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Abstract

In this thesis, we study tensor network varieties, which are varieties of tensors described
by the combinatorial structure of a given graph and two sets of integer weights, called
bond and local dimensions, respectively. Tensor network varieties are geometric objects
studied in the field of Algebraic Geometry, and they have received much attention in the
recent years due to their usefulness in the field of Quantum Physics and other application
areas. In the first part of the thesis, we study the dimension of tensor network varieties.
We provide a completely general upper bound on their dimension and we give the exact
value of the dimension in a particular range of parameters. We refine the upper bound
in cases relevant for applications, such as matrix product states and projected entangled
pairs states. We then focus on the study of the linear span of uniform matrix product
states, which are translation invariant tensor network varieties associated to the cyclic
graph. We provide nontrivial linear trace relations which prove the strict containment of
the linear span in the ambient space as long as the number of sites is at least quadratic
in the bond dimension, improving the state of the art. The outlined results are based
on the papers [BDLG22, DLMS22a]. Finally, based on dimensional considerations, we
propose a variation of the nonlinear conjugate gradient method used to approximate the
ground states of a given Hamiltonian on the variety of matrix product states.
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Introduction

In this thesis, we study tensor network varieties, which are varieties of tensors described
by the combinatorial structure of a given graph. The thesis is rooted in the field of
algebraic geometry. Varieties of tensors are classical geometric objects studied in Alge-
braic Geometry, exploiting techniques from Representation Theory, Lie groups and Lie
algebras Theory. The thesis is also framed in a transdisciplinary context due to the high
impact that tensor network varieties are having in the field of Quantum Physics.

Tensors are algebraic objects that encode multidimensional arrays of numbers. They are
present and studied in several research areas, from abstract algebra and algebraic geom-
etry to applied mathematics and physics. Tensor network varieties, in particular, play a
major role in quantum many-body physics, where they are used as a variational ansatz
class to describe strongly correlated quantum systems whose entanglement structure is
encoded in the underlying graph. The original motivation in quantum physics arises from
the work of I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki [AKLT88] where they proved
that the exact solution of ground states of the AKLT Hamiltonian admits a matrix prod-
uct state representation. Matrix product states are tensor network varieties associated
to the cyclic (or path) graph. The particular solution of the AKLT model suggested
the use of matrix product states and other entanglement structures as variational ansatz
classes either for the approximation of ground states or for the simulation of quantum
many-body systems. We refer to [Orú14] for a full introductory description of the subject
and to [CPGSV21] for a complete overview of theoretical results from the point of view
of quantum physics. Tensor network varieties have nowadays a role in several other areas
of applied mathematics. Since their original conception in quantum many-body physics,
they have found a wide range of applications in different fields, such as numerical tensor
calculus [Ose11, Hac19, CLO+16, BSU16], graphical models [Lau96, RS19] applied to
phylogenetics [ERSS05, AR08], geometric complexity theory [LQY12, BC92, DMPY12]
and machine learning [CLO+16, CCX+18, Ben09].

As a consequence, they have received much attention from the geometric and algebraic
community in the recent years. Tensor network varieties were known in mathematics for
specific classes of graphs; for example matrix product states with open boundary condi-
tions were known as tensor trains [OT09, Ose11, HRS12, LOV15] and more generally,
tree tensor networks as tensor admitting a hierarchical format [Gra10, Hac12, BBM15,
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STG+19]. We dare to say that tensor network varieties appeared in mathematics under
this unifying name in [LQY12], where a number of basic geometric questions were an-
swered, providing several insights. Methods from differential and complex geometry were
introduced in the study of these objects in [HMOV14] and more recently some important
developments were achieved using methods from algebraic geometry and representation
theory [BBM15, MSV19, GLW18, CLVW20, CGFmcW21, HGS+20].

In tensor network theory, we pictorially represent a matrix A ∈ Cn×m, i.e. a tensor of
order two, as follows:

A m

n

We have a vertex to which are associated two edges. The edges represent the indices of
rows and columns of the matrix A, respectively.

Elements of a tensor network variety are networks of tensors contracted accordingly to
the edge structure of an underlying graph. The order of the involved tensors and the
contractions along the edges are prescribed by two chosen collections of integer weights,
called bond and local dimensions, respectively. Local and bond dimensions are associated
to the vertices and to the edges of the graph, respectively. As an example, we describe
the tensor network variety associated to the path graph on two vertices. Consider the
path graph on two vertices. Associate to every vertex a local dimension nk, k = 1, 2, and
to the unique edge a bond dimension m. Imagine now placing a tensor A1 ∈ Cn1×m on
the first vertex and a tensor A2 ∈ Cm×n2 on the second vertex. Notice that the order
of the k-th tensor is prescribed by the local and bond dimensions. Since the underlying
graph is the path graph, the two tensors of the network are connected by the shared
edge, as in the following picture:

A1 A2m

n1 n2

The edge connecting the two tensors pictorially represents a contraction map applied
to the tensor product A1 ⊗ A2. More precisely, let φ : (Cn1 ⊗ Cm∗) ⊗ (Cm ⊗ Cn2) →
Cn1 ⊗ Cn2 be the contraction map, which contracts Cm∗ with its dual copy Cm. Let
{e(k)
ik
}ik=1,...,nk be the canonical basis of Cnk . Then, an element of the tensor network
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variety φ(A1 ⊗A2) ∈ Cn1 ⊗ Cn2 is given by the expression

φ(A1 ⊗A2) =

n1,n2∑
i1,i2=1

m∑
α=1

(
A1

i1
αA2

i2
α

)
e

(1)
i1
⊗ e(2)

i2
= A1A2.

At the level of coordinates, the contraction corresponds to a summation over the shared
index of the two tensors, associated to the linking edge, i.e. a summation over the raw
index of A1 and the column index of A2. The tensor network variety associated to the
path graph on two vertices is actually the variety of matrices with rank bounded by the
bond dimension m. General tensor network varieties are constructed in an analogous
way, once we choose a simple and undirected graph and the collections of local and bond
dimensions.

Dimension of tensor network varieties. From an algebraic geometric perspective,
the tensor network variety is defined as either the Zariski or Euclidean closure of the
image of the contraction map, which is a polynomial map in the entries of the tensors
composing the network. Taking the closure is necessary since it has been proved that
the set of tensors allowing for a tensor network representation is not always a closed set
[LQY12, CLVW20, BLF22]. Given an algebraic variety, or more generally a geometrical
object, one of its fundamental properties is the dimension. A complete result on the
dimension of tensor network varieties is given in [HMOV14] for matrix product states with
open boundary conditions. W. Hackbusch suggested [Hac12] the problem of comparing
the complexities of different tensor network encodings of the same tensor. In [BBM15]
the question is answered when the compared underlying graphs are the perfect binary
tree and the train track tree, which correspond to the hierarchical format and matrix
product states format, respectively. Also in [YL18], a comparison between tensor network
varieties corresponding to different underlying graphs is proposed. In both papers the
problem of dimension is addressed; in particular they provide the dimensions of the
associated varieties in specific ranges of parameters.

We investigate the problem of the dimension of tensor network varieties in Chapter 3.
We introduce tensor network varieties via the language of graph tensors, following [VC17,
CVZ19] and we show that the construction is equivalent to the usual one given in terms
of the contraction map described above. Then we provide a natural parametrization of
an open set of the tensor network variety and we give a completely general upper bound
on the dimension of any tensor network variety in Theorem 3.0.2. Moreover, we give the
exact value of the dimension in a particular range of parameters, where the variety is
realized as the closure of the orbit of the action of an algebraic group. This result in
particular generalizes the previously known results.

Our main result of Chapter 3 is the following:

Let Γ be a simple graph with vertex set v(Γ) of cardinality d and edge set e(Γ). Write
n = (n1, . . . , nd) for the collection of local dimensions, associated to the vertices of the
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graph, and m = (me : e ∈ e(Γ)) for the collection of bond dimensions, associated to the
vertices of the graph.

Theorem 3.0.2. Let (Γ,m,n) be a tensor network and let TNSΓ
m,n be the corresponding

tensor network variety. Then

dim TNSΓ
m,n ≤

min

 ∑
v∈v(Γ)

(nv ·
∏
e3vme)− d+ 1−

∑
e∈e(Γ)

(m2
e − 1) + dim StabGΓ,m

(X),
∏

v∈v(Γ)

nv

 .

The upper bound on the dimension is obtained, following the classical Theorem of Dimen-
sion of the Fibers [Sha94], by determining a lower bound on the dimension of the generic
fiber of the parametrization of the variety. When the variety does not fill the ambient
space, the bound is determined by three factors. The term

∑
v∈v(Γ)(nv ·

∏
e3vme)−d+ 1

is a parameter count of the domain of the parametrisation. With GΓ,m we denote the
gauge subgroup, the term

∑
e∈e(Γ)(m

2
e − 1) is its dimension and StabGΓ,m

(X) is the sta-
bilizer of a generic d-tuple of linear maps, under the action of the gauge subgroup. The
gauge subgroup is a very important object in our study of the dimension of tensor net-
work varieties. We can prove that the orbit of a generic element of the domain of the
parametrization, under the action of the gauge subgroup, is contained in the generic fiber
of the map. Consequently, the dimension of the generic fiber is bounded from below by
the dimension of the gauge orbit, which is exactly the dimension of the gauge subgroup
minus the dimension of the stabilizer, as can be seen in the formula of our Theorem 3.0.2.

We give here an insight into the construction of the gauge subgroup. It is defined as a
product of (projectivised) general linear groups, each one associated to an edge of the
graph. Consider again the path graph on two vertices. Let G ∈ GLm be an invertible
matrix. Consider the unique edge of the path graph. We can imagine placing on it the
product of the matrix and its inverse, as in the following picture:

A1 A2m

GG−1

n1 n2

The insertion of GG−1 = Idm leaves the element of the tensor network invariant:

φ(A1 ⊗A2) = A1A2 = A1GG
−1A2 = φ(A1G⊗G−1A2).

The action of the gauge subgroup GLm on the parameter space of the map φ is defined
precisely as A1 7→ A1G and A2 7→ G−1A2, which clearly has the map φ constant along
its orbits. Again, the construction can be generalized to every given graph.
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The role of the gauge subgroup in the theory of tensor network was known [HMOV14]
and it is expected that it entirely controls the value of dim TNSΓ

m,n. In fact, it is foreseen
that in “most” cases the exact value of the dimension is

min

 ∑
v∈v(Γ)

(nv ·
∏
e3vme)− d+ 1−

∑
e∈e(Γ)

(m2
e − 1),

∏
v∈v(Γ)

nv

 , (1)

meaning that the generic fiber of the tensor network parametrization contains only the
gauge subgroup. We can refine our upper bound in cases relevant for applications, such
as matrix product states and projected entangled pairs states (their 2-dimensional gen-
eralizations), proving that dim StabGΓ,m

(X) is trivial. However, we observe that for
matrix product states with bond dimension two and a low number of sites (in which
dim StabGΓ,m

(X) is trivial), the value in (1) provides a strict upper bound. This in par-
ticular implies that, at least in these cases, the gauge orbit does not fill completely the
fiber. We further analyze these cases and we provide a more precise calculation of their
dimension. These results are interesting since they involve very relevant tensor network
varieties, relatively “small”, and because their “unexpected” dimensions were not known.
Based on numerical computations, we finally give a conjecture, predicting that the value
in (1) is indeed the dimension of the tensor network variety in the case of general matrix
product states of bond dimension two, with the only exceptions that we classify. Besides
these exceptions, we actually expect the upper bound of Theorem 3.0.2 to give the exact
value of the dimension in “most” cases, in a way similar to the Alexander-Hirschowitz
Theorem for secant varieties of Veronese varieties [AH95].

Uniform matrix product states. An upper bound analogous to the one of our The-
orem 3.0.2 is proposed for uniform matrix product states in [CMS19]. Uniform matrix
product states are translation invariant matrix product states, meaning that the same
tensor is associated to every vertex of the underlying graph. One can verify that the pro-
posed value coincides with the dimension of the variety for a number of small parameter
values; in particular, there are no known exceptions in the translation invariant setting,
in contrast with the exceptions that we have found in our general case.

We denote uniform matrix product states by uMPS(m,n, d), where m,n ∈ N are local
and bond dimensions, respectively and d is the number of vertices of the underlying cyclic
graph. The tensor placed on all the vertices of the graph, denoted by A ∈ Cm⊗Cm⊗Cn,
is identified with the set of n matrices (A0, . . . , An−1) ∈ (Cm×m)n. Let {ei}i=1,...,n be the
canonical basis of Cn. The variety of uniform matrix product states is defined as either
the Zariski or Euclidean closure of the image of the following polynomial map:

φ : (Cm×m)n → (Cn)⊗d

(A0, . . . , An−1) 7→
∑

0≤i1,...,id≤n−1

Tr(Ai1 · · ·Aid) ei1 ⊗ · · · ⊗ eid .

From a quantum mechanics perspective, uniform matrix product states model translation
invariant physical systems of sites placed on a ring. Indeed, an alternative name for
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Figure 1: Graphical representation of the map defining uMPS(m,n, d). Each vertex of the
cyclic graph on d vertices is associated with a tensor of order m×m×n. Tensors are contracted
along the edges of the graph.

uMPS is translation invariant matrix product states with periodic boundary conditions
[PGVWC07, CM14]. The name “uniform matrix product states” is sometimes reserved
for the thermodynamic limit, where the number d of sites approaches infinity. Our
terminology is consistent with [HMOV14, CMS19].

Due to the interest in the field of quantum physics, the geometry of uniform matrix prod-
uct states has been extensively studied [PGVWC07, HMOV14, CM14, CMS19]. However,
several fundamental mathematical problems remain open, even concerning their dimen-
sion. The ultimate goal would be to obtain a complete description of the variety, i.e. to
find all its defining equations. Critch and Morton gave a complete description of the ideal
of the varieties uMPS(2, 2, 4) and uMPS(2, 2, 5) and, in [CM14], several linear equations
of uMPS(2, 2, d) are given for d until 12. The generators of the ideal of uMPS(2, 2, d)
for d = 4, 5, 6 are given in [CMS19]. Nevertheless, phrased in generality, this question
is likely to be intractable. Indeed, even just determining which linear equations, if any,
vanish on the variety is poorly understood. This is precisely the goal of Chapter 4 of
the thesis in which we study, via representation theory and linear algebra techniques,
the linear span 〈uMPS(m,n, d)〉 of the variety of uniform matrix product states, i.e. the
smallest linear space containing the variety. In particular, we are interested in deter-
mining its dimension. The variety uMPS(m,n, d) is a subset of the space of cyclically
invariant tensors, denoted by Cycd(Cn) ⊂ (Cn)⊗d, because of the trace invariance under
cyclic permutations of the matrices. Moreover, uMPS(2, 2, d) is a subspace of the space of
dihedrally symmetric tensors, denoted by Dihd(C2) ⊂ (C2)⊗d, [Gre14]. We consider these
spaces as natural ambient spaces of the proper variety. As noted in [CMS19], if we fix the
local dimension n and the number of sites d and we let the bond dimension m grow, the
space uMPS(m,n, d) will eventually fill its entire ambient space. Moreover, for m = d,
it has been proved that equality holds [CMS19]. On the other hand, it follows from a di-
mension count [CMS19, NV18] that if d� m, the inclusion 〈uMPS(m,n, d)〉 ⊂ Cycd(Cn)
is strict.
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Our main result of Chapter 4 is the following theorem, based on the Cayley-Hamilton
theorem, which prescribes a method to find nontrivial linear equations that vanish on
uMPS(m,n, d):

Theorem 4.3.6. Let A0, . . . , Am, B be m ×m matrices. Then for every ` ∈ N it holds
that ∑
σ∈Sm,τ∈Cm+1

sgn(σ) sgn(τ) Tr(Aτ(0)B
σ(0)Aτ(1)B

σ(1) · · ·Aτ(m−1)B
σ(m−1)Aτ(m)B

`) = 0.

Here Sm is the symmetric group acting on {0, 1, . . . ,m − 1}, and Cm+1 is the cyclic
group acting on {0, 1, . . . ,m}.

Theorem 4.3.6 actually gives nontrivial trace relations, i.e. linear relations that do not
follow either from cyclic permutations or reflections of the factors. As a corollary, we can
prove that the inclusion 〈uMPS(m,n, d)〉 ⊂ Cycd(Cn) is strict already for d = O(m2),
improving the state of the art. More precisely, the linear span of the space of uniform
matrix product states is a proper subspace of the space of cyclically invariant tensors
under the following conditions:

Corollary 4.3.7. If n ≥ 3 and d ≥ (m+1)(m+2)
2 , then uMPS(m,n, d) is contained in a

proper linear subspace of the space of cyclically invariant tensors.

For what concerns the characterization of the linear span of the variety we focus in partic-
ular on uMPS(2, 2, d), i.e. uniform matrix product states with the first nontrivial range of
parameters. Notice that the general linear group GL2 naturally acts on the space (C2)⊗d,
leaving the space uMPS(2, 2, d) invariant. Consequently, the space 〈uMPS(2, 2, d)〉 can
be naturally seen as a representation of GL2. We undertake a computational study of
the linear span and we describe an algorithm that can compute this space, viewed as a
GL2-representation. We exploit further the representation theory perspective in order
to speed up the computation of several equations of the variety, until degree 3. Based
on the computations done in degree one, we obtain a conjectured formula for the char-
acter (and in particular: the dimension) of the linear span 〈uMPS(2, 2, d)〉 and we take
some first steps towards proving our conjectured character formula, using our Cayley-
Hamilton technique. Moreover, using a particular reparametrization of the variety, called
the trace parametrization, from a simple count of parameters, we show an upper bound
on the dimension of 〈uMPS(2, 2, d)〉 which asymptotically (for d → ∞) agrees with our
conjectured formula and that is close to optimal.

Tensor network variational ansatz. Matrix product states and uniform matrix
product states are particularly relevant in quantum physics since they are used to de-
scribe quantum spin chains [AKLT88, FNW92, ÖR95]. The original insight is attributed
to I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki [AKLT88], since they proved that
ground states of the AKLT model admit an analytic solution coinciding with a matrix
product state representation. While in general analytic solutions for ground states are
too hard to be found, the AKLT model suggested the use of matrix product states as

7



variational classes of tensors for the approximation of ground states. Indeed, today it is
known that the ground states of a local gapped Hamiltonian on 1-dimensional spin chains
are well approximated by this class of tensor network varieties [PGVWC07, VMC08]. By
the physical interpretation of the model, the edges of the underlying graph of the tensor
network variety encode the structure of the entanglement in the quantum state, and
the bond dimension associated to every edge is a quantitative measure of the amount
of quantum correlation in the wave function. The entanglement theory behind the con-
struction of the matrix product states ansatz has led to the introduction of variational
algorithms applied to projected entangled pair states (tensor network variety associated
to the two-dimensional lattice graph) [VWPGC06, VC04] and tensor network varieties
associated to higher dimensional graphs.

Several algorithms have been designed in the recent years for matrix product states, such
as the Density Matrix Renormalization Group (DMRG) [Whi93], the Time-Evolving
Block Decimation (TEBD) [Vid04], the Time-Dependent Variational Principle (TDVP)
[HCO+11] and the Variational Uniform Matrix Product State (VUMPS) [ZSVF+18].
These methods exploit the “network structure”, namely they act on the local tensors
that constitute the network. Some of the methods solve a specific problem on a small
subset of tensors, leaving the others fixed and then they repeat the procedure on all
possible subsets. For example, suppose to have a functional to be minimized on the
matrix product states variety. The method starts by selecting a subset of tensors and
minimizing on the parameters of these tensors, leaving the other parameters unchanged.
Then, this “local” approach is sequentially applied to several other subsets of tensors,
until convergence to a good approximation of the minimum is reached. Other methods
try to split the problem into several “local” problems, each one involving a single tensor of
the network. For example, in the simulation of time evolution, they transform the linear
Schrödinger equation into a set of non-linear differential equations, each one involving
a single tensor. Essentially, these methods sequentially apply a local technique. Con-
jugate gradient methods have been introduced in [PVV11, VHCV16, VHV19] in order
to approximate ground states of translation invariant systems with periodic boundary
conditions. Moreover, based on the TDVP, a variational nonlinear conjugate gradient
method has been proposed in [MHO13] and it has been applied to critical quantum field
theory. Very recently Riemannian gradient-based optimization has been proved to be a
competitive method for optimizing tensor network ansatz [HVDH21].

Since the geometry and global methods are our main tools all along the entire thesis,
we consider and decide to test the nonlinear conjugate gradient method (NLCG). We
use the NLCG as a global method, applied to all the parameters simultaneously. The
NLCG is an adaptation of the conjugate gradient method to nonlinear problems. It per-
forms a conjugate gradient descent to the minimum of a nonlinear functional, invoking
in every step a line search routine. The line search is usually approximate since, in gen-
eral, an analytic solution is too expensive to be found. The global approach would seek
to exploit the knowledge on the dimension of the variety, which is strictly smaller than
the dimension of the parameter space, at least due to the tensor network gauge invariance.
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We implement the variational NLCG on matrix product states and homogeneous matrix
product states with open boundary conditions, c.f. Figure 2. The latter are matrix
product states constructed via site-independent tensors and a boundary condition, c.f.
[NV18], and therefore their dimension is independent on the number of sites. We test
the algorithm on the well-known AKLT model, because ground states of the AKLT
Hamiltonian admit such a tensor network representation in the finite chain configuration.

m mm m

n n n

vL vRA A A

Figure 2: Homogeneous matrix product state with open boundary conditions with bond di-
mensions m and local dimensions n. The tensor A ∈ (Cm×m)×n is placed on each vertex. The
boundaries vL and vR are vectors.

After verifying that the NLCG properly approximates the minimum of the expectation
value functional and the corresponding ground state, we design a variation of the algo-
rithm. The variation of the NLCG we propose modifies the line search method, which is
the most expensive routine of the NLCG and it is based on a reparametrization of the
gradient.

More precisely, we first reduce the number of coordinates of the gradient, computing a
proper basis of the parameter space. Indeed, the gradient of the functional naturally
belongs to the complementary space of the tangent space to the fiber of the parametriza-
tion. The gradient, therefore, admits a representative with a number of coordinates that
coincides with the dimension of the variety. Moreover, in the case of matrix product
states with open boundary conditions, the fiber is identified with the orbit of the gauge
subgroup; therefore the tangent space to the fiber can be computed via the Lie alge-
bra of the gauge subgroup. Fixing the gauge degrees of freedom in the fiber is a well
known technique in physics and, in the context of matrix product states, it usually con-
sists in putting the tensors of the network in the so called canonical form. We refer to
[PGVWC07] for the definition and properties of this representation. After fixing a repre-
sentative of the fiber of the map, gauge degrees of freedom are left in the representation
of vectors of the tangent space to the variety [HMOV14], because, on the other side, the
tangent directions to the gauge orbits are in the kernel of the differential of the map.
The TDVP [HCO+11] and the VUMPS algorithm [ZSVF+18] use techniques to remove
these degrees of freedom. Our approach is analogous.

Our final proposition consists in finding a basis that gives the desired representative of
the gradient, for every starting point of the line search. Then, in fixing this basis (and
the vector space that it generates) inside the line search routine. This implies that all
the gradients that are computed inside the line search are approximated, being forced to
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belong to a fixed vector space.

We move our preliminary steps towards the comparison with the standard NLCG. The
study of this part of the thesis is preliminary. Further work must be done for charac-
terizing completely the performances of our variation and for comparing the runtime of
the NLCG (and our variation) with the runtime of the existing sequential algorithms.
The preliminary results show that our variation of the line search could be of interest
in the case of homogeneous matrix product states, whose dimension is independent of
the number of sites. We can notice a gain in runtime to convergence, compared to the
standard NLCG, even if not impressive. Moreover, in the homogeneous case, we clearly
see that the global method preserves the symmetries of the tensor network, differently
from the majority of sequential methods.

Structure of the thesis. The main contributions of this thesis are given in Chapters
3 and 4. Most of the contents of Chapters 1, 2, 3 and 4 of the thesis are based on
two manuscripts. Manuscript [BDLG22], co-authored with Alessandra Bernardi and
Fulvio Gesmundo, has been published in Communication in Contemporary Mathematics.
Manuscript [DLMS22a], co-authored with Harshit J. Motwani and Tim Seynnaeve, has
been submitted.

The thesis is structured as follows:

Chapter 1: Preliminaries. We introduce tensors and classical varieties of tensors. We
give preliminary definitions and results on Lie groups and Lie algebra theory and we
provide original results on the isotropy group of tensors, needed for the treatment of the
following chapters.

Chapter 2: Tensor network varieties. We define tensor network varieties and we
give the first basic properties. We introduce the gauge subgroup, which is a group acting
on the parameter space of the tensor network variety. It will have a central role in the
study of their dimension.

Chapter 3: Dimension. We investigate the dimension of tensor network varieties
through algebraic geometric techniques. We provide a completely general upper bound
on the dimension of any tensor network variety. A refined upper bound is given in
cases relevant for applications such as varieties of matrix product states and projected
entangled pairs states. Moreover, we provide a range of parameters in which the upper
bound is sharp. On the contrary, we find and analyze small cases of matrix product
states in which the bound is not sharp, contrary to what is generally expected. The
code [BDLG21] associated to Chapter 3 is implemented in Macaulay2 [GS20] and it is
available at https://fulges.github.io/code/BDG-DimensionTNS.html.

Chapter 4: Linear span of uniform matrix product states. We study the linear
span of uniform matrix product states via representation theory methods and Cayley-
Hamilton theorem. We show that the linear span of uniform matrix product states is a
strict subspace of its ambient space, as long as the number of sites is at least quadratic
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in the bond dimension, improving the state of the art. We give a conjecture on the
dimension of the linear span of the variety in the first nontrivial range of parameters.
The code [DLMS22b, DLMS22c] associated to Chapter 4 is implemented in Sage [The20]
and Macaulay2 [GS20] and it is available at https://github.com/harshitmotwani2015/
uMPS/and https://github.com/claudia-dela/uMPS_highest-weight-vectors/.

Chapter 5: Nonlinear conjugate gradient method on MPS. We lay the ground-
work for the implementation of a matrix product state algorithm for the approximation
of ground states. We review the nonlinear conjugate gradient method adapted to the
variational approach on matrix product states. Then we investigate the geometry of the
fiber of the parametrization in order to propose a variation of the algorithm.

Chapter 6: Preliminary numerical calculations. We move our first steps towards
the implementation of the methods, the variational nonlinear conjugate gradient method
and the variation we designed; and we analyze our preliminary numerical results. The
code [DL22] associated to Chapter 6 is implemented in MATLAB [Mat20] and it is
available at https://github.com/claudia-dela/NLCG_MPS_open-boundaries/.
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Chapter 1

Preliminaries

This chapter is intended to introduce basic notions employed throughout this work.
Sections 1.1 contains algebraic and geometrical definitions and results: we refer to [FH13,
Hal15] for what concerns representation theory, [Lee13] for basic results on differential
geometry and [Zak93] for introducing classical algebraic varieties of tensors. In Section
1.1, Subsection 1.1.2, we focus on the action of a product of linear groups on a tensor
space and on the induced Lie algebra action and we prove preliminary results on isotropy
Lie algebras of tensors that will be used in Chapter 3. In Section 1.2, we enunciate
the postulates of quantum mechanics [CTDL+77] with the twofold role of describing its
mathematical formalism and facilitating the non expert readers in the field.

1.1 Tensors

Let V1, . . . , Vd be finite dimensional complex vector spaces. An element of the tensor
product V1 ⊗ · · · ⊗ Vd of the form v1 ⊗ · · · ⊗ vd, with vj ∈ Vj for j = 1, . . . , d is called
either decomposable tensor or rank 1 tensor. Notice that not every element of V1⊗· · ·⊗Vd
can be written as a rank 1 tensor.
If Vj = Cnj for j = 1, . . . , d, with basis Bj = {vj1, . . . , v

j
nj}, then a basis of the tensor

product V1 ⊗ · · · ⊗ Vd associated to the bases Bj , j = 1, . . . , d, is given by the rank 1
tensor tensors {v1

µ1
⊗ · · · ⊗ vdµd} for 1 ≤ µ1 ≤ n1, . . . , 1 ≤ µd ≤ nd. In particular every

tensor in V1 ⊗ · · · ⊗ Vd can be written as a linear combination of rank 1 tensor tensors.

Let V andW be finite dimensional vector spaces over C. There is a canonical isomorphism
V ∗⊗W ' Hom(V,W ) given by the linear application A : V ∗⊗W → Hom(V,W ) acting
on rank 1 tensors as follows

A(f ⊗ v) = f(v)w.

The action extends on V ∗ ⊗W by linearity.

Every tensor can be associated with a set of linear maps called flattening maps.
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Definition 1.1.1. Given a tensor T ∈ V1 ⊗ · · · ⊗ Vd, for every subset I = {i1, . . . , ik} ⊆
{1, . . . , d}, T defines a linear map

TI :
⊗
i∈I

V ∗i →
⊗
i′ /∈I

Vi′

called flattening map associated to I. The flattening map is defined on rank 1 tensors
T = v1 ⊗ · · · ⊗ vd ∈ V1 ⊗ · · · ⊗ Vd as follows

TI : V ∗i1 ⊗ · · · ⊗ V
∗
ik
→ Vik+1

⊗ · · · ⊗ Vid
(f i1 ⊗ · · · ⊗ f ik) 7→ (f i1(vi1) · · · f ik(vik))(vik+1

⊗ · · · ⊗ vid),

with f j ∈ V ∗j , for j = i1, . . . , ik. The map extends by linearity. We say that T is concise
if all the flattening maps Ti : V ∗i →

⊗
i′ 6=i Vi′ are injective.

Definition 1.1.2. Given two tensors T ∈ V1 ⊗ · · · ⊗ Vd and S ∈ V ′1 ⊗ · · · ⊗ V ′d, the
Kronecker product of T and S, denoted by T � S, is the element T ⊗ S regarded as a
tensor on d factors

T � S ∈ (V1 ⊗ V ′1)⊗ · · · ⊗ (Vd ⊗ V ′d).

Example 1.1.3. Let T ∈ Hom(V,W ) ' V ∗ ⊗W and S ∈ Hom(V ′,W ′) ' V ′∗ ⊗W ′

T : V →W, S : V ′ →W ′.

Fix the bases {v1, . . . , vn},{v′1, . . . , v′m},{w1, . . . , wl} and {w′1, . . . , w′p} of the vector spaces
V, V ′,W,W ′ respectively. Denote by A ∈ Cm×n and B ∈ Cp×l the matrices that repre-
sent the linear maps T and S in the given bases, i.e. A = (aij), for i = 1, . . . , n and
j = 1, . . . ,m; and B = (bkh), for k = 1, . . . , l, h = 1, . . . , p. Then A�B is a matrix that
represents the tensor

S � T : V ⊗ V ′ →W ⊗W ′,

with respect to the bases {v1⊗v′1, v1⊗v′2, . . . , vn⊗v′m} and {w1⊗w′1, w1⊗w′2, . . . , wl⊗w′t}
of V ⊗ V ′ and W ⊗W ′ respectively, i.e. it is the matrix

A�B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 =



a11b11 . . . a11b1l . . . a1nb11 . . . a1nb1l
...

. . .
...

...
. . .

...
a11bp1 . . . a11bpl . . . a1nbp1 . . . a1nbpl
...

...
...

...
an1b11 . . . an1b1l . . . annb11 . . . annb1l
...

. . .
...

...
. . .

...
an1bp1 . . . an1bpl . . . annbp1 . . . annbpl


.
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1.1.1 Geometric perspective

Let V be a complex vector space of dimension N + 1.

Definition 1.1.4. The projectivisation of V is the space of 1-dimensional subspaces of
V . It is defined as

P(V ) ' V \ {0}
∼

,

where, for every v, w ∈ V , v ∼ w if and only if v = λw, for some λ ∈ C. We denote
the equivalence class of v ∈ V by [v] ∈ P(V ). The complex dimension of P(V ) is
N = dim(V )− 1. Sometimes we denote P(V ) = PN . If X ⊆ P(V ), the affine cone over
X is X̂ := {v ∈ V : [v] ∈ X}.

Definition 1.1.5 (Segre embedding). Given V1, . . . , Vd complex vector spaces of dimen-
sion dim(Vj) = nj + 1 for j = 1, . . . , d, the Segre map is defined as

ν : P(V1)× · · · × P(Vd)→ P(V1 ⊗ · · · ⊗ Vd) := PN

([v1], . . . , [vd]) 7→ [v1 ⊗ · · · ⊗ vd],

where N = (n1 + 1) · · · (nd + 1) − 1. The map is an isomorphism of algebraic varieties
between the product of projective spaces and its image, which is called Segre variety and
which we denote by

ν(P(V1)× · · · × P(Vd)) := Sn1,...,nd .

The Segre variety is therefore the variety of rank 1 tensors, up to scalar multiplication.

Definition 1.1.6. Let X ⊆ PN be a nondegenerate irreducible projective variety of
projective dimension n. The k-secant variety of X is the Zariski closure of points of PN

contained in the linear span of k point of X

σk(X) := {p ∈ PN : p ∈ 〈x1, . . . , xk〉, x1, . . . , xk ∈ X}.

Definition 1.1.7. Let X ⊆ PN be a nondegenerate irreducible projective variety of
projective dimension n. Let T ∈ X, then the X-rank of T is defined as:

rkX(T ) := min{r ∈ N : ∃ x1, . . . , xr ∈ X s.t T ∈ 〈x1, . . . , xr〉}.

The X-border rank of T is defined as:

brkX(T ) := min{r ∈ N : T ∈ σr(X)}.

If X = Sn1,...,nd , then the k-secant variety of the Segre variety is

σk(X) = {T ∈ PN : T ∈ 〈x1, . . . , xk〉, x1, . . . , xk ∈ X rank 1 tensors}.
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Remark 1.1.8. In Definition 1.1.6, the closure is taken in the Zariski topology. Since
we are working over the complex field C, the closure can equivalently be taken in the
Euclidean topology. Therefore elements of σk(X) are points of p ∈ PN such that p ∈
〈x1, . . . , xk〉, with x1, . . . , xk ∈ X and limits of points of this type.

We can give the definitions of rank and border rank of a tensor:

Definition 1.1.9. Given T ∈ V1 ⊗ · · · ⊗ Vd, the rank of T is

rk(T ) := min{r ∈ N : T =

r∑
i=1

v1
i ⊗ · · · ⊗ vdi , v

j
i ∈ V

j}.

Let vji (t) be a curve in V j , for j = 1, . . . , d. Given T ∈ V1 ⊗ · · · ⊗ Vd, the border rank of
T is

brk(T ) := min{r ∈ N : T ∈ σr(X)}.

= min{r ∈ N : T = lim
t→0

( r∑
i=1

v1
i (t)⊗ · · · ⊗ vdi (t)

)
, vji (t) ∈ V

j}.

1.1.2 Isotropy groups of tensors

We briefly recall some useful definitions concerning groups and group actions. Then we
move to the study of the isotropy group (and the isotropy algebra) of a tensor. We
consider a product of linear groups G = GL(V1)× · · · ×GL(Vd) acting on a tensor space
V1 ⊗ · · · ⊗ Vd. The isotropy group of a given tensor T ∈ V1 ⊗ · · · ⊗ Vd is a subgroup of
G whose elements stabilize T . The isotropy Lie algebra of T is the subalgebra of g, the
Lie algebra of G, whose elements annihilate the tensor. We prove preliminary results on
isotropy Lie algebras of tensors that will be used in Chapter 3.

Definition 1.1.10. Given a group G and a set X, the action of G on X is a map

G×X → X

(g, x) 7→ g · x,

such that

1. e · x = x, for every x ∈ X, with e ∈ G the identity of the group,

2. g1 · (g2 · x) = (g1g2) · x for every g1, g2 ∈ G and x ∈ V .

Definition 1.1.11. The orbit of x ∈ X under the action of G is

Ox := {g · x : g ∈ G} ⊂ X.

The stabilizer of an element x ∈ X under the action of G is the subgroup

Gx := {g ∈ G : g · x = x} ≤ G.
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Definition 1.1.12. A Lie group is a smooth manifold G that is also a group in the
algebraic sense, with the property that the multiplication map and the inversion map

G×G→ G

(g, h) 7→ gh

G→ G

g 7→ g−1,

are smooth.

Associated to any Lie group G is a Lie algebra.

Definition 1.1.13. A finite dimensional real or complex Lie algebra is a finite dimen-
sional real or complex vector space g, together with a map [·, ·] : g × g → g, with the
following properties

1. [·, ·] is bilinear,

2. [X,Y ] = −[Y,X] for every X,Y ∈ g,

3. [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for every X,Y, Z ∈ g

The Lie algebra associated to a Lie group G is the set of left-invariant vector fields on G
that are determined by their vectors at a single point, e.g. at the identity. Therefore, the
Lie algebra associated to a Lie group G can be identified with TeG, the tangent space to
G at the identity e ∈ G.

The Lie algebra of a product of Lie groups is the sum of their Lie algebras and the action
of a Lie group naturally induces an action of its Lie algebra.

Example 1.1.14. Let V be a n-dimensional complex vector space, V ' Cn. Denote by
GL(V ) the group of automorphism of V . The linear group GL(V ) ' GLn is a Lie group
and its Lie algebra, denoted by gln, is the space V ⊗V ∗ ' Endn of n×n complex matrices
with the commutator of matrices as Lie bracket: [X,Y ] = XY − Y X, for X,Y ∈ GLn.

Example 1.1.15. Consider G ⊆ GL(V ) and its Lie algebra g. Assume that G acts on
V ⊗d as follows

g · (v1 ⊗ · · · ⊗ vd) = (g · v1)⊗ · · · ⊗ (g · vd), g ∈ G, v1, . . . , vd ∈ V.

Then, there is an induced action of the Lie algebra g given by

X · (v1 ⊗ · · · ⊗ vd) = (X · v1)⊗ v2 ⊗ · · · ⊗ vd + · · ·+ v1 ⊗ · · · ⊗ vd−1 ⊗ (X · vd), X ∈ g,

If g(t) ⊂ G is a curve in G such that g(0) = Idn, and g′(0) = X, the induced action can
be computed as the infinitesimal action of the group at the identity

d

dt |t=0

g(t) · (v1 ⊗ · · · ⊗ vd) =
d

dt |t=0

(g(t) · v1)⊗ · · · ⊗ (g(t) · vd)

=

(
d

dt |t=0

(g(t) · v1)

)
⊗ v2 ⊗ · · · ⊗ vd + · · ·+ v1 ⊗ · · · ⊗ vd−1 ⊗

(
d

dt |t=0

(g(t) · v1)

)
= (X · v1)⊗ v2 ⊗ · · · ⊗ vd + · · ·+ v1 ⊗ · · · ⊗ vd−1 ⊗ (X · vd).
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We are interested exactly in the action of the product of linear groups (and of its Lie
algebra) on a tensor space.

Let V1, . . . , Vd complex vector spaces and consider the natural action of the groupGL(V1)×
· · · ×GL(Vd) on the tensor product V1 ⊗ · · · ⊗ Vd, given by

GL(V1)× · · · ×GL(Vd)× V1 ⊗ · · · ⊗ Vd → V1 ⊗ · · · ⊗ Vd
(g1, . . . , gd, v1 ⊗ · · · ⊗ vd) 7→ g1(v1)⊗ · · · ⊗ gd(vd).

This defines a group homomorphism

GL(V1)× · · · ×GL(Vd)→ GL(V1 ⊗ · · · ⊗ Vd)
(g1, . . . , gd) 7→ g1 ⊗ · · · ⊗ gd

whose kernel is the central subgroup

ZV1⊗···⊗Vd = {(λ1IdV1 , . . . , λdIdVd) : λ1 · · ·λd = 1}.

Therefore, the group

G(V1, . . . , Vd) := GL(V1)× · · · ×GL(Vd)/ZV1⊗···⊗Vd (1.1)

can be identified naturally with a subgroup of GL(V1 ⊗ · · · ⊗ Vd) acting faithfully on
V1⊗· · ·⊗Vd. The elements of G(V1, . . . , Vd) will be denoted as tensor products g1⊗· · ·⊗gd
for gj ∈ GL(Vj).

The corresponding Lie algebra action defines a Lie algebra homomorphism

gl(V1)⊕ · · · ⊕ gl(Vd)→ gl(V1 ⊗ · · · ⊗ Vd)
(X1, . . . , Xd) 7→ X1 ⊗ IdV2 ⊗ · · · ⊗ IdVd + · · ·+ IdV1 ⊗ · · · ⊗ IdVd−1

⊗Xd,

whose kernel is the central algebra

zV1⊗···⊗Vd = {(x1IdV1 , . . . , xdIdVd) : x1 + · · ·+ xd = 0}.

Hence, the Lie algebra g(V1, . . . , Vd) := gl(V1) ⊕ · · · ⊕ gl(Vd)/zV1⊗···⊗Vd is a subalgebra
of gl(V1 ⊗ · · · ⊗ Vd) and coincides with the Lie algebra of G(V1, . . . , Vd). With abuse
of notation, denote the elements of g(V1, . . . , Vd) as d-tuples X = (X1, . . . , Xd) with
Xj ∈ gl(Vj) with the understanding that X is identified with its image in g(V1, . . . , Vd).

Definition 1.1.16. Let T ∈ V1⊗· · ·⊗Vd be a tensor. The isotropy group of T , denoted
GT , is the stabilizer of T under the action of G(V1, . . . , Vd):

GT = {g1 ⊗ · · · ⊗ gd ∈ G(V1, . . . , Vd) : g1 ⊗ · · · ⊗ gd(T ) = T}.

The group GT is algebraic and in general it is union of finitely many connected (irre-
ducible) components. Let G◦T denote the connected component containing the identity:
G◦T is normal in GT (see, e.g., [Ges16, Lemma 2.1]) and dimGT = dimG◦T .
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The isotropy Lie algebra of T , denoted gT , is the Lie algebra of the group GT , or equiva-
lently the one of G◦T ; it is the subalgebra of g(V1, . . . , Vd) which annihilates T under the
Lie algebra action induced by gl(V1)⊕ · · · ⊕ gl(Vd) [Pro07, Sec. 1.2]

gT = {X = (X1, . . . , Xd) ∈ g(V1, . . . , Vd) : X.T = 0},

where X.T =
∑d

1 IdV1 ⊗ · · · ⊗Xk ⊗ · · · ⊗ IdVd(T ) denotes the image via the Lie algebra
action. We have dim gT = dimG◦T = dimGT .

Remark 1.1.17. The dimension of the orbit-closure of T ∈ V1 ⊗ · · · ⊗ Vd under the
action of G(V1, . . . , Vd) is given by

dim(G(V1, . . . , Vd) · T ) = dimG(V1, . . . , Vd)− dimGT

=
[∑d

i=1(dimVi)
2 − d+ 1

]
− dim gT .

We prove preliminary results on isotropy Lie algebras of tensors. Lemma 1.1.19 is classical
and we recall it here for the reader’s convenience. Lemma 1.1.20 concerns the intersection
of gT with the subalgebra of g(V1, . . . , Vd) consisting of elements acting only on a subset
of the tensor factors.

We first recall an immediate linear algebra fact.

Lemma 1.1.18. Let V be a vector space and let A,B1, . . . , BN be subspaces of V for
which there exists a subspace B such that A∩B = {0} and Bj ⊆ B for every j = 1, . . . , N .
Then

⋂
j(A⊕Bj) = A⊕

⋂
j Bj.

Proof. Since A ∩ B = {0} and Bj ⊆ B for j = 1, . . . , N , then for every j = 1, . . . , N we
have

Bj ∩A = (Bj ∩B) ∩A = Bj ∩ (B ∩A) = Bj ∩ {0} = {0}

and therefore
⋂
j Bj ∩A = {0}.

Consider v ∈ A ⊕
⋂
j Bj . Then v = a + b, with a ∈ A and b ∈

⋂
j Bj . In particular

b ∈ Bj for every j = 1, . . . , N therefore v = a+ b ∈ A⊕Bj for every j = 1, . . . , N . Then
v ∈

⋂
j(A⊕Bj).

Vice versa, if v ∈
⋂
j(A⊕Bj) then v ∈ A⊕Bj for every j = 1, . . . , N and we can write

v = aj + bj for aj ∈ A and bj ∈ Bj for every j = 1, . . . , N . Consider v = ai+ bi = ak + bk
for i 6= k ∈ {1, . . . , N}. If we denote w = ai − ak = bk − bi, then w ∈ A ∩ (Bi ∪ Bk)
but, since A is disjoint from all the Bj ’s, in particular A ∩ Bi = {0} = A ∩ Bk, we have
w = 0. Therefore ai = ak =: a, bj = bk =: b and v = a+ b ∈ A⊕

⋂
j=i,k Bj . This easily

generalizes to v ∈ A⊕
⋂
j Bj .

The following result is classical and follows for instance from [Bri05, Section 1.1].
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Lemma 1.1.19. Let T ∈ V1⊗· · ·⊗Vd be a non-concise tensor. Let V ′i ⊆ Vi be subspaces
such that T ∈ V ′1 ⊗ · · · ⊗ V ′d is concise. Write hT for the isotropy Lie algebra of T
in g(V ′1 , . . . , V

′
d) (regarded as a subalgebra of g(V1, . . . , Vd)) and gT for the isotropy Lie

algebra of T in g(V1, . . . , Vd). Then

gT = hT ⊕ p

where p ⊆ g(V1, . . . , Vd) is the Lie algebra which annihilates the subspace V ′1 ⊗ · · · ⊗ V ′d,
that is the algebra generated by

⊕d
i=1(V ′i

⊥ ⊗ Vi) ⊆ gl(V1)⊕ · · · ⊕ gl(Vd).

Lemma 1.1.20. Let T ∈ V1 ⊗ · · · ⊗ Vd. For I ⊆ {1, . . . , d}, let FT := TIc :
⊗

j∈Ic V
∗
j →⊗

i∈I Vi be the flattening map of T corresponding to the subset I. Then

gT ∩ g(Vi : i ∈ I) =
⋂

S∈Im FT

gS . (1.2)

In particular, if T is concise, gT ∩ gl(Vj) = 0 for every j.

Proof. Let k = |I|; up to reordering the factors, assume I = {1, . . . , k}.

Given X ∈ g(V1, . . . , Vd), write X = (X1,X2) with X1 = (X1, . . . , Xk) and X2 =
(Xk+1, . . . , Xd). Let X.T be the image of T via the action of X and let FX.T be the
corresponding flattening map. By Leibniz’s rule, given an element S′ ∈ V ∗k+1 ⊗ · · · ⊗ V ∗d ,
FX.T is characterized by the expression

FX.T (S′) = FT (X2.S
′) + X1.FT (S′),

where X2 acts on V ∗k+1 ⊗ · · · ⊗ V ∗d , X1 acts on V1 ⊗ · · · ⊗ Vk.

Now, let X ∈ gT ∩ (gl(V1)⊕ · · · ⊕ gl(Vk)). Hence, X = (X1,0) and X.T = 0. Therefore
0 = FX.T (S′) = X1.FT (S′), showing X1 ∈ gS for every S ∈ Im FT .

Conversely, let X1 ∈
⋂
S∈Im FT

gS . Let S1, . . . , SN ∈ Im FT be a set of generators and
write T =

∑N
i=1 Si ⊗ Pi for some Pi ∈ Vk+1 ⊗ · · · ⊗ Vd. Let X = (X1,0). Then

X.T =
N∑
i=1

(X1.Si)⊗ Pi +
N∑
i=1

Si ⊗ 0.Pi =
N∑
i=1

(X1.Si)⊗ Pi = 0

showing X ∈ gT . This concludes the proof of Equation (1.2).

The last claim follows by taking I = {j}: if T is concise, then FT is surjective and
therefore

⋂
S∈Im FT

gS =
⋂
v∈Vj gv = 0.

By linearity the intersection in Lemma 1.1.20 can be restricted to a basis of the image
of the flattening map Im FT , as it is clear from the proof.
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Additional results on isotropy groups. In this paragraph, we prove a generalization
of a result of [CGL+20]. In [CGL+20, Thm. 4.1(iii)], it is proved that the Kronecker prod-
uct of tensors which have a 0-dimensional isotropy group, has a 0-dimensional isotropy
group. We generalize the result proving that this holds even in the case that only one
factor of the Kronecker product has a 0-dimensional isotropy group. The isotropy group
is defined in Definition 1.1.16.

Given two spaces V,W , there is a natural embedding GL(V )→ GL(V ⊗W ) defined by
g 7→ g ⊗ IdW ; correspondingly the Lie algebra gl(V ) can be regarded as a subalgebra of
gl(V ⊗W ). In particular, if g ⊆ gl(V ) is a subalgebra, then g is naturally identified with
a subalgebra of gl(V ⊗W ).

Proposition 1.1.21. Let T ∈ V1 ⊗ · · · ⊗ Vd and S ∈W1 ⊗ · · · ⊗Wd be concise tensors.
Assume gT = {0} ⊆ g(V1, . . . , Vd) . Then

gT�S = gS

regarded as a subalgebra of g(V1 ⊗W1, . . . , Vd ⊗Wd).

Proof. The inclusion
gS ⊆ gT�S

is immediate from the definition of Kronecker product 1.1.2.

Let X ∈ gT�S . Write X = (X1, . . . , Xd) with Xk ∈ gl(Vk ⊗Wk). Our goal is to show
that Xk = IdVk ⊗ Zk for some Zk ∈ gl(Wk) with Z := (Z1, . . . , Zd) ∈ gS .

