
IEEE ROBOTICS AND AUTOMATION LETTERS. POSTPRINT VERSION. ACCEPTED APRIL, 2023 1

CACTO: Continuous Actor-Critic with Trajectory
Optimization—Towards global optimality

Gianluigi Grandesso1, Elisa Alboni2, Gastone P. Rosati Papini3, Member, IEEE, Patrick M. Wensing4, Member,
IEEE and Andrea Del Prete5, Member, IEEE

Abstract—This paper presents a novel algorithm for the con-
tinuous control of dynamical systems that combines Trajectory
Optimization (TO) and Reinforcement Learning (RL) in a single
framework. The motivations behind this algorithm are the two
main limitations of TO and RL when applied to continuous
nonlinear systems to minimize a non-convex cost function. Specif-
ically, TO can get stuck in poor local minima when the search is
not initialized close to a “good” minimum. On the other hand,
when dealing with continuous state and control spaces, the RL
training process may be excessively long and strongly dependent
on the exploration strategy. Thus, our algorithm learns a “good”
control policy via TO-guided RL policy search that, when used as
initial guess provider for TO, makes the trajectory optimization
process less prone to converge to poor local optima. Our method
is validated on several reaching problems featuring non-convex
obstacle avoidance with different dynamical systems, including
a car model with 6D state, and a 3-joint planar manipulator.
Our results show the great capabilities of CACTO in escaping
local minima, while being more computationally efficient than
the Deep Deterministic Policy Gradient (DDPG) and Proximal
Policy Optimization (PPO) RL algorithms.

Index Terms—Trajectory optimization, reinforcement learning,
continuous control.

I. INTRODUCTION

When a model of the system to be controlled is available,
one of the most common and flexible techniques to compute
optimal trajectories is gradient-based Trajectory Optimization
(TO). Starting from a specific initial state, TO can find the
control sequence that minimizes a cost function representing
the task to be accomplished, where the system’s dynamics and
possible state and control limits are considered as constraints.
Such a powerful framework has led to excellent results when
the problem is convex or slightly non-convex, especially
when used in a Model Predictive Control (MPC) fashion.
For example, it has been successfully employed to control

Manuscript received: November 10th, 2022; Revised: February 15th, 2023;
Accepted: March 23rd, 2023.

This paper was recommended for publication by Editor Lucia Pallottino
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the Italian MUR through the “Departments of Excellence”
programme and by PRIN project DOCEAT (CUP n. E63C22000410001).

1, 2 , 3 and 5 are with the Dept. of Industrial Engineering, Uni-
versity of Trento, Italy [gianluigi.grandesso; elisa.alboni;
gastone.rosatipapini; andrea.delprete]@unitn.it

4 is with the Dept. of Aerospace and Mechanical Engineering, University
of Notre Dame, Indiana, USA pwensing@nd.edu

Digital Object Identifier (DOI): see top of this page.
©2023 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

high-dimensional nonlinear systems such as quadrupeds and
humanoids [1]–[4]. However, when the task to be accom-
plished requires a highly non-convex cost function and/or the
dynamics is highly nonlinear, the presence of multiple local
minima, some of which are of poor quality (i.e., associated to
a cost that is significantly worse than the global minimum),
often prevents TO from finding a satisfying control trajectory.
A possible solution to this problem is providing TO with a
good initial guess, which turns out to be very complex—not
to say impossible—without a deep prior knowledge about the
system, which is often unavailable in practice. The IREPA
algorithm [5] tackles this problem by building a kinodynamic
Probabilistic Road Map (PRM) and approximating the Value
function and control policy, which is then used to warm-start
an MPC. The method produced satisfying results on a 3-DoF
system, but it is limited to problems with a fixed terminal
state, and scaling to high dimensions seems not trivial due to
its need to explicitly store the locally optimal trajectories in
the PRM edges.

Approaches that can find the global optimum of non-
convex problems exist, and are based on the Hamilton-Jacobi-
Bellman equation [6] (for continuous-time problems) or Dy-
namic Programming (for discrete-time problems). However,
these methods suffer from the curse of dimensionality, which
restricts their applicability to systems with extremely few
degrees of freedom. Some efficient solutions exist, but for
specific problems, such as simple integrator dynamics with
control-independent cost [7], [8]. Alternatively, the tensor-
train decomposition [9] has been used to reduce the com-
putational complexity of value iteration, by representing the
Value function in a compressed form. However, the approach
has been tested on stochastic optimal control problems with
at most 7-dimensional state and scalar control. Subsequent
improvements of that approach [10] could solve problems with
a 12-dimensional state, but required some restrictions on the
form of the dynamics and cost.

