical information, such as 

considering the memory of previous days of predictors. While pre-processing methods including 

denoising and rescaling have been commonly used (Saber et al., 2020; Zhu et al., 2020a), there is a 

lack of comprehensive comparisons, especially for LSWT models, including an effective assessment 

of different preprocessing methods like wavelet transformers. None of the studies have considered 

the effect of lake depth, which is a physical quantity that is known to strongly influence the thermal 

response of lakes (e.g., Toffolon et al., 2014). Therefore, our study aims to fill these research gaps 

through a systematic analysis of predictor selection, pre-processing methods, and the performance of 

various ML algorithms. 

Table 3.1. A list of recent papers dealing with the use of ML tools to predict LSWT. 

Reference ML model 
Optimization / pre-

processing 

The best 

method(s) 

Investigated 

lake or region 

Lake 

depth (m) 

Lake area 

(km2) 

Heddam et al. 

(2020) 

ERT, Multivariate adaptive 

regression splines (MARS), 

M5 model tree (M5Tree), 

RF, MLPNN 

Sigmoid and identity 

activation function for 

MLPNN 

air2water; 

ERT among 

ML methods 

25 lowland 

lakes in 

Poland 

1.3 – 15.5 
1.545 – 

114.88 

Jia et al. (2019)  PGRNN, RNN 
Pre-training using 

physical simulations - 
PGRNN 

Minnesota and 

Wisconsin 
max 25.3 40 
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Reference ML model 
Optimization / pre-

processing 

The best 

method(s) 

Investigated 

lake or region 

Lake 

depth (m) 

Lake area 

(km2) 

(density-depth 

relationship - energy 

conservation) - 

hyperbolic tangent 

transfer function 

Jia et al. (2021) PGRNN 

Pre-training using 

physical simulations - 

constrain of ML (energy 

balance) - hyperbolic 

tangent transfer function 

PGRNN 
Minnesota and 

Wisconsin 
max 25.3 40 

Liu and Chen 

(2012) 
ANN 

Hyperbolic tangent 

sigmoid transfer 

function 

3D 

hydrodynam

ic model 

Yuan-Yang max 4.5 37 

Quan et al. 

(2020) 

SVR, ANN, GA-SVR, and 

optimized parameters of 

improved support vector 

machine (M-GASVR) 

GA M-GASVR Longyangxia 

different 

depths 

from 35 to 

55 

131,142 

Read et al. 

(2019) 

Process‐guided deep 

learning (PGDL) hybrid 

modelling, DL model, and a 

process‐based (PB) model 

Pre-training using 

physical Simulations - 

constrain of ML (energy 

balance) - hyperbolic 

tangent transfer function 

PGDL 
68 Canadian 

lakes 

Maximum 

depth from 

5.2 to 54 

From 0.07 

to 196.65 

Saber et al. 

(2020) 
ANN WT ANN 

Mead in 

Nevada and 

Arizona 

Min 140, 

Max 162 
640 

Samadianfard et 

al. (2016) 
GEP, ANFIS, ANN 

GP - sigmoid activation 

function 
GEP 

Yuan-Yang in 

Taiwan 
max 4.5 37 

Sener at al. 

(2012) 
ANN 

Sigmoid activation 

function 
ANN 

Eğirdir, 

Turkey 
16 482 

Sharma et al. 

(2008) 

Multiple regression, 

regression tree, ANN, 

Bayesian multiple 

regression 

- 
 multiple 

regression 

2348 lakes in 

Minnesota and 

Wisconsin 

- - 

Zhu et al. 

(2020a) 

MLPNN, WT and MLPNN 

integrated model (WT-

MLPNN), non-linear 

regression model (S-curve), 

air2water 

WT 

air2water, 

WT_MLPN

N, and 

MLPNN 

8 lowland 

lakes in 

Poland 

from 1.4 to 

15.5 

from 2.15 

to 98.51 

Zhu et al. 

(2020b) 

The non-linear regression 

model (S-curve), The linear 

regression  

- S-curve Morskie Oko 29.7 0.33 
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3.2. Characterization of the physical problem 

Before delving into the performance evaluation of ML methods in simulating LSWT, it is valuable to 

comprehend the underlying physics of the investigated process. The temperature of water in lakes is 

influenced by a multitude of meteorological and limnological variables (Magee and Wu, 2017). 

Gaining a deeper understanding of the heat budget provides valuable insights into the factors that 

exert influence. 

One well-known phenomenon is the stratification of lakes, where distinct layers with different 

temperatures (and densities) form. As stratification intensifies, these layers behave as separate 

regions. This stratification is particularly pronounced in temperate lakes during summer, with a well-

mixed surface layer known as the epilimnion, which is separated from the deep waters (hypolimnion) 

by a layer where the largest temperature difference is localized, known as the thermocline (Boehrer 

and Schultze, 2008). In the well-mixed surface layer, the average temperature across the volume 

exhibits a strong correlation with LSWT. The LSWT, in turn, depends on the net heat flux exchanged 

through the lake surface. Several factors control this net heat flux, which also have implications for 

the prediction of LSWT. These factors include shortwave solar radiation, longwave radiation 

influenced by AT and cloud cover, latent heat influenced by AT, water temperature, relative humidity, 

and wind speed, sensible heat influenced by AT, water temperature and wind speed, and the heat 

contribution of rainfall (Schmid et al., 2014). 

3.2.1. Minimal model of the thermal response of a lake 

In this section, we revisit the heat budget of lakes by examining a simplified one-dimensional (1D) 

representation, 

𝜕

𝜕𝑡
(𝜌𝑐𝑝𝑆𝑇) +

𝜕

𝜕𝑧
(𝑆𝜙 + 𝐼) = 0 

(3.1) 

where 𝑡 is time [s], 𝑧 is the vertical coordinate [m], 𝑇(𝑧, 𝑡) is the water temperature [K], 𝜌(𝑇) is water 

density [kg m-3], 𝑐𝑝(𝑇) is the specific heat capacity [J kg-1 K-1], 𝑆(𝑧) is the horizontal surface area 

[m2], 𝜙(𝑧, 𝑡) is the heat flux [W m-2], which includes diffusion, convection and penetrating shortwave 

solar radiation, and 𝐼(𝑧, 𝑡) represents the contribution [W] of lateral inflows and outflows. Equation 

(3.1) is solved with proper boundary conditions at the lake bottom (heat exchanged with sediments) 

and at the surface (heat exchanged at the air-water interface). 

We can consider a bulk version of equation (3.1) to understand the behavior of LSWT, assuming that 

it is correlated with the average temperature in the surface layer. By integrating equation (3.1) over 
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the thermally reactive volume 𝑉𝑟 [m3] at the surface, the volume-averaged temperature �̅�(𝑡) follows 

the equation 

𝑑

𝑑𝑡
(𝜌𝑐𝑝𝑉𝑟�̅�) = 𝑆0𝜙𝑛𝑒𝑡 + 𝑆𝐷𝜙𝐷 +∑𝜌𝑐𝑝𝑄𝐼,𝑗𝑇𝐼,𝑗

𝑁𝐼

𝑗=1

−∑𝜌𝑐𝑝𝑄𝑂,𝑗𝑇𝑂,𝑗

𝑁𝑂

𝑗=1

 

(3.2) 

where 𝑆0 is the surface area and 𝜙𝑛𝑒𝑡 is the net heat flux [W m-2] exchanged with the atmosphere 

(assumed positive towards the lake), 𝑆𝐷 is the area at the bottom of the surface layer and 𝜙𝐷 is the 

heat flux exchanged with deeper waters (positive if entering the surface layer), and the last two 

summations include the effects of inflows and outflows. 𝑄𝐼,𝑗 and 𝑇𝐼,𝑗 are, respectively, the discharge 

and the temperature associated with the 𝑗-th inflow; 𝑄𝑂,𝑗 and 𝑇𝑂,𝑗 are the equivalent variables for the 

𝑗-th outflow. The net heat flux 𝜙𝑛𝑒𝑡 is the combination of multiple factors: 

𝜙𝑛𝑒𝑡 = 𝐻𝑆𝑊 + 𝐻𝐿𝑊𝑖𝑛
− 𝐻𝐿𝑊𝑜𝑢𝑡

± 𝐻𝐿 ± 𝐻𝐶 + 𝐻𝑃 (3.3) 

where 𝐻𝑆𝑊is the fraction of the shortwave solar radiation penetrating into the lake and absorbed in 

the surface volume, depending on water transparency; 𝐻𝐿𝑊𝑖𝑛
 is the net longwave radiation emitted 

from the atmosphere to the lake, depending on AT and cloud cover; 𝐻𝐿𝑊𝑜𝑢𝑡
 is the longwave radiation 

emitted from the water, depending on LSWT; 𝐻𝐿 is the latent heat flux considering evaporation and 

condensation, which depends on AT, LSWT, relative humidity and wind speed; 𝐻𝐶 is the sensible heat 

flux because of convection, depending on AT, LSWT and wind speed; 𝐻𝑃 is the heat flux associated 

with rainfall. The deep-water heat flux 𝜙𝐷 can be affected by subsurface fluxes and by the geothermal 

heat flux at the sediment-water interface. 

The role of the depth, and in particular of the thickness ℎ = 𝑉𝑟 𝑆0⁄  of the thermally reactive surface 

layer, can be highlighted considering a simplistic (only for illustration purposes) version of equation 

(3.2): 

𝛼
𝑑𝑇

𝑑𝑡
= 𝛽sin(𝜔𝑡) 

(3.4) 

where 𝛼 includes the heat capacity of the surface layer (linearly dependent on ℎ), and the sinusoidal 

function on the right-hand side mimics the temporal variability of the net heat flux. In this simplified 

formulation, we refer only to single harmonics of a Fourier decomposition of the heat flux because 

the linearity in 𝑇 (a rough approximation of the actual behaviour) allows to consider them separately. 

Hence, 𝛽 is the amplitude of the sinusoidal variability associated with a given frequency 𝜔: for 
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instance, two dominant frequencies of the heat flux are related to the variability of solar radiation at 

daily and annual periods. The solution of equation (3.4) is straightforward: 

𝑇 =
−𝛽

𝛼𝜔
cos(𝜔𝑡) + 𝑐 

(3.5) 

with 𝑐 an integration constant depending on the initial conditions. It is immediately evident that the 

amplitude of the water temperature oscillations at a given frequency is inversely dependent on 𝛼 (for 

a similar analysis, see Toffolon et al., 2014). Thus, a deeper surface layer (larger ℎ, larger thermal 

inertia, longer memory) will reduce the difference between the maximum and minimum temperature, 

for instance, at a daily time scale. Of course, larger ℎ are more likely to occur for deep lakes. 

Moreover, we can see that the amplitude is also inversely dependent on the frequency of the forcing, 

so that higher frequencies are more damped than lower frequencies, suggesting the ‘filter’ analogy 

introduced in the main text. 

The depth of a lake is a critical parameter to consider when modeling its temperature. Shallow lakes 

tend to have uniform water temperature throughout the entire water column, whereas deep lakes 

exhibit a significant temperature difference between the surface and the hypolimnion during the 

summer (Calamita et al., 2021). Consequently, the behavior of lakes varies depending on their depth, 

with deep lakes being particularly influenced by stratification dynamics (Piccolroaz et al., 2015). The 

significance of depth can also be highlighted through minimal physical models, as demonstrated in 

Toffolon et al. (2014). It is worth noting that lakes can be described as "filters," where the input signal 

(such as air temperature and solar radiation) undergoes physical processing, resulting in a smoothed 

output signal, such as lake surface water temperature (Calamita et al., 2021; Piccolroaz et al., 2015). 

3.3. Materials and methods 

3.3.1. Case study 

Our primary objective is to elucidate the critical factors necessary for the accurate application of a 

ML model in predicting LSWT. In order to achieve this, we opted to create a synthetic example 

instead of utilizing real lake data. By doing so, we obtained complete control over all the variables 

involved, enabling us to compare and analyze the performance of various approaches. Furthermore, 

this synthetic example allows us to investigate the impact of lake morphology, particularly depth, on 

LSWT response while maintaining consistent meteorological forcing. Consequently, we can assess 

the ability of ML models to simulate thermal dynamics under diverse conditions. 
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The synthetic case study utilized the widely used General Lake Model (GLM) to generate a 1D 

representation (Hipsey et al., 2019). The specific details of the model are not significant for our 

analysis, as any other model could have been employed. It is important to acknowledge that all the 

findings and conclusions drawn from our study are based on numerical simulations rather than real-

world cases. However, it is well-established that these simulations accurately capture the primary 

dynamics of lakes. The advantage of employing a fully controlled synthetic case is that it allows us 

to focus solely on the performance of the ML model, without introducing additional uncertainties 

associated with real data, such as missing or erroneous values. Additionally, it enables us to compare 

lakes with different depths while keeping all other factors constant, thereby isolating the significance 

of depth in our analysis. This approach could potentially be extended to explore other physical 

variables. Nevertheless, it is important to note that the artificial case lacks the complexity of the real 

world, and only the factors included in the lake model are evaluated. 

For the general characteristics of the synthetic case study, we selected a medium-sized peri-alpine 

lake in the temperate region as a reference (see Table 3.2). To ensure realistic values for lake 

morphology and climatic conditions, we utilized the hypsometric curve of Lake Caldonazzo (northern 

Italy) and extracted corresponding meteorological data from ERA5 for the specific latitude and 

longitude (Hersbach et al., 2020). It is important to emphasize that a real lake was solely used as a 

reference to design the synthetic case study, and we do not aim to simulate actual dynamics. The 

choice of an artificial lake enabled us to work with a comprehensive and coherent dataset, facilitating 

the examination of the effects of various forcing factors at different depths. Specifically, we 

investigated a shallow case (maximum depth of 5 m), a deep case (maximum depth of 60 m), and two 

intermediate depths (20 m and 40 m). To achieve these scenarios, we modified the hypsometric curve 

of Lake Caldonazzo (with a maximum depth of 49 m) by stretching the vertical coordinate while 

maintaining the surface area to preserve the interface with the atmosphere. The inflow to the lake was 

artificially adjusted to compensate for evaporation and maintain relatively stable water levels from 

year to year, minimizing the thermal impact of inflows. An illustration of the seasonal evolution of 

thermal stratification in the shallow and deep lakes can be found in Figure 3.1. It suffices to mention 

here that the shallow lake is consistently well-mixed, while the deeper cases clearly stratify during 

summer. 

The water temperature variations along the water column in the synthetic lakes (shallow and deep) 

are depicted in Figure 3.1. The temporal evolution is captured through numerical simulations using 

the one-dimensional lake model, GLM. Specific calibration was not conducted as the case studies 

refer to synthetic lakes. The model adopted default parameters from the calibrated model of a real 

lake, Caldonazzo, with the sole adjustment being the modification of depth. The figure displays the 
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patterns over two consecutive years, showcasing the distinctive seasonal variations and highlighting 

the contrasting characteristics between the shallow and deep lake scenarios. The hypsographic curves 

of the synthetic lakes can be found in Appendix D. 

 

Figure 3.1. Evolution of water temperature in two lakes with the same hypsometry, but rescaled with different 

depths (a: maximum depth 5 m; b: maximum depth 60 m), as a function of depth and time (from 01/01/2015 

to 31/12/2016), obtained from the physically based model GLM. 

The ML application employed data from the GLM to obtain the LSWT as the target variable, while 

meteorological data from ERA5 were utilized as predictors. To ensure consistency, all data sets were 

standardized to a daily time step. Table 3.2 presents the main characteristics of the data set, including 

its duration and other pertinent details. 

Table 3.2. Features of synthetic case studies. 

 Shallow lake Deep lake 

Lake’s maximum depth (m) 5 60 

Lake’s average depth (m) 2.5 30.0 

Lake’s area (km2) 5.2 5.2 

Lake’s volume (106 m3) 13 157 

Hydraulic retention time (years) 4.6 52 

Date range for training set 01/01/1979 – 31/12/2014 

Date range for test set 01/01/2015 – 31/12/2018 

Latitude / Longitude 46.01° N, 11.24° E 

Elevation (m a.s.l.) 450 

Range* of WS (m/s) 0.46 – 7.8 

Range* of SWR (W/m2) 4.05 – 342.5 

Range* of AT (°C) -17.2 – 27.1 

* For daily averaged values 
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3.3.2. Setup of ML models 

The configuration of a ML model involves several stages, including the selection of input variables 

(predictors), their pre-processing, and the application of the ML algorithm. Each component of the 

methodology, as depicted in Figure 3.2, is examined in detail in the subsequent paragraphs. 

 

Figure 3.2. Workflow summarizing the steps of the comparative analysis of the performance of the different 

ML methods. 

The initial stage involves selecting the predictors, which are the variables utilized as input for the ML 

algorithm. In line with our objective of predicting LSWT, a comprehensive range of predictors has 

been considered, taking into account the heat flux components outlined earlier. These include AT, 

shortwave radiation (SWR), downward longwave radiation (LWR), relative humidity (RH), wind 

speed (WS), rainfall (R), and air pressure (AP). Additionally, the day of the year (DOY) was 

incorporated as a feature. We opted not to incorporate the inflows to avoid introducing features that 

are characterized by a broad range of variability, which would also require modifying the water 

budget, and limit the analysis to the usual meteorological forcing. Both individual predictors and their 

combinations were evaluated. The impact of different predictor choices is examined in section 3.4.1. 

Regarding the use of the DOY as a predictor, caution is advised due to its discontinuous behavior at 

the year's change (from day 365 to day 1), which does not align with the continuous variation of 

LSWT. To address this issue, we explored the utilization of the sine and cosine functions of DOY 

(SCDOY), denoted as sin(DOY⁄n_DOY) and cos(DOY⁄n_DOY) respectively, where n_DOY 

represents the number of days in a year. These transformed variables, collectively referred to as 
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SCDOY for simplicity, contain an equivalent amount of information as DOY but exhibit a continuous 

pattern. 

The subsequent step involves pre-processing the input data to ensure their comparability by 

normalizing their range of variation. Various pre-processing strategies were examined, including 

popular techniques such as Min-Max scaling, Robust scaling, and Standard scaling. In our 

preliminary tests, Min-Max scaling yielded the most favorable outcomes for our specific problem. 

Consequently, we adopted this method for all subsequent analyses. 

LSWT exhibits a filtering behavior in response to external forcing due to the water mass's heat 

capacity, as discussed in section 3.2.1. Consequently, in the pre-processing step, we incorporated the 

option to temporally average certain predictors, particularly AT. The hyperbolic averaging results 

slightly better than uniform averaging which the detailed information is explained in section 2.4. 

Although, as the matter of simplicity, we consider the unform average for AT. Alternatively, we also 

considered the inclusion of AT from previous days as a distinct strategy to achieve a similar effect. 

This resulted in an increased number of input variables for the ML model. Detailed discussions on 

the different pre-processing strategies can be found in section 3.4.2. 

As part of the standard procedure, the available data were divided into two subsets, commonly 

referred to as the training and test data sets. The optimization of ML algorithm parameters was 

performed using both the training and test data sets, which accounted for the entire data set. Although 

other proportions (e.g., 50%, 60%, and 70%) were tested, the results remained largely consistent due 

to the ample availability of data, reducing the risk of overparameterization. Subsequently, the ML 

model's performance was evaluated using the test data set to ensure that the calibrated parameters 

were not influenced by overfitting or underfitting and could be generalized to other scenarios. The 

chronological separation (first 80%, last 20%) of the training and test data sets was implemented to 

preserve the temporal patterns of the variables within each data set. Random splitting was also 

examined, but the results of both data sets exhibited minimal variations, making it challenging to 

identify the optimal parameters. 

The third step involves selecting the appropriate ML algorithm, which serves as the core of the 

approach and encompasses various structural parameters known as hyperparameters. These 

hyperparameters are determined prior to training the data (e.g., Probst et al., 2019). The distinction 

between hyperparameters and parameters is customary and revolves around the fact that the former 

define the characteristics of the algorithm itself (e.g., the number of layers and neurons in an ANN), 

while the latter pertain to the coefficients in the equations utilized by the algorithm (e.g., the values 

of weights and biases in an ANN). Both the hyperparameters and parameters are chosen and 
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optimized for individual case studies and combinations of input variables. The optimal values for the 

hyperparameters are identified using optimization algorithms, whereas the calibration of parameters 

depends on the specific ML approach employed. 

The selection of hyperparameters can be accomplished through various optimization methods, 

including Grid Search, Random Search, Bayesian methods, and particle swarm optimization (PSO). 

In this study, we specifically employed the genetic algorithm (GA) for all the ML approaches 

examined. GA is an evolutionary optimization method that yields satisfactory results while 

maintaining reasonable computational demands (Di Francescomarino et al., 2018). 

A range of ML algorithms have been utilized for predicting water temperature in lakes, as indicated 

in Table 3.1. These include linear and non-linear regression models (e.g., logistic regression), ANN, 

decision trees (DT), support vector regression (SVR), K-nearest neighbor algorithm (KNN), random 

forest (RF), and gradient boosting machines (GBM). While linear and logistic regression models can 

provide satisfactory outcomes despite their simplicity, more advanced ML algorithms have 

demonstrated greater suitability for water temperature prediction in broader contexts (Sharma et al., 

2008; Sener et al., 2012). 

In this study, we conducted experiments with nine distinct ML approaches, aiming to encompass a 

wide range of options proposed in the literature. Among these approaches, four are variations of ANN 

with specific characteristics. The multilayer perceptron neural network (MLPNN) and 

backpropagation neural network (BPNN) are closely related, differing primarily in their parameter 

calibration strategies. Long short-term memory (LSTM) is a deep learning technique that preserves 

temporal memory within the system. The adaptive neuro-fuzzy inference system (ANFIS) combines 

a neural network structure with fuzzy logic. Additionally, three approaches fall within the DT 

framework: the standard DT, RF, and extremely randomized tree (ERT). The remaining two 

approaches are SVR and KNN. Section 2.2 provides a summary and explanation of the main features 

of these ML algorithms, while Appendix A contains details regarding the hyperparameters. The 

comparative evaluation of the nine ML approaches is presented in section 3.4.3. 