For every p = 1, . . . , d, fix bases {vpj : j = 1, . . . ,dimVp} of Vp and similarly for Wp.
Write

T =
∑

T i1,...,idv1
i1 ⊗ · · · ⊗ v

d
id
,

S =
∑

Sj1,...,jdw1
j1 ⊗ · · · ⊗ w

d
jd
.

For k = 1, . . . , d, write (xk)
ij
i′j′ for the entries of Xk with respect to the basis vki ⊗ wkj .

By Leibniz’s rule, the condition X.(T � S) = 0 is equivalent to

d∑
k=1

(xk)
ikjk
i′kj
′
k
T i1,...,i

′
k,...,idSj1,...,j

′
k,...,jd = 0 for every i1, . . . , id, j1, . . . , jd, (1.3)

where we use the summation convention that repeated upper and lower indices are to be
summed over their range.

For every j1, . . . , jd, and for every k = 1, . . . , d, define Yk(j1, . . . , jd) ∈ gl(Vk) by

(yk(j1, . . . , jd))
ik
i′k

= (xk)
ikjk
i′kj
′
k
Sj1,...,j

′
k,...,jd .

Regard Y(j1, . . . , jd) = (Y1(j1, . . . , jd), . . . , Yd(j1, . . . , jd)) as an element of g(V1, . . . , Vd).
From (1.3), we deduce that Y(j1, . . . , jd) satisfies Y.T = 0 and therefore Y ∈ gT . From
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the hypothesis gT = {0} and therefore, for every k, there exists λk(j1, . . . , jd) such that
Yk(j1, . . . , jd) = λk(j1, . . . , jd)IdVk and

∑
k λk(j1, . . . , jd) = 0.

Since Yk(j1, . . . , jd) is a multiple of the identity, we have

0 = (yk(j1, . . . , jd))
ik
i′k

= (xk)
ikjk
i′kj
′
k
Sj1,...,j

′
k,...,jd for ik 6= i′k,

0 = (yk(j1, . . . , jd))
ik
ik
− (yk(j1, . . . , jd))

1
1 = [(xk)

ikjk
ikj
′
k
− (xk)

1jk
1j′k

]Sj1,...,j
′
k,...,jd .

In other words, if ik 6= i′k, setting Zk(ik, i
′
k) ∈ gl(Wk) to be defined by (zk(ik, i

′
k))

jk
j′k

=

(xk)
ikjk
i′kj
′
k
, we have Zk(ik, i′k).S = 0. This means that Zk(ik, i′k) ∈ gS ∩ gl(Wk): since S

is concise, Lemma 1.1.20 implies Zk(ik, i′k) = 0. This shows that (xk)
ikjk
i′kj
′
k

= 0 whenever

ik 6= i′k. Similarly, if ik ≥ 2, setting (zk(ik))
jk
j′k

= (xk)
ikjk
ikj
′
k
− (xk)

1jk
1j′k

, we have Zk(ik).S = 0,

hence Zk(ik) = 0 and therefore (xk)
ikjk
ikj
′
k

= (xk)
1jk
1j′k

for every ik.

We deduce that Xk = IdVk ⊗ Zk for some Zk ∈ gl(Wk). Now, let Z = (Z1, . . . , Zk). We
conclude

0 = X.(T � S) = Z.(T � S) = T � Z.S

and therefore Z ∈ gS . This concludes the proof.

1.2 Quantum Physics

We present the six postulates of Quantum Mechanics, mainly following [CTDL+77],
with the aim to introduce notations and definitions useful to the reader. The postulates
give the foundation of the physical theory and describe its mathematical formulation.
In Subsection 1.2.2 we briefly define spin systems, highlighting the connection to the
representation theory of the Lie algebra of SL2 given in Chapter, 1, Section 1.1.2.

1.2.1 Postulates of Quantum Mechanics

In Quantum Mechanics, a physical system is described by three entities: states, observ-
ables and the dynamics or law of time evolution.

States. Each isolated physical system is associated to a complex Hilbert space H, that
in this thesis will always be a finite dimensional complex vector space, H ' Cn, endowed
with a positive definite Hermitian inner product, i.e.

h : H×H → C

(x, y) 7→ h(x, y),

such that

1. h(x, x) > 0 for every x 6= 0.
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2. h(αx+ βy, z) = αh(x, z) + βh(y, z), for every α, β ∈ C and x, y, z ∈ H,

3. h(x, αy + βz) = αh(x, y) + βh(y, z), for every α, β ∈ C and x, y, z ∈ H.

and that satisfies h(x, y) = h(y, x), for every x, y ∈ H.

The standard Hermitian inner product on Cn is defined as h(x, y) := y†x, where † denotes
the conjugate transpose. The inner product allows the identification between H and its
dual space H∗ via the map

R : H →H∗

y 7→
(
y† : x 7→ y†x

)
.

The norm of x ∈ H is defined as |x| :=
√
x†x.

Given a linear operator A ∈ End(H), the adjoint operator of A is A† ∈ End(H); it
satisfies h(A†x, y) = h(x,Ay). An operator A is called Hermitian if A = A†.

Postulate (1-th). The state of a quantum physical system is represented, at a fixed
time t0, by a projective point [v(t0)] ∈ P(H), where H is a Hilbert space, called the state
space.

Two vectors v, w ∈ H represent the same state if and only if their projective classes are
equal. Therefore a quantum state v ∈ H can be identified with its equivalence class
[v] ∈ P(H). The linear combination of states is called superposition.

Remark 1.2.1. In physics, vectors are denoted by the Dirac notation ket |v〉 ∈ H and
linear funcionals by the bra 〈f | ∈ H∗.

Composite systems. The state space of a system that includes several quantum sub-
systems is a Hilbert space and it is the tensor product of the state spaces associated to
the subsystems.

Given d ≥ 1 Hilbert spaces (Hi, hi), i = 1, . . . , d, the Hermitian scalar product on
H1 ⊗ · · · ⊗ Hd is given by the unique map h : (H1 ⊗ · · · ⊗ Hd) × (H1 ⊗ · · · ⊗ Hd) → C
which verifies

h(v1 ⊗ · · · ⊗ vd, u1 ⊗ · · · ⊗ ud) := h1(v1, u1) · · ·hd(vd, ud),

for all vi, ui ∈ Hi , i = 1, . . . , d.

The tensor product of operators acts on the tensor product of vector spaces as follows:

Proposition 1.2.2. Let H1, . . . ,Hd be finite dimensional complex vector spaces. Let
Ai ∈ End(Hi), for i = 1, . . . , d be linear operators. Then there exists a unique linear
operator in End(H1 ⊗ · · · ⊗ Hd), denoted by A1 ⊗ · · · ⊗Ad, such that

A1 ⊗ · · · ⊗Ad(v1 ⊗ · · · ⊗ vd) = (A1v1)⊗ · · · ⊗ (Advd),
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for all vi ∈ Hi, i = 1, . . . , d.

If Ai, Bi ∈ End(Hi), for i = 1, . . . , d, then

(A1 ⊗ · · · ⊗Ad)(B1 ⊗ · · · ⊗Bd) = (A1B1)⊗ · · · ⊗ (AdBd).

In physics, operators acting on single factors or some of the factors of the tensor product
are called local operators. They naturally extend to operators acting on the tensor product
of spaces:

Definition 1.2.3 (Extension of local operators). Let Hi, i = 1, . . . , d, be Hilbert spaces.
ConsiderH = H1⊗· · ·⊗Hd and let Ai ∈ End(Hi), for i = 1, . . . , d. For every i = 1, . . . , d,
associate to Ai a linear operator Ãi ∈ End(H)

Ãi := IdH1 ⊗ · · · ⊗ IdHi−1 ⊗Ai ⊗ IdHi+1 ⊗ · · · ⊗ IdHd ,

where IdHi is the identity on Hi, defined by

Ãi(v1 ⊗ · · · ⊗ vd) := v1 ⊗ · · · ⊗Ai(vi)⊗ · · · ⊗ vd.

The linear operator Ãi, defined on the whole Hilbert space H, is called the extension of
Ai on H, c.f. [CTDL+77].

Fix 1 ≤ i < j ≤ d. Let A ∈ End(Hi) and B ∈ End(Hj). We write

AiBj := IdH1 ⊗ · · · ⊗ IdHi−1 ⊗A⊗ IdHi+1 ⊗ · · · ⊗ IdHj−1 ⊗B ⊗ IdHj+1 ⊗ · · · ⊗ IdHd .

Observables. Physical observables are physical quantities that can be measured. They
are represented by Hermitian operators onH, i.e. H ∈ End(H) such thatH = H† := H

t.
Since H is Hermitian, its eigenvalues are real.

Postulate (2-nd). Every measurable physical quantity A is described by a Hermitian
operator A acting on the state space H. This operator is an observable.

In the finite dimensional case the spectrum of A, denoted by σ(A), is discrete. Since
A is Hermitian, its eigenvectors form a basis of H. Given λ ∈ σ(A), the number of
independent eigenvectors associated to the eigenvalue λ is usually known as geometrical
multiplicity ; in physics, it is called degeneration and it is denoted by d(λ). An eigenvalue
λ ∈ σ(A) with d(λ) = 1 is said to be non-degenerate.

Postulate (3-rd). The only possible result of the measurement of a physical quantity A
is one of the eigenvalues of the corresponding observable A of A.

Consider a system whose state is characterized, at a given time, by v ∈ H.

Definition 1.2.4. LetA ∈ End(H) be an observable, i.e. a hermitian operator associated
to a physical quantity A. The expectation value of A in the state v ∈ H is defined as

〈A〉v :=
v†Av

v†v
.
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Remark 1.2.5. Notice that the expectation value of any observable does not depend on
the choice of the representative v ∈ H, since 〈A〉v = 〈A〉w, for every w ∈ [v].

Let H = Cn and let A ∈ End(H) be an observable. Suppose σ(A) = {λ1, . . . , λn}
with all eigenvalues λi, i = 1, . . . , n distinct and non-degenerate, i.e. d(λi) = 1 for every
i = 1, . . . , n. Then there is a unique (modulo scalar multiplication) eigenvector associated
to each eigenvalue: Avi = λivi, for every i = 1, . . . , n, with all vi, i = 1, . . . , n distinct
and linearly independent. We can assume v†i vi = 1 for every i = 1, . . . , n. Let v ∈ H be a
normalized vector, v†v = 1. It can be written in the eigenvectors basis as v =

∑n
i=1 civi,

with ci ∈ C, i = 1, . . . , n. Then

〈A〉v = v†Av = v†

(∑
i

λiviv
†
i

)
v =

∑
i

λi(v
†vi)(v

†
i v) =

∑
i

λi|v†vi|2 =
n∑
i=1

λi|ci|2.

Postulate (4-th, discrete non-degenerate spectrum). When a physical quantity A, as-
sociated to the observable A, is measured on a system in a normalized state v ∈ H,
the probability P(λi) of obtaining the non-degenerate eigenvalue λi of the corresponding
observable A is

P(λi) = |v†vi|2,

where vi is a normalized eigenvector associated to λi.

Assume λk is degenerate, of degeneration d(λk) = gk. The eigenspace associated to λk is
denoted by Eλk , with dimension gk. Then there exist {vjk}j=1,...,gk independent vectors
associated to λk: Av

j
k = λiv

j
k, and they give a basis of Eλk .

Postulate (4-th, discrete spectrum). When the physical quantity A is measured on a
system in a normalized state v ∈ H, the probability P(λi) of obtaining the eigenvalue λi
of the corresponding observable A is

P(λi) =

gi∑
j=1

|v†vji |
2,

where gi is the degeneration of λi and {vji }j=1,...,gi is an orthonormal set of vectors which
form a basis of the eigenspace Eλi associated to λi of A.

Given w ∈ H such that w†w = 1, define P = ww† ∈ End(H) the one dimensional
projector on the subspace generated by w ∈ H. It is an observable, its expectation value
on v ∈ H is

v†(ww†)v = (v†w)(w†v) = |v†w|2,

and it is called transition probability from v to w.

Denote the projector on Eλi by Pi, given by Pi =
∑gi

j=1 v
j
i

†
vji .
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Postulate (5-th). If the measurement of a physical quantity A on the system in a state
v ∈ H gives the result λi, the state of the system immediately after the measurement is
the normalized projection

Pi(v)√
v†Piv

,

of v onto the eigenspace associated to λi.

Recall that, for any A ∈ End(H) hermitian, the projector operators have the follow-
ing properties: P 2

α = Pα, for every α ∈ σ(A), PαPβ = 0 when α 6= β ∈ σ(A) and∑
α∈σ(A) Pα = IdH.

Postulate (6-th). The time evolution of a state vector v(t) ∈ H is governed by the
Schrödinger equation

i~
d

dt
v(t) = H(t)v(t), (1.4)

where ~ is the reduced Plank constant and where H(t) is the observable associated to
the total energy of the system, called Hamiltonian.

Definition 1.2.6 (Ground state). Denote λ0 the lowest eigenvalue of the Hamiltonian
H, i.e. λ0 = min{λ ∈ R : λ ∈ σ(H)}. If unique (modulo scalar multiplication),
the eigenvector associated to λ0 is called the ground state of H. If λ0 has degeneration
d(λ0) strictly greater than 1, then the associated eigenspace Eλ0 is d(λ0)-dimensional
and vectors in Eλ0 are called degenerate ground states.

In the thesis, we restrict our attention mainly to ground states of gapped local Hamilto-
nian.

Definition 1.2.7. Let H = H1 ⊗ · · · ⊗ Hd, with d ∈ N, and let H : H → H be the
Hamiltonian of a physical quantum system. The gap of the Hamiltonian is defined as
∆ := λ1 − λ0, where λ0 and λ1 are the two smallest distinct eigenvalues of H. We say
that H is gapless [Mov17] if for any constant ε > 0 there exists a d > 0 such that ∆ ≤ ε.
Otherwise, we say that H is gapped.

Definition 1.2.8. Let H = H1 ⊗ · · · ⊗ Hd, with d ∈ N, and let H : H → H be the
Hamiltonian of a physical quantum system. The Hamiltonian is said to be local if

H =
∑
i,j

hi,j =
∑
i,j

Id⊗(d−2) ⊗ hi,j ,

with h : Hi ⊗ Hj → Hi ⊗ Hj local operator acting on sites 0 < i < j < d. We are
interested in nearest-neighbor Hamiltonians H : (Cn)⊗d → (Cn)⊗d of the form

H =
d−1∑
j=1

hj =
∑
j

Idj−1 ⊗ h⊗ Idd−j−1,

with h : Cn ⊗ Cn → Cn ⊗ Cn local operator acting on two nearby sites. In words, the
physical system associated with a site interacts only with its neighbors.
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1.2.2 Spin representation

Definition 1.2.9. A representation of a group G on a vector space V is a linear action,
i.e. a group homomorphism

ρ : G→ GL(V )

g 7→ ρ(g) : v 7→ ρ(g)(v).

We denote ρ(g)(v) with either g · v or g(v). We will call representation either the vector
space V or the group homomorphism ρ. A representation is called irreducible if there is
no non-trivial subspace W $ V , such that g · w ⊂W for every g ∈ G and w ∈W .

If g is a Lie algebra, then a complex representation of g is a Lie algebra homomorphism
π : g → gln. The notion of irreducibility is defined analogously for representations of
Lie algebras. Moreover, every definition holds for the real case: if V = Rn we have the
notions of real (matrix) Lie group and real (matrix) Lie algebra.

Remark 1.2.10. Every representation of a matrix Lie group gives rise to a representation
of the associated Lie algebra. The vice versa holds in the case of simply-connected Lie
groups, therefore there is a one-to-one correspondence between the representations of a
simply-connected matrix Lie group and its Lie algebra.

Irreducible representation of sl2. The special unitary group, denoted by SUn ⊂
SLn, is the group of unitary matrices with determinant one, i.e. U †U = UU † = Idn
and detU = 1 for every U ∈ SUn. The group SU2 is a relevant group in physics since
its representations describe spins. The matrix Lie group SU2 is simply-connected and
its representations are found studying the representations of it Lie algebra su2, which
is a real Lie algebra. Moreover, the irreducible complex representations of su2, are
in one-to-one correspondence with the irreducible representations of its complexification
sun+isun ' sln, which is the Lie algebra of SL2 [Hal15]. We introduce the representation
theory of sl2 and we give the definition of spin in terms of its irreducible representations,
c.f. Remark 1.2.16.

Denote by SL2 the complex special linear group, the group of complex 2 × 2 invertible
matrices. Its Lie algebra, denoted by sl2, is the simple Lie algebra of 2 × 2 trace zero
complex matrices. It is C-span by the three operators

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
,

which satisfy the following commutation relations

[H,X] = 2X, [H,Y ] = −2Y [X,Y ] = H.

We recall here classical results about the complete classification of the irreducible repre-
sentation of sl2, we refer to [FH13, Hal15].
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Proposition 1.2.11. For each integer m ≥ 0, there is an irreducible representation V (m)

of sl2 with dimension m+ 1.

Removing the hypothesis of irreducibility we have the following result:

Theorem 1.2.12. Suppose π is any finite-dimensional, complex-linear representation of
sl2 acting on a space V . Then, we have the following results:

1. Every eigenvalue of π(H) is an integer.

2. If v is a nonzero element of V such that π(X)v = 0 and π(H)v = λv, then
there is a non-negative integer m such that λ = m. Furthermore, the vectors
v, π(Y )v, . . . , π(Y )mv are linearly independent and their span is an irreducible in-
variant subspace of dimension m+ 1.

Proposition 1.2.13. If π is an irreducible representation of sl2 with dimension m+ 1,
then π is equivalent to the m-th symmetric power of the standard representation C2.

Proof from [FH13]. The trivial one-dimensional representation C of sl2 is V (0). Consider
the standard representation of sl2 on C2. If {x, y} is the standard basis of C2, then
H(x) = x and H(y) = −y. Therefore V = C · x⊕ C · y = V−1 ⊕ V1 = V (1).

A basis of the 2-nd symmetric power Sym2(C2) is given by {x2, xy, y2} and the action is

H(x · x) = xH(x) +H(x)x = 2x · x,
H(x · y) = xH(y) +H(y)x = 0,

H(y · y) = −2y · y,

so that Sym2(C2) = V−2 ⊕ V0 ⊕ V2 = V (2).

In general, a basis of them-th symmetric power of C2, Symm(C2), is given by {xm, xm−1y, . . . , ym}
and the action is

H(xm−kyk) = (m− k)H(x) · xm−k−1yk + kH(y) · xm−kyk−1

= (m− 2k) · xm−kyk.

The eigenvalues ofH on Symm(C2) are −m,−m+2, . . . ,m−2,m, each one of multiplicity
1; therefore Symm(C2) is irreducible and isomorphic to V (m).

Definition 1.2.14. If g is a Lie algebra and π1 and π2 are representations of g acting
on spaces V1 and V2, then the tensor product of π1 and π2 is a representation of g acting
on V1 ⊗ V2 defined by

π1 ⊗ π2(X) = π1(X)⊗ Id + Id⊗ π2(X),

for every X ∈ g.
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Suppose π1 and π2 are irreducible representations of sl2 acting on V (m) and V (n). In
general V (m) ⊗ V (n) will not be an irreducible representation but it can be decomposed
into a direct sum of irreducible invariant subspaces.

Theorem 1.2.15. For any non-negative integer k, let V (k) denote the irreducible rep-
resentation of sl2 of dimension k + 1. For two non-negative integers m and n, consider
V (m) ⊗ V (n) as a representation of sl2. Assume m ≥ n. Then

V (m) ⊗ V (n) ' V (m+n) ⊕ V (m+n−2) ⊕ · · · ⊕ V (m−n+2) ⊕ V (m−n),

where ' denotes an equivalence of sl2 representations.

Remark 1.2.16. In the physics literature, this decomposition is referred to as either
the Clebsch-Gordan theory or as the addition of angular momentum. The irreducible
representations V (m) have been labeled here with the integer m; physicists use to label
them by the spin s:

s =
m

2
,

that can have therefore rational values : 0, 1
2 , 1,

3
2 , ...

In particular with spin s we refer to the sl2 representation

V (m) ' Cm+1 = C2s+1.

Example 1.2.17. Consider the first case W = V (1)⊗V (1), with V (1) = C2 the standard
representation, with basis {e1, e2}. The basis ofW is given by {eij := ei⊗ej : i, j = 1, 2}.
Since e1 and e2 are eigenvectors of H with eigenvalue +1 and −1 respectively, then
{eij}i,j=1,2 are eigenvectors of eigenvalues {2, 0, 0,−2}. Since e11 is associated to the
largest eigenvalue 2, then X(e11) = X(e1) ⊗ e1 + e1 ⊗ X(e1) = 0; on the other hand
Y (e11) = e12 + e21, Y

2(e11) = 2e22 and 〈e11, Y (e11) = e12 + e21, Y
2(e11) = 2e22〉 = V (2)

is the 3-dimensional irreducible representation. The space 〈e12 − e21〉 = V (0) is also
invariant under the action of sl2 and it is the orthogonal complement of V (2) inside
C2 ⊗ C2. We have the following decomposition as sl2 representations

C2 ⊗ C2 ' V (0) ⊕ V (2).

Spins: sl2 representations in physics. In physics, the representation V (m) is called
the spin s representation, for s = m

2 , c.f. Remark 1.2.16.

If H = C2 then any Hermitian matrix in End2 is an observable. The space of such
matrices is spanned by the Pauli matrices

σ1 =
1

2

(
0 1
1 0

)
, σ2 =

1

2

(
0 −i
i 0

)
, σ3 =

1

2

(
1 0
0 −1

)
.

Therefore the algebra of observables is isomorphic to sl2 and H is the 2-dimensional
sl2-representation, that is H = V (1).
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If H = C3 then it is the 3-dimensional sl2-representation, isomorphic to V (2) and it is
spanned by the so called spin 1 operators

S1 =
1√
2

0 1 0
1 0 1
0 1 0

 , S2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 , S3 =

1 0 0
0 0 0
0 0 −1

 . (1.5)

Let εαβγ be the Levi-Civita antisymmetric tensor, i.e.

εαβγ :=


1 if sgn(α, β, γ) ≡ 0 mod 2

−1 if sgn(α, β, γ) ≡ 1 mod 2

0 if α = β or α = γ or β = γ.

Both bases satisfy the commutation relations of sl2

[σα, σβ] = iεijkσk, [Sα, Sβ] = iεijkSk.

Consider d ∈ N spin s particles. The state space of the j-particle is Hj = V (m) =
V (2s) ' C2s+1 and the state space of the composite system consisting of all the particles
is thereforeH =

⊗d
j=1Hj =

⊗d
j=1 C2s+1. We call chain the composite system of particles

if we place the particles on a line.
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Chapter 2

Tensor network varieties

Tensor network varieties are varieties of tensors described by the combinatorial structure
of an undirected simple graph. In this chapter, we define the tensor network variety
via the language of graph tensors , following [VC17, CVZ19]. We exhibit the basic
properties of tensor network varieties and we show the equivalence between two different
construction of them: their constructions via the graph tensor and via contractions of
tensors associated to graphs. Finally, we give the definition of tensor network variety
associated to hypergraphs and we show that the Secant variety of the Segre variety is
isomorphic to a specific tensor network variety associated to a hypergraph.

2.1 Graph tensor and tensor network variety

Definition 2.1.1. An undirected simple graph Γ is a pair Γ = (v(Γ), e(Γ)) where v(Γ)
is the set of vertices, and e(Γ) is a non-empty set of pairs of vertices, called edges. In
addition, the graph has no loops on the vertices and no multiple edges between two
vertices. More precisely, for every e ∈ e(Γ), then e = {i, j}, for i, j ∈ v(Γ), i 6= j;
and if it exists e = {i, j} ∈ e(Γ) connecting the vertices i and j, then it is unique. If
e = {i, j} ∈ e(Γ), with the notation e 3 i we mean that the edge e ∈ e(Γ) is incident to
the vertex i ∈ v(Γ).

Let Γ = (v(Γ), e(Γ)) be an undirected simple graph, with vertex set v(Γ) = {1, . . . , d}
and edge set e(Γ) = {e1, . . . , eR}. A collection of bond dimensions is a set of weights
m = (me : e ∈ e(Γ)) on the edges of Γ. Given a collection of bond dimensions m, define
the graph tensor associated to Γ as follows.

For an edge e = {i1, i2}, denote by v(i)
0 , for i ∈ v(Γ) \ {i1, i2}, a generator of C1 and, for

p = 1, 2, {v(ip)
j : j = 1, . . . ,me} two bases of a copy of Cme . The unit tensor defined on
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the edge e and bond dimension me, is

u(e)(me) =

me∑
j=1

v
(i1)
j ⊗ v(i2)

j ⊗
⊗

i=1,...,d
i 6=i1,i2

v
(i)
0 ∈ Cme ⊗ Cme ⊗ C1 ⊗ · · · ⊗ C1,

with the superscripts indicating the ordering of the tensor factors. The graph tensor
associated to a graph Γ with bond dimensions m is

T (Γ,m) = �e∈e(Γ)u(e)(me), (2.1)

where � denotes the Kronecker product defined in Definition 1.1.2. This is a tensor of
order d whose i-th factor has a local structure

Wi =
⊗
e3i

Cme . (2.2)

Remark 2.1.2. In coordinates, we may describe the graph tensor T (Γ,m) as the tensor
product of identity matrices Idme ∈ Cme ⊗ Cme for e ∈ e(Γ) laying on the edges of the
graph; this product is regarded as a tensor of order d where the i-th factor is the product
of the spaces Cme incident to vertex i. Note that from this point of view one of the two
copies of Cme is identified with its dual space Cme∗, see Figure 2.1.

u(3,1)(m3,1)

u(2,3)(m2,3)

u(1,2)(m1,2)

�

m1,2

m2,3
m3,1

= T (Γ,m)

Figure 2.1: Pictorial representation of the construction of the graph tensor T (Γ,m) on the
triangular graph: T (Γ,m) is the tensor product of the three identity matrices ue(me); regarded
as a tensor on three factors.

Remark 2.1.3. Let Γ and Γ′ be two graphs on the same set of vertices and with e(Γ) =
e(Γ′) ∪ {e}. In other words, Γ′ is the graph obtained from Γ after removing the edge e.
Let m be a collection of bond dimensions on Γ and let m′ be the collection m restricted
to Γ′. It is clear from the definitions that if me = 1 then T (Γ,m) = T (Γ′,m′) because in
this case u(e)(me) is a decomposable tensor hence T � u(e)(me) = T for every tensor T .
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Remark 2.1.3 guarantees that up to modifying the underlying graph, one can always
assume me ≥ 2.

Let ni ∈ N be integers associated to the vertices of Γ and let Vi = Cni . Write n =
(ni)i=1,...,d for the collection of dimensions of the vector spaces Vi. We call the elements of
n local dimensions associated to Γ; in physics, they are usually called physical dimensions.
A triple (Γ,m,n) consisting of a simple graph, a collection of bond dimensions and a
collection of local dimensions is a tensor network ; see Figure 2.2.

me1 me2

me3

1

2 3

W1

W2 W3

V1

V2 V3

Figure 2.2: The tensor network data pictorial representation. The graph Γ := C3 is the cyclic
graph with 3 vertices, we call it the triangle graph. The vector spaces associated to the vertices
i = 1, 2, 3 are Wi =

⊗
e3i Cme , associated to the collection of bond dimensions me ∈m, e ∈ e(Γ)

incident to the vertex i ∈ v(Γ); and Vi, associated to the physical dimensions ni ∈ n, i.e.
dim(Vi) = ni.

A tensor network naturally provides the following algebraic variety.

Definition 2.1.4. The tensor network variety in V1 ⊗ · · · ⊗ Vd associated to the tensor
network (Γ,m,n) is

TNSΓ
m,n =

{
T ∈ V1 ⊗ · · · ⊗ Vd : T = (X1 ⊗ · · · ⊗Xd) · T (Γ,m), Xj ∈ Hom(Wj , Vj)

}
,

where the closure can be taken equivalently either in the Euclidean or the Zariski topology
since we are working over the complex numbers.

The definition of TNSΓ
m,n provides a natural parametrization of a Zariski open dense

subset, given by the image of the following map

Φ̂ : Hom(W1, V1)⊕ · · · ⊕Hom(Wd, Vd)→ V1 ⊗ · · · ⊗ Vd,
(X1, . . . , Xd) 7→ (X1 ⊗ · · · ⊗Xd) · T (Γ,m).
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Let TNSΓ◦
m,n be the image of the map Φ̂. The map Φ̂ factors as follows:⊕d

i=1 Hom(Wi, Vi) Hom(W1 ⊗ · · · ⊗Wd, V1 ⊗ · · · ⊗ Vd)

V1 ⊗ · · · ⊗ Vd

µ

Φ̂
Φ

where µ is the d-linear map defined as µ(X1, . . . , Xd) = X1 ⊗ · · · ⊗Xd. We denote the
image of µ by

Hom(W1, . . . ,Wd;V1, . . . , Vd) := Im (µ); (2.3)

If we denote Nv := dimWv for v ∈ v(Γ), then

P(Hom(W1, . . . ,Wd;V1, . . . , Vd)) = ν(P(Hom(W1, V1))× · · · × P(Hom(Wd, Vd)))

= SN1n1−1,...,Ndnd−1,

where ν is the Segre embedding of P(Hom(W1, V1))× · · · ×P(Hom(Wd, Vd)) in the space⊗d
i=1 Hom(Wi, Vi) ' Hom(W1 ⊗ · · · ⊗Wd, V1 ⊗ · · · ⊗ Vd) and SN1n1−1,...,Ndnd−1 is the

Segre variety; c.f. Definition 1.1.5. Therefore the image of µ is the cone over the Segre
variety, i.e. ŜN1n1−1,...,Ndnd−1 = Hom(W1, . . . ,Wd;V1, . . . , Vd), and its affine dimension
is

dim(Hom(W1, . . . ,Wd;V1, . . . , Vd)) =

d∑
i=1

(dim(Hom(Wi, Vi))− 1) + 1

=
d∑
i=1

dim(Hom(Wi, Vi))− d+ 1

=
∑

v∈v(Γ)

Nvnv − d+ 1.

The map
Φ : Hom(W1 ⊗ · · · ⊗Wd, V1 ⊗ · · · ⊗ Vd)→ V1 ⊗ · · · ⊗ Vd

is the evaluation at the graph tensor, therefore the restriction of Φ to the subvariety
Hom(W1, . . . ,Wd;V1, . . . , Vd) provides a parametrization of TNSΓ◦

m,n; denote this restric-
tion by

Φ : Hom(W1, . . . ,Wd;V1, . . . , Vd)→ V1 ⊗ · · · ⊗ Vd (2.4)
(X1 ⊗ · · · ⊗Xd) 7→ (X1 ⊗ · · · ⊗Xd) · T (Γ,m).

The set TNSΓ
m,n is an irreducible algebraic variety [YL18]. Indeed, the Segre variety

SN1n1−1,...,Ndnd−1 is irreducible and then its affine cone ŜN1n1−1,...,Ndnd−1 is irreducible.
Since the map Φ is a morphism of varieties, then Im (Φ) is a constructible set and
TNSΓ

m,n is irreducible. It is known that if the graph Γ is a tree, i.e. a graph without
loops, then the closure in the definition of TNSΓ

m,n is not needed, but if Γ contains cycles
then there are examples where it is necessary to take the closure of the set TNSΓ◦

m,n in
order to get an algebraic variety, c.f. [LQY12, CLVW20, BLF22].
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Remark 2.1.5. If m and m′ are two collections of bond dimensions on Γ such that
m′e ≤ me for every edge e ∈ e(Γ), then TNSΓ

m′,n ⊆ TNSΓ
m,n.

Indeed, assume T ∈ TNSΓ◦
m′,n, then there exist X ′i ∈ Hom(W ′i , Vi), for i = 1, . . . , d,

such that T = (X ′1 ⊗ · · · ⊗ X ′d) · T (Γ,m′). Since m′e ≤ me for every edge e ∈ e(Γ),
Wi =

⊗
e∈e(Γ) Cm

′
e ⊆

⊗
e∈e(Γ) Cme . In general, if W ′ is a vector subspace of W and

X : W ′ → V a linear map, then X can be extended linearly to W . Denote N ′ =
dim(W ′) ≤ N = dim(W ) and assume that {w′1, . . . , w′N ′} is a basis of W ′. We extend
the basis of W ′ to a basis {w′1, . . . , w′N ′ , w1, . . . , wN−N ′} of W . Define X : W → V such
that X(w′j) = X ′(w′j) for 1 ≤ j ≤ N ′ and X(wj) = 0 for 1 ≤ j ≤ N − N ′. For every
i = 1, . . . , d, X ′i : W ′i → Vi can be extended to Xi : Wi → Vi and clearly, by construction,
T = (X1 ⊗ · · · ⊗Xd) · T (Γ,m), that is T ∈ TNSΓ◦

m,n.

Notation 2.1.6. Let Γ be an undirected simple graph and let e(Γ) = {e1, . . . , eR}
be the set of edges. Define mj := mej for j = 1, . . . , R, so that m = (m1, . . . ,mR)
is the set of bond dimensions associated to the edges of Γ. For the local structure of
the graph tensor (2.2) and for Remark 2.1.2, every edge is associated to Cmj∗ ⊗ Cmj .
Denote by αj the formal index associated to the vector space Cmj (and Cmj∗) for j =
1, . . . , R, i.e. αj ∈ {1, . . . ,mj} and define the set of all indices associated to the (edges
of the) underlining graph: α = {α1, . . . , αR}. Consider a vertex i ∈ v(Γ) and assume
e1, . . . , ek 3 i, i.e. e1, . . . , ek are the edges incident to vertex i ∈ v(Γ). We denote by
α|i := {α1, . . . , αk} = {αj : ej 3 i} the corresponding set of indices.

e3

e1 e2

1

2 3 m3

m1 m2

1

2 3 α3

α1 α2

1

2 3

Figure 2.3: Pictorial example of Remark 2.1.6. Let Γ be the triangle graph with e(Γ) =
{e1, e2, e3}. The set of indices associated to Γ is α = {α1, α2, α3}, αi = 1, . . . ,mi, with mi bond
dimension associated to edge ei. Then α|1 = {α1, α2}, α|2 = {α1, α3}, α|3 = {α2, α3}. Every
αj for j = 1, 2, 3 belongs to two sets α|i ,α|k , with i 6= k.

Let i ∈ v(Γ) be a vertex of Γ and assume e1, . . . , ek 3 i, i.e. e1, . . . , ek are the edges
incident to vertex i ∈ v(Γ). By Notation 2.1.6 we denote the corresponding set of indices
by α|i := {α1, . . . , αk} = {αj : ej 3 i} and we define

eα|i := eα1 ⊗ · · · ⊗ eαk ∈
k⊗
j=1

Cmj 'Wi.

With this notation, we can fix a basis {eα|i} of Wi =
⊗

e3i Cme , for every vertex
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i = 1, . . . , d. The graph tensor can be written as

T (Γ,m) =
∑
α∈α

d⊗
i=1

eα|i ∈
d⊗
i=1

Wi.

Remark 2.1.7. For construction, every index αj ∈ {α|i} is such that αj ∈ {α|k}, for
one and only one k ∈ {1, . . . , d}, k 6= i.

We fix the basis {vj}nij=1 of Vi and we denote by {e∗α|i} the basis of W ∗i . Then Xi ∈
Hom(Wi, Vi) 'W ∗i ⊗ Vi is written in coordinates as

Xi =

ni∑
j=1

∑
α∈α|i

(Xi)
j
α|i
e∗α|i
⊗ vj .

The tensor T = (X1 ⊗ · · · ⊗Xd) · T (Γ,m) in these coordinates is

T = (X1 ⊗ · · · ⊗Xd) ·

(∑
α∈α

d⊗
i=1

eα|i

)

=

 n1,...,nd∑
j1,...,jd=1

∑
α∈α|1

· · ·
∑
α∈α|d

(X1)j1α|1
. . . (Xd)

jd
α|d
e∗α|1
⊗ · · · ⊗ e∗α|d ⊗ vj1...jd

 ·∑
α∈α

d⊗
i=1

eα|i

=

n1,...,nd∑
j1,...,jd=1

∑
α∈α

∑
α∈α|1

· · ·
∑
α∈α|d

(X1)j1α|1
. . . (Xd)

jd
α|d
e∗α|1

(eα|1 )⊗ · · · ⊗ e∗α|d (eα|d
)

⊗ vj1...jd
=

n1,...,nd∑
j1,...,jd=1

(∑
α∈α

(X1)j1α|1
. . . (Xd)

jd
α|d

)
vj1 ⊗ · · · ⊗ vjd , (2.5)

where the internal sum is taken accordingly to the given rule of Remark 2.1.7.

2.1.1 Another construction of the tensor network variety

By Definition 2.1.4, an element of TNSΓ◦
m,n is given by the application of a multilinear map

on a specific tensor, i.e. the graph tensor, given in Equation (2.1). The most common
construction of the tensor network variety consists instead in building an element of
TNSΓ◦

m,n as the contraction of a collection of tensors in a way prescribed by the given
graph, see for example [Orú14, LQY12]. More precisely, let Γ = (v(Γ), e(Γ)) be an
undirected simple graph. To every vertex v ∈ v(Γ) we associate a tensor Xv ∈ Cnv ⊗⊗

e3v Cme , with n = (nv : v ∈ v(Γ)) local dimensions and m = (me : e ∈ e(Γ)) bond
dimensions. We get a collection of tensors, one for each vertex. We consider the tensor
product of all these tensors⊗

v∈v(Γ)

Xv ∈
⊗
v∈v(Γ)

Cnv ⊗
⊗
e∈e(Γ)

(Cme ⊗ Cme) .
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Then a contraction map contracts Cme with its dual Cme∗, for every e ∈ e(Γ), (after
the identification of one copy of Cme with its dual Cme∗). Finally, an element of the
tensor network variety is defined as the image of the application of the contraction map
on the element

⊗
v∈v(Γ)Xv. We describe the second construction in detail since it will

be used in the thesis and we show that the two definitions of tensor network varieties are
equivalent.

Firstly, we recall the notion of contraction map between isomorphic vector spaces.

Definition 2.1.8. Let V be a vector space over C. The contraction map between V and
the dual space V ∗ := Hom(V,C) is the linear map

C : V ∗ ⊗ V → C

f ⊗ w 7→ f(w),

given by the bilinear form

V ∗ × V → C

(f, w) 7→ f(w).

Let {vi}ni=1 be a basis of V , then f =
∑n

i=1 fiv
∗
i ∈ V ∗ and w =

∑n
i=1wivi ∈ V , for

fi, wi ∈ C, i = 1, . . . , n. By linearity

C(f ⊗ w) = C(

n∑
i,j=1

fiv
∗
i ⊗ wjvj) =

n∑
i,j=1

fiwj C(v∗i ⊗ vj)

=
n∑

i,j=1

fiwj · v∗i (vj) =
n∑

i,j=1

δi,j · fiwj =
n∑
i=1

fiwi.

Definition 2.1.9. Given two tensor spaces W = W1 ⊗ · · · ⊗Wm and V = V1 ⊗ · · · ⊗ Vn
such that W1 ' V ∗1 , the contraction map between V ∗1 and W1 is C : W ⊗V →W2⊗· · ·⊗
Wn ⊗ V2 ⊗ · · · ⊗ Vn, given by the bilinear map defined on rank 1 tensors as follows

W × V →W2 ⊗ · · · ⊗Wn ⊗ V2 ⊗ · · · ⊗ Vn
(w1 ⊗ · · · ⊗ wm, v1 ⊗ · · · ⊗ vn) 7→ (w1(v1))(w2 ⊗ · · · ⊗ wm ⊗ v2 ⊗ · · · ⊗ vn).

Fix a basis of V1 and the dual basis of V ∗1 and let Ti1...in and Sj1...jm be the coordinates
of tensors T ∈ V and S ∈ W , respectively. Then their contraction is C(S ⊗ T ) = C ∈
W2 ⊗ · · · ⊗Wn ⊗ V2 ⊗ · · · ⊗ Vn with coordinates given by

Cj2...jmi2...in =

dim(V1)∑
k,l=1

δkl Slj2...jmTki2...in

=

dim(V1)∑
k=1

Skj2...jmTki2...in . (2.6)
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Contraction map. Given the data of the tensor network (Γ,m,n), we have defined
for every vertex i ∈ v(Γ) the vector space

Wi =
⊗
e3i

Ume .

with either Ume = Cme or the dual copy Ume = Cme∗.

By the isomorphism Hom(Wi, Vi) 'W ∗i ⊗Vi, the element Xi ∈ Hom(Wi, Vi) can be seen
as a matrix Xi ∈W ∗i ⊗ Vi, for every i = 1, . . . , d.

Fix an edge e′ ∈ Γ. For construction, see Remark 2.1.7, we can select two vertices
j, k ∈ v(Γ), j 6= k, such that Cme′ is a factor of Wj and (Cme′ )∗ is a factor of Wk. We
highlight this two factors of the domain of the map:

d⊗
i=1

(W ∗i ⊗ Vi) = (W ∗1 ⊗ V1)⊗ · · · ⊗ (W ∗j ⊗ Vj)⊗ · · · ⊗ (W ∗k ⊗ Vk)⊗ · · · ⊗ (W ∗1 ⊗ V1)

' (W ∗1 ⊗ V1)⊗ · · · ⊗
(⊗
e3j

Ue ⊗ Vj
)
⊗ · · · ⊗

(⊗
e3k

Ue ⊗ Vk
)
⊗ · · · ⊗ (W ∗1 ⊗ V1)

' (Cme′ ⊗
⊗
e3j
e6=e′

Ue ⊗ Vj)⊗
(

Cme′ ∗ ⊗
⊗
e3k
e6=e′

Ue ⊗ Vk
)
⊗

d⊗
i=1
i 6=j,k

(W ∗i ⊗ Vi)

' (Cme′ ∗ ⊗ Cme′ )⊗
(⊗
e3j
e6=e′

Ue ⊗ Vj
)
⊗
(⊗
e3k
e6=e′

Ue ⊗ Vk
)
⊗

d⊗
i=1
i 6=j,k

(W ∗i ⊗ Vi)

This can be done for every edge e′ ∈ e(Γ) of the graph leading to
d⊗
i=1

(W ∗i ⊗ Vi) '
⊗
e∈e(Γ)

(Cme∗ ⊗ Cme)⊗
d⊗
i=1

Vi.

Finally, we consider the contraction map:

φ :

d⊗
i=1

(W ∗i ⊗ Vi) '
⊗
e∈e(Γ)

(Cme∗ ⊗ Cme)⊗
d⊗
i=1

Vi → V1 ⊗ · · · ⊗ Vd, (2.7)

which, for every e ∈ e(Γ), contracts the factors Cme∗ ⊗ Cme , as prescribed in Definition
2.1.9. The image of contraction map φ will be written in coordinates in the proof of the
following proposition.

Proposition 2.1.10. The map φ is well defined and the definition of the tensor network
variety associated to (Γ,m,n) given in Definition 2.1.4 is equivalently given by

TNSΓ
m,n =

{
T ∈ V1 ⊗ · · · ⊗ Vd : T = φ(X1 ⊗ · · · ⊗Xd), Xi ∈W ∗i ⊗ Vi

}
,

where the closure can be taken equivalently either in the Euclidean or the Zariski topology.
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Proof. The contraction map given in Equation (2.7)

φ :

d⊗
i=1

(W ∗i ⊗ Vi) '
⊗
e∈e(Γ)

(Cme∗ ⊗ Cme)⊗
d⊗
i=1

Vi → V1 ⊗ · · · ⊗ Vd,

contracts, for every e ∈ e(Γ), the factors Cme∗ ⊗ Cme , as prescribed in Definition 2.1.9.
The map is well defined since for every vertex v ∈ v(Γ) and every edge incident to v,
e 3 v, there exists one and only one w ∈ e(Γ), w 6= v, w 3 e such that the vector space
Cme (factor of Wv) admits one isomorphic dual copy Cme∗ (factor of Ww).

Consider the restriction of φ to Im (µ) ⊂ Hom(W1 ⊗ · · · ⊗Wd, V1 ⊗ · · · ⊗ Vd) ' (W ∗1 ⊗
V1)⊗ · · · ⊗ (W ∗d ⊗ Vd), c.f. Equation (2.3), which is given by:

φ : Hom(W1, . . . ,Wd;V1, . . . , Vd)→ V1 ⊗ · · · ⊗ Vd
(X1 ⊗ · · · ⊗Xd) 7→ φ(X1 ⊗ · · · ⊗Xd).

with Xj ∈W ∗j ⊗ Vj for every j = 1, . . . , d. Clearly we have that

Im (φ) =

{
T ∈ V1 ⊗ · · · ⊗ Vd : T = φ(X1 ⊗ · · · ⊗Xd), Xi ∈W ∗i ⊗ Vi

}
.

The maps φ and the parametrization of the variety Φ of Equation (2.4) have the same
domain and the same codomain. If we prove that Im (φ) = Im (Φ), then also their
closure will coincide and we can conclude.

Let T ∈ Im (φ), T = φ(X1⊗ · · · ⊗Xd), for some Xi ∈W ∗i ⊗ Vi. We fix the basis {vj}nij=1

of Vi and we denote by {e∗α|i} the basis of W ∗i ; see Notation 2.1.6. Then Xi ∈ W ∗i ⊗ Vi
is written in coordinates as

Xi =

ni∑
j=1

∑
α∈α|i

(Xi)
j
α|i
e∗α|i
⊗ vj .

Following the indices contraction given in Definition 2.1.9, Equation (2.6), it is now
straightforward to see that T = φ(X1 ⊗ · · · ⊗Xd) is

T =

n1,...,nd∑
j1,...,jd=1

(∑
α∈α

(X1)j1α|1
. . . (Xd)

jd
α|d

)
vj1 ⊗ · · · ⊗ vjd ,

where the sum is taken over all indices of α = {α1, . . . , αR}, accordingly to Remark 2.1.7.

Finally, by the canonical isomorphisms ιj : W ∗j ⊗ Vj → Hom(Wj , Vj) we have that, if
T ∈ Im (φ), T = φ(X1 ⊗ · · · ⊗Xd), for Xj ∈ W ∗j ⊗ Vj , j = 1, . . . , d, then T ∈ Im (Φ),
T = (X ′1 ⊗ · · · ⊗X ′d) · T (Γ,m), for X ′j ' ιj(Xj) ∈ Hom(Wj , Vj), with j = 1, . . . , d, c.f.
Equation (2.5).
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Vice versa, if T ∈ Im (Φ), T = Φ(X1 ⊗ · · · ⊗ Xd) = (X1 ⊗ · · · ⊗ Xd) · T (Γ,m), for
Xj ∈ Hom(Wj , Vj), j = 1, . . . , d, then T ∈ Im (φ), T = φ(X ′1 ⊗ · · · ⊗ X ′d), for X ′j '
ι−1
j (Xj) ∈W ∗j ⊗ Vj , j = 1, . . . , d.

Therefore Im (φ) = Im (Φ), and this concludes the proof.

2.1.2 Matrix product states

We explicitly compute the image of the maps Φ and φ for the tensor network variety
associated to the cyclic graph and known as matrix product state. From the viewpoint
of the second construction presented, the matrix product state variety is determined by
the contraction of tensors of order 3 (usually denoted by the letter A instead of X).

1

d 2

k

k + 1 k − 1

e1

e2

ek

ed

Figure 2.4: The cyclic graph Cd, with d vertices v(Γ) = {1, . . . , d} and d edges e = {e1, . . . , ed},
such that ei = {i, i+ 1}, i = 1, . . . , d.

Consider the cyclic graph Γ with d vertices v(Γ) = {1, . . . , d} and d edges e = {e1, . . . , ed}.
Every edge ei ∈ e(Γ) is such that ei = {i, i+1}, i.e. it connects the vertices i and (i+1),
with vertices d+ 1 and 1 identified, see Figure 2.4. For every edge ei ∈ e(Γ), fix mi ∈ N.

Fix the bases {ej(i) : j = 1, . . . ,mi} and {e(i+1)
j : j = 1, . . . ,mi} of Cmi∗ and Cmi

respectively and v
(k)
0 , a generator of C1 for k 6= i, i + 1. We define the unit tensor on

ei ∈ e(Γ), as

uei(mi) =

mi∑
j=1

ej(i) ⊗ e
(i+1)
j ⊗ (

⊗
k 6=i,i+1

v
(k)
0 ) ∈ Cmi∗ ⊗ Cmi ⊗ (

⊗
k 6=i,i+1

C1).

In this case, we explicitly compute the graph tensor

T (Γ,m) = �d
i=1u(ei)(mi)

=
∑

ji=1...,mi
i=1...,d

(e
(1)
jd
⊗ ej1(1))⊗ (e

(2)
j1
⊗ ej2(2))⊗ · · · ⊗ (e

(d)
jd−1
⊗ ejd(d)) ∈

d⊗
i=1

Wi.
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The local structure on the vertex k ∈ v(Γ) is given by

Wk = Cmk−1 ⊗ Cmk∗,

with the convention Cm0 = Cmd ; we refer to Figure 2.5 for a pictorial representation.

k

(Cmk∗ ⊗ Cmk) � (Cmk−1∗ ⊗ Cmk−1)

k + 1 k − 1
� k

Cmk ⊗ (Cmk∗ ⊗ Cmk−1)⊗ Cmk−1∗

k + 1 k − 1

Figure 2.5: Pictorial representation of the spaces associated to the edges of the graph (left)
and then associated to the vertices of the graph (right), after the Kronecker product.

