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Abstract

Introduction: Behavioural dysfunction is a key feature of genetic frontotempo-

ral dementia (FTD) but validated clinical scales measuring behaviour are lack-

ing at present. Methods: We assessed behaviour using the revised version of the

Cambridge Behavioural Inventory (CBI-R) in 733 participants from the Genetic

FTD Initiative study: 466 mutation carriers (195 C9orf72, 76 MAPT, 195 GRN)

and 267 non-mutation carriers (controls). All mutation carriers were stratified

according to their global CDR plus NACC FTLD score into three groups:

asymptomatic (CDR = 0), prodromal (CDR = 0.5) and symptomatic

(CDR = 1+). Mixed-effects models adjusted for age, education, sex and family

clustering were used to compare between the groups. Neuroanatomical corre-

lates of the individual domains were assessed within each genetic group.

Results: CBI-R total scores were significantly higher in all CDR 1+ mutation

carrier groups compared with controls [C9orf72 mean 70.5 (standard deviation

27.8), GRN 56.2 (33.5), MAPT 62.1 (36.9)] as well as their respective CDR 0.5

groups [C9orf72 13.5 (14.4), GRN 13.3 (13.5), MAPT 9.4 (10.4)] and CDR 0

groups [C9orf72 6.0 (7.9), GRN 3.6 (6.0), MAPT 8.5 (13.3)]. The C9orf72 and

GRN 0.5 groups scored significantly higher than the controls. The greatest

impairment was seen in the Motivation domain for the C9orf72 and GRN

symptomatic groups, whilst in the symptomatic MAPTgroup, the highest-

scoring domains were Stereotypic and Motor Behaviours and Memory and Ori-

entation. Neural correlates of each CBI-R domain largely overlapped across the

different mutation carrier groups. Conclusions: The CBI-R detects early beha-

vioural change in genetic FTD, suggesting that it could be a useful measure

within future clinical trials.

Introduction

Frontotemporal dementia (FTD) is a heterogeneous neu-

rodegenerative disease associated with changes in beha-

viour, language and cognition.1 Around one-third of FTD

is autosomal dominant2 with the main genetic causes

being mutations in microtubule-associated protein tau

(MAPT),3 progranulin (GRN)4 and chromosome 9 open

reading frame 72 (C9orf72).5 Most commonly, familial

FTD will present with changes in personality and social

conduct, known as behavioural variant FTD (bvFTD).

However, despite the development of a number of thera-

peutic drugs for genetic FTD and trials now starting, few

validated scales have been developed to detect and
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monitor the underlying behavioural changes in FTD. Such

measures will be important in assessing the potential

effectiveness of disease-modifying therapies.

Unlike a number of already existing scales such as the

Neuropsychiatric Inventory (NPI)6 which do not encom-

pass all the core diagnostic features of FTD, the Cam-

bridge Behavioural Inventory was specifically designed to

focus on the changes seen in those with bvFTD.7 The

revised version (CBI-R) is a 45-item questionnaire mea-

suring the severity of symptoms across 10 domains. Four

of the domains encompass the core behavioural criteria in

the diagnosis of bvFTD1: Motivation (including both apa-

thy and loss of empathy), Stereotypic and Motor Beha-

viours (i.e. obsessive–compulsive behaviour), Eating

Habits (such as preference for sweet foods) and Abnormal

Behaviour (including disinhibition and impulsivity). Three

further domains cover neuropsychiatric symptoms that

occur regularly in FTD, particularly in the genetic forms:

Beliefs (delusions and hallucinations), Mood (depression,

agitation and irritability) and Sleep (increased daytime or

disturbed sleep). Two domains focus on functional defi-

cits: Everyday Skills (such as difficulties with handling

money and using items around the house) and Self Care.