On the other hand, in the recent years deep RL has shown
impressive results on continuous state and control spaces,
which represented its greatest challenge until 2015, when
the ground-breaking algorithm DDPG [11] was presented.
Successively, many variants have been developed to further
improve its performance, such as TD3, SAC, and RTD3 [12]–
[14]. In 2021, Zhang et al. [15] managed to speed up DDPG’s
training time and enhance the effectiveness of its learning
with their expansion called AE-DDPG, by making the agent
latch on “good” trajectories very soon through the use of
asynchronous episodic control and improving exploration with

2 IEEE ROBOTICS AND AUTOMATION LETTERS. POSTPRINT VERSION. ACCEPTED APRIL, 2023

a new type of control noise. However, deep RL is intrinsically
limited by its low sample efficiency, which implies the need
for a considerable number of interactions with the environment
to reach a good performance level.

To mitigate this problem, Levine et al. [16] proposed to
guide the exploration process by using Differential Dynamic
Programming (DDP) as a generator of guiding samples that
push the policy search towards low-cost regions. However,
the imitation component of this approach makes its capability
to find an optimal control policy strongly dependent on the
quality of the guiding samples. This downside applies also to
the method proposed by Mordatch and Todorov [17] combin-
ing policy learning and TO through the Alternating Direction
Method of Multipliers (ADMM), which involves imitation in
that the policy learning problem is reduced to a sequence of
trajectory optimization and regression problems. In general, all
the methods that are imitation-oriented (e.g. [18]–[20]) suffer
from the same limitation: the quality of what the RL algorithm
can learn is limited by the quality of the demonstrations or
guiding trajectories found by TO.

In a similar spirit to [16], but with an imitation-free ap-
proach, our algorithm aims to mitigate both problems: the local
minima issue affecting TO, and the low sample efficiency of
RL. Our main contribution is an algorithm named CACTO
(Continuous Actor-Critic with TO). The algorithm combines
TO and RL in such a way that their interplay guides the
search towards the globally optimal control policy. Our main
contributions are:

1) We present a novel RL algorithm that exploits TO to
speed up the search, and that (contrary to previous work)
does not rely on imitation.

2) Our tests show that initializing TO with the CACTO
policy outperforms standard warm-starting techniques.

3) We have proved that, considering a discrete-space ver-
sion of CACTO with look-up tables instead of deep
neural networks (DNN), the policy approaches global
optimality as the algorithm proceeds.

II. METHOD

This section presents an optimization algorithm to solve
a finite-horizon discrete-time optimal control problem (OCP)
that takes the following general form:

minimize
X,U

J(X,U) =

T−1∑
k=0

lk (xk, uk) + lT (xT) (1a)

subject to xk+1 = fk(xk, uk) ∀k = 0 . . . T − 1 (1b)
|uk| ∈ U ∀k = 0 . . . T − 1 (1c)
x0 = xinit (1d)

where the state and control sequences X = x0...T , U =
u0...T−1, with xk ∈ Rn and uk ∈ Rm, are the decision
variables. The cost function J(·) is defined as the sum of the
running costs lk (xk, uk) and the terminal cost lT (xT). The
dynamics, control limits and initial conditions are represented
by (1b), (1c) and (1d), with U = {u ∈ Rm : |u| ≤ umax}.

Our algorithm combines ideas from RL and TO. The core
idea is to exploit TO to guide the exploration towards low-cost

Fig. 1. Scheme of CACTO: at each episode, a TO problem is warm-started
with a policy rollout and solved, then we compute the cost-to-go associated
with each state of the trajectory found by TO and store the related transition in
the replay buffer. Finally, we update critic and actor by sampling a mini-batch
of transitions from the replay buffer.

regions, so as to make the learning process more efficient.
In turn, a rollout of the currently learned policy is used
to initialize the next TO problem. In this way, the RL and
TO components of the algorithm help each other, making
convergence faster: as training proceeds, the TO solver is
provided with better initial guesses and this increases the
chance of obtaining better solutions; in turn, these trajectories
drive the agent along lower-cost paths, pushing the critic
towards a better approximation of the optimal Value function
and, consequently, the actor towards the optimal policy. Fig. 1
shows a scheme of CACTO.