We fix d complex vector spaces Vi of dimension ni, for i = 1, . . . d, and the respective
canonical bases {v(i)

j : i = 1, . . . , d, j = 1, . . . ni}.

We identify X ′j = ι−1
j (Xj) ' Xj via the isomorphism ιj : W ∗j ⊗ Vj → Hom(Wj , Vj) and

we show Φ(X1 ⊗ · · · ⊗Xd) = (X1 ⊗ · · · ⊗Xd) · T (Γ,m) = φ(X1 ⊗ · · · ⊗Xd).

In what follows, we use the Einstein convention, i.e. there is implicit summation over
an index variable appearing twice. The elements Xi ∈ Hom(Wi, Vi) ' W ∗i ⊗ Vi '
Cmi−1∗ ⊗ Cmi ⊗ Vi can be written in coordinates as

Xi = (xi)
α,γ
β eβ(i) ⊗ e

(i)
α ⊗ v(i)

γ .

We recall that e(i)
α (eβ(i+1)) = δ(i)βα = eβ(i+1)(e

(i)
α ). It is straightforward to see that an

element in the image of Φ is given by

(X1 ⊗ · · · ⊗Xd) · T (Γ,m) =
[
(x1)α1γ1

αd
(x2)α2γ2

α1
. . . (xd)

αdγd
αd−1

]
v(1)
γ1
⊗ · · · ⊗ v(d)

γd

= Tr(Xγ1
1 · · ·X

γd
d )v(1)

γ1
⊗ · · · ⊗ v(d)

γd
.

Now, the domain of the contraction map φ can be reshaped into

d⊗
k=1

(W ∗i ⊗Vi) '
d⊗

k=1

(Cmi−1∗ ⊗Cmi ⊗Vi) ' (Cm1∗⊗Cm1)⊗V1⊗ · · ·⊗ (Cmd∗⊗Cmd)⊗Vd.

The map φ and its restriction φ are defined by contracting the spaces Cmi∗ ⊗ Cmi for
every i = 1, . . . , d

φ : (Cm1∗ ⊗ Cm1)⊗ V1 ⊗ · · · ⊗ (Cmd∗ ⊗ Cmd)⊗ Vd → V1 ⊗ · · · ⊗ Vd
X1 ⊗ · · · ⊗Xd 7→ φ(X1 ⊗ · · · ⊗Xd).
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Each contraction generates a Kronecker delta δ(i)βiαi , as shown in Equation (2.6). In
coordinates we get

φ

(
d⊗

k=1

(xi)
αi,γi
βi−1

e
βi−1

(i) ⊗ e
(i)
αi ⊗ v

(i)
γi

)
=
[
(x1)αd,γ1

α1
(x2)α1,γ2

α2
. . . (xd)

αd−1,γd
αd

]
v(1)
γ1
⊗ · · · ⊗ v(d)

γd

= Tr
(
Xγ1

1 · · ·X
γd
d

)
v(1)
γ1
⊗ · · · ⊗ v(d)

γd
.

2.1.3 Hypergraph and secant varieties of Segre variety

In this thesis, we always restrict to simple graphs but the theory generalizes to more
general notions of graphs; we refer to [CLVW20, CGMZ21] for the definitions and the
basics in the general setting. In this subsection, we state the definition of tensor network
variety associated to a hypergraph and we show that secant varieties of the Segre variety,
c.f. 1.1.1, can be seen as tensor network varieties. The proof of the equivalence between
secant varieties of the Segre variety and a tensor network variety associated to particular
tensor networks is based on a characterization of tensors of bounded border rank given
in [Lan17, CGMZ21].

Definition 2.1.11. An undirected hypergraph H is a pair H = (v(H), E(H)) where
v(H) is the set of vertices, and E(H) is a set of non-empty subsets of v(H) called
hyperedges. Therefore, E(H) is a subset of P(v(H)) \ {∅}, where P(v(H)) denotes the
power set of v(H), i.e. the set of all the subsets of v(H).

2

1

5

6

7

8

3 4

Figure 2.6: The hypergraph H, with v(H) = {1, . . . , 8} and E(H) = {I1, I2, I3, I4}, with
I1 = {1, 2, 3, 4, 5}, I2 = {5, 6, 7}, I3 = {1, 3, 5} and (simple edge) I4 = {2, 8}.

Let H = (v(H), E(H)) be a hypergraph, with vertex set v(H) = {1, . . . , d} and edge set
E(H); see Figure 2.6 for a pictorial representation. For every hyperedge I ∈ E(H), let
mI ∈ N be an integer weight.

For every hyperedge I = {i1, . . . , ip} ∈ E(H), define the tensor

u(I)(mI) :=

mI∑
j=1

e
(i1)
j ⊗ · · · ⊗ e(ip)

j ⊗
⊗
i′ /∈I

e
(i′)
0 ∈

⊗
i∈I

CnI ⊗
⊗
i′ /∈I

C1,

where e(i)
1 , . . . , e

(i)
mI is a basis of CnI for every i ∈ I, and e(i′)

0 is a fixed basis element of
C1 for i′ /∈ I.
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Definition 2.1.12. The graph tensor associated to the hypergraph H = (v(H), E(H))
with weights m = (mI : I ∈ E(H)) is defined as the Kronecker product

T (Γ,m) := �I∈E(H)u(I)(mI).

In this way T (H,m) is a d-tensor in W1⊗ · · · ⊗Wd whose j-th factor has local structure
Wj =

(⊗
I3j CmI

)
⊗
(⊗

I 63j C1
)
and has dimension dimWj =

∏
I3j nI .

Let ni ∈ N be integers associated to the vertices of H and let Vi = Cni . Write n =
(ni)i=1,...,d for the d-uple of dimensions of the vector spaces Vi. Definition 2.1.4 can be
restated in the case in which H is a hypergraph.

Definition 2.1.13. The tensor network variety in V1⊗ · · · ⊗Vd associated to the tensor
network (H,m,n) is defined as

TNSHm,n =

{
T ∈ V1 ⊗ · · · ⊗ Vd : T = (X1 ⊗ · · · ⊗Xd) · T (H,m), Xj ∈ Hom(Wj , Vj)

}
,

where the closure can be taken equivalently either in Euclidean or Zariski topology.

Remark 2.1.14. The variety TNSHm,n is invariant under the action of G = GL(V1) ×
· · · ×GL(Vd), defined by

(g1, . . . , gd) · ((X1 ⊗ · · · ⊗Xd) · T (H,m)) = ((g1X1)⊗ · · · ⊗ (gdXd)) · T (H,m),

with (g1, . . . , gd) ∈ G.

We recall the definition of degeneration of a tensor T ∈ V1⊗ · · · ⊗ Vd under the action of
G =×d

i=1GL(Vi), c.f. [Lan17, CGMZ21].

Definition 2.1.15. Given two tensors T, S ∈ V1⊗· · ·⊗Vd, we say that T is a degeneration
of S, and write T � S, if

T ∈ G · S
that is, T belongs to the closure (equivalently either in Zariski or Euclidean topology) of
the G-orbit of S.

Definition 2.1.16. Let Vi = Cr, for every i = 1, . . . , d. The d-tensor or rank-r unit
tensor is defined as

ud(r) =
r∑
j=1

e
(1)
j ⊗ · · · ⊗ e

(d)
j ∈ (Cr)⊗d, (2.8)

where {e(i)
1 , . . . , e

(i)
r } is a fixed basis of Vi.

We have the following characterization of tensors of bounded border rank in terms of
degeneration of the unit tensor, c.f. [Lan17, Section 3.3.1]. Given T ∈ (Cr)⊗d, then

brk(T ) ≤ r iff T � ud(r).

This equivalence leads directly to the following Proposition.
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Proposition 2.1.17. Let V = V1⊗· · ·⊗Vd, such that dim(Vi) = ni+1 and let Sn1,...,nd ⊆
PV be the Segre variety. Let r ∈ N be such that r ≤ min{ni + 1 : i = 1, . . . , d}. Then

σr(Sn1,...,nd) = TNSHdr,n,

where Hd = (v(Hd), E(Hd)) is the hypergraph with d vertices v(Hd) = {1, . . . , d} and
E(Hd) = {I}, one single hyperedge I = {1, . . . , d} of associated weight r ∈ N.

2

1

5

3 4

Figure 2.7: Example of a hypergraph with only one hyperedge: the graph is H5, with v(H5) =
{1, 2, 3, 4, 5} and E(H5) = {I}, with only one hyperedge I = {1, 2, 3, 4, 5} containing all the
vertices.

Proof. We simply notice that T (Hd, r) = ud(r). Indeed, since there is only one hyperedge
I = {1, . . . , d}, of weight r ∈ N, connecting all the vertices of Hd, the graph tensor
coincides with the unit tensor defined on hyperedge I:

T (Hd, r) = uI(mI) =
r∑
j=1

e
(1)
j ⊗ · · · ⊗ e

(d)
j ∈ (Cr)⊗d ⊆

d⊗
i=1

(Cni),

which is exactly ud(r), c.f. (2.8). By construction

TNS(Hd, r,n) = (GLr × · · · ×GLr) · T (Hd, r)
= (GLr × · · · ×GLr) · ud(r).

Therefore, given T ∈ (Cr)⊗d, then T ∈ TNS(Hd, r,n) if and only if T �ud(r) if and only
if brk(T ) ≤ r if and only if T ∈ σr(Sn1,...,nd G(X)).

2.2 Gauge subgroup

From now on the graph we consider is always an undirected simple graph, see Definition
2.1.1. In this section, we define the gauge subgroup, which is a group acting on the vector
spaces associated to the edges of the graph. This means that the gauge subgroup acts
on both the graph tensor and the factor Wv of Xv, for every v ∈ v(Γ), i.e. it acts on
both the graph tensor and the domain of the Parametrization (2.4). The gauge subgroup
will be a fundamental object in Chapter 3 because the study of its action on the domain
of the parametrization will lead to determine an upper bound on the dimension of the
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tensor network variety and an exact value of the dimension in a particular range of the
parameters.

Let Γ be a graph and m = (me : e ∈ e(Γ)) be a collection of bond dimensions. Let
T = T (Γ,m) ∈W1⊗ · · ·⊗Wd be the associated graph tensor. Fix an edge e = {i1, i2} ∈
e(Γ): by definition of T (Γ,m) there exist vector spaces Ue, W ′i1 ,W

′
i2

such that Wi1 =
Ue ⊗W ′i1 , and Wi2 = U∗e ⊗W ′i2 where dimUe = me and the tensor product structure
depends on the local structure at the vertices i1 and i2, see Figure 2.8. The group
GL(Ue) × GL(U∗e ) acts on the factor Ue ⊗ U∗e of Wi1 ⊗ Wi2 with kernel the central
subgroup Ze = {(λIdUe , λ

−1IdU∗e ) : λ ∈ C∗}.

e

W ′i1 ⊗ Cme ⊗ Cme∗ ⊗W ′i2

i1 i2

Figure 2.8: Fix an edge e ∈ e(Γ) and me bond dimension. The vector space Ue is either Cme

or Cme∗.

This defines a homomorphism

Ψe : (GL(Ue)×GL(U∗e ))/Ze → GL(Wk1 ⊗Wk2)→ G(Wk : k ∈ v(Γ)).

We recall that the group G(Wk : k ∈ v(Γ)) is a subgroup of GL(
⊗

k∈v(Γ)Wk) acting
faithfully on

⊗
k∈v(Γ)Wk; c.f. Equation (1.1), where the group G(Wk : k ∈ v(Γ)) is

defined.

As e varies among the edges of Γ, the images of the different Ψe’s commute and therefore
they induce a homomorphism

Ψ : ×
e∈e(Γ)

(GL(Ue)×GL(U∗e ))/Ze → G(Wk : k ∈ v(Γ)), (2.9)

which turns out to be injective. Regrouping the factors, we can write

Im (Ψ) =

[
×

v∈v(Γ)

Hv

]
/

[
×
e∈e(Γ)

Ze

]

where Hv =×v3eGLme ; here GLme is GL(Ue) or GL(U∗e ) depending on whether Ue or
U∗e is the tensor factor appearing in Wv. With abuse of notation, we will denote by Hv

the quotient
〈
Hv,

[×e∈e(Γ) Ze
]〉
/
[×e∈e(Γ) Ze

]
⊆ Im (Ψ) as well, where for subgroups

H,K, one denotes by 〈H,K〉 the subgroup generated by H and K.

Let GL∆
me ⊆ GL(Ue) × GL(U∗e ) be the subgroup lying “diagonally”, that is GL∆

me =

{(A,A−1T ) ∈ GL(Ue)×GL(U∗e ) : A ∈ GL(Ue)}; its image under the homomorphism Ψe

is a copy of PGLme ⊆ G(W1, . . . ,Wd) called gauge subgroup on the edge e.
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The image of the homomorphism Ψ restricted to×eGL
∆
me is a subgroup

GΓ,m ' ×
e∈e(Γ)

PGLme ⊆ G(Wk : k ∈ v(Γ))

called gauge subgroup of Γ with bond dimensions m. Denote by gΓ,m the Lie algebra of
the gauge subgroup GΓ,m of Γ.

Definition 2.2.1. Consider the vertex v ∈ v(Γ). Regard Xv ∈ Hom(Wv, Vv) as a tensor
in W ∗v ⊗ Vv =

(⊗
e3v Ue

)
⊗ Vv, where Ue = Cme or Ue = Cme∗.

Suppose {e ∈ e(Γ) : e 3 v} = {e1, . . . , ek}, with associated bond dimensions (mej )j=1,...,k.
Given gv = (gme1 , . . . , gmek ) ∈×e3v PGLme ⊆ GΓ,m, define

gv ·Xv = Xv

(
gme1 ⊗ · · · ⊗ gmek

)
∈
⊗
e3v

Ue ⊗ Vv.

Let g ∈ GΓ,m and X = X1 ⊗ · · · ⊗ Xd ∈ Hom(W1, . . . ,Wd;V1, . . . , Vd), then the gauge
action is given by

g ·X = (gv1 ·X1)⊗ · · · ⊗ (gvd ·Xd).

The action of GΓ,m is trivial on
⊗

v∈v(Γ) Vv, and, for every v ∈ v(Γ), it is the multilinear
multiplication of gv on the factor Wv of Xv.

Example 2.2.2. Let Γ be the path graph with two vertices v(Γ) = {1, 2} and a single
edge e = {1, 2}. Fix m = (m) and n = (n1, n2). Then the graph tensor is T (Γ,m,n) =∑m

j=1 e
(1)
j ⊗ e

(2)
j ∈ Cm ⊗ Cm. Given X = X1 ⊗X1 ∈ Hom(Cm,Cm;V1, V2), then

Φ(X1 ⊗X2) = (X1 ⊗X2) ·
m∑
j=1

e
(1)
j ⊗ e

(2)
j =

m∑
j=1

X1(e
(1)
j )⊗X2(e

(2)
j )

=
m∑
j=1

X1(e
(1)
j )(X2(e

(2)
j ))t =

m∑
j=1

X1(e
(1)
j )(e

(2)
j )tXt

2

= X1(Idm)Xt
2 = X1X

t
2.

Given A ∈ PGLm = GΓ,m, the action given in Definition 2.2.1 is

A ·X = (X1A
−1)⊗ (X2A

t).

Notice that Φ(X1A
−1)⊗ (X2A

t) = X1A
−1AXt

2 = X1X
t
2 = Φ(X1 ⊗X2).

2.3 Isotropy group of the graph tensor

The main result of this section states that the identity component of the isotropy group
of the graph tensor GT (Γ,m) coincides with the gauge subgroup. Equivalently, the graph
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tensor is stabilized only by the gauge subgroup. In order to claim this, we prove that the
isotropy Lie algebra of the graph tensor T (Γ,m) coincides with Lie algebra of the gauge
subgroup. We refer to Chapter 1, Section 1.1.2, for definitions and results on the isotropy
group of tensors under the action of products of linear groups. The result generalizes
the known result for the iterated matrix multiplication tensor [dG78, Ges16], that is the
graph tensor associated to the cycle graph. We prove a more general form of this fact
in Theorem 2.3.3; the result on graph tensors will follow via an inductive argument in
Corollary 2.3.4.

The following result is immediate from the definitions:

Lemma 2.3.1. The gauge subgroup on the edge e ∈ e(Γ), PGLme ⊆ G(W1, . . . ,Wd),
stabilizes T (Γ,m).

Proof. Let e = {i1, i2}, so that PGLme only acts on the copy of Ue ⊗ U∗e ⊆ Wi1 ⊗Wi2 .
In fact, because of the structure of T (Γ,m), PGLme only acts on the Kronecker factor
ue = Id

(i1,i2)
me ⊗

(⊗
j 6=i1,i2 v

(j)
0

)
∈ Ue ⊗ U∗e ⊗

⊗
j 6=i1,i2 C1.

For A ∈ PGLme , we have A · ue = (A−1Id
(i1,i2)
me A) ⊗

(⊗
j 6=i1,i2 v

(j)
0

)
= ue. Therefore

PGLme stabilizes ue.

Corollary 2.3.2. The graph tensor T (Γ,m) is stabilized by GΓ,m.

Theorem 2.3.3. Let T ′ ∈ C1 ⊗
⊗d

j=1W
′
j be a concise tensor of order d + 1. Let

Σ = (v(Σ), e(Σ)) be a the graph on d + 1 vertices v(Σ) = {0, . . . , d} with edge set
e(Σ) = {e1, . . . , ek}, where ej = {0, j}. Let m = (mj : j = 1, . . . , k) be a set of bond
dimensions on Σ. Let

S := T (Σ,m) ∈ Cm1···mk ⊗ Cm1 ⊗ · · · ⊗ Cmk ⊗ C1 ⊗ · · · ⊗ C1

be the associated graph tensor. Let T = S � T ′ ∈ V0 ⊗ · · · ⊗ Vd. Then

gT = hT ′ + gΣ,m ⊆ g(V0, . . . , Vd)

where gΣ,m is the Lie algebra of the gauge subgroup GΣ,m of Σ and hT ′ is the isotropy
Lie algebra of T ′ in g(C1,W ′1, . . . ,W

′
d).

A pictorial representation of the tensor T of Theorem 2.3.3 is given in Figure 2.9.

Proof. The inclusion hT ′ + gΣ,m ⊆ gT is immediate.

For j = 1, . . . , k, write Vj = Uj⊗W ′j where Uj = Cmj . Write V0 = C1⊗U∗1 ⊗· · ·⊗U∗k . For
j = 1, . . . , k, let {ujij : ij = 1, . . . ,mj} be a basis of the Uj ; let {u0

i1,...,ik
: ij = 1, . . . ,mj}

be the basis of V0 ' U∗1⊗· · ·⊗U∗k dual to the induced basis {u1
i1
⊗· · ·⊗ukik : ij = 1, . . . ,mj}

of U1 ⊗ · · · ⊗ Uk. Therefore

S =
∑
i1,...,ik

u
(0)
i1,...,ik

⊗ u(1)
i1
⊗ · · · ⊗ u(k)

ik
⊗ uk+1

0 ⊗ · · · ⊗ ud0
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...
0

1

2

k

k + 1, . . . , d

...

S T ′

T = �

Figure 2.9: The tensor T in Theorem 2.3.3: the Kronecker product of the tensor S, associated
to the star graph e(Σ) centered at vertex 0, and a tensor T ′ whose 0-th factor is 1-dimensional.

where for j = k + 1, . . . , d, uj0 is a generator of the corresponding C1 factor.

Let X = (X0, . . . , Xd) ∈ g(V0, . . . , Vd). Suppose X ∈ gT , that is X.T = 0. By Leibniz’s
rule X.T =

∑d
j=0Xj .T = 0.

Write X0 = ((x0)
i′1,...,i

′
k

i1,...,ik
) in the chosen basis: we have

X0.T = (X0.S) � T ′ =

 ∑
i1,...,ik
i′1,...,i

′
k

(x0)
i′1,...,i

′
k

i1,...,ik
u0
i′1,...,i

′
k
⊗ u1

i1 ⊗ · · · ⊗ u
k
ik

� T ′.

For j = 1, . . . , k, writeXj ∈ gl(Vj) asXj =
∑

∆
(ρ)
j �Θ

(ρ)
j where ∆

(ρ)
j = ((δρ,j)

ij
i′j

) ∈ gl(Uj)

and Θ
(ρ)
j ∈ gl(W ′j); then

Xj .T =
∑
ρ

[
∆

(ρ)
j .S

]
�
[
Θ

(ρ)
j .T ′

]
=

=
∑
ρ

 ∑
i1,...,ik,i

′
j

u0
i1,...,ik

⊗ u1
i1 ⊗ · · · ⊗ (δρ,j)

ij
i′j
ujij ⊗ · · · ⊗ u

k
ik

�
[
Θ

(ρ)
j .T ′

]
.

If j > k, then Vj = C1 ⊗W ′j and we have Xj .T = S �Xj .T
′.

For indices i∗1, . . . , i∗k, ı̃1, . . . , ı̃k, write X.T = u0
i∗1,...,i

∗
k
⊗u1

ı̃1
⊗· · ·⊗ukı̃k �T

i∗1,...,i
∗
k

ı̃1,...,̃ık
for tensors

T
i∗1,...,i

∗
k

ı̃1,...,̃ık
∈ W ′1 ⊗ · · · ⊗W ′d. Since u0

i∗1,...,i
∗
k
⊗ u1

ı̃1
⊗ · · · ⊗ ukı̃k are linearly independent, the

condition X.T = 0 is equivalent to T i
∗
1,...,i

∗
k

ı̃1,...,̃ık
= 0 for every i∗1, . . . , i∗k, ı̃1, . . . , ı̃k.

Note that if (i∗1, . . . , i
∗
k) and (̃ı1, . . . , ı̃k) differ in at least two entries, then T i

∗
1,...,i

∗
k

ı̃1,...,̃ık
only

depends on X0: indeed, the summands Xj .T for j 6= 0 only give rise to terms where
(i∗1, . . . , i

∗
k) and (̃ı1, . . . , ı̃k) differ in at most one entry. Write X0 = X ′0 + X ′′0 where X ′0

is the component where (i∗1, . . . , i
∗
k) and (̃ı1, . . . , ı̃k) differ in at least two entries and X ′′0
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is the complementary component. In particular, X ′0 is the only component of X which
contributes to T i

∗
1,...,i

∗
k

ı̃1,...,̃ık
when the two sets of indices differ in at least two entries. By

linearity, the discussion above shows X ′0.T = 0. Since T is concise, Lemma 1.1.20 implies
that X ′0 = 0. This shows

X0 = Y1 ⊗ idU∗2⊗···⊗U∗k + · · ·+ idU∗1⊗···⊗U∗k−1
⊗ Yk

with Yj ∈ gl(U∗j ). Hence, we may renormalize X using gΓ,m and obtain X0 = 0. In
particular, we reduced the analysis to X ∈ g(Vj : j 6= 0).

Consider X ∈ gT ∩ g(Vj : j 6= 0). By Lemma 1.1.20, we have

gT ∩ g(Vj : j 6= 0) =
⋂

R∈Im (Flat(T ))

gR, (2.10)

where Flat(T ) : V ∗0 → V1 ⊗ · · · ⊗ Vd is the 0-th flattening map. For indices (i1, . . . , ik),
write T ′(i1, . . . , ik) = Flat(T )(u

(0)
i1,...,ik

) = u
(1)
i1
⊗· · ·⊗u(k)

ik
�T ′. The intersection in (2.10)

can be reduced to a set of generators of Im (Flat(T )); therefore we obtain

gT ∩ g(Vj : j 6= 0) =
⋂

i1,...,ik

gT ′(i1,...,ik).

Since T ′(i1, . . . , ik) is not concise in V1⊗· · ·⊗Vd, we have gT ′(i1,...,ik) = hT ′(i1,...,ik)⊕pi1,...,ik ,
where hT ′(i1,...,ik) is the annihilator of T ′(i1, . . . , ik) in gl(〈u1

i1
〉 ⊗W ′1) ⊕ · · · ⊕ gl(〈ukik〉 ⊗

W ′k) ⊕ gl(Vk+1) ⊕ · · · ⊕ gl(Vd) and pi1,...,ik is the parabolic subspace which annihilates
(u1
i1
⊗W ′1)⊗ · · · ⊗ (ukik ⊗W

′
k)⊗ Vk+1 ⊗ · · · ⊗ Vd, that is

pi1,...,ik =
[
(〈u1

i1〉
⊥ ⊗W ′1

∗
)⊗ (U1 ⊗W ′1)

]
⊕ · · · ⊕

[
(〈ukik〉

⊥ ⊗W ′k
∗
)⊗ (Uk ⊗W ′k)

]
.

Since T ′(i1, . . . , ik) = u1
i1
⊗ · · · ⊗ ukik � T ′, we have

hT ′(i1,...,ik) = Id〈u1
i1
〉⊗···⊗〈ukik 〉

⊗ gT ′ ,

regarded as a subalgebra acting on the subspace u1
i1
⊗· · ·⊗ukik ⊗W

′
1⊗· · ·⊗W ′k⊗Vk+1⊗

· · · ⊗ Vd.

Observe that, as a subspace of End(V1 ⊗ · · · ⊗ Vd), we have

gT ′(i1,...,ik) =
[
Id〈u1

i1
〉⊗···⊗〈ukik 〉

⊗ gT ′
]
⊕ pi1,...,ik =

[
IdU1⊗···⊗Uk ⊗ gT ′

]
⊕ pi1,...,ik .

This follows directly from Leibniz rule and the fact that, for every i1, . . . , ik, IdU1⊗···⊗Uk =
Id〈u1

i1
⊗···⊗ukik 〉

+ Pi1,...,ik where Pi1,...,ik ∈ pi1,...,ik . We deduce

gT ∩ g(Vj : j 6= 0) =
⋂

i1,...,ik

[(IdU1⊗···⊗Uk ⊗ gT ′)⊕ pi1,...,ik ]

48



and by Lemma 1.1.18, we have gT∩g(Vj : j 6= 0) = (IdU1⊗···⊗Uk ⊗ gT ′)⊕
⋂
i1,...,ik

pi1,...,ik =
IdU1⊗···⊗Uk ⊗ gT ′ because

⋂
i1,...,ik

pi1,...,ik = 0.

This concludes the proof, as we showed

gT = gT + gΣ,m = gT ∩ g(Vj : j 6= 0) + gΣ,m = gT ′ + gΣ,m.

Applying Theorem 2.3.3 to graph tensors, we deduce the following result:

Corollary 2.3.4. Let Γ = (v(Γ), e(Γ)) be a graph with d vertices and let m = (me : e ∈
e(Γ)) be a set of bond dimensions on Γ. Let T := T (Γ,m) ∈

⊗d
j=1Wj be the associated

graph tensor. Then the isotropy Lie algebra of T coincides with Lie algebra of the gauge
subgroup of Γ; in symbols

gT = gΓ,m.

Proof. We proceed by induction on the number of vertices d. If d = 1, the statement is
clear as T is a single vector, with trivial isotropy Lie algebra.

Suppose Γ is a graph with d + 1 vertices and write v(Γ) = {0, . . . , d}. Let Σ be the
subgraph of Γ given by the edges incident to the vertex 0. In other words v(Σ) =
{0, . . . , d}, e(Σ) = {e ∈ e(Γ) : 0 ∈ e}. Let Γ′ be the graph with v(Γ′) = {0, . . . , d} and
e(Γ′) = e(Γ)\e(Σ) and let m′′,m′ be the corresponding subsets of the collection of bond
dimensions m. Write S = T (Σ,m′′) and T ′ = T (Γ′,m′); then

T = S � T ′.

By the induction hypothesis, gT ′ = gΓ′,m′ and gS = gΣ,m′′ . By Theorem 2.3.3

gT = gT ′ + gΣ,m′′ = gΓ′,m′ + gΣ,m′′ = gΓ,m,

and this concludes the proof.

Conclusion. We have introduced the definition and some properties of the tensor net-
work variety. We have defined the gauge subgroup GΓ,m and proved that it coincides with
the stabilizer of the graph tensor under the action ofG(W1, . . . ,Wd), i.e. GT (Γ,m) = GΓ,m.
This result is essential for determining the exact value of the dimension of the tensor
network variety in a particular range of parameters, Corollary 3.5.2 in Chapter 3, Sec-
tion 3.5.
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Chapter 3

Dimension

In this chapter, we address the problem of determining the dimension of tensor network
varieties. The results of this chapter have appeared in slightly altered form in the paper
[BDLG22], co-authored with Alessandra Bernardi and Fulvio Gesmundo, that has been
published in Communication in Contemporary Mathematics. The dimension of the vari-
ety provides a measure of how large the set of tensors allowing a certain tensor network
representation is, which in turn gives a measure of the expressiveness of the tensor net-
work class. We provide a completely general upper bound in Theorem 3.0.2. The result
is based on a lower bound on the dimension of the generic fiber of the parametrization
of the variety. The lower bound is given in Theorem 3.3.1, and it descends from the fact
that the generic fiber of the parametrization contains the orbit of a generic element of
the domain of the map, under the action of the gauge subgroup. We illustrate how to
refine the upper bound in cases relevant for applications in Corollary 3.4.5 and Corollary
3.4.6. In Corollary 3.5.2, we give the exact value of the dimension of the tensor network
variety in a particular range of parameters, where it can be realized as the closure of the
orbit of the graph tensor under the action of G(W1, . . . ,Wd). Therefore, in this case, the
dimension is completely controlled by the dimension of the stabilizer of the graph tensor
that, by Corollary 2.3.4 (previous chapter), coincides with the gauge subgroup. Finally,
in Section 3.6 we further analyze some cases arising from small values of the parameters,
and we provide a more precise calculation of their dimension.

The dimension of an irreducible algebraic variety is defined as the dimension of its tangent
space at a smooth point. We refer to [Sha94, Ch. 3] for the basic properties of dimension.
Recall that Hom(W1, . . . ,Wd;V1, . . . , Vd) := Im (µ), where

µ :

d⊕
i=1

Hom(Wi, Vi)→ Hom(W1 ⊗ · · · ⊗Wd, V1 ⊗ · · · ⊗ Vd)

(X1, . . . , Xd) 7→ X1 ⊗ · · · ⊗Xd.
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The parametrization of TNSΓ
m,n is therefore given by

Φ : Hom(W1, . . . ,Wd;V1, . . . , Vd)→ V1 ⊗ · · · ⊗ Vd
(X1 ⊗ · · · ⊗Xd) 7→ (X1 ⊗ · · · ⊗Xd) · T (Γ,m).

The Theorem of Dimension of the Fibers [Sha94, Thm. 1.25] provides the following
expression for the affine dimension of the tensor network variety:

dim TNSΓ
m,n = dim [Hom(W1, . . . ,Wd;V1, . . . , Vd)]− dim Φ−1(T ) (3.1)

where T is a generic tensor in the image of Φ.

We recall that the affine dimension of Hom(W1, . . . ,Wd;V1, . . . , Vd) is

dim Hom(W1, . . . ,Wd;V1, . . . , Vd) =
d∑

1=1

dim(Hom(Wi, Vi))− d+ 1.

Therefore we want to determine the dimension of the fiber dim Φ−1(T ) for a generic
T ∈ Im (Φ). We focus on determining lower bounds for dim Φ−1(T ), which via Equation
(3.1) provide upper bounds for dim TNSΓ

m,n.

We first give the following definitions, which determine the ranges of parameters of the
tensor network, c.f. [LQY12].

Definition 3.0.1. Let (Γ,m,n) be a tensor network. A vertex v ∈ v(Γ) is called

· subcritical if
∏
e3vme ≥ nv; strictly subcritical if the inequality is strict;

· supercritical if
∏
e3vme ≤ nv; strictly supercritical if the inequality is strict;

· critical if v is both subcritical and supercritical.

The tensor network (Γ,m,n) is called [strictly] subcritical (resp. supercritical) if all its
vertices are [strictly] subcritical (resp. supercritical).

me1 me2

me3

mekv

Vv

Figure 3.1: A vertex v ∈ v(Γ), with k incoming edges {e1, . . . , ek} with associated bond
dimensions mei , for i = 1, . . . , k. Then dimWv =

∏
e3vme.

The main theorem of the chapter is the following.
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Theorem 3.0.2. Let (Γ,m,n) be a tensor network and let TNSΓ
m,n be the corresponding

tensor network variety. Then

dim TNSΓ
m,n ≤

min

 ∑
v∈v(Γ)

(nv ·Nv)− d+ 1−
∑
e∈e(Γ)

(m2
e − 1) + dim StabGΓ,m

(X),
∏

v∈v(Γ)

nv

 ,

where Nv =
∏
e3vme, X = X1⊗· · ·⊗Xd with Xv ∈ Hom(Wv, Vv) generic and StabGΓ,m

(X)
is the stabilizer of X under the action of the gauge subgroup.

In the statement of the theorem, GΓ,m is the gauge subgroup associated to the tensor
network, defined in Chapter 2, Section 2.2, and the term

∑
e∈e(Γ)(m

2
e−1) is its dimension.

The term StabGΓ,m
(X) is the stabilizer under the action of the gauge subgroup of a generic

d-tuple of linear maps.

The proof of Theorem 3.0.2 consists of different steps.

First, in Section 3.1 we determine a reduction that allows us to assume that the bond
dimensions associated to the edges incident to a fixed vertex are balanced, in a way made
precise in Lemma 3.1.1.

Then, in Section 3.2 we provide a second reduction, proving that the tensor network
variety built from a tensor network having strictly supercritical vertices can be realized
via a vector bundle construction as a natural extension of the tensor network variety
where the strictly supercritical vertices are reduced to be critical.

Finally, in Section 3.3 we provide an upper bound for dim TNSΓ
m,n in the subcritical

range that concludes the proof of Theorem 3.0.2. Moreover, we provide the exact value
of the dimension dim TNSΓ

m,n in the critical and supercritical ranges in Section 3.5.

3.1 Reduction of bond dimension

We observed in Remark 2.1.3 that we may always assume bond dimensions at least 2.
Here, we show that if they are “too unbalanced”, then they can be reduced without
affecting the dimension of the tensor network variety.

We say that a tensor network (Γ,m,n) has overabundant bond dimension if there exist
a vertex v ∈ v(Γ) and an edge e ∈ e(Γ) incident to v such that

me > nv
∏

e′3v,e′ 6=e
me′ . (3.2)

The following result shows that overabundant bond dimensions do not contribute to the
dimension of the tensor network variety.
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Lemma 3.1.1. Let (Γ,m,n) be a tensor network. Fix v ∈ v(Γ), let k be the degree of
the vertex v and {e1, . . . , ek} be the edges incident to v; assume me1 ≤ · · · ≤ mek . If
(3.2) holds for v, that is

mek > nv ·me1 · · ·mek−1
,

then
TNSm,n = TNSm,n

where m is defined by me = me if e 6= ek and mek = nv ·m1 · · ·mek−1
.

Proof. Let T ∈ TNSm,n ⊆ V1 ⊗ · · · ⊗ Vd be a generic element and let (X1, . . . , Xd) ∈
Hom(W1, . . . ,Wd;V1, . . . , Vd) be an element such that (X1, . . . , Xd) · T (Γ,m) = T .

Suppose v = d and ej = {d, j} for j = 1, . . . , k. Write Uj = Cmj ; let Wd = U∗1 ⊗· · ·⊗U∗k ,
so that, for j = 1, . . . , k, we have Wj = Uj ⊗W ′j where W ′j depends on the other edges
incident to the vertex j.

Regard Xd as a tensor in W ∗d ⊗ Vd = U1 ⊗ · · · ⊗Uk ⊗ Vd. Since mek > me1 · · ·mek−1
· nv,

Xd is not concise on the factor Uk: let Uk ⊆ Uk with dimUk = me1 · · ·mek−1
· nv be a

subspace such that Xd ∈ U1 ⊗ · · · ⊗Uk−1 ⊗Uk ⊗ Vd. Correspondingly, let U
∗
k = U∗k/U

⊥
k .

Note that T (Γ,m) coincides with the image of T (Γ,m) via the projection U∗k → U
∗
k on

the d-th factor.

Now, define W d = U∗1 ⊗ · · · ⊗ U∗k−1 ⊗ U
∗
k and W k = W ′k ⊗ Uk. Let Xd = Xd be the

linear map regarded as an element of Hom(W d, Vd). Moreover, the space Hom(Wk, Vk) =
(W ′k⊗Uk)∗⊗Vk = W ′k

∗⊗U∗k ⊗Vk naturally projects ontoW ′k
∗⊗U∗k⊗Vk = Hom(W k, Vk):

let Xk be the image of Xk under this projection.

Now, one can verify that

T = (X1 ⊗ · · · ⊗Xd) · T (Γ,m) = (X1 ⊗ · · · ⊗Xd) · T (Γ,m)

where Xv = Xv if v 6= k, d.

3.2 Reduction for supercritical vertices

The tensor network variety built from a tensor network having strictly supercritical
vertices can be realized as an extension of the tensor network variety where the strictly
supercritical vertices are reduced to be critical. The reduction of this section appeared
already in [LQY12]. We include it here for completeness.

For a vector space V with dimV = n and an integer k ≤ n, let G(k, V ) be the Grass-
mannian of k-dimensional linear subspaces of V . Recall that dimG(k, V ) = k(n − k).
The variety G(k, V ) has a tautological bundle

σ : S → G(k, V );

the fiber of S over a point [E] ∈ G(k, V ) is the plane E itself: S[E] = E.
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Proposition 3.2.1. Let (Γ,m,n) be a tensor network. Suppose that the vertex d ∈ v(Γ)
is supercritical and write N = dimWd =

∏
e3dme. Let n′ = (n′v : v ∈ v(Γ)) be the

d-tuple of local dimensions defined by n′v = nv if v 6= d and n′d = N .

Then
dim TNSΓ

m,n = N(nd −N) + dim TNSΓ
m,n′ .

Proof. Let SV1⊗···⊗Vd−1

d be the vector bundle over the Grassmannian G(N,Vd) whose
fiber over a plane [E] is V1 ⊗ · · · ⊗ Vd−1 ⊗ E; this is the tautological bundle augmented
by the trivial bundle with constant fiber V1 ⊗ · · · ⊗ Vd−1. Consider the diagram

SV1⊗···⊗Vd−1

d

π

''

σ

xx

G(N,Vd) V1 ⊗ · · · ⊗ Vd

where the second projection π maps an element of the bundle to its fiber component:
([E], T ) 7→ T . By conciseness, this projection is generically one-to-one.

Consider the subbundle of SV1⊗···⊗Vd−1

d whose fiber at [E] is TNSΓ
m,n′ where the d-th

factor is identified with E. Let TNSΓ
m,S be the total space of this subbundle. We have

dim TNSΓ
m,S = dimG(N,Vd) + dim TNSΓ

m,n′ = N(nd −N) + dim TNSΓ
m,n′ .

The projection π is generically one-to-one and maps TNSΓ
m,S surjectively onto TNSΓ

m,n.
Therefore dim TNSΓ

m,n = dim TNSΓ
m,S and this concludes the proof.

Iteratively applying Proposition 3.2.1, one can reduce all strictly supercritical vertices to
critical vertices.

Theorem 3.2.2. Let (Γ,m,n) be a tensor network. For every v ∈ v(Γ) let Nv =∏
e3vme. Let n′ be the set of local dimensions defined by n′v = min{Nv, nv}. Then

dim TNSΓ
m,n =

∑
v∈v(Γ)

n′v(nv − n′v) + dim TNSΓ
m,n′ .

Note that the tensor network (Γ,m,n′) appearing in Theorem 3.2.2 is, by definition,
subcritical.

It remains to understand dim TNSΓ
m,n in the subcritical range.

3.3 Subcritical range and general case

We provide an upper bound for dim TNSΓ
m,n when the tensor network (Γ,m,n) is sub-

critical. The upper bound is obtained, via Equation (3.1), by determining a lower bound
on the dimension of the generic fiber of Φ.
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Theorem 3.3.1. Let (Γ,m,n) be a subcritical tensor network. Then the dimension of
the generic fiber of the map Φ is bounded from below by the dimension of the GΓ,m-orbit
of a generic element of Hom(W1, . . . ,Wd;V1, . . . , Vd).

Proof. Consider T ∈ Im (Φ), T = (X1 ⊗ · · · ⊗ Xd) · T (Γ,m), with X1 ⊗ · · · ⊗ Xd ∈
Hom(W1, . . . ,Wd;V1, . . . , Vd) a generic element. The fiber of Φ : Hom(W1, . . . ,Wd;V1 ⊗
· · · ⊗ Vd)→ TNSΓ

m,n over T is

Φ−1(T ) = {Y1⊗ · · · ⊗ Yd ∈ Hom(W1, . . . ,Wd;V1, . . . , Vd) : (Y1⊗ · · · ⊗ Yd) · T (Γ,m) = T}

Since every vertex is subcritical, for every j, a generic element of Hom(Wj , Vj) is surjec-
tive. Let Y1⊗· · ·⊗Yd ∈ Φ−1(T ). By conciseness, Yj has the same image as Xj , therefore
Yj is surjective as well, and there exists g ∈ GL(Wj) such that Yj = Xjgj .

For X = X1 ⊗ · · · ⊗ Xd, and g = g1 ⊗ · · · ⊗ gd ∈ G(W1, . . . ,Wd), write g.X = X1g1 ⊗
· · · ⊗Xdgd. In particular, if g ∈ GΓ,m then

Y · T (Γ,m) = (g.X) · T (Γ,m)

= (X1 ⊗ · · · ⊗Xd)(g1 ⊗ · · · ⊗ gd) · T (Γ,m)

= X · T (Γ,m) = T,

and the dimension of the fiber is bounded by

dim Φ−1(T ) = dim{Y : Y · T (Γ,m) = T}
= dim{g.X : g ∈ G(W1, . . . ,Wd), (g.X) · T (Γ,m) = T}
≥ dim{g.X : g ∈ GΓ,m}
= dim(GΓ,m ·X).

Therefore the dimension of the generic fiber is bounded from below by the dimension of
the GΓ,m-orbit of a generic element of Hom(W1, . . . ,Wd;V1, . . . , Vd).

Φ

T ∈ TNSΓ
m,n

X ∈ Φ−1(T )

Figure 3.2: Pictorial representation of the tensor network variety map Φ :
Hom(W1, . . . ,Wd;V1 ⊗ · · · ⊗ Vd) → TNSΓ

m,n. Given T ∈ TNSΓ
m,n, the fiber Φ−1(T ) in red

contains at least the orbit of X ∈ Φ−1(T ) under the action of the gauge subgroup GΓ,m.

Applying the Theorem of the Dimension of the Fibers [Sha94, Thm. 1.25] to the GΓ,m-
orbit of a generic element X ∈ Hom(W1, . . . ,Wd;V1, . . . , Vd), we deduce the following
corollary, which completes the proof of Theorem 3.0.2.
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Corollary 3.3.2. Let (Γ,m,n) be a subcritical tensor network with no overabundant
bond dimensions. Then

dim TNSΓ
m,n ≤

[∑
v∈v(Γ)Nvnv − d+ 1

]
−
∑

e∈e(Γ)(m
2
e − 1) + dim StabGΓ,m

(X)

where Nv =
∏
e3vme and X = X1 ⊗ · · · ⊗Xd with Xv ∈ Hom(Wv, Vv) generic.

Proof. From (3.1) dim TNSΓ
m,n = dim Hom(W1, . . . ,Wd, V1, . . . , Vd)−dim Φ−1(T ) where

T is a generic element of TNSΓ
m,n.

Now dim Hom(W1, . . . ,Wd;V1, . . . , Vd) =
∑

v∈v(Γ)Nvnv − d+ 1. By Theorem 3.3.1,

dim Φ−1(T ) ≥dimGΓ,m ·X
= dimGΓ,m − dim StabGΓ,m

(X)

=
∑

e∈e(Γ)(m
2
e − 1)− dim StabGΓ,m

(X),

where X ∈ Hom(W1, . . . ,Wd, V1, . . . , Vd) is generic.

3.4 Sharpening the upper bound

The term dim StabGΓ,m
(X) in Theorem 3.0.2 makes the statement not immediate to

apply in full generality, as it describes the dimension of the tensor network variety in
terms of the dimension of another object which is not immediate to compute. However,
as explained in this section, the value dim StabGΓ,m

(X) can be bounded from above by
the dimension of a potentially larger stabilizer which can be computed from the local
structure of the graph, rather than from its global combinatorics. In fact, a consequence
of Proposition 3.4.4 will be that the term dim StabGΓ,m

(X) is trivial in a wide range of
cases.

Definition 3.4.1. Let G be an algebraic group acting on an algebraic variety V . We
say that the action is generically stable if there exists an element v ∈ V such that the
stabilizer StabG(v) is a finite group.

In particular, the condition that the action of GΓ,m on Hom(W1, . . . ,Wd;V1, . . . , Vd) is
generically stable is equivalent to the fact that the value dim StabGΓ,m

(X) in Corollary
3.3.2 is zero.

A rich theory has been developed in the study of stable group actions (and more generally
semistable actions) starting from [KN79] and related works. We refer to [MFK94] for the
theory.

Proposition 3.4.2. Let (Cd,m,n) be the tensor network on the cycle graph with constant
bond dimension m = (m, . . . ,m). Assume nj ≥ 2 for at least one index. Then the action
of GCd,m on Hom(W1, . . . ,Wd;V1, . . . , Vd) is generically stable, i.e. dim StabGCd,m(X) =
0, for X ∈ Hom(W1, . . . ,Wd;V1, . . . , Vd) generic.
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Proof. Let X1 ⊗ · · · ⊗ Xd ∈ Hom(W1, . . . ,Wd;V1, . . . , Vd) be a generic element. Write
Wj = Uj ⊗U∗j+1 with Uj = Uj+1 = Cm. Then Xj is a generic element of U∗j ⊗Uj+1⊗Vj ,
with dimVj = nj ≥ 1. For every j, write Xj =

∑nj
p=1X

(p)
j ⊗ vp where v1, . . . , vnj is a

basis of Vj and X
(p)
j ∈ U∗j ⊗ Uj+1.

By genericity X(1)
j is a fixed isomorphism X

(1)
j : Uj → Uj+1; after choosing bases in Uj ,

we write X(1)
j = Idm in coordinates for j = 1, . . . , d− 1 and X(1)

d : Ud → U1 is a generic
diagonal matrix.

The stabilizer StabGCd,m(X) is contained in the stabilizer of X(1)
1 ⊗· · ·⊗X

(1)
d : this is the

centralizer of X(1)
d ; in coordinates this is the maximal torus Θm ⊆ PGLm of diagonal

matrices in PGL∆
m, where PGL∆

m ⊆ GCd,m =×d
j=1 PGL(Uj) lies on the diagonal of the

direct factors. Therefore StabGCd,m(X) ⊆ Θm.

Now, there exists at least one index j such that nj ≥ 2. Correspondingly, there is a map
X

(2)
j : Uj → Uj+1. Therefore StabGCd,m(X) ⊆ StabΘm(X

(2)
j ). By genericity, X(2)

j has

full rank and is not diagonal in the fixed basis, hence StabΘm(X
(2)
j ) is trivial.

This shows that a generic X ∈ Hom(W1, . . . ,Wd;V1, . . . , Vd) satisfies

dim StabGCd,m(X) = 0,

hence the action of GCd,m on Hom(W1, . . . ,Wd;V1, . . . , Vd) is generically stable.

When the stabilizer is finite, dim StabGΓ,m
(X) = 0, then the dimension of the generic

fiber is bounded by the dimension of the gauge subgroup associated to the tensor network,
dimGΓ,m =

∑
e∈e(Γ)(m

2
e−1), see Section 2.2. The role of this group in the theory of tensor

network is known and it is expected that it entirely controls the value of dim TNSΓ
m,n,

c.f. [YL18, LQY12, HMOV14].

In the case of matrix product states associated to graphs without loops, the exact value
of the dimension is given in [HMOV14] and coincides with our result

min

 ∑
v∈v(Γ)

(nv ·
∏
e3vme)− d+ 1−

∑
e∈e(Γ)

(m2
e − 1),

∏
v∈v(Γ)

nv

 . (3.3)

However, in Section 3.6, we will observe that there are at least some cases where the
inequality is strict. They are in particular cases of matrix product states with loops.

For what concerns the stabilizer, we cannot extend the argument of Proposition 3.4.2 to
the general case. Instead, we further localize the action, reembedding the gauge subgroup
GΓ,m in the groupH = Im Ψ, where Ψ is the map described in Section 2.2. This will allow
us to use results on the stability of the action on tensor spaces which in turn guarantee
the stability of the action of GΓ,m in a wide range of cases. For this reason, we generally
expect that dim StabGΓ,m

(X) = 0, at least when the bond dimensions are balanced.
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Since GΓ,m ⊆ H, clearly StabGΓ,m
(X) ⊆ StabH(X). Therefore, if the action of H on

Hom(W1, . . . ,Wd, V1, . . . , Vd) is generically stable, then the action of GΓ,m is generically
stable on Hom(W1, . . . ,Wd, V1, . . . , Vd).

We establish the following result, whose proof is immediate from the product structure
of Hom(W1, . . . ,Wd, V1, . . . , Vd) and of X.

Lemma 3.4.3. If X = X1 ⊗ · · · ⊗Xd then

StabH(X) = ×
v∈v(Γ)

StabHv(Xv).