The last domain is Memory and Orientation which

includes deficits seen in FTD such as impaired attention

and concentration. However, although the CBI-R has been

investigated across a number of phenotypic variants of

FTD,8–10 little work has been done to understand how well

it measures the behavioural and functional change in

genetic forms of FTD, particularly in the presymptomatic

period. Furthermore, few studies have been performed to

examine the neural correlates of the CBI-R.9

The aim of this study was therefore to assess the CBI-R as

a measure of behavioural and functional change in genetic

FTD using data from the Genetic FTD Initiative (GENFI)

cohort, an international study of the natural history of

genetic FTD with the aim of identifying early biomarkers.

Methods

Participants

Data were collected from participants from the fifth data

freeze of the GENFI study including sites in the UK,

Canada, Sweden, Netherlands, Belgium, Spain, Portugal,

Italy and Germany. Participants were recruited from fam-

ilies with a confirmed pathogenic genetic mutation in

GRN, MAPT or C9orf72, including those who were symp-

tomatic as well as those who were at-risk first-degree rela-

tives of mutation carriers. This second group consists of

both presymptomatic mutation carriers and mutation-

negative family members who therefore act as healthy

controls. Of the 849 participants recruited into the fifth

data freeze, cross-sectional data on the CBI-R was avail-

able from 733 participants: 466 mutation carriers (195

C9orf72, 195 GRN, 76 MAPT) and 267 mutation-negative

healthy controls. The study procedures were approved by

local ethics committees and all participants provided

informed written consent.

Procedure

All participants underwent the standardised GENFI clini-

cal assessment battery including history and examination,

the Mini-Mental State Examination (MMSE), the Fron-

totemporal dementia Rating Scale (FRS) and the Clinical

Dementia Rating Scale plus National Alzheimer Coordi-

nating Centre FTLD module (CDR plus NACC FTLD). A

global CDR plus NACC FTLD score gives a summary of

the current disease stage, where 0 is asymptomatic, 0.5 is

prodromal or very mildly symptomatic and 1, 2 and 3 rep-

resent the mild, moderate and severe fully symptomatic

stages. For the purposes of this study, the fully symp-

tomatic mutation carriers were grouped together as 1+.
The CDR plus NACC FTLD sum of boxes score in which

the total score on each domain is added together (max

score = 24) provides a measure of disease severity.11,12

The revised version of the Cambridge
Behavioural Inventory

All participants had a CBI-R questionnaire completed by a

close informant, usually either a family member or a close

friend. The CBI-R assesses the frequency of the given beha-

viour over the past month on a scale of 0–47: a score of 0

means that there is no impairment, a score of 1 an occa-

sional occurrence (a few times a month), 2 a repeated

occurrence (few times a week), 3 a daily occurrence and 4 is

a constant occurrence. Higher scores, therefore, represent

more severe behavioural or functional deficits. There are 45

items in total, meaning that the CBI-R total score has a

maximum of 180. Each domain contains between two and

eight items, and therefore, the maximum domain score can

vary from 8 to 32. For the purposes of comparing the differ-

ent behaviours, we converted individual domain scores into

percentages of the total maximum score.

MRI

Participants underwent volumetric T1-weighted magnetic

resonance imaging according to the harmonised GENFI

protocol on a 3T scanner. This usually occurred on the

same day as the clinical assessment but occasionally on a

different day at a maximum of 12 weeks apart. All images

were checked for quality control, and scans with move-

ment or artefacts were removed from the analysis. Only
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scans from mutation carriers were included in the correl-

ative analysis: of the 466 participants, 430 scans were

available for the analysis: 179 C9orf72, 182 GRN and 69

MAPT mutation carriers.

Neuroanatomical regions of interest were subsequently

generated as previously described using an automated atlas

segmentation propagation and label fusion strategy called

Geodesic Information Flow.13 Specifically, volumes of the

frontal, temporal, insular and parietal cortices as well as

hippocampus, amygdala, thalamus and striatum were cal-

culated and expressed as a percentage of total intracranial

volume, computed with SPM12 (Statistical Parametric

Mapping, Welcome Trust Centre for Neuroimaging, Lon-

don, UK) running under Matlab R2014b.14

Statistical analysis

All statistical analyses were performed using StataCorp.