A. TO and RL Notation

Besides the control sequence [u0, . . . , uT−1], we also make
use of the term “policy” π(x), that belongs to the RL com-
munity and refers to the mapping from states x to controls u
(“actions” in the RL language). In the optimal control (OC)
community, the Value function of a policy π describes the
cost-to-go following π from x at time t, namely:

V πt (xt) =

T−1∑
k=t

lk(xk, π(xk)) + lT (xT)

In RL, the Value function is the sum of the rewards starting
from a state x at time t and following a policy π; therefore,
we aim to maximize it, opposite to what we do in OC. For
reasons of clarity and to keep the notation simple, from now on
we always refer to the Value function V (xt) in an OC sense.
The same reasoning applies to the Q-value function Q(xt, ut),
which, in RL, is given by the sum of the rewards after applying
u from x at time t and following π thereafter, whereas in the
OC community, it represents the cost-to-go after performing
ut from xt and following π thereafter:

Qπt (xt, ut) = lt(xt, ut) +

T−1∑
k=t+1

lk(xk, π(xk)) + lT (xT)

In the following, to simplify the notation, we consider time as
the last component of the state vector (x[n] = t), so that we
can drop the explicit time dependency for the Value function,
policy, dynamics, and running cost.

GRANDESSO et al.: CACTO: CONTINUOUS ACTOR-CRITIC WITH TRAJECTORY OPTIMIZATION—TOWARDS GLOBAL OPTIMALITY 3

B. Algorithm Description

As shown in Fig. 1, our algorithm can be broken down into
four phases. In the TO phase (green block), the optimal state
and control trajectories are computed considering a random
initial state. Then, the cost-to-go is computed (red block) for
each state of the optimal trajectory and stored in a buffer
(orange block). This buffer is then sampled to update both
the critic and actor (blue block). Finally, to close the loop, a
rollout of the actor is used to warm-start the next TO problem.

A more detailed description is reported in Algorithm 1.
In the initial phase (lines 1-4), the critic V (x|θV) and actor
µ(x|θµ) networks (“Agent” blue block in Fig. 1) are initialized,
as well as the target critic network V ′(x|θV ′) (copying the
weights of the critic), and a buffer R is created. This buffer
will store the transitions (xt, uTO,t, V̂t, xmin(t+L+1,T)), where
V̂t is the partial cost-to-go until state xmin(t+L+1,T) after a
rollout of either L steps, or the number of steps to reach
T (whichever is lower). In this way, to update the critic
one can choose between n-step Temporal Difference (TD)
(L = n − 1) and Monte-Carlo (L = T − 1 − t) by setting
the hyperparameter L [23]. After the initialization phase, M
episodes are performed (lines 5-29) starting from a random
initial state x0 (line 6). The state vector has a dimension of n
and includes the time as its last component. The starting time
index for each episode (and partial cost-to-go computation) is
based on x0[n] (lines 14 and 17), so the length of each episode
can vary. At the beginning of each episode, the state and
control variables (x◦TO, u

◦
TO) of a TO problem are initialized

(line 11) with a rollout (x◦µ, u
◦
µ) of the policy network µ(x|θµ)

(lines 7-10, “Warm-start” arrow in Fig. 1). The TO problem is
then solved, the control inputs uTO are applied starting from
x0, and the resulting costs are computed and saved (lines 14-
16). Then, for each step of the episode the partial cost-to-
go V̂t is computed and the related transition is saved in R
(lines 17-20, from “Cost-to-go computation” block to “Replay
Buffer” one in Fig. 1). Finally, every eupdate episodes the
critic and the actor are updated: for K times a minibatch
of S transitions is sampled from R (line 23, “Sample mini-
batch” arrow in Fig. 1), for each of them the complete cost-
to-go V̄i is computed (line 24) by either adding the tail of
the Value to V̂i or copying the partial cost-to-go, which is
the cost-to-go itself in case the lookahead window exceeds
the episode length T . Then the critic and actor loss functions
are minimized (lines 24-25). Considering that CACTO deals
with finite-horizon problems, it is worth noting that V ′ is used
only when i + L + 1 6= T , namely when the costs-to-go are
computed with n-step TD. The critic and actor loss functions
are respectively the mean squared error between the costs-to-
go and the values predicted by the critic

(
V̄i − V (xi)

)2
and

the Q-value, namely Q(xt, ut) = l(xt, ut) + V (xt+1), which
represents the policy’s performance.

C. Differences with respect to DDPG

Our approach takes inspiration from DDPG, but presents
a few key differences, which we highlight in this subsection.
A first difference is that we replaced the Q-value with the
Value function, which is approximated by the critic network.