To analyze the different pre-processing strategies and predictors in sections 3.4.1 and 3.4.2, we 

selected the BPNN as a representative branch of ANN. BPNN is commonly used for capturing 

nonlinear relationships between dependent and independent variables, and it offers various training 

methods (Tu, 1996). 

As the fourth and final step of the workflow, we assessed the performance of the ML approaches. We 

employed the RMSE of the LSWT as the objective function, where lower values indicate a better fit. 

While alternative metrics such as mean absolute error, correlation coefficient, and Nash-Sutcliffe 
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efficiency index can also be used, they did not yield significant differences in the ranking of the best 

ML approaches. As our study focuses on a synthetic case study, we considered the output of GLM as 

the observed truth for the analysis. 

To enhance the robustness of the ML results and mitigate the possibility of inconsistent outcomes due 

to suboptimal initial parameter guesses or other numerical artifacts, we performed each algorithm 20 

times (similar to the approach by Piotrowski et al., 2021, who conducted 50 runs).  The difference in 

the runs, quantified using the standard deviation of the simulated LSWT, can be found in Appendix 

C. Unless specified otherwise, the performance metrics presented in the analysis are averaged across 

the runs. More detailed information is provided in Appendix C. Additionally, to gauge the method's 

robustness and the variation across different runs, we computed the standard deviation of the 20 

LSWT estimates for each day of the simulated period. These values were then averaged over the 

entire record to obtain the average value, 𝜎𝑅. 

3.4. Results 

In this section, we delve into the examination of the influential inputs, effective pre-processing 

methods, and the performance of ML approaches. We also analyze the impact of the lake's depth and 

incorporate the lake's physical characteristics in the statistical analysis. 

3.4.1. Identification of predictors 

Gaining a deep understanding of the underlying physics of thermal dynamics is essential for achieving 

accurate predictions, particularly when using approaches that do not rely on physical laws. ML 

algorithms, being versatile tools, heavily rely on the careful selection of predictors for successful 

application. As highlighted in section 3.3.2, there is a wide range of potential predictors for predicting 

LSWT. Previous analyses (Table 3.3) have considered various predictors depending on the specific 

variable being simulated, such as daily averaged temperature, monthly or annual averages or 

maximums. These predictors include AT, DOY, Gregorian calendar, lake surface area, maximum and 

average water depth, altitude, WS, indicators for frozen and snowing conditions, R, percentage of 

cloud cover, inflow and outflow rates, geopotential height, LWR, SWR, pH, total dissolved solids, 

RH, Secchi depth, and specific variables for seasonal evaluations, such as the maximum number of 

daylight hours in June, mean July AT, mean annual AT, mean July precipitation, July SWR, and July 

cloud cover (Sharma et al., 2008). Many of these predictors have already been discussed when 

exploring the factors influencing heat flux at the lake surface. It is worth noting that for each predictor, 

careful consideration must be given to the temporal and spatial scales of integration, as these choices 

can significantly impact the results (Piccolroaz et al., 2016; Toffolon et al., 2020). 
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Table 3.3. ML algorithms used to predict LSWT in the literature, with the indication of the predictors used. 

Machine 

Learning 

Algorithm 

Author (s) Best ML model Predicted Quantity Influential Predictor(s) Water 

body 

ANN 

Sharma et al. 

(2008) 

ANN Annual maximum near-

surface lake water 

temperature, and not daily 

LSWT 

Up to 17 predictors were used in 

different combinations, 

including mean AT, mean July 

AT, DOY and year 

Lake 

Sener at al. 

(2012) 

ANN Daily water temperature AT, RH, AP, and depth Lake 

Samadianfard et 

al. (2016) 

GEP Hourly water temperature 

in different depths 

AT, SWR, AP, RH, R, WS, soil 

T 

Lake 

Jia et al. (2019) PGRNN Daily water temperature 

profile 

10 predictors, including AT, 

SWR, LWR, WS, RH, frozen 

and snowing indicators 

Lake 

Read et al. 

(2019) 

Process‐Guided 

Deep Learning 

(PGDL) 

Daily water temperature 

profile 

AT, SWR, LWR, WS, RH and 

precipitation (rain or snow) 

Lake 

Saber et al. 

(2020) 

ANN Daily and 6-hour water 

temperature profile 

AT, WS, RH and AP Lake 

Jia et al. (2021) PGRNN Daily water temperature 

profile 

Meteorological variables AT, 

SWR, LWR, WS, RH, R, snow 

in addition to depth and DOY 

Lake 

Zhu et al. 

(2020a) 

WT-MLPNN Daily LSWT AT Lake 

Quan et al. 

(2020) 

Optimized 

parameters of 

improved support 

vector machine 

(M-GASVR) 

Daily surface water 

temperature 

Surface T, AP, near-surface air 

specific humidity, near-surface 

full wind speed, surface 

precipitation rate, and water 

depth 

Reservoir 

SVM 
Heddam et al. 

(2020) 

ERT Daily LSWT AT, the Gregorian calendar 

(year, month and day) number 

Lake 

DT 
Zhu et al. 

(2020b) 

Non-linear 

regression model 

Monthly and yearly 

average LSWT 

AT Lake 

 

Statistical analysis has frequently been employed to identify the most influential predictors for LSWT. 

For example, Zhu et al. (2020b) examined both linear and non-linear relationships between AT and 

LSWT. They found that non-linear S-shaped functions yielded favorable correlations between AT and 

LSWT. Mohseni et al. (1998) also conducted research on AT and LSWT, concluding that non-linear 

S-shaped functions were effective in capturing their relationship. In a similar vein, Yang et al. (2020) 

utilized various methods such as trend analysis, contribution analysis, and Pearson correlation 
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analysis to identify the most influential predictors for LSWT. Through their investigation, they 

highlighted the significance of AT and SWR as influential predictors for LSWT. 

 

Figure 3.3. Correlation between variables: (a) Pearson’s (linear) correlation; (b) Spearman’s Rank-Order (non- 

linear) correlation. 

It is crucial to consider not only the correlations between predictors and LSWT, but also the 

intercorrelations among the predictors themselves. To explore these relationships in our synthetic 

shallow and deep test cases, we conducted Pearson and Spearman's rank-order correlation analyses 

explained in section 2.7.2. It is worth mentioning that in our specific cases, it is unnecessary to 

eliminate features due to collinearity since the Pearson's correlations do not exceed 95% (explained 

in section 2.7.2). 

Our findings indicate that AT is the most significant predictor for LSWT, exhibiting a strong linear 

correlation. Additionally, the variable SCDOY (sin(DOY/n_DOY) and cos(DOY/n_DOY)) emerges 

as a highly influential predictor. The linear version of time (DOY) demonstrates lower correlation 

compared to SCDOY, particularly in the shallow case. Alongside SCDOY and AT, LWR and SWR 

exhibit similar trends compared to other predictors. Notable correlations include R with RH and 

LWR, albeit with low scores with respect to LSWT. It is worth noting that the influence of R might 

be relatively minor due to the simplified representation of rainfall's impact on inflows in our 

physically based lake model, which may not fully capture real-world scenarios. 

To assess the impact of predictor selection on the performance of ML in reproducing LSWT, we 

examined various combinations of input variables based on the literature review summarized in Table 

3.3. Specifically, we focused on the BPNN algorithm, one of the widely employed ML methods. The 
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outcomes of this analysis, highlighting the influence of each predictor and their combinations on 

model performance, are presented in Table 3.4. 

Table 3.4. RMSE of LSWT obtained by means of BPNN for the shallow (depth = 5 m) and deep (depth = 60 

m) lake, depending on the predictors used and separating the performances of the train and test data sets. The 

last column is the error relative to the reference case (defined by the predictors AT + SCDOY, highlighted in 

bold). The negative values correspond to worsening the results. All RMSE values are averaged over 20 

independent runs. 

Predictor 

Lake depth 

(m) 

Train RMSE 

(°C) 

Test RMSE 

(°C) 

Difference with respect to 

the test RMSE (°C) for 

the case AT+SCDOY 

Air Temperature (AT) 
5 3.044 3.105 -1.645 

60 3.629 3.911 -2.619 

Day Of the year (DOY) 
5 1.856 2.125 -0.666 

60 1.596 1.746 -0.454 

Sine and cosine of the Day Of the year (SCDOY) 
5 1.781 2.070 -0.610 

60 1.434 1.579 -0.286 

Shortwave radiation (SWR) 
5 5.575 5.556 -4.096 

60 6.182 6.383 -5.090 

Downward longwave radiation (LWR) 
5 5.810 5.904 -4.444 

60 5.300 5.285 -3.993 

Relative Humidity (RH) 
5 7.928 8.141 -6.681 

60 7.604 7.884 -6.591 

Wind speed (WS) 
5 8.030 8.452 -6.992 

60 7.520 7.799 -6.506 

Rainfall (R) 
5 8.227 8.594 -7.134 

60 7.703 7.946 -6.654 

Air Pressure (AP) 
5 7.520 7.884 -6.424 

60 7.112 7.385 -6.093 

AT + SCDOY 
5 1.312 1.460 0 (reference case) 

60 1.160 1.292 0 (reference case) 

AT + SCDOY + WS 
5 1.313 1.452 0.008 

60 1.151 1.294 -0.002 

AT + SCDOY + AP 
5 1.308 1.455 0.005 

60 1.164 1.284 0.008 

AT + SCDOY + SWR 5 1.381 1.534 -0.074 

60 1.204 1.328 -0.036 

AT + SCDOY + LWR 
5 1.287 1.422 0.038 

60 1.153 1.282 0.010 

AT + SCDOY + SWR + LWR 
5 1.375 1.525 -0.066 

60 1.189 1.322 -0.030 

AT + SCDOY + SWR + LWR + WS 
5 1.369 1.509 -0.049 

60 1.186 1.328 -0.036 

AT + SCDOY + SWR+ LWR+ WS+ RH 5 1.371 1.497 -0.037 
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Predictor 

Lake depth 

(m) 

Train RMSE 

(°C) 

Test RMSE 

(°C) 

Difference with respect to 

the test RMSE (°C) for 

the case AT+SCDOY 

60 1.185 1.309 -0.017 

AT + SCDOY + SWR + LWR + WS+ RH + R 5 1.358 1.484 -0.024 

60 1.175 1.307 -0.015 

AT + SCDOY + SWR + LWR + WS + RH + R+ AP 5 1.363 1.496 -0.037 

60 1.176 1.301 -0.009 

Analyzing individual predictors in isolation, we observed that SCDOY yielded the lowest RMSE. In 

the deep lake scenario, the training set exhibited an RMSE of 1.43°C, while the test set had an RMSE 

of 1.58°C. Correspondingly, the shallow case yielded values of approximately 1.78°C and 2.07°C, 

respectively. These results suggest that an average year effectively captures the intra-annual 

variability of LSWT. AT ranked second among the predictors; however, the errors significantly 

increased (3.04°C - 3.11°C for training and test sets in the shallow case, and 3.63°C - 3.91°C in the 

deep case). The inclusion of other predictors did not yield satisfactory results. 

Nevertheless, combining different variables led to notable improvements. Specifically, considering 

AT and SCDOY together resulted in favorable performance (1.31°C - 1.46°C for the shallow case 

and 1.16°C - 1.29°C for the deep case), and we established this combination as the reference for 

subsequent analyses. Further addition of variables to the predictor set yielded only marginal 

enhancements at the cost of increased information demand by the model (as indicated by the 

difference in RMSE shown in the last column of Table 3.4). However, we acknowledge that in 

climatic conditions distinct from the temperate case examined in this study, or in real lake scenarios, 

other variables may also hold importance. 

We provide a more detailed illustration of the impact of considering AT and DOY or SCDOY on the 

model by examining Figure 3.4. This figure displays the simulated LSWT (using BPNN once again) 

for both shallow and deep lake cases in individual runs. To enhance clarity, the plots are limited to a 

two-year period. Due to its lower thermal inertia (heat capacity per unit of surface area), the shallow 

lake exhibits greater LSWT fluctuations in response to meteorological forcing, as compared to the 

deep lake (Toffolon et al., 2014, 2020). 

The plot clearly demonstrates that when AT is considered alone, the predicted range of LSWT 

variability is excessively large. On the other hand, relying solely on DOY provides a smoother 

representation, similar to the mean year, but fails to capture interannual variability. The use of 

SCDOY, with its gradual transition at the end of each year, proves to be more appropriate. The bottom 

row of Figure 3.4 highlights the benefits of combining SCDOY and AT to predict LSWT, leading to 

improved accuracy and capturing both intra- and interannual variability. 
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Figure 3.4. Effect of using AT (a,b), DOY (c,d), SCDOY (e,f), and the combinations of AT and SCDOY (g,h) 

on the LSWT modelled by the BPNN for a shallow (5 m, left column) and a deep (60 m, right column) lake. 
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3.4.2. The importance of pre-processing 

Given that the input values exhibit different units and ranges, it is necessary to apply pre-processing 

methods such as standardization and normalization to eliminate anomalous values and ensure data is 

on a comparable scale. Sener et al. (2012) utilized the Min-Max transform, scaling input data (RH, 

AT, AP, and water depth) from 0 to 1, enabling comparability. More advanced pre-processing 

techniques include moving average with Min-Max (MAMM) and wavelet transform (WT), which 

not only remove noise from the data but also smooth it. This section analyzes the impact of pre-

processing methods and their influence on ML performance. It should be mentioned that in section 

2.4, we explained the averaging of all variables and here we just focus on averaging of AT which is 

the most influential forcing in this study, and we avoid repeating the averaging of all variables here. 

We have observed that lakes act as filters, attenuating high-frequency inputs, with this effect 

becoming more pronounced in deep lakes. This process is dependent on the lake's thermal inertia and 

should be incorporated in pre-processing if the ML algorithm lacks the ability to capture system 

memory. When considering AT as a predictor, a general linear relationship between AT and LSWT 

cannot be established. Instead, a hysteresis effect exists between the two variables (Toffolon et al., 

2014). Linear relationships between daily-averaged values may be valid for very shallow lakes but 

become problematic for deep lakes, where the LSWT of a given day heavily relies on the previous 

day's value. If the ML algorithm does not adequately account for the system's previous state, pre-

processing becomes crucial for a more physically meaningful representation of the lake system. 

To simulate the filtering behavior of a lake, a simple pre-processing approach involving data 

smoothing and denoising was employed using Moving Average (right-aligned window, considering 

previous days' AT) combined with MAMM. Different window sizes were evaluated to minimize the 

RMSE. The results demonstrate that the RMSE exhibits a minimum value at an optimal window size, 

with distinct patterns for shallow and deep lakes (Figure 3.5e,f). In the shallow case, the RMSE 

initially decreases rapidly and then increases at a similar rate for window sizes longer than the optimal 

value (Figure 3.5e). In the deep case, the error for the test dataset is less variable compared to the 

training dataset, although it still exhibits a minimum within the range of window sizes similar to that 

of the training dataset (Figure 3.5f). Consequently, the optimal window size was selected based on 

the minimum average of training and test errors, resulting in 8 days for the shallow case and 13 days 

for the deep case, confirming the influence of lake depth in amplifying the filtering effect on LSWT.
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Figure 3.5. Effect of using a moving average for pre-processing the AT data (in addition to SCDOY of the 

simulated day) to predict LSWT by BPNN in a shallow (left column) and a deep (right column) lake. (a,b) 

Results in the standard BPNN application, with AT input only from the same day as the predicted LSWT. (c,d) 

Results with the optimal window size of the moving average. (e-f) Variation of the RMSE as a function of the 

window size (all RMSE values are averaged over 20 independent runs). 

To evaluate the optimal window size based on depth, further analyses are necessary. However, initial 

insights can be gained by considering two intermediate depths, namely 20 m and 40 m. By comparing 

the RMSE values across the four cases, a threshold depth appears to influence the qualitative behavior 

(illustrated in Figure 3.6). While a distinct minimum (representing the optimal window size) is 
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observed for the shallow lake (5 m), the behavior of the deeper cases shows more similarity. It is 

worth noting that the 5 m lake does not exhibit stratification (Figure 3.6a), and the heat capacity 

remains constant throughout all seasons. In contrast, as the depth increases, stratification occurs, and 

the thermally active layer varies seasonally. In our case study, the thermocline is approximately 

around 10 m (Figure 3.6b), suggesting that any deeper lake, such as one with a depth of 20 m, would 

likely exhibit qualitatively similar behavior. We speculate that the variability in heat capacity 

throughout the year could lead to less pronounced minima in the RMSE curves since the optimal 

window size may need to change with the season. 

 

Figure 3.6. The effect of the depth on the window size of the moving average, using AT+SCDOY (ML method: 

BPNN) for the training (a) and test (b) dataset in different depths (5, 20, 40 and 60 m). All RMSE values are 

averaged over 20 independent runs. 

A more advanced technique for denoising and smoothing the input signal is the WT, which overcomes 

limitations of the Fourier transform in determining specific frequencies and scales. WT involves 

fitting a mother wavelet within specified periods and can be categorized as continuous WT (CWT) 

or discrete WT (DWT), where the data is decomposed into levels. In this study, we utilized the wavelet 

transform library in Python to determine the optimal mother wavelet among 106 types for DWT and 

21 types for CWT. DWT decomposes the raw AT data into coefficients that measure the intensity of 

signal variations, ultimately resulting in smoothed data. The level of decomposition for the input data 

was determined as ∫[log_10 (N)], with N representing the length of the time series and the int function 

rounding the values to the nearest integer. 

Applying the different pre-processing methods to the AT data, with BPNN as the ML approach, the 

results are summarized in Table 3.5. It is observed that the Moving Average with MAMM method 

outperforms other methods for both shallow and deep lakes, while WT yields the least favorable 

results. It should be noted that the choice of the most effective mother wavelets may vary depending 

on the optimization approach employed. Within the Min-Max framework, smoothing the AT data 

shows a significant improvement compared to the standard approach, with RMSE decreasing from 
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approximately 1.31-1.46°C (Min-Max) to 1.06-1.14°C (MAMM) in the shallow case, and from 1.16-

1.29°C (Min-Max) to 0.98-1.19°C (MAMM) in the deep case. 

Table 3.5. Comparison of the performances with different pre-processing methods for a shallow and deep lake 

(ML method: BPNN). The last row shows the performance of the model that uses also AT values from previous 

days. All RMSE values are averaged over 20 independent runs. 

3.4.3. Retaining the history of the forcing 

In conventional ML approaches (excluding LSTM), such as the BPNN method considered as our 

reference, the system's historical information is not explicitly retained. Therefore, pre-processing the 

input data can be beneficial, as demonstrated in the previous section. However, utilizing a simple 

moving average over an optimal period to capture the effect of previous AT values is a crude approach, 

as it assigns equal weight to all days within the averaging window, disregarding the potentially 

stronger impact of more recent days. Various methods can address this limitation, such as assigning 

different weights based on the temporal distance from the simulated day. In this section, we explore 

an alternative strategy that explicitly incorporates past inputs into the ML model. 

We continue to employ BPNN as the reference ML algorithm, with SCDOY and AT as the most 

relevant input data. However, while the use of SCDOY remains unchanged, the AT record is 

duplicated multiple times with a variable shift of N days: AT synchronized with LSWT, AT from the 

previous day, AT from two days prior, and so on. Consequently, the number of input nodes in the 

BPNN increases by N-1. By explicitly including the previous forcing conditions (assuming AT as a 

Pre-processing method  
Shallow lake (depth = 5 

m) 
Deep lake (depth = 60 m) 

Min-Max 
Train RMSE (°C) 1.312 1.160 

Test RMSE (°C) 1.460 1.292 

Moving average + Min-Max 

Train RMSE (°C) 1.061 0.983 

Test RMSE (°C) 1.136 1.189 

Best window size 8 13 

DWT 

Train RMSE (°C) 1.754 1.365 

Test RMSE (°C) 1.968 1.538 

Best Wavelet 'coif8' 'coif16' 

CWT 

Train RMSE (°C) 1.801 1.421 

Test RMSE (°C) 2.085 1.558 

Best Wavelet 'cgau4' 'fbsp' 

AT from previous days 

+ Min-Max 

Training RMSE (°C) 0.959 0.887 

Test RMSE (°C) 0.943 1.136 

Best number of previous days 15 20 
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proxy) in the ML algorithm, the model weighs them based on their actual relevance to LSWT. The 

performance of the BPNN algorithm significantly improves (Figure 3.7) as we add an increasing 

number of previous days, until the improvement reaches a saturation point, beyond which additional 

information becomes irrelevant. Optimal performance is achieved by considering approximately 15 

days for the shallow lake (Figure 3.7a) and about 20 days for the deep lake (Figure 3.7b), confirming 

that the system's memory is relatively long and slightly increases with depth. The last row in Table 

3.5 illustrates that incorporating AT values from previous days leads to considerable improvement 

(0.96-0.94°C for the shallow lake and 0.88-1.14°C for the deep lakes). While both the moving average 

and the utilization of single values from previous days as additional inputs show similarities, we 

included both approaches in Table 3.5. However, it is evident that the latter approach is not a pre-

processing method like those discussed in Section 3.4.2. 

 

Figure 3.7. Variability of the RMSE using AT from a variable number of previous days in the shallow (a, 5 m) 

and deep (b, 60 m) lake. All RMSE values are averaged over 20 independent runs. 