2016. Stata Statistical Software: Version 14. College Sta-

tion, TV: StataCorp LLC.

Demographic data were compared between groups

using a linear regression model, with bootstrapping when

the data were not normally distributed.

In the healthy control group, Spearman’s rank correla-

tions were performed to evaluate the relationship between

the CBI-R total score and both age and education. To

assess the relationship of CBI-R total score with sex, a

Mann–Whitney U test was used.

In order to compare the CBI-R total score between

groups, a mixed-effects model was used that adjusted for

age, education, sex and family clustering, along with

bootstrapped confidence intervals with 2000 repetitions as

the data were not normally distributed.

The relationship of the CBI-R total score with disease

severity (both CDR plus NACC FTLD sum of boxes and

FRS) was assessed using Spearman’s rank correlations

within each genetic group.

Similar mixed-effects models as performed above were

used to assess differences in each of the individual CBI-R

domains firstly, between genetic groups, and secondly,

within groups (symptomatic mutation carriers only).

Neural correlates of each individual CBI-R domain

were investigated in each genetic group by assessing non-

parametric partial correlations (adjusting for age and dis-

ease severity) of the domain score with the neuroanatom-

ical regions of interest.

Results

Demographics

The age, sex and education of the participants are shown

in Table 1. All symptomatic mutation carriers and the

prodromal GRN mutation carriers were significantly older

than controls (all p < 0.050) while the asymptomatic

MAPT mutation carriers were younger than controls

(p < 0.001). Within each of the genetic groups, the symp-

tomatic mutation carriers were significantly older than

the prodromal and asymptomatic mutation carriers (all

p < 0.050). The symptomatic C9orf72 group contained

more males than controls (p < 0.001) and compared with

their asymptomatic and prodromal groups (p = 0.002

and p = 0.019 respectively), but there were no other dif-

ferences in sex compared with controls or between genetic

groups. Symptomatic C9orf72 and GRN mutation carriers

spent significantly fewer years in education than controls

(p = 0.004 and p < 0.001 respectively) and their respec-

tive asymptomatic groups (C9orf72, p = 0.020; GRN,

p < 0.001), and for the GRN group also less than their

prodromal mutation carriers (p = 0.011).

CBI-R in healthy controls

Healthy controls (i.e. mutation-negative family members)

had very low scores on the CBI-R with the highest scor-

ing domain being Memory and Orientation [mean (s-

tandard deviation) 1.3 (2.3)] and Mood [1.1 (1.6)]. The

mean CBI-R total score was only 5.2 (standard deviation

7.8) out of 180. There were no significant correlations

of CBI-R total score with either age (r = 0.06,

p = 0.310) or education (r = � 0.06, p = 0.358), and

there was no difference in score between men and

women (p = 0.435).

CBI-R total score

All symptomatic mutation carrier groups scored signifi-

cantly higher than controls (Fig. 1, Table 1, Table S1):

C9orf72 70.5 (27.8), GRN 56.2 (33.5), MAPT 62.1 (36.9).

In the prodromal groups, the C9orf72 and GRN mutation

carriers scored significantly higher than controls [C9orf72

13.5 (14.4), GRN 13.3 (13.5)] with only a trend for a

higher score in the MAPT mutation carriers: 9.4 (10.4).

In the asymptomatic mutation carriers, there was no dif-

ference between the C9orf72 [6.0 (7.9) or GRN 3.6 (6.0)]

and controls but there was a significantly higher score in

the MAPT mutation carriers: 8.9 (13.3).

Comparing within groups, the symptomatic mutation

carriers all scored higher than their respective prodro-

mal mutation carriers and asymptomatic mutation car-

riers in each genetic group (Fig. 1, Table 1, Table S1).

Prodromal C9orf72 and GRN mutation carriers

also scored higher than their asymptomatic mutation

carriers.