In particular, the action of H on Hom(W1, . . . ,Wd, V1, . . . , Vd) is generically stable if and
only if for every v the action of Hv on Hom(Wv, Vv) is generically stable.

Now, regard Xv ∈ Hom(Wv, Vv) as a tensor in Vv⊗W ∗v = Vv⊗
(⊗

e3v U
′
e

)
where U ′e = Ue

or U ′e = U∗e depending on whether Ue of U∗e appears in Wv. The group Hv acts trivially
on Vv; by Lemma 1.1.18, we deduce that StabHv(Xv) is the point-wise stabilizer of
Im Xv(V

∗
v ) ⊆

⊗
e3v U

′
e. In particular, if Xv is generic, StabHv(Xv) is the simultaneous

stabilizer of nv elements of W ∗v .

Therefore, we are reduced to studying the stability of the action of a product of special
linear groups SL(U1)× · · · × SL(Uk) on the space U1 ⊗ · · · ⊗ Uk ⊗ V . The study of the
stability of this action is characterized in the recent [DM21, DMW20] and in the special
case where dimV = 1 it is characterized in [BRVR18].

Proposition 3.4.4. Let k ≥ 3 and consider vector spaces U1, . . . , Uk, V with dimUα =
m, dimV = n. The action of SL(U1)× · · · ×SL(Uk) on U1⊗ · · · ⊗Uk ⊗V is generically
stable unless (k,m, n) = (3, 2, 1).

Proof. The case (k,m, n) = (3, 2, 1) corresponds to the action of SL2 × SL2 × SL2 on
C2 ⊗ C2 ⊗ C2; this is not stable since

9 = dim(SL2 × SL2 × SL2) > dim C2 ⊗ C2 ⊗ C2 = 8.

Except for this case, the result follows from [DMW20, Theorem 1.5 (Case 4)], since the
inequality m ≤ 1

2m
k−1n is always verified.

Relaxing the hypothesis of Propositions 3.4.2 and 3.4.4, we state the following corollaries
of Corollary 3.3.2, for MPS and PEPS respectively.

Corollary 3.4.5. Let (Cd,m, n) be the tensor network on the cycle graph on d vertices
with constant bond dimension m and constant local dimension n ≥ 2. Then

dim TNSCdm,n ≤ min{d(n− 1)m2 + 1, nd}.
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Corollary 3.4.6. Let Γ be a graph on d vertices such that all vertices of Γ have degree
k ≥ 3. Let (Γ,m, n) be the tensor network on Γ with constant bond dimension m and
constant local dimension n. Then, unless (k,m, n) = (3, 2, 1), we have

dim TNSΓ
m,n ≤ min

 ∑
v∈v(Γ)

nmdeg(v) − d+ 1−
∑
e∈e(Γ)

(m2 − 1), nd

 .

3.5 Critical case

In this section, we give the exact value of the dimension of the tensor network variety
in the critical and supercritical ranges of the parameters. Indeed, in the critical range,
the variety is the orbit-closure of the graph tensor under the action of G(W1, . . . ,Wd).
The dimension is therefore controlled by the dimension of the stabilizer of the graph
tensor that, by Corollary 2.3.4, coincides with the gauge subgroup. In particular, the
dimension of the tensor network variety in the critical range equals the upper bound of
Corollary 3.3.2 with dim StabGΓ,m

(X) = 0. As a consequence, via Theorem 3.2.2, we
obtain equality in the supercritical range.

Proposition 3.5.1. Let (Γ,m,n) be a supercritical tensor network. Write Nv =
∏
e3vme.

Then
dim TNSΓ

m,n =
∑

v∈v(Γ)

nvNv − d+ 1−
∑
e∈e(Γ)

(m2
e − 1).

Proof. First consider the critical case, that is Nv = nv. In this case, a generic Xv ∈
Hom(Wv, Vv) is invertible. Therefore

dim TNSΓ
m,n = dimG(W1, . . . ,Wd) · T (Γ,m)

= dimG(W1, . . . ,Wd)− dimGΓ,m =
∑

v∈v(Γ)

N2
v − d+ 1−

∑
e∈e(Γ)

(m2
e − 1).

In the supercritical case, we apply Theorem 3.2.2. Write N = (Nv : v ∈ v(Γ)), so that
the tensor network (Γ,m,N) is critical. Then

dim TNSΓ
m,n = dim TNSΓ

m,N +
∑

v∈v(Γ)

Nv(nv −Nv)

=
∑

v∈v(Γ)

N2
v − d+ 1−

∑
e∈e(Γ)

(m2
e − 1) +

∑
v∈v(Γ)

Nv(nv −Nv)

=
∑

v∈v(Γ)

nvNv − d+ 1−
∑
e∈e(Γ)

(m2
e − 1).

Corollary 3.5.2. Let (Γ,m,n) be a supercritical tensor network. Then

dim TNSΓ
m,n = min

 ∑
v∈v(Γ)

(nv ·
∏
e3vme)− d+ 1−

∑
e∈e(Γ)

(m2
e − 1),

∏
v∈v(Γ)

nv

 .
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3.6 Analysis of small cases

In this section, we analyze some cases of tensor network varieties for small graphs and
small bond dimensions. If Γ only contains two vertices with local dimensions n = (n1, n2),
then the tensor network variety is easily described as the variety of matrices whose rank
is upper bounded by the bond dimension of the unique edge, m = m. The variety is
isomorphic to the affine cone over the m-secant variety of the two factor Segre, c.f. 1.1.1,
and its projected dimension is bounded by dimσm(Pn1−1 × Pn2−1) ≤ min{m(n1 + n2 −
m) − 1, n1n2 − 1}. This is the well-known case of n1 × n2 complex matrices of rank
bounded by m and it is completely understood, e.g. [Lan12].

Therefore, we start our analysis with the case of three vertices.

3.6.1 Triangular graph

The graph tensor associated to the triangular graph is the matrix multiplication tensor.
This is the object of a rich literature, devoted to determining the value of the exponent
of matrix multiplication. We refer to [Blä13, Lan17] for an overview on the subject.

Let C3 be the triangular graph. Write {1, 2, 3} for the three vertices and m12,m23,m31

for the three bond dimensions and (n1, n2, n3) for the three local dimensions, ordered as
follows:

m12

m23m31

n3

n2n1

If m = (m12,m23,m31) = (a, b, 1) (in other words, the edge {3, 1} is erased) then every
tensor in W1 ⊗ W2 ⊗ W3 is a restriction of the graph tensor. In particular, if n =
(n1, n2, n3) with n1 ≤ a, n2 ≤ ab, n3 ≤ b, then

TNSC3
m,n = V1 ⊗ V2 ⊗ V3.

Therefore, the first interesting case is the one with bond dimensions m = (2, 2, 2). We
record the cases in the subcritical range in Table 3.1. For each of these cases, the lower
bound for the dimension is obtained by computing explicitly the rank of the differential of
the parametrization map Φ at a random point. We perform this calculation in Macaulay2
[GS20]. The scripts performing the calculation are available at https://fulges.github.
io/code/BDG-DimensionTNS.html.

Since the point to compute the differential is chosen at random, we are confident that
the number recorded as a lower bound is equal to the actual dimension of the tensor
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n lower bound upper bound

(2, 2, 2) 8 8
(2, 2, 3) 12 12
(2, 2, 4) 16 16
(2, 3, 3) 18 18

∗ (2, 3, 4) 22 24
∗ (2, 4, 4) 26 29

(3, 3, 3) 25 25
(3, 3, 4) 29 29
(3, 4, 4) 31 31
(4, 4, 4) 37 37

Table 3.1: Upper and lower bound for dim TNSC3
m,n. The lower bound is obtained via a direct

calculation. The upper bound is the value obtained in Corollary 3.4.5. In the cases marked with
∗ the two bounds do not coincide.

network variety TNSC3
m,n. However, from a formal point of view, the sole calculation of

the rank of the differential at a random point does not provide a complete proof.

The only cases where the lower bound does not match the upper bound given in Corollary
3.4.5 are the ones with n = (2, 3, 4) and n = (2, 4, 4). In these cases, we prove that the
dimension of the tensor network variety equals the lower bound of Table 3.1. We provide
the following result, that we prove in general and will be used in Theorem 3.6.2 in the
cases (a, b, r) = (3, 4, 2) and (a, b, r) = (4, 4, 2).

Lemma 3.6.1. Let V1, V2, V3 be vector spaces with dimV1 = 2, dimV2 = a, dimV3 = b.
Let σr ⊆ P(V2 ⊗ V3) be the variety of elements of rank at most r. Define

Za,b,r =
{
T ∈ V1 ⊗ V2 ⊗ V3 : T (V ∗1 ) ∩ σr contains at least two points

}
⊆ P(V1⊗V2⊗V3)

Then Za,b,r is an irreducible variety and

dimZa,b,r = 2r(a+ b− r) + 1

Proof. Define the variety of secant lines

Sa,b,r =
{
L ∈ G(2, V2 ⊗ V3) : PL ∩ σr contains at least two points

}
⊆ G(2, V2 ⊗ V3),

where G(2, V2 ⊗ V3) denotes the Grassmannian of 2-planes in V2 ⊗ V3.

Then Sa,b,r is an irreducible variety of dimension 2 dimσr = 2[r(a+ b− r)− 1] [EH16].

The variety Za,b,r is an SL(V1)-bundle on Sa,b,r. This guarantees that Za,b,r is irreducible
and provides

dimZa,b,r = dimSa,b,r + 3 = 2[r(a+ b− r)− 1] + 3 = 2r(a+ b− r) + 1
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as desired.

Theorem 3.6.2. Let m = (2, 2, 2).

• if n = (2, 3, 4) then TNSC3
m,n = Ẑ3,4,2; in particular dim TNSC3

m,n = 22;

• if n = (2, 4, 4) then TNSC3
m,n = Ẑ4,4,2; in particular dim TNSC3

m,n = 26.

Proof. The lower bound on the dimension follows from Table 3.1.

By Lemma 3.6.1, we have

dimZ3,4,2 = 4 · (3 + 4− 2) + 1 = 21,

dimZ4,4,2 = 4 · (4 + 4− 2) + 1 = 25.

In the rest of the proof, we show that TNSC3

m,(2,3,4) ⊆ Ẑ3,4,2 and TNSC3

m,(2,4,4) ⊆ Ẑ4,4,2;

here, if Y ⊆ PW is a projective variety, Ŷ denotes its affine cone in the space W , c.f.
Definition 1.1.4.

Fix generic X1, X2, X3 with Xj ∈ Hom(Wj , Vj) and let T = X1 ⊗X2 ⊗X3(T (C3,m)).
Let L = T (V ∗1 ) ⊆ V2 ⊗ V3. It suffices to show that PL ∩ σ2 contains at least two points
in the two cases of interest.

We can normalize the linear mapsX1, X2, X3 using the gauge subgroup inGL(W1,W2,W3)
and the action of GL(V1)×GL(V2)×GL(V3) on V1 ⊗ V2 ⊗ V3.

Identify X1 with a 2 × 2 matrix B1(v
(1)
1 , v

(1)
2 ) whose entries are linear combinations of

the elements of a basis {v(1)
1 , v

(2)
2 } of V1 and similarly for X2 and X3. In this way

X1 ⊗X2 ⊗X3(T (C3,m)) = Tr

(
B1(v

(1)
1 , v

(1)
2 ) ·B2(v

(2)
1 , . . . , v

(2)
3 ) ·B3(v

(3)
1 , . . . , v

(3)
4 )

)
.

Write B1(v
(1)
1 , v

(1)
2 ) = B1

1v
(1)
1 +B2

1v
(1)
2 and similarly for the other matrices.

By genericity, the map X3 is invertible: using the action of GL(V3), we may assume

B1
3 = ( 1 0

0 0 ) , B2
3 = ( 0 1

0 0 ) , B3
3 = ( 0 0

1 0 ) , B4
3 = ( 0 0

0 1 ) .

Moreover, the linear space 〈B1
1 , B

2
1〉 contains at least one matrix of rank 1; using the

action of GL(V1) and of the gauge group, we may assume B1
1 = ( 1 0

0 0 ).

With these normalizations, it is possible to verify that the line P(T (V ∗1 )) contains two
rank two matrices. We provide a Macaulay2 script determining the intersection P(T (V ∗1 ))∩
σ2 at https://fulges.github.io/code/BDG-DimensionTNS.html.

If n = (2, 3, 4), this shows TNSC3
m,n ⊆ Ẑ3,4,2; if n = (2, 4, 4), this shows TNSC3

m,n ⊆ Ẑ4,4,2.

Finally, since TNSC3
m,n ⊆ Ẑ3,4,2 and they are both irreducible varieties of dimension 22,

equality holds. Similarly, equality holds in the inclusion TNSC3
m,n ⊆ Ẑ4,4,2.
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3.6.2 Square graph

Consider the square graph C4 with bond dimensions m = (m12,m23,m34,m41) and local
dimensions n = (n1, . . . , n4).

m12

m23

m34

m41

n4 n3

n2n1

We focus on the case where all bond dimensions are equal to 2. As in the previous
section, we record in Table 3.2 the lower bound obtained computing the differential of
the parametrization at a random point and the upper bound obtained via Corollary
3.4.5. As before, because of the random choice of point, we are confident that the value
recorded as lower bound coincides with the value of dim TNSC4

m,n. We provide a formal
proof for the case n = (2, 2, 2, 2) in Theorem 3.6.3.

Theorem 3.6.3. Let m = (2, 2, 2, 2) and n = (2, 2, 2, 2). Then

dim TNSC4
m,n = 15;

more precisely TNSC4
m,n is a hypersurface of degree 6.

Proof. The lower bound dim TNSC4
m,n ≥ 15 is obtained in Table 3.2.

Since dimV1⊗ V2⊗ V3⊗ V4 = 16, we obtain that either TNSC4
m,n is the entire space or it

is a hypersurface.

We determine an irreducible equation of degree 6 vanishing on TNSC4
m,n.

This equation is a degree 6 invariant for the action ofGL(V1)×· · ·×GL(V4) on V1⊗· · ·⊗V4.
Its construction is described explicitly in [LT03, HLT12]. The evaluation of the invariant
is performed by a Macaulay2 script [GS20] available at https://fulges.github.io/
code/BDG-DimensionTNS.html.

We illustrate here how to construct it and how to exploit the action of GL(V1) × · · · ×
GL(V4) and of the gauge group to normalize the linear maps and reduce the degrees of
freedom in order to allow the script to evaluate the invariant.

Given a tensor T ∈ V1⊗V2⊗V3⊗V4, consider the bilinear map T 1,3 : V ∗1 ×V ∗3 → V2⊗V4.
This makes V2 ⊗ V4 into a space of 2× 2 matrices depending bilinearly on V1 × V3. Let
F (T ) = det(T 1,3) be the determinant (of the 2 × 2 matrix V2 ⊗ V4) evaluated on the
image of T 1,3. So F (T ) is a polynomial of bidegree (2, 2) in V1 × V3, therefore it can be
regarded as a bilinear form on S2V1 × S2V2, where S2W denotes the second symmetric
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n lower bound upper bound
∗ (2, 2, 2, 2) 15 16
∗ (2, 2, 2, 3) 20 21
∗ (2, 2, 2, 4) 24 25

(2, 2, 3, 3) 25 25
(2, 2, 3, 4) 29 29
(2, 2, 4, 4) 33 33

∗ (2, 3, 2, 3) 24 25
∗ (2, 3, 2, 4) 28 29

(2, 3, 3, 3) 29 29
(2, 3, 3, 4) 33 33
(2, 3, 4, 3) 33 33
(2, 3, 4, 4) 37 37

∗ (2, 4, 2, 4) 32 33
(2, 4, 3, 4) 37 37
(2, 4, 4, 4) 41 41
(3, 3, 3, 3) 33 33
(3, 3, 3, 4) 37 37
(3, 3, 4, 4) 41 41
(3, 4, 3, 4) 41 41
(3, 4, 4, 4) 45 45
(4, 4, 4, 4) 49 49

Table 3.2: Upper and lower bound for dim TNSC4
m,n. The lower bound is obtained via a direct

calculation. The upper bound is the value obtained in Corollary 3.4.5. In the cases marked with
∗ the two bounds do not coincide.
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power of a vector space W . Since dimS2C2 = 3, this bilinear form has an associated
3×3 matrix. The invariant I6 that we are interested in is the determinant of such matrix,
which is a polynomial of degree 6 in the coefficients of the original tensor T .

In order to prove that I6 vanishes identically on TNSC4
m,n, we apply a normalization

which reduces the total degrees of freedom, then we perform the calculation symbolically
in Macaulay2.

Write T ∈ TNSC4
m,n as

T = Tr

(
B1(v

(1)
1 , v

(1)
2 ) · · ·B4(v

(4)
1 , v

(4)
2 )

)
where Bp(v

(p)
1 , v

(p)
2 ) = B1

pv
(p)
1 + B2

pv
(p)
2 are 2 × 2 matrices depending linearly on a fixed

basis of Vp.

Since TNSC4
m,n is invariant under the action of GL(V1) × · · · × GL(V4) and the graph

tensor is invariant under the action of the gauge subgroup, we may use these groups
to normalize the matrices Bj

p. In particular, by the action of GL(V1) and GL(V3), we
may assume B1

1 and B1
3 are rank one matrices; further, using the action of the gauge

subgroup, we may assume B1
1 = B1

3 = ( 1 0
0 0 ).

With this normalization, the evaluation of the invariant is performed and we can verify
that I6(T ) = 0 whenever T ∈ TNSC4

m,n.

Since I6 is irreducible, we conclude TNSC4
m,n is a hypersurface of degree 6.

If d = 5, 6, 7, the calculation of the differential at a random point shows that in the case
of constant bond dimension 2 the dimension of tensor network varieties coincides with
the upper bound of Corollary 3.4.5. Therefore, we propose the following conjecture:

Conjecture 3.6.4. Let d ≥ 3, m = (2, . . . , 2) and n = (n1, . . . , nd) with nj ≥ 2. Then

dim TNSCdm,n = min
{

4
(∑d

j=1nj − d
)

+ 1,
∏d
j=1nj

}
except in the following cases:

• if d = 3: n = (2, n2, n3), with n2 ≥ 3, n3 ≥ 4 and their cyclic permutations;

• if d = 4: n = (2, n2, 2, n4) with n2, n4 ≥ 2 and their cyclic permutations.

The results of this section, together with Theorem 3.2.2, confirm Conjecture 3.6.4 for
d = 3. As mentioned above, a direct calculation confirms the conjecture for d = 5, 6, 7.
In the case d = 4, the conjecture is confirmed in the case n = (2, 2, 2, 2), in all cases
where the upper and lower bounds coincide in Table 3.2 and in the supercritical cases
constructed from those.
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Conclusions. In this chapter, we studied the dimension of the tensor network variety.
We provided a completely general upper bound in Theorem 3.0.2 and we illustrated how
to refine it in the cases relevant for applications in Corollary 3.4.5 and Corollary 3.4.6.
In Corollary 3.5.2, we gave the exact value of the dimension of the tensor network variety
in the supercritical range of parameters. Finally, we provided the calculation of the
dimension of some cases, arising from small values of the parameters, in which the upper
bound of Theorem 3.0.2 is not sharp.
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Chapter 4

Linear span of uniform matrix
product states

In this chapter, we study the linear span of uniform matrix product states. The results
contained in the chapter are based on the paper [DLMS22a], co-authored with Harshit
J. Motwani and Tim Seynnaeve, that is submitted at the moment of writing. From
a quantum mechanics perspective, uniform matrix product model translation invariant
physical systems of sites placed on a ring. The geometry of uniform matrix product
states has been extensively studied [PGVWC07, HMOV14, CM14, CMS19], but our
understanding of them is still far from complete, and several fundamental mathematical
problems remain open.

Our geometric point of view is the following: we fix a tensor space (Cn)⊗d, and consider
the set of all tensors in this space that admit a translation-invariant matrix product state
representation, with a given bond dimension m. After taking the closure of this set, we
obtain an algebraic variety, which we denote by uMPS(m,n, d). The goal of this chapter
is to determine which linear equations, if any, vanish on our variety, more precisely:

Problem 4.0.1. Describe the linear span 〈uMPS(m,n, d)〉 of the variety of uniform
matrix product states, answering the following questions:

• What is the dimension of 〈uMPS(m,n, d)〉? (Question 4.1.3)

• For which parameters m,n, d ∈ N does 〈uMPS(m,n, d)〉 fill the ambient space?
(Question 4.1.6)

• How does 〈uMPS(m,n, d)〉 decompose as a GLn-representation? (Question 4.1.9)

The variety uMPS(m,n, d) does not only arise from tensor networks, it is also a very nat-
ural geometric construction in its own right. Indeed, as we will soon see, uMPS(m,n, d)
is the closed image of the polynomial map that takes as input an n-tuple of m × m-
matrices, and outputs the traces of all d-fold products of the given matrices. In this way,
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it is a natural generalization of the classical Veronese variety. Our main Problem 4.0.1
is therefore equivalent to the following:

Problem 4.0.2. Let A0, . . . , An−1 be m×m matrices with generic entries. Which linear
relations hold between the polynomials

Tr(Ai1 · · ·Aid),

where (i1, . . . , id) ∈ [n]d?

The ring generated by all polynomials Tr(Ai1 · · ·Aid), where the generic matrices are fixed
but we allow d to vary, is known as the trace algebra. In his classical work [Pro76], Procesi
described how to obtain all relations between the generators of this ring in principle. Note
however that the question we are asking is slightly different: we are only interested in
relations between traces of matrix products of a fixed length d.

The chapter is divided into three sections. In Section 4.1, we define the variety of
uniform matrix product states and describe its natural symmetries. In Section 4.2 we
undertake a computational study of the space 〈uMPS(m,n, d)〉 in the smallest nontrivial
case m = n = 2. Since the variety uMPS(m,n, d) is invariant under the action of
GLn, we approach the problem from a representation theory perspective. We recall the
basic properties of the representation theory of GLn and we describe an algorithm that
can compute 〈uMPS(2, 2, d)〉, viewed as a GL2-representation. Based on this result, we
obtain a conjectured formula for the character (and in particular: the dimension) of
〈uMPS(2, 2, d)〉. In Subsection 4.2.3 we describe an algorithm that computes the highest
weight vectors of the SL2-representation Ik(uMPS(2, 2, d), i.e. the degree k-part of the
ideal of the variety. This in particular allows finding explicitly higher degree equations of
uMPS(2, 2, d). Section 4.3 contains our main theoretical results: we introduce a powerful
method to find linear equations that vanish on 〈uMPS(m,n, d)〉, based on the Cayley-
Hamilton theorem. As a corollary, we show that for d ≥ (m+ 1)(m+ 2), the linear span
〈uMPS(m,n, d)〉 does not fill its natural ambient space Cycd(Cn), the space of cyclically
symmetric tensors; significantly improving the state of the art. In Subsection 4.3.1 we
study the special case m = n = 2, based on the computations done in Section 4.3. Using
the trace parametrization we show an upper bound on the dimension of 〈uMPS(2, 2, d)〉
which is close to optimal, and we take some first steps towards proving our conjectured
character formula using again our Cayley-Hamilton technique.

4.1 Uniform matrix product states

We once and for all fix three parameters m,n, d ∈ N. We will consider tensors in the
space (Cn)⊗d. The standard basis of Cn will be written as {e0, . . . , en−1}. We abbreviate
the set {0, . . . , n− 1} to [n].

Definition 4.1.1. The uniform matrix product state parametrization is given by the
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map

φ : (Cm×m)n → (Cn)⊗d

(A0, . . . , An−1) 7→
∑

0≤i1,...,id≤n−1

Tr(Ai1 · · ·Aid) ei1 ⊗ · · · ⊗ eid . (4.1)

We denote the image of this map by uMPS◦(m,n, d). The closure of uMPS◦(m,n, d),
taken equivalently either in the Euclidean or the Zariski topology over the complex num-
bers, is the algebraic variety of uniform matrix product states, denoted by uMPS(m,n, d).

Remark 4.1.2 (Graphical representation). If we think of (Cm×m)n as the space of
m × m × n tensors, then the uMPS parametrization takes a tensor in this space and
contracts it d times with itself in a circle; see Figure 4.1. Compared to the pictorial
representation we give in the previous chapters, c.f. 2.2, from now on we add to every
vertex v ∈ v(Γ) of the graph Γ another edge that reminds us of the local dimension
associated to the vertex. This addition is of common use in the physics literature.

m m

n

φ
d-sites

n

n n

n

n n

m

mm

m

Figure 4.1: Graphical representation of map (4.1) defining uMPS(m,n, d). There are total d
tensors involved with order m×m× n.

The main question we try to answer in this chapter is the following:

Question 4.1.3. Determine the linear span of uMPS(m,n, d); i.e. the smallest vector
subspace of (Cn)⊗d containing uMPS(m,n, d). In particular: what is the dimension of
this space?

4.1.1 Cyclic and symmetric invariance

The space (Cn)⊗d comes equipped with an action of the symmetric group Sd: for σ ∈ Sd

and ω = v1 ⊗ · · · ⊗ vd ∈ (Cn)⊗d we have

σ · (v1 ⊗ · · · ⊗ vd) = vσ−1(1) ⊗ · · · ⊗ vσ−1(d).

The symmetric group Sd naturally contains the cyclic group Cd and the dihedral group
D2d as subgroups. To be precise: let r, s ∈ Sd be the cyclic permutation and reflection
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defined respectively by

r(i) = i+ 1(mod d) and s(i) = d+ 1− i,

then Cd ⊆ Sd is the cyclic subgroup generated by r, and D2d is the subgroup generated
by r and s.

Definition 4.1.4. The cyclically symmetric tensors and dihedrally symmetric tensors
are then the elements of (Cn)⊗d that are invariant under the action of these subgroups:

Cycd(Cn) := {ω ∈ (Cn)⊗d | σ · ω = ω ∀σ ∈ Cd},
Dihd(Cn) := {ω ∈ (Cn)⊗d | σ · ω = ω ∀σ ∈ D2d}.

Note that both are linear subspaces of (Cn)⊗d, and that Dihd(Cn) ⊆ Cycd(Cn), where
the inclusion is strict unless d ≤ 2 or n = 2 and d ≤ 5.

Observation 4.1.5. The set uMPS(m,n, d) is a subset of the space of cyclically invariant
tensors Cycd(Cn) ⊂ (Cn)⊗d because of the trace invariance under cyclic permutations of
the matrices: given M1, . . . ,Md ∈ Cm×m then

Tr(M1 · · ·Md) = Tr(Mσ(1) · · ·Mσ(d)),

for σ ∈ Cd.

In other words, we can think of uMPS(m,n, d) as a subvariety of the ambient space
Cycd(Cn). As noted in [CMS19, Corollary 3.18], if we fix n and d and let m grow, the
space uMPS(m,n, d) will eventually fill the ambient space Cycd(Cn).

Question 4.1.6. For fixed n and d, what is the smallest m such that

〈uMPS(m,n, d)〉 = Cycd(Cm).

It is known that for m = d, equality holds [CMS19, Proposition 3.11]. On the other
hand, it follows from a dimension count ([CMS19, Theorem 3.14], see also [NV18]) that
if d � m, the inclusion 〈uMPS(m,n, d)〉 ⊂ Cycd(Cn) is strict. In Section 4.3 we will
prove that already for d = O(m2), we have a strict inclusion.

Observation 4.1.7. In the case m = n = 2, we have the stronger inclusion

uMPS(2, 2, d) ⊆ Dihd(Cn).

This is a consequence of the identity Tr(Ai1 · · ·Aid) = Tr(Aid · · ·Ai1), which holds for
any pair of 2 × 2 matrices A0, A1 and sequence i1, . . . , id with ij ∈ {0, 1}. See [Gre14,
Theorem 1.1]

Example 4.1.8. Consider uMPS(2, 2, 6). For every A0, A1 ∈ C2×2, it holds the trace
relation Tr(A2

0A
2
1A0A1) = Tr(A1A0A

2
1A

2
0), that does not come from the invariance of

trace under cyclic permutations of the matrices.
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4.1.2 GLn-invariance

The general linear group GLn naturally acts on the space (Cn)⊗d: given g ∈ GLn and
ω = v1 ⊗ · · · ⊗ vd ∈ (Cn)⊗d, we have

g · (v1 ⊗ · · · ⊗ vN ) = (g · v1)⊗ · · · ⊗ (g · vN ).

Clearly, Cycd(Cn) and Dihd(Cn) are invariant under this action. The following compu-
tation shows that uMPS(m,n, d) is invariant under this action as well:

g · φ(A1, . . . , An) =
n∑

j1,...,jd=1

Tr(Aj1 · · ·Ajd) (
n∑

i1=1

gi1,j1ei1)⊗ · · · ⊗ (
n∑

id=1

gid,jdeid)

=
n∑

j1,...,jd=1

n∑
i1,...,id=1

gi1,j1 · · · gid,jd Tr(Aj1 · · ·Ajd) ei1 ⊗ · · · ⊗ eid

=

n∑
j1,...,jd=1

n∑
i1,...,id=1

Tr(gi1,j1Aj1 · · · gid,jdAjd) ei1 ⊗ · · · ⊗ eid

=

n∑
i1,...,id=1

Tr
[( n∑

j1=1

gi1,j1Aj1

)
· · ·
( n∑
jd=1

gid,jdAjd

)]
ei1 ⊗ · · · ⊗ eid

= φ
( n∑
j=1

g1,jAj , . . . ,

n∑
j=1

gn,jAj

)
. (4.2)

This means that the space 〈uMPS(m,n, d)〉 we are interested in is naturally a represen-
tation of GLn. We briefly recall what we will use about the representation theory of
GLn, and we fix the notation.

We once and for all fix a torus T ⊂ GLn, consisting of all diagonal matrices; and identify
T with (C∗)n. For λ = (λ0, . . . , λn−1) ∈ Zn and t = diag(t0, . . . , tn−1) ∈ T , we write
tλ = tλ0

0 · · · t
λn−1

n−1 ∈ C∗. Let V be any representation of GLn. For any λ ∈ Zn, the weight
space Vλ is defined as

Vλ = {v ∈ V | t · v = tλv ∀t ∈ T}.
It is a well-known fact from representation theory that

V =
⊕
λ∈Zn

Vλ

as vector spaces; and that knowing the dimensions of the weight spaces uniquely deter-
mines the representation V up to isomorphism. The polynomial

χV =
∑
λ∈Zn

(dimVλ)tλ.

is known as the character of V . If we view our representation as a morphism ρ : GLn →
GL(V ), the character χV is equal to Tr(ρ(diag(t0, . . . , tn−1))).

So we can refine our main Question 4.1.3 to:
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Question 4.1.9. Let V = 〈uMPS(m,n, d)〉, viewed as a GLn-representation. For every
weight λ ∈ Zn, determine the dimension of the weight space Vλ.

4.1.3 Words, necklaces and bracelets

As a warm-up, let us consider the classical representation V = (Cn)⊗d. Its character is
equal to (t1 + · · ·+tn)d, and by expanding we find that dimVλ is equal to the multinomial
coefficient

(
d

λ1,...,λn

)
if
∑

λi
= d, and zero otherwise. We can also see this in terms of

coordinates, and this will be useful later:

Definition 4.1.10. A word of length d on the alphabet [n] is just an ordered tuple I =
(i1, . . . , id), with ij ∈ [n]. The weight of a word I is a tuple w(I) = (w0, . . . , wn−1) ∈ Zn,
where wi is the number of entries in I that are equal to i. We denote by W (n, d) the set
of words of length d on the alphabet [n].

For every word I = (i1, . . . , id), we can define a vector eI := ei1 ⊗ · · · ⊗ eid . The space
(Cn)⊗d has a basis given by the eI , where I runs over all words of length d on the
alphabet [n]. In addition, every eI is a weight vector of weight w(I). So the dimension of
the weight space Vλ is the number of words of weight λ, which is indeed the multinomial
coefficient

(
d

λ1,...,λn

)
.

We move on to the subrepresentations Cycd(Cn) and Dihd(Cn), the natural ambient
spaces for uniform matrix product states.

Definition 4.1.11. A necklace (of length d on the alphabet [n]) is an equivalence class
of words, where two words are equivalent if they agree up to the action Cd. A bracelet
(of length d on the alphabet [n]) is an equivalence class of words, where two words are
equivalent if they agree up to the action D2d. For a fixed necklace or bracelet, all words
in the equivalence class clearly have the same weight; this is the weight of the necklace
or bracelet. We denote by N(n, d), resp. B(n, d), the set of necklaces, resp. bracelets,
of length d on [n] and by Nλ(n, d) ⊂ N(n, d), resp. Bλ(n, d) ⊂ B(n, d), the subset of
elements of weight λ ∈ Zn.

To every necklace N ∈ N(n, d), we associate a basis vector eN := 1
d

∑
σ∈Cd σ · eI , where

I is any representative of N . Then Cycd(Cn) has a basis given by {eN : N ∈ N(n, d)}.
Moreover, eN is a weight vector of weight w(N), hence we find that the dimension of the
weight space of weight λ is given by the number |Nλ(n, d)| of necklaces of weight λ.

Remark 4.1.12. The number |N(n, d)| of necklaces of length d on [n] can be counted
using Polya’s enumeration theorem, see for instance [Sta13, Theorem 7.10]:

dim Cycd(Cn) = |N(n, d)| = 1

d

∑
l|d

φ(l)n
d
l ,

where ϕ is Euler’s totient function.
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There is also a formula for |Nλ(n, d)| = dim Cycd(Cn)λ: it is equal to the coefficient of
xλ0

0 · · ·x
λn−1

n−1 in the polynomial

1

d

∑
`|d

(x
d/`
0 + · · ·+ x

d/`
n−1)`ϕ

(
d

`

)
.

To every bracelet b ∈ B(n, d), we associate a basis vector eb := 1
2d

∑
σ∈D2d

σ · eI , where I
is a representative of b. Then Dihd(Cn) has a basis given by {eb : b ∈ B(n, d)}, and the
dimension of the weight space of weight λ is given by the number |Bλ(n, d)| of bracelets
of weight λ.

Remark 4.1.13. The number of bracelets of length d on [n] is given by

dim Dihd(Cn) = |B(n, d)| =

{
1
2 |N(n, d)|+ 1

4(n+ 1)nd/2 for d even,
1
2 |N(n, d)|+ 1

4n
(d+1)/2 for d odd.

We only state the formula for |Bλ(n, d)| in the case of binary bracelets (i.e. n = 2), as
that is the only case that is relevant to us:

|B(w,d−w)(2, d)| =


(

1
2d

∑
l| gcd(d,w) ϕ(l)

( d
l
w
l

))
+ 1

2

( d
2
−1

w−1
2

)
for w odd,(

1
2d

∑
l| gcd(d,w) ϕ(l)

( d
l
w
l

))
+ 1

2

( d
2
w
2

)
for w even.

4.2 Computations

In this section, we describe how to computationally answer Question 4.1.9 for fixed
parameters. We focus on the smallest interesting case m = n = 2. In this case we
are dealing with representations of GL2, so the weights are in Z2. Moreover, the only
occurring weights in (C2)⊗d are tw0 t

d−w
1 for w = 0, . . . , d. For subrepresentations of

(C2)⊗d, we will abbreviate the weight spaces V(w,d−w) to Vw. Our goal is to determine
the dimension of the weight spaces 〈uMPS(2, 2, d)〉w.

All of our dimension counts in this section and the next use the following easy observation.

Observation 4.2.1. For p1, . . . , pN ∈ C[y1, . . . , ys] polynomials, and X the image of the
polynomial map

Cs → CN

(y1, . . . , ys) 7→ (p1(y1, . . . , ys), . . . , pN (y1, . . . , ys)),

a linear equation
∑
αixi vanishes on X if and only if the identity

∑
αipi = 0 holds in

the polynomial ring C[y1, . . . , ys]. In particular, the dimension of the linear span of X is
equal to the dimension of the subspace of C[y1, . . . , ys] spanned by the pi’s.
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4.2.1 The trace parametrization

If we directly use Definition 4.1.1, we see that uMPS(2, 2, d) is the closed image of a
polynomial map C8 → Dihd(C2). However, in this specific case there is an alternative
parametrization by C5 instead of C8: the trace parametrization, which appears to be
computationally more efficient in practice. It is based on the connection between uniform
matrix product states and invariant theory of matrices.

Definition 4.2.2. Let
R = C[(akij)1≤i,j≤m;1≤k≤n]

be the polynomial ring in m2n variables, and for k = 0, . . . , n− 1, let Ak := (akij)1≤i,j≤m
be generic m×m matrices. The trace algebra Cm,n is the subalgebra of R generated by
the polynomials Tr(Ai1 · · ·Ais), where (i1, . . . , is) runs over all words (or equivalently:
necklaces) in [n].

Remark 4.2.3. The trace algebra is precisely the subring of R consisting of all elements
that are invariant under simultaneous conjugation:

f ∈ Cm,n ⇐⇒ f(P−1A0P, . . . , P
−1An−1P ) = f(A0, . . . , An−1) ∀P ∈ GLm.

This is known as the first fundamental theorem in the invariant theory of matrices [Sib68,
Pro76].

Proposition 4.2.4 ([Sib68, Corollary 2]). The trace algebra C2,2 is generated by the
following five polynomials:

Tr(A0),Tr(A1),Tr(A2
0),Tr(A0A1),Tr(A2

1),

and moreover, there are no polynomial relations between these generators.

Corollary 4.2.5. For every bracelet b = (b1, . . . , bk), there is a unique polynomial

Pb(T0, T1, T00, T01, T11) ∈ C[T0, T1, T00, T01, T11]

such that for every pair (A0, A1) of 2× 2 matrices, the following equality holds:

Tr(Ab1 · · ·Abk) = Pb(Tr(A0),Tr(A1),Tr(A2
0),Tr(A0A1),Tr(A2

1)).

Remark 4.2.6. If we give the ring C[T0, T1, T00, T01, T11] a grading by putting deg(T0) =
deg(T1) = 1 and deg(T00) = deg(T01) = deg(T11) = 2, then the polynomial Pb is homo-
geneous of degree length(b).

The above means that uMPS(2, 2, d) is the image of the polynomial map

φ̃ : C5 →Dihd(C2)

(T0, T1, T00, T01, T11) 7→
∑
b

Pb(T0, T1, T00, T01, T11)eb,
(4.3)
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where b runs over all bracelets of length d. This is the trace parametrization.

In order to compute the polynomials Pb, for bracelets of length 3, one verifies that

P000 = −1

2
T 3

0 +
3

2
T0T00, P100 = −1

2
T 2

0 T1 +
1

2
T1T00 + T0T01,

P110 = −1

2
T0T

2
1 +

1

2
T0T11 + T1T01, P111 = −1

2
T 3

1 +
3

2
T1T11.

For bracelets of length ≥ 4, we can inductively use the following identity [Sib68], which
holds for every quadruple (A,B,C,D) of 2× 2-matrices:

2 Tr(ABCD) = Tr(A) (Tr(BCD)− Tr(B) Tr(CD)) + Tr(B) (Tr(CDA)− Tr(C) Tr(DA))

+ Tr(C) (Tr(DAB)− Tr(D) Tr(AB)) + Tr(D) (Tr(ABC)− Tr(A) Tr(BC))

− Tr(AC) Tr(BD) + Tr(AB) Tr(CD) + Tr(AD) Tr(BC)

+ Tr(A) Tr(B) Tr(C) Tr(D).

4.2.2 Computing the character

The weight space 〈uMPS(2, 2, d)〉w is the image of the map

C5 →Dihd(C2)w

(T0, T1, T00, T01, T11) 7→
∑
b

Pb(T0, T1, T00, T01, T11)eb,

where b ranges over all bracelets of weight w. By Observation 4.2.1, we need to compute
the dimension of the linear subspace of C[T0, T1, T00, T01, T11] spanned by the Pb’s. This
can be done computing the rank of the matrix of coefficients of Pb’s.

Putting everything together, we obtain Algorithm 1, which for a given d computes the
character (in particular the dimension) of 〈uMPS(2, 2, d)〉.

The results are summarized in Table 4.1, where we write Dw := dim〈uMPS(2, 2, d)〉w.
For d < 8, the space 〈uMPS(2, 2, d)〉 is equal to the ambient space Dih2(Cn).

We implemented this algorithm in SageMath [The20]. The code is available at
https://github.com/harshitmotwani2015/uMPS/.
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Algorithm 1: Linear span of 〈uMPS(2, 2, d)〉
Input: d
Output: Character of the representation 〈uMPS(2, 2, d)〉
T0 ← Tr(A0); T1 ← Tr(A1); T00 ← Tr(A2

0); T01 ← Tr(A0A1); T11 ← Tr(A2
1);

for ` = 3 to d do
bracelets = bracelets of length `;
for b in bracelets do

P[b] ← Tr(Ab1 · · ·Ab`), expressed in the Ti;
end

end
for w = 0 to d do

List the monomials yα1 , . . . ,yαt appearing in the P [b], where b ranges over all
bracelets of weight w;
Write P [b] =

∑
j βb,jy

αj ;
Compute the rank of the matrix (βb,j)b,j ;

end

d D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 dim〈uMPS(2, 2, d)〉 dim Dih2(Cn)

8 1 1 4 5 7 29 30
9 1 1 4 6 8 40 46
10 1 1 5 7 11 11 61 78
11 1 1 5 8 12 14 82 126
12 1 1 6 9 15 17 20 118 224
13 1 1 6 10 16 20 23 154 380
14 1 1 7 11 19 23 29 29 211 687
15 1 1 7 12 20 26 32 35 268 1224
16 1 1 8 13 23 29 38 41 45 353 2250
17 1 1 8 14 24 32 41 47 51 438 4112
18 1 1 9 15 27 35 47 53 61 61 559 7685
19 1 1 9 16 28 38 50 59 67 71 680 14310
20 1 1 10 17 31 41 56 65 77 81 86 846 27012

Table 4.1: Character of 〈uMPS(2, 2, d)〉. Since Dw = Dd−w
1, we only list Dw for w ≤ dd2e.

1More generally: for every GL2-representation V we have that V(b0,b1) = V(b1,b0).
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Based on these computations, we make the following conjecture:

Conjecture 4.2.7.

dim〈uMPS(2, 2, d)〉w =

{
1 + d(v−1)v

2 − 2(v−1)v(2v−1)
3 + vbd2c − 2v2 + v for w = 2v,

1 + dv(v+1)
2 − 2v(v+1)(2v+1)

3 for w = 2v + 1.

This would in particular imply

Conjecture 4.2.8 (Corollary of Conjecture 4.2.7)).

dim〈uMPS(2, 2, d)〉 =

{
1

192(d4 − 4d2 + 192d+ 192) for d even,
1

192(d4 − 10d2 + 192d+ 201) for d odd.

4.2.3 Higher order equations of uMPS(2, 2, d)

Equations of tensor varieties, such as Secant varieties of the Segre variety or Veronese
variety, are hard to compute. For uniform matrix product states, Critch and Morton
gave a complete description of the ideal of the varieties uMPS(2, 2, 4) and uMPS(2, 2, 5)
and, in [CM14], several linear equations of uMPS(2, 2, d) are given for d until 12. The
generators of the ideal of uMPS(2, 2, d) for d = 4, 5, 6 are given in [CMS19]. Our method
does not find equations for the variety via an implicitization problem as in the previ-
ously cited work. Such problems are difficult in general. We instead exploit represen-
tation theory, computing directly the highest weight vectors of the SL2-representation
Ik(uMPS(2, 2, d)), the degree k part of the ideal of the variety. Our method turns out to
be based on the solution of a linear system of equations in unknown coefficients, i.e. a
linear algebra problem.

Defining equations. Let V be a complex vector space of dimension S and V ∗ its dual
space. Let {v1, . . . , vS} and {x1, . . . , xS} be the respective canonical bases. The ring of
polynomial functions of V over C is denoted by C[V ] ' C[x1, . . . , xS ]. It is isomorphic
to the symmetric algebra of V ∗; C[V ] ' Sym(V ∗) =

⊕
k≥0 Symk(V ∗). Sometimes we

will denote Symk(V ∗) = C[V ]k. Let X ⊆ V be an algebraic variety. Its defining ideal
decomposes by degrees

I(X) = {f ∈ C[V ] : f(p) = 0, ∀p ∈ X} =
⊕
k>0

Ik(X),

where Ik(X) is the vector space of homogeneous polynomials of degree k vanishing on
X.

The variables of the polynomial ring C[Cycd(Cn)] can be written as xN , withN ∈ N(n, d).
In the particular case m = n = 2, the variables of C[Dihd(C2)] are xB, with B ∈ B(2, d).
The variety uMPS(2, 2, d) is invariant under the action of the general linear group given

77



in Equation (4.2). The action naturally induces an action on the ring of polynomial
functions C[Dihd(C2)] ' Sym(Dihd(C2)

∗
) and on the ideal of the variety

I(uMPS(m,n, d)) =
⊕
k>0

Ik(uMPS(2, 2, d)).

We therefore consider the space Ik(uMPS(2, 2, d)) ⊂ Symk(Dihd(C2)
∗
) as a representa-

tion of SL2 and we implement an algorithm that explicitly computes its highest weight
vectors in the ranges k = 1 and d ≤ 16, k = 2 and d ≤ 9, k = 3 and d ≤ 8. The
highest weight vectors are in particular equations of the variety. On the other hand, the
collection of highest weight vectors allows to determine the SL2-decomposition, degree
by degree, of the ideal into irreducible subrepresentations. The decomposition of the
degree one part I1(uMPS(2, 2, d)), seen as a vector space isomorphic to the dual of the
linear span of the variety, is coherent with the computations done in Section 4.2.

Weight vectors. Let s = diag(s0, s1) ∈ T ⊆ GL2 be an element of the torus. Let
I = (i1, . . . , id) ∈ W (2, d) be a word of length d in the alphabet [2]. The action of the
torus on the tensor product V = (C2)⊗d is given by

s(eI) = s(ei1)⊗ · · · ⊗ s(eid) = sd−w0 sw1 eI ,

where w is the number of entries in I that are equal to 1. The element eI = ei1⊗· · ·⊗eid
is therefore a weight vector of weight w(I) = (d− w,w), w ∈ {0, . . . , d}.

Define t0 := s−1
0 , t1 := s−1

1 and t = diag(t0, t1) ∈ T ⊆ GL2. The action of the torus on
xI ∈ V ∗ is therefore given by

s(xI) = (s−1
0 )d−w(s−1

1 )wxI = td−w0 tw1 xi1,...,id . (4.4)

We want to determine the action on the k-symmetric power of V ∗. An element of C[V ]k
is a monomial x = xI1 . . . xIk , with Ij = (ij1, . . . , i

j
d) ∈ W (2, d), for j = 1, . . . , k. Let

wj := w(Ij) ∈ Z2 be the weight of Ij . By Equation (4.4) the action on the monomial is

s(x) =

k∏
j=1

s(xIj ) =

k∏
j=1

s(x
ij1,...,i

j
d
) =

k∏
j=1

t
d−wj
0 t

wj
1 x =

(
t
d−

∑k
j=1wj

0 t
∑k
j=1wj

1

)
x (4.5)

Define ω :=
∑k

j=1wj . Clearly ω ∈ {0, . . . , kd} and it is the number of 1’s appearing in
x ∈ C[V ]k. We have that every monomial x ∈ C[V ]k is a weight vector of weight tdk−ω0 tω1 ,
for some ω ∈ {0, . . . , dk}. We abbreviate again “weight λ = (dk− ω, ω) ∈ Z2" to “weight
ω". The action naturally restricts to C[Dihd(C2)]k ⊆ C[V ]k.
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Highest weight vectors. We summarize the facts we need here about the represen-
tation theory of sl2, the Lie algebra of SL2, c.f. Chapter 1, Subsection 1.1.2.

The Lie algebra of SL2, denoted by sl2, is the space of 2 × 2 trace-zero matrices with
complex entries. It is C-span by three operators

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
,

which satisfy the commutation relations [H,X] = 2X,[H,Y ] = −2Y and [X,Y ] = H. For
every non-negative integer n there is an irreducible SL2-representation Vn of dimension
(n + 1); isomorphic to Symn(C2). If v ∈ V (n) := {v ∈ C2 : H(w) = n · v} then
X(v) = 0 and {v, Y (v), . . . , Y n(v)} spans Vn. A vector v ∈ Vn, eigenvector of H, such
that X(v) = 0 is called highest weight vector and its corresponding eigenvalue is called
highest weight.

The operator X, called the raising operator, acts on the elements of the basis as X(e0) =
0, X(e1) = e0 and the induced action on the tensor product is given by the Leibniz’s rule

X(eI) = X(ei1)⊗ ei2 ⊗ · · · ⊗ eid + · · ·+ ei1 ⊗ · · · ⊗ eid−1
⊗X(eid) =

∑
j1,...,jd

eI ,

where (j1, . . . , jd) are all the possible words such that 1 is replaced by 0.

The action on the coordinate xI ∈ V ∗ is

xI 7→ −
∑

j1,...,jd

xj1,...,jd , (4.6)

where (j1, . . . , jd) are all the possible words such that 1 is replaced by 0.

The opposite holds for the so called lowering operator Y , which acts on the elements of
the basis as Y (e0) = e1, Y (e1) = 0, where (j1, . . . , jd) are all the possible words such that
0 is replaced by 1.