Figure 3.8 provides further evidence that incorporating AT values from previous days as additional 

inputs yields greater improvements in the model's performance compared to applying a moving 

average to the AT data. It is noteworthy that both methods outperform the approach of considering all 

input variables together on the same day as LSWT. The combination of SCDOY and the historical 

AT values proves to be the most effective input configuration for accurately simulating LSWT in 

lakes of this nature. 
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Figure 3.8. Scatter plots of observed and predicted LSWT using AT + SCDOY as predictors for the shallow 

lake (left column, subplots a, c, e, g) and the deep lake (right column, subplots b, d, f, h) for different ways to 

include AT in the inputs: (a, b) reference case (using AT and LSWT of the same day); (c, d) moving average 

of AT with windows of 8 (shallow) and 13 (deep) days; (e, f) ATs from the previous 15 and 20 days for shallow 

and deep lakes, respectively, as additional inputs; (g, h) considering all meteorological predictors of the same 

day as LSWT. 
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Figure 3.9 presents an alternative representation of Figure 3.8, reinforcing the observation that 

integrating Air Temperature (AT) values, both averaged and from preceding days, yields superior 

results compared to the utilization of AT+SCDOY and all variables. This underscores the significance 

of considering the specific contributions of AT values in enhancing model performance. 

 

 

Figure 3.9. Plots of observed and predicted LSWT using as predictors AT + SCDOY, all variables, averaged 

AT +SCDOY and AT of previous days + SCDOY for the shallow lake (a) and the deep lake (b) . All RMSE 

values are averaged over 20 independent runs. 
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3.4.4. The choice of the ML algorithm 

Based on our comprehensive literature review (summarized in Table 3.1), the ANN emerges as the 

most widely employed ML approach. However, numerous other methods have also been proposed in 

the field. In this study, we aim to delve into the specifics of various ML algorithms and subsequently 

compare their performances in synthetic case studies, encompassing both shallow and deep lakes. 

For our comparative analysis, we selected nine commonly utilized ML algorithms, taking into account 

their applicability to stream temperature prediction as well. These algorithms include MLPNN, 

BPNN, LSTM, ANFIS, DT, RF, ERT, KNN, and SVR (Table 3.6). Detailed information regarding 

these methods can be found in section 2.2. To ensure a fair and consistent comparison, we established 

a standardized procedure for the analysis. This involved utilizing the same predictors (AT and 

SCDOY), optimizing the hyperparameters using the GA optimization technique, and applying Min-

Max scaling as the pre-processing method for the input data without any additional smoothing. When 

evaluating the performances, we focused on the RMSE for both the training and test data sets 

separately. It is important to note that a low error for the training set and a high error for the test set 

indicate overfitting, where the model fails to generalize effectively to new data sets. 

Table 3.6. Comparison of the performances among different ML algorithms: RMSE of train and test data set 

using AT and SCDOY as input (with MM for pre-processing). A negative difference indicates the worsening 

of the performances for the test with respect to the train data set. All RMSE values are averaged over 20 

independent runs. 

Method Phase 
RMSE (°C) 

Depth = 5 m Depth = 60 m 

Decision tree (DT) 

Train 1.230 1.428 

Test 1.626 1.668 

(difference) (-0.395) (-0.240) 

Random forest (RF) 

Train 1.159 1.117 

Test 1.540 1.362 

(difference) (-0.381) (-0.246) 

Extremely randomized tree (ERT) 

Train 1.295 1.141 

Test 1.479 1.292 

(difference) (-0.184) (-0.150) 

K-Nearest neighbuor (KNN) 

Train 1.243 1.093 

Test 1.525 1.311 

(difference) (-0.283) (-0.218) 

Support vector regression (SVR) 

Train 1.369 1.171 

Test 1.497 1.302 

(difference) (-0.128) (-0.131) 

Multi-layer perceptron neural 

network (MLPNN) 

Train 1.319 1.212 

Test 1.467 1.378 
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(difference) (-0.148) (-0.166) 

Long short-term memory (LSTM)  

Train 1.353 1.286 

Test 1.490 1.264 

(difference) (-0.137) (0.022) 

Backpropagation neural network 

(BPNN) 

Train 1.312 1.160 

Test 1.460  1.292 

(difference) (-0.148) (-0.133) 

Adaptive neuro fuzzy inference 

system (ANFIS) 

Train 2.911 3.743 

Test 2.848 3.456 

(difference) (0.063) (0.287) 

 

As shown in Table 3.6, the performances of most ML algorithms were comparable for the case of the 

shallow lake: RMSE in the range 1.16-1.37°C for the training data set, with the exceptions of ANFIS 

providing the worst results (2.91°C), and in the range 1.46–1.63°C for the test data set (2.85°C for 

ANFIS). In the case of the deep lake, the RMSE for the training data set ranges from 1.46 to 1.63°C 

for most ML algorithms, with ANFIS exhibiting the poorest performance (2.91°C). Similarly, for the 

test data set, the RMSE ranges from 1.26 to 1.67°C, with ANFIS again producing unacceptable results 

(3.46°C). Notably, RF, which initially performed well during training, experiences a significant 

deterioration in performance for the test set, with an increase in RMSE of 0.38°C for the shallow lake 

and 0.25°C for the deep lake. On the other hand, LSTM, which preserves information from previous 

states, performs effectively for the deep lake in both the training and test data sets, with only a slight 

difference of 0.02°C between the two. This observation aligns with the notion that lakes retain the 

memory of previous conditions, indicating that satisfactory results can be achieved without extensive 

pre-processing of the data involving AT smoothing or the inclusion of previous AT values. 

To gain further insights into the performance of ML methods, it is beneficial to consider the 

characteristics of specific algorithms. Let's examine the performances of two similar methods: ERT 

and RF. ERT is a modified version of DT that selects model parameters randomly and trains the model 

repeatedly using the data. In contrast, RF determines node splits based on optimal decisions, while 

ERT randomly splits nodes. Moreover, RF divides inputs into subsamples, allowing replacement and 

resulting in repeated data, whereas ERT avoids data repetition by not employing replacement during 

input selection (Geurts et al., 2006). The results presented in Table 3.6 indicate that ERT exhibits 

greater robustness, as the decline in performance from training to test is less pronounced compared 

to RF. 

The findings suggest that LSTM, MLPNN, and BPNN are successful methods for predicting LSWT. 

These methods demonstrate the smallest difference in RMSE between the training and test data sets 
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among the various ML algorithms (Table 3.6). Notably, these methods belong to the domain of deep 

learning (DL), which implies that DL is capable of extrapolating favorable performances to the test 

data set more effectively than other ML approaches. DL models consist of multiple hidden layers, 

which introduce more degrees of freedom in weight and bias combinations (the parameters calibrated 

during training), leading to more accurate results. Conversely, ANFIS, which leverages the structure 

of ANN but incorporates fuzzy logic in its hidden layer (further details in section 2.2), yields less 

accurate predictions compared to the other ML methods examined in this study. 

 

 

Figure 3.10. The evolution of LSWT in a single year (2015) as predicted by different ML approaches using 

AT+ SCDOY for the shallow (a) and deep (b) lake; the target is LSWT simulated by the physically based 

model GLM. 

The behavior of shallow and deep lakes can be distinguished by the intensity of fluctuations in LSWT. 

The shallow lake exhibits significant variability on a short time scale, whereas the deep lake 

experiences smaller fluctuations (as depicted in Figure 3.10) (Ding and Mao, 2021). However, the 
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damped variability observed in the deep lake is confined to periods when stratification does not occur. 

During summer, LSWT exhibits increased fluctuations in the deep lake due to the smaller surface 

volume's response to heat flux. Replicating such behavior poses a challenge for ML methods. DL 

algorithms demonstrate superior ability to track the target (LSWT simulated by GLM model) 

compared to other ML methods. On the other hand, the poorest performing method, ANFIS, yields 

less accurate results. 

3.4.5. The benchmark of a physically based data-driven model 

To establish a benchmark for evaluating the performance of ML models, we compared the results 

with those obtained from the physically based, data-driven model called air2water (Toffolon et al., 

2014). The input data for the 6-parameter version of air2water consists of AT and DOY. This model 

incorporates a differential equation that considers the time derivative of LSWT, allowing for the 

retention of the lake's thermal inertia. By calibrating the parameters of air2water, we achieved values 

of 1.098°C and 1.078°C (for training and test data, respectively) in the case of the shallow lake, and 

0.946°C and 1.021°C in the deep lake. Thus, air2water exhibits performance comparable to the best 

ML models (Table 3.6), and only slightly lags behind the modified BPNN with previous days' AT 

values (Table 3.5). 

It is noteworthy that air2water retains the memory of previous conditions through the time derivatives 

of LSWT, similar to stochastic autoregressive algorithms. Additionally, air2water incorporates a 

parameter that adjusts the thermal inertia of the system based on a simplified representation of 

seasonal stratification (Toffolon et al., 2014). LSTM, on the other hand, follows a similar approach 

by employing a complex structure of ANN with internal loops. In contrast, the inclusion of previous 

days' AT values, as demonstrated in our modified BPNN application (Figure 3.8g, h), explicitly 

incorporates the historical forcing data rather than the state of the physical system (such as the 

previous day's LSWT) (Austin and Colman, 2007). 

3.4.6. Discussion 

ML has proven to be a successful approach for predicting LSWT, and it offers advantages over 

physically based models by not requiring a wide range of data on lake morphology, meteorological 

forcing, and heat fluxes. However, the selection of appropriate predictors plays a crucial role in the 

success of ML models. Our analysis of artificial case studies reveals that the most influential inputs 

for forecasting LSWT are DOY or alternatively, SCDOY, and AT. While other predictor combinations 

may slightly improve accuracy, they require additional data. The significance of AT is expected, as it 

impacts various components of the heat flux and serves as a proxy for meteorological conditions. 
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More interestingly, DOY (or SCDOY) allows for the reproduction of the climatological mean year, 

capturing the annual cycle of LSWT that repeats approximately every year (Toffolon et al., 2020). 

In addition to its climatological significance, DOY contributes to the inclusion of seasonal variability 

in stratification, which is particularly important in lakes deep enough to experience periods of non-

mixing. The intra-annual variability range between minimum and maximum LSWT is substantial in 

temperate lakes, with inter-annual variability often making a minor contribution to the overall RMSE 

(Piccolroaz et al., 2016). The morphological and hydrological features of lakes are known to affect 

their thermal response. Although we focused on two depth cases (shallow: 5 m, and deep: 60 m) and 

did not conduct a comprehensive comparative analysis across multiple lakes, our findings suggest 

that the smoother behavior observed in deep lakes, attributed to their larger heat capacity, may result 

in lower RMSE values compared to shallow lakes. However, it should be noted that the dynamics of 

deeper lakes are generally more complex due to the nonlinear effect of stratification on LSWT. 

Optimization and pre-processing methods are well-known techniques to enhance the performance of 

ML models (Isik et al., 2012). In our study, we observed that applying a moving average to the input 

AT effectively smoothed the high-frequency response of LSWT, mimicking the physical filtering 

effect of the larger water mass in a lake. Another approach to mitigate LSWT oscillations involves 

reducing the influence of day-to-day AT variability by incorporating AT values from previous days. 

Overall, ML models demonstrate their utility in LSWT prediction, and careful selection of predictors, 

consideration of seasonal variability, and appropriate pre-processing techniques can further improve 

their performance (Isik et al., 2012; Toffolon et al., 2020; Piccolroaz et al., 2016). 

In our modeling exercise, we did not identify a single ML approach that consistently outperformed 

the others. While a group of methods showed reasonably good performance (varying depending on 

the shallow/deep case), only ANFIS exhibited unacceptable errors. Our findings align with the results 

of our literature review, which also lacked clear indications of a dominant ML approach for LSWT 

predictions (Table 3.3). The most commonly used model in the literature is and its variations, which 

have become somewhat of a standard for LSWT predictions. However, it is worth noting that 

traditional methods sometimes outperformed advanced algorithms. For example, Sharma et al. (2008) 

demonstrated that multiple regression, which considers linear relationships, can be more effective 

than ANN. Similarly, Quan et al. (2020) found that SVR with GA outperformed ANN in reservoir 

applications. Heddam et al. (2020) reported that ERT was more robust than ANN and RF for LSWT 

prediction in shallow lakes, while also requiring less computation time than ANN. Interestingly, 

according to their study, a physically based data-driven model called air2water outperformed all the 

ML methods, confirming the outcome of our analysis. Liu and Chen (2012) compared the accuracy 
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of ANN with a 3D hybrid model in the shallow Yuan-Yang Lake (maximum depth 4.5 m) and found 

that ANN was less accurate in forecasting water temperature below the surface compared to LSWT. 

Similarly, Samadifard et al. (2016) investigated ANN, gene expression programming (GEP), and 

ANFIS in the Yuan-Yang Lake and, consistent with our results, demonstrated that ANN generally 

outperformed ANFIS. It should be noted that achieving high performance with ANN requires careful 

optimization method selection, as well as an appropriate number of hidden layers and neurons. 

Additionally, different branches of ANN, such as MLPNN, RNN, and BPNN, are available. 

The incorporation of physical constraints can help ML models achieve more accurate predictions. In 

our analysis, we focused on pre-processing AT data by including information from previous days to 

simulate the combined effect of historical forcing and system memory. Other researchers have 

directly included constraints within their models. For instance, Jia et al. (2019) added two physical 

constraints to their LSTM model for simulating temperature profiles in Lake Mendota: the 

requirement that density increases with depth and the conservation of energy. Furthermore, Jia et al. 

(2021) pretrained their LSTM model using a physically based model in cases of data deficiency to 

improve accuracy, effectively creating a hybrid model that combines ML with physics-based 

principles. 

While ML methods generally perform better than linear regression models, physically based data-

driven models like air2water tend to outperform most ML methods we investigated. These models 

retain some physical principles while offering flexibility through specific parameter calibration for 

different case studies. This raises the question of why ML approaches are used. We believe that the 

flexibility of ML represents a significant advantage when the underlying physics of the system is not 

sufficiently understood or when simplified models are not available for a specific class of problems. 

This is particularly relevant in global-scale analyses that consider different types of lakes using the 

same approach. For example, Piccolroaz et al. (2020) demonstrated that air2water performs well for 

temperate lakes but shows diminished performance for tropical and equatorial lakes, where other 

factors may become as relevant as Air AT. Thus, conducting a global analysis of LSWT in lakes using 

ML methods deserves further attention. 

3.5. Conclusions 

Predicting the water temperature of freshwater bodies, including LSWT, can be achieved using 

various methods, with ML algorithms gaining popularity as an effective approach. In this study, we 

conducted a comprehensive review of common ML approaches for LSWT prediction and aimed to 

understand the factors influencing their performance. Specifically, we investigated the impact of 

different predictors used as input data, the potential improvement gained by considering the history 
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of forcing and system memory in thermal response (such as smoothing AT input or incorporating 

previous days' values), and the performance of various ML approaches. Our comparative analysis 

was based on a literature review and the application of nine ML methods to two deliberately designed 

case studies: a shallow lake (maximum depth 5 m) and a deep lake (maximum depth 60 m). In these 

case studies, LSWT was artificially generated using a physically based one-dimensional model 

(GLM). By utilizing synthetic cases, we were able to control all relevant variables and compare the 

shallow and deep cases without external factors affecting the thermal response. However, it is 

important to note that these results are derived from synthetic cases and may not fully represent real 

lakes. 

The outcomes of our analysis, using BPNN as the reference ML approach, revealed that a 

combination of AT and DOY - particularly with a continuous representation of DOY using SCDOY 

- provided the minimum necessary information for obtaining reasonable results. Further inclusion of 

additional variables did not lead to significant improvements. Additionally, we demonstrated that 

smoothing the AT input signal, such as employing a moving average, notably enhanced the predictive 

performance. Another effective approach, albeit more complex, involved incorporating previous days' 

AT values as inputs to the ML model to capture the history of forcing conditions. This finding 

underscores the importance of incorporating memory effects in ML approaches that do not inherently 

account for them. While we only tested LSTM as an option, it proved beneficial. Finally, the 

comparison of nine ML algorithms did not reveal substantial differences in performance, although 

LSTM exhibited slightly greater robustness compared to other approaches, while ANFIS consistently 

produced unsatisfactory results. Consequently, our analysis suggests that the success of ML 

applications for LSWT prediction primarily relies on identifying appropriate predictors, while the 

choice of the best ML algorithm remains subjective and lacks a definitive solution.  
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Chapter 4. The influence of climate on 

the lakes’ thermal response  

4.1. Introduction 

Lake surface water temperature (LSWT) affects the period and severity of lake overturn, which often 

results in changes the quality of water (Ptak and Nowak, 2016; Missaghi et al., 2017; Gray et al., 

2019). LSWT is increasing due to global warming (about 0.3 °C per decade) (Schneider and Hook, 

2010; O’Reilly et al., 2012; Ptak et al., 2020). For instance, Dokulil et al. (2021) showed the increase 

of +0.58 °C decade−1 and +0.42 °C decade−1 for the annual maximum LSWT and air temperature, 

respectively, in the same period. 

Predictions of LSWT has driven studies measuring the trend of global warming and its effect on the 

LSWT, also taking into account the impacts of other meteorological variables such as shortwave 

radiation. To develop LSWT models for predictive purposes, two primary types of models are 

introduced, those that are physically based and those that are data-driven. Physically based models, 

including fundamental equations of the lakes’ heat budget, demand not only the meteorological 

variables but also data such as inflow, outflow and lake’s physical features (Piotrowski and 

Napiorkowski, 2018). Data-driven models utilize observed LSWT and meteorological variables 

without requiring knowledge of the physics of lakes. Data-driven models consist of machine learning 

(ML) methods, in which thanks to available observed output(s), we can focus on supervised branch. 

ML approaches are more flexible than physically based models due to removing or changing the 

predictors for further analysis. 

Different ML approaches are utilized to predict LSWT such as multiple regression model, based on 

linear relationships, (Sharma et al., 2008; Zhu et al., 2020b), random forest (Heddam et al., 2020), 

support vector machine (SVM) (Quan et al., 2020), artificial neural network (ANN) (Sharma et al., 

2008; Sener et al., 2012; Read et al., 2019; Zhu et al., 2020a). The deep learning methods (ANN with 

more than one hidden layer) are successful popular approaches utilized in many studies. Although, in 

Sharma et al. (2008) study, multiple regression model outperformed ANN. Moreover, Quan et al. 

(2020) showed that using genetic algorithm (GA) as the optimization for SVM makes this method 

more accurate than ANN.  

As input(s) of ML to predict LSWT some variables are used such as air temperature (AT), wind speed, 

shortwave and downward longwave radiations, relative (or specific) humidity, rainfall, water depth 

and air pressure, among which AT is one of the most influential indicators (Sharma et al. 2008; Sener 

et al. 2012; Read et al. 2019; Heddam et al. 2020; Zhu et al. 2020b).  
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While previous studies, mentioned in this section, employed meteorological variables to predict 

LSWT using ML for specific cases (with the exceptions of Sharma et al., 2008 and Read et al., 2019), 

it remains uncertain whether the identified influential variables hold equal significance for all other 

lakes. None of these studies have considered the relevance of meteorological variables across diverse 

climate regions. This study aims to fill this gap by examining the impact of meteorological variables 

on LSWT in 2024 lakes worldwide. Utilizing Backpropagation Neural Network (BPNN) as an ML 

approach, we seek to understand how the importance of meteorological variables in LSWT prediction 

is influenced by different climate regions. Essentially, this study extends the findings of Chapter 3 by 

generalizing them with optimized models. We also investigated the accuracy of BPNN as a ML 

approach to check whether it would be useful for prediction in different cases, having low number of 

valid data with reasonable quality by remote sensing.  

4.2. Methodology 

The implementation of the model entails data preparation and the utilization of ML model for 

simulation. Recognizing the fact that lakes retain a memory of past conditions and forcing events, we 

took into account weighted average of the forcing variables over a specific time span preceding the 

day of simulation (explained in section 2.4). We identified the optimal time span for each lake, during 

which the model achieves the lowest RMSE. This strategy was implemented to address the challenge 

posed by the memory effects of lakes, enabling us to improve the predictive capabilities of our model.  

The sequential progression of the methodology is depicted in Figure 4.1 through a visual 

representation in the form of a flowchart and subsequently explained in the following description. 
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Figure 4.1. Framework. 

4.2.1. Case Study 

This study investigates 2024 lakes, the descriptions of meteorological variables in all lakes can be 

found in Table 4.1. The meteorological data and observed LSWT of the lakes are taken from ERA5 

(2017b), which is provided by the Climate Change Service (Hersbach, 2020), and ESA-CCI dataset 

providing long-term global LSWT data (http://cci.esa.int/lakes), respectively. Based on the Köppen 

climate classification (explained in section 2.1.5), lakes are categorized into five distinct regions, each 

representing different climatic conditions: tropical, dry, temperate, snow and polar. The respective 

ranges for each variable in each region are detailed in Table 4.1. 

http://cci.esa.int/lakes
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Table 4.1. Ranges of (daily mean) meteorological variables and LSWT.  