Comparing between groups of the same global CDR

plus NACC FTLD stage, symptomatic C9orf72 mutation
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carriers scored significantly higher than symptomatic

GRN mutation carriers but there were no other differ-

ences between the symptomatic mutation carrier groups

(Table S1). There were also no differences between the

prodromal mutation carriers. In the asymptomatic

mutation carriers, the MAPT group scored significantly

higher than the GRN group but there were no other dif-

ferences.

Figure 2 shows the CBI-R total score in each of the

genetic groups when the fully symptomatic group is strat-

ified into individual CDR plus NACC FTLD stages of

mild (1), moderate (2) and severe (3).

Comparison of CBI-R total score with
measures of disease severity

There was a significant positive correlation between the

CBI-R total score and the CDR plus NACC FTLD sum of

boxes in all mutation carrier groups (C9orf72 r = 0.78,

GRN r = 0.82, MAPT r = 0.60, all p = <0.001) (Fig. S1).
A significant negative correlation was seen in each

mutation carrier group between CBI-R total scores and

FRS (C9orf72 r = �0.92, GRN r = �0.88, MAPT

r = �0.88, all p = <0.001) (Fig. S2).

Individual CBI-R domain scores

Looking at each domain individually (Fig. 3, Table S2),

all symptomatic mutation carrier groups scored signifi-

cantly higher than controls in every domain. In the pro-

dromal mutation carriers, the C9orf72 group scored

higher than controls in Stereotypic and Motor Beha-

viours, Abnormal Behaviour and Memory and Orienta-

tion, whilst the GRN group scored higher than controls

in Motivation, Stereotypic and Motor Behaviours and

Memory and Orientation. The prodromal MAPT group

did not score significantly different to controls in any of

the domains but the asymptomatic MAPT group scored

higher than controls in Stereotypic and Motor Beha-

viours, Sleep and Mood. Neither asymptomatic C9orf72

or GRN groups scored higher in any domains compared

with controls.

Within group differences are shown in Figure 3 and

Table S2. For C9orf72 and GRN mutation carriers, the

Table 1. Demographics and CBI-R scores (total and individual domains) for healthy controls and each genetic group split by global CDR plus

NACC FTLD score (0 = asymptomatic, 0.5 = prodromal, 1+ = symptomatic). N represents the number of participants.

Healthy

controls

C9orf72 GRN MAPT

0 0.5 1+ 0 0.5 1+ 0 0.5 1+

N 267 94 34 67 122 26 47 42 13 21

Sex 41% 42% 41% 66% 33% 46% 47% 41% 31% 57%

Age (years) 46.4 (13.0) 43.9 (11.6) 49.7 (11.2) 62.6 (9.4) 45.8 (12.1) 52.1 (13.7) 63.0 (7.4) 38.6 (11.0) 46.4 (12.8) 58.9 (9.4)

Education (years) 14.4 (3.4) 14.3 (3.0) 13.9 (2.6) 13.0 (3.8) 14.7 (3.5) 13.8 (4.2) 11.7 (3.4) 14.4 (3.4) 13.6 (2.5) 13.6 (4.0)

MMSE (/30) 29.4 (1.2) 29.1 (1.2) 28.4 (2.2) 23.3 (6.7) 29.5 (0.8) 28.4 (2.6) 20.1 (7.7) 29.5 (0.8) 28.1 (2.3) 21.9 (8.1)

Motivation (/20) 0.5 (1.6) 0.8 (2.1) 1.9 (3.8) 10.5 (6.1) 0.2 (0.8) 2.2 (3.7) 10.0 (6.3) 1.4 (3.1) 1.2 (2.4) 9.2 (6.6)

Stereotypic

and Motor

Behaviours

(/16)

0.5 (1.3) 0.7 (1.5) 1.6 (2.2) 6.6 (4.5) 0.4 (1.1) 1.5 (2.3) 3.8 (3.8) 1.2 (2.5) 1.0 (1.4) 7.6 (4.5)

Eating

Habits (/16)

0.3 (0.8) 0.3 (0.9) 0.9 (2.4) 6.6 (4.9) 0.1 (0.5) 1.0 (2.4) 5.2 (4.5) 0.5 (1.6) 0.5 (1.2) 6.6 (5.5)