Given the monomial x = xI1 . . . xIk ∈ C[V ]k, with Ij = (ij1, . . . , i
j
d) ∈ W (2, d), for

j = 1, . . . , k, by Equation (4.6) we have

X(x) =
∑

1≤j≤k
xI1 · · ·X(xIj ) · · ·xIk . (4.7)

The action naturally restricts to C[Dihd(C2)]k.

We have that the highest weight vectors for the SL2-representation C[Dihd(C2)]k '
Symk(Dihd(C2)

∗
) are the polynomials in the variables of Dihd(C2)

∗ which are linear
combinations of monomials of degree k of the same weight ω ∈ {0, . . . , ddk2 e}, described
in Equation (4.5), and which are killed by (the induced action of) the raising opera-
tor X as in Equation (4.7). The number of highest weight vectors of a fixed weight
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ω ∈ {0, . . . , ddk2 e} gives the multiplicity, denoted by cw ∈ N, of the corresponding irre-
ducible module, denoted by Vω ⊂ Symk(Dihd(C2)

∗
). The elements of Vω are recovered

by applying the powers of the lowering operator on the respective highest weight vector.
Applying X, resp. Y , on an element of weight ω we obtain an element of weight ω − 1,
resp. ω + 1.

We can write the decomposition into irreducible SL2-representation:

Symk(Dihd(C2)
∗
) =

d dk
2
e⊕

ω=0

V cω
ω . (4.8)

Lemma 4.2.9. Let Vω be the irreducible SL2-module of the SL2-representation Symk(Dihd(C2)
∗
)

associated to the weight ω ∈ {0, . . . , ddk2 e}. Then

dimVω = dk + 1− 2ω, for ω = 0, . . . ,
⌈dk

2

⌉
,

that is the module Vω(= V(dk−ω,ω)) is isomorphic to the vector space Mdk−2ω+1 of dimen-
sion dk − 2ω + 1.

Proof. An irreducible SL2-subrepresentation of Symk(Dihd(C2)
∗
) is isomorphic to the

module Vω ' Symdk−2ω(C2). The highest weight vector associated to the weight ω = 0
generates the irreducible SL2-module Vdk ' Symdk(C2) of dimension dk + 1. Fixed
ω ∈ {0, . . . , ddk2 e} we have dimVω = dimVdk − 2ω = dk + 1− 2ω.

Decomposition (4.8) can be written as

Symk(Dihd(C2)
∗
) =

d dk
2
e⊕

ω=0

(Mdk−2ω+1)⊕cω .

Determining the highest weight vectors of the SL2-representations

Ik(uMPS(2, 2, d)) ⊆ Symk(Dihd(C2)
∗
)

reveals the decomposition into irreducible SL2-modules, i.e. the multiplicities aω ∈ N
such that

Ik(uMPS(2, 2, d)) =

d dk
2
e⊕

ω=0

(Mdk−2ω+1)⊕aω , aω ≤ cω.
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Algorithm for highest weight vectors. The algorithm we describe does not find
equations of the variety via an implicitization problem. The method is based instead
on the solution of a linear system of equations in unknown coefficients. More precisely,
a highest weight vector of the SL2-representation Ik(uMPS(2, 2, d)) is a polynomial in
the variables of Dihd(C2)

∗ which is a linear combination of monomials of degree k and
of the same weight ω ∈ {0, . . . , ddk2 e} (see Equation (4.5)) such that the following two
conditions are satisfied:

1. the polynomial is killed by (the induced action of) the raising operator X (see
Equation (4.7));

2. it is zero, evaluated in the generic point of the variety uMPS(2, 2, d).

Imposing these two conditions to the linear combination of monomials generates a linear
system of equations in the unknown coefficients. We solve the linear system in order to
obtain the highest weight vectors of the fixed weight ω.

Let k be a fixed degree and ω ∈ {0, . . . , ddk2 e} be a weight. Consider the linear combina-
tion of all the monomials xω of C[Dihd(C2)]k of degree k and weight ω

f =
∑
h

γωhx
h
ω ∈ C[Dihd(C2)]k, (4.9)

where γωh ∈ C are unknown coefficients. We impose the conditions that f is a highest
weight vector, i.e. X(f) = 0, and that it is an element of the ideal of uMPS(2, 2, d), i.e.
f(P ) = 0, for every P ∈ uMPS(2, 2, d). This is equivalent to solving a linear system of
equations in the indeterminates γωh .

Solve the linear system. We report a method proposed in [BM05] by N. Bray and
J. Morton. The general problem is the following: given a polynomial map g with ring
map g∗ : C[x1, . . . , xt′ ] → C[y1, . . . , ys′ ], we want to find the ideal Ig of relations among
the xi. Let xa =

∏t′

i=1 x
ai
i ∈ C[x1, . . . , xt′ ] and denote g∗(xa) = ga ∈ C[y1, . . . , ys′ ]. Then

Ig is the ideal of polynomials
∑

a αax
a ∈ C[x1, . . . , xt′ ] such that

∑
a αag

a = 0.

Fix the degree k and let P = {xa : xa ∈ C[x1, . . . , xt′ ]k} = {x1, . . . ,xt} ⊂ C[x1, . . . , xt′ ]k
be the set of all monomials of degree k in the variables {xi}i=1,...,t′ . Denote the image
of the set by g∗(P) = {g1, . . . ,gt} ⊂ C[y1, . . . , ys′ ]. Notice that the element gi for
i = 1, . . . , t can be a linear combination of monomials in {yi}i=1,...,s′ . If we denote by
{y1, . . . ,ys} the set of all monomials in {yi}i=1,...,s′ that appear in g∗(P) then we can
write

gi =

s∑
j=1

βijyj ,

for every i = 1, . . . , t and for some coefficients βij ∈ C.

Consider the matrix of coefficients B = (βij) ∈ Ct×s and its transpose Bt = (β′ij) ∈ Cs×t

with β′ij = βji. We compute a set of generators of the kernel of Bt with Macaulay2
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[GS20]. They consist in q vectors: αl = (αl1, . . . , α
l
t), for l = 1, . . . , q and they are such

that, for every for l = 1, . . . , q, we have

t∑
i=1

αligi =
t∑
i=1

αli

 s∑
j=1

βijyj

 =
s∑
j=1

(
t∑
i=1

βijα
l
i

)
yj =

s∑
j=1

(
t∑
i=1

β′jiα
l
i

)
yj = 0.

In particular, we obtain the relations among {xi}i=1,...,t, i.e. among the monomials of
degree k in the variables {xi}i=1,...,t′ , given by

t∑
i=1

αlixi ∈ Ig ∩ C[x1, . . . , xt′ ]k, for every l = 1, . . . , q.

We apply this technique, degree by degree and weight by weight, to find the coefficients
γωh ’s of Equation (4.9). In our case the map g∗ is first the linear map induced by the
rising operator X on C[Dihd(C2)]k and then the evaluation map in the coordinates of the
trace parametrization.

Decomposition tables. We do not report all the equations of the highest weight
vectors obtained with our code. They are provided using the code available at https://
github.com/claudia-dela/uMPS_highest-weight-vectors/. Instead, we display the
decomposition into irreducible SL2-representations of the degree 1, 2 and 3 part of the
ideal in Tables 4.2, 4.3 and 4.4, respectively. The decomposition is given by

Ik(uMPS(2, 2, d)) =

d dk
2
e⊕

ω=0

(Mdk−2ω+1)⊕aω .

where Mdk−2ω+1 is a dk − 2ω + 1-dimensional irreducible module of SL2 and aω its
multiplicity. In particular Mi is an i-dimensional irreducible SL2-module associated to
ai highest weight vectors of weight ω = dk+1−i

2 .

As an example, consider the degree 2 part of the ideal of uMPS(2, 2, 8) given in Table
4.3. The last term of the third line of Table 4.3 is 5M9. The corresponding weight of
the module M9 is ω = dk+1−9

2 = 8·2+1−9
2 = 4. One of the 5 equations of degree 2 of

uMPS(2, 2, 8) of weight 4, that we denote by p4
8,3, has the expression:

p4
8,3 =x00000000x11101000 − x00000000x11011000 − x00000000x11100100+

− x00000000x11010100 + x00000000x10110100 + x00000000x11001100.
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d I1(uMPS(2, 2, d))

8 M1

9 M2 +M4

10 0M1 + 4M3 +M5

11 4M2 + 6M4 + 2M6

12 9M1 + 7M3 + 11M5 + 3M7

13 16M2 + 18M4 + 15M6 + 4M8

14 7M1 + 41M3 + 28M5 + 23M7 + 5M9

15 44M2 + 68M4 + 49M6 + 29M8 + 7M10

16 61M1 + 92M3 + 124M5 + 69M7 + 41M9 + 8M11

Table 4.2: Decomposition of the degree one part of the ideal of uMPS(2, 2, d) into irreducible
SL2-representations, for d = 8, . . . , 16.

d I2(uMPS(2, 2, d))

6 M1 +M5

7 0M1 + 3M3 + 2M5 +M7

8 10M1 + 7M3 + 15M5 + 5M7 + 5M9

9 0M1 + 31M3 + 31M5 + 27M7 + 14M9 + 6M11 +M13

Table 4.3: Decomposition of the degree 2 part of the ideal of uMPS(2, 2, d) into irreducible
SL2-representations, for d = 6, 7, 8, 9.

d I3(uMPS(2, 2, d))

6 6M3 + 3M5 + 6M7 +M9 +M11

7 10M2 + 18M4 + 20M6 + 14M8 + 11M10 + 3M12 +M14

8 54M1 + 64M3 + 122M5 + 94M7 + 97M9 + 50M11 + 37M13 + 9M15 + 5M17

Table 4.4: Decomposition of the degree 3 part of the ideal of uMPS(2, 2, d) into irreducible
SL2-representations, for d = 6, 7, 8.

In particular, comparing the decomposition of the ambient space Dihd(C2) (Table 4.5)
with the decomposition of the degree one part of the ideal (Table 4.2) we obtain the
decomposition of the linear span of uMPS(2, 2, d), for d = 8, . . . , 16, whose dimension
agrees with the dimension given in Table 4.1 of the previous subsection.
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d Dihd(C2)

8 3M1 +M3 + 3M5 +M9

9 3M2 + 3M4 + 3M6 +M10

10 0M1 + 8M3 + 3M5 + 4M7 +M11

11 6M2 + 10M4 + 5M6 + 4M8 +M12

12 12M1 + 9M3 + 17M5 + 6M7 + 5M9 +M13

13 19M2 + 22M4 + 21M6 + 8M8 + 5M10 +M14

14 7M1 + 47M3 + 32M5 + 31M7 + 9M9 + 6M11 +M15

15 47M2 + 74M4 + 55M6 + 37M8 + 12M10 + 6M12 +M16

16 65M1 + 95M3 + 133M5 + 75M7 + 51M9 + 13M11 + 7M13 +M17

Table 4.5: Decomposition of the space of dihedrally symmetric tensors into irreducible SL2-
representations, for d = 8, . . . , 16.

d Linear span 〈uMPS(2, 2, d)〉

8 2M1 +M3 + 3M5 +M9

9 2M2 + 2M4 + 3M6 +M10

10 0M1 + 4M3 + 2M5 + 4M7 +M11

11 2M2 + 4M4 + 3M6 + 4M8 +M12

12 3M1 + 2M3 + 6M5 + 3M7 + 5M9 +M13

13 3M2 + 4M4 + 6M6 + 4M8 + 5M10 +M14

14 0M1 + 6M3 + 4M5 + 8M7 + 4M9 + 6M11 +M15

15 3M2 + 6M4 + 6M6 + 8M8 + 5M10 + 6M12 +M16

16 4M1 + 3M3 + 9M5 + 6M7 + 10M9 + 5M11 + 7M13 +M17

Table 4.6: Decomposition of the linear span of uMPS(2, 2, d) into irreducible SL2-
representations, for d = 8, . . . , 16.

4.3 Linear relations via Cayley-Hamilton

We show that the linear span of the space of cyclically invariant matrix product states
uMPS(m,n, d) is a proper subspace of the space of cyclically invariant tensors Cycd(Cn)

for n ≥ m + 2 and d ≥ (m+1)(m+2)
2 . In particular, Theorem 4.3.6 gives nontrivial

trace relations that do not follow either from cyclic permutations or reflections. We
recall the classical Cayley-Hamilton theorem. We apply this result in order to find lin-
ear equations of uMPS(m,n, d+ t) ⊆ Cycd+t(Cn), t ≥ m based on linear equations of
uMPS(m,n,N) ⊆ CycN (Cn), N = d, d+ 1, . . . , d+m− 1, in Lemma 4.3.3.

Theorem 4.3.1 (Cayley-Hamilton). Let A ∈ Cm×m be an m ×m complex matrix and
pA(λ) = det(λIdm −A) be its characteristic polynomial. Then pA(A) = 0.
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In fact, the only thing we will use is the following statement, which (since deg pA = m)
immediately follows from Theorem 4.3.1.

Corollary 4.3.2. Let A ∈ Cm×m. Then Aq, for q ≥ m can be written as a linear
combination of its previous powers.

Proof. Consider Aq = AmAq−m with q ≥ m. Let pA be the characteristic polynomial. If
q = m then by the Cayley-Hamilton Theorem

pA(A) = Am + γm−1A
m−1 + · · ·+ γ1A+ γ0Idm = 0.

Aq = Am = −(γm−1A
m−1 + · · ·+γ1A+γ0Idm), i.e. Aq, q = m can be written as a linear

combination of its previous powers Ai, for i = 0, . . . ,m− 1. Assume that q > m, then

AmAq−m = AmAAq−m−1 = −(γm−1A
m−1 + · · ·+ γ1A+ γ0Idm)AAq−m−1

= −(γm−1A
m + · · ·+ γ1A

2 + γ0A)Aq−m−1,

and after q −m− 1 steps we have

Aq = −(γm−1A
q−1 + · · ·+ γ1A

q−m+1 + γ0A
q−m).

This concludes the proof.

Lemma 4.3.3. Let c = (c1, . . . , cs) ∈ Cs be a vector of coefficients and {ij`}1≤`≤d,1≤j≤s
be indices, with ij` ∈ [n]. Assume that for every n-tuple (A0, . . . , An−1) of m×m matrices
and every k < m the following identity holds:

s∑
j=1

cj Tr(A
ij1
· · ·A

ijd
Ak0) = 0. (4.10)

Then the same identity holds for arbitrary k ∈ N.

Proof. We use induction on k ≥ m. By Corollary 4.3.2, Ak0 can be written as a linear
combination of its previous powers Aq0, for q = 0, . . . ,m− 1. Therefore, we have

s∑
j=1

cj Tr(A
ij1
· · ·A

ijd
Ak0) =

s∑
j=1

cj Tr
[
A
ij1
· · ·A

ijd

(m−1∑
l=0

γlA
q
0

)]

=
s∑
j=1

cj

m−1∑
l=0

γl
(

Tr(A
ij1
· · ·A

ijd
Aq0)
)

=

m−1∑
l=0

γl

( s∑
j=1

cj
(

Tr(A
ij1
· · ·A

ijd
Aq0)
))

= 0.
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Corollary 4.3.4. Let c = (c1, . . . , cs) ∈ Cs be a vector of coefficients and let lj =

(ij1 . . . i
j
d) ∈W (n, d), for j = 1, . . . , s, Let 0m := (0 . . . 0)︸ ︷︷ ︸

m-times

be the word of m zeros and let

lj0
m = (ij1 . . . i

j
d 0 . . . 0︸ ︷︷ ︸
m-times

)

be the word obtained concatenating lj and 0m. Then, if the following relations hold

h0 := c1xl1 + · · ·+ csxls ∈ I1(uMPS(m,n, d)),

h1 := c1xl10 + · · ·+ csxls0 ∈ I1(uMPS(m,n, d+ 1))

...

hm−1 := c1xl10m−1 + · · ·+ csxls0m−1 ∈ I1(uMPS(m,n, d+m− 1)),

then, for every q ≥ m, it holds

ht := c1xl10q + · · ·+ csxls0q ∈ I1(uMPS(m,n, d+ t)).

Proof. Simply notice that, for every q ∈ N, hq ∈ I1(uMPS(m,n, d+ q) if and only if

s∑
j=1

cj Tr(A
ij1
· · ·A

ijd
Aq0) = 0.

The result descends directly from Lemma 4.3.3.

The usefulness of Lemma 4.3.3 stems from the fact that one can find expressions of the
form (4.10) which are trivial for small k, in the sense that they follow from the cyclic
invariance of the trace, but nontrivial for large k. We illustrate this in the example below.

Example 4.3.5. We show that for any 2× 2 matrices A0, A1, A2, A3 and any k ≥ 0, the
following identity holds

Tr(A1A2A0A3A
k
0) + Tr(A2A3A0A1A

k
0) + Tr(A3A1A0A2A

k
0)

= Tr(A1A0A2A3A
k
0) + Tr(A2A0A3A1A

k
0) + Tr(A3A0A1A2A

k
0).

By the above argument, it suffices to show the identity for k = 0 and k = 1. But these
both follow from cyclic invariance of the trace:

Tr(A1A2A0A3) + Tr(A2A3A0A1) + Tr(A3A1A0A2)

=Tr(A1A0A2A3) + Tr(A2A0A3A1) + Tr(A3A0A1A2)

Tr(A1A2A0A3A0) + Tr(A2A3A0A1A0) + Tr(A3A1A0A2A0)

=Tr(A1A0A2A3A0) + Tr(A2A0A3A1A0) + Tr(A3A0A1A2A0).
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This immediately gives us a nontrivial linear relation on uMPS(2, 4, d), for d ≥ 6. But
we can also find linear relations on uMPS(2, 2, d). For instance, if we put k = 2, A2 = A2

1

and A3 = A0A1, we find

Tr(A3
1A

2
0A1A

2
0) + Tr(A2

1A0A1A0A1A
2
0) + Tr(A2

1A
3
0A

2
1A0)

= Tr(A2
1A0A1A

2
0A1A0) + Tr(A2

1A
2
0A

2
1A

2
0) + Tr(A3

1A
3
0A1A0),

which is the unique linear relation on uMPS(2, 2, 8) that doesn’t follow from dihedral
symmetry.

Theorem 4.3.6. Let A0, . . . , Am, B be m ×m matrices. Then for every ` ∈ N it holds
that ∑
σ∈Sm,τ∈Cm+1

sgn(σ) sgn(τ) Tr(Aτ(0)B
σ(0)Aτ(1)B

σ(1) · · ·Aτ(m−1)B
σ(m−1)Aτ(m)B

`) = 0.

(4.11)
Here Sm is the symmetric group acting on {0, 1, . . . ,m − 1}, and Cm+1 is the cyclic
group acting on {0, 1, . . . ,m}.

Proof. We will first show the statement for ` ∈ {0, 1, . . . ,m− 1}. So let us fix such an `.
We will write

T (σ, τ) := Tr(Aτ(0)B
σ(0)Aτ(1)B

σ(1) · · ·Aτ(m−1)B
σ(m−1)Aτ(m)B

`).

Let us write ca for the permutation that cyclically permutes the first a elements. Precisely

ca(i) =


i+ 1 for i < a− 1

0 for i = a− 1

i for i > a− 1.

Step 1. For σ ∈ Sm and τ ∈ Cm+1, we define

σ̃ := σ ◦ c−1
σ−1(`)+1

◦ cσ−1(`)+1
m

τ̃ := τ ◦ cσ
−1(`)+1
m+1

we have T (σ, τ) = T (σ̃, τ̃).

Indeed, if we write k = σ−1(`), then

T (σ, τ) = Tr(Aτ(0)B
σ(0) · · ·Aτ(k)B

σ(k)Aτ(k+1)B
σ(k+1) · · ·Aτ(m−1)B

σ(m−1)Aτ(m)B
σ(k))

= Tr(Aτ(k+1)B
σ(k+1) · · ·Aτ(m)B

σ(k)Aτ(0)B
σ(0) · · ·Aτ(k−1)B

σ(k−1)Aτ(k)B
σ(k))

= T (σ̃, τ̃).

Where for the last step, note that

• k + 1 = ck+1
m+1(0), . . . , m = ck+1

m+1(m− k − 1), 0 = ck+1
m+1(m− k), . . . , k = ck+1

m+1(m).
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• k+1 = c−1
k+1(ck+1

m (0)), . . . ,m−1 = c−1
k+1(ck+1

m (m−k−2)), k = c−1
k+1(ck+1

m (m−k−1)),
0 = c−1

k+1(ck+1
m (m− k)), . . . , k − 1 = c−1

k+1(ck+1
m (m− 1)).

Step 2. Note that the assignment

Sm × Cm+1 → Sm × Cm+1

(σ, τ) 7→ (σ̃, τ̃)

is an involution. Indeed, we have

σ̃−1(`) = c−σ
−1(`)−1

m (cσ−1(`)+1(σ−1(`))) = c−σ
−1(`)−1

m (0) = m− σ−1(`)− 1.

So, again writing k = σ−1(`)

˜̃σ = σ̃ ◦ c−1
σ̃−1(`)+1

◦ cσ̃−1(`)+1
m

= σ ◦ c−1
k+1 ◦ c

k+1
m ◦ c−1

m−k ◦ c
m−k
m

= σ.

To see the last equality:

• For i < k: c−1
k+1(ck+1

m (c−1
m−k(c

m−k
m (i)))) = c−1

k+1(ck+1
m (c−1

m−k(m− k + i))) =

c−1
k+1(ck+1

m (m− k + i)) = c−1
k+1(i+ 1) = i.

• For i = k: c−1
k+1(ck+1

m (c−1
m−k(c

m−k
m (k)))) = c−1

k+1(ck+1
m (c−1

m−k(0))) =

c−1
k+1(ck+1

m (m− k − 1)) = c−1
k+1(0) = k.

• For i > k: c−1
k+1(ck+1

m (c−1
m−k(c

m−k
m (i)))) = c−1

k+1(ck+1
m (c−1

m−k(i− k))) =

c−1
k+1(ck+1

m (i− k − 1)) = c−1
k+1(i) = i.

And furthermore ˜̃τ = τ ◦ ck+1
m+1 ◦ c

m−k
m+1 = τ .

Step 3. Note that

sgn(σ̃) sgn(τ̃) = (−1)k+(k+1)(m−1)+(k+1)m sgn(σ) sgn(τ)

= − sgn(σ) sgn(τ).

From Step 1 we have that T (σ, τ) = T (σ̃, τ̃). There will be cancellations of terms in (4.11)
as sgn(σ̃) sgn(τ̃) = − sgn(σ) sgn(τ) from Step 3. Finally using Step 2 we ensure that all
terms will cancel out therefore establishing the given identity for 0 ≤ l ≤ m − 1. Now
using Lemma 4.3.3, we conclude that the given identity (4.11) holds for all l ∈ N.

Corollary 4.3.7. If n ≥ 3 and d ≥ (m+1)(m+2)
2 , then uMPS(m,n, d) is contained in a

proper linear subspace of the space of cyclically invariant tensors.
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Proof. Let ` ≥ m and letSm+1 denote the symmetric group acting on {0, 1, . . . ,m−1, `}.
Then we can rewrite (4.11) as follows:∑

σ∈Sm+1

sgn(σ) Tr(A0B
σ(0)A1B

σ(1) · · ·Am−1B
σ(m−1)AmB

σ(`)) = 0. (4.12)

Let X0, X1, X2 be m × m matrices, and in (4.12) substitute A0 = X0, B = X1, and
Ai = X2 for i = 1, . . . ,m. Note that even after that substitution, the ternary bracelets
corresponding to the (m + 1)! terms in (4.12) are all distinct. Hence no two terms will
cancel, and we get a nontrivial linear relation on uMPS(m, 3, d), where d = 1 + 2 + · · ·+
(m− 1) + `+ (m+ 1) ≥ 1 + 2 + · · ·+ (m+ 1) =

(
m+2

2

)
.

Remark 4.3.8. With a bit more care, one can also get nontrivial relations on uMPS(m, 2, d)
in this way. For instance if we take ` = m and in (4.12) we substitute A0 = X0X

m+1
1 X0,

B = X1, and Ai = X0 for i = 1, . . . ,m, one verifies that again no terms cancel, and
hence we found a nontrivial linear relation on uMPS(m, 2, d), where d =

(
m+3

2

)
.

4.3.1 Linear equations for uMPS(2, 2, d)

From the trace parametrization, we can give an upper bound on dim〈uMPS(2, 2, d)〉.

Theorem 4.3.9. For every d ∈ N, we have the inequality

dim〈uMPS(2, 2, d)〉 ≤

{
1

192(d+ 6)(d+ 4)2(d+ 2) for d even,
1

192(d+ 7)(d+ 5)(d+ 3)(d+ 1) for d odd.

Proof. It follows from (4.3) and Remark 4.2.6 that dim〈uMPS(2, 2, d)〉 can be at most
the number of degree d monomials in C[T0, T1, T00, T01, T11]. Counting these monomials
gives the above formula.

Note that asymptotically for d → ∞, the above bound agrees with our conjectured
formula in Conjecture 4.2.8.

As in the previous section, we abbreviate “weight λ = (w, d−w) ∈ Z2" to “weight w". In
the rest of this section, we provide a proof of Conjecture 4.2.7 in the cases w = 0, 1, 2, 3.

Consider the parametrization of uMPS(2, 2, d) in coordinates

φ : (C2×2)2 → Dihd(C2)

(A0, A1) 7→ (Tr(Ad0),Tr(Ad−1
0 A1), . . . ,Tr(Ad1)).

It is in particular a polynomial map in the unknown entries of the matrices A0, A1 ∈ C2×2,
we denote by

A0 =

(
a1 a2

a3 a4

)
, A1 =

(
b1 b2
b3 b4

)
.
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We will write

Ti1...id := Tr(Ai1 . . . Aid) ∈ C[a1, . . . , b4]d and Ww := 〈Tb : b ∈ Bw(2, d)〉

By Observation 4.2.1, we have

dim〈uMPS(2, 2, d)〉w = dimWw.

The cases w = 0 and w = 1 are easy:

Proposition 4.3.10. The space W0 is a 1-dimensional vector space generated by the
polynomial T0,...,0 = Tr(Ad0). The space W1 is a 1-dimensional vector space generated by
the polynomial T10...0 = Tr(A1A

d−1
0 ).

Proof. If w = 0 then b = (0 . . . 0) ∈ B0(2, d) is the only binary bracelet of weight zero,
and if w = 1 then b = (10 . . . 0) ∈ B1(2, d) is the only binary bracelet of weight 1.

We now turn to the case w = 2. Then Conjecture 4.2.7 states that dimWw = bd2c. But
bd2c is exactly the number B2(2, d) of generators Tb of Ww; hence we need to show that
they are linearly independent.

Proposition 4.3.11. The polynomials {Tb : b ∈ B2(2, d)} are linearly independent.

Proof. Note that

W2 = 〈T10i10d−2−i | i = 0, . . .
⌊d

2

⌋
− 1〉.

If we make the following substitutions:

A1 =

(
0 1
1 0

)
, A0 =

(
1 0
0 x

)
our generators Tb become

T10i10d−2−i = Tr(A1A
i
0A1A

d−2−i
0 ) = xi + xd−2−i i = 0, . . .

⌊d
2

⌋
− 1. (4.13)

Since for the given choice of A0, A1 the polynomials (4.13) are bd2c linearly independent
polynomials, the same holds for a generic choice of matrices.

Finally, we prove the case w = 3. In this case our conjectured formula states that
dimWw = d− 3. Consider the following subset of B3(2, d):

B̃3 := {b ∈ B3(2, d) : b contains 11 or 101} ⊂ B3(2, d).

Lemma 4.3.12. The cardinality of B̃3 equals d− 3.
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Proof. The cardinality of B̃3 is the sum of the number of binary bracelets of weight 3
containing 11 and the number of binary bracelets of weight 3 containing 101 but not 11,
that are dd−2

2 e and d
d−5

2 e respectively. Therefore the cardinality of B̃3 is⌈d− 2

2

⌉
+
⌈d− 5

2

⌉
= d− 3.

In order to prove the case w = 3 we need to show that {Tb : b ∈ B̃3} is a basis of W3.
We first show linear independence:

Lemma 4.3.13. The polynomials {Tb : b ∈ B̃3} are linearly independent.

Proof. We will show that the polynomials are linearly independent even after the follow-
ing substitution:

A1 =

(
0 1
1 1

)
, A0 =

(
1 0
0 x

)
.

Then W3 is spanned by the following polynomials:

fb := T110b10d−b−3 = xb + xd−b−3 + 2xd−3 b ∈ {0, . . . ,
⌊d− 3

2

⌋
},

gb := T1010b10d−b−4 = xb+1 + xd−b−3 + xd−4 + xd−3 b ∈ {1, . . . ,
⌊d− 4

2

⌋
}.

We now simply have to put the coefficients of these polynomials in a matrix and show it
has full rank. For d even the matrix of coefficients is given by

S =



1 . . . 3
1 1 2

1 1 2
...

. . . . .
. ...

0 1 1 2
0 0 1 0 . . . 2 1

0 1 1 1 1
...

. . . . .
. ...

0 . . . 2 . . . 0 1 1



91



and for d odd, given by

S =



1 . . . 0 3
1 0 1 2

1 1 0 2
...

. . . . .
. ...

...
1 1 0 2

2 0 2
0 0 1 0 . . . 0 2 1

0 1 0 1 1 1
. . . . .

. ...
...

0 0 1 1 0 1 1



.

By elementary row operations, we can reduce the left upper part to a diagonal matrix of
order bd−1

2 c. The left lower part is filled with zeros. The (rectangular) right lower block
of dimension bd−4

2 c × b
d−2

2 c can be put in the following upper triangular forms, for d
even and odd respectively

0 . . . −1 2 −1
... −1 1 1 −1

. .
.

. .
.

0 1 −1

−1 1
...

...
...

2 0 . . . 0 1 1


→



2 0 . . . 1 1
0 2 3 −1

. . . 5 −3
...

...
...

0 . . . 0 2 ∗ ∗
0 . . . 0 ∗ ∗


for d even,



0 . . . −1 2 −1
... −1 1 1 −1

. .
.

. .
.

0 1 −1
...

...
...

−1 1 −1
1 0 . . . 0 1 0


→



1 0 . . . 0 1 0
0 1 0 . . . 0 2 −1
... 0

. . . 3 −2
...

...
0 1 ∗ ∗

0 ∗ ∗


for d = 2 odd.

Both the obtained blocks have rank bd−4
2 c. We have that the rank of S is bd−1

2 c+b
d−4

2 c =
d− 3, and this concludes the proof.

We finish our proof by showing that {Tb : b ∈ B̃3} spans W3:

Lemma 4.3.14. Every polynomial T10a10b10c = Tr(A1A
a
0A1A

b
0A1A

c
0), with 1 < a ≤ b ≤

c, a+ b+ c = d− 3 is an element of the linear span 〈Tb : b ∈ B̃3〉.

Proof. Notice that the elements of B3(2, n)\ B̃3 can be written without loss of generality
in the form

10a10b10c, with 1 < a ≤ b ≤ c.
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We use induction on a. If a = 0 and a = 1 then (10a10b10c) ∈ B̃3 and we are done. If we
substitute A1 → A1A

a−1
0 , A2 → A1A

b
0 and A3 → A1 in the equation given by Theorem

4.3.6, we get

Tr(A1A
a−1
0 A1A

b+1
0 A1A

c
0) + Tr(A1A

b
0A1A0A1A

a+c−1
0 ) + Tr(A2

1A
a
0A1A

b+c
0 ) =

Tr(A1A
a
0A1A

b
0A1A

c
0) + Tr(A1A

b+1
0 A2

1A
a+c−1
0 ) + Tr(A1A0A1A

a−1
0 A1A

b+c
0 ).

Reordering the summands we obtain

T10a10b10c = (T10b1010a+c−1 + T110a10b+c − T10b+1110a+c−1 − T1010a−110b+c) + T10a−110b+110c .

All terms in the parenthesis have as subscript an element of B̃3, and the last term is in
〈{Tb : b ∈ B̃3}〉 by the induction hypothesis. This concludes the proof.

Conclusions. In this chapter, we studied the linear span 〈uMPS(m,n, d)〉. Theorem
4.3.6 introduces a new method to find linear equations that vanish on 〈uMPS(m,n, d)〉,
based on the Cayley-Hamilton theorem. As a corollary, we provided that for d ≥
(m+ 1)(m+ 2), the linear span 〈uMPS(m,n, d)〉 does not fill its natural ambient space
Cycd(Cn), significantly improving the state of the art. For the special casem = n = 2, we
described an algorithm that computes 〈uMPS(2, 2, d)〉, viewed as a GL2-representation
and we obtained a conjectured formula for its dimension that we proved in the first cases,
using our Cayley-Hamilton technique. Moreover, using the trace parametrization we gave
an upper bound on the dimension of 〈uMPS(2, 2, d)〉 which is close to optimal.
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Chapter 5

Nonlinear conjugate gradient
method on MPS

In quantum physics, every physical system is associated to a Hilbert space. Moreover,
a system composed of several subsystems is associated to the tensor product of the
Hilbert spaces associated to the subsystems. One of the main problems in studying or
simulating these many-body quantum systems is the exponential growth of the dimension
of the tensor product in the number of its factors.

Consider a quantum many-body system of d particles. Let Hk = Cnk , for k = 1, . . . , d be
the state space of the single k-th component and let H = H1 ⊗ · · · ⊗ Hd be the Hilbert
space associated to the composite system. For every k = 1, . . . , d, fix a basis {e(k)

jk
}nkjk=1

of Hk. An element ψ ∈ H can be written as

ψ =

n1,...,nd∑
j1,...,jd=1

ψj1,...,jd e
(1)
j1
⊗ · · · ⊗ e(d)

jd
.

The tensor ψ is usually called wave function and it is completely characterized by its
coefficients ψj1,...,jd . We immediately notice that the dimension of the Hilbert space

dim(H) =

d∏
i=1

dim(Hi) =

d∏
i=1

ni,

increases exponentially in the number of factors of the tensor product, meaning that the
number of parameters needed to describe the state ψ ∈ H is exponentially large in the
system size. From a computational point of view, this means that the representation of
ψ is inefficient. This leads to the problem of finding an efficient representation of ψ that
also provides an accurate physical description of the system, in particular of the expected
entanglement properties of the state [Orú14].
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Bond dimensions and entanglement. Tensor network varieties play a major role
in this context, where they are used as a variational ansatz class to describe strongly
correlated quantum systems, whose entanglement structure is given by the underlying
graph. A state of the tensor network is the result of a contraction of tensors prescribed
by the edges of the graph. By the physical interpretation of this construction, the edges
of the graph encode the structure of the entanglement of the state ψ, and the bond
dimension associated to every edge is considered a quantitative measure of the amount
of quantum correlation in the wave function. For example, low-energy eigenstates of
gapped Hamiltonians with local interactions exhibit little entanglement relative to typical
states and therefore they can be efficiently approximated with matrix product states and
projected entangled pair states with finite bond dimensions [ECP10, Has07, VWPGC06].
Particularly relevant and studied are therefore lattice graphs. We provide examples of
matrix product states (MPS) and projected entangled pair states (PEPS) in Figure
5.1. Matrix product states (projected entangled pair states) with periodic boundary
conditions are said to be translation invariant if the same tensor is associated to every
vertex of the underlying graph. If the graph is the path graph, the associated matrix
product state (projected entangled pair states) with open boundary conditions can be
translation invariant only in the so called thermodynamic limit, where the number of
vertices approaches infinity.

(a) (b)

(c) (d)

Figure 5.1: Examples of lattice graphs: MPS with open (a) and periodic (b) boundary condi-
tions; PEPS with open (c) and periodic (d) boundary conditions.

We refer to [Orú14, STG+19, PGVWC07, CLVW20] for a full description of the subject
from the viewpoint of quantum physics and for details on the construction of MPS,
PEPS and other related entanglement structures. The entanglement theory behind the
construction of the MPS ansatz led to the introduction of variational MPS algorithms
applied to PEPS [VWPGC06, VC04] and tensor network varieties associated to higher
dimensional graphs.
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Dimension. Moreover, the dimension of tensor network varieties is polynomial in the
system size allowing for an efficient parametrization of states of a composite system.

Let TNSΓ
m,n ⊂ H be the tensor network variety associated to (Γ,m,n). By Theorem

3.0.2 in Chapter 3 we have the following upper bound on the dimension of the variety

dim TNSΓ
m,n ≤

∑
v∈v(Γ)

(nv ·Nv)− d+ 1−
∑
e∈e(Γ)

(m2
e − 1) + dim StabGΓ,m

(X),

where Nv =
∏
e3vme, X = X1 ⊗ · · · ⊗ Xd with Xv ∈ Hom(Wv, Vv) generic and

StabGΓ,m
(X) is the stabilizer of X under the action of the gauge subgroup.

By naive computation, if we denote by Nmax = maxv∈v(Γ)Nv, then

dim TNSΓ
m,n = O(poly(d) poly(Nmax)).

Therefore, if we approximate the state ψ to be an element of TNSΓ
m,n ⊂ H, the number

of parameters needed to describe ψ grows polynomially in the system size, allowing an
efficient parametrization of the wave function.

State of the art. The original motivation in quantum physics is the description of
quantum spin chains [AKLT88, FNW92, ÖR95]. In particular, I. Affleck, T. Kennedy,
E. H. Lieb and H. Tasaki [AKLT88] proved that ground states of the AKLT model
admitted an analytic solution corresponding to a matrix product state representation.
While in general analytical solutions of ground states are too hard to be found, the AKLT
model suggested the use of matrix product states as variational classes of tensors for the
approximation of ground states.

Let H = Cn1 ⊗ · · · ⊗ Cnd . Let H : H → H be the Hamiltonian describing the dynamics
of a quantum physical system. We denote the lowest eigenvalue of H by λ0 ∈ R, and the
associated eigenspace by Eλ0 . Vectors of Eλ0 are the so called ground state.

The expectation value of the Hamiltonian in v ∈ H is the real valued operator ρ : H → R,
defined as

ρ(v) := 〈H〉v =
v†Hv

v†v
.

The Courant-Fischer-Weyl min-max theorem [RS78] ensures that the minimum eigen-
value of H corresponds to

λ0 = min {ρ(v) : v ∈ H} .

Therefore, the ground states of H correspond to eigenvectors that realize the minimum.
Denote a ground state by v0.

Problem 5.0.1. The variational ansatz consists in approximating the ground state v0

with a tensor ṽ0 ∈ H of a chosen tensor network representation, i.e. fixed (Γ,m,n)
tensor network, in finding

ṽ0 = arg min
{
ρ(v) : v ∈ TNSΓ◦

m,n

}
.
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Matrix product states are the first nontrivial class of tensor network varieties and they
received great attention in the recent years. Several techniques have been developed in
order to study their geometry and to build ad hoc algorithms for exploiting the efficiency
of the MPS representation.

Problem 5.0.2. Given φ : DMPS → MPS ⊂ H, the parametrization of the variety of
matrix product states, problem 5.0.1 can be restated as: finding

arg min
A∈DMPS

(ρ ◦ φ(A)) = arg min
A∈DMPS

φ(A)†Hφ(A)

φ(A)†φ(A)
.

Equivalently, finding A ∈ DMPS which realizes the minimum of the functional f = ρ ◦φ :
DMPS → R, given by

f(A) =
φ(A)†Hφ(A)

φ(A)†φ(A)
. (5.1)

Variational ansatz. White [Whi93] introduced an algorithm to find an approximate
ground states that nowadays is the well-known Density Matrix Renormalization Group
(DMRG) variational algorithm [Vid04, Sch11]. The DMRG is an adaptive algorithm
that optimizes the MPS in order to make it an approximation of the lowest eigen-
value of a given Hamiltonian. The algorithm consists in the sequential solution of
minor diagonalization problems: all but one or two tensors of the MPS are fixed, an
eigensolver is performed on the reduced eigenvalue problem and then the MPS form
(that can have been lost) is restored through a Singular Value Decomposition. The
DMRG has been generalized to arbitrary loop-free tensor network formats (Tree-Tensor
Networks) [STG+19] and MERA (Multiscaled Entanglement Renormalization Ansatz)
[Vid07, Vid08, EV11, EV14].

The best known and most powerful method for approximating the time-evolving wave
function within the MPS manifold is the Time-Evolving Block Decimation (TEBD) de-
veloped by Vidal [Vid04]. Given a Hamiltonian H : H → H, the time evolution of a
quantum state ψ(t) ∈ H is dictated by the Shrödinger equation (1.4)

i~
d

dt
ψ(t) = H(t)ψ(t).

whose solution is given by

ψ(t) = e−itH/~ψ(t0), t0 = 0.

The new idea is to use a Lie-Trotter-Suzuki decomposition for the evolution operator
e−iδH/~, for small time steps δ � 1. Given a decomposition H = H(1) +H(2) such that
H(1) and H(2) separately contain local terms that all commute, we can write

e−iδH = e−iδH
(1)
e−iδH

(2)
+O(δ2) ≈δ→0 e

−iδH(1)
e−iδH

(2)
.
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The decomposed evolution operator is sequentially applied to the wave function in the
MPS representation. Again, after every application, a truncation step (SVD or Schmidt
decomposition) is performed to restore the wave function to the MPS format.
Assuming that H is independent of time and considering the substitution τ = it

d

dτ
ψ(τ) = −1

~
Hψ(τ),

the solution in imaginary time is given by

ψ(τ) = e−Hτ/~ψ(τ0), τ0 = 0.

and the evolution of the initial state ψ(τ0) ∈ H will tend to the ground state, for time
going to infinity. The TEBD can now be applied in combination with imaginary time
evolution, in order to find a ground state approximation within the variational class.
Notice that, before the SVD, the state leaves the variational manifold and a representative
from the manifold must be found that best approximates the new time-evolved state. In
general, the truncation step is not guaranteed to be optimal.
Moreover, as in all sequential methods, either the evolution and re-embedding or the
optimization of the state update some but not all the tensors of the network. The
drawback of this local update in translational invariance systems is the breaking of the
symmetry, immediately after a single step.

The Time-Dependent Variational Principle (TDVP) was proposed [HCO+11, HOV13,
HLO+16] to overcome these limits, in the framework of translation invariant matrix
product states in the thermodynamic limit. The algorithm relies on the concept of tan-
gent space of the uMPS manifold. Moreover, in [ZSVF+18], an alternative scheme has
been proposed that applies global updates in order to preserve the translation invariance
of the MPS. The method combines the DMRG with MPS tangent space concepts.
The TDVP transforms the linear Schrödinger equation H into a non-linear set of dif-
ferential equations in the parameter space of the variational manifold. The right-hand
side of the Schrödinger equation is projected onto the tangent space of a chosen MPS
with fixed bond dimension so that the evolution never leaves the manifold. The TDVP
describes the best direction in which the quantum state can evolve without leaving the
variational manifold in order to approximate the time-dependent Schrödinger equation.
The simulation of time evolution consists in the integration of a set of non-linear coupled
differential equations and produces an approximation to a gradient descent in the full
Hilbert space.

Conjugate gradient methods have been introduced in [PVV11, VHCV16] in order to
approximate ground states of translation invariant systems with periodic boundary con-
ditions. Moreover, based on the TDVP, a variational conjugate gradient method has
been proposed in [MHO13] and it has been applied to critical quantum field theory. Very
recently Riemannian gradient-based optimization has been proved to be a competitive
method applied to the tensor network ansatz [HVDH21].
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The outlined methods sequentially minimize the functional on a selected subspace of
the parameter space of the variety. We review and apply a global minimization method
instead, namely the nonlinear conjugate gradient method, with the aim to keep the
structure of the variety unchanged, minimizing over all the parameters simultaneously.
Moreover, the global approach allows us to exploit further the knowledge on the dimen-
sion of the variety.
The first sections of the chapter are meant to describe our framework: the application of
the nonlinear conjugate gradient method constrained to the variational class of matrix
product state with open boundary conditions, in order to approximate the ground state
of the AKLT Hamiltonian.
The nonlinear conjugate gradient method is described in detail in Section 5.1. Matrix
product states with open boundary conditions, that we denote by MPS(m,n, d) (usually
referring to general matrix product states) are defined in Section 5.2. We also study
the case of homogeneous matrix product states with open boundary conditions which
are subvarieties of matrix product states constructed via site-independent tensors and
a boundary condition, c.f. [NV18]. We denote the variety by hMPS(m,n, d) (usually
referring to general homogeneous matrix product states). The general setting is devel-
oped for matrix product states with open boundary conditions and then specialized to
the homogeneous case.
In Sections 5.3 and 5.4, we review the AKLT model and the matrix product operator
representation (MPO) of the AKLT Hamiltonian, respectively. In Section 5.5, we com-
pute the gradient of the functional f (5.1) needed to implement the variational nonlinear
conjugate gradient method on the matrix product states class.
The second part of the chapter, consisting of Sections 5.6 and 5.7, introduces a theory
that is meant to reduce the number of coordinates of the gradient.
In Section 5.6 we describe a first attempt we made that consists in the selection of a
linear subspace of the domain of the matrix product state map of dimension equal to the
codimension of the variety. The subspace of the parameter space contains a finite number
of points of each fiber of the map. It takes the role of the domain of a reparametrization
of the variety, of the minimal dimension, i.e. the dimension of the variety. Even if the
attempt led to the implementation of an algorithm with a higher time of convergence
compared to the standard algorithm, we report it in the thesis since we believe that it is
interesting from a geometric point of view.
In Section 5.7, we study in more detail the fiber of the matrix product state map and its
tangent space. In the case of matrix product states with open boundary conditions, our
results in Chapter 3 and the results in [HMOV14], imply that the fiber of the map in a
given point coincides exactly with the gauge orbit of the point. Therefore the domain
of the map admits a natural pointwise decomposition in the tangent space to the gauge
orbit and its complementary vector space.
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5.1 Nonlinear conjugate gradient

In this section, we describe the linear conjugate gradient method and the nonlinear
adaptation, based on [NW06] which we refer to for a detailed treatment of the topic.
One of the routines that the method invokes is the line search, c.f. Algorithm 3, that is
the most expensive part of the algorithm in terms of time.

Linear Conjugate Gradient method (CG). Consider the Hilbert space H = Cq.
The CG method is an iterative method for solving a linear system of equations

Hx = b,

where x ∈ Cq, H ∈ Cq×q Hermitian and positive-definite, and b ∈ Cq.

If f(x) := 1
2x
†Hx − x†b + c, with c ∈ C, the problem is equivalent to the following

minimization problem
min
x
f(x).

The gradient of f is
∇f(x) = Hx− b,

and it coincides with the residual of the linear system Hx − b, i.e. if x = xk, then the
residual is defined by rk = Hxk − b and it coincides with ∇f(xk).

Two vectors x, y ∈ Cq are said to be conjugate with respect to H if and only if x†Hy = 0.
Any two such vectors are moreover linearly independent.

Consider a starting point x0 ∈ Cq and a basis of Cq given by a conjugate set {p0, . . . , pq−1},
i.e. piHpj = δij . Define

xk+1 = xk + αkpk,

where αk = arg minα f(xk + αpk). The coefficient αk ∈ R is the one-dimensional mini-
mizer of the quadratic function f along xk + αpk; it is analytically computed by solving
∂
∂α
f(xk + αpk) = 0 and it is explicitly given by

αk = −
r†kpk

p†kHpk
. (5.2)

Moreover, each direction pk can be chosen to be a linear combination of −rk, the deepest
descent direction for f , and only the previous one pk−1

pk = −rk + βkpk−1,

if βk is such that p†kHpk−1 = 0, that is given by

βk =
p†k−1Hpk

p†k−1Hpk−1

.
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Remark 5.1.1. For a general quadratic function successive minimization along coordi-
nate axes may not find the solution in q iterations. The importance of conjugacy lies in
the fact that f is minimized in exactly q steps by successively minimizing it along the
directions in the conjugate set.

Nonlinear Conjugate Gradient method (NLCG). A modified version of the linear
conjugate gradient method was proposed by Fletcher and Reeves [FR64], in order to
extend the method to general nonlinear functions, f : H → R, approximately quadratic
near the stationary points. The changes to the CG algorithm are the following.

1. In the CG method, the one-dimensional minimizer αk ∈ R such that

αk = arg min
α

f(xk + αpk),

has the analytic solution given in Equation (5.2). In the NLCG method instead an
approximate line search is performed, which consists in an iterative method that
finds an approximate minimum of f in direction pk.

2. The residual r is replaced by the gradient of the nonlinear function f

rk = ∇f(xk),

and β is defined as

βk+1 = βFR
k+1 :=

∇f(xk+1)†∇f(xk+1)

∇f(xk)†∇f(xk)
.

3. After q iterations, βFR
q+1 = 0 (and pq+1 = −∇f(xq+1)), i.e. there is a restart of the

method after every q steps.

The NLCG method is given in Algorithm 2. We fix in input the tolerance t ∈ R that we
want to be reached by the norm of gradient.

Line search. Consider the one-dimensional minimization problem

αk = arg min
α∈R

f(xk + αpk).