          Regions 

Parameters            

Tropical Dry Temperate Snow Polar 

AT (°C) 7.23 – 40.32 -42.28 – 42.17 -28.05 – 40.59 -64.69 – 

36.27 

-63.31 – 29.60 

WS (ms−1) 0.40 – 17.13 0.54 – 19.39 0.33 – 19.89 0.33 – 20.08 0.21 – 23.24 

SWR (Wm−2) 8.75– 375.74 4.42 – 425.92 0.14 – 435.50 0 – 399.04 0 – 426.15 

LWR (Wm−2) 245.65 – 473.15 84.47 – 

481.42 

126.99 – 

468.70 

73.88 – 

444.64 

66.81 – 426.05 

AP (Pa) 71083.60 – 

103598 

54204.20 – 

105421 

60866.1 – 

104827 

53143.1 – 

105968 

48887.5 – 

106025 

RH (kgkg−1) 8430.54 – 

646156 

3.12 – 628073 52.63 – 

581016 

0.01 – 

420107 

0.02 – 275082 

R (kgm−2s−1)* 0 – 40.81e-4 0 – 23.24e-4 0 – 38.28e-4 0 – 15.24e-4 0 – 16.70e-4 

S (kgm−2s−1)* 0 – 0 0 – 8.02e-4 0 – 14.60e-4 0 – 16.13e-4 0 – 16.73e-4 

LSWT (°C) 13.95 – 37.64 0 – 40.89 0 – 36.77 0 – 36.82 0 – 24.62 

*The unit is equal to mm/s 

4.2.2. Data acquisition 

The input data of ML consists of meteorological variables, Day of the year (DOY). Observed LSWT 

(°C) that is lake surface skin temperature used as the target for incorporation into the objective 

function during model training. The meteorological retrieved from ERA5, explained in section 2.1.4, 

variables include air temperature (°C) 2 m above the lake surface, wind speed (ms−1), air pressure 

(Pa), rainfall and snowfall (kgm−2s−1), specific humidity (kgkg−1) converted to relative humidity 

(kgkg−1), surface downward longwave radiations and shortwave radiations (Wm−2). The detailed 

information of these variables is available at 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived-near-surface-meteorological-variables.  

As shown in Chapter 3 (Figure 3.4), DOY jumps from 365 to 1 when the year changes, and the 

discontinuity does not correspond to the continuous change in LSWT. Accordingly, we applied the 

sine and cosine of DOY (SCDOY), i.e., sin(DOY/nDOY), abbreviated as SDOY, and 

cos(DOY/nDOY), abbreviated as CDOY, where nDOY is the number of days in a year. By 

representing the DOY using the sine and cosine functions, we can capture the same information while 

facilitating a smoother transition between the end of each year and the beginning of the following 

year (Yousefi and Toffolon, 2022). 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived-near-surface-meteorological-variables
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4.2.3. Preprocessing 

In ML applications, it is customary to normalize and standardize data, particularly when their range 

of variation spans different scales (refer to Table 4.1). Data scaling allows for the evaluation of various 

features expressed in different units and enhances the overall results (Fahle et al., 2020). Several 

scaling methods exist, and after testing Min-Max, Standard, and Robust scalers (Varoquaux et al., 

2015), we determined that the Min-Max scaler yields better outcomes in our cases (also shown for 

the synthetic lake in Chapter 3). 

The process of splitting the dataset into training and test sets is a fundamental step in ML, as it enables 

the evaluation of the model's performance on unseen data. There are multiple ways to split the dataset, 

each with its own advantages and limitations. Based on trial and error and the need to have available 

measured LSWT (not daily values) in the last fold for all cases, we chose the 5th fold out of 5 folds 

as the test set and other folds as the training set for all lakes for sake of simplicity. 

4.2.4. Machine learning model 

ANNs are intricate systems designed to imitate pattern recognition and prediction. They comprise 

interconnected processors and layers of neurons that process input data through hidden layers to 

produce simulation results. The weights and biases of the neurons are continuously optimized to 

minimize discrepancies between the output and the desired target. Within this framework, the 

backpropagation neural network (BPNN), a prominent ANN architecture, assumes a crucial role by 

updating the weights backward, in contrast to the forward weight updates of feedforward ANN. This 

method is explained in detail in section 2.2.1. 

Achieving optimal performance with ML models necessitates the meticulous selection of relevant 

hyperparameters. These user-defined parameters exert significant influence over the algorithms' 

learning dynamics and predictive accuracy.  Hence, we experimented with different hyperparameters 

and opted for the most effective ones that proved suitable for all 2024 lakes (represented in Appendix 

A.2). Accordingly, we opted for one set of hyperparameters for all the lakes, while the model’s 

parameters were tuned for each individual lake. 

To ensure the robustness and stability of the results, it is advisable to run the model multiple times, 

where the initial values of weights and biases are randomly selected for each run. In this study, we 

conducted the model running process 20 times and subsequently calculated the average of the 

obtained results. This approach of averaging the outputs from multiple runs enhances the reliability 

of the outcomes (Yousefi and Toffolon, 2022). 
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This study assessed the model's performance through the examination of two primary performance 

metrics: the root means square error (RMSE) and the modified Nash-Sutcliffe efficiency index 

(NSE*), introduced in section 2.3. Both indicators were evaluated for both the training and test sets, 

as detailed in previous studies (Nevitt and Hancoc, 2000; McCuen et al., 2006). The RMSE and NSE* 

are obtained from average on 20 predicted LSWT. 

4.3. Results 

This section of the thesis represents the comprehensive analysis of features correlations, the 

performance of the BPNN model in predicting LSWT for a dataset encompassing 2024 lakes. 

Additionally, we performed the feature ranking for each Köppen region to determine the most 

influential factors. 

4.3.1. Optimal average window size 

Taking into account the impact of preceding forcing events on the current state of the system allowed 

us to gain insight into the underlying dynamics and improve ML predictions. Different from the 

analysis in Chapter 3, here we used the exponential weighted average of each variable (as explained 

in section 2.4) and determined the best window size based on BPNN model performance in a way to 

have the lowest RMSE of the model. Through the examination of individual time spans for each lake 

over a period of 90 days, and subsequent calculation of the corresponding RMSE, we identified the 

time span that corresponds to the minimum RMSE for each lake. This approach enabled us to assess 

the significance of temporal dependencies and forcing memories of previous days. 

Figure 4.2 illustrates the optimal time window for calculating the average across all lakes in each 

region. Overall, the average window sizes seem to exhibit a relatively uniform pattern across all 

regions, with the temperate region displaying the largest window size values. 
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Figure 4.2. Boxplot of best window size for averaging for all meteorological variables in different Köppen 

regions, showing the 25, 50 and 75 percentiles. The mean value is presented as red square. 

When determining the optimal window size, we observed fluctuations in averaging feature results 

(RMSE) across various window sizes. To mitigate these fluctuations to get the best window size, we 

opted to apply smoothing techniques. For instance, in the case of Victoria (as discussed in section 

2.4), we utilized smoothed values (as illustrated in Figure 4.3) to improve our ability to detect the 

minimum, which, in this instance, occurred at approximately 40 days. 
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Figure 4.3. The actual and smoothed RMSE (°C) over different window sizes for Lake Victoria. 

4.3.2. Cross correlation among variables 

Gaining a deep comprehension of the principles governing thermal dynamics is essential for 

achieving precise forecasts, particularly when employing non-physical methodologies such as ML. 

Accordingly, for each lake, we chose and utilized Spearman's rank-order correlation to assess the 

interrelationships between variables, and then averaged for each Köppen region. The method 

quantifies the magnitude and direction of a nonlinear relationship between two variables, as proposed 

by Spearman (1910) explained in section 2.7.2. It is crucial to acknowledge that there exist 

correlations not only between the predictors and LSWT but also among the predictors themselves. 

This analysis also aids in verifying the accuracy of the feature ranking presented in section 4.3.4.  

Given that the LSWT data is not available on a daily basis while the features are, we utilized linear 

regression to fill in the missing values of LSWT. Accordingly, we constructed a linear regression 

model incorporating meteorological variables alongside SCDOY as input. The objective function was 

set as the RMSE using observed LSWT. Subsequently, we utilized the model to predict the missing 

LSWT values. Therefore, the correlations were computed using the daily values. It should be noted 

that these correlations are based on average meteorological variables which we used in other analysis 

as well.  

Figure 4.4 illustrates that AT, LWR, SWR, RH, and SCDOY exhibit the highest correlations not only 

with LSWT but also among themselves, across all regions. SDOY, CDOY, AT, WS, SWR, LWR, AP, 

RH, R and S are higher correlated with LSWT in temperate, temperate, snow, polar, snow, temperate 
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and tropical, temperate, tropical, polar and dry and temperate regions, respectively. In general, higher 

correlations can be observed in temperate region.  

In the analysis, we focus on the magnitude of the correlation value, as even a negative value of high 

value indicates a strong correlation. For instance, there exists a negative correlation between AT and 

SCDOY, with AT exhibiting a stronger correlation with CDOY than with SDOY. It's also noteworthy 

that AT exhibits a high correlation with SWR, LWR, and RH which means AT includes some same 

information of these variables. 
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Figure 4.4. Heatmap of Spearman correlation for Köppen region. 
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4.3.3. Model evaluation 

In this section, we present the results obtained from the BPNN model, considering four distinct 

scenarios. These scenarios involve the inclusion of meteorological variables (namely AT, SWR, LWR, 

WS, R, S, AP, and RH) without any averaging, both with and without SCDOY, as well as the averaged 

meteorological variables with and without SCDOY. These results are in Table 4.2. and depicted in 

Figures 4.5 to 4.12.  

As shown in Table 4.2, the RMSE is lower in the training set compared to the test set. The NSE* is 

higher (indicating better performance) in the training set, meaning that it captures better the 

interannual variability. The model utilizing averaged variables outperforms the actual values in both 

scenarios: without SCDOY and with the inclusion of SCDOY, which further enhances the model's 

performance compared to the case without SCDOY. The improvement for averaged variables plus 

SCDOY scenario is attributed to the fact that the averaged meteorological variables such as SWR, 

LWR, and AT variables can effectively capture the patterns and exhibit a strong correlation with 

LSWT, as elaborated in section 4.3.2. 
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4.2. The median of RMSE (°C) and NSE* of the models in each Köppen region for both training and test sets. 

Scenario Metrics Tropical Dry Temperate Snow Polar 

Training Test Training Test Training Test Training Test Training Test 

Actual 

variables 

without 

SCDOY 

RMSE(°C) 2.96     3.03     2.99     3.03     3.07     3.13     3.02     3.08     2.92 3.07 

NSE* -0.98    -1.07   

 

-0.85    -0.87   -0.98   -1.07    -0.95    -0.98    -0.81 -0.88 

Actual 

variables 

with 

SCDOY 

RMSE(°C) 1.72     1.83    1.73    1.83    1.77    1.84    1.75     1.83    1.72 1.84 

NSE* 0.20    0.15     0.21   0.18     0.22   0.19    0.21     0.18     0.15 0.11 

Averaged 

variables 

without 

SCDOY 

RMSE(°C) 2.03    2.14     1.93    2.07     2.17    2.24    2.08    2.19     2.05 2.14 

NSE* -0.06   -0.18   -0.03   -0.12   -0.08    -0.16    -0.05    -0.16    -0.10 -0.16 

Averaged 

variables 

with 

SCDOY 

RMSE(°C) 1.46    1.61    1.46     1.63   1.54     1.71   1.51    1.68     1.48 1.66 

NSE* 0.42    0.32    0.42    0.28    0.41     0.30     0.41    0.29    0.39 0.26 

The plots, depicted in Figures 4.5 to 4.12, visually illustrate the RMSE and NSE* outcomes for each 

Köppen region across both the training and test datasets. Figures 4.5 and 4.6 display the results for 

actual variables without SCDOY; Figures 4.7 and 4.8 correspond to actual variables with SCDOY; 

Figures 4.9 and 4.10 are for averaged variables without SCDOY; and Figures 4.11 and 4.12 showcase 

the results of averaged variables with SCDOY. In the boxplots found within each of these figures 

(labeled as c and d), the averaged values are highlighted in red lines.  

Overall, it is important to emphasize that the predictive errors are more pronounced in the Temperate 

region when contrasted with other regions. These figures reinforce the findings presented in Table 

4.2, where the training results outperform the test set results, and the utilization of averaged values 

consistently yields superior outcomes compared to using the actual values. This suggests that 

incorporating the memory of previous days can enhance the results, particularly for variables like 

LSWT, which heavily depends on historical data from preceding days. Utilizing SCDOY results in 



Yousefi, ML Models for Lake Surface Water Temperature and Ice Thickness - SM 80/155 

the NSE* exceeding zero, due to the contribution of SCDOY towards capturing the mean annual 

pattern, and using other features improve the prediction accuracy.  

 

Figure 4.5. RMSE of both training and test sets for all Köppen regions, considering the actual values without 

SCDOY. 
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Figure 4.6. NSE* of both training and test sets for all Köppen regions, considering the actual values without 

SCDOY.  
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Figure 4.7. RMSE of both training and test sets for all Köppen regions, considering the actual values with 

SCDOY. 

 



Yousefi, ML Models for Lake Surface Water Temperature and Ice Thickness - SM 83/155 

Figure 4.8. NSE* of both training and test sets for all Köppen regions, considering the actual values with 

SCDOY. 
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Figure 4.9. RMSE of both training and test sets for all Köppen regions, considering the averaged values 

without SCDOY. 
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Figure 4.10. NSE* of both training and test sets for all Köppen regions, considering the averaged values 

without SCDOY. 
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Figure 4.11. RMSE of both training and test sets for all Köppen regions, considering the averaged values 

with SCDOY. 
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Figure 4.12. NSE* of both training and test sets for all Köppen regions, considering the averaged values with 

SCDOY. 

Due to the impracticality of presenting detailed results for all lakes in the dataset, we have opted to 

evaluate a single representative lake from each Köppen region, as already anticipated in section 2.4. 

Accordingly, lakes Victoria, Dead Sea, Garda, Erie, and Zhari Namco have been selected to represent 

the tropical, dry, temperate, snow, and polar regions, respectively, based on the availability of ample 

data, thereby facilitating enhanced performance of the model (presented in Table 4.3). Since using 

the averaged variables improves the results, we considered the models with weighted average with 

and without SCDOY. As we discussed earlier, including SCDOY slightly improves our results. 

The bias metric considers whether the model consistently predicts less (negative value) or more 

(positive value) than the observed values, and in these cases, it does tend to predict values on the 

lower side. The use of SCDOY helps achieve higher NSE* by capturing interannual variability. We 

anticipate that, in general, an NSE* greater than zero is obtained when incorporating SCDOY while 



Yousefi, ML Models for Lake Surface Water Temperature and Ice Thickness - SM 88/155 

for some lakes, like theDead Sea, including additional variables (other than SCDOY) might make the 

predictions worse (NSE* less than zero). 

Table 4.3. RMSE and NSE* for lakes representative of each Köppen region. 

Köppen region Sce-

nario 
RMSE (°C) NSE* Bias (°C) 

Training Test Training Test Train-

ing 

Test 

Tropical (Lake 

Victoria) 

With 

SCDOY 0.67 0.58 0.12 0.08 -1.4 E-4 1.6E-2 

Without 

SCDOY 0.72 0.62 -0.03 -0.02 1.4 E-3 3.7 E-2 

Dry (Dead Sea) With 

SCDOY 0.99 0.95 -0.08 -0.08 4.9 E-4 1.2 E-1 

Without 

SCDOY 1.44 1.52 -1.27 -1.75 6.9 E-5 1.5 E-1 

Temperate 

(Lake Garda) 

With 

SCDOY 1.19 1.24 0.18 0.17 3.3 E-5 8 E-2 

Without 

SCDOY 2.45 2.50 -2.44 -2.40 -3 E-4 2.8 E-1 

Snow (Lake 

Erie) 

With 

SCDOY 1.32 1.43 0.62 0.58 1 E-3 -1.2 E-1 

Without 

SCDOY 1.51 1.66 0.50 0.43 1.5 E-5 1.3 E-1 

Polar (Lake 

Zhari Namco) 

With 

SCDOY 0.90 0.87 0.76 0.76 - 3.1 E-4 3.68 E-2 

Without 

SCDOY 1.27 1.18 0.52 0.56 -1.7 E-4 1.47E-1 

 

The predictions are visually displayed in Figure 4.13. On the right side, the figures for cases where 

SCDOY is considered along with the averaged variables are shown, while on the left side, SCDOY 

is not included. Focusing on Lake Victoria, as shown in Figure 4.13 (a) and (b), the prediction may 

not appear highly accurate visually. However, it is noteworthy that the RMSE values for this lake 

displayed in Table 4.3 signify superior predictive performance. This occurs due to the relatively minor 

fluctuations in LSWT within Lake Victoria, resulting in lower RMSE values associated with reduced 

errors. Conversely, the LSWT exhibits wider fluctuations in other lakes. Therefore, the higher RMSE 

values for Lakes Garda, Erie, and Zhari Namco should not be interpreted as indicative of poor 

predictions. For Lake Zhari Namco, presented in Figure 4.13(i) and (j), due to the lack of zero data 

during the winter period, accurate prediction for those days is challenging. Consequently, it is not 

factored into the computation of errors. 
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(i) (j) 

  

Figure 4.13. The simulation and prediction of LSWT for lakes Victoria (a, b), Dead Sea (c,d), Garda (e,f), Erie 

(g, h), Zhari Namco (i,j). The cases with SCDOY are on the right side and without using them in the left side. 

4.3.4. Feature ranking 

In order to assess the significance of predictors in model performance, we employed the FR 

algorithms introduced in section 2.7 to assign ratings to each individual feature. Additionally, we aim 

to identify predictors that exert a negative impact on the model, as illustrated by the case of the Dead 

Sea in Table 4.3. Despite the inclusion of SCDOY, resulting in a negative NSE*, this outcome 

indicates the use of a non-relevant predictor(s). Given our objective of creating a single, generalized 

model for all lakes, we needed to incorporate all predictors that could be significant in various regions. 

This analysis consisted of subjecting a specific feature to 30 rounds of random shuffling (rearranging, 

see more details in Chapter 2), resulting in the generation of multiple random sequences for that 

predictor, which then lose their physically arguable influence on the target variable (LSWT). By 

comparing the model performance obtained by using the shuffled inputs with the reference case (all 

inputs are physically consistent), we were able to quantify the level of dependence on each feature. 

Notably, a higher degree of degradation observed in the model performance indicates a higher level 
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of relevance associated with the particular feature in each individual lake. Subsequently, we computed 

the average of the degradations for each Köppen region. 

Figure 4.14 presents a visual representation of the FR for each variable, sorted by the median of 

errors, illustrating their respective significance within various Köppen regions. The y-axis value 

indicates the difference between the RMSE of the normal case (without shuffling) and the RMSE of 

the shuffled cases, divided by the RMSE of the normal case. 

Part (a) of the figure corresponds to the scenario where SCDOY is considered, which is the primary 

predictor in this case. In the tropical region, apart from S, all other variables play a crucial role. This 

observation is in line with what we observed in Figure 4.13 (a,b), where the changes in LSWT do not 

precisely follow the interannual variability. 

Part (b) of the figure represents cases where SCDOY is not considered. Generally, SWR, LWR, AT 

and RH emerge as the key predictors. This observation aligns with the correlations highlighted in 

section 4.3.2. We note that, in the temperate region, AT is the most relevant additional predictor when 

using SCDOY, as often assumed  (Piccolroaz et al., 2021), but its effect is not dominant over the other 

factors. These findings underscore that the expected influence of these variables on the model's 

performance and their ability to capture the complex dynamics within each specific Köppen region 

is not trivial. 
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(a) 

 

(b) 

 

Figure 4.14. Feature ranking for each Köppen region: boxplots of the increase of RMSE (°C) obtained by 

shuffling the single variable indicated on the horizontal axis with considering SCDOY (a) and without it (b). 

4.3.5. Discussion 

The ML technique, BPNN, demonstrated effective simulation and prediction of LSWT, incorporating 

SCDOY and meteorological variables as inputs. Our study revealed that employing the average of 

meteorological variables, as opposed to using values from a single day, significantly enhances the 

model's performance. Furthermore, the inclusion of SCDOY further improves model accuracy by 

capturing the interannual variability in LSWT. 

This chapter serves as an extension of Chapter 3, encompassing the analysis of 2024 lakes worldwide. 

Building upon the previous chapter's exploration of nine ML algorithms, where we found that ANN 

outperformed other ML methods, we chose BPNN because its commendable performance and 

efficiency across diverse scenarios. Unlike that analysis, which accounted for different combinations 

of preprocessing methods, in this chapter we directly utilize the average of all meteorological data as 

input for the models. This approach aims to create a standardized model applicable to all lakes 

globally. 
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In particular, in Chapter 3 we demonstrated the effectiveness of considering the ATs of previous days 

as additional inputs, but the computational load discouraged its usage for all lakes. Here, we opt for 

simplicity and use the average of all meteorological data as input features for the models, ensuring 

consistency across diverse regions and scenarios. Unlike our previous synthetic lake case studies, 

where we efficiently identified the optimal input combination (SCDOY + AT), this work retains all 

features in the model. 

An additional focus of this study is the exploration of the effect of the geographical location on model 

performance. While Chapter 3 delved into the effect of varying the depth in synthetic case studies, 

this chapter expands its scope by considering the impact of geographical location on the selection of 

the feature importance. Importantly, this work offers the advantage of generalizability on a global 

scale, presenting the opportunity for extensive lake predictions and comparisons. The ability to utilize 

the forcing from ERA5 across different geographical areas adds significant value to our work. 

This chapter presents a unique challenge due to the sparse data, especially when compared to Chapter 

3, where daily values of LSWT were available. Despite having averaged daily meteorological 

variables in both studies, the scarcity of observed LSWT data in this chapter prevents us from 

effectively training the model while retaining the information and pattern of all days. However, by 

utilizing the averaged meteorological variables, we manage to preserve the memory of past 

conditions. This approach helps to address the limitations posed by missing observed LSWT values. 

As previously mentioned, the models were executed with all features as inputs, with the expectation 

that including additional features in addition to SCDOY would result in NSE* values greater than 

zero due to its ability to capture interannual variability (noting that NSE* is zero when using only 

SCDOY). However, this expectation did not hold in all cases; for instance, in the Dead Sea, negative 

values of NSE* were obtained even when using other features in addition to SCDOY. This 

discrepancy suggests that the addition of certain variables had a detrimental impact on the model, 

reducing its performance. Consequently, while utilizing averaged meteorological variables along with 

SCDOY proves to be the optimal input combination, the presence of variables with negative effects 

necessitates their removal. Identifying these influential variables is achieved through FR analysis for 

each lake, and the results are aggregated within each Köppen region to discern the meteorological 

variables' effectiveness in different climate regions. 