Algorithm 1: CACTO

1 Inputs: dynamics f(·, ·), running cost l(·, ·), terminal
cost lT (·), T , M , S, K, L

2 Output: trained control policy µ(x)

3 θV ← random, θµ ← random, θV
′ ← θV

4 Initialize replay buffer R
5 for episode← 1 to M do
6 x0 ← random, x◦TO,0 ← x0

7 for t← x0[n] to T do (policy rollout)
8 u◦µ,t ← µ(x◦µ,t|θµ)

9 x◦µ,t+1 ← Environment(x◦µ,t, u
◦
µ,t)

10 end
11 (x◦TO, u

◦
TO)← (x◦µ, u

◦
µ) (TO warm-start)

12 Solve TO problem and get control trajectory uTO

13 Agent’s initial state ← x0
14 for t← x0[n] to T do (episode rollout)
15 xt+1, lt ← Environment(xt, uTO,t)

16 end
17 for t← x0[n] to T do

18 Compute partial cost-to-go: V̂t =
min(t+L,T−1)∑

j=t

lj

19 R←(xt,uTO,t,V̂t,xmin(t+L+1,T))
20 end
21 if episode % eupdate = 0 then
22 for k ← 1 to K do (critic & actor update)
23 Sample minibatch of S transitions

(xi, uTO,i, V̂i, xmin(i+L+1,T))
24 Compute cost-to-go:

V̄i =

{
V̂i if i+ L+ 1 > T

V̂i + V ′(xi+L+1) otherwise
Update critic by minimizing the loss over θV :

Lc = 1
S

S∑
i=1

(
V̄i − V (xi|θV)

)2
25 Update actor by minimizing the loss over θµ:

La = 1
S

S∑
i=1

Q(xi, µ(xi|θµ))

26 Update target critic: θV
′ ← τθV + (1− τ) θV

′

27 end
28 end
29 end

By doing so, the complexity is reduced since the critic’s input
is only the state, thus there is no need to explore the control
space. Keeping a Q-value approach instead, one could not
explore the control space using only TO because only the
locally-optimal control inputs would be chosen. Therefore,
one should alternate the use of TO trajectories with other
exploration techniques (e.g., acting greedily w.r.t. the Q-value
function and adding some noise), which would dilute the
benefits of our algorithm, making it more similar to standard
RL. Contrary to DDPG, this algorithm is on-policy, meaning
that the critic estimates the Value of the exploratory policy
being followed. This is the policy obtained by initializing

4 IEEE ROBOTICS AND AUTOMATION LETTERS. POSTPRINT VERSION. ACCEPTED APRIL, 2023

TO with rollouts of the current policy network. This implies
that it is important to size R not too large, so that only the
most recent TO trajectories obtained by warm-starting TO with
similar policies are stored; in this way, the critic, after its
update, will approximate the Value function associated to that
policy. Otherwise, the risk is having a critic that represents
a meaningless Value function, because it used trajectories
generated with very different policies.

Another difference with respect to DDPG is that we con-
sider finite-horizon problems because TO cannot be used to
solve arbitrary infinite-horizon problems. Therefore, the Value
function is time-dependent. We address this by considering
time as the last component of the state vector (x[n] = t).

As in DDPG, we also make use of a target network V ′

to improve the stability of our algorithm. It is a copy of the
critic network, whose weights θV

′
are updated slower than the

critic’s ones θV by performing only partially the update of the
critic, that is θV

′ ← τθV + (1− τ) θV
′

with τ � 1 being the
target learning rate.

D. Implementation Details

Each TO problem was solved using collocation, which
was available in the Pyomo library [25] and solved with the
nonlinear programming solver IpOpt [26].

The following details are not fixed as part of the proposed
method. They are reported here for the sake of clarity and
to help understand how the results in Section III have been
obtained. Concerning the critic’s neural network, we used a
structure with two small preprocessing fully-connected layers
with respectively 16 and 32 neurons, followed by two other
fully-connected hidden layers with 256 neurons each, all with
ReLU activation functions. For the actor instead we used a
residual neural network with two fully-connected hidden layers
with 256 neurons each and ReLU activation functions, whose
outputs are added and passed as inputs to the last layer with a
tanh activation function to bound the final controls in [−1,+1].
We chose a residual neural network to better propagate the
gradient to the first layer and limit the effects of the potential
combination of the vanishing gradient problem due to the tanh
in the last layer and the dying ReLU problem [27] which
would prevent the network from continuing to learn. We finally
multiply the output of this last layer by the control upper
bound. To stabilize the training of these networks, the inputs
are normalized and L2 weight and bias regularizers are used
in each layer, with weight equal to 10−2.