An approximate line search is an iterative method that determines a step length αk ∈ R
such that f(xk+αkpk) is a good approximation of minα∈R f(xk+αpk). The approximate
line search we implement satisfies the strong Wolfe conditions

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)
†pk, (5.3)

|∇f(xk + αkpk)
†pk| ≤ −c2∇f(xk)

†pk, (5.4)

where 0 < c1 < c2 <
1
2 . Typically, for the NLCG method, c1 = 0.1 and c2 = 0.0001

[NW06]. Condition (5.3) is called sufficient decrease condition and it imposes a reduction
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Algorithm 2: NLCG
Input: function f ; initial point x0 ∈ Cq; tolerance t ∈ R.
Output: x∗ = xk+1 approximation of arg minx∈Cq f(x).
Evaluate f0 = f(x0);
p0 ← −∇f(x0);
k ← 0;
while |∇f(xk)| > t do

αk = arg minα f(xk + αpk) ;

Set xk+1 = xk + αkpk;
Evaluate ∇f(xk+1);
if k = q then

βFR
k+1 ← 0;
k ← 0;

else

βFR
k+1 ←

∇f(xk+1)†∇f(xk+1)

∇f(xk)†∇f(xk)
;

end
pk+1 ← −∇f(xk+1) + βFR

k+1pk;
k ← k + 1;

end

of f proportional to both the step length αk and the directional derivative ∇f(xk)
†pk. It

therefore imposes a sufficient decrease of f . Condition (5.4) is called curvature condition
and it imposes to ∇f(xk + αkpk)

†pk, called slope, to be greater than the initial slope
∇f(xk)

†pk. It ensures to avoid too short steps, moreover it does not allows the gradient
to be too positive and this excludes from the search points that are far to be stationary
for f . Moreover, consider the hermitian product

∇f(xk)
†pk = −|∇f(xk)|2 + βFR

k ∇f(xk)
†pk−1. (5.5)

In an exact line search ∇f(xk)
†pk−1 = 0. In an approximate line search instead it can

occur ∇f(xk)
†pk−1 < 0 if the right hand part of (5.5) is dominated by the second term.

In this case pk is not a descent direction. The curvature condition (5.4) ensures that pk
is always a descent direction.

The line search method, whose pseudo-code is given in Algorithm 3, begins with a trial
step length α1, and keeps increasing it until it finds either an acceptable step length, i.e.
a step length that satisfies conditions (5.3) and (5.4), or an interval that contains the
acceptable step length. In the latter case, it is invoked the so called zoom function, given
in Algorithm 4, which successively decreases the size of the interval until an acceptable
step length is reached.
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We always refer to [NW06], in particular to Section 3.5 for a detailed discussion on the
line search method and the zoom function which the line search invokes and to Section
5.2 for their use in the NLCG.

We define
ϕ(α) := f(xk + αpk).

The derivative with respect to α is therefore

ϕ′(α) = ∇f(xk + αpk)
†pk.

Notice that both routines require several evaluations of the function and computations
of gradients in order to find an acceptable step length.

Algorithm 3: Line search with strong Wolfe conditions
Input: Initial point x ∈ Cq, direction p ∈ Cq.
Output: α∗ ∼ arg minα∈R ϕ(α) with ϕ(α) := f(x+ αp), i.e. step length satisfying

strong Wolfe conditions.
Set the lower step length α0 ← 0;
Choose upper step length αmax > 0;
Choose an initial step length α1 ∈ (0, αmax);
i← 1;
while 1 do

Evaluate ϕ(αi);
if ϕ(αi) > ϕ(0) + c1αiϕ

′(0) or (ϕ(αi) ≥ ϕ(αi−1) and i > 1) then
α∗ ← zoom(αi−1, αi) and stop;

end
Evaluate ϕ′(αi);
if |ϕ′(αi)| ≤ −c2ϕ

′(0) then
set α∗ ← αi and stop;

end
if ϕ′(αi) ≥ 0 then

set α∗ ← zoom(αi, αi−1) and stop;
end
Choose αi+1 ∈ (αi, αmax): α0 = α1, α1 = min(αmax, 3α1);
i← i+ 1;

end
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Algorithm 4: Zoom function
Input: interval of step length (αlo, αhi)
Output: α∗ ∼ arg minα∈R ϕ(α) with ϕ(α) := f(x+ αp), i.e. step length satisfying

strong Wolfe conditions.
Fix a bound on the number of iterations t ∈ N;
for i← 1 to t do

αj = αlo+αhi
2 ;

Evaluate ϕ(αj);
if ϕ(αj) > ϕ(0) + c1αjϕ

′(0) or ϕ(αj) ≥ ϕ(αlo) then
αlo ← αj ;

else
Evaluate ϕ′(αj);
if |ϕ′(αj)| ≤ −c2ϕ

′(0) then
Set α∗ ← αj and stop

end
if ϕ′(αj)(αhi − αlo) ≥ 0 then

αhi ← αlo
end
αlo ← αj ;

end
end

5.2 MPS with open boundary conditions

Matrix product states have been introduced in Chapter 2, Subsection 2.1.2 as an example
of tensor network variety and their dimension has been studied in Chapter 3 for partic-
ular ranges of the parameters. We give here the well-known basis-dependent definition,
already obtained in Subsection 2.1.2, then we define the subvariety of matrix product
states with open boundary conditions and the homogeneous matrix product states with
open boundary conditions, that we are going to use as variational classes.

Let Cd = (v(Cd), e(Cd)) be the cyclic graph on d vertices, v(Cd) = {1, . . . , d} and
e(Cd) = {e1, . . . , ed} with ei = {i, i + 1}. Let m = (m1, . . . ,md) the set of bond
dimensions: each mi is associated to ei. Let n = (n1, . . . , nd) be the sets of local
dimensions.

Definition 5.2.1. The parametrization associated to the tensor network (Cd,n,m) is
given by

φ :
d

×
k=1

Cmk−1×nk×mk → V1 ⊗ · · · ⊗ Vd (5.6)

(A1, . . . , Ad) 7→
n1,...,nd∑
i1,...,id=1

Tr
(
Ai11 · · ·A

id
d

)
e

(1)
i1
⊗ · · · ⊗ e(d)

id
,
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where {e(j)
ij

: ij = 1, . . . , nj} is the canonical basis of Vj . The variety of matrix product
states is either the Zariski or the Euclidean closure of the image of the map φ. According
to Chapters 2 and 3, we denote the variety by TNSCdm,n.

d-sites

n1

nd n2

nk

nk+1 nk−1

m1

mk−1mk

md

Figure 5.2: Graphical representation of a tensor in TNSCd
m,n. There are total d tensors involved

with order mi−1 ×mi × ni, for i = 1, . . . , d and m0 := md.

Matrix product states with open boundary conditions are a particular class of matrix
product states. Consider the tensor network (Cd,n,m) given in Definition 5.2.1. Assume
that ed = {d, 1} has associated bond dimension md = 1. By Remark 2.1.3, the edge ed
can be removed, c.f. Figure 5.3. We obtain the following tensor network: (Pd, m̃ =
(m1, . . . ,md−1),n), where Pd denotes the path graph with d vertices.

Definition 5.2.2. The parametrization associated to the tensor network (Pd, m̃,n),
(md = m0 = 1), is given by

φ :
d

×
k=1

Cnk×mk−1×mk → V1 ⊗ · · · ⊗ Vd (5.7)

(A1, . . . , Ad) 7→
n1,...,nd∑
i1,...,id=1

Ai11 · · ·A
id
d e

(1)
i1
⊗ · · · ⊗ e(d)

id
,

where {e(j)
ij

: ij = 1, . . . , nj} is the canonical basis of Vj . The variety of matrix product
states with open boundary conditions is either the Euclidean or the Zariski closure of the
image of the map φ. We denote matrix product states with open boundary conditions
by MPS(m,n, d) (usually referring to general matrix product states).

We denote the domain of φ by DMPS =×d
k=1 Cmk−1×nk×mk (with m0 = md = 1) and its

dimension by NMPS = dimDMPS.
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ed

md = 1
A1 Ad

=
A1 Ad

Figure 5.3: Underlying graph associated to matrix product states with open boundary condi-
tions. As an example, we show the cyclic graph (left) Γ = Cd with d = 5 vertices.Tensors A1

and Ad, associated to vertices 1, d ∈ v(Γ) respectively, are connected by the edge ed of weight
md = 1. The graph obtained removing the edge ed is the path graph with d = 5 vertices (right).
The tensor network varieties associated to the two graphs are equivalent: matrix product states
with open boundary conditions.

Remark 5.2.3. In the case of matrix product states with open boundary conditions,
a complete result regarding the dimension of the tensor network variety is given in
[HMOV14, Thm 14]. In the language of Theorem 3.3.2, the result of [HMOV14] is
(formally setting md := 1 =: m0)

dim MPS(m,n, d) =

d∑
i=1

nimi−1mi −
d−1∑
i=1

m2
i , (5.8)

that coincides with the expected value of the dimension given in Equation (3.3)

dim MPS(m,n, d) =

(
(n1m1) + (ndmd−1) +

d−1∑
i=2

nimi−1mi

)
− d+ 1−

d−1∑
i=1

(m2
i − 1).

Therefore, for matrix product states with open boundary conditions, the generic fiber of
the map φ (5.7) is isomorphic to the orbit of a generic element in the fiber, under the
action of the gauge subgroup.

Example 5.2.4. Fix all bond dimensions equal to m ≥ 2 and all local dimensions equal
to n ≥ 2, then

dim MPS(m,n, d) = 2(mn− 1) + (d− 2)(m2n− 1) + 1− (d− 1)(m2 − 1)

= 2mn+ (d− 2)m2n− (d− 1)m2.

Remark 5.2.5 (Vector reshape). The element A = (A1, . . . , Ad) ∈ DMPS is a collection
of d tensors of order 3. Fixed k ∈ {1, . . . , d}, the k-th tensor Ak ∈ Cnk×mk−1×mk '
Cnk ⊗ Cmk−1 ⊗ Cmk has coordinates Ak = (ak)

ik
γkδk

. Therefore the coordinates of DMPS

are the collection of the entries of all the Ak, for k = 1, . . . , d:

{akikγkδk : k = 1, . . . , d, ik = 1, . . . , nk, γk = 1, . . . ,mk−1, δk = 1, . . . ,mk, }.
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We fix once for all the linear map

Lk : Cnk ⊗ Cmk−1 ⊗ Cmk → Cnkmk−1mk

eik ⊗ eγk ⊗ eδk 7→ elk(ik,γk,δk),

with lk : [nk] × [mk−1] × [mk] → [nkmk−1mk] bijection of indices. Our choice of the
bijection lk is such that Lk(Ak) has coordinates

Lk(Ak) =
(
ak

1
11, . . . , ak

1
1mk

, . . . , ak
1
mk−1mk

, . . . , ak
nk
mk−1mk

)
.

We give a pictorial representation in Figure 5.4.

Ak = = (ak)
ik
γkδk

γk δk

ik

L(Ak) = = (ak)j
j

Figure 5.4: Top: graphical representation of a 3-order tensor. Bottom: tensor Ak is reshaped
into a vector with coordinate (akj)

nkmk−1mk

j=1 . The index j = lk(ik, γk, δk) is such that Lk(Ak)

has coordinates (ak1, . . . , akmk−1mknk
) = (ak

1
11, . . . , ak

nk
mk−1mk

).

Given A = (A1, . . . , Ad) ∈ DMPS, the natural extension to DMPS is given by

L :
d

×
k=1

Cnk ⊗ Cmk−1 ⊗ Cmk → CNMPS

d

×
k=1

eik ⊗ eγk ⊗ eδk 7→ el(k,ik,γk,δk),

with bijection l such that the NMPS coordinates of L(A) = L(A1, . . . , Ad) are

(aj)j=1,...,NMPS
= (a1

1
11, a1

1
12, . . . , a1

n1
m0m1︸ ︷︷ ︸

L1(A1)

, a2
1
11, . . . , a2

n2
m1m2︸ ︷︷ ︸

L2(A2)

, . . . , ad
1
11, . . . , ad

nd
md−1md︸ ︷︷ ︸

Ld(Ad)

).

With abuse of notation, we denote lk(ik, γk, δk) and l(k, ik,mk−1,mk, nk) simply by lk
and l respectively.

On the other hand, it is sometimes useful to think about the tensor Ak ∈ Cnk×mk−1×mk

as a collection of nk matrices in Cmk−1×mk . Therefore the tensor Ak is identified with
the collection of matrices (A1

k, . . . , A
nk
k ), with Aik = (aik)γkδk .
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5.2.1 Homogeneous MPS with open boundary conditions

Homogeneous matrix product states are matrix product states constructed via site-
independent tensors and a boundary condition, c.f. [NV18]. Fix mi = m, ni = n
for every i = 1, . . . , d and one tensor A ∈ Cn×m×m. Fixed the canonical basis, we
identify the tensor A with a tuple of n matrices Aj ∈ Cm×m for 1 ≤ j ≤ n. Denote
A = (A1, . . . , An) ∈ (Cm×m)×n and let ω ∈ Cm.

Definition 5.2.6. The Zariski or Euclidian closure of the image of the map

ψ : Cm×m × (Cm×m)×n → (Cn)⊗d

p = (ω,A) 7→
n∑

i1,...,id=1

Tr
(
ω Ai1 · · ·Aid

)
ei1 ⊗ · · · ⊗ eid ,

is the variety of homogeneous matrix product states.

Notice that uniform matrix product states, c.f. Definition 4.1.1, that we have studied in
Chapter 4 can be seen as subvarieties of homogeneous matrix product states, imposing
the condition ω = Idm. Here we are interested instead in the subvariety determined by
the condition rk(ω) = 1.

Definition 5.2.7. Let ω = v∗L ⊗ vR be the rank one decomposition of the matrix ω ∈
Cm×m. Under this assumption parametrization given in Definition 5.2.6 becomes

ψ : Cm × (Cm×m)×n × Cm → (Cn)⊗d (5.9)

p = (vL, A, vR) 7→
n∑

i1,...,id=1

(
v†LAi1 · · ·AidvR

)
ei1 ⊗ · · · ⊗ eid ,

The associated variety is the homogeneous matrix product states with open boundary con-
ditions. Again with abuse of notation, the variety is denoted by hMPS(m,n, d) (usually
referring to general homogeneous matrix product states).

Remark 5.2.8. Homogeneous matrix product states with open boundary conditions
are in particular matrix product states with open boundary conditions associated to the
path graph Pd+2 with d + 2 vertices, see Figure 5.5 for a pictorial representation. In
this Chapter, every computation done for matrix product states with open boundary
conditions naturally holds for homogeneous matrix product states with open boundary
conditions.

m mm m

n n n

vL vRA A A

Figure 5.5: Example of a homogeneous matrix product state with open boundary conditions
with bond dimensions equal tom and local dimensions equal to n. Each inner vertex is associated
with the same tensor A ∈ (Cm×m)×n. The boundaries are vectors.
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We must be careful with homogeneous matrix product states with open boundary con-
ditions. They are clearly subvarieties of matrix product states with open boundary
conditions. On the other hand, they are subvarieties of homogeneous matrix product
states and their dimension is site-independent. Uniform matrix product states are sub-
varieties of homogeneous matrix product states as well, but there are no containment
relations with homogeneous matrix product states with open boundary conditions. In
conclusion, we cannot use either our results on the dimension of general matrix product
states with open boundary conditions or the results on general uniform matrix product
states. However, from a simple count of parameters, analogous to that of our main result
of Chapter 3, the dimension of homogeneous matrix product states with open boundary
conditions, with n > m ≥ 2, can be bounded from above by

dim hMPS(m,n, d) ≤ 2(m− 1) + (m2n− 1) + 1− (m2 − 1)

= 2m+m2(n− 1)− 1, (5.10)

which is the count of parameters of the domain of the parametrization minus the di-
mension of the gauge subgroup. Indeed, in this case, we can say that the stabilizer of
the gauge subgroup is trivial since the stabilizer of n matrices in Cm×m is trivial for
n > m ≥ 2.

5.3 AKLT Model

We describe in detail the AKLT model, following the paper by I. Affleck, T.Kennedy,
E.H. Lieb and H. Tasaki [AKLT88]. We are interested in their results since ground states
of the AKLT Hamiltonian admit an analytic solution that is exactly a matrix product
state representation.

Consider a quantum system consisting of a chain of d spin 1 particles. The composite
system of d spin 1 particles is associated to a state space H =

⊗d
j=1Hj , with Hj = C3

the state space associated to the j-th spin 1 particle, c.f. Section 1.2.

3 33 33 3

. . .

Figure 5.6: Chain of spin 1 particles, represented as vertices of a graph. The vertices are not
linked by edges, meaning that the bond dimensions between vertices are equal to 1 and the tensor
network variety associated to the graph is H =

⊗d
j=1Hj , with Hj = C3. The local dimension

associated to each vertex is dimHj = 3.

Consider the spin 1 operators whose matrix representation in the canonical basis is given
in Equation (1.5) and that we recall here

S1 =
1√
2

0 1 0
1 0 1
0 1 0

 , S2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 , S3 =

1 0 0
0 0 0
0 0 −1

 ,
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and denote ~S = (S1, S2, S3) ∈ (C3×3)×3. The action of Sα, α ∈ {1, 2, 3}, on the site j of
the chain is given by

Sαj := Id
�(j−1)
3 � Sα � Id

(d−j)
3 ∈ C3d×3d ,

where � denotes the Kronecker product given in Definition 1.1.2. We denote the scalar
product of vectors of matrices by

~Sj · ~Sj+1 :=
3∑

α=1

Sαj S
α
j+1 =

3∑
α=1

(Id�(j−1) � Sα � Sα � Id(d−j−1)) ∈ C3d×3d . (5.11)

The AKLT Hamiltonian is the operator H : H → H whose matrix representation is given
by

H =
d−1∑
i=1

(
~Sj · ~Sj+1 +

1

3
(~Sj · ~Sj+1)2

)
∈ C3d×3d ' End(H). (5.12)

More compactly, we define the matrix

M = S1
1S

1
2 + S2

1S
2
2 + S3

1S
3
2 = S1 � S1 + S2 � S2 + S3 � S3, (5.13)

and the local operator acting on two sites by

h := M +
1

3
M2 ∈ C9×9.

Then, the extension of h ∈ C9×9 to the whole space C3d×3d is

hj = Id�(j−1) � h� Id(d−j−1) ∈ C3d×3d , (5.14)

and the Hamiltonian (5.12) can be written as a sum of local terms

H =
d−1∑
i=1

hj .

Construction of Hamiltonian and ground states. We summarize the steps which
bring to the construction of the AKLT Hamiltonian (5.12) and its ground states. Recall
that V (m) ' Cm+1 corresponds to spin m

2 , see Remark 1.2.16.

1. Consider the spin 1 chain. Each couple of adjacent spin 1 sites, j and j+ 1, admits
a decomposition into irreducible sl2-representations

C3 ⊗ C3 ' V (0) ⊕ V (2) ⊕ V (4) ' C1 ⊕ C3 ⊕ C5, (5.15)

where the first ' is an isomorphism of sl2 representations, given by Theorem 1.2.15,
and the second ' is an isomorphism of vector spaces. This means that C3 ⊗ C3

decomposes into spin 0, 1 and 2.
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2. In [AKLT88], they consider a local Hamiltonian H̃, i.e. defined as the sum over
j = 1, . . . , d − 1 of local operators h̃j : H → H, acting on nearby pairs of spins.
The local operator is explicitly expressed in terms of the spin operators

h̃j :=
1

2
~Sj · ~Sj+1 +

(~Sj · ~Sj+1)2

6
+

1

3
Id3d .

Thus in particular

H̃ :=

d−1∑
j=1

h̃j =

d−1∑
j=1

(
1

2
~Sj · ~Sj+1 +

1

6
(~Sj · ~Sj+1)2 +

1

3
Id3d

)
.

The local operator h̃j is proved to be the projector on spin 2, i.e. V (4) ' C5 in
Decomposition (5.15). In particular ker(h̃j) = V (0) ⊕ V (2) ' C1 ⊕ C3.

3. The Hamiltonian H̃ =
∑d−1

j=1 h̃j , as a sum of projectors, is positive definite therefore
its lowest eigenvalue is λ0 = 0 and its ground states are elements of its kernel. The
kernel of H̃ is constructed from the kernel of the local operator h̃j . A basis of
ker(h̃j) ' V (0) ⊕ V (2) is explicitly determined, for every j = 1, . . . , d − 1 and a
4-dimensional family of degenerate ground states of H̃ is built.

4. Finally, notice that hj given in Equation (5.14) is

hj = 2h̃j −
2

3
Id3d = ~Sj · ~Sj+1 +

1

3
(~Sj · ~Sj+1)2

and Hamiltonian (5.12) is the shifted operator

H =
d−1∑
j=1

hj =
d−1∑
j=1

(
2h̃j −

2

3
Id3d

)
= 2

d−1∑
j=1

h̃j −
2

3

d−1∑
j=1

Id3d = 2H̃ − 2

3
(d− 1)Id3d .

Therefore, the 4-dimensional family of degenerate ground states of H̃ is a 4-
dimensional family of degenerate ground states of H, with (shifted) lowest eigen-
value λ0,d = 0− 2

3(d− 1).

Local operator and Hamiltonian. Assume d = 2. We study the local Hamiltonian
between sites (1, 2) of the chain

h̃ : = h̃1 =
1

2

(
~S1 · ~S2 +

1

3
(~S1 · ~S2)2

)
+

1

3
Id9

=
1

2

(
M +

1

3
M2

)
+

1

3
Id9 ∈ C9×9, (5.16)

where M ∈ C9×9 is given in Equation (5.13). We show that it is the projector on
V (4) ' C5 [AKLT88].
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The characteristic polynomial ofM ∈ C9×9 (5.13) is pM (x) = (x+2)(x+1)3(x−1)5 and
gives D = diag(−2,−1,−1,−1, 1, 1, 1, 1, 1), the diagonal matrix of eigenvalues of M .

Let λ be an eigenvalue ofM and Eλ the associated eigenspace generated by the collection
of orthonormal vectors {vkλ, k = 1, . . . , dλ}, of dimension dλ. Denote by B = {vjλ : λ ∈
{−2,−1, 1}, j = 1, . . . , dλ} the basis of C9 given by the collection of eigenvectors.

The projector on Eλ is

P{λ} =

dλ∑
i=1

viλv
i
λ
†
.

We denote P0 := P{−2}, P1 := P{−1} and P2 := P{1}, since these are actually the
projectors on V (0), V (2) and V (4), i.e. on spin 0, spin 1 and spin 2 respectively. Then

M = −2P0 − P1 + P2.

Substituting M in (5.16), the local Hamiltonian diagonalizes in the B basis as

h̃ =
1

2

(
−2P0 − P1 + P2 +

1

3
(−2P0 − P1 + P2)2

)
+

1

3
Id9

=
1

2

(
−2

3
P0 −

2

3
P1 +

4

3
P2

)
+

1

3
(P0 + P1 + P2) = P2.

The operator h̃ has eigenvalues λ1 = 1 of degeneration 5 and λ0 = 0 of degeneration
4. The latter is the lowest eigenvalue of h̃ and its eigenspace is given by ker(P2) =
E−2 ⊕ E−1 = V (0) ⊕ V (2).

For d ≥ 2, h̃j is simply the Kronecker product of P2 and d − 2 copies of the identity
matrix I3:

h̃j = (Id�(j−1) � h̃� Id(d−j−1)) ∈ C3d×3d .

The Hamiltonian H̃ =
∑d−1

j=1 h̃j is a sum of projectors and it is therefore positive definite:
the lowest eigenvalue of H̃ is λ0 = 0. Since d(λ0) = 4, the associated eigenspace Eλ0 ⊆
(C3)⊗d has dimension 4. It corresponds to the kernel of H̃ and it is the space of ground
states.

Since Hamiltonian (5.12) is the shifted operator

H = 2H̃ − 2

3
(d− 1)Id3d ,

its lowest eigenvalue is the shifted value

λ0,d = −2

3
(d− 1) (5.17)

with associated eigenspace Eλ0 , that is therefore the space of ground states of H.
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Kernel of the local operator. We explain the construction of an element of the
kernel h̃j (5.16) in order to build the elements of ker(H̃) (and ker(H)) which are the
ground states of H̃ (and H).

We consider the spaces C2 with basis {e0, e1} and the tensor products C2⊗C2 with basis
given by {e00, e01, e10, e11}, where we recall that eij := ei⊗ ej . The space C2⊗C2 can be
seen as the state space of a system of two spin 1

2 particles. As highlighted in Example
1.2.17, we have its decomposition into irreducible sl2-representation

C2 ⊗ C2 ' V (0) ⊕ V (2) ' C1 ⊕ C3. (5.18)

A basis of the spin 1, V (2), is given by taking the symmetric part of the tensor product
of two spin 1/2: {v00 = e00, v10 = v01 = e01+e10√

2
, v11 = e11}. Moreover, we fix a basis of

V (0) = C1, given by the element

ω :=
e01 − e10√

2
=

1√
2

∑
γ,δ=0,1

(eγδε
γδ) ∈ V (0) ⊂ C2 ⊗ C2,

with ε ∈ C2 ⊗ C2 the Levi-Civita antisymmetric tensor, i.e.

εγδ :=


1 if sgn(γ, δ) ≡ 0 mod 2

−1 if sgn(γ, δ) ≡ 1 mod 2

0 if γ = δ

(5.19)

Remark 5.3.1. The element ω is called the spin singlet. It is a generator of V (0) ' C1

in Decomposition (5.18), i.e. of the spin 0 component of C2 ⊗ C2. Notice that it is a
rank-2 tensor.

Now consider four spins 1/2 particles, i.e. (C2 ⊗ C2) ⊗ (C2 ⊗ C2) ' C4 ⊗ C4 which
decomposes into irreducible sl2-representation as follows

C4 ⊗ C4 ' C2 ⊗ (C2 ⊗ C2)⊗ C2

' C2 ⊗ (C1 ⊕ C3)⊗ C2

' (C2 ⊗ C2)⊕ (C2 ⊗ C3 ⊗ C2)

' (C1 ⊕ C3)⊕ (C1 ⊕ C3 ⊕ C3 ⊕ C5) (5.20)

In physics, fixing a valence bond in C4⊗C4 ' C2⊗ (C2⊗C2)⊗C2 means fixing the spin
singlet tensor ω in the middle pair (C2 ⊗ C2), i.e. considering the following element of
Ω ∈ C4 ⊗ C4:

Ω :=
∑

α,β=0,1

eα ⊗ ω ⊗ eβ ∈ C2 ⊗ (C2 ⊗ C2)⊗ C2. (5.21)

We pictorially represent the constraint given by fixing ω ∈ C2 ⊗ C2 in Figure 5.7.

113



2 2 2 2

2

ω

Figure 5.7: Consider two sites. On each site, there is a couple of spin 1
2 (meaning C2). The

spin singlet is fixed between nearby pair of spin 1/2 in different sites. The pair of spin 1/2 inside
each site can have only either spin 0 or 1. The number 2 under the edge connecting the 1/2 spins
indicates the rank of the spin singlet.

We have that Ω ∈ C4 ⊗ C4 can be written as

Ω =
∑

α,β=0,1

eα ⊗ ω ⊗ eβ

=
1√
2

∑
α,β=0,1

eα ⊗
[ ∑
γ,δ=0,1

(eγδε
γδ)
]
⊗ eβ

=
1√
2

∑
α,β=0,1

∑
γ,δ=0,1

(eαγ ⊗ eδβεγδ)

=
1√
2

∑
α,β=0,1

(eα0 ⊗ e1β − eα1 ⊗ e0β).

Defined the following matrix

E =

(
0 1√

2

− 1√
2

0

)
,

then Ω takes the form

Ω =
∑

α,β=0,1

∑
γ,δ=0,1

Eγδeαγ ⊗ eδβ.

Remark 5.3.2. By construction, Ωαβ = ω ∈ C1 ⊆ C2 ⊗ C2, therefore Ω ∈ C1 ⊕ C3 ⊂
C4 ⊗ C4. This means that Ω is an element of the left vector space of the Decomposition
(5.20), i.e. it can have only either spin 0 or spin 1. In particular, it is in the kernel of
the projector h̃ = P2 (5.16).

In order to recover the spin 1 pair, the element Ω ∈ C4⊗C4 is mapped to C3⊗C3. This is
done via the map from C4 to its symmetrized part (isomorphic to C3); see Decomposition
(5.18). Fix the basis {eij} of C2∗ ⊗ C2∗ and the canonical basis {v1, v2, v3} of C3 given
by the eigenvectors of S3 of eigenvalues 1, 0,−1 respectively; the map is the following

Pj = v1 ⊗ e00 + v2 ⊗ (
e01 + e10

√
2

) + v3 ⊗ e11,
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for j = 1, . . . , d. It can be written in the form

Pj =
∑

α,β=0,1
γ=1,2,3

P γαβvγ ⊗ e
αβ, (5.22)

with the following matrices

P 1 =

(
1 0
0 0

)
, P 2 =

(
0 1√

2
1√
2

0

)
, P 3 =

(
0 0
0 1

)
.

In what follows we omit the summation over repeated indices until last expression

Pj ⊗ Pj+1(Ω) = (P j1α1β1
EγδP

j2
α2β2

)eα1β1(eαγ)eα2β2(eδβ) vj1 ⊗ vj2
= (P j1α1β1

EγδP
j2
α2β2

)δα1β1
αγ δα2β2

δβ vj1 ⊗ vj2
=

∑
j1,j2=1,2,3

∑
α,β=0,1

∑
α2,β1=0,1

(P j1αβ1
Eβ1α2P

j2
α2β

) vj1 ⊗ vj2 =: Ω ∈ C3 ⊗ C3.

Remark 5.3.2 immediately implies that Ω ∈ C3⊗C3 can have either spin 0 or 1 and it is
therefore in the kernel of h̃, the projector on spin 2.

2

3 3

2 2 2 2

2

ω

Figure 5.8: The pairs of 1/2 spins are projected to the symmetric part C3. The circle containing
the pair of spin 1/2 can be thought of as the map Pj acting on the j-th site.

Remark 5.3.3. Denote

Ωαβ :=
∑

j1,j2=1,2,3

∑
α2,β1=0,1

(P j1αβ1
Eβ1α2P

j2
α2β

) vj1 ⊗ vj2 .

If we identify v1 = v00, v2 = v01(= v10), v3 = v11 via Pj |C3 , and we define ψ00 = v00√
2
,

ψ01 = ψ10 = v01 and ψ11 = v11√
2
, then we recover

Ωαβ =
1√
2

∑
γ,δ=0,1

ψαγ ⊗ ψδβεγδ,

which is the expression given in the original article [AKLT88].
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Ground state. A 4-dimensional family of ground states ψaklt ∈ (C3)⊗d of H̃ is con-
structed. It is obtained from a chain of couples of spin 1/2 in each site j = 1, . . . , d,
fixing ω ∈ C2 ⊗ C2 between every pair of adjacent spin 1/2 (one from site j and one
from site j+ 1); then mapping the pair of spin 1/2 in the site j onto the symmetric part,
isomorphic to C3.

Generalizing Equation (5.21) we take an element ψ ∈ (C4)⊗d with fixed spin singlets
between all pairs of spin 1/2, connecting adjacent sites. In coordinates, it is written as

ψ =
1√
2

∑
α,β=0,1

∑
αj=0,1
j=2,...d

∑
βl=0,1

l=1,...,d−1

eαβ1 ⊗ eα2β2 ⊗ · · · ⊗ eαdβε
β1α2 . . . εβd−1αd

=
∑

α,β=0,1

∑
αj=0,1
j=2,...d

∑
βl=0,1

l=1,...,d−1

(Eβ1α2Eβ2,α3 . . . Eβd−1αd) eαβ1 ⊗ eα2β2 ⊗ · · · ⊗ eαdβ,

where E is the matrix

E =

(
0 1√

2

− 1√
2

0

)
.

For any two adjacent sites j and j + 1, there is a spin 1/2 at site i and a spin 1/2 at site
i+ 1 which are contracted with an ε tensor (c.f. Equation 5.19) to form a singlet. Thus
when ψ is restricted to sites j and j + 1, it has only spins 0 and 1. Hence h̃jψ = 0 and
therefore ψ is a ground state of H̃ =

∑d−1
j=1 h̃j .

2 2 2 2

2

ω
. . .

Figure 5.9: On each site, we consider a pair of spin 1/2. Every nearby pair of spin 1/2 in
different sites are put in a spin singlet. The pair of spin 1/2 inside each site can have only spin
either 0 or 1.

In order to recover the spin 1 chain, we consider the projector from (C4)⊗d to (C3)⊗d

given by the tensor product of projectors (5.22), for j = 1, . . . , d

P =
d⊗
j=1

Pj =
∑

αj ,βj=0,1
γj=1,2,3,
j=1...,d

(P γ1

α1β1
· · ·P γdαdβd)eγ1 ⊗ eα1β1 ⊗ · · · ⊗ eγd ⊗ e

αdβd

and applied to element ψ ∈ (C4)⊗d it gives

ψ =
∑

α,β=0,1

∑
αj ,βj=0,1
γj=1,2,3
j=1...,d

(
P γ1

α,β1
Eβ1α2P

γ2

α2β3
· · ·Eβd−1αdP

γd
αdβ

)
eγ1...γd ∈ (C3)⊗d. (5.23)
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Notice that 4 degrees of freedom remain free at the boundaries of the chain.

. . .
2

3 3

β

2

α

2

Figure 5.10: The spin 1 chain obtained by the spin 3/2 chain (pairs of 1/2 spins), after
projecting C2 ⊗ C2 into the symmetric part C3. The boundaries have 2 degrees of freedom left
corresponding to the indices α and β respectively.

Expression (5.23) is simplified introducing Ãi = P iE, i = 1, 2, 3, so that

Ã1 =

(
0 1√

2

0 0

)
, Ã2 =

(
−1

2 0
0 1

2

)
, Ã3 =

(
0 0
− 1√

2
0

)
.

Notice that
3∑
i=1

Ãi†Ãi =
3

4
Id2;

therefore the matrices Ãi may be rescaled by 2√
3
, Ai := 2√

3
Ãi, i = 1, 2, 3. We obtain

ψ =
∑

α,β=0,1

∑
αi,βi=0,1
γi=1,2,3
i=1...,d

(
Aγ1

α,β1
Aγ2

β1α2
· · ·Aγd−1

βd−1αd
P γdαdβ

)
eγ1...γd ∈ (C3)⊗d.

Fixing indices α and β we have the tensor

ψαβ =
∑

αi,βi=0,1
γi=1,2,3
i=1...,d

(
Aγ1

α,β1
Aγ2

β1α2
· · ·Aγd−1

βd−1αd
P γdαdβ

)
eγ1...γd ∈ (C3)⊗d;

In [AKLT88] it is proved that ψ00, ψ01, ψ10, ψ11 are linearly independent and that con-
sequently they span a 4-dimensional vector space of ground states. Therefore, for every
choice of vectors vL, ṽR ∈ C2 an element of their span can be written as

ψaklt =
∑

γj=1,2,3
j=1...,d

(
vL
†Aγ1Aγ2 · · ·P γd ṽR

)
eγ1 ⊗ · · · ⊗ eγd .

If we multiply by ( 2√
3
E)(

√
3

2 E
−1) and we denote

√
3

2 E
−1ṽR = vR we have

ψaklt =
∑

γj=1,2,3
j=1...,d

(
vL
†Aγ1Aγ2 · · ·AγdvR

)
eγ1 ⊗ · · · ⊗ eγd
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with the choice of matrices

A1 =

(
0
√

2
3

0 0

)
, A2 =

(
− 1√

3
0

0 1√
3

)
, A3 =

(
0 0

−
√

2
3 0

)
.

We obtain a 4-dimensional eigenspace associated to the lowest eigenvalue of the Hamilto-
nians H̃ and H. The tensor ψaklt is a ground state for every vL, vR ∈ C2 for construction.
Moreover ψaklt ∈ MPS(2, 3, d), see Definition 5.2.2; in particular ψaklt ∈ hMPS(2, 3, d),
see Definition 5.2.7.

5.4 Matrix product operators

A Matrix Product Operators are generalizations of matrix product states to the space of
operators. We give the definition of matrix product operator forO ∈ Hom((Cn)⊗d, (Cn)⊗d)
(associated to the path graph), but the definition can be generalized to the case of oper-
ators in Hom(

⊗d
i=1 Cni ,

⊗d
i=1 Cni) and to other graphs.

M MM M

n nn

n nn

n

n

oL oRW2 Wd−1 WdW1

. . .

Figure 5.11: MPO representation associated to the path graph on d vertices, with open bound-
ary conditions. Analogously to matrix product states, a tensor Wk is associated to each vertex,
for every k = 1, . . . , d and two vectors are associated to the boundaries. The tensors are pairwise
contracted along the edges of the graph.

Consider O ∈ Hom((Cn)⊗d, (Cn)⊗d). Let {ej}nj=1 and {ej′}nj′=1 be chosen basis of Cn

and Cn∗ respectively. Let M ∈ N and let {vj}Mj=1 and {vj′}Mj′=1 fixed basis of CM and its
dual CM∗ respectively.

We define, for every k = 1, . . . , d, a tensor (of order four) Wk ∈ Cn ⊗ Cn∗ ⊗ CM ⊗ CM∗.
In particular, for every jk, j′k = 1, . . . , n we have

Wk
jk
j′k
∈ CM×M ,

which is an M ×M matrix in the given bases. Let oL, oR ∈ CM be boundary vectors
(analogously to the case of matrix product states with open boundary conditions).

Definition 5.4.1. An operator O ∈ Hom((Cn)⊗d, (Cn)⊗d) is said to have an MPO
representation if it can be written as

O =
n∑

j1,...,jd=1
j′1,...,j

′
d=1

[
o†L W1

j1
j′1
. . .Wd

jd
j′d
oR

]
(ej1 ⊗ · · · ⊗ ejd)⊗ (ej

′
1 ⊗ · · · ⊗ ej′d).
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A local Hamiltonian, c.f. Definition 1.2.8, can be exactly represented in the MPO format,
with bond dimensions M small enough, c.f. [Sch11, HP18].

Consider the local Hamiltonian H : (Cn)⊗d → (Cn)⊗d

H =
d−1∑
j=1

hj =
d−1∑
j=1

Idj−1 � h� Idd−j−1, (5.24)

with h : Cn ⊗ Cn → Cn ⊗ Cn local operator acting on two nearby sites.

If the Hamiltonian is a sum over the number of sites of the same local term, as in
expression (5.24), then Wk = W ∈ (Cn∗ ⊗ Cn) ⊗ (CM ⊗ CM∗), for every k = 1, . . . , d.
Moreover, for α, α′ = 1, . . . ,M , the matrix Wα′

α ∈ Cn×n has a form that is related to the
standard writing of the Hamiltonian H, i.e. it is a matrix whose entries are the operators
appearing in the local operator h. We give the example of the AKLT Hamiltonian.

Example 5.4.2. The AKLT Hamiltonian admits an exact MPO representation. We
recall the Hamiltonian (5.12), defined in Section 5.3, where ~Sj is given in Equation
(5.11)

H =

d−1∑
j=1

(
~Sj · ~Sj+1 +

1

3
(~Sj · ~Sj+1)2

)

=
d−1∑
j=1

S1
jS

1
j+1 +

d−1∑
j=1

S2
jS

2
j+1 +

d−1∑
j=1

S3
jS

3
j+1 +

1

3

( d−1∑
j=1

(S1)2
j (S

1)2
j+1 + · · ·+

d−1∑
j=1

(S3)2
j (S

3)2
j+1

)
+

+
1

3

( d−1∑
j=1

S1
jS

2
j+1 +

d−1∑
j=1

S1
jS

3
j+1 + · · ·+

d−1∑
j=1

S3
jS

2
j+1 +

d−1∑
j=1

S3
jS

3
j+1

)
=(S1 � S1 � Id�d−2

3 + · · ·+ Id�d−2

3 � S3 � S3)+

+
1

3
((S1)2 � (S1)2 � Id�d−2

3 + · · ·+ Id�d−2

3 � (S3)2 � (S3)2)+

+
1

3
(S1S2 � S1S2 � Id�d−2

3 + · · ·+ Id�d−2

3 � S3S2 � S3S2).

Notice that the spin operators

S1 =
1√
2

0 1 0
1 0 1
0 1 0

 , S2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 , S3 =

1 0 0
0 0 0
0 0 −1

 .

can be written in terms of products the SjSk, using the commutation relations

S1 = −iS2S3 + iS3S2, S2 = −iS3S1 + iS1S3, S3 = −iS1S2 + iS2S1.
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With these substitutions in the Hamiltonian, we get

H =
1

3

d−1∑
j=1

S1
jS

1
j+1 +

d−1∑
j=1

S2
jS

2
j+1 +

d−1∑
j=1

S3
jS

3
j+1

+

− 2

3

d−1∑
j=1

S1
jS

2
j+1 +

d−1∑
j=1

S1
jS

3
j+1 + · · ·+

d−1∑
j=1

S3
jS

2
j+1 +

d−1∑
j=1

S3
jS

3
j+1

+

+ S1S2 � S2S1 � Id�d−2

3 + · · ·+ Id�d−2

3 � S1S3 � S3S1+

+ S2S1 � S1S2 � Id�d−2

3 + · · ·+ Id�d−2

3 � S2S3 � S3S2+

+ S3S1 � S1S3 � Id�d−2

3 + · · ·+ Id�d−2

3 � S3S2 � S2S3 =

=
1

3

(
(S1)2 � (S1)2 � Id�d−2

3 + · · ·+ Id�d−2

3 � (S3)2 � (S3)2
)

+

+ S1S2 � (−2

3
S1S2 + S2S1) � Id�d−2

3 + · · ·+ Id�d−2

3 � S1S3 � (−2

3
S1S3 + S3S1)+

+ S2S1 � (−2

3
S2S1 + S1S2) � Id�d−2

3 + · · ·+ Id�d−2

3 � S2S3 � (−2

3
S2S3 + S3S2)+

+ S3S1 � (−2

3
S3S1 + S1S3) � Id�d−2

3 + · · ·+ Id�d−2

3 � S3S2 � (−2

3
S3S2 + S2S3).

Consider the following matrix W̃ ∈ CMn×Mn, with M = 11 and n = 3; whose entries are
operators appearing in the Hamiltonian:

W̃ =



Id3 (S1)2 (S2)2 (S3)2 S1S2 S1S3 S2S1 S2S3 S3S1 S3S2 O3×3
1
3(S1)2

1
3(S2)2

1
3(S3)2

(−2
3S

1S2 + S2S1)
(−2

3S
1S3 + S3S1)

O30×30 (−2
3S

2S1 + S1S2)
(−2

3S
2S3 + S3S1)

(−2
3S

3S1 + S1S3)
(−2

3S
3S2 + S2S3)

Id3


.

The matrix W̃ ∈ CMn×Mn is a matrix reshape of the tensor W we are looking for.

It is straightforward to check that this matrix (of matrices) gives the matrix product
operator representation of the Hamiltonian H, that is:

H = o†L

(
�d
i=1W̃

)
oR,

with o†L = (1, 0 . . . , 0) ∈ CM∗ and oR = (0, . . . , 0, 1)t ∈ CM .
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5.5 Computation of the gradient

In order to solve Problem 5.0.2 and to implement the nonlinear conjugate gradient on
the variational variety of matrix product states with open boundary conditions, we need
to compute the gradient ∇f ∈ DMPS, where f := ρ ◦ φ : DMPS → R (5.1) is defined as
follows:

f(A) = ρ ◦ φ(A) =
φ(A)†Hφ(A)

φ(A)†φ(A)
.

Choose a set of coordinates {z1, . . . , zq} for H = Cq. The gradient of the expectation
value ρ in z = (z1, . . . , zq) is computed as the partial derivative with respect to the
conjugate variables z = (z1, . . . , zq), c.f. [PP+08].

∇ρz = 2
∂ρ(z)

∂z
= 2

(
Hz

z†z
− z†Hz

(z†z)2
z

)
= 2

1

z†z
(Hz − hz)

= 2
1

z†z
(H − h1n)z ∈ Cq, where h = ρ(z).

Consider A = (A1, . . . , Ad) ∈ DMPS and B = (B1, . . . , Bd) ∈ TADMPS ' DMPS. The
differential map of φ at A, dφA : TADMPS ' DMPS → Tφ(A) MPS, is given by

dφA(B) =
dφ(A+ tB)

dt

∣∣
t=0

=
d∑

k=1

n1,...,nd∑
i1,...,id=1

(
Ai11 · · ·B

ik
k · · ·A

id
d

)
e

(1)
i1
⊗ · · · ⊗ e(d)

id
.

Remark 5.5.1. We can pictorially represent the vector dφA(B) ∈ Tφ(A) MPS:

dφA(B) =
∑d

k=1

( )BkA1 A2

. . .. . .
Ad−1 Ad

Analogously, the linear operator dφA is represented as a sum of d tensors with the same
format of φ(A), each one with the k-th tensor removed:

dφA =
∑d

k=1

( )ÂkA1 A2

. . .. . .
Ad−1 Ad

Denote by A the element of DMPS with coordinates that are complex-conjugated to
the coordinates of A. The function ρ(φ(·)) is a real valued function depending on the
independent variables A and A. Notice that, if A ∈ DMPS, then

φ(A)† = φ(A)t.
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Denote the vector of partial derivatives with respect to the formal conjugated variables
of DMPS by

∂

∂A
=

(
∂

∂Ak

)
k=1,...,d

=

(
∂

∂aklk

)
lk=l1,...,ld
k=1,...,d

=

(
∂

∂aj

)
j=l

=

(
∂

∂ak
ik
γkδk

)
kikγkδk

,

where lk, k = 1, . . . , d and l are indices associated to bijections Lk, k = 1, . . . , d and L
given in Remark 5.2.5.

Given A ∈ DMPS, the gradient ∇(ρ ◦ φ)A is computed by the chain rule, differentiating
over the variable A of DMPS and it is the vector reshape of the following tensor

GA := 2
∂(ρ ◦ φ(A))

∂A
= 2

∂

∂A

(
φ(A)tHφ(A)

φ(A)tφ(A)

)
= (5.25)

2

(φ(A)†φ(A))2

(
φ(A)†φ(A)

∂

∂A

(
φ(A)tHφ(A)

)
−
(
φ(A)†Hφ(A)

) ∂

∂A

(
φ(A)tφ(A)

))
=

2

φ(A)†φ(A)

(
∂

∂A
(φ(A)t) (H − h · 1)φ(A)

)
, where h = ρ(φ(A)).

Denote the MPO representation of (H − h · 1) by H̃, c.f. Section 5.4, and denote

(GA)k :=
2

φ(A)†φ(A)

(
∂

∂Ak
(φ(A)t)H̃φ(A)

)
, for k = 1, . . . , d.

The gradient can be compactly written as GA =
∑d

k=1(GA)k and its pictorial represen-
tation is given in Figure 5.12.

GA =
..

..

..

..

2 ( )∑d
k=1

. . . . . .

. . . . . .

AkA1 Ad

ÂkA1 Ad

. . . . . .

Figure 5.12: The pictorial representation of the gradient GA = ∇(ρ ◦ φ)A.

Algorithm. Algorithm 5 is the pseudo-code of the NLCG method applied to f =
ρ ◦ φ. With abuse of notation, we always consider the vector reshape of tensors under
consideration, i.e. we denote A = L(A), GA = L(GA). In the pseudo-code, we denote
elements of DMPS by A(j) with j ∈ N.
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Remark 5.5.2. Notice that the NLCG method computes the tangent vector correspond-
ing to the steepest descent direction in the Hilbert space, but then updates the tensors
by simply adding them in the parameter space. Other methods could in principle do a
line search along geodetic paths through the variety, which would involve integrating the
geodesic equation or exploiting the concepts of retraction and vector transport, which
are relaxations of the classical geometric concepts of motion along geodesics and parallel
transport [AMS09, HVDH21]. Moreover, pj+1 is obtained by adding vectors GA(j+1)

and
pj that belong to tangent spaces at different points A(j+1) and A(j). This would require
the parallel transport of pj . Instead, we are approximating A(j+1) = A(j) + αjpj , with
pj = −GA(j+1)

+ βFR
j+1 pj . In any case, the line search ensures the decrease of the func-

tional value after every step and the only disadvantage consists in a slower convergence
[MHO13].

Algorithm 5: NLCG on MPS
Input: Initial point A(0) ∈ DMPS, tolerance t ∈ R
Output: A∗ ∈ DMPS such that φ(A∗) ∈ MPS approximate ground state
Compute N = dimDMPS;
Evaluate fA(0)

= f(A(0));
p0 ← −GA(0)

;
j ← 0;
while |GA(j)

| > t do
αj = arg minα f(A(j) + αpj) ;

Set A(j+1) = A(j) + αjpj ;
Compute GA(j+1)

;
if j = N then

βFR
j ← 0;
j ← 0;

else

βFR
j+1 ←

G†A(j+1)
GA(j+1)

G†A(j)
GA(j)

;

end
pj+1 ← −GA(j+1)

+ βFR
j+1 pj ;

j ← j + 1;
end
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5.6 Section of the domain

In this section we describe the selection of a linear subspace of the domain of the matrix
product state map. The subspace of the parameter space that we will construct, will
contain a finite number of points of each fiber of the map. We briefly explain how we
used the theory to propose a first variation of the NLCG and why the method was not
successful. In the following, we recall again the Theorem of Dimension of the Fiber
[Sha94, Thm. 1.25] of a morphism and the Bertini Theorem [Har13, Thm. 8.18]. The
theorems allow us to give a reparametrization of the matrix product state map.

Proposition 5.6.1 (Fiber of a morphism). Let φ : W → V be a dominant regular map
of irreducible varieties. Then

1. dim(W ) ≥ dim(V ).

2. If Q ∈ φ(W ), then dim(φ−1(Q)) ≥ dim(W ) − dim(V ) for every Q ∈ V , with
equality holding exactly on a nonempty open subset U of V .