Abnormal

Behaviour (/24)

0.6 (1.5) 0.9 (1.7) 1.8 (2.7) 7.9 (5.4) 0.5 (1.0) 1.4 (2.4) 5.8 (5.0) 1.0 (1.9) 1.2 (1.6) 7.2 (6.0)

Beliefs (/12) 0.0 (0.2) 0.0 (0.0) 0.1 (0.4) 1.5 (2.4) 0.0 (0.1) 0.0 (0.0) 1.0 (2.2) 0.0 (0.0) 0.1 (0.3) 0.5 (0.8)

Mood (/16) 1.1 (1.8) 1.1 (1.6) 1.2 (2.1) 4.2 (3.1) 0.8 (1.5) 1.7 (1.5) 3.9 (3.3) 2.0 (2.7) 1.5 (1.7) 3.9 (3.2)

Sleep (/8) 0.6 (1.2) 0.6 (1.3) 1.2 (1.8) 3.0 (2.1) 0.4 (0.9) 1.0 (1.3) 2.9 (2.4) 1.1 (1.5) 0.5 (0.8) 1.7 (1.4)

Everyday

Skills (/20)

0.2 (0.9) 0.1 (0.6) 0.6 (1.5) 8.9 (5.8) 0.1 (0.6) 0.5 (1.2) 7.1 (6.6) 0.2 (0.7) 0.2 (0.4) 6.8 (6.7)

Self Care (/16) 0.0 (0.4) 0.2 (0.9) 0.9 (2.5) 5.3 (5.3) 0.0 (0.1) 0.1 (0.4) 2.7 (4.6) 0.2 (1.2) 0.1 (0.3) 2.4 (4.6)

Memory and

Orientation

(/32)

1.3 (2.3) 1.3 (2.4) 2.9 (3.8) 16.0 (6.6) 1.0 (2.2) 3.9 (4.3) 13.6 (8.4) 1.3 (2.1) 3.1 (3.7) 16.2 (8.6)

CBI-R Total

Score (/180)

5.2 (7.8) 6.0 (7.9) 13.5 (14.4) 70.5 (27.8) 3.6 (6.0) 13.3 (13.5) 56.2 (33.5) 8.9 (13.3) 9.4 (10.4) 62.1 (36.9)

Sex is shown as the percentage of males in the group. All other scores are shown as mean (standard deviation). MMSE, Mini-Mental State Exami-

nation.
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symptomatic mutation carriers scored higher in all the

domains compared with their respective prodromal and

asymptomatic mutation carriers. This was similar for

MAPT mutation carriers in most domains except Beliefs,

Sleep and Self Care, where the symptomatic mutation car-

riers scored higher than the prodromal but not the

asymptomatic mutation carriers. The C9orf72 prodromal

group scored higher than the asymptomatic group in

Stereotypic and Motor Behaviours, whereas the GRN pro-

dromal group scored higher than the asymptomatic group

in Motivation, Stereotypic and Motor Behaviours, Abnor-

mal Behaviour, Mood, Sleep and Memory and Orienta-

tion. The prodromal MAPT group did not score

significantly different to their asymptomatic group in any

of the domains.

Comparing between groups of the same global CDR

plus NACC FTLD stage, symptomatic C9orf72 mutation

carriers scored higher than GRN mutation carriers for

Stereotypic and Motor Behaviours and Abnormal Beha-

viour and Self Care and higher than MAPT mutation car-

riers for Beliefs and Sleep (Table S2). Symptomatic

MAPT mutation carriers scored higher than GRN muta-

tion carriers for Stereotypic and Motor Behaviours and

vice versa for Sleep. Although there were no differences

between the prodromal groups, in the asymptomatic

groups, the MAPT mutation carriers scored higher than

the GRN mutation carriers for Motivation, Stereotypic

and Motor Behaviours, Mood and Sleep and higher than

the C9orf72 mutation carriers for Sleep.