The critic and actor loss functions were minimized with a
stochastic gradient descent optimizer Adam [28]. We set the
maximum number of episodes to 80000 and stopped early the
training of the neural networks if the results were satisfactory.

E. Global convergence proof for discrete spaces

As for most continuous-space RL algorithms, it is hard
to give any formal guarantee of convergence for CACTO.
However, we can show that, considering a discrete-space
version of CACTO using look-up tables instead of DNN, the
algorithm converges to a globally optimal policy. This version
of CACTO performs sweeps of the entire state space as in
classic Dynamic Programming (DP) algorithms (e.g., Policy

Iteration [24]), rather than the asynchronous approach char-
acterizing RL algorithms. Moreover, we consider the Policy
Iteration version of our algorithm meaning that each phase of
policy evaluation and policy improvement converges before the
other begins. This proof does not extend easily to the original
CACTO algorithm, but it gives us an insight into the soundness
of its key principle.

Theorem II.1. Consider the following assumptions.
• State and control spaces are finite.
• The optimal Value function V ∗ is bounded.
• We have access to a discrete-space TO algorithm that

can perform a local search and return a trajectory with
a cost not greater than the cost of the initial guess.

Let us define kπTO as the control policy obtained solving a
TO problem using a rollout of the policy kπ as initial guess.
Then, starting from an arbitrary initial policy 0π, the following
algorithm converges to the optimal Value function V ∗ and an
optimal policy π∗:

kV πTO = PolicyEvaluation(kπTO)
k+1π = arg min

u∈U
[l + kV πTO]

Proof. Let us define π′(x) as the policy obtained by minimiz-
ing the Action-value function of πTO, namely QπTO (x, u):

π′t(xt) , arg min
u∈U

[lt(xt, u) + V πTO
t+1 (xt+1)] ∀xt, t (2)

where xt+1 = ft(xt, u), and V πTO
t+1 (xt+1) is the cost-to-go

following πTO from xt+1 at time t+ 1.
Since TO always finds a solution that is at least as good as

the provided initial guess,we have that:

V πt (x) ≥ V πTO
t (x) ∀x, t (3)

Since π′ is the minimizer of QπTO (see (2)), we know that:

V πTO
t (x) = QπTO

t (x, πTO,t(x)) ≥ QπTO
t (x, π′t(x)) (4)

Starting from (4), and following the same idea of the conver-
gence proof of Policy Improvement [24], we can write:

V πTO
t (xt) ≥ min

u∈U
[lt(xt, u) + V πTO

t+1 (xt+1)] (5)

(by (2)) = lt(xt, π
′
t(xt)) + V πTO

t+1 (xt+1) (6)
(by (4)) ≥ lt(xt, π′t(xt)) +QπTO

t+1 (xt+1, π
′
t+1(xt+1)) (7)

= lt(xt, π
′
t(xt)) + [lt+1(xt+1, π

′
t+1(xt+1)) (8)

+ V πTO
t+2 (xt+2)]

. . .

≥
T−1∑
k=t

lk(xk, π
′
k(xk)) + lT (xT) , V π

′

t (xt) (9)

(by (3)) ≥ V π
′
TO

t (xt) (10)

To infer (9) from (8) we can iteratively apply the same
reasoning we used to go from (6) to (8). This proves that the
updated policy π′TO cannot be worse than the previous one
πTO. Since V πTO is nonincreasing and always bounded from
below by the optimal value V ∗, it follows from the monotone

GRANDESSO et al.: CACTO: CONTINUOUS ACTOR-CRITIC WITH TRAJECTORY OPTIMIZATION—TOWARDS GLOBAL OPTIMALITY 5

Fig. 2. Cost function without the control effort term (15), considering a
target point located at [−7, 0] with weights wd = 100, wp = 5 · 105 and
wob = 1 · 106. The green rectangle delimits the Hard Region.

convergence theorem that V πTO converges to a constant value
V∞. At convergence we must have:

V∞t (xt) = min
u∈U

[lt(xt, u) + V∞t+1(xt+1)] ∀xt, t

This is Bellman’s optimality equation, which is a sufficient
condition for global optimality, so it follows that the algorithm
converges to the optimal Value (V∞ = V ∗) and to an optimal
policy (π∞ = π∗).