The FR analysis indicates that when SCDOY is used as an input, other meteorological variables have 

less impact compared to SCDOY itself, which indeed provides already a good description of the mean 

seasonal variability. In both cases, with or without SCDOY, SWR, LWR, AT, and RH emerge as the 

primary meteorological variables, a finding consistent with correlation analysis, irrespective of ML 
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model consideration. Conversely, WS, S, and AP exhibit the lowest or negative impact on the model. 

Notably, R demonstrates a relatively higher impact in tropical regions. In the tropical region, aside 

from S and AP, which have negligible positive effects, all other meteorological variables significantly 

influence the model. Interestingly, SWR in temperate region shows a relatively high impact, larger 

than AT when SCDOY is not utilized. In conclusion, we recommend excluding AP and S from the 

models for simulating and predicting LSWT, and the inclusion of WS is also deemed unnecessary. 

4.4. Conclusions 

In our pursuit of modeling and predicting LSWT, we exploited the power of ML, specifically BPNN. 

This study not only demonstrates the efficacy of BPNN for LSWT prediction but also emphasizes the 

model predictive capabilities for generalizing to 2024 lakes. Recognizing the significance of the 

thermal inertial of lakes to correctly simulate LSWT, we introduced an approach, employing a 

weighted average of influential meteorological variables over a defined time window. This method, 

carefully optimized for model performance, aimed to capture the cumulative impact of past 

conditions, thereby enhancing the modeling process.  

Our examination delved into the intricate relationships between predictors and LSWT within specific 

Köppen climate regions. This analysis illuminated how LSWT responds to diverse meteorological 

factors across varying climates, revealing strong connections between key predictors and LSWT 

variations. The inclusion of SCDOY further improved outcomes by providing a reliable description 

of the mean seasonal variability, and letting the other factors be exploited to capture interannual 

variability. 

We use the flexibility inherent in ML models, aiming to conduct a detailed analysis of crucial 

predictors specific to each Köppen climate region. This approach allowed us to unravel and 

understand the distinctive influences of meteorological variables on LSWT within diverse climatic 

contexts. Variables such as DOY (expressed through SCDOY), AT, SWR, LWR, and RH emerged as 

influential contributors to LSWT dynamics, with SCDOY standing out as a primary driving factor. 

Our research highlights the adaptability of ML models in comprehending and predicting LSWT 

behaviors. This study provides insight into how environmental factors shape LSWT, contributing to 

a broader understanding of climate impacts. The importance of our work lies in advancing the 

capabilities of ML models for insightful predictions in the realm of lake temperature dynamics, 

generalized to other lakes. 
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Chapter 5. Ice dynamics in boreal lakes  

5.1. Introduction 

Climate change is currently regarded as one of the most significant threats to lake ecosystems 

worldwide (Woolway et al, 2020; Heino et al., 2021), and one of the possible effects is the 

modification of ice phenology (Hewitt et al., 2018). In fact, winter ice-on lakes is being depleted at 

an unprecedented rate as a result of global warming (Sharma et al., 2019; Jenny et al., 2020). Changes 

in the ice cover are also important for the impact on the regional economy, as it has been recognized 

for the Great Lakes already several decades ago (Niimi, 1982; Magnuson et al., 1998; Hayhoe et al., 

2010).  

The Northern Hemisphere's lakes, distributed across various regions, are experiencing accelerated 

loss of lake ice due to large-scale climatic changes. This rapid ice loss has the potential to significantly 

impact the crucial ecosystem services provided by lake ice (Imrit et al., 2022). As shown by Sharma 

et al. (2020), over a 150-year period, between 1846 and 1995, ice-on occurred 5.8 days later and ice-

off happened 6.5 days earlier per century. However, when considering the most recent 25 years (1995-

2019), the rate of change increased significantly, with ice-on and ice-off changing at rates of 72 

days/century and -32 days/century, respectively. Consequently, the duration of winter ice cover has 

decreased, and some lakes are experiencing more winters with minimal or no ice cover. Woolway et 

al. (2020) presented that higher latitudes are expected to undergo a more significant alteration in the 

duration of safe ice, while densely populated lower-latitude regions will experience the highest 

percentage change.  

Lake ice regimes are largely defined by latitude, altitude and depth of the lake (Walsh et al. 1998). 

Ice cover is cyclical in the boreal zone, tundra, and mountainous areas in temperate climates (Kirillin 

et al., 2012), although it is permanent in very high elevations and high polar latitudes. Ice cover 

partially disconnects the lake water from the atmosphere and sunlight, and affects biological and 

physical processes in the lake (Leppäranta, 2014) stimulating anoxia and menacing threats such as 

fish kills (Barica and Mathias 1979; Shuter et al. 2012). The impact of climate change on the dynamics 

of dissolved oxygen (DO) in the bottom layer of alpine lakes beneath the ice cover will be determined 

by whether the duration of the ice cover or the characteristics of the inverse stratification dominate 

(Perga et al., 2024). The ice cover also prevents the transfer of momentum from the wind to water, 

damping turbulent mixing and reducing the lake circulation. Except for lakes largely affected by 

geothermal heat fluxes, the vertical heat transfer is reduced when the surface water reaches the 

freezing point. However, the heat flux in ice covered lakes establishes again in spring as the result of 

https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lno.11600#lno11600-bib-0023
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the increased downward heat transfer to the lake caused by solar radiation (Leppäranta, 2014; 

Bouffard et al., 2019; Volkov et al., 2019). This largely depends on the optical properties of the ice 

cover, and in lakes with highly transparent ice cover (such as lakes in the Tibetan Plateau) the large 

amount of solar radiation penetrating under the ice promotes full mixing and warming, thus favorable 

conditions for aquatic life (Kirillin et al., 2021). Due to increased solar radiation received during the 

months when ice melts, the sensitivity of additional warming to the timing of ice loss is quantitatively 

greater compared to the month when ice forms (Li et al., 2012). 

The ice cover on lakes consists of white ice, black ice, water, slush and snow layers that affect the ice 

growths as well (Marshall, 1965). Generally, two types are dominant: black ice, known as congelation 

ice, and white ice, known as snow-ice (Gow, 1986). White ice possesses approximately half the load-

bearing strength of black ice (Barrette, 2011). Furthermore, white ice significantly restricts the 

penetration of photosynthetically active radiation through the ice layer, in contrast to clear black ice, 

which typically has minimal impact on light penetration, similar to that of lake water (Lei, 2009; 

Weyhenmeyer et al., 2022). The formation of white ice often occurs through a process involving the 

accumulation of snow on pre-existing ice, followed by melting and subsequent refreezing (Ashton, 

2011). Additionally, white ice can form when rainwater falls on a layer of snow, creating slush that 

later freezes and transforms into white ice. Another mechanism for white ice formation is the exertion 

of pressure from a heavy snow load, which can force lake water to rise through cracks in the ice 

matrix and freeze, resulting in the formation of white ice (Brown and Duguay, 2010; Weyhenmeyer 

et al., 2022). Usually, IT is measured as the sum of black and white ice. As measurements are 

performed at point and are sparse in many cases, they may not be entirely representative of the whole 

lake (Assel, 1976; Adams and Roulet, 1984).  

The models that simulate and predict IT are categorized into two main groups: physically based 

models and statistical models. Machine learning (ML) is a branch of statistical models. We chose ML 

models since the main advantage of ML models over physically based models is that no assumptions 

are introduced in the description of the process, thus allowing for a very flexible selection of the 

predictors. 

There is an old tradition in the use of statistical models for predicting IT. As one of the first statistical 

models, Assel (1976) employed regression equations to establish a connection between freezing 

degree-days and IT across 24 sites; the predictors he studied were freezing degree-days and thawing 

degree-days for several winters with weekly measurements until March. Building on Assel’s work, 

Assel et al. (2004) explored regression models to forecast the onset of ice cover on lake, specifically 

focusing on the beginning of the month (BOM). The first model is the climatological model, which 
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provides a long-term average for the BOM ice cover. Another study by Baker et al. (1976) predicted 

the freeze-up and ice formation on the Great lakes by four methods: freezing degree day totals, 

departure from normal air temperature, 30-day temperature outlooks and Lisitzin-Rodhe-Biello 

equation. In their study, freezing degree day totals outperformed the other three techniques. 

In recent years, IT has been predicted using advanced statistical methods, notably the application of 

ML techniques. Despite the limited number of studies that employ ML for IT prediction, noteworthy 

contributions in this domain include the work of Zaier et al. (2010), who utilized an artificial neural 

network (ANN), a ML method, to estimate IT during the initial phase of winter ice growth across 

various lakes in Canada. Their investigation explored key predictors, encompassing daily snow depth, 

rainfall, mean air temperature, and total solar radiation. In addition, Watson et al. (2021) undertook a 

study aimed at forecasting the occurrence of ice cover on Lake George, New York. Employing ML 

classifiers, they leveraged a comprehensive range of predictor variables, comprising ice coverage 

date, air temperature, wind speed, relative humidity, precipitation, snow, cloud cover, and surface 

pressure. Despite the constraints imposed by the available data, the ML classifiers demonstrated 

sufficient performance in predicting complete ice coverage. These research endeavors held the 

promise of delivering valuable insights into the intricacies of predicting and understanding ice cover 

dynamics. 

In addition to IT predictions, several studies have explored the application of ML for classification 

purposes in ice fields on lakes. As an example, a study by Xie et al. (2020) demonstrates the potential 

of ML techniques for efficiently studying lake ice phenology worldwide. They used a convolutional 

neural network (CNN) to classify lakes based on freezing patterns, achieving 91% accuracy for 

annual freezing lakes and 100% for non-freezing lakes. They employed support vector regression 

(SVR), as a ML algorithm, to extract freeze-up start and break-up end of lake ice phenology from 

microwave data, with strong correlation coefficients (R2) of 0.8928 and 0.8899, respectively. 

Moreover, Wu et al. (2021) assessed four ML classifiers (multinomial logistic regression, MLR; 

support vector machine, SVM; random forest, RF; gradient boosting trees, GBT) for accurately 

mapping the presence of lake ice, lake water, and cloud cover during ice break-up and freeze-up. 

Samples from 17 diverse lakes across Europe and North America were used for training and 

validation. RF and GBT achieved accuracies above 98%, providing visually accurate representations, 

and exhibited strong consistency across different ice seasons and demonstrated effective spatial 

transferability among the 17 lakes. 
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This research addresses crucial aspects regarding the integration of meteorological variables in the 

context of an IT model. Specifically, our focus is on optimizing the use of meteorological variables 

to derive meaningful insights, employing ML, an aspect often understated in previous studies (Zaier 

et al., 2010; Watson et al., 2021). While some studies, including Zaier et al. (2010), have incorporated 

ML for IT prediction, none have systematically identified and ranked the influential factors for IT 

within the model. Our study strives to fill these gaps through a comprehensive analysis. The 

subsequent sections detail the analyzed empirical cases, the methods employed for IT forecasting, 

and the feature ranking process. 

5.2. Materials and methods 

5.2.1. Study sites 

Two Swedish lakes were chosen as case studies from the database of the Swedish Meteorological and 

Hydrological Institute (SMHI). SMHI mainly measures and gathers data on water discharge to and 

from lakes, water level, IT, freeze-up and break-up of ice. At SMHI, hydrological data are calculated, 

analyzed and kept in several databases for predictions, research, and warnings. According to the fact 

that ML demands large amount of data, the two lakes with the longest records were selected: Lake 

Runn and Lake Gouta. We stress the fact that these are somehow exceptional cases because having 

extensive records of ice thickness is uncommon, whereas ice-on and ice-off dates are more frequently 

documented. Moreover, the two lakes are located in different regions, thus allowing for detecting a 

possibly different response to atmospheric forcing. The information about these lakes is reported in 

Table 5.1. 

The SMHI data set provides information on various parameters such as black IT, total IT, snow layer 

thickness, slush, snow ice formed from slush. We have chosen to use the total IT data because it 

provides an integrated measurement of the total ice compared to other measures. 
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Table 5.1. Available information about the two case studies. 

Lake’s name Runn Gouta 

Maximum depth (m) 32 58 

Average depth (m) 8.3 17.2 

Area (km2) 63.5 31.6 

Volume (106 m3) 530.61 543.52 

Date range 05/01/1980 – 13/04/2012 10/01/1980 – 19/05/2012 

Latitude, Longitude 60.53° N, 15.67° E 65.67° N, 15.38° E 

Elevation (m a.s.l.) 107 438.6 

SMHI measurements 

Maximum IT (cm) 42 56 

Number of available 

measurements 755 790 

Data from ERA5 reanalysis * 

Range of AT (°C) -25.84 – 25.03 -36.80 – 20.14 

Range of SWR (W m−2) 0.82 – 341.26 0.10 – 345.66 

Range of LWR (W m−2) 148.93 – 391.99 130.99 – 385.00 

Range of WS (m s−1) 0.63 – 8.42 0.52 – 8.91 

Range of AP (Pa) 92901 – 103149 86891 – 95653 

Range of R (kg m−2 s−1) 0 – 6.44×10-4 0 – 3.79×10-4 

Range of S (kg m−2 s−1) 0 – 4.22×10-4 0 – 6.12×10-4 

Range of SH (kg kg−1) 2.47×10-4 – 134.32×10-4 9×10-4 – 124.87×10-4 

* All ranges are expressed for daily averaged values and refer only to the cold season. The 

period considered for the analysis is from 03/01/1980 to 01/01/2020. 

Owing to the satisfactory resolution offered by the ERA5 reanalysis dataset (0.5° × 0.5°; Hersbach et 

al., 2020), the fifth generation of ECMWF reanalysis of global climate and weather, the 

meteorological variables were obtained from 1979. The following variables were extracted based on 

latitude and longitude of the studied lakes, at 2 m above the lake surface, for the entire period of 

availability of IT measurements: air temperature (AT), wind speed (WS), air pressure (AP), rainfall 

(R), snowfall (S), specific humidity (SH), downward longwave radiations (LWR) and shortwave 

radiations and (SWR). Specifically, we downloaded these data from the bias-corrected reconstruction 

of near-surface meteorological variables product. Daily averages were computed from the higher-

frequency reanalysis dataset. These are the input variables for the ML model developed to predict IT, 

and we will use them as ‘features’ or ‘predictors’ in the following discussion.  

The day of the year (DOY) was used as a predictor, as well. Since DOY changes are not continuous, 

we considered the sin(DOY/nDOY) and cos(DOY/nDOY), where nDOY is the number of days in a 

year (see also the discussion in Chapter 3). The sine and cosine of the DOY (SCDOY) provides the 
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same content of information as DOY but allows for a smoother transition between the end of each 

year and the following one (Yousefi and Toffolon, 2022). 

5.2.2. Data preparation 

Three sequential steps are needed to implement the model: preparing the inputs, preprocessing them, 

and using the ML model for simulation. Figure 5.1 shows all these phases, which are described in the 

following sections. We compared two ML approaches, the long short-term memory (LSTM) and 

backpropagation neural network (BPNN). Subsequently, we chose LSTM for the analysis of feature 

ranking (explained in section 2.7) because of having more robust results than BPNN. The FR results 

are presented for the ice-on period and also ice freezing period to evaluate the importance of features 

on ice formation as well. We escaped the ice melting period since we have fewer data in this period. 

 

Figure 5.1. The modelling framework. 

The model is expected to provide daily values of IT as a function of daily input of the meteorological 

variables. The available measurements of IT data are sparsely distributed in time, with an interval 
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typically longer than one day. A peculiarity of the IT problem is that ice is present only in a period, 

and for the rest of the year there is no ice-on the lake surface. The duration of the ice cover period is 

unknown, as well as the ice-on and ice-off dates. Therefore, there is the problem of defining how the 

information about the absence of ice can be properly provided to the model. After several tests, we 

decided to add null values (IT = 0) in the ice-off period with the same frequency of the added zeros 

as, on average, are available for the IT data in the ice-on period. Without assuming the ice-on and ice-

off dates, we considered one month preceding the first IT values and one month after the final 

available IT value for the entire time series. In this way, the model receives balanced information 

about the two periods. In fact, on the one hand, using a much lower frequency of zeros in the ice-free 

period would not give enough data for the model to learn about the absence of ice during summer 

correctly, thus having no clues about how to predict the ice-on and ice-off dates. On the other hand, 

a higher frequency of zeros compared to the mean frequency of IT observations (e.g., adding them 

for all days in the warm season) would bias the ML tuning towards the summer months thus 

hampering the proper calibration of the IT in the ice-covered period. The start and the end dates for 

the addition of the zero values were defined, for each year, as one month after the last recorded date 

with ice and one month before the first recorded date with ice (identified based on the entire historical 

dataset), respectively.  

The input data for the ML model were chosen within the set of the available meteorological variables. 

As lakes typically retain a memory of the previous conditions, which is the result of the history of the 

forcing, we developed two different strategies: (i) applying the ML model in a way to consider the 

memory in the model such as using LSTM algorithm and (ii) weighting the forcing over a period 

before the simulated day. Concerning the 2nd option, instead of considering the feature in the current 

day, we used the weighted average over a number of previous days that is determined by the best 

model performance (see details in section 2.4 and Chapter 4).In fact, we used the weighted average 

of each input variable X computed using the best time window (the one producing the lowest RMSE) 

with exponentially decaying weights (section 2.4). Therefore, given the deep depth of the lakes that 

we are studying and the absence of minimum RMSE below days of window size for lake Runn, we 

opted for a value that would yield a noticeable reduction in RMSE. Accordingly, 40 days is considered 

as the window size. 

Beside considering the weighted average of each meteorological variable, we tested different ways 

of considering the history of AT. Several authors (Assel, 1974; Baker et al., 1976; Assel et al., 2004; 

Magee and Wu, 2017; Imrit et al., 2022; Weyhenmeyer et al., 2022) assumed that AT is important for 

the formation and evolution of IT: not directly as the instantaneous value, however, but as a 

cumulative effect. Therefore, we also considered the negative degree days (NDD; e.g., Bilello, 1964): 
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for each day, the negative value of AT is cumulated since the first negative value of AT (less than 0°C) 

of each winter. The NDD is considered in the analysis until it is negative. This is equivalent to 

considering the average but starting from a fixed date and with a constant weight. Baker et al. (1976) 

claim that NDD is influential in the freeze-up phase. Assel (2004) also uses the total number of NDD 

to look for resembling historical events and related ice cover.   

5.2.3. Preprocessing 

Since the variation range of the data covers different scales (see Table 5.1), we normalize the data. 

There are several scaling methods; after testing Min-Max, Standard, and Robust scalers (Varoquaux 

et al., 2015), we found that the Min-Max scaler works better in our case. Then, we split the data with 

k-fold cross validation methods, explained in section 2.5. 

5.2.4. ML model 

We compared BPNN approach and LSTM to model and predict the IT. We found that LSTM is a 

superior method (proven in section 5.3.2), thus we used it to get the feature importance to determine 

the significance and impact of the predictors on modelling IT.  

We analyzed the model’s performance by referring to the root mean square error (RMSE) and the 

standard Nash-Sutcliff efficiency index (NSE) for training and test sets (Nash and Sutcliffe, 1970; 

Nevitt and Hancoc, 2000; McCuen et al., 2006), as explained in section 2.3. Perfect fit is obtained for 

RMSE = 0 and NSE = 1; note that a value NSE = 0 would result from using the observation mean as 

prediction model. Since the datasets are fixed, the two indices are equivalent in terms of selecting the 

best model, and in the following discussion we will only refer to RMSE. The RMSE and predicted 

values are obtained based on the average of 20 runs of predicted IT. In this application, different from 

the analysis performed in Chapter 4, we did not use the modified NSE* because of the difficulty to 

define a meaningful mean (climatological) year. 

To exclude any potential influence of zero values during the warm period, we only calculated the 

RMSE for the cold period for BPNN while for LSTM is the whole period. Additionally, the peaks of 

IT vary from year to year, and they may be difficult to capture. To address this challenge, we defined 

an objective function based on winter period for BPNN: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − �̂�𝑖)2
𝑁
𝑖=1

𝑁
 

(5.1) 
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where RMSE is the root mean square error that we considered to evaluate the global model 

performance which is for the whole year (including summer), 𝑁 is the number of data used for model, 

𝑥𝑖 and �̂�𝑖 are the observed IT and its average in the whole period.  

5.3. Results and discussion 

In this section, we present and analyze the performance of BPNN and LSTM, for predicting IT in the 

two selected lakes, Runn and Gouta. In addition, we explore how different ways of utilizing 

meteorological data affect the accuracy of the prediction.  

In the following sections, the characterization of the two lakes, the comparison of performances of 

BPNN and LSTM, the methodology to choose the best part of the data set as the testing and training 

sets, and the importance of the training features, are presented and discussed. 

5.3.1. Characterization of the two lakes 

Using an approach that is not based on physical rules, it is especially important to comprehend how 

the physics underlying ice formation and melting should be included to make reliable predictions. On 

the other hand, understanding the physical processes would aid in determining which factors should 

be incorporated into the computations. ML algorithms are general-purpose tools, and the choice of 

the group of predictors has a significant impact on how well they can perform. The predictors that we 

have chosen are AT, SWR, LWR, WS, R, S, AP, SH, sine and cosine of DOY (two variables that we 

indicate as SDOY and CDOY for simplicity).  

As already discussed, IT is influenced by the meteorological forcing not only of the current day but 

also of the previous days. Accordingly, we considered the weighted average of the input data for all 

variables.  

Figure 5.2 summarizes the seasonal dynamics of IT in the two lakes. The maximum IT is larger in 

Lake Gouta (in the North, at a higher elevation, see Table 5.1) than in Lake Runn of around 10 cm. 