Comparing between domains in each of the symp-

tomatic mutation carrier groups (Fig. S2, Table S3), the

highest-scoring domain was Motivation in both C9orf72

mutation carriers (significantly higher than the other

domains apart from Everyday Skills and Memory and

Orientation) and GRN mutation carriers (significantly

higher than all the other domains), whilst in the MAPT

mutation carriers, it was Memory and Orientation

(significantly higher than the other domains except Moti-

vation, Stereotypic and Motor Behaviours and Eating

Habits) followed by Stereotypic and Motor Behaviours

(significantly higher than other domains except Motiva-

tion, Eating Habits and Memory and Orientation).

Neural correlates of individual CBI-R
domains

Partial correlations between scores in each of the 10

domains and the neuroanatomical regions of interest
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Figure 1. Mean CBI-R total scores in healthy controls and each genetic group stratified by global CDR plus NACC FTLD scores. Significant

differences between controls and within each genetic group are starred. Differences between different genetic groups are not shown. Error bars

represent the standard error of the mean.
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adjusting for age and disease severity for each genetic

group are shown in Tables S4–S6. There were no signifi-

cant correlations with the Motivation domain. However,

the Stereotypic and Motor Behaviours domain score neg-

atively correlated with the hippocampal and amygdala

volume (particularly on the right) in the C9orf72 and

GRN mutation carriers. Eating Habits score negatively

correlated particularly with insula volume (bilaterally) in

the C9orf72 and GRN mutation carriers and with frontal

lobe volumes to a lesser extent in all three groups. The

Abnormal Behaviour domain scores negatively correlated

with hippocampal volume (right more than left) in the

C9orf72 and GRN mutation carriers and with left insula

volume in the MAPT mutation carriers. Beliefs score neg-

atively correlated with thalamus volume in both the

C9orf72 and GRN mutation carriers but also the frontal

and temporal lobes and striatum in the C9orf72 group.

Mood and Sleep both negatively correlated with medial

temporal lobe volumes in the GRN group, with Mood

showing a similar correlation in the C9orf72 mutation

carriers. The Everyday Skills domain score negatively cor-

related with frontal and temporal lobe volumes in

C9orf72 and MAPT mutation carriers, with the insula in

C9orf72 and GRN mutation carriers, and with the stria-

tum in the GRN and MAPT groups. Self Care score

negatively correlated with frontal, insula and parietal vol-

umes in the C9orf72 group, but quite widespread, mainly

right-sided, cortical and subcortical volumes in the GRN

group. Lastly, Memory and Orientation negatively corre-

lated with hippocampal volume in all three groups and

additionally with the thalamus in the C9orf72 mutation

carriers.

Discussion

In this study, we have shown that the CBI-R detects early

behavioural change in familial FTD, with overlapping but

distinct patterns of impairment in the three major genetic

groups. The highest-scoring domain was Motivation in

the symptomatic C9orf72 and GRN groups, and Stereo-

typic and Motor Behaviours and Memory and Orienta-

tion in the MAPT group. CBI-R total score was positively

correlated with CDR plus NACC FTLD sum of boxes

score and negatively correlated with the FRS which sug-

gest that progression of overall behavioural change as

measured by the CBI-R tracks with disease severity.

Lastly, we found overlapping neural correlates of individ-

ual CBI-R domains across the different genetic groups.

In symptomatic mutation carriers, we found that the

CBI-R can detect behavioural and functional differences

Figure 2. Cross-sectional CBI-R total scores (mean with standard errors) in each genetic group by CDR plus NACC FTLD global score.
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across the range of domains included. In this study, we

found that symptomatic C9orf72 mutation carriers

scored highest in the CBI-R. This may relate in part to

the particular presence of neuropsychiatric features such

as delusions and hallucinations (here recorded as

Beliefs) in C9orf72 mutation carriers which occur more

commonly in this group in addition to the core beha-

vioural features common to all three genetic forms.15

However, symptomatic mutation carriers also scored

higher on functional measures (e.g. Self Care) which in

C9orf72 mutation carriers can be multifactorial due

to a combination of behavioural, cognitive and motor

deficits.