III. RESULTS

This section presents the results of four different systems
of increasing complexity: single integrator, double integrator,
Dubins car, and 3-joint planar manipulator. For each system,
the task consists of finding the shortest path to a target point
(related to the end-effector’s position for the manipulator)
while ensuring low control effort and avoiding an obstacle. The
aim is verifying the capability of CACTO to learn a control
policy to warm-start TO so that it can find “good” trajectories,
where other warm-starting techniques, such as using the initial
conditions (ICS) or random values, would make it converge to
poor local minima. More precisely, the ICS warm-start uses
the initial state (varying at each episode) as initial guess for
the state variables in the OCP, for all time steps, and 0 as
initial guess for the control variables.

For each system, we divided the XY-plane in a grid of 961
points and, starting from each point with 0 initial velocity, we
compared the results of TO when warm-started with either the
policy learned by CACTO, or a random initial guess, or the
ICS for x and y (and 0 for the remaining variables). Table I
reports the time and number of updates needed to train the
critic and the actor for each test.

In the four tests, we changed the dynamics of the system
under analysis keeping the same highly non-convex cost

TABLE I
Time, number of DNN updates, number of environment steps, and learning

rates (LRC for critic and LRA for actor) used for each test.

Time [h] # updates # env. steps LRC , LRA

Single Int. 5.46 110k 3.4M 5e−3, 1e−4

Double Int. 7.29 130k 4.1M 5e−3, 5e−4

Dubins Car 10.45 260k 4.1M 1e−3, 5e−4

Manipulator 30.68 385k 6M 1e−3, 5e−5

function to ensure the presence of many local minima, that
takes the following form:

l(·) =
1

c2

(
4∑
i=1

li(·)− c1

)
(11)

l1(·) = wd((x− xg)2 + (y − yg)2) (12)

l2(·) =
wp
α1

ln(e
−α1

(√
(x−xg)2+c2+

√
(y−yg)2+c3+c4

)
+ 1)

(13)

l3(·) =
wob
α2

3∑
i=1

− ln (e
−α2

(
(x−xob,i)

2

(ai/2)
2 +

(y−yob,i)
2

(bi/2)
2 −1

)
+ 1)

(14)

l4(·) = wu||u||22 (15)

where (xg, yg) are the target point coordinates, c1 = 10000
and c2 = 100 are two constants, while c3 = 0.1, c4 =
−2c3 − 2

√
c3, α1 = 50 and α2 = 50 are the parameters

that define the smoothness of the softmax functions used to
model respectively a cost valley in the neighborhood of the
target and the three ellipses (centered at (xob,i, yob,i) and with
principal axes ai and bi) forming the obstacle. The four terms
composing the cost describe the task to be performed: (12)
and (13) push the agent to reach the target point (with weights
wd and wp, respectively), (14) makes it avoid the C-shaped
obstacle represented by three overlapping ellipses (with weight
wob) and (15) discourages it from using too much control effort
(with weight wu). Fig. 2 illustrates the cost function without
the control effort term (15), where the cost peaks correspond to
the obstacle penalties (14) and the cost valley to the term (13).

The critic was updated with Monte-Carlo (MC) for the 2D
point, and with 50-step TD for the car and the manipulator.
The reason for using TD rather than MC lies in the stability
of the training of critic and actor. Indeed, in the early phase of
training, using Monte-Carlo could lead to large variations of
the critic, and indirectly also of the actor, because the target
Values would be extremely different from the current Values.
Moreover, in the early training phase TO could compute
extremely poor trajectories because of the poor initial guess
provided by the actor. In turn, these poor trajectories result in
hard-to-learn Value functions. Therefore, we have empirically
observed that these two effects can destabilize the training,
leading to either longer training times, or even divergence of
the algorithm.

To summarize the results, Table II reports the number of
times that CACTO made TO find lower-cost solutions than
the other two warm-starts, considering both the whole grid

6 IEEE ROBOTICS AND AUTOMATION LETTERS. POSTPRINT VERSION. ACCEPTED APRIL, 2023

TABLE II
Percentage of the time that warm-starting TO with CACTO leads to lower costs than using random initial guesses (CACTO vs. Random) and the initial

conditions for x and y and 0 for the remaining variables (CACTO vs. ICS) as initial guess. Also the percentages when CACTO has lower or equal cost (i.e.,
including ties) as its competitor are reported. The best result out of 5 runs is reported for random warm-start. For each system, we sampled from a 31x31

grid for the initial x and y coordinates (those of the end effector for the manipulator) and setting the remaining initial state components to 0 (the joint
positions of the manipulator were obtained by fixing the orientation of the end-effector and inverting the kinematics). The Hard Region is the region

delimited by x ∈ [1, 15] m ([1, 23] m in the manipulator test) and y ∈ [−5, 5] m.