Also, the ice duration is longer for Lake Gouta on average, which means that ice forms earlier and 

lasts for longer than in Lake Runn. On the other hand, Lake Runn shows more variability of IT in the 

different years. 
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(a) (b) 

  

Figure 5.2. Box plots of IT considering the whole time series, with the average (climatological year) shown 

with a line, for Lake Runn (a) and Gouta (b). The boxes represent the variability of the data (25th-75th 

percentiles) in a time window of 7 days, the outliers are indicated with dots. 

 

5.3.2. The reference model depending on all features 

The ML model can be improved through the incorporation of the information about the previous state 

of the system. As it was explained in section 5.2.2, we considered LSTM method (Liu et al., 2022) in 

comparison to BPNN. The inputs of the models are the weighted averaged meteorological variables 

(AT, SWR, LWR, WS, R, S, AP, SH), NDD and SCDOY. The hyperparameters used for the two 

models are specified in Appendix A.3. 

As indicated in Figure 5.3 for Lake Gouta, the RMSE values for the BPNN base model are 12.23 cm 

for the training dataset and 13.41 cm for the test dataset. The LSTM model, which incorporates 

memory from previous days, delivers more promising outcomes. The training RMSE achieves 11.74 

cm, not far from the BPNN model, while the test RMSE settles at 14.22 cm, with a more significant 

improvement. Based on considerations of both computational cost and robustness, the LSTM model 

has been selected as the preferred option for our subsequent analyses. To clarify what we mean by 

robustness, LSTM is more consistent in terms of the output in each iteration. For example, for 20 

random initiations of the ML model, we got the average difference of 2.60 cm and 2.43 cm between 

the runs for BPNN for training and test sets, respectively, while these values are 1.10 cm and 1.10 cm 

for LSTM method. Accordingly, we utilize LSTM algorithm for our analysis in the following 

sections. 
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(a) 

 

(b) 

 

Figure 5.3. An example of the modeled IT by BPNN (a) and LSTM (b) in three years for Lake Gouta. 

Following the K fold selection of Training and test sets presented in section 2.5, we divided the data 

into five folds, and each time, one of the folds was considered as the test set, and the remaining folds 

were used as training sets. We repeated this process for each fold, resulting in a total of five model 

performance evaluations for both the training and test sets modeled by LSTM (Figure 5.4). 

Through careful selection of suitable folds for the training and test sets, the model achieves favorable 

performance on both datasets. For instance, in both lakes, the 1st fold exhibited reasonable 

performance when used as a training set but performed poorly as a test set. As our aim is to develop 

a model that can be effectively applied to the entire time series, we selected the 4th fold for both lakes, 
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as they represent the folds that are performing best in the combination of training and test (Figure 

5.4).  

(a) (b) 

  

(c) (d) 

  

Figure 5.4. RMSE for the training set in Lake Runn (a) and Gouta (b) for the 5 folds using LSTM model. The 

box plots represent the distribution of the RMSE in 20 different iterations of the model. The same in (c) and 

(d) for the test set. 

To demonstrate the interannual variability, the IT series for both lakes, including training set and test 

set values, have been depicted in Figure 5.5 for about three years.  The RMSE values of the training 

and test sets were found to be 11.17 cm and 11.72 cm, respectively. The values for Lake Gouta are 

11.74 and 12.45 cm for training and test sets in the LSTM model. 
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(a) 

  

 

(b) 

 

Figure 5.5. An example of the modeled IT compared with observations using LSTM model, for lake Runn (a) 

and Lake Gouta (b).  

The parity diagrams obtained with the LSTM model for the entire series for both lakes are presented 

in Figure 5.6. The findings show that the better predictions for ice-on period than summer period 

(observed values equal to zero). The utilization of SDOY significantly impacts the model, particularly 

in thicker ice values that are simulated and predicted without considerable variation from year to year. 

Consequently, the errors are higher in thicker IT values. 
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(a) (b) 

  

Figure 5.6. Scatter plots between modeled and observed values of IT for Lake Runn (a) and Lake Gouta (b), 

obtained by LSTM model. 

5.3.3. Feature extraction 

In order to select the most relevant information that allows for accurate predictions, here we analyze 

the main role that is played by the different predictors, and then analyze their effect based on the 

model’s performances for the ice-on and ice formation period. We choose not to show the ice melting 

period due to deficiency of the data. 

The assessment of the feature importance is presented only for the LSTM model. It is performed by 

analyzing the difference of the RMSE between the model using all features and a similar model for 

which the values of a specific feature are randomly shuffled, so that its physical effect is lost. In other 

words, the significance of a variable is quantified as the discrepancy in RMSE between the reference 

model and a model forced by random variations in the variable. 

As illustrated in Figure 5.7, SDOY emerges as the primary predictor of IT. The y axis value is the 

difference of normal case (without shuffling) RMSE and the shuffled cases RMSE divided by the 

normal case RMSE. While SDOY is important, the CDOY impacts low because the time vector 

expressed by SDOY expresses the progression of time in the winter period more than CDOY in this 

period (presented in Figure 5.8 as an example of Lake Gouta). Other notable predictors include SWR 

for Lake Runn and SH for Lake Gouta. Elevated humidity levels correspond to an anticipated increase 

in IT (Israelachvili, 2011). Furthermore, S, AT and NDD exert significant influence over IT formation.  

AT is expected to be a critical variable because it strongly affects the rate of heat transfer between the 

atmosphere and ice. Warmer AT causes the ice to melt, while colder AT leads to ice formation. The 
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NDD plays an even more crucial role in IT prediction because it represents the cumulative effect of 

cold temperatures on ice formation and can provide a better indication of the overall coldness of a 

season than AT alone.  

SWR is another significant variable that influences IT prediction. It refers to the amount of solar 

radiation that reaches the ice surface and is absorbed or reflected. The absorbed radiation heats up the 

ice, leading to melting, while a larger albedo (the reflected radiation) contributes to ice formation.  

When snow accumulates on top of ice, it creates an insulating layer that prevents the underlying ice 

from freezing as much as it would if it were exposed to the cold air directly. As a result, the IT is 

directly related to the amount of snowfall (S) that has accumulated on top of it throughout the winter. 

This quantity is implicitly considered in the weighted average of the daily snowfall.  

When it comes to the specific period of ice formation, SDOY retains its primary role, followed by 

NDD. Owing to the limited availability of data for ice melting (approximately 100 data points), we 

exercise caution and opt not to present those particular results.  
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(a) (b) 

  

(c) (d) 

 
 

Figure 5.7. Feature importance for Lake Runn (left column) and Lake Gouta (right column) considering the 

whole period (a, b), the ice forming period (c, d) using LSTM model. 

We separated SDOY and CDOY in this context because their impact on IT prediction varies, unlike 

in Chapter 4 where they were considered together. However, for LSWT prediction, both SDOY and 

CDOY play significant roles (see Figure 5.8). 
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(a) 

 
(b) 

 

Figure 5.8. The LSTM model using solely SDOY (a) and CDOY (b) for Lake Gouta as an example.  

 

5.3.4. Model simplification based on features’ selection 

The accurate prediction of IT is a complex task that requires the consideration of various essential 

variables. SDOY has been shown to be a critical predictor of IT in the previous section. However, our 

analysis reveals that removing unnecessary variables may change the predictive model's performance 

slightly (Figure 5.9).  

As a first analysis, we conducted an in-depth analysis of the critical variables that impact the 

predictive capability of the LSTM models of the two lakes. The features are added one by one with 

separate models, following the previously determined feature ranking: based on our findings, for both 

lakes, SDOY plays the most crucial role (Figure 5.7), followed by SWR as the 2nd most important 

predictor for Lake Runn, and SH for Lake Gouta.  
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However, considering SDOY is characterized by a noticeable decline in performance with the model 

that considers also SWR (Lake Runn, Figure 5.9a) or SH (Lake Gouta, Figure 5.9b). It's important to 

highlight that including additional predictors can deteriorate test results and potentially introduce the 

issue of overparameterization. 
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(a) 

 

(b) 

 

Figure 5.9. RMSE of different versions of the IT model using LSTM model obtained by different predictors 

selected based on the feature importance analysis for (a) Lake Runn and (b) Lake Gouta. The x-axis indicates 

the variable(s) added in the model. 
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A more detailed investigation indicates that the inclusion of SDOY as the only feature results in a 

reasonable prediction of IT (Figure 5.10). These results underscore the importance of this predictor 

to improve the models' performance. 

(a) 

 

(b) 

 

Figure 5.10. Examples of the IT model using LSTM with only SDOY as a predictor for (a) Lake Runn and (b) 

Lake Gouta (training set because of showing the test set in Figure 5.8). 

 

5.4. Conclusions 

Our study investigated the impact of meteorological variables on IT prediction in two lakes in 

Sweden, Runn (in southern part) and Gouta (in northern part), using ANN as an example of ML 

technique. Our analysis revealed that SDOY emerged as critical predictors for both lakes, 

emphasizing the importance of this predictor in accurately modeling IT. SWR in Lake Runn and SH 
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in Lake Gouta are the other influential variables. Although NDD in both lakes for ice formation is 

one of the main predictors, the AT itself is less influential, which emphasizes the importance of how 

to apply the meteorological variables. This confirms the results that have been achieved in previous 

studies. 

Furthermore, we compared BPNN and LSTM. The second method, which considers the memory, 

proved to be more robust than BPNN. Accordingly, we used LSTM for IT modeling. Incorporating 

memory into the algorithm to represent the physical process is another solution with respect to 

averaging meteorological variables, which was shown to be a promising alternative approach in 

Chapter 4. 

These findings have significant practical implications in various fields, including winter recreation, 

transportation, and safety. Accurately predicting IT in lakes can help ensure the safety of those 

engaging in recreational activities on the ice or relying on it for transportation. Moreover, predicting 

IT can assist in optimizing resource allocation for ice management and monitoring in lakes. 
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Chapter 6. Conclusions  
The prediction of lake surface water temperature (LSWT) and ice thickness (IT) in freshwater bodies 

is important for various reasons, including ecosystem health, resource allocation, and environmental 

management, as they affect the physical, chemical, and biological processes occurring in lakes and 

rivers. Furthermore, accurate predictions of IT can provide support in the managing and monitoring 

the safety of those engaging in recreational activities on the ice or relying on it for transportation.  

Machine learning (ML) algorithms are becoming increasingly popular for the prediction of 

environmental conditions in freshwater bodies due to their ability to handle complex non-linear 

relationships between input and output variables. In this study, we have reviewed and compared 

various ML approaches to predict LSWT and IT and the effect of the main factors affecting their 

performances. 

In the beginning of the thesis, we provided an in-depth discussion of the ML techniques utilized, 

along with the metrics employed for result evaluation. Furthermore, we detailed the methods 

employed to partition our data into training and test sets for model simulation and assessment. 

Additionally, we explored various methods for calculating averaged values to incorporate the memory 

of past data. This technique can help reduce noise in the data and better capture the underlying trend 

in the temperature data. A comprehensive examination was also conducted to rank the inputs of the 

model based on their respective impact, with a detailed explanation of the method. 

In this research, we explored various ML techniques using synthetic lake scenarios, providing us with 

a more controlled model. We also investigated diverse preprocessing methods to enhance prediction 

accuracy. Subsequently, building upon the insights gained in this initial phase, we extended our model 

to forecast LSWT in a broader context, encompassing 2024 lakes. We then assessed the significance 

of different predictors in shaping the model's performance. Lastly, we extended our analysis to include 

the prediction of IT using ML models, and we ranked the features according to their impact on the 

model's predictions. Below, we offer a concise summary of each aspect of our research work. 

In the first part of our study, we reviewed the most common ML approaches and attempted to 

disentangle the effect of the main factors affecting their performances. Our analysis involved applying 

nine ML methods on two specifically designed synthetic case studies: a shallow lake with a depth of 

5 m and a deep lake with a depth of 60 m. The use of a synthetic case study allowed us to control all 

the variables involved in the problem and make a comparison between the shallow and deep cases 

without any other factor altering the thermal response. 
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Our results demonstrated that a combination of air temperature (AT) and day of the year (DOY) is 

the minimum amount of information required to obtain reasonable results, and adding further 

variables does not allow for significant improvements. Specifically, we found that adopting a 

continuous description of DOY through the use of trigonometric functions (SCDOY) provided the 

best results, likely due to its ability to capture the mean seasonal variability. 

In addition to the analysis of predictors for accurate prediction of LSWT, our study also investigated 

the impact of smoothing the input signal for AT using a moving average and also the AT of previous 

days on the performance of ML model. We found that the use of these two methods led to a noticeable 

improvement in the performance of the ML models used in our study. Incorporating the AT data from 

prior days expands the input dataset, resulting in increased computational expenses. Accordingly, 

smoothed AT is preferable. 

Furthermore, we explored the inclusion of previous days' AT values as inputs for ML models to retain 

the history of the forcing conditions. This can be particularly beneficial for ML approaches that cannot 

intrinsically consider historical data. The inclusion of previous days' AT values as inputs can enable 

the ML models to better capture the effects of longer-term trends and fluctuations in temperature, 

providing a more comprehensive understanding of the drivers of LSWT dynamics. 

In the analysis of ML models, Artificial Neural Network (ANN) models demonstrated a slight 

superiority over other ML methods, possibly attributed to the extensive (daily) dataset available. To 

ensure a fair comparison, the inputs were the same, and hyperparameters of the models were 

optimized. Within the ANN algorithms, the Long Short-Term Memory (LSTM) algorithm excelled, 

particularly in scenario involving deep lake where the memory of the previous state of the system 

plays a crucial role. Consequently, we employed ANN for investigating both LSWT and IT in the 

second and third parts of our study. Due to the longer runtime of the library used for LSTM, we 

utilized the Backpropagation Neural Network (BPNN) for predicting LSWT at the global scale (2024 

lakes), which also yielded reasonable results. For the two IT case studies, we opted for LSTM and 

compare it with BPNN. 

Overall, this part of our study highlights the importance of careful selection and processing of input 

variables for ML models to accurately predict LSWT. Smoothing the input signal for AT using a 

moving average and including historical data as inputs can significantly improve the performance of 

ML models.  

In the second part of our study, we aimed to expand upon the first part of the study by investigating 

a larger dataset of 2024 lakes from various regions around the world. Our objective was to examine 

the influence of meteorological variables on LSWT using the BPNN as our chosen ML approach. 
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While there have been previous studies highlighting the impact of meteorological variables on lake 

water temperature, they were often limited to specific case studies, making it uncertain whether the 

identified influential variables hold true for other lakes as well. Thus, we sought to test the influence 

of eight meteorological variables retrieved from the ERA5 dataset, along with the DOY and different 

combinations of these variables. 

As a preliminary screening, we computed the correlations among LSWT and the meteorological 

variables, and as well as the correlation between all predictor variables. Considering that the 

availability of LSWT data is not on a daily basis, while the meteorological features are, we utilized 

linear regression to fill in the missing values of LSWT. Subsequently, we computed correlations using 

the daily values. Our analysis revealed that AT, downward longwave radiation (LWR), shortwave 

radiation (SWR), relative humidity (RH), and sine and cosine of DOY (SCDOY) exhibited the highest 

correlations not only with LSWT but also among themselves, across all regions.  

Then, we used BPNN to simulate LSWT as a function of the meteorological variables. Among the 

analyzed variables, including SCDOY, AT, SWR, LWR and RH, we observed their substantial 

importance as the most influential features on simulation and prediction of LSWT within different 

Köppen regions. Notably, SCDOY demonstrated significant relevance in all regions, further 

emphasizing the fact that the mean seasonal variability dominates the model's performance, whereas 

capturing the interannual variability remains a challenge. 

When evaluating the performance of the BPNN model, we found that utilizing averaged 

meteorological data significantly boosts performance compared to using the actual values. In this 

respect, the averaged values of AT, SWR, LWR, and RH exhibit strong correlations with SCDOY, 

confirming that the inclusion of mean seasonal variability significantly enhances the results. 

Nevertheless, considering the anomalies produced by prolonged alterations with respect to the 

climatological year, possibly caused by climate change, are expected to be important to capture the 

interannual dynamics of LSWT. 

In the third segment of our research, we explored different approaches to incorporate memory of data 

from previous time steps into our models, including the utilization of averaged meteorological 

variables alongside SCDOY. We also conducted a comparative analysis between two ML methods: 

the first being BPNN, and the second being the LSTM method, designed to account for both long and 

short-term memory aspects within the model. Both models yielded satisfactory results, but LSTM 

exhibited greater robustness across multiple runs, which led us to favor its use for the subsequent 

phases of this study's analysis. 
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Then, we aimed to investigate the impact of meteorological variables on IT prediction in two lakes 

in Sweden using LSTM model. The two lakes we chose, Runn in the southern part and Gouta in the 

northern part, allow us to observe the effect of meteorological variables on IT prediction in different 

environments. Our analysis revealed that DOY (and in particular the sine of it, SDOY) emerged as a 

critical predictor for both lakes, but only when accompanied by another variable (SWR for Lake Runn 

and SH for Lake Gouta), emphasizing their importance in accurately modeling IT.  

Negative degree days (NDD) in both lakes were found to be other influential variables for ice 

formation. NDD is a measure of the temperature below 0°C, which plays a crucial role in the ice 

formation process. Besides, our study also found that the AT itself was not influential as NDD in ice 

formation in both lakes. This result suggests that the impact of AT on IT prediction is indirect and can 

be mediated through other variables such as NDD.  

The careful selection of pertinent meteorological variables and the adoption of a more resilient ML 

approach, LSTM, can significantly enhance the quality of results, contributing to a more robust and 

accurate outcome in the analysis. Accurate predictions of IT can assist in optimizing resource 

allocation for ice management and monitoring in lakes, thereby ensuring the safety of people 

engaging in recreational activities on the ice or relying on it for transportation. 

In summary, our research underscores the critical role of meticulous meteorological variable selection 

for precise predictions of IT and LSWT in various lake scenarios. The DOY emerges as a pivotal 

predictor across all scenarios. Incorporating memory aspects in predictions proves beneficial, 

achieved through the implementation of averaging methods, ultimately leading to improved and more 

accurate results.  

Another crucial aspect is the selection of suitable ML methods for lake simulation and prediction. We 

explored the use of BPNN to develop a model for generalizing predictions across 2024 lakes in 

different climatic regions. Additionally, our findings suggest that ANN, particularly LSTM, exhibit 

enhanced robustness and slightly superior performance compared to other ML models. The inclusion 

of memory considerations in the LSTM model, influential for time series datasets, leads to improved 

results, especially in IT scenarios. In summary, ML proves highly valuable for feature selection and 

the analysis of various scenarios, given its inherent flexibility.  
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Appendix 

A. Hyperparameters 

A.1. Hyperparameters used for the machine learning models 

of synthetic lakes 

For selecting the features affecting lake surface water temperature (LSWT) by using a synthetic lakes, 

eight of the ML methods were implemented in the Python environment using the libraries ‘Keras’ for 

multilayer perceptron neural network (MLPNN) and long short-term memory (LSTM) and ‘Sklearn’ 

for the other ML methods. Only for one method (ANFIS) we referred to a MATLAB library. 

The hyperparameters were chosen by genetic algorithm (GA) optimization. A more detailed 

explanation is available for ‘Keras’ in Chollet (2015) and for ‘Sklearn’ in Cournapeau (2007), where 

we also took most of the following description. In this section, we restrict the analysis to the 

hyperparameters that were calibrated and provide a brief description of the meaning and a table with 

adopted values. For the other hyperparameters that are not mentioned here, we used the default values 

suggested in the libraries. 

Since GA choice of the best hyperparameters is approximate, the adopted hyperparameters may not 

be the optimal values in absolute terms. Different hyperparameters can be obtained by varying the 

population size and number of iterations in GA. The objective function is the absolute value of the 

difference of root mean square error (RMSE) between the training and test data sets, plus the training 

RMSE (°C). With respect to this objective function, not only the chosen hyperparameters make the 

model have lower RMSE but also the difference between the results of training and test data set would 

be the minimum. 

A.1.1. Decision Tree (DT) 

The hyperparameters for DT (optimized in Table A.1) are: 

Criterion= [ ‘MSE’, ‘friedman_MSE’, ‘MAE’, ‘Poisson’] 

A measure of the quality of a split into two branches: 

o ‘MSE’: mean squared error 

o ‘friedman_MSE’: mean squared error with Friedman’s improvement score for potential splits, 

o ‘MAE’: mean absolute error 

https://en.wikipedia.org/wiki/David_Cournapeau
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o ‘poisson’: reduction in Poisson deviance to find splits. 

Max_depth 

The maximum depth of the tree. The ‘none’ is imposed, nodes are expanded until all leaves are pure 

or until all leaves contain less than min_samples_split (the minimum required number of samples for 

splitting an internal node) samples, where min_samples_split is a hyperparameter to be defined. 

Max_features= [int, float, ‘auto’, ‘sqrt’, ‘log2’] 

The number of features to consider each time to make the split decision. 

o int: max_features at each split 

o float: max_features is a fraction at each split; max_features * n_features (the number of 

features seen during fit) is the value to consider as features. 

o ‘auto’: max_features is n_features. 

o ‘SQRT’: max_features is the square root of n_features. 

o ‘log2’: max_features is logarithm of n_features. 

o None: max_features is n_features. 

Table A.1. Optimized values of DT hyperparameters. 

Lake’s depth (m) Criterion max_depth max_features 

5 'MSE' 8 'auto' 

60 'friedman_MSE' 7 'log2' 

 

A.1.2. Random Forest (RF) 

The hyperparameters for RF (optimized in Table A.2) are: 

N_estimators 

The number of trees in the forest. 

Criterion= [’MSE’, ‘MAE’] 

The function to measure the quality of a split, where ‘MSE’ and ‘MAE’ are explained in previous 

section. 

Max_depth 

The maximum depth of the tree. ‘None’ means that the nodes are expanded until all leaves are pure 

or until all leaves contain less than min_samples_split samples. 

https://scikit-learn.org/stable/glossary.html#term-fit
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Table A.2. Optimized values of RF hyperparameters. 