In both symptomatic C9orf72 and GRN groups, we

found that Motivation was the highest scoring domain.

This domain includes questions about both apathy and

loss of empathy, both core behavioural features of FTD

and both symptoms reported to be prominent in these

two forms of genetic FTD.16,17 In contrast, in the symp-

tomatic MAPT group, Stereotypic and Motor Behaviours

(i.e. obsessive–compulsive behaviour) was the most com-

mon behavioural domain impaired, a feature described in

prior studies.18 Additional to this, however, the MAPT

group also scored highly in the Memory and Orientation

domain, consistent with prior studies showing early epi-

sodic memory impairment in this subgroup.19

Behavioural changes have been reported presymptomat-

ically in genetic FTD in a number of previous studies.19–

22 Usually, these changes occur late in the presymp-

tomatic period as seen here, where impairment can be

detected in prodromal mutation carriers, significantly so

in the GRN and C9orf72 mutation carriers in our study.

By this time, structural and functional brain changes have

occurred,23–26 and cognitive disturbances also co-occur.27–

29 Interestingly, MAPT mutation carriers in the prodro-

mal stage scored slightly lower than the C9orf72 and GRN

groups, with only a trend to a higher score than controls.

However, MAPT mutation carriers in the asymptomatic

period scored at a similar level to the other groups, but

here were significantly more impaired than controls. The

domains significantly affected in this asymptomatic

MAPT group were Stereotypic Behaviours (i.e. the most

frequent behavioural symptom during the symptomatic

period) as well as Mood and Sleep. Potentially, the CBI-R

can therefore pick up the very early behavioural change

in genetic FTD, here detecting symptoms many years

before likely onset.

Neural correlates overlapped across the different genetic

groups, although with some differences. The Stereotypic

and Motor Behaviours domain was associated with med-

ial temporal lobe atrophy, consistent with prior studies

showing that obsessive–compulsive behaviours in FTD

correlate with hippocampal and amygdala volumes30 and

are seen particularly in sporadic FTD in those with tem-

poral variant FTD.31,32 A change in eating was associated

with insula volumes in some of the groups, and frontal

lobe volumes in all groups, a finding previously shown in

a number of previous studies (where the association is

usually with orbitofrontal atrophy).33,34 Interestingly, the

Abnormal Behaviour domain correlated with medial tem-

poral atrophy, particularly on the right in C9orf72 and

GRN mutation carriers. The occurrence of disinhibition

has been associated mainly with (orbito)frontal lobe atro-

phy previously, but some studies have implicated the

right medial temporal lobe, suggesting a disruption of

normal reward processing.35 The Beliefs domain score

was associated with thalamic atrophy in both the C9orf72

and GRN groups. This association of hallucinations and

delusions has been shown previously in C9orf72 mutation

carriers36 and has previously been thought to be particu-

larly distinct for this genetic group. However, here we

show a similar association in the GRN mutation carriers.

For the cognitive domain of Memory and Orientation,

there was an association with hippocampal volume in all

three groups, consistent with the known role of the med-

ial temporal lobe in episodic memory. However, there

was an additional association with thalamus atrophy in

the C9orf72 mutation carriers, a region long associated

with episodic memory function.37

A limitation of our study was the relatively small sam-

ple size of the cohort once it is stratified, particularly for

the MAPT mutation carriers, for example the prodromal

MAPT group was relatively small, and negative results

here may relate to the small sample size. We have also

focused here on cross-sectional data, extrapolating to

changes over time across individuals but future research

examining how the CBI-R changes longitudinally over

time within an individual will be important. Lastly, as

the CBI-R was commonly completed by an informant

from a family with genetic FTD, it may be that they were

more alert to the presence of behavioural symptoms, par-

ticularly in those who were prodromal, leading to poten-

tially higher CBI-R scores than in those with sporadic

FTD.