System
Whole Space Hard Region

CACTO < (≤) Random CACTO < (≤) ICS CACTO < (≤) Random CACTO < (≤) ICS
Single Int. 99.88% (99.88%) 14.49% (99.88%) 99.11% (99.11%) 91.96% (99.11%)
Double Int. 99.88% (99.88%) 12.38% (99.88%) 99.11% (99.11%) 91.96% (99.11%)
Dubins Car 89.72% (98.83%) 15.65% (95.56%) 100% (100%) 92.86% (100%)
Manipulator 91.78% (91.91%) 77.94% (78.33%) 87.50% (87.50%) 100% (100%)

(a) ICS warm-start (b) CACTO warm-start

Fig. 3. Optimal trajectories (red) of the 2D double integrator obtained with
ICS and CACTO warm-starts. In (b), the magenta lines represent the CACTO
policy rollouts.

(a) CACTO vs. Random warm-starts (b) CACTO vs. ICS warm-starts

Fig. 4. Double integrator: cost difference between CACTO warm-start and
other two warm-starts normalized by the largest cost difference.

and the region from which it is harder for TO to find “good”
solutions (Hard Region).

A. Single Integrator

The first problem we considered is a simple 2D single
integrator that has to reach a target point avoiding a C-shaped
obstacle. The state is [x, y, t] ∈ R3, while the controls are the
2D velocities [vx, vy] ∈ R2, bounded in [−4, 4]ms .

The task is simple except when the system starts from the
Hard Region (x ∈ [1, 15] m and y ∈ [−5, 5] m), where TO
can easily get stuck in local minima. Most of the times this
means that the resulting trajectories point immediately towards
the target, making the 2D point stay at the right boundary
of the vertical ellipse. But since the C-shaped obstacle is
modelled as three overlapping ellipses represented by three
soft penalties (14) in the cost function, it can also occur that
the 2D point passes through them to reach the target, albeit

15 10 5 0 5 10 15
X [m]

15

10

5

0

5

10

15

Y
 [

m
]

Lower Cost Same Cost Higher Cost

-0.94

-0.84

-0.73

-0.63

-0.52

-0.42

-0.31

-0.21

-0.10

0.00

(a) CACTO vs. Random warm-starts (b) CACTO vs. ICS warm-starts

Fig. 5. Dubins car model: cost difference between CACTO warm-start and
other two warm-starts normalized by the largest cost difference.

at high cost. Table. II reports the percentage of the time that
warm-starting TO with CACTO rollouts leads to lower costs
than using random values and the initial conditions for x and
y and 0 for the remaining variables as initial guess. CACTO
warm-start wins over the other two techniques, particularly if
we consider the agent starting from the Hard Region where
warm-starting TO with CACTO leads to lower-cost solutions
99.11% and 91.96% of the time compared to using random
values and the ICS as the initial guess, respectively.

B. Double Integrator

We run the same experiment with the 2D point considering a
double integrator dynamics. Therefore, now the state includes
also the velocities [x, y, vx, vy, t] ∈ R5 and the control inputs
are the accelerations [ax, ay] ∈ R2. As illustrated in Fig. 3(b),
the rollouts of the CACTO policy are already close to the
globally optimal trajectories, therefore TO only needs to
refine them when they are used as initial guess. We refer to
trajectories as globally optimal if their cost is the lowest among
those obtained solving several TO problems warm-started with
random initial guesses. Fig. 4 shows instead the cost difference
(normalized by the highest difference in absolute value) when
TO is warm-started with rollouts of the CACTO policy in place
of random values or the ICS, respectively. Fig. 4(a) clearly
shows that using rollouts of the policy learned by CACTO
as an initial guess makes TO find lower-cost solutions from
almost any initial state compared to those found with a random
initial guess. In Fig. 4(b) instead, we can notice that ICS are
a good initial guess for the majority of initial states and TO
finds the same solutions as when warm-started with CACTO
rollouts. However, when starting the agent in the Hard Region,

GRANDESSO et al.: CACTO: CONTINUOUS ACTOR-CRITIC WITH TRAJECTORY OPTIMIZATION—TOWARDS GLOBAL OPTIMALITY 7

Fig. 6. TO solutions considering 12 different initial configurations of the
manipulator and ICS warm-start. The red dotted lines represent the trajectories
performed by the end-effector (EE).