Lake’s depth (m) n_estimators Criterion max_depth 

5 42 'MAE' 9 

60 26 'MSE' 7 

 

A.1.3. Extremely Randomized Tree (ERT) 

The explanation of the hyperparameters of ERT is similar to RF. The optimized values are reported 

in Table A.3. 

Table A.3. Optimized values of ERT hyperparameters. 

Lake’s depth (m) n_estimators Criterion max_depth 

5 85 'MAE' 7 

60 181 'MSE' 7 

 

A.1.4. K-nearest neighbour (KNN) 

The hyperparameters for KNN (optimized in Table A.4) are: 

N_neighbors 

Number of neighbours required for each sample.  

 

Weights= [Uniform’, ‘Distance’, Callable] 

Weight function used in prediction. Possible values: 

o ‘Uniform’: all points in each neighbourhood are weighed equally. 

o ‘Distance’: weight points by the inverse of their distance. In this case, closer neighbours of a 

query point will have a greater influence than neighbours which are further away. 

o Callable: a user-defined function which accepts an array of distances, and returns an array of 

the same shape containing the weights. 

 

Algorithm= [‘auto’, ‘Ball_Tree’, ‘KD_Tree’, ‘Brute’] 

Algorithm used to compute the nearest neighbours: 

o ‘Ball_tree’: recursively divides the data into nodes defined by a centroid C and radius r, such 

that each point in the node lies within the hyper-sphere defined by r and C.  

o ‘KD_Tree’: a binary tree structure which recursively partitions the parameter space along the 

data axes, dividing it into nested orthotropic regions into which data points are filed.  
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o ‘Brute’: the brute-force computation of distances between all pairs of points in the dataset. 

o ‘auto’: decide the most appropriate algorithm based on the values passed to fit method. 

Leaf_size 

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as 

well as the memory required to store the tree. The optimal value depends on the nature of the problem. 

P 

Power parameter for the Minkowski metric. 

o P = 1: Manhattan_distance, 

o P = 2: Euclidean_distance, 

o Arbitrary P: Minkowski_distance. 

Table A.4. Optimized values of KNN hyperparameters. 

Lake’s depth (m) N_neighbors Weights Algorithm Leaf_size P 

5 23 'uniform' 'KD_Tree' 22 3 

60 20 'uniform' 'KD_Tree' 22 3 

 

A.1.5. Support Vector Regression (SVR) 

The hyperparameters for SVR (optimized in Table A.5) are: 

Kernel= ['Linear', 'Poly', 'RBF', 'Sigmoid', 'Precomputed'] 

The choice of the kernel type to be used in the algorithm. The first two kernels are linear and 

polynomial, and the other kernels are: 

o 'RBF': radial basis function (RBF) kernel. 

o 'Sigmoid': based on the hyperbolic tangent,  

𝐾(𝑋, 𝑌) = tanh(𝛼𝑋𝑇𝑌 + 𝑐) (A.1) 

where 𝛼 is slope, and  𝐶  is the constant term; X and Y are inputs of the model and observed outputs, 

respectively. 

o 'Precomputed': used to pre-compute the kernel matrix from data matrices; matrix should be a 

square array of size number of samples. 

Degree 

Degree of the polynomial kernel function (‘Poly’). Ignored by all other kernels. 

Gamma= [‘Scale’, ‘auto’] 

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor.fit
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Kernel coefficient for ‘RBF’, ‘Poly’ and ‘Sigmoid’: 

′𝑠𝑐𝑎𝑙𝑒′ =
1

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑋. 𝑣𝑎𝑟()
 

(A.2) 

Where ‘.var’ is the variance, or 

‘𝑎𝑢𝑡𝑜’ =
1

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 

(A.3) 

C 

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be 

strictly positive. 

Epsilon 

Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated 

in the training loss function with points predicted within a distance epsilon from the actual value. 

Cache_size 

Specify the size of the kernel cache. 

Table A.5. Optimized values of SVR hyperparameters. 

Lake’s depth (m) Kernel Degree Gamma C Epsilon cache_size 

5 'Poly' 5 'auto' 93.16 0.0555 162.9 

60 'RBF' 1 'auto' 158.4 0.0555 161.2 

 

A.1.6. Multilayer Perceptron Neural Network (MLPNN) 

The meaning of the number of layers and neurons is explained in section 2.2 of the main text (see the 

section for ANN). The hyperparameters for MLPNN (optimized in Table A.6) are: 

Number of hidden layers 

The number of neurons in the hidden layer which is also used for LSTM and BPNN in the following 

methods. 

Activation function= [‘RELU’’, ‘Sigmoid’, ‘Softmax’, ‘Softplus‘, ‘Softsign’, ‘Tanh’, 

‘SELU’, ’ELU’, ‘Exponential’] 

o ‘RELU’’: linear unit activation function 

o ‘Softmax’: converts a real vector to a vector of categorical probabilities. 

o ‘Softplus‘: 

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = log(exp(𝑥) + 1) (A.4) 
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o ‘Softsign’: 

𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑥) = 𝑥 (|(𝑥)| + 1)⁄  (A.5) 

o ‘SELU’: Scaled Exponential Linear Unit 

o ’ELU’: Exponential Linear Unit. 

Optimization= [‘SGD’, ‘RMSprop’, ‘Adam’, ‘Adadelta’, ‘Adagrad’, ‘Adamax’, ‘Nadam’, 

‘Ftrl’] 

o ‘SGD’: Stochastic gradient descent (with momentum) optimizer. 

o ‘RMSprop’: maintains a moving (discounted) average of the square of gradients and divides 

the gradient by the root of this average. 

o ‘Adam’: a stochastic gradient descent method that is based on adaptive estimation of first 

order and second-order moments, proposed by Kingma and Ba (2014). 

o ‘Adadelta’: a stochastic gradient descent method that is based on adaptive learning rate per 

dimension to address the continual decay of learning rates throughout training and the need 

for a manually selected global learning rate. 

o ‘Adagrad’: with parameter-specific learning rates, which are adapted relative to how 

frequently a parameter gets updated during training. The more updates a parameter receives, 

the smaller the updates. 

o ‘Adamax’: a variant of Adam based on the infinity norm. Adamax is sometimes superior to 

adam, especially in models with embeddings. 

o ‘Nadam’: much like Adam is essentially RMSprop with momentum, Nadam is Adam with 

Nesterov momentum. 

o ‘Ftrl’: obtained from McMahan et al. (2013) 

Learning rate 

The parameter that controls how much to change the model in response to the estimated error each 

time the model weights are updated.  

Batch size 

The number of samples to work through before updating the internal model parameters. 

Number of epochs 

https://keras.io/api/optimizers/sgd
https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/adam
https://keras.io/api/optimizers/adadelta
https://keras.io/api/optimizers/adagrad
https://keras.io/api/optimizers/adamax
https://keras.io/api/optimizers/Nadam
https://keras.io/api/optimizers/ftrl
https://keras.io/api/optimizers/sgd
https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/adam
https://keras.io/api/optimizers/adadelta
https://keras.io/api/optimizers/adagrad
https://keras.io/api/optimizers/adamax
https://keras.io/api/optimizers/Nadam
https://keras.io/api/optimizers/ftrl
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The number of times that the whole set of patterns is presented to the network affected by other 

hyperparameters such as number of training data, number of hidden layers and number of neurones 

(Rafiq et al., 2011). 

Table A.6. Optimized values of MLPNN hyperparameters. 

Lake’s 

depth 

(m) 

Number 

of hidden 

layers 

Number 

of 

neurons 

Activation 

function 

Dropout Optimiz

ation 

Learning 

rate 

Batch 

size 

Number 

of epochs 

5 1 9 'RELU’' 0 SGD 0.08465 

 

43 188 

60 15 14 'RELU’' 0.007955 

 

SGD 0.10555 43 161 

 

A.1.7. Long Short-Term Memory (LSTM) 

The hyperparameters are similar to MLPNN section. The optimized values are reported in Table A.7. 

Table A.7. Optimized values of LSTM hyperparameters. 

Lake’s 

depth 

(m) 

Number 

of hidden 

layers 

Number 

of 

neurons 

Activation 

function 

Dropout Optimiz

ation 

Learning 

rate 

Batch 

size 

Number 

of epochs 

5 1 8 'Tanh' 0.02787 Adam 0.06281 177 149 

60 1 8 'Tanh' 0 Adam 0.06281 177 149 

 

A.1.8. Backpropagation Neural Network (BPNN) 

The hyperparameters for BPNN (optimized in Table A.8) are: 

Activation= [‘Identity’, ‘Logistic’, ‘Tanh’, ‘RELU’’] 

Activation function for the hidden layer(s): 

o ‘Identity’: useful to implement linear bottleneck, returns the following equation: 

𝑓(𝑥) = 𝑥 (A.6) 

o ‘Logistic’: the logistic sigmoid function, returns the following equation: 

𝑓(𝑥) = 1 (1 + exp(−𝑥))⁄  (A.7) 

o ‘Tanh’: the hyperbolic tan function, returns the following equation: 

𝑓(𝑥) = tanh(𝑥) (A.8) 

https://machinelearningmastery.com/author/jasonb/
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o ‘RELU’’: the rectified linear unit function, returns the following equation: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (A.9) 

Solver (Optimizer)= [‘LBFGS’, ‘SGD’, ‘Adam’] 

The solver for weight optimization: 

o ‘LBFGS’: an optimizer in the family of quasi-Newton methods. 

o ‘SGD’: stochastic gradient descent. 

o ‘Adam’: explained in MLPNN. 

Batch_size 

Size of minibatches, which the gradient is calculated across the entire batch before updating weights, 

for stochastic optimizers. If the solver is ‘LBFGS’, the classifier will not use minibatch. When set to 

“auto”, batch_size is equal to minimum of 200 and n_samples. 

learning_rate= [‘Constant’, ‘Invscaling’, ‘Adaptive’] 

Learning rate schedule for weight updates: 

o ‘Constant’: a constant learning rate given by ‘learning_rate_init’. 

o ‘Invscaling’: gradually decreases the learning rate at each time step ‘t’ using an inverse scaling 

exponent of ‘power_t’. 

o ‘Adaptive’: keeps the learning rate constant to ‘learning_rate_init’ as long as training loss 

keeps decreasing. Each time two consecutive epochs fail to decrease training loss or fail to 

increase validation score; the current learning rate is divided by 5. 

Learning_rate_init 

The initial learning rate used. It controls the step-size in updating the weights. 

Max_iter 

Maximum number of iterations. The solver iterates until convergence (determined by ‘tol’) or this 

number of iterations. For stochastic solvers (‘SGD, ‘Adam’), note that this determines the number of 

epochs (how many times each data point will be used), not the number of gradient steps. 

Table A.8. Optimized values of BPNN hyperparameters 

Lake’s 

depth 

(m) 

Number 

of hidden 

layers 

Number 

of 

neurons 

Activation 

function 

Optimiz

ation 

Learning 

rate 

Learning 

rate initial 

Maximum 

iteration 

5 19 20 'RELU’' 'LBFGS' 'Adaptive' 0.00431 211 

60 15 19 'RELU’' 'LBFGS' 'Adaptive' 0.00471 196 
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A.1.9. Adaptive Network-based Fuzzy Inference System (ANFIS) 

The features considered in this method are taken from the MATLAB toolbox for ANFIS. Based on 

our available data, the best hyperparameters are shown in Table A.9. 

 

Input Membership function 

The function based on the fuzzy logic principles trains the model set to calculate the parameters of 

membership function, which represents the degree of truth in fuzzy logic (Opeyemi and Justice, 

2012). The following functions are introduced: 

o Gaussian (Gaussmf): 

𝑓(𝑥) = 𝑒
−(𝑥−𝑐)2

2𝜎2  
(A.10) 

where 𝜎 is the standard deviation, 𝑐 is the mean. 

o Generalized bell (Gbellmf): 

𝑓(𝑥) =
1

1 + |
𝑥 − 𝑐
𝑎 |2𝑏

 
(A.11) 

where 𝑎, 𝑏, and 𝑐 are parameters. 

o Sigmoid (Sigmf): 

𝑓(𝑥) =
1

1 + 𝑒−𝑎𝑘(𝑥−𝑐𝑘)
 

(A.12) 

where 𝑎𝑘 and 𝑐𝑘 parameters. 

o Triangular membership function (Trimf): 

𝑓(𝑥) = {

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

0, 𝑐 ≤ 𝑥

} 

(A.13) 

where 𝑎, 𝑏, and 𝑐 are parameters. 

Output Membership function 

The output type of the membership function should be chosen in one of these two ways: 
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o Linear 

o Constant 

Optimization method 

Method used to train the model. Two optimization methods are used to reduce the error: 

o Backpropagation: for all parameters. 

o Hybrid method: consisting of backpropagation for the parameters associated with the input 

membership functions, and least squares estimation for the parameters associated with the 

output membership functions. 

Epochs 

A measure of the number of times that the model is trained to update the weights. 

Table A.9. Optimized values of BP hyperparameters 

Lake’s 

depth (m) 

Input MF Output MF Optimization Epochs 

5 Trimf Linear Hybrid 100 

60 Trimf Linear hybrid 100 

 

 

A.2. Hyperparameters used for the machine learning models 

of CCI lakes 

To evaluate the influence of climate on the lakes’ thermal response, BPNN as the ML methods were 

implemented in the Python environment using the library of ‘Sklearn’. To generalize the model for 

all 2024 lakes by trial and error and based on the results obtained in section A.1.8, we utilized the 

hyperparameters in Table A.10 to the model. In order to avoid repeating the description if these 

hyperparameters, for more information read section A.1.8. 

Table A.10. Selected values of BPNN hyperparameters 

Number of hidden 

layers 

Number 

of neurons 

Activation 

function 

Optimization Learning 

rate 

Learning 

rate 

initial 

Maximum 

iteration 

Number of features -1 2 ‘Tanh’ ‘LBFGS’ ‘Invscaling’ 0.001 10000 

A.3. Hyperparameters used for the machine learning models 

of boreal lakes 

To evaluate ice dynamics in boral lakes, we compared BPNN and LSTM. The hyperparameters used 

in these two models are as shown in Tables A.11 and A.12. To avoid the repetition of the 
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hyperparameters’ explanation, read sections A.1.7 and A.1.8. To simplify the models to be used, we 

unified the choice of hyperparameters for the two lakes based on trial and errors. 

Table A.11. Selected values of BPNN hyperparameters 

Number 

of hidden 

layers 

Number of neurons Activation 

function 

Optimization Learning 

rate 

Learning 

rate 

initial 

Maximum 

iteration 

2 Number of features -1 'Tanh' 'LBFGS' ‘Invscaling’ 0.001 5000 

 

Table A.12. Selected values of LSTM hyperparameters 

Number of 

hidden layers 

Number of 

neurons 

Activation 

function 

Dropout Optimization Learning 

rate 

Batch 

size 

Number 

of epochs 

1 Number of 

features -1 

'Tanh' 0 Adam 0.0001 250 350 
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B. Literature review of ML models used 

to predict water temperature in rivers 

Table B.1. ML algorithms used to predict stream temperature in rivers, with the indication of the most 

important predictors. 

ML Algorithm Author (s) The best ML method ML models Predictor(s) 

Linear and/or 

Non-linear Re-

gression 

Mohseni et 

al. (1998) 
Non-linear regression 

model 
Non-linear regression model Weekly AT 

Mohseni and 

Stefan 

(1999) 

Linear regression Linear regression AT 

Rivers-

Moore et al. 

(2010) 

Multiple linear regres-

sion model 
Linear regression, Non-linear re-

gression model (Exponential 

model), Multiple linear regression 

model 

AT, streamflow, rainfall, 

relative humidity (mean 

daily AT, minimum daily 

AT and RH are influential) 
Li et al. 

(2014) 
Varying coefficient 

regression model 
Varying coefficient regression 

model 
Maximum AT, time vary-

ing coefficient model 

(DOY) 
Logistic Regres-

sion 
Caissie et al. 

(2001) 
Regression model in 

weekly basis, Sto-

chastic for maximum 

AT 

Regression model (A second order 

Markov process), stochastic ap-

proach using Fourier and Sine func-

tion 

AT 

Grbic' et al. 

(2013) 
Gaussian process re-

gression model 
Gaussian Process Regression - Lin-

ear regression, logistic and stochas-

tic models 

AT, streamflow 

Laanaya et 

al. (2017) 
GAM The generalized additive model 

(GAM), an extension of the general-

ized linear model; logistic model; 

linear regression; residual regres-

sion model (long-term annual and 

the short-term) 

AT, average streamflow 

Artificial Neural 

Network (ANN) 
Chenard and 

Caissie 

(2008) 

ANN ANN Minimum, maximum and 

mean AT, DOY, water 

level 
Sahoo et al. 

(2009) 
ANN Empirical model (BPNN), a statisti-

cal model (multiple regression anal-

ysis, MRA), chaotic non-linear dy-

namic algorithms (CNDA) 

SWR, AT 

Wenxian et 

al. (2010) 
PSO- BPNN BPNN Monthly water T 

DeWeber 

and Wagner 

(2014) 

ANN ANN Daily averaged AT, prior 7 

days mean AT, network 

catchment area, predicted 

mean daily water T. (Forest 

land cover at riparian and 

catchment extents impact 

negatively) 
Hadzima-

Nyarko et al. 

(2014) 

ANN ANN, linear regression model and 

stochastic model 
Daily average AT 

Napiorkow-

ski et al. 

(2014) 

ANN ANN Daily average AT 

Piotrowski et 

al. (2014) 
ANN ANN Daily average AT, daily 

maximum AT, daily 

streamflow, daily average 

water T, declination of the 

sun 

https://www.scopus.com/authid/detail.uri?authorId=57193773100&amp;eid=2-s2.0-85016487673
https://www.scopus.com/authid/detail.uri?authorId=57193773100&amp;eid=2-s2.0-85016487673
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ML Algorithm Author (s) The best ML method ML models Predictor(s) 

Piotrowski et 

al. (2015) 
ANN MLPNN, ANFIS Mean, maximum and mini-

mum daily AT, streamflow, 

SWR. 
Rabi et al. 

(2015) 
MLPNN Linear regression, stochastic model-

ling (non-linear regression), 

MLPNN  

Mean daily AT 

Piotrowski et 

al. (2016) 
ANN ANFIS, MLPNN SWR, streamflow, mini-

mum daily AT, mean daily 

AT, maximum daily AT, 

sum of the daily averaged 

AT measured 2 to 6 days 

before the day. 
Temizyurek 

and Dadaser-

Celik (2018) 

ANN ANN AT, WS, RH, previous wa-

ter T 

Zhu et al. 

(2019) 
 

Gaussian Process Re-

gression (GPR), Boot-

strap Aggregated De-

cision Trees (BA-DT) 
 

ANN, GPR, BA-DT 
 

AT 
 

Graf et al. 

(2019) 
WT-ANN WT-ANN, linear and non-linear re-

gression, ANN 
Daily water T, daily AT 

Trinh et al. 

(2019) 
ANN Regression models (linear, non-lin-

ear and stochastic regression), ANN 
Daily maximum AT 

Zhu and 

Heddam 

(2019) 

Optimally Pruned Ex-

treme Learning Ma-

chine (OPELM) 

OPELM, Radial Basis Functions 

Neural Networks (RBFNN) 
AT, streamflow, DOY 

Zhu et al. 

(2019) 
MLPNN MLPNN, ANFIS AT, streamflow, DOY 

Zhu et al. 

(2019) 
WT-MLPNN and 

WT-ANFIS 
MLPNN and ANFIS with and with-

out WT 
Daily AT, DOY 

Zhu et al. 

(2019) 
Extreme Learning 

Machine (ELM) 

model 

ELM - MLPNN and simple multiple 

linear regression (MLR) 
AT, streamflow, DOY 

Zhu et al. 

(2019) 
air2stream model out-

performed the three 

machine learning 

methods  

MLPNN, Gaussian process regres-

sion (GPR), DT 
AT, streamflow, DOY 

Zhu et al. 

(2019) 
MLPNN MLPNN, ANFIS AT, streamflow, DOY 

Piotrowski et 

al. (2020) 
ANN ANN AT, streamflow, declination 

of the sun 
Qiu et al. 

(2020) 
BPNN BPNN, radial basis function neural 

network, wavelet neural network, 

general 
regression neural network, Elman 

neural network 

AT, streamflow, DOY 

Radulescu 

(2020) 
MLPNN MLPNN AT 

Zhu et al. 

(2020) 
WT_MLPNN 

(air2water outper-

formed all as a hybrid 

model) 

MLPNN, MLPNN integrated model 

(WT_MLPNN), non-linear regres-

sion model (S-curve), air2water 

Daily LSWT and AT 

Decision Tree 

(single conjunc-

tive rule learner, 

decision table, 

M5 model tree, 

and REPTree) 

Goyal et al. 

(2012) 
M5 model tree Tree algorithm (single conjunctive 

rule learner, decision table, M5 

model tree, and REPTree) 

Specific humidity, geopo-

tential height, meridional 

(north-south direction) WS, 

zonal (west-east direction) 

WS, AT 

Support Vector 

Machines (SVM) 
Rehana 

(2019) 
SVR Multiple Linear Regression Model 

(MLRM), SVR 
AT, streamflow 

k-nearest Neigh-

bour algorithm 

(KNN) 

St-Hilaire et 

al. (2012) 
KNN KNN Water T from the two pre-

vious days and an indicator 

of seasonality (DOY), daily 

AT and daily streamflow 
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ML Algorithm Author (s) The best ML method ML models Predictor(s) 

Random Forest 

(RF) 
Holthuijzen 

(2017) 
Gradient Boosting 

Machines (GBM) 
GBM, RF, Spatial Statistical Net-

work (SSN), Generalized Additive 

Models (GAM), Linear regression 

SWR, summer streamflow, 

maximum weekly maxi-

mum AT, summer mean 

AT 
Lu and Ma 

(2020) 
Extreme Gradient 

Boosting (XGBoost), 

RF 

RF  1875 data 
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C. Metrics used to evaluate ML 

performance 

C.1. Standard metrics 

Our analysis of the ML performance is based on the values of the root mean square error (RMSE), 

which is computed for both the training and test data using the standard definition  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2
𝑁

𝑖=1
 (C.1) 

where 𝑖 is the time index, 𝑁 is the number of samples, 𝑠𝑖𝑚𝑖 (simulated) is the LSWT modelled by 

ML, and 𝑜𝑏𝑠𝑖 is the observed value (obtained from GLM simulation). Perfect fit is obtained for 

RMSE = 0.  