3. The sets Vi = {Q ∈ V | dim(φ−1(Q)) ≥ i} are closed in φ(W ).

Theorem 5.6.2 (Bertini). Let V be a nonsingular closed subvariety of PqK , where K
is an algebraically closed field. Then there exists a hyperplane Y ⊂ PqK , not containing
V, and such that the scheme Y ∩ V is regular at every point. Furthermore, the set of
hyperplanes with this property forms an open dense subset of the complete linear system
|Y |, considered as a projective space.

Let φ : DMPS → Im (φ) = MPS◦(m,n, d) be the parametrization of matrix product
states with open boundary conditions (5.7), with

DMPS =
d

×
k=1

Cmk−1×nk×mk , m0 = md = 1.

Denote the dimension of the domain of φ by NMPS =
∑d

i=1 nimi−1mi, (m0 = md = 1)
and assume sMPS = dim MPS(m,n, d).

The set MPS◦(m,n, d) = Im (φ) is a cone [CMS19]: if Q ∈ MPS◦(m,n, d) then λQ ∈
MPS◦(m,n, d) for every λ ∈ C. Consider the associated map between projective spaces

φp : Pn1m1−1×

(
n−1

×
i=2

Pnimi−1mi−1

)
×Pndmd−1 → P(MPS◦(m,n, d)) ⊂ P(Cn1⊗· · ·⊗Cnd),

which is polynomial and dominant. Define Im (φp) =: Mps(m,n, d). Denote the do-
main of φp by DMps, its projective dimension by NMps = NMPS − 1 and the projective
dimension ofMps(m,n, d) by sMps = sMPS − 1.

Given [Q] ∈ Mps(m,n, d), by Proposition 5.6.1 the dimension of the fiber φp−1([Q]) is
bounded by

dim(φp
−1([Q])) ≥ NMps − sMps =: eMps.
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Moreover, by Bertini’s Theorem 5.6.2 the intersection of φp−1([Q]) with eMps general
hyperplanes Yj , for j = 1, . . . , eMps:

Y1 ∩ · · · ∩ YeMps ∩ φp
−1([Q])

consists of a finite number of reduced points that coincides with the degree of the fiber.
Denote Y := Y1 ∩ · · · ∩ YeMps . Therefore, φp−1|Y : Y ⊂ DMps →Mps(m,n, d) gives a
reparametrization of the varietyMps(m,n, d).

φp
φ−1
p ([Q])

[Q] ∈Mps

Y

∗

∗

Figure 5.13: Pictorial representation of the matrix product state maps. Given [Q] ∈
Mps(m,n, d), the fiber φ−1

p ([Q]) (in red) intersects Y = Y1 ∩ · · · ∩ YeMps
in a finite number

of reduced points. Therefore φp(Y ) =Mps(m,n, d).

The first attempt we did was based on this approach: in the affine setting, we fixed an
embedding i : CsMPS ↪→ Ŷ ⊂ DMPS in order to set a general Ŷ ' CsMPS ⊂ DMPS such
that

Ŷ = {A ∈ DMPS : A = i(v), v ∈ CsMPS}.

We applied the NLCG to the following minimization problem

min
Q∈MPS◦

ρ(Q) = min
A∈Ŷ

ρ ◦ φ(A) = min {ρ ◦ φ(i(v)) : v ∈ CsMPS}

= min

{
φ(i(v))†Hφ(i(v))

φ(i(v))†φ(i(v))
: v ∈ CsMPS

}
,

in order to find a solution of Problem 5.0.2.

Notice that, the domain of the reparametrization is a fixed vector space of the minimal
number of parameters needed to parametrize the variety. This implies that the gradient of
the functional ρ ◦φ ◦ i, which is an element of Ŷ , has the minimal number of parameters.
For this reason, implementing the NLCG with this method, the computations of the
reparametrized gradient turned out to be faster compared to the standard one. On the
other hand, the variation of the algorithm was not competitive due to the substantially
higher number of iterations performed to reach convergence. The number was so higher
to always make longer the runtime to convergence, compared to the standard algorithm.
We can heuristically explain this behavior. We expect that the gradient, constrained to
be a vector of the fixed subspace Ŷ , finds a sequence of points that are certainly contained
in different fibers of φ. However, even if we expect that the gradient is a vector that
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points to the minimum at every step, it is not the deepest descent direction anymore and
the algorithm takes too many more steps to reach convergence compared to the original
gradient.

5.7 Decomposition of the domain

In this section, we describe a natural pointwise decomposition of the domain of the matrix
product state map. We start from the general setting of tensor network varieties and
then, in Subsection 5.7.1, we focus on the case of matrix product states. Finally, we
study the open boundary case for both matrix product states and homogeneous matrix
product states, c.f. Subsections 5.7.2 and 5.7.3 respectively.

Coming back to the general setting, we describe a natural pointwise decomposition of
the domain of the parametrization of tensor network varieties.

Let (Γ,m,n) be a tensor network and let V = TNSΓ
m,n be the associated tensor network

variety defined as either the Euclidean or Zariski closure of the map

Φ : Hom(W1, . . . ,Wd;V1, . . . , Vd)→ V ⊂ V1 ⊗ · · · ⊗ Vd,
X = (X1 ⊗ · · · ⊗Xd) 7→ (X1 ⊗ · · · ⊗Xd) · T (Γ,m).

Denote D = Hom(W1, . . . ,Wd;V1, . . . , Vd) and H = V1 ⊗ · · · ⊗ Vd.

The differential map of Φ at the point X ∈ D is

dΦX : TXD ' D → TΦ(X)V,

Y = (Y1, . . . , Yd) 7→
d∑

k=1

(X1 ⊗ · · · ⊗ Yk ⊗ · · · ⊗Xd) · T (Γ,m).

Denote the dimension of the domain D by

N =: dimD =
∑

v∈v(Γ)

Nvnv − d+ 1.

The gauge subgroup, defined in Section 2.2, is the group

GΓ,m ' ×
e∈e(Γ)

PGLme ⊆ G(Wv : v ∈ v(Γ)),

of dimension
g := dimGΓ,m =

∑
e∈e(Γ)

(m2
e − 1).

The action of GΓ,m on D is given in Definition 2.2.1. We denote the gauge orbit of X ∈ D
by OG(X) = GΓ,m ·X. Denote f = dim StabGΓ,m

(X), then the dimension of the orbit is
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dimOG(X) = g− f . By Corollary 3.3.2, we can assume that the dimension of the variety
V is bounded by

dimV = s ≤ N − (g − f).

Since the domain D of Φ is isomorphic to CN , we endow D with the standard inner
product of CN

h : CN × CN → C

(v, w) 7→ h(v, w) := w†v.

The inner product allows the identification between CN and its dual CN∗ via the isomor-
phism

R : CN →CN∗

w 7→
(
w† : v 7→ w†v

)
.

Let T ∈ V be a smooth point of the variety. If X ∈ Φ−1(T ) ⊂ D is a point in the fiber,
then rk(dΦX) = s. We denote by ÑX := ker(dΦX) ⊂ TXΦ−1(T ) ⊂ TXD the vector
space of tangent directions to the fiber at X. We define

B̃X := N⊥X = {v ∈ D : v†n = 0, for every n ∈ ÑX} ⊂ D.

Then

dim ÑX = dim Φ−1(T ) = codimD V = N − s,

dim B̃X = N − dim ÑX = s = dimV.

The tangent space of D at the pointX, as a complex vector space, splits into the following
direct sum

TXD ' D = ÑX ⊕ B̃X ,

and we have the following isomorphism of vector spaces

dΦX |BX : B̃X ' TXD/ÑX → TΦ(X)V.

Therefore, every tangent vector in v ∈ TΦ(X)V admits a unique representative w ∈ B̃X
such that dΦX(w) = v.

As we can see in the proof of Theorem 3.3.1, we have that OG(X) ⊆ Φ−1(T ) and therefore

TXOG(X) ⊆ ÑX ,

whose dimension is bounded by

dimTXOG(X) = dimGΓ,m − dim StabGΓ,m
(X) = g − f ≤ N − s.
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Moreover, for every X ∈ D, TXOG(X) is naturally isomorphic to the Lie algebra of GΓ,m

quotiented by the Lie algebra of the stabilizer StabGΓ,m
(X), that we denote by sX :

TXOG(X) '
⊕
e∈e(Γ)

slme/sX .

Remark 5.7.1. Based on results in Chapter 3, Section 3.4, we expect f = 0 in a wide
range of cases and therefore dimTXOG(X) = g. In this case, Theorem 3.3.2 implies that
s ≤ N − g. If moreover we assume that the orbit fills the fiber of Φ then

V = s = N − g = dimD − dimGΓ,m,

is the expected dimension of V, c.f. Equation (3.3), and therefore of B̃X . Under these
assumptions we have

TXD = TXOG(X) ⊕ B̃X .

with isomorphism
TXOG(X) '

⊕
e∈e(Γ)

slme .

By Remark 5.2.3, this holds for matrix product states with open boundary conditions.

5.7.1 Gauge orbit of matrix product states

We specialize the study of the gauge orbit in the case of matrix product states. Recall
the map defining matrix product states TNSCdm,n given in Definition 5.2.1

φ(A1, . . . , Ad) =

n1,...,nd∑
i1,...,id=1

Tr
(
Ai11 · · ·A

id
d

)
e

(1)
i1
⊗ · · · ⊗ e(d)

id
.

Denote the domain of the map by D =×d
k=1 Cmk−1×mk×nk , with m0 = md.

Consider A = (A1, . . . , Ad) and B = (B1, . . . , Bd) ∈ D. The differential map of φ at the
point A ∈ D is the linear map

dφA : TAD ' D → Tφ(A)TNS
Cd
m,n

B 7→ dφA(B).

given by

dφA(B) =
dφ(A+ tB)

dt

∣∣
t=0

=

d∑
k=1

n1,...,nd∑
i1,...,id=1

Tr
(
Ai11 · · ·B

ik
k · · ·A

id
d

)
e

(1)
i1
⊗ · · · ⊗ e(d)

id
.

(5.26)
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Gauge action on matrix product states. Let (Γ,m,n) be a tensor network. The
gauge subgroup associated to (Γ,m,n), c.f. Section 2.2, is the group

GΓ,m ' ×
e∈e(Γ)

PGLme ⊆ G(Wv : v ∈ v(Γ)),

that is the image of the homomorphism (2.9)

Ψ : ×
e∈e(Γ)

(GL(Ue)×GL(U∗e ))/Ze → G(Wk : k ∈ v(Γ)),

restricted to
GΓ,m := ×

e∈e(Γ)

GL∆
me ' ×

e∈e(Γ)

GLme .

In words, the gauge subgroup is obtained by taking, for every edge e ∈ e(Γ), the quotient
of GLme with the central subgroup Ze = {(λIdUe , λ

−1IdU∗e ) : λ ∈ C∗}.

We call GΓ,m gauge group.

Considering matrix product states, the gauge group is

GCd,m =
d

×
e=1

GLme .

Definition 5.7.2. Given M = (M1, . . . ,Md) ∈ GCd,m and A ∈ D, the gauge action
GCd,m ×D → D is given by

M ·A =
(
(Mk−1)−1AkMk

)
k=1,...,d

=
(
(Mk−1)−1Aikk Mk

)
k=1,...,d
ik=1,...,nk

,

with convention M0 = Md. Denote the orbit of A ∈ D under the action of GCd,m by

OG(A) = {M ·A, for M ∈ GCd,m} ⊆ D.

Lemma 5.7.3. Given a point of the variety Q ∈ TNSCdm,n and an element A ∈ D such
that A ∈ φ−1

(Q), then OG(A) is contained in the fiber φ−1
(Q).

Proof. The result follows from Corollary 2.3.2 but it is easy to see that

φ(M ·A) = φ(M−1
d A1M1, . . . ,M

−1
d−1AdMd)

=

n1,...,nd∑
i1,...,id=1

Tr
(

(MdM
−1
d )Ai11 (M1M

−1
1 ) · · ·Aidd

)
e

(1)
i1
⊗ · · · ⊗ e(d)

id

=

n1,...,nd∑
i1,...,id=1

Tr
(
Ai11 · · ·A

id
d

)
e

(1)
i1
⊗ · · · ⊗ e(d)

id
= φ(A),

for every M = (M1, . . . ,Md) ∈ GCd,m.
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Tangent space to the gauge orbit. We now study the tangent space to the gauge
orbit and we characterize its elements in terms of the Lie algebra of the gauge group.

Let (Γ,m,n) be a tensor network. In Section 2.3 we denoted the Lie algebra of GΓ,m by
gΓ,m. In the case of matrix product states it is

gCd,m =

d⊕
i=1

slmi ,

where slm is the Lie algebra of m×m complex matrices with trace zero [HOV13].

The Lie algebra of the gauge group GCd,m is denoted by gCd,m and is

gCd,m =
d⊕
i=1

Endmi . (5.27)

Consider the action of GCd,m on D, given in Definition 5.7.2. We define the orbit map
ϑ(A) : GCd,m → D by ϑ(A)(M) = M · A. The image of the map is clearly the orbit
OG(A) of A ∈ D under the given action. Denote the identity element of the group by
e = IdGCd,m . The surjective map ϑ(A) : GCd,m → OG(A) induces the map

d(ϑ(A))e : TeGCd,m ' gCd,m → TAOG(A),

where gCd,m is the Lie algebra of GCd,m, given in Equation (5.27).

Let m = (m1, . . . ,md) ∈ gCd,m. For every component mk ∈ Endmk consider the 1-
parametric subgroup

gk : R→ GLmk
t 7→ exp(tmk).

For every k = 1, . . . , d, gk(t) = exp(tmk) is a smooth curve in GLmk passing through the
identity gk(0) = Idmk of Endmk , and such that g′k(0) = mk.

Denote γ(t) = (g1(t), . . . , gd(t)). It is a smooth curve in GCd,m passing through the
identity e ∈ GCd,m, and such that γ′(0) = m. For each A ∈ D we have [Lee13]

dϑ(A)
e (m) = (ϑ(A) ◦ γ)′(0) =

d

dt |t=0

γ(t) ·A := vA ∈ TAOG(A).

For every A ∈ D, k = 1, . . . , d and s = 1, . . . , nk, we compute the action:

gk−1(t)−1Askgk(t) = exp(tmk−1)−1Ask exp(tmk)

= (Idk−1 − tmk−1 +O(t2))Ask(Idk + tmk +O(t2))

= Ask − tmk−1A
s
k + tAskmk +O(tw), w ≥ 2

= Ask + t[Askmk −mk−1A
s
k] +O(tw), w ≥ 2.
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Then the infinitesimal generator of the action is

d

dt |t=0

(gk−1(t)−1Askgk(t)) = Askmk −mk−1A
s
k.

This defines the action of m = (m1, . . . ,md) ∈ gCd,m on A ∈ D given by

m ·A = (Askmk −mk−1A
s
k) k=1,...,d
s=1,...,nk

∈ TAOG(A), (5.28)

and therefore the expression of the generic element of the tangent space to the gauge
orbit at the point A ∈ D.

Define NA = ker(dφA) and BA = (NA)⊥ and consider the following decomposition of the
tangent space for matrix product states

TAD = NA ⊕ BA. (5.29)

Lemma 5.7.4. The tangent space TAOG(A) ⊆ D is contained in NA, for every A ∈ D.

Proof. It is straightforward to see that

V = (Askmk −mk−1A
s
k) k=1,...,d
s=1,...,nk

∈ ker(dφA),

substituting the expression of V in place of B in Equation (5.26):

dφA(v)i1,...,id =

d∑
k=1

Tr
(
Ai11 · · ·

(
Aikk mk −mk−1A

ik
k

)
· · ·Aidd

)
= Tr

(
(Ai11 m1 −mdA

i1
1 )Ai22 · · ·A

id
d

)
+ Tr

(
Ai11 (Ai22 m2 −m1A

i2
2 ) · · ·Aidd

)
+

+ · · ·+ Tr
(
Ai11 · · ·A

id−1

d−1 (Aidd md −md−1A
id
d )
)

= Tr
(
Ai11 m1A

i2
2 · · ·A

id
d −mdA

i1
1 A

i2
2 · · ·A

id
d +Ai11 A

i2
2 m2 · · ·Aidd −A

i1
1 m1A

i2
2 · · ·A

id
d +

+ · · ·+Ai11 · · ·A
id−1

d−1A
id
d md −Ai11 · · ·A

id−1

d−1md−1A
id
d

)
= Tr

(
−mdA

i1
1 A

i2
2 · · ·A

id
d +Ai11 · · ·A

id−1

d−1A
id
d md

)
= 0;

since for every k ∈ {1, . . . , d} the first term of the (k − 1)-th tensor Aik−1

k−1 cancels out
with the second one of the k-th tensor Aikk .
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5.7.2 Open boundary conditions with bond dimension two

We compute the tangent space to the gauge orbit in the case of MPS(2, n, d) the variety
of matrix product states with open boundary conditions and bond dimension two.

We start with a general consideration on the dimension of matrix product states with
open boundary conditions. Fix Γ = Pd, the path graph on d vertices. Consider the variety
of matrix product states with open boundary conditions, MPS(m,n, d), parametrized by
the following map:

φ :Cn×m × (
d−2

×
i=1

Cn×m×m)× Cm×n → (Cn)⊗d

(A1, A2, . . . , Ad−1, Ad) 7→
n∑

i1,...,id=1

Ai11 · · ·A
id
d ei1 ⊗ · · · ⊗ eid ,

where {eij : j = 1, . . . , d, ij = 1, . . . , n} is the canonical basis of the d copies of Cn. Denote
the domain by DMPS ' C2nm+(d−2)nm2 and its dimension by NMPS := 2nm+(d−2)nm2.
The gauge group is GΓ,m =×d−1

k=1GLm and its Lie algebra gΓ,m =
⊕d−1

k=1 Endm.

As we have already highlighted in Remark 5.2.3, our formula of the dimension of the
variety coincides with Equation (5.8), given in [HMOV14]. More precisely:

dim MPS(m,n, d) = dimDMPS(m,n,d) − dimGΓ,m

= dim Pn1m1−1 + dim Pndmd−1−1 + dim Pnimi−1mi−1 + 1−
d−1∑
i=2

dim P(GLmi)

= (n1m1) + (ndmd−1) +

d−1∑
i=2

(nimi−1mi)− (d− 1)−
d−1∑
i=1

m2
i + (d− 1)

=
d∑
i=1

nimi−1mi −
d−1∑
i=1

m2
i = NMPS(m,n,d) −GΓ,m,

where we are considering all affine dimensions. By a dimension count, for matrix product
states with open boundary conditions, decomposition (5.29) can be written as

TADMPS(m,n,d) = TAOG(A) ⊕ BA,

with the following isomorphism:

TAOG(A) ' gPd,m, (5.30)

where BA = (TAOG(A))
⊥ = (ker(φA))⊥ and dimBA = dim MPS(m,n, d).
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Bond dimensions two. Now, consider the parametrization of matrix product states
with open boundary conditions, MPS(2, n, d), with m = 2 fixed:

φ :Cn×2 × (
d−2

×
i=1

Cn×2×2)× C2×n → (Cn)⊗d

(A1, A2, . . . , Ad−1, Ad) 7→
n∑

i1,...,id=1

Ai11 · · ·A
id
d ei1 ⊗ · · · ⊗ eid .

The domain is denoted by DMPS ' C4n(d−1) and its dimension is defined as NMPS =
4n(d− 1). The gauge group is GΓ,2 =×d−1

k=1GL2 and its Lie algebra gΓ,2 =
⊕d−1

k=1 End2.

The dimension of the variety is given in Example 5.2.4 and it is

dim MPS(2, n, d) = 4(nd− d− n+ 1) = 4(n− 1)(d− 1) = NMPS − dimGΓ,2.

Let m = (m1, . . . ,md) ∈ gΓ,2 and A ∈ DMPS. For every mi ∈ End2, i = 1, . . . , d − 1, we
fix the canonical basis and write mi = (xiαβ) for i = 1, . . . , d − 1 and α, β = 1, 2. An
element A ∈ DMPS is a collection of two boundary tensors A1 = (a1

s
j) and Ad = (ad

j
s),

for s = 1, . . . , n and j = 1, 2; and the inner tensors Ai = (ai
s
αβ), for i = 2, . . . , d − 1,

s = 1, . . . , n and α, β = 1, 2.

We compute the coordinates of m · A ∈ TAOG(A). More precisely, by Equation (5.28),
m ·A = (V s

k ) for k = 1, . . . , d and s = 1, . . . , n is given by

V s
1 = As1m1 = mt

1A
s
1,

V s
i = Asimi −mi−1A

s
i , i = 2, . . . , d− 1,

V s
d = −md−1A

s
d.

We start computing V s
i , for every i = 2, . . . , d− 1 and s = 1, . . . , n

V s
i =

(
ai
s
11 ai

s
12

ai
s
21 ai

s
22

)
·
(
xi11 xi12

xi21 xi22

)
−
(
xi−1

11 xi−1
12

xi−1
21 xi−1

22

)
·
(
ai
s
11 ai

s
12

ai
s
21 ai

s
22

)
=

(
(xi11 − x

i−1
11 )ai

s
11 − x

i−1
12 ai

s
21 + xi21ai

s
12 (xi22 − x

i−1
11 )ai

s
12 − x

i−1
12 ai

s
22 + xi12ai

s
11

−xi−1
21 ai

s
11 + (xi11 − x

i−1
22 )ai

s
21 + xi21ai

s
22 −xi−1

21 ai
s
12 + (xi22 − x

i−1
22 )ai

s
22 + xi12ai

s
21

)
.

Reshaping the matrix V s
i ∈ C2×2 into a vector, we obtain tsi ∈ C4:

tsi =


(xi11 − x

i−1
11 )ai

s
11 − x

i−1
12 ai

s
21 + xi21ai

s
12

(xi22 − x
i−1
11 )ai

s
12 − x

i−1
12 ai

s
22 + xi12ai

s
11

−xi−1
21 ai

s
11 + (xi11 − x

i−1
22 )ai

s
21 + xi21ai

s
22

−xi−1
21 ai

s
12 + (xi22 − x

i−1
22 )ai

s
22 + xi12ai

s
21

 .
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Define

Ki(mi−1,mi) :=


xi11 − x

i−1
11 xi21 −xi−1

12 0

xi12 xi22 − x
i−1
11 0 −xi−1

12

−xi−1
21 0 xi11 − x

i−1
22 xi21

0 −xi−1
21 xi12 xi22 − x

i−1
22

 ∈ C2×2

and denote the vector of entries of Asi , i = 2, . . . , d− 1 and s = 1, . . . , n by

ai
s = (ai

s
11, ai

s
12, ai

s
21, ai

s
22)t ∈ C4.

Then tsi = Ki(mi−1,mi)ai
s, for every i = 2, . . . , d− 1 and s = 1, . . . , n.

We compute now the coordinates of the action on the boundary tensors, i.e. the vectors
V s

1 and V s
d , for every s = 1, . . . , n:

V s
1 = As1m1 =

(
a1
s
1 a1

s
2

)(x1
11 x1

12

x1
21 x1

22

)
=

(
x1

11 x1
21

x1
12 x1

22

)(
a1
s
1

a1
s
2

)
,

V s
d = −md−1A

s
d =

(
−xd−1

11 −xd−1
12

−xd−1
21 −xd−1

22

)(
ad
s
1

ad
s
2

)
,

where asi = (ai
s
1, ai

s
2)t ∈ C2, for i = 1, d− 1. Define the matrices

K1(m1) :=

(
x1

11 x1
21

x1
12 x1

22

)
, Kd(md−1) :=

(
−xd−1

11 −xd−1
12

−xd−1
21 −xd−1

22

)
.

Then V s
1 = K1(m1)a1

s and V s
d = Kd(md−1)ad

s.

We define a block diagonal matrix of order NMPS:

M(m) := diag{K1(m1), . . . ,K1(m1)︸ ︷︷ ︸
n-times

,K2(m1,m2), . . . ,K2(m1,m2)︸ ︷︷ ︸
n-times

. . .

Kd−1(md−2,md−1), . . . ,Kd−1(md−2,md−1)︸ ︷︷ ︸
n-times

,Kd(md−1), . . . ,Kd(md−1)︸ ︷︷ ︸
n-times

},

that is the matrix representation of the action of m ∈ gΓ,2 on A ∈ DMPS. If we denote
by a ∈ CNMPS the column vector of all the entries of A, then

M(m) : DMPS ' TADMPS → TAOG(A) ⊂ TADMPS

a 7→ M(m)a.

Since the tangent space of the gauge orbit at the point A ∈ DMPS is parametrized by
the Lie algebra gΓ,2 via isomorphism (5.30), we choose a basis B for the gΓ,2 in order to
find a basis of TAOG(A), for every A ∈ DMPS.
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Denote by Ei,j ∈ End2 the matrix with 1 in the (i, j)-th entry and zero otherwise. The
set E = {Eαβ}α,β=1,2 gives a basis of End2. The tangent space to the gauge orbit is
spanned by the image ofM(m), for m varying in B =×d

i=1 E :

TA(OG(A)) = 〈M(m)a〉m∈B.

For mi−1 = E11, E12, E21, E22 we have

Ki(E11, 0)ai
s =


−1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0



ai
s
11

ai
s
12

ai
s
21

ai
s
22

 =


−ais11

−ais12

0
0

 ,

Ki(E12, 0)ai
s =


0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0



ai
s
11

ai
s
12

ai
s
21

ai
s
22

 =


−ais21

−ais22

0
0

 ,

Ki(E21, 0)ai
s =


0 0 0 0
0 0 0 0
−1 0 0 0
0 −1 0 0



ai
s
11

ai
s
12

ai
s
21

ai
s
22

 =


0
0
−ais11

−ais12

 ,

Ki(E22, 0)ai
s =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1



ai
s
11

ai
s
12

ai
s
21

ai
s
22

 =


0
0
−ais21

−ais22

 ,

respectively. For mi = E11, E12, E21, E22 we have

Ki(0, E11)ai
s =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



ai
s
11

ai
s
12

ai
s
21

ai
s
22

 =


ai
s
11

0
ai
s
21

0

 ,

Ki(0, E12)ai
s =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0



ai
s
11

ai
s
12

ai
s
21

ai
s
22

 =


0
ai
s
11

0
ai
s
21

 ,

Ki(0, E21)ai
s =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



ai
s
11

ai
s
12

ai
s
21

ai
s
22

 =


ai
s
12

0
ai
s
22

0

 ,

Ki(0, E22)ai
s =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1



ai
s
11

ai
s
12

ai
s
21

ai
s
22

 =


0
ai
s
12

0
ai
s
22

 ,
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respectively. For the boundary vectors, for m1 = E11, E12, E21, E22 we have

K1(E11)a1
s =

(
1 0
0 0

)(
a1
s
1

a1
s
2

)
=

(
a1
s
1

0

)
,

K1(E12)a1
s =

(
0 0
1 0

)(
a1
s
1

a1
s
2

)
=

(
0
a1
s
1

)
,

K1(E21)a1
s =

(
0 1
0 0

)(
a1
s
1

a1
s
2

)
=

(
a1
s
2

0

)
,

K1(E22)a1
s =

(
0 0
0 1

)(
a1
s
1

a1
s
2

)
=

(
0
a1
s
2

)
,

respectively, and for md−1 = E11, E12, E21, E22 we have

Kd(E11)ad
s =

(
−1 0
0 0

)(
ad
s
1

ad
s
2

)
=

(
−ads1

0

)
,

Kd(E12)ad
s =

(
0 −1
0 0

)(
ad
s
1

ad
s
2

)
=

(
−ads2

0

)
,

Kd(E21)ad
s =

(
0 0
−1 0

)(
ad
s
1

ad
s
2

)
=

(
0
−ads1

)
,

Kd(E22)ad
s =

(
0 0
0 −1

)(
ad
s
1

ad
s
2

)
=

(
0
−ads2

)
,

respectively. We can define the following matrices

ms
L(1) :=

(
a1
s
1 0 a1

s
2 0

0 a1
s
1 0 a1

s
2

)
= a1

s � Id2,

ms(i) :=


−ais11 −ais21 0 0 ai

s
11 0 ai

s
12 0

−ais12 −ais22 0 0 0 ai
s
11 0 ai

s
12

0 0 −ais11 −ais21 ai
s
21 0 ai

s
22 0

0 0 −ais12 −ais22 0 ai
s
21 0 ai

s
22


=
(
− Id2 � (Asi )

t (Asi ) � Id2

)
, i ∈ {2, . . . , d− 1}

ms
R(d) :=

(
−ads1 −ads2 0 0

0 0 −ads1 −ads2

)
= −Id2 � ad

s,

that are the building blocks that constitute the matrix, that we will denote by TA, whose
columns generate (and provide a basis of) TA(OG(A)), for every A ∈ DMPS. In particular,
TA is a NMPS × dimGΓ,m complex matrix.
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Example 5.7.5. The tangent space to the gauge orbit of MPS(2, 3, 3) is

TA =



a1
1 � Id2 O2×4

a1
2 � Id2 O2×4

a1
3 � Id2 O2×4

−Id2 � (A1
2)t A1

2 � Id2

−Id2 � (A2
2)t A2

2 � Id2

−Id2 � (A3
2)t A3

2 � Id2

O2×4 −Id2 � a3
1

O2×4 −Id2 � a3
2

O2×4 −Id2 � a3
3,


which is a 24× 8 matrix.

Remark 5.7.6 (Orthonormal complement). In the next chapter, we will need a or-
thonormal basis of the vector space BA = (TA(OG(A)))

⊥, for every A ∈ DMPS.
We will numerically compute the QR decomposition of the matrix TA, i.e. TA = QARA.
The columns of QA give an orthonormal basis of TA(OG(A)). Therefore, the orthonormal
completion of a basis of TADMPS ' DMPS provides the vectors which span BA. In order
to obtain the completion, we will compute PA = ker(Q†A) whose columns span the space
BA for A ∈ DMPS.

5.7.3 Homogeneous case

Analogous computations are done in the case of hMPS(2, n, d) homogeneous matrix prod-
uct states with open boundary conditions and bond dimension two. However, in this case,
the use of affine coordinates gives rise to redundant scalar degrees of freedom. This will
be made clear in Remark 5.7.7. As a consequence, the kernel of the differential of the
parametrization contains at least one vector space which is not generated by the gauge
Lie algebra action.

Fix Γ = Pd+2, the path graph on d + 2 vertices. Consider the parametrization (5.9) of
homogeneous matrix product states with open boundary conditions hMPS(m,n, d):

ψ : Cm × (Cm×m)×n × Cm → (Cn)⊗d

p = (vL, A, vR) 7→
n∑

ij=1,
j=1,...,d

(
v†LAi1 · · ·AidvR

)
ei1 ⊗ · · · ⊗ eid ,

Denote the domain by

DhMPS = Cm × (Cm×m)×n × Cm ' C2m+m2n.

The gauge group is GΓ,m = GLm and its Lie algebra gΓ,m = Endm. Given m ∈ gΓ,m and
p = (vL, A, vR) ∈ DhMPS, the action of the Lie algebra (5.28) specializes to

m · (vL, A, vR) = (v†Lm, A
sm−mAs,−mvR) for s = 1, . . . , n. (5.31)
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Remark 5.7.7. The upper bound on the dimension of the variety, given in Equa-
tion (5.10), is the following:

dim hMPS(m,n, d) ≤ 2 dim Pm−1 + dim Pm
2n−1 + 1− dim Pm

2

= 2(m− 1) + (m2n− 1) + 1− (m2 − 1)

= 2m+m2(n− 1)− 1.

Define the upper bound on the dimension by

expdim hMPS(m,n, d) := 2m+m2(n− 1)− 1.

On the other hand, when working in the affine setting we have NhMPS = dimDhMPS =
2m + m2n and dimGΓ,m = m2. Therefore the vector space (TpOG(p))

⊥ for p ∈ DhMPS

has dimension

dim(TpOG(p))
⊥ = NhMPS − dimGΓ,m = 2m+m2n−m2 = 2m+m2(n− 1)

= expdim hMPS(m,n, d) + 1.

The 1-dimensional gap is due to the overabundant affine coordinates that we are consid-
ering in the domain of the parametrization. The kernel of the differential of the map,
ker(dψp) for p ∈ DhMPS(m,n,d), contains at least one vector space which is not generated
by the gauge Lie algebra action. We denote this vector space by Sp ' C and we have
Sp ⊂ ker(dψp) \ TpOG(p). We will provide this vector space order to obtain

TpDhMPS =
(
TpOG(p) ⊕ Sp

)
⊕ Bp,

with dimBp = expdim hMPS(m,n, d).

Bond dimensions two. We fix now m = 2. Let m ∈ gΓ,2 = End2 and p ∈ DhMPS '
C4(n+1). We fix the canonical basis and write m = (xαβ)α,β=1,2, A = (asαβ)s=1,...,n

α,β=1,2 , and
the boundary tensors vL = (v1

L, v
2
L)t, vR = (v1

R, v
2
R)t.

We compute the coordinates of m · p ∈ TpOG(p) which, by Equation (5.31) is given by
m · p = (VL, VI , VR) is given by

VL = v†Lm = mtvL,

V s
I = Asm−mAs, s = 1, . . . , n

VR = −mvR,

where vL = (v1
L, v

2
L)t.

We start computing V s
I , for every s = 1, . . . , n

V s
I =

(
as11 as12

as21 as22

)
·
(
x11 x12

x21 x22

)
−
(
x11 x12

x21 x22

)
·
(
as11 as12

as21 as22

)
=

(
−x12a

s
21 + x21a

s
12 (x22 − x11)as12 − x12a

s
22 + x12a

s
11

−x21a
s
11 + (x11 − x22)as21 + x21a

s
22 −x21a

s
12 + x12a

s
21

)
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Reshaping the matrix V s
I ∈ C2×2 into a vector, we obtain ts ∈ C4:

ts =


−x12a

s
21 + x21a

s
12

(x22 − x11)as12 − x12a
s
22 + x12a

s
11

−x21a
s
11 + (x11 − x22)as21 + x21a

s
22

−x21a
s
12 + x12a

s
21

 .

Define

K(m) :=


0 x21 −x12 0
x12 x22 − x11 0 −x12

−x21 0 x11 − x22 x21

0 −x21 x12 0

 ,

and denote the vector reshape of As ∈ C2×2 for s = 1, . . . , n by

as = (as11, a
s
12, a

s
21, a

s
22)t ∈ C4.

Then ts = K(m)as for every s = 1, . . . , n.

The action on the boundary tensors is given by:

VL = v†Lm =
(
v1
L v2

L

)(x11 x12

x21 x22

)
=

(
x11 x21

x12 x22

)(
v1
L

v2
L

)
,

VR = −mvR =

(
−x11 −x12

−x21 −x22

)(
v1
R

v2
R

)
,

where we recall that vL = (v1
L, v

2
L)t, vR = (v1

R, v
2
R)t ∈ C2. Define

KL(m) :=

(
x11 x21

x12 x22

)
, KR(m) :=

(
−x11 −x12

−x21 −x22

)
then VL = KL(m)vL and VR = KR(m)vR.

We define a block diagonal matrix of order NhMPS

M(m) = diag{KL(m),K(m), . . . ,K(m)︸ ︷︷ ︸
n-times

,KR(m)},

which is the matrix representation of the action of m ∈ gΓ,2 = End2 on p ∈ DhMPS. If
we denote the vector reshape of As ∈ C2×2 for s = 1, . . . , n, by

as = (as11, a
s
12, a

s
21, a

s
22)t ∈ C4

and the vector reshape of p = (vL, A, vR) ∈ DhMPS by

a = (v1
L, v

2
L, a

1 . . . an, v1
R, v

2
R)t ∈ C4(n+1),

139



then we can write

M(m) : D ' TpD → TpOG(p) ⊂ TpD
a 7→ M(m)a.

Again, since the tangent space of the gauge orbit at the point p ∈ DhMPS is parametrized
by the Lie algebra gΓ,2, we fix a basis B of gΓ,2 in order to determine a basis of TpOG(p),
for every p ∈ D:

B = {Id2 =

(
1 0
0 1

)
, H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
}.

The tangent space to the gauge orbit is spanned by the image of M(m), for m varying
in B

Tp(OG(p)) = 〈M(m) · a〉m∈B.

We compute the blocks associated to the internal tensor

K(Id2)as =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



as11

as12

as21

as22

 =


0
0
0
0

 ,

K(H)as =


0 0 0 0
0 −2 0 0
0 0 2 0
0 0 0 0



as11

as12

as21

as22

 =


0

−2as12

2as21

0

 ,

K(X)as =


0 0 −1 0
1 0 0 −1
0 0 0 0
0 0 1 0



as11

as12

as21

as22

 =


−as21

as11 − as22

0
as21

 ,

K(Y )as =


0 1 0 0
0 0 0 0
−1 0 0 1
0 −1 0 0



as11

as12

as21

as22

 =


as12

0
as22 − as11

−as12

 .

We compute the blocks associated to the boundary vectors

KL(Id2)vL =

(
v1
L

v2
L

)
, KL(H)vL =

(
v1
L

−v2
L

)
, KL(X)vL =

(
0
v1
L

)
, KL(Y )vL =

(
v2
L

0

)
,

KR(Id2)vR =

(
−v1

R

−v2
R

)
, KR(H)vR =

(
−v1

R

v2
R

)
, KR(X)vR =

(
−v2

R

0

)
, KR(Y )vR =

(
0
−v1

R

)
.
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We define the building blocks

ms
A :=


0 0 −as21 as12

0 −2as12 as11 − as22 0
0 2as21 0 as22 − as11

0 0 as21 −as12

 , s = 1, . . . , n,

mL :=

(
v1
L v1

L 0 v2
L

v2
L −v2

L v1
L 0

)
,

mR :=

(
−v1

R −v1
R −v2

R 0
−v2

R v2
R 0 −v1

R

)
,

and, finally, we obtain the matrix whose columns give a basis of TpOG(p)

T̃p =


mL

m1
A
...
mn
A

mR

 =



v1
L v1

L 0 v2
L

v2
L −v2

L v1
L 0

0 0 −a1
21 a1

12

0 −2a1
12 a1

11 − a1
22 0

0 2a1
21 0 a1

22 − a1
11

0 0 a1
21 −a1

12
...

...
...

...
0 0 −an21 an12

0 −2an12 an11 − an22 0
0 2an21 0 an22 − an11

0 0 an21 −an12

−v1
R −v1

R −v2
R 0

−v2
R v2

R 0 −v1
R



∈ CNhMPS×4.

In order to find the 1-dimensional vector space Sp ' C ⊂ ker(dφp) \ TpOG(p) for every
p ∈ DhMPS, c.f. Remark 5.7.7, we notice that there is an action of C∗ on the domain of
the parametrization which leaves invariant the image of the map but that is not provided
by the action of the gauge group GΓ,2.

Consider a point p ∈ DhMPS and α, β, γ ∈ C∗. Then

ψ(αvL, βA, γvR) = αβdγ ψ(vL, A, vR) = ψ(vL, A, vR)

if and only if αβdγ = 1. Fix α = β−d and γ = 1, which satisfy the condition αβdγ = 1.
We define an action of C∗ on the domain DhMPS of ψ as follows: given p = (vL, A, vR) ∈
DhMPS and β ∈ C∗, the action is given by

β · p = (β−dvL, βA, vR).

Let β̃ ∈ C such that β(t) = exp(tβ̃) is a smooth curve in C∗ passing through the identity
of C, β(0) = 1, and such that β′(0) = β̃. The action of β̃ ∈ C on p ∈ DhMPS is given by

141



β̃ · p = (VL, V
1
I , V

n
I , . . . , VR) ∈ ker(dψp), with

VL =
d

dt |t=0

exp(tβ̃)−dv†L = −dβ̃−d−1v†L,

V s
I =

d

dt |t=0

exp(tβ̃)As = (β̃ exp(tβ̃)As)|t=0
= β̃As, s = 1, . . . , n,

VR =
d

dt |t=0

exp(0)vR = 0.

Fixing the generator β̃ = 1 ∈ C we obtain the vector

v1(p) := (−dv1
L,−dv2

L, a
1
11, a

2
12, . . . , a

n
22, 0, 0) ker(dφp) \ TpOG(p).

and finally we define the matrix

Tp =



−dv1
L v1

L v1
L 0 v2

L

−dv2
L v2

L −v2
L v1

L 0
a1

11 0 0 −a1
21 a1

12
... 0 −2a1

12 a1
11 − a1

22 0
a1

22 0 2a1
21 0 a1

22 − a1
11

a2
11 0 0 a1

21 −a1
12

...
...

...
...

...

an−1
22 0 0 −an21 an12

an11 0 −2an12 an11 − an22 0
... 0 2an21 0 an22 − an11

an22 0 0 an21 −an12

0 −v1
R −v1

R −v2
R 0

0 −v2
R v2

R 0 −v1
R



∈ CNhMPS×5. (5.32)

whose columns span Sp ⊕ TpOG(p) ⊂ DhMPS.

Remark 5.7.8. Let p ∈ DhMPS. Denote the second column vector of the matrix Tp
(5.32) by v2(p). The vector can be compactly written as v2(p) = (vL,0,−vR)t. Notice
that, fixing γ = α−1 and β = 1 is equivalent to the gauge action of the matrix αId2:

ψ(vL

(
α 0
0 α

)
,

(
α−1 0

0 α−1

)
A

(
α 0
0 α

)
,

(
α−1 0

0 α−1

)
vR) = ψ(αvL, A, α

−1vR),

and actually provides v2(p), which is the second column vector of Tp (5.32). This is the
only scalar multiplication which derives from the affine gauge group GΓ,2.

Moreover, if we consider the remaining choice, α = 1 and γ = β−d (which is symmetric
to α = β−d, γ = 1), we obtain the vector

s(p) = (0, A,−dvR) ,

which is a linear combination of v1(p) and v2(p), precisely s(p) = v1(p) + dv2(p).
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Conclusions. In this chapter, we have collected all the ingredients to implement a
variational conjugate gradient method on matrix product states (with open boundary
conditions). In the last part of the chapter, we analyze further the geometry of the fiber
of the variety of matrix product states; in particular we study the role of the gauge orbit
and of its tangent space. We describe a pointwise decomposition of the tangent space to
the fiber that we specialize to the case of open boundary conditions. The decomposition
will be used in the following chapter for finding a good representative of the gradient of
the functional we want to minimize.
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Chapter 6

Preliminary numerical calculations

In this chapter, we present preliminary numerical results on the performance of the
nonlinear conjugate gradient method on the variational class of matrix product states
with open boundary conditions. The physical model we use is the AKLT model, c.f.
Sections 5.3 and 5.4. The code, implemented in MATLAB [Mat20] and available at
https://github.com/claudia-dela/NLCG_MPS_open-boundaries/, makes use of the
general tensor network contraction routine ncon() [PESV14]. The analysis is done with
real random starting points but the code works also in the complex field.
In Section 6.1, we analyze the runtime of the algorithm implemented using all the ingre-
dients exposed in Chapter 5. Minimizing the expectation value functional, the NLCG
properly approximates the lowest eigenvalue of the AKLT Hamiltonian and an associated
ground state. More precisely, given φ : DMPS → MPS◦(m,n, d), the parametrization of
matrix product states with open boundary conditions, and H the AKLT Hamiltonian,
the method solves Problem 5.0.2

min
A∈DMPS

f(A) = min
A∈DMPS

φ(A)†Hφ(A)

φ(A)†φ(A)
.

Meanwhile, we compare the method to a first small variation. The variation is a slight
modification of the algorithm which consists in restarting the NLCG after less steps and
it is based on dimensional considerations. The variation will lead to a small gain in terms
of time of convergence, for a small number of sites.
In Section 6.2 we combine the restart reduction with a variation of the line search, which is
the most expensive routine invoked by the NLCG algorithm. The modification of the line
search is based on the decomposition of the domain described in Chapter 5, Section 5.6.
In particular, we reparametrize the gradient ∇f : DMPS → DMPS, computed in Section
5.5, reducing the number of its coordinates from dimDMPS to the minimal number of
parameters needed to parametrize the variety, i.e. the dimension of matrix product
states with open boundary conditions and the “expected dimension” of homogeneous
matrix product state with open boundary conditions.
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6.1 Restart in less iterations

In this section, we show the performances of the algorithm compared to a slightly modified
version. By Theorem 3.3.1 in Chapter 3, the matrix product states parametrization (5.6)
is overparametrized since its generic fiber is a high dimensional subspace of the domain.
Moreover, by Remark 5.2.3, in the case of matrix product states with open boundary
conditions, the generic fiber of the parametrization (5.7) is isomorphic to the gauge orbit
and the dimension of the variety, that we denote by sMPS = dim MPS(m,n, d), is given by
Equation (5.8). Therefore, we have a strict inequality sMPS < dimDMPS. The first small
variation of the algorithm that we compare to the standard one consists in restarting the
iterations of the NLCG after sMPS steps.

6.1.1 Results on MPS(2, 3, d)

Fix mi = m = 2 and ni = n = 3 for every i = 1, . . . , d. Under these assumptions, the
matrix product state map (5.7) is given by

φ : C3×2 ×
d−1

×
i=2

C3×2×2 × C2×3 → (C3)⊗3 (6.1)

(A1, . . . , Ad) 7→
3∑

i1,...,id=1

Ai11 · · ·A
id
d ei1 ⊗ · · · ⊗ eid ,

· · ·
A1 AdA2 Ad−1

2 22 2

3 3 3 3

Figure 6.1: Matrix product state with open boundary conditions associated to the path graph
with d vertices. The first and last tensors A1 ∈ C3×2 and Ad ∈ C2×3 are matrices; the inner
tensors are Ak ∈ C3×2×2, for k = 2, . . . , d − 1 and can be seen as a collection of 3 matrices of
order 2, i.e. Aik

k ∈ C2×2 is a matrix for ik = 1, 2, 3.

Denote the domain of the map (6.1) by

DMPS := C3×2 ×

(
d−1

×
k=2

C3×2×2

)
× C2×3 ' C12(d−1),

and its dimension by NMPS := dimDMPS = 12(d− 1). Let A = (A1, . . . , Ad) ∈ DMPS be
a point of the domain. Then, tensors A1 and Ad have order 2 and they can be thought of
as collections of 3 vectors of C2, and the inner tensors A2, . . . , Ad−1 have order 3 and each
one can be thought of as a collection of 3 matrices of C2×2. In this case, the dimension
of MPS(2, 3, d), given in Example 5.2.4 and plotted in Figure 6.2, is

sMPS := dim MPS(2, 3, d) = 12(d− 1)− 4(d− 1) = 8(d− 1).
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Figure 6.2: Comparison, for d = 3, . . . , 19, between the dimension of the domain of the MPS
map NMPS = 12(d− 1) and the dimension of the variety sMPS = dim MPS(2, 3, d) = 8(d− 1).

We consider Algorithm 5 on MPS(2, 3, d), with different restarts: NMPS for the standard
NLCG, and sMPS for the variation. For d = 3, . . . , 19 number of sites, we run 50 times
the algorithms; each run starts from the same random point of DMPS for both variants
of Algorithm 5. The gradient’s tolerance is set to t = 10−8 and, for every d and in both
variants, it allows to accomplish a precision of 10−15 with respect to the exact minimum
λ0,d = −2

3(d − 1) (5.17) of the functional for the Hamiltonian of the AKLT model, see
Figure 6.3.
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Figure 6.3: Value of global minimum computed by Algorithm 5 with restart NMPS = dimDMPS

(standard NLCG), and restart sMPS = dim MPS(2, 3, d) (variation), for d = 3, . . . , 19. Both
variants accomplish a precision of 10−15 with respect to the exact minimum λ0,d = − 2

3 (d− 1).
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The two variants of Algorithm 5 have a comparable time of the single line search on
average, but they perform a different number of line searches in order to converge, c.f.
Figure 6.4. The variation of the algorithm performs less line searches, i.e. less iterations
of the NLCG, in the range [3, . . . , 12]. This provides a slightly faster time of convergence,
around the 8%, which can be seen in Figure 6.5.

2 4 6 8 10 12 14 16 18 20

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 [

s
]

2 4 6 8 10 12 14 16 18 20

d

30

40

50

60

70

80

90

100

110

120

130

it
e

ra
ti
o

n
s

Figure 6.4: Comparison, for d = 1, . . . , 19, between Algorithm 5 with restart after NMPS =
dimDMPS iterations (standard NLCG) and sMPS = dim MPS iterations (variation), respectively.
Left: comparison of the time of one line search; the time is comparable. Right: Comparison of
the number of line searches needed by the two versions of the algorithm to reach convergence:
the variation with restart sMPS needs less iterations in the range [3, . . . , 12] of sites. This leads
to a moderate gain in time of convergence.
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Figure 6.5: Time comparison, for d = 1, . . . , 19, between Algorithm 5 with restart after NMPS =
dimDMPS iterations (standard NLCG) and sMPS = dim MPS iterations (variation), respectively.
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Plots 6.4 and 6.5 refer to convergent runs for both algorithms. Indeed, both variants
of the algorithm have a small number of runs which do not reach convergence. The
presence of non convergent runs is due to an iteration bound that we decide to impose to
3sMPS, within which the algorithms essentially converge. The role of the bound will be
made more clear in the next section, precisely in Remark 6.1.1. However, the inclusion
of non convergent runs in the MPS(2, 3, d) model analysis is not much informative: in
the case of non convergent runs, the runtime of Algorithm 5 is essentially the same for
both variants, since, at the same runtime of line search, both variants reach the iteration
bound. The comparison of the number of non convergent runs is shown in Figure 6.6 for
the sake of completeness.
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Figure 6.6: Comparison, for d = 1, . . . , 19, of the number of non convergent runs (over 50 runs)
due to the imposed iteration bound of 3sMPS iterations.