Figure 3. Mean CBI-R scores (expressed as a percentage to allow comparison) in each of the individual 10 domains within healthy controls and

each genetic group stratified by CDR plus NACC FTLD global scores. Significant differences between controls and within each genetic group are

starred. Differences between different genetic groups are not shown. Error bars represent the standard error of the mean.

ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 651

A. Nelson et al. CBI-R in FTD



Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

M
ot

iv
at

io
n 

(%
)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

Ea
tin

g 
(%

)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

Be
lie

fs
 (%

)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

Sl
ee

p 
(%

)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

Se
lf 

Ca
re

 (%
)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

St
er

eo
ty

pi
c 

an
d 

M
ot

or
 B

eh
av

io
ur

s 
(%

)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

Ab
no

rm
al

 B
eh

av
io

ur
 (%

)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

M
oo

d 
(%

)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

Ev
er

yd
ay

 S
ki

lls
 (%

)

C9orf72 GRN MAPT

Healthy controls 0 0.5 1+ 0 0.5 1+ 0 0.5 1+
0

10

20

30

40

50

60

70

80

90

100

M
em

or
y 

an
d 

O
rie

nt
at

io
n 

(%
)

C9orf72 GRN MAPT

A B

D

E

C

H

F

G

JI

652 ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

CBI-R in FTD A. Nelson et al.



Conclusion

As we move into clinical trials for genetic FTD, the need for

outcome measures that are both easy to assess and not time-

consuming is required. There are still few validated assess-

ment scales that focus on the behavioural and functional

deficits prominent in people with FTD. The benefit of the

CBI-R is that it includes core behavioural, neuropsychiatric,

functional and cognitive measures within the same scale.

Our study suggests the CBI-R can detect early behavioural

change in genetic FTD, making it potentially a useful marker

in a clinical trial setting. Measuring individual changes in

behaviour over time will now be an important next step in

understanding how the CBI-Rmight be used in such trials.
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Table S1. Adjusted mean differences with 95% boot-

strapped bias-corrected confidence intervals in the com-

parison of CBI-R total scores between healthy controls

and each of the genetic groups stratified by global CDR

plus NACC FTLD score.

Table S2. Adjusted mean differences in each of the ten

CBI-R domains scores between the genetic groups strati-

fied by global CDR plus NACC FTLD scores, with 95%

bootstrapped bias-corrected confidence intervals.

Table S3. Adjusted mean differences from within-group

analysis of each of the ten CBI-R domains for symptomatic

mutation carriers ((A) C9orf72, (B) GRN, (C) MAPT) with

95% bootstrapped bias-corrected confidence intervals.

Table S4. Partial correlations between scores in the 10

domains of the CBI-R and volumes of neuroanatomical
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regions of interest adjusting for disease severity and age (r

values and corresponding p values are shown) for the

C9orf72 mutation carriers.

Table S5. Partial correlations between scores in the 10

domains of the CBI-R and volumes of neuroanatomical

regions of interest adjusting for disease severity and age (r

values and corresponding p values are shown) for the

GRN mutation carriers.

Table S6. Partial correlations between scores in the 10

domains of the CBI-R and volumes of neuroanatomical

regions of interest adjusting for disease severity and age (r

values and corresponding p values are shown) for the

MAPT mutation carriers.

Figure S1. Correlations between CBI-R total scores and (i)

on the left, CDR plus NACC FTLD sum of boxes scores

[C9orf72 (r = 0.78, p < 0.001), GRN (r = 0.82, p < 0.001)

and MAPT (r = 0.60, p < 0.001)], and (ii) on the right, FRS

scores [C9orf72 (r = �0.92, p < 0.001), GRN (r = �0.88,

p < 0.001) and MAPT (r = �0.88, p < 0.001)].

Figure S2. CBI-R individual domain scores (as a percent-

age) in each of the ten domains in all symptomatic muta-

tion carrier groups: (A) C9orf72, (B) GRN, (C) MAPT.

The error bars represent standard error of the mean.
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