However, different metrics are also used. In this section, we review the most common ones. 

First, the Nash-Sutcliff Efficiency index (NSE) is equivalent to RMSE if the variance of the 

observations, 𝜎𝑜𝑏𝑠
2 , does not change: 

𝑁𝑆𝐸 = 1 −
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)
2𝑁

𝑖=1

= 1 −
𝑅𝑀𝑆𝐸2

𝜎𝑜𝑏𝑠
2  (C.2) 

where 𝑜𝑏𝑠̅̅ ̅̅ ̅ is the mean of the observations. NSE = 1 indicates perfect fit, while suing the mean of 

the observations as a predictive model would lead to NSE = 0.  

Other metrics that are used to compute the performance of models are the mean absolute error 

(MAE) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖|

𝑁

𝑖=1

 (C.3) 

 

which considers the absolute value of the error instead of the square as in equation (C.1), and the 

mean squared error (MSE) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2
𝑁

𝑖=1
= 𝑅𝑀𝑆𝐸2 (C.4) 

which is simply the square of RMSE. 

Another metric is the Index of Agreement presented by Willmott (1981), 

𝐼𝐴 = 1 −
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2𝑁
𝑖=1

∑ (|𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅| + |𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅|)
2𝑁

𝑖=1

 (C.5) 

which is the ratio of MSE and the potential error. 𝐼𝐴 is sensitive to extreme values because of the 

squared differences. The values of 𝐼𝐴 range between 0 and 1, where 1 represents the perfect 

prediction and 0 the worst. 

The coefficient of determination, or R-squared (𝑅2), yields the same information as NSE. 

Usually, it is defined as 
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𝑅2 = 1 −
∑ (𝑜𝑏𝑠𝑖̂ − 𝑜𝑏𝑠𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)
2𝑁

𝑖=1

 (C6) 

where the only difference is the interpretation of the term 𝑜𝑏𝑠𝑖̂ , which in this case is the prediction 

from a statistical model based on the observations, and not from the results of a simulation model as 

for NSE. We do not report the 𝑅2 values as we prefer to indicate them as NSE. 

 Finally, we use the mean error (ME), or bias, to compute the average difference between simulated 

and observed values: 

𝑀𝐸 =
1

𝑁
∑(𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

𝑁

𝑖=1

= 𝑠𝑖𝑚̅̅ ̅̅ ̅ − 𝑜𝑏𝑠̅̅ ̅̅ ̅ (C7) 

where 𝑠𝑖𝑚̅̅ ̅̅ ̅ is the average of the simulated LSWT. 

C.2. Robustness of multiple runs 

The results of the ML models depend on the initial guess of their parameters, which are then 

suitably calibrated by means of algorithms as GA. In order to test the possible variability of the 

results due to the random choice of the initial parameters, we decided to run all ML models 𝑁𝑟 

times, and we assumed 𝑁𝑟 = 20. 

Here we introduce two concepts: the robustness and the accuracy of the ML model. The 

robustness shows how much the results of the 𝑁 different simulations are close to each other. In 

order to have an estimate of the robustness, at each time step 𝑖 we compute the standard deviation 

among the 𝑁𝑟 runs: 

𝜎𝑖 =
1

𝑁𝑟
∑(𝑠𝑖𝑚𝑖,𝑗 − 𝜇𝑠𝑖𝑚,𝑖)

2

𝑁𝑟

𝑗=1

 (C.8) 

where 𝑗 is the index of the run, and 𝜇𝑠𝑖𝑚,𝑖 is the mean of the simulated LSWT. Then, we compute 

the average over the whole record (Equation C.8) to obtain the index for the train and test sets 

separately. 

 

𝜎𝑅 =
1

𝑁
∑𝜎𝑖

𝑁

𝑖=1

 (C.9) 

The accuracy represents how much the prediction is close to the observed values. We already 

defined the RMSE in equation (C.1) as a measure that can be used for a single run. Here, we define 

two metrics for the set of 𝑁𝑟 runs. The first one is the mean of the RMSE of the single runs, 

𝑅𝑀𝑆𝐸𝐴 =
1

𝑁𝑟
∑𝑅𝑀𝑆𝐸𝑗

𝑁𝑟

𝑗=1

 (C.10) 

and 𝑅𝑀𝑆𝐸𝐵 is the best RMSE of 20 runs; the second one is the RMSE of the average of the 𝑁𝑟 

runs, 

𝑅𝑀𝑆𝐸𝐴𝑆 = √
1

𝑁
∑ (𝑠𝑖𝑚̅̅ ̅̅ ̅𝑖 − 𝑜𝑏𝑠𝑖)2

𝑁

𝑖=1
 (C.11) 

where 𝑠𝑖𝑚̅̅ ̅̅ ̅𝑖 is the mean simulated value at the time step 𝑖, 
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𝑠𝑖𝑚̅̅ ̅̅ ̅𝑖 =
1

𝑁𝑟
∑𝑠𝑖𝑚𝑖,𝑗

𝑁𝑟

𝑗=1

 (C.12) 

C.3. Differences between individual runs 

For each case study, an individual run of the ML model provides a simulation that is not identical to 

the other runs even if the hyperparameters are the same, because the number of the parameters is so 

large that their calibration in the training phase produces results that depend on the initial (random) 

guess. Therefore, we introduced a measure (equation C.7) for the robustness of the single 

prediction. 

It is interesting to analyze a case where two runs have a very similar RMSE, but they differ 

significantly from each other. In Figure C.1, the simulated values in two runs (number 1 and 17) are 

shown: the mean difference between the two simulations is 0.308°C, although the RMSE is almost 

identical (1.221°C and 1.238°C, respectively). 

 

Figure C.1. Simulated LSWT from two individual runs compared with observations. The two simulations have 

similar RMSE, although they differ from each other. 

C.4. Analysis of the performances 

Tables C.1, C.2, C.3 and C.4 report the list of all the metrics defined above to measure the 

performance of ML models, considering different inputs, pre-processing strategies, and ML 

algorithms. 
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Table C.1. Metrics of the BPNN model for the shallow (depth = 5 m) lake, depending on the predictors used and separating the performances of the training and test 

data sets.  

Depth = 5 m RMSEA (°C) MSE (°C2) MAE (°C) NSE (-) IA (-) ME (°C) 𝜎𝑅 (°C) RMSEB (°C) RMSEAS (°C) 

Variable(s) train test train test train test train test train test train test train test train test train test 

AT 
3.044 3.105 9.266 9.644 2.127 2.178 0.864 0.869 >0.999 >0.999 0.000 0.239 0.137 0.183 3.007 3.059 3.021 3.076 

DOY 
1.856 2.125 3.482 4.539 1.326 1.524 0.949 0.938 >0.999 >0.999 0.000 -0.738 0.257 0.257 1.782 2.065 1.796 2.069 

SCDOY 
1.781 2.070 3.172 4.286 1.262 1.470 0.953 0.942 >0.999 >0.999 0.000 -0.738 0.013 0.013 1.778 2.055 1.777 2.067 

AT+SCDOY 
1.312 1.460 1.720 2.131 0.921 1.013 0.975 0.971 >0.999 >0.999 0.000 -0.354 0.028 0.029 1.299 1.432 1.301 1.450 

SWR 
5.575 5.556 31.082 30.865 4.376 4.355 0.543 0.581 >0.999 >0.999 0.000 -0.311 0.017 0.021 5.572 5.548 5.574 5.554 

LWR 
5.810 5.904 33.757 34.857 4.628 4.771 0.504 0.527 >0.999 >0.999 0.000 0.128 0.079 0.099 5.792 5.885 5.803 5.896 

RH 
7.928 8.141 62.847 66.272 7.119 7.238 0.076 0.101 >0.999 >0.999 0.000 -0.693 0.040 0.034 7.922 8.133 7.925 8.139 

WS 
8.030 8.452 64.479 71.432 7.228 7.560 0.052 0.031 >0.999 >0.999 0.000 -0.765 0.070 0.071 8.011 8.431 8.025 8.448 

R 
8.227 8.594 67.677 73.849 7.507 7.754 0.005 -0.002 >0.999 >0.999 0.003 -0.716 0.002 0.003 8.224 8.590 8.226 8.593 

AP 
7.520 7.884 56.579 62.182 6.533 6.822 0.168 0.156 >0.999 >0.999 0.001 -0.492 0.642 0.618 7.472 7.840 7.479 7.846 

AT + SCDOY + WS 
1.313 1.452 1.723 2.108 0.921 1.006 0.975 0.971 >0.999 >0.999 0.000 -0.351 0.035 0.036 1.300 1.439 1.299 1.439 

AT + SCDOY + AP 
1.308 1.455 1.712 2.117 0.919 1.010 0.975 0.971 >0.999 >0.999 0.000 -0.344 0.040 0.042 1.298 1.432 1.293 1.440 

AT + SCDOY + SWR 
1.381 1.534 1.906 2.354 0.963 1.063 0.972 0.968 >0.999 >0.999 0.000 -0.400 0.034 0.035 1.369 1.514 1.368 1.523 

AT + SCDOY + LWR 
1.287 1.422 1.657 2.021 0.901 0.987 0.976 0.973 >0.999 >0.999 0.000 -0.360 0.041 0.043 1.270 1.399 1.271 1.406 

AT + SCDOY + SWR + LWR 
1.375 1.525 1.892 2.327 0.964 1.060 0.972 0.968 >0.999 >0.999 0.000 -0.370 0.048 0.049 1.357 1.501 1.358 1.509 

AT + SCDOY + SWR + LWR + WS 
1.369 1.509 1.874 2.277 0.956 1.047 0.972 0.969 >0.999 >0.999 0.000 -0.361 0.046 0.049 1.352 1.481 1.352 1.493 

AT + SCDOY + SWR + LWR + WS + RH 
1.371 1.497 1.879 2.240 0.960 1.038 0.972 0.970 >0.999 >0.999 0.000 -0.326 0.050 0.055 1.351 1.475 1.353 1.478 

AT + SCDOY + SWR + LWR + WS + RH + R 
1.358 1.484 1.844 2.201 0.951 1.028 0.973 0.970 >0.999 >0.999 0.000 -0.302 0.054 0.059 1.339 1.461 1.338 1.464 

AT + SCDOY + SWR + LWR + WS + RH + R +AP 
1.363 1.496 1.858 2.240 0.956 1.039 0.973 0.970 >0.999 >0.999 0.000 -0.285 0.065 0.071 1.340 1.461 1.339 1.473 
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Table C.2. Metrics of the BPNN model for the deep (depth = 60 m) lake, depending on the predictors used and separating the performances of the training and test 

data sets. 

 

Depth = 60 m RMSEA (°C) MSE (°C2) MAE (°C) NSE (-) IA (-) ME (°C) 𝜎𝑅 (°C) RMSEB (°C) RMSEAS (°C) 

Variable(s) train test train test train test train test train test train test train test train test train test 

AT 
3.629 3.911 13.187 15.303 2.837 2.989 0.779 0.757 >0.999 >0.999 0.000 0.154 0.258 0.266 3.587 3.881 3.596 3.878 

DOY 
1.596 1.746 2.654 3.185 1.186 1.353 0.956 0.950 >0.999 >0.999 -0.001 -0.743 0.482 0.482 1.436 1.579 1.474 1.644 

SCDOY 
1.434 1.579 2.056 2.492 1.041 1.223 0.966 0.960 >0.999 >0.999 0.000 -0.742 0.012 0.012 1.431 1.571 1.430 1.575 

AT+SCDOY 
1.160 1.292 1.345 1.670 0.868 1.007 0.978 0.974 >0.999 >0.999 0.000 -0.477 0.027 0.028 1.147 1.271 1.148 1.281 

SWR 
6.182 6.383 38.222 40.740 5.259 5.410 0.361 0.354 >0.999 >0.999 0.000 -0.401 0.005 0.006 6.181 6.380 6.182 6.382 

LWR 
5.300 5.285 28.086 27.932 4.236 4.243 0.530 0.557 >0.999 >0.999 0.000 0.081 0.068 0.084 5.289 5.273 5.293 5.277 

RH 
7.604 7.884 57.815 62.154 6.828 6.973 0.033 0.015 >0.999 >0.999 0.000 -0.802 0.081 0.096 7.593 7.782 7.598 7.878 

WS 
7.520 7.799 56.544 60.818 6.709 6.883 0.054 0.036 >0.999 >0.999 0.000 -0.767 0.030 0.030 7.515 7.791 7.518 7.797 

R 
7.703 7.946 59.333 63.142 6.958 7.060 0.008 -0.001 >0.999 >0.999 0.015 -0.705 0.037 0.042 7.699 7.940 7.700 7.944 

AP 
7.112 7.385 50.582 54.544 6.200 6.435 0.154 0.135 >0.999 >0.999 0.000 -0.515 0.056 0.050 7.102 7.373 7.108 7.382 

AT + SCDOY + WS 
1.151 1.294 1.326 1.675 0.862 1.007 0.978 0.973 >0.999 >0.999 0.000 -0.478 0.037 0.041 1.137 1.278 1.135 1.278 

AT + SCDOY + AP 
1.164 1.284 1.354 1.650 0.871 1.004 0.977 0.974 >0.999 >0.999 -0.001 -0.469 0.040 0.041 1.152 1.267 1.146 1.268 

AT + SCDOY + SWR 
1.204 1.328 1.449 1.764 0.895 1.034 0.976 0.972 >0.999 >0.999 0.000 -0.511 0.037 0.039 1.188 1.311 1.188 1.313 

AT + SCDOY + LWR 
1.153 1.282 1.329 1.644 0.859 1.003 0.978 0.974 >0.999 >0.999 0.000 -0.487 0.037 0.039 1.141 1.266 1.137 1.267 

AT + SCDOY + SWR + LWR 
1.189 1.322 1.413 1.747 0.888 1.029 0.976 0.972 >0.999 >0.999 0.000 -0.485 0.039 0.040 1.172 1.304 1.172 1.307 

AT + SCDOY + SWR + LWR + WS 
1.186 1.328 1.406 1.764 0.886 1.031 0.977 0.972 >0.999 >0.999 0.000 -0.486 0.049 0.050 1.165 1.304 1.165 1.309 

AT + SCDOY + SWR + LWR + WS + RH 
1.185 1.309 1.405 1.714 0.887 1.013 0.977 0.973 >0.999 >0.999 0.000 -0.432 0.054 0.059 1.165 1.290 1.162 1.286 

AT + SCDOY + SWR + LWR + WS + RH + R 
1.175 1.307 1.382 1.708 0.878 1.012 0.977 0.973 >0.999 >0.999 0.000 -0.419 0.060 0.070 1.151 1.262 1.149 1.280 

AT + SCDOY + SWR + LWR + WS + RH + R +AP 
1.176 1.301 1.382 1.692 0.880 1.008 0.977 0.973 >0.999 >0.999 0.001 -0.411 0.055 0.059 1.152 1.290 1.152 1.278 
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Table C.3. Comparison of the metrics obtained with different pre-processing methods and considering the input of AT from previous days, for the shallow and deep 

lake (ML method: BPNN). 

Depth = 5 m 

Method RMSEA (°C) MSE (°C2) MAE (°C) NSE (-) IA (-) ME (°C) 𝜎𝑅 (°C) RMSEB (°C) RMSEAS (°C) 

set train test train test train test train test train test train test train test train test train test 

Min-Max 1.312 1.460 1.720 2.131 0.921 1.013 0.975 0.971 >0.999 >0.999 0.000 -0.354 0.028 0.029 1.299 1.432 1.301 1.450 

Moving Average + Min-Max 1.061 1.136 1.126 1.292 0.743 0.802 0.983 0.982 >0.999 >0.999 0.000 -0.097 0.026 0.032 1.047 1.108 1.049 1.123 

AT from previous days 0.959 0.943 0.920 0.890 0.652 0.668 0.986 0.988 >0.999 >0.999 0.001 0.030 0.056 0.059 0.937 0.898 0.930 0.912 

DWT 1.754 1.968 3.077 3.871 1.260 1.418 0.955 0.948 >0.999 >0.999 -0.454 0.024 0.039 1.747 1.948 1.747 1.958 -0.454 

CWT 1.801 2.085 3.245 4.346 1.282 1.488 0.952 0.941 >0.999 >0.999 -0.740 0.025 0.025 1.796 2.073 1.795 2.079 -0.740 

Depth = 60 m 

Min-Max 1.160 1.292 1.345 1.670 0.868 1.007 0.978 0.974 >0.999 >0.999 0.000 -0.477 0.027 0.028 1.147 1.271 1.148 1.281 

Moving Average + Min-Max 0.983 1.189 0.967 1.414 0.741 0.876 0.984 0.978 >0.999 >0.999 0.000 -0.202 0.031 0.036 0.973 1.153 0.968 1.174 

AT from previous days 0.887 1.136 0.788 1.291 0.664 0.811 0.987 0.980 >0.999 >0.999 0.000 -0.088 0.067 0.072 0.869 1.103 0.849 1.104 

DWT 1.365 1.538 1.863 2.364 1.011 1.160 0.969 0.963 >0.999 >0.999 0.000 -0.333 0.024 0.041 1.356 1.514 1.356 1.524 

CWT 1.421 1.558 2.020 2.429 1.034 1.212 0.966 0.962 >0.999 >0.999 0.000 -0.742 0.023 0.023 1.415 1.552 1.413 1.551 
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Table C.4. Comparison of the metrics obtained using different ML algorithms using AT and SCDOY as input (pre-processing: MM). 

Depth = 5 m 

Method RMSEA (°C) MSE (°C2) MAE (°C) NSE (-) IA (-) ME (°C) 𝜎𝑅 (°C) RMSEB (°C) RMSEAS (°C) 

set train test train test train test train test train set train test train test train test train test 

DT 1.230 1.626 1.514 2.642 0.859 1.090 0.978 0.964 >0.999 >0.999 0.000 -0.340 0.000 0.002 1.230 1.623 1.230 1.625 

RF 1.159 1.540 1.344 2.373 0.769 1.025 0.980 0.968 >0.999 >0.999 -0.033 -0.383 0.010 0.013 1.157 1.528 1.155 1.536 

ERT 1.295 1.479 1.677 2.188 0.883 1.006 0.975 0.970 >0.999 >0.999 -0.033 -0.424 0.011 0.013 1.288 1.460 1.291 1.475 

KNN 1.243 1.525 1.544 2.327 0.860 1.047 0.977 0.968 >0.999 >0.999 -0.006 -0.413 0.000 0.000 1.243 1.525 1.243 1.525 

SVR 1.369 1.497 1.873 2.240 1.052 1.121 0.973 0.970 >0.999 >0.999 0.107 -0.259 0.000 0.000 1.369 1.497 1.369 1.497 

MLPNN 1.319 1.467 1.739 2.153 0.926 1.022 0.974 0.971 >0.999 >0.999 -0.025 -0.383 0.043 0.042 1.299 1.446 1.302 1.453 

LSTM 1.353 1.490 1.831 2.222 0.983 1.074 0.973 0.970 >0.999 >0.999 -0.024 -0.349 0.085 0.092 1.322 1.424 1.321 1.460 

BPNN 1.312 1.460 1.720 2.131 0.921 1.013 0.975 0.971 >0.999 >0.999 0.000 -0.354 0.028 0.029 1.299 1.432 1.301 1.450 

Depth = 60 m 

DT 1.428 1.668 2.056 2.811 1.044 1.241 0.966 0.955 >0.999 >0.999 0.000 -0.472 0.750 0.916 1.264 1.447 1.143 1.377 

RF 1.117 1.362 1.247 1.856 0.847 1.056 0.979 0.971 >0.999 >0.999 -0.001 -0.472 0.007 0.009 1.114 1.351 1.114 1.359 

ERT 1.141 1.292 1.302 1.668 0.853 1.011 0.978 0.974 >0.999 >0.999 0.000 -0.522 0.003 0.004 1.136 1.285 1.140 1.290 

KNN 1.093 1.311 1.196 1.719 0.808 1.026 0.980 0.973 >0.999 >0.999 -0.009 -0.510 0.000 0.000 1.093 1.311 1.093 1.311 

SVR 1.171 1.302 1.371 1.695 0.914 1.025 0.977 0.973 >0.999 >0.999 0.107 -0.355 0.000 0.000 1.171 1.302 1.171 1.302 

MLPNN 1.212 1.378 1.469 1.901 0.918 1.085 0.975 0.970 >0.999 >0.999 -0.083 -0.603 0.033 0.034 1.177 1.296 1.198 1.366 

LSTM 1.286 1.264 1.656 1.598 0.986 0.962 0.972 0.975 >0.999 >0.999 0.405 -0.054 0.019 0.023 1.233 1.223 1.279 1.255 

BPNN 1.160 1.292 1.345 1.670 0.868 1.007 0.978 0.974 >0.999 >0.999 0.000 -0.477 0.027 0.028 1.147 1.271 1.148 1.281 
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D. Hypsographic curve of synthetic lakes 

 

Figure D.1. Area and Volume of hypsographic curve of shallow lake with 5m depth. 
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Figure D.2. Area and Volume of hypsographic curve of deep lake with 60 m depth. 
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