6.1.2 Results on hMPS(2, 3, d)

We restrict our attention to homogeneous matrix product states with open boundary
conditions hMPS(2, 3, d), c.f. Definition 5.2.7. When m = 2 and n = 3 the homogeneous
matrix product state map (5.9) is the following

ψ : C2 × (C2×2)×3 × C2 → (C3)⊗3 (6.2)

p = (vL, A, vR) 7→
3∑

i1,...,id=1

(
v†LAi1 · · ·AidvR

)
ei1 ⊗ · · · ⊗ eid .

The domain of the hMPS map (6.2) is DhMPS := C16, of dimension NhMPS := 16. An
element (vL, A, vR) ∈ DhMPS is such that vL, vR ∈ C2 and A = (A1, A2, A3) ∈ (C2×2)×3

is a tensor of order 3, identified with a set of 3 matrices of order 2.

A bound on the dimension of the variety is given in Equation (5.10) and in this case, it
is dim hMPS(2, 3, d) ≤ 11. We consider the upper bound on the dimension of the variety
as its “expected dimension” and we define

shMPS := expdim hMPS(2, 3, d) = 11.
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Figure 6.7: Graphical representation of a homogeneous matrix product state with open bound-
ary conditions, with bond dimensions equal to 2 and local dimensions equal to 3. Each inner
vertex is associated with the same tensor A ∈ (C2×2)×3, with Ai ∈ C2 for every i = 1, 2, 3. The
boundaries are vectors vL, vR ∈ C2.

We consider Algorithm 5 with different restarts: NMPS for the standard NLCG, and
sMPS for the variation. The two variants of Algorithm 5 have comparable performances
again. More precisely, for d = 3, . . . , 40 number of sites, we run 100 times the algorithms;
each run starts from the same random point of DhMPS for both variants. The gradient’s
tolerance is set to t = 10−6. In Figure 6.8 we display the functional values reached.
Unlike the case of MPS(2, 3, d), minimizing on the subvariety hMPS(2, 3, d), both the
NLCG and the variant converge to two different kinds of points, for every d: one point
that approximates a ground state and that accomplishes a precision of 10−11 with respect
to the exact minimum of the functional λ0,d = −2

3(d− 1) (5.17), and another point that
satisfies the tolerance condition that we have fixed to t = 10−6. These second kind of
points approximately lie on a line of slope −1/3 that can be approximately described by
the expression −(q + (1/3)(d− 1)), with q ∼ 0.05.
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Figure 6.8: Values of global minima (lower data) and another point (upper data), for d =
3, . . . , 40, computed by Algorithm 5 with restart NhMPS = dimDhMPS (standard NLCG), and
restart shMPS = expdim hMPS(2, 3, d) (variation). The global minimum, in both variants, has
a precision of (the order of) 10−11 with respect to the exact minimum λ0,d = − 2

3 (d − 1). The
other point lies on the line −(q + (1/3)(d− 1)), with q ∼ 0.05.
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Non global minimum. The gradient of f : DhMPS → R, computed in Section 5.5,
Equation (5.25), is given by

GA =
2

φ(A)†φ(A)

(
∂

∂A
(φ(A)t) (H − h · 1)φ(A)

)
, where h = ρ(φ(A)).

When the gradient is zero, i.e. GA = 0, for A ∈ DhMPS then either φ(A) is an eigen-
vector of H with associated eigenvalue h = ρ(φ(A)), or dφA = ∂

∂A
(φ(A)t) = 0, or

(H − h · 1)φ(A) ∈ ker(dφA). With a direct computation in the range of sites [3, . . . , 14]
(computationally possible), we verified that the non-global “stationary” points reached
do not satisfy the eigenvalue equation, i.e. |Hφ(A) − hφ(A)|F > 103, with | · |F the
Frobenius norm. The convergent points which are not points of global minimum are not
even points of local minimum. We therefore assume that the algorithm finds one global
minimum for each d. However, within the tolerance threshold imposed, the algorithms
converge to these points. In the following analysis, we take them into account since, a
priori, we can only see that the algorithms are converging to them: we will consider their
runtime, which is longer than that of the global minima, and their contribution to the
total time of the algorithms. We will refer to them as “false local minima”.

Remark 6.1.1 (Iteration bound). We decide to bound the number of iterations by
3shMPS = 33, i.e. 3 complete rounds of NLCG with restart after shMPS = 11 iterations.
We think that the bound is a natural threshold to impose: it ensures convergence to the
global minimum on average, for every d and both algorithms. Indeed, in the range of sites,
the global minimum is reached, on average, in 18 iterations by the standard Algorithm 5,
and in 16 iterations with the lower restart shMPS, that is the variation needs less iterations
to satisfy the tolerance condition. The number of global and non-global minima reached
(in 100 runs) is compared in Figure 6.9 (left) and (right), respectively.
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Figure 6.9: Left: Comparison, for d = 3, . . . , 40, of the number of runs converged to the global
minimum (over 100 runs). Right: Comparison, for d = 3, . . . , 40, of the number of runs converged
to the false local minimum (over 100 runs). Both refer to convergent runs reached by Algorithm 5
with restart NhMPS = dimDhMPS (standard NLCG), and restart shMPS = expdim hMPS(2, 3, d)
(variation).
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The false local minimum needs more iterations for convergence (26 and 24 on average)
and therefore it has a slower runtime to convergence compared to the global minimum.
The iteration bound causes a loss of convergent runs in both variants. The 100 runs
divide into the number of runs converged to the global minimum, 59%, the number of
runs converged to the false local minimum, 12%, and the number of runs that do not
reach convergence. The latter runs are compared in Figure 6.10 (around 29% of runs).
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Figure 6.10: Comparison, for d = 3, . . . , 40, of the number of non convergent runs (over 100
runs) within the iteration bound described in Remark 6.1.1.

In general, the two algorithms have a comparable time of line search, c.f. Figure 6.11.
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Figure 6.11: Comparison, for d = 3, . . . , 40, of the time of one line search, on average, between
Algorithm 5 with restart after NhMPS = dimDhMPS iterations (standard NLCG) and shMPS =
expdim hMPS iterations (variation). The time is comparable.

On the other hand, Algorithm 5 with restart after shMPS iterations performs less line
searches to reach convergence. Since the runtime to convergence is roughly the time of
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the line search multiplied by the number of line searches (iterations), the latter determines
the runtime comparison, retaining the comparable time of line search.

Considering the overall performance, i.e. the time of all runs (convergent and non con-
vergent), Algorithm 5 implemented with restart shMPS performs, on average, around 23
against 22 line searches over the whole interval of sites, c.f. Figure 6.12 (left). In terms
of time, this leads to a gain of 7% of runtime that can be seen in Figure 6.12 (right).
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Figure 6.12: Left: Comparison, for d = 3, . . . , 40, of the number of line searches between
Algorithm 5 with restart NhMPS = dimDhMPS (standard NLCG) and shMPS = expdim hMPS
(variation); the variation needs less iterations leading to a gain in total runtime. Right: Overall
time comparison.

Comparing the convergent runs for both variants of the algorithm, the iterations needed
to converge are, on average, 19 against 18 and the variation gains around 8% of runtime,
c.f. Figure 6.13.
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Figure 6.13: Comparison, for d = 3, . . . , 40, of the number of line searches needed to reach
convergence: Algorithm 5 with restart shMPS = expdim hMPS needs less iterations, leading to a
gain in time of convergence. Right: Runtime comparison to convergent runs.
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Comparing the convergent runs to the global minimum for both the variants of the algo-
rithm, the iterations needed to converge are, on average, 18 against 16 and the variation
gains around 8% of runtime, c.f. Figure 6.14.
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Figure 6.14: Left: Comparison, for d = 3, . . . , 40, of the number of line searches needed by
the two variants of Algorithm 5 to reach the global minimum: the variation needs less iterations
leading to a gain in time of convergence. Right: Runtime comparison to the global minimum.

In conclusion, the NLCG properly finds an approximation of the ground state of the
AKLT Hamiltonian: a gradient’s tolerance t = 10−8 allows for a precision of 10−15 on
MPS(2, 3, d), and a tolerance t = 10−6 allows for a precision of 10−11 on MPS(2, 3, d).
Moreover, the first small variation of Algorithm 5 with restart after less iterations, corre-
sponding to the dimension of the respective variety, either MPS(2, 3, d) or hMPS(2, 3, d),
gains around 8% of runtime to convergence in the respective interval of sites. The speed-
up is due to the fact that less iterations of the line search are needed for convergence,
retaining a comparable time of each line search. We want to highlight that this is generally
the reason why one algorithm performs better than the other: the principle bottleneck
of the NLCG runtime is the number and the expensiveness of line searches performed.
On the variety MPS(2, 3, d), both variants of Algorithm 5 find a global minimum and
they fail few times to converge within the fixed bound on the number of iterations. On
hMPS(2, 3, d), instead, they both find one value of global minimum but they fail several
times to converge to it, within the bound. Indeed, both variants can also converge to a
non global minimum (fixed the tolerance to t = 10−6), which is assumed to be a “false
local minimum”. We have a probability of 59% of finding the global minimum in the
runtime given in Figure 6.14, and 12% the false local minimum. In general, the runtime
to convergence is clearly higher in the case of MPS(2, 3, d), since the dimension of the
variety increases in the system size, contrary to the homogeneous case hMPS(2, 3, d) in
which the dimension is independent of the number of sites.
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6.2 Variation of the algorithm

We finally present our work for a matrix product state algorithm to approximate ground
states of systems with open boundary conditions. Our algorithm is a variation of the
nonlinear conjugate gradient method (c.f. Section 5.1), based on computations of Section
5.7 in Chapter 5.

Let φ : DMPS → MPS(m,n, d) be the parametrization of the matrix product states
with open boundary conditions, given in Definition 5.2.2. Let Q ∈ MPS(m,n, d) be a
smooth point of the variety and let A ∈ φ−1(Q) be a point in the fiber. In the case
of matrix product states with open boundary conditions, the fiber φ−1(Q) of the map
coincides exactly with the orbit of A ∈ DMPS under the action of the gauge group
OG(A). Equivalently, the kernel of the differential of the map ker(dφA) coincides with
the tangent space to the gauge orbit TAOG(A). Denote NA = ker(dφA) = TAOG(A)

and the complementary vector space by BA = N⊥A . The domain of the map admits a
natural pointwise decomposition given by the tangent space to the gauge orbit and its
complementary vector space:

DMPS ' TADMPS = NA ⊕ BA, (6.3)

where, in particular, sMPS = dimBA = dim MPS(m,n, d) < dimDMPS. Every vector
w ∈ TQ MPS therefore admits a representative v ∈ BA ⊂ TADMPS such that w = dφA(v).

Consider now the functional to minimize f = ρ ◦ φ : DMPS → R, given by

f(A) = ρ ◦ φ(A) =
φ(A)†Hφ(A)

φ(A)†φ(A)
. (6.4)

The gradient of the functional GA = ∇fA ∈ TADMPS ' DMPS has been computed in
Chapter 5, Section 5.5. In this section, we show that the gradient ∇fA ∈ DMPS is a
vector that naturally lives in the subspace BA ⊂ TADMPS. Therefore, if we find a basis
of TADMPS, for every A ∈ DMPS, given by the union of a basis of BA and a basis of NA,
the gradient ∇fA, in this basis, has null components in NA and can be represented in
sMPS = dimBA coordinates.

Assuming to have an orthonormal basis satisfying this condition, we can represent the
gradient in this new basis. Indeed, the basis requested can be derived from computations
done in Section 5.7 of Chapter 5. In Subsections 5.7.2 and 5.7.3 we exactly computed
the matrices TA, whose columns span the space NA = TAOG(A) (not necessarily or-
thonormal), for (homogeneous) matrix product states with open boundary conditions.
Then, in the case of matrix product states with open boundary conditions, for every
A ∈ DMPS, the orthogonal completion of the columns of TA in DMPS gives a set of vec-
tors which span the space BA. These vectors are used to build a matrix, denoted by PA,
c.f. Remark 5.7.6. More precisely, in our algorithm the matrix PA is found numerically
with MATLAB [Mat20]: the matrix TA is orthonormalized with a QR decomposition,
TA = QARA, and then PA = ker(Q†A) is computed. For homogeneous matrix product
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states with open boundary conditions we obtain instead a matrix whose columns span
Bp, for every p ∈ DhMPS, which has dimension equal to the “expected dimension” of the
variety. Based on this change of coordinates of the gradient, we propose a variation to
the nonlinear conjugate gradient method.

6.2.1 Change of coordinates of the gradient

Let φ : DMPS → MPS(m,n, d) be the parametrization of the matrix product states
with open boundary conditions, c.f. Definition 5.2.2. Let L : DMPS → CNMPS be the
bijection given in Remark 5.2.5, which is a fixed reshape of tensors into vectors. Let
GA = ∇fA ∈ TADMPS ' DMPS be the gradient of the functional f (6.4).

Lemma 6.2.1. Let Q ∈ MPS(m,n, d) and A ∈ φ−1(Q) ⊆ DMPS. The gradient GA ∈
DMPS, is orthogonal to the tangent directions to the fiber φ−1(Q), and therefore to the
tangent directions of the gauge orbit.

Proof. If v ∈ TAφ−1(Q) ⊂ TADMPS then v ∈ ker(dφA), and

L(GA)†v = ∇(ρ ◦ φ)†A v = d(ρ ◦ φ)A(v) = dρz|z=φ(A)dφA(v) = 0.

Corollary 6.2.2. Let A ∈ DMPS. The gradient L(GA) ∈ DMPS is a vector of the
orthogonal complement of the kernel of the differential in A ∈ DMPS, i.e. L(GA) ∈ BA =
N⊥A in decomposition (6.3).

Remark 6.2.3. The image of the matrix product state map is gauge invariant, c.f.
Theorem 3.3.1. “Fixing” the gauge degrees of freedom refers to fixing a representative
of the fiber of the map. It is a well-known technique in physics and, in the context of
matrix product states, it usually consists in putting the tensors of the network in the so
called canonical form which consists in imposing the conditions

nk∑
i=1

Aikk A
ik
k

†
= Idmk ,

for every k = 1, . . . , d. We refer to [PGVWC07] for the definition and properties of
this representation. After fixing a representative of the fiber of the map, gauge degrees
of freedom are left in the representation of vectors of the tangent space to the variety
[HMOV14], because, on the other side, the kernel of the differential of the map is non
empty because it contains the tangent directions to the gauge orbits. Our method has
precisely the goal to “fix” the gauge degrees of freedom of the tangent space of the variety,
pointwise choosing a representative of the tangent space. This technique is used also in
the TDVP [HCO+11] and the VUMPS algorithms [ZSVF+18]. We want to highlight
that a motivation which made our first tentative interesting, c.f. in Section 5.6, is the
fact that it fixes the gauge degrees of freedom of the fiber and of the tangent space,
simultaneously. This is due to the fact that the section of the domain of dimension
equal to the codimension of the variety provides a new domain of the parametrization.
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The new domain has dimension equal to the dimension of the variety and it can be
identified with the tangent space of the variety, since the kernel of the differential of the
reparametrization is trivial for a dimensional count.

GA

A

NA

BA

DMPS

φ

Q ∈ MPS

Figure 6.15: Graphical representation of the matrix product state map. The fiber φ−1(Q) is
represented as a red line in the domain of the map DMPS. The vector space TADMPS decomposes
into NA ⊕ BA, with NA = ker(φA) and BA = N⊥A . In the case of open boundary conditions
NA = TAOG(A) and dimBA = sMPS.

Assume that sMPS = dim MPS(m,n, d) and that {w1(A), . . . , wsMPS(A)}, wj(A) ∈ DMPS,
is an orthonormal basis of BA. Denote

PA = (w1(A) . . . ws(A)) ∈ Cdim(DMPS)×sMPS . (6.5)

The matrix PA = (w(A)ij)
i=1,...,N
j=1,...,sMPS

is reshaped into a tensor B ∈ DMPS⊗CsMPS∗ in the
following way

Bk
ik
γkδk

= Bl−1(i) =

sMPS∑
j=1

wij(A) e∗j ∈ CsMPS∗,

where {e∗j}
sMPS
j=1 is the canonical basis of CsMPS∗ and (kikγkδk) = l−1(i), where l−1 is the

inverse of the index bijection given in Remark 5.2.5. That is, every column of PA, which
is a vector in CDMPS is reshaped via L−1.

Analogously, the dual operator P †A is reshaped into B ∈ D∗MPS ⊗ CsMPS

Bk
ik
γkδk

= Bl−1(i) =

sMPS∑
j=1

wij(A) ej ∈ CsMPS ,

where {ej}sMPS
j=1 is the canonical basis of CsMPS .

Since, by Corollary 6.2.2, the gradient L(GA) ∈ BA then gA = P †AL(GA) ∈ CsMPS is
the gradient written in coordinates with respect to the basis {w1(A) . . . ws(A)} of BA.
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Equivalently, gA is the vector

gA = B(GA) =
d∑

k=1

Bk(GA)k, (6.6)

which is represented in Figure 6.16.

gA =
..

..

..

..

2 ( )∑d
k=1

. . . . . .

. . . . . .

AkA1 Ad

A1 AdBk

. . . . . .

Figure 6.16: The pictorial representation of the projection of the gradient on the orthogonal
complement of the tangent space to the fiber of the parametrization.

Remark 6.2.4. Notice that P †APA = IdBA and PAP
†
A is the projector on BA. If v ∈

BA ⊂ DMPS then PP †v = v. In particular, L(GA) = PP †L(GA) = PgA, equivalently

GA = B(gA) =
d∑

k=1

Bk(gA)k.

Moreover, notice that

L(GA)†L(GA) = (PAgA)†(PAgA) = g†AP
†
APAgA = g†AgA,

therefore |L(GA)| = |gA|. This implies that every scalar product between gradients is
computed between vectors written in the basis {w1(A), . . . , ws(A)} of BA, i.e. vectors of
CsMPS .

Notation 6.2.5. Recall that, with abuse of notation, we always consider the vector
reshape of tensors, i.e. we denote A = L(A), GA = L(GA). In this notation, we have the
following relations

gA = P †AGA,

GA = PAgA.

6.2.2 Variation of the line search

We describe the variation of the line search. In particular, we will highlight the difference
between the two versions in the performance of the first and second steps of the NLCG.
The line search method, Algorithm 3, solves

αj = arg min
α∈R

f(A(j) + αpj)
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requiring several evaluations of the functional and several computations of gradients. In
what follows, we compute these two quantities, highlighting the role of matrices P †• and
P•, that are the changes of basis of B• inside T•DMPS.

First line search. Let A ∈ DMPS be the starting point. Compute the gradient GA ∈
DMPS as prescribed in Equation (5.25). Let pA = −GA = −PAP †AGA be the first descent
direction. The first line search solves

α0 = arg min
α∈R

f(A− αGA).

Let A′ = A− αGA, α ∈ R be a point on the line A− αGA, and compute PA. In the line
search we have several computations of

1. Functional value:

f(A′) = f(A− αGA) = f(A− αPAP †AGA) = f(A− αPAgA). (6.7)

2. Gradient:
GA′ = GA−αGA = PA−αGAgA−αGA = PA′gA′ . (6.8)

First step comparison. The variation of the line search consists in the following pro-
cedure: for every iteration of the algorithm, we fix inside the line search routine the
vector space BA and therefore the matrix PA ∈ CNMPS×sMPS . The consequence is the
definition of an approximate gradient, that will be given in Equation (6.10). This mod-
ification of the line search is based on two observations, whose graphical representation
is given in Figure 6.17:

1. The gradient is a vector of BA for every point A ∈ DMPS, therefore the point
A′ = A + αp, with p ∈ DMPS search direction is in a different gauge orbit (and
different fiber of the parametrization), with respect to A.

2. In a neighborhood of the point A ∈ DMPS the vector space B• remains approxi-
mately parallel to BA. More precisely, if A′ = A+αp ∈ DMPS for α admissible step
length, then the columns of PA′ and PA generates approximately the same vector
space.

Definition 6.2.6. Given A,A′ ∈ DMPS and PA, PA′ ∈ CDMPS×sMPS as in equation (6.5);
define

gAA′ := P †AGA′ , GAA′ := PAgA′ .

Notice that, for every A ∈ DMPS, the gradients trivially satisfy: gA = P †AGA = gAA and
GA = PAgA = GAA.

Let A ∈ DMPS be the same starting point. Compute PA and gA = P †AGA ∈ CsMPS as in
Equation (6.6). The first descent direction is pA = −gA and the first line search solves

α0 = arg min
α∈R

f(A− αPAgA).
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A

NA

p ∈ BA

DMPS

A′

GA′ ∈ BA′ BA

Figure 6.17: Graphical representation of the domain DMPS. At each point A ∈ DMPS the
domain admits the decomposition DMPS = NA ⊕ BA. The step from A ∈ DMPS, along the
direction p ∈ BA brings to another point A′ ∈ DMPS which is contained in another fiber of the
map. The vector space BA′ is replaced by the previous BA.

Denote A′ = A − αPAgA, α ∈ R. In the line search, we impose the following rules for
evaluating the functional values and computing of gradients:

1. Functional value:

f(A′) = f(A− αPAgA)(= f(A− αGA)). (6.9)

2. Approximate gradient:

gAA′ = P †AGA′ 6= P †A′GA′ = gA′ . (6.10)

Notice that the computation of the functional value (6.9) is equivalent to (6.7) but the
approximate gradient (6.10) is different from gradient (6.8).

Remark 6.2.7. Notation gAA′ indicates that the approximate gradient is obtained by the
gradient GA′ calculated in the point A′, but multiplied by the matrix PA. The columns
of PA give a basis of BA, that is a vector space containing GA, the starting gradient
computed in A.
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Algorithm 6: Variation of NLCG on MPS
Input: Initial point A(0) ∈ DMPS, tolerance t ∈ R
Output: A∗ ∈ DMPS such that φ(A∗) ∈ MPS approximate ground state
Compute sMPS = dim(MPS) < N = dimDMPS;
Evaluate fA(0)

= f(A(0));
Compute PA(0)

and gA(0)
;

p0 ← −gA(0)
;

j ← 0;
while |gA(j)

| > t do
αj = arg minα f(A(j) + αPA(j)

pj) ;

Set A(j+1) = A(j) + αjPA(j)
(pj);

Compute PA(j+1)
and gA(j+1)

;
if j = sMPS then

βFR
j ← 0;
j ← 0;

else

βFR
j+1 ←

g†A(j+1)
gA(j+1)

g†A(j)
gA(j)

;

end
pj+1 ← −gA(j+1)

+ βFR
k+1 PA(j)

(pj);
j ← j + 1;

end

Second step comparison. Let A(1) ∈ DMPS be the starting point and A(0) the pre-
vious point computed by both the NLCG and the variation. Denote the current search
directions by p = −GA(1)

+ βGA(0)
∈ DMPS and p̃ = −gA(1)

+ βgA(0)
∈ CsMPS , of the

NLCG and the variation respectively.

Then for the NLCG we have

1. Functional value: f(A′), with

A′ = A(1) + αp = A(1) + α(−GA(1)
+ βGA(0)

) = A(1) − αGA(1)
+ αβGA0 .

2. Gradient:
GA′ = P †A′gA′ .

For the variation of the algorithm we have:

160



1. Functional value: f(A′′) 6= f(A′), since

A′′ = A(1) + αPA(1)
p̃ = A(1) − αPA(1)

gA(1)
+ αβPA1gA0

= A(1) − αGA(1)
+ αβG

A(1)

A(0)
6= A′.

2. Gradient:
g
A(1)

A′ = P †A(1)
GA′ = P †A(1)

PA′gA′ 6= P †A′PA′gA′ = gA′ .

In general, from the second iteration on, we obtain two non equivalent algorithms. We
give the pseudo-code of the NLCG variation in Algorithm 6.

We compare again the performances of Algorithms 5 and 6 on the varieties MPS(2, 3, d)
and hMPS(2, 3, d), with open boundary conditions. We show that the algorithms are
comparable and Algorithm 6 has a gain in terms of the time of convergence.

6.2.3 Results on MPS(2, 3, d)

Consider the variety of matrix product states with open boundary conditions, c.f. Defi-
nition 5.2.2. In particular, the variety MPS(2, 3, d) is parametrized by the map

φ :C3×2 ×
d−1

×
i=2

C3×2×2 × C2×3 → (C3)⊗3

(A1, A2, . . . , Ad−1, Ad) 7→
3∑

i1,...,id=1

Ai11 · · ·A
id
d ei1 ⊗ · · · ⊗ eid ,

· · ·
A1 AdA2 Ad−1

2 22 2

3 3 3 3

Figure 6.18: Example of a matrix product state with open boundary conditions associated
to the path graph with d vertices, bond dimensions 2 and local dimensions 3. The first and
last tensors A1 ∈ C3×2 and Ad ∈ C2×3 are matrices; the inner tensors are Ak ∈ C3×2×2, for
k = 2, . . . , d− 1 and Aik

k ∈ C2×2 is a matrix for every ik = 1, 2, 3.

The domain of the parametrization is DMPS := C12(d−1), the gauge group,×d−1
i=1 GL2,

has dimension 4(d− 1) and the variety has dimension sMPS := 8(d− 1).

In Section 5.7, Subsection 5.7.2, we compute the tangent space TAOG(A) in A ∈ DMPS

to the gauge orbit of A ∈ DMPS. The building blocks for writing the matrix TA ∈
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C12(d−1)×4(d−1), whose columns generate TAOG(A), are:

ms
L(1) = a1

s � Id2,

ms(i) =
(
− Id2 � (Asi )

t (Asi ) � Id2

)
, i = 1, . . . , d,

ms
R(d) = −Id2 � ad

s(2),

where the boundary tensors are A1 = (a1
s
j) ∈ C3×2 and Ad = (ad

s
j) ∈ C3×2, and the

inner tensors are Ai = (ai
s
jl) ∈ C3×2×2, for i = 2, . . . , d− 1.

Given the starting point, A ∈ DMPS, of a line search, the matrix TA ∈ C12(d−1)×4(d−1)

is orthonormalized with a QR decomposition, TA = QARA and then PA = Q†A ∈
C12(d−1)×8(d−1) is computed (Equation (6.5)). Both computations are done numerically
in MATLAB [Mat20] and are available at https://github.com/claudia-dela/NLCG_
MPS_open-boundaries/. In our variation of the NLCG, for every line search, the matrix
PA is computed at the starting point of the line search A ∈ DMPS, and it is fixed inside
that line search routine.

We compare again convergent runs for both algorithms. For d = 3, . . . , 19 number of
sites, we run 50 times the algorithms, each run starts from the same random point of
DMPS. The gradient’s tolerance is set again to t = 10−8 and it allows to accomplish a
precision of 10−15 with respect to the exact minimum of the functional λ0,d = −2

3(d− 1)
(5.17), for every d also for Algorithm 6, c.f. Figure 6.19.
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Figure 6.19: Value of global minimum computed Algorithms 5 and 6, for d = 3, . . . , 19. Both
algorithms accomplish a precision of 10−15 with respect to the exact minimum λ0,d = − 2

3 (d−1).

We give a naive formula that models the time of the algorithm. For every d = 3, . . . , 19,
denote the time of the algorithm by Talg(d). The time of one line search is denoted by
Sls(alg)(d), that is the time to compute:

αj = arg min
α∈R

f(A(j) + αPA(j)
pj).
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The computational time outside the line search in one iteration of NLCG, is denoted by
Ols(alg)(d). For Algorithm 5, it is the cost of computing the following part:

Set A(j+1) = A(j) + αjpj (αj = arg minα f(A(j) + αpj));
Compute GA(j+1)

;

if j = NMPS then
βFR
j ← 0;
j ← 0;

else

βFR
j+1 ←

G†A(j+1)
GA(j+1)

G†A(j)
GA(j)

;

end
pj+1 ← −GA(j+1)

+ βFR
k+1 pj ;

and for Algorithm 6, it is the cost of computing the following part:

Set A(j+1) = A(j) + αjPA(j)
(pj) (αj = arg minα f(A(j) + αPA(j)

pj));
Compute PA(j+1)

and gA(j+1)
;

if j = sMPS then
βFR
j ← 0;
j ← 0;

else

βFR
j+1 ←

g†A(j+1)
gA(j+1)

g†A(j)
gA(j)

;

end
pj+1 ← −gA(j+1)

+ βFR
k+1 PA(j)

(pj);

Denote the number of line searches by Nls(alg)(d). The overall time of line search per
algorithm is therefore Tls(alg)(d) = Sls(alg)(d)Nls(alg)(d) and, analogously, the overall time
outside the line search is ∆alg(d) = Ols(alg)(d)Nls(alg)(d). Therefore we have:

Talg(d) = Tls(alg)(d) + ∆alg(d) '
(
Sls(alg)(d) +Ols(alg)(d)

)
Nls(alg)(d).

In the plots that follow we decide to simulate data for d = 20, . . . , 25. We simply perform
a linear interpolation in MATLAB [Mat20] of the data for d = 3, . . . , 19. The vertical
line in Plots 6.20 and 6.21 divides the collected data from the simulated ones.
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Figure 6.20: Left: Comparison of time of the single line search Sls(alg)(d), for d = 3, . . . , 25:
Algorithm 6 is faster in the line search. Right: Comparison of the number of line searches
Nls(alg)(d), for d = 3, . . . , 25: for d > 11, Algorithm 5 needs less iterations to reach convergence.

We can see in Figure 6.20 (left) that the line search of Algorithm 6 is faster than the
line search of Algorithm 5, because computations depend on the number of sites d and
therefore involve sMPS = 8(d − 1) coordinates instead of NMPS = 12(d − 1). On the
other hand, the number of line searches of Algorithm 6 switches from lower to higher
after d = 12, Figure 6.20 (right). Despite the latter observation, the overall time of the
line search routine is lower for our Algorithm 6, in the range [3, . . . , 19], as can be seen
in Figure 6.21.
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Figure 6.21: Comparison of the overall time of line search Tls(alg)(d) = Sls(alg)(d)Nls(alg)(d), for
d = 3, . . . , 25.

The runtime costs that do not depend on the line search routine are plotted in Figure 6.22
(left).
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Figure 6.22: Left: Comparison of the time cost outside the line search per iteration Ols(alg)(d),
for d = 3, . . . , 19. Right: Comparison of the overall time outside the line search routine ∆alg(d) =
Ols(alg)(d)Nls(alg)(d), for d = 3, . . . , 19.

Notice that, retaining the comparable runtime cost outside the line search per iteration,
compared in Figure 6.22 (left), the higher number of line searches of Algorithm 6, c.f.
Figure 6.20 (right) affects the total cost outside the line search, Figure 6.22 (right).We
expect that increasing the number of sites, the rise of the number of line searches in
Algorithm 6 (Figure 6.20, right), which weighs on the computational cost both inside
and outside the line search routine, can make it lose the gain. In the simulation, after
d = 25 sites, the algorithms become comparable in terms of time, c.f. Figure 6.23.
However, despite the previous observation, in the interval under consideration [3, . . . , 19]
we gain on average the 22% in terms of the time of convergence, see Figure 6.23.
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Figure 6.23: Overall time comparison between Algorithm 5 and Algorithm 6 on MPS(2, 3, d),
for d = 3, . . . , 25.
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Recall that we impose a bound of 3sMPS on the number of iterations and that the two
algorithms are compared within this bound. Also in Algorithm 6 the 50 runs divide into
the number of runs converged to the global minimum and the number of runs that do
not reach convergence within the bound. The latter are compared in Figure 6.6. We
can notice that Algorithm 6 is faster to reach the iteration bound because, retaining the
same number of iterations, its line search is faster. Moreover, we can notice that our
Algorithm 6 (which has a faster line search) has few non convergent runs over the 50
runs, except for the cases d = 3 and d = 4, 17, in which the algorithm loses respectively
5 and 1 convergent runs. Algorithm 5 loses runs over the whole range of sites. However
we do not consider the runtime of non convergent runs for the model MPS(2, 3, d) as in
the previous comparison: it is negligible due to the relatively low number of such runs.
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Figure 6.24: Comparison, for d = 3, . . . , 19, of the number of non convergent runs (over 50
runs) within the iteration bound 3sMPS.

6.2.4 Results on hMPS(2, 3, d)

We restrict our attention to the homogeneous case with open boundary conditions hMPS(2, 3, d),
c.f. Definition 5.2.7, defined by the map

ψ : C2 × (C2×2)×3 × C2 → (C3)⊗3

p = (vL, A, vR) 7→
3∑

i1,...,id=1

(
v†LAi1 · · ·AidvR

)
ei1 ⊗ · · · ⊗ eid ,

The domain of the parametrization is DhMPS := C16, of dimension NhMPS := 16 and the
gauge group is GL2 of dimension 4.

Denote again the upper bound on the dimension of the variety by

shMPS := expdim hMPS(2, 3, d) = 11.
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vL vRA A AA

. . .

Figure 6.25: Example of a homogeneous matrix product states with open boundary conditions
with bond dimensions equal to 2 and local dimensions equal to 3. Each inner vertex is associated
with the same tensor A ∈ (C2×2)×3, with Ai ∈ C2 for every i = 1, 2, 3. The boundaries are
vectors vL, vR ∈ C2.

In Section 5.7, Subsection 5.7.3, we compute the tangent space to the gauge orbit TpOG(p)

and the 1-dimensional vector space Sp, for p = (vL, A, vR) ∈ DhMPS, such that

Bp = (Sp ⊕ TpOG(p))
⊥,

with dimBp = expdim hMPS(m,n, d). Equation (5.32) gives the matrix whose columns
generate Sp ⊕ TpOG(p) ⊂ ker(dψp). For m = 2 and n = 3 we have:

Tp =



−dv1
L v1

L v1
L 0 v2

L

−dv2
L v2

L −v2
L v1

L 0
a1

11 0 0 −a1
21 a1

12

a1
12 0 −2a1

12 a1
11 − a1

22 0
a1

21 0 2a1
21 0 a1

22 − a1
11

a1
22 0 0 a1

21 −a1
12

a2
11 0 0 −a2

21 a2
12

a2
12 0 −2a2

12 a2
11 − a2

22 0
a2

21 0 2a2
21 0 a2

22 − a2
11

a2
22 0 0 a2

21 −a2
12

a3
11 0 0 −a3

21 a3
12

a3
12 0 −2a3

12 a3
11 − a3

22 0
a3

21 0 2a3
21 0 a3

22 − a3
11

a3
22 0 0 a3

21 −a3
12

0 −v1
R −v1

R −v2
R 0

0 −v2
R v2

R 0 −v1
R



∈ CNhMPS×5.

The matrix Pp with p ∈ DhMPS is constructed analogously to that of the previous model.
We compute the QR decomposition Tp = QpRp, and then the kernel of the conjugate
transpose of Qp:

Pp = ker(Q†p), p ∈ DhMPS,

where Qp ∈ CNhMPS×shMPS is such that Tp = QpRp. We obtain a NhMPS × shMPS matrix
Pp for p ∈ DhMPS, whose columns span the shMPS-dimensional vector space Bp.

We compare Algorithm 5 and Algorithm 6 implemented on hMPS(2, 3, d). In our vari-
ation, given p ∈ DhMPS as a starting point of a line search, the matrix Pp is computed
and it is fixed inside that line search routine. For d = 3, . . . , 40, we run 100 times the
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algorithms, each run starts from the same random point of DhMPS for both algorithms.
The gradient’s tolerance is set again to t = 10−6. Our Algorithm 6 also converges to two
different kinds of points, for every d: one global minimum and one false local minimum,
c.f. Figure 6.26. The point which approximates a ground state accomplishes a precision
of 10−12 with respect to the exact minimum of the functional λ0,d = −2

3(d − 1) (5.17),
against the precision 10−11 of Algorithm 5. Again the false local minima lie on a line of
slope −1/3 that can be approximately described by the expression −(q + (1/3)(d− 1)),
with q ∼ 0.05.
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Figure 6.26: Values of global (lower data) and false local (upper data) minima, for d = 3, . . . , 40,
computed by both Algorithms 5 and 6. The variation of the algorithm allows for a precision
of 10−12 with respect to the exact value of the global minimum λ0,d = − 2

3 (d − 1), against the
10−11 of the standard algorithm (c.f. Subsection 6.1.2). The other point lies again on the line
−(q + (1/3)(d− 1)), with q ∼ 0.05.

We recall that we set a bound on the number of iterations to 3shMPS = 33, c.f. Remark
6.1.1 and that, unlike the general MPS case, the NLCG finds, for every d, the ground
state and another point that satisfies the tolerance condition on the gradient, fixed to
t = 10−6. Algorithm 6 also converges to this point that we refer to as “false local
minimum”. Within the imposed bound 3shMPS, the 100 runs divide into the number
of runs converged to the global minimum (Figure 6.27 (left)), the false local minimum
(Figure 6.27 (right)) and the number of runs that do not reach convergence (Figure
6.28). On average, Algorithm 6 needs 16 iterations in order to find the global minimum
against the 18 needed by Algorithm 5. We have a probability of 59% of finding the global
minimum, which coincides with that of Algorithm 5.
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Figure 6.27: Left: Comparison, for d = 3, . . . , 40, of the number of runs converged to the
global minimum (over 100 runs). Right: Comparison, for d = 3, . . . , 40, of the number of runs
converged to the false local minimum (over 100 runs). Both plots refer to the comparison between
Algorithms 5 and 6 on hMPS(2, 3, d).

On the other hand, Algorithm 6 has less probability to reach the false local minimum,
around 8%, compared to the standard algorithm (12%). This is because Algorithm 6
needs around 30 iterations of NLCG (against 26 of the standard algorithm) in order to
converge to the false local minimum. Therefore, some runs which are converging to the
false local minimum in Algorithm 5, do not converge in Algorithm 6. The number of non
convergent runs (over 100 runs) is plotted in Figure 6.28 for the two algorithms (again
around 33%).
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Figure 6.28: Comparison, for d = 3, . . . , 40, of the number of non convergent runs within
the iteration bound (over 100 runs) given in Remark 6.1.1, between Algorithms 5 and 6 on
hMPS(2, 3, d)
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Despite the case of MPS(2, 3, d), the runtime of the line search, Figure 6.29, is comparable
since NhMPS − shMPS = 16− 11 = 5 is small. The difference between the two algorithms
lies in the number of line searches, in particular in the case of convergence to the global
minimum. Taking into account the overall runtime (convergent and non convergent runs),
Algorithm 5 and Algorithm 6 perform an almost comparable number of iterations over
the whole interval of sites, c.f. Figure 6.30 (left). For this reason, at a first sight, the
two algorithms have the same performance in the interval [3, . . . , 40], as shown in Figure
6.30 (right).
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Figure 6.29: Comparison, for d = 3, . . . , 40, of the time of one line search, on average, between
Algorithms 5 and 6 on hMPS(2, 3, d). The time of the single line search is comparable over the
whole interval of sites.
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Figure 6.30: Left: Comparison of the number of line searches between Algorithms 5 and 6
on hMPS(2, 3, d); the number is almost comparable. Right: Overall time comparison between
Algorithms 5 and 6 on hMPS(2, 3, d). The overall runtime is comparable.

170



The difference in runtime becomes more clear when we compare convergent runs for
both the algorithms. Algorithm 6 needs, on average, 17 iterations against 18 (standard
NLCG) in order to converge, c.f. Figure 6.31 (left), and the variation gains around 12%
of runtime, c.f. Figure 6.31 (right).
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Figure 6.31: Left: Comparison of the number of line searches needed by the algorithms to reach
convergence: the variation needs less iterations leading to a gain of 12% in time of convergence.
Right: Runtime comparison to convergent runs.

Finally, we focus on the convergent runs to the global minimum for both algorithms.
The iterations needed to converge in Algorithm 6 are on average 16 against 18 of the
standard NLCG, c.f. Figure 6.32 (left), and therefore Algorithm 6 gains again around
12% of runtime, c.f. Figure 6.32 (right).
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Figure 6.32: Left: Comparison of the number of line searches needed by the algorithms to reach
global minima: the variation needs less iterations leading to a gain of 12% in time of convergence.
Right: Runtime comparison to global minima.
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Summing up the section, our variation of the NLCG correctly approximates the global
minimum on both MPS(2, 3, d) and hMPS(2, 3, d). We notice that, in the case of
hMPS(2, 3, d) the precision of the minimum is higher (10−12 against 10−11), at the same
gradient’s tolerance. Our Algorithm 6 gains around 22% of runtime to convergence on
MPS(2, 3, d), for d ∈ {3, . . . , 12} and 12% of runtime to global minima on hMPS(2, 3, d),
for d ∈ {3, . . . , 40}. In the case of MPS(2, 3, d) the speed-up is due to the reduction of
the runtime of each line search, in the region in which less iterations of the line search are
needed. However, we expect that by increasing the number of sites, the advantage is lost
because of the opposite trend of the number of line searches. In the case of hMPS(2, 3, d)
the speed-up is due to the lower number of line searches, retaining the comparable time
of the line search. In this case, we expect that our variation is always faster than the
standard NLCG. On hMPS(2, 3, d), our Algorithm 6 also can fail to reach convergence
or it can converge to the “false local minima” that, in general, need more line searches
(and time) to converge. In practice, a proper restriction of the iteration bound gives
a probability of 59% of finding the ground state in the averaged runtime described in
Figure 6.32.

Conclusions. In this chapter, we show a simple data analysis of our test of the nonlin-
ear conjugate gradient method, for approximating ground states of the AKLT on matrix
product states with open boundary conditions. We have proposed a variation of the
algorithm, based on dimensional considerations, which modifies the line search, the most
expensive routine of the algorithm. We moved our first steps towards the study of the
NLCG performances and the comparison with our variation. A first analysis demon-
strates that the variation has a slightly faster runtime to convergence compared to the
standard NLCG.

The analysis of the algorithms of this last chapter of the thesis is preliminary and it
would need further work; first of all, a direct comparison with the existing algorithm. In
what follows we want to make some qualitative considerations, mainly concerning our
algorithm implemented on homogeneous matrix product states.

Consider the well-known Density Matrix Renormalization Group (DMRG) algorithm.
The algorithm sequentially solves minor diagonalization problems: all but one or two
tensors of the MPS are fixed, an eigensolver is performed on the reduced eigenvalue
problem and then the MPS form (that can have been lost) is restored through a Singular
Value Decomposition. In terms of runtime to convergence, the DMRG applied to the
AKLT model is extremely fast: for d = 40, bond dimension fixed to 2 and 4 complete
sweeps of the chain, it takes around 5 seconds to converge, providing a precision of
10−9 with respect to the global minimum. Allowing the bond dimension to increase
from 2 to 3, the precision is enhanced to 10−12, essentially with the same runtime. The
NLCG takes around 20 seconds to reach 10−12. Even if the computational costs of the
functional contraction and gradient contraction are comparable to those of the DMRG,
we cannot control either how many computations of them are needed to complete each
line search or how many iterations will be performed to reach convergence. This is
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essentially the bottleneck of the algorithm that we tried to modify with our proposition.
Therefore, in terms of runtime, the NLCG and our variation are not much competitive
compared to the DMRG. One difference we highlight is that the DMRG cannot guarantee
a monotonically decreasing energy and it needs an increase in the bond dimension to
provide a more precise convergence, contrary to the gradient descent of the NLCG,
which ensures convergence with fixed bond dimension equal to two, clearly at the cost
of runtime. One of the further works would be a study of the runtime of the NLCG
imposing different tolerances of the gradient. The other main difference which makes
NLCG interesting is the fact that, contrary to the DMRG (and the majority of sequential
algorithms), it always preserves the symmetries of the network. In particular, in the
homogeneous matrix product states model, the NLCG updates the single inner tensors
A along the whole chain. A very natural further work would be the implementation of
the NLCG for matrix product states with periodic boundary conditions, exploiting this
global and preserving update of the network. In general, the global method allows once
for all fixing the tensor network format and its properties. From a geometric point of
view and differently from the sequential methods, the search of ground states does not
need to move outside the variety and subsequently project into it. As far as we know,
the only non global algorithm that preserves the translation invariance of the MPS is the
VUMPS algorithm [ZSVF+18]. However, the algorithm applies to translation invariant
matrix product states in the thermodynamic limit, in contrast with the NLCG, which
works in the homogeneous finite chain model (hMPS).

We tested the algorithm on the AKLT integrable model, whose ground states, in the finite
open spin chain, are exactly tensors of MPS(2, 3, d) and hMPS(2, 3, d), that we used as
the natural variational varieties for the methods. We have verified that the NLCG still
finds the correct solution for ground states of the AKLT Hamiltonian increasing the
bond dimensions. Therefore we expect that the algorithm could be applied to other 1-
dimensional spin models, with different entanglement properties. However, the increasing
of bond dimensions, and thus the number of parameters of the model, would inevitably
cost in terms of runtime, which is already high compared for example to the runtime of
the DMRG.

In a more general framework, our variation of the NLCG could in principle be tested
in any case in which an overabundant parametrization is given, whose fiber structure
is determined by the action of a group. In this case, the kernel of the differential of
the parametrization coincides with the tangent space of the group orbit and it can be
computed via the Lie algebra of the group. The complementary space, that we decide to
fix in each line search, is the space that naturally contains the gradient of the functional
we are minimizing on the parametrized variety.
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Conclusions and further works

In this thesis, we studied tensor network varieties, which are varieties of tensors deter-
mined by the combinatorial structure of a given graph. In particular, we focused on the
problem of determining their dimension, one of the most basic and fundamental geo-
metric properties of the variety. In the framework of tensor network theory, many open
problems concerning the dimension of tensor network varieties were and are still open.

In this thesis, we contribute to deepening the understanding of the dimension of tensor
network varieties with a completely general result, which gives an upper bound on the
dimension of the tensor network variety. With particular attention to cases relevant for
application, we refine the bound for matrix product states and projected entangled pair
states. Unexpectedly, we prove that matrix product states with bond dimension two can
have a dimension that is not completely controlled by the gauge subgroup, as generically
foreseen in literature. We characterize the dimension in the encountered cases and we
conjecture that the value of the dimension of matrix product states of bond dimension
two, is the “expected” one with the only exceptions we classify. There are several paths
left open. First of all deepen the geometrical understanding of the “defective cases”, since
this phenomenon has not a general geometric characterization yet. On the other hand, it
would be interesting to have a general understanding of lower bounds for the dimension of
tensor network varieties, but this is a challenging problem. Determining lower bounds on
the dimension can be reduced to determining lower bounds on the rank of the differential
of the parametrization of the variety at a point; however, determining a suitable point,
and computing such rank is non-trivial. An indirect method to determine lower bounds
on the dimension of tensor network varieties consists in determining subvarieties of known
dimension contained in it. We used this technique for characterizing the “defective cases”
of matrix product states. This perspective has the power to link tensor network varieties
to other classically studied varieties of tensors, such as determinantal varieties, Segre
varieties and secant varieties to Segre varieties.

The second main contribution of the thesis concerns uniform matrix product states,
which are translation invariant matrix product states. Matrix product states and uni-
form matrix product states earn their main relevance in the field of quantum many-body
physics, where they represent particles placed on a ring and on an infinite chain, re-
spectively. They are effectively used as variational ansatz classes for the simulation of
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quantum spin chains. From the mathematical point of view, uniform matrix product
states are parametrized by traces of products of matrices. This fact naturally links them
to the classical trace algebra theory and consequently to the use of representation theory
techniques. Even in this very relevant and first nontrivial class of tensor network variety,
several problems related to the dimension are not completely solved. In the thesis, we
approach the problem of studying the linear span of uniform matrix product states. The
problem proves to be challenging even in the first nontrivial case of bond and local di-
mensions equal to two. In this case, we provide an upper bound on the dimension of the
linear span. Then, we conjecture a value of the dimension which is in agreement with the
given upper bound and which is strongly supported by numerical computations. In the
general setting instead, we prove a theorem that provides nontrivial trace relations for
the variety of uniform matrix product states. In particular, the result implies that the
linear span of the variety is strictly included in the ambient space as long as the number
of sites is at least quadratic in the bond dimension, improving the state of the art.

Finally, we address the ground state approximation problem. We set up the theoretic
framework to implement the nonlinear conjugate gradient method on the variational class
of matrix product states with open boundary conditions. We propose a variation of the
method which shows that the knowledge on the dimension of the variety can enhance the
performances of the global algorithm. The analysis that we provide in this framework is
preliminary and requires further work. The most interesting attempt we want to highlight
is the application of the nonlinear conjugate gradient method and our proposition on
the homogeneous matrix product states. Since the dimension of this variety is site-
independent, the runtime of the algorithm is acceptable taking into account that the
method globally updates the whole parameter space. Further, the method preserves the
symmetry properties of the network also in the finite chain configuration, contrary to the
majority of sequential methods.

Tensor network varieties are attractive geometric objects. We venture into the problem of
their dimension and we contribute by providing our original theoretical results. We could
investigate the topic from three different perspectives. We prove the general upper bound
on the dimension of the tensor network variety using algebraic geometric techniques. We
study the linear span of uniform matrix product states through representation theory and
the Cayley-Hamilton theorem, which lies at the basis of classical trace algebra theory.
We approach the problem of determining ground states, arising from quantum physics,
which has led us to the study of a global numerical method and to move our first steps
towards the development of a variation of the algorithm, based again on dimensional
considerations.
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