30 20 10 0 10 20
X [m]

30

20

10

0

10

20

30

Y
 [

m
]

Lower Cost Same Cost Higher Cost

-0.94

-0.78

-0.62

-0.47

-0.31

-0.16

0.00

0.16

0.31

0.47

Fig. 7. 3-DoF Manipulator: normalized cost difference when warm-starting
TO with CACTO compared to using the initial conditions as initial guess for
the joint positions and 0 for the remaining variables.

the ICS warm-start makes TO find poor local minima, where
the agent remains stuck in that region or passes through the
obstacle, whereas CACTO enables TO to successfully bring
the agent to the target without touching the obstacle. Also in
this case, in the Hard Region, warm-starting TO with CACTO
rollouts rather than with random values or ICS makes TO find
lower costs with the same percentage as in the previous test.

C. Dubins Car

To test CACTO with a higher-dimensional system, we
selected a jerk-controlled version of the so-called Dubins car
model [30], while keeping the same environment and cost
function of the previous tests. Now the state has size 6 because
it includes the steering angle θ, the tangential velocity v, and
acceleration a, in addition to the coordinates x and y of the
car’s center of mass and time t: s = (x, y, θ, v, a, t) ∈ R6. The
control is still bi-dimensional and it consists in the steering
velocity and the jerk [ω, j] ∈ R2. When the car starts from
the Hard Region, TO warm-started with CACTO always finds
a lower cost than that obtained by warm-starting TO with
random values, and it does so the 92.86% of the time when
compared to using ICS warm-start, as reported in Table II. In
addition, Fig. 5(b) shows that TO warm-started with ICS is
not able to find the globally optimal solution also when the
car starts from a point along the vertical line passing through

Fig. 8. Cost of the trajectory found by TO (starting the 2D point from [5, 0]m
with 0 velocity) when warm-started with rollouts of the policy learned with
CACTO (green), our DDPG (DDPG-c in orange), Stable Baselines’ DDPG
(DDPG-sb in blue) and PPO (red) as their trainings proceed. The shaded area
denotes the standard deviation over 5 different runs.

the target point. This is due to the fact that in that region the
gradient of the cost is zero along the initialization itself.

D. 3-DoF Planar Manipulator

Finally, we tested our algorithm on a problem with a 7D
state and 3D control space. It consists of a 3-DoF planar
manipulator with base fixed at [−7, 0] m, working in the same
environment of the previous tests, whose end-effector has to
reach a target point located at xg = −20 m and yg = 0 m.
The cost function is always (11), where x and y represent the
coordinates of the end-effector. Fig. 6 shows some solutions
found by TO when warm-started with the ICS. It may seem
that TO succeeds in some cases in finding the globally optimal
trajectories for those initial configurations, but actually all of
them are only locally optimal, as shown by the negative cost
difference in Fig. 7 when those solutions are compared to
the ones obtained by warm-starting TO with CACTO. This
test is harder, meaning that it is much easier for TO to find
poor local minima, not only due to the larger state-action
space, but also because the actor has to intrinsically learn
the manipulator kinematics. Indeed, considering the whole
manipulator workspace, CACTO warm-start wins over using
the ICS or random values 77.94% and 91.78% of the time,
respectively, as reported in Table II.

E. Comparison with DDPG and PPO performance

To compare CACTO and DDPG, we have used our im-
plementation of DDPG with hand-tuned hyper-parameters
(DDPG-c), as well as that from Stable Baselines (DDPG-sb),
to find a warm-starting policy for the 2D double integrator test
of Section III-B. In addition, we have made the comparison
also with PPO from Stable Baselines. Fig. 8 shows the costs
obtained by TO as functions of the computation time allocated
to each algorithm to train its warm-starting policy. Clearly,
CACTO was faster than the other RL algorithms in learning
a policy enabling TO to find lower-cost solutions, and its
training was also more stable (rollouts with lower variance).
We have reported only the results with the double integrator
because, despite our efforts, we did not manage to make
DDPG converge in a reasonable number of episodes in the
car and manipulator tests. Indeed, as stressed in [31], DDPG

8 IEEE ROBOTICS AND AUTOMATION LETTERS. POSTPRINT VERSION. ACCEPTED APRIL, 2023

is known to be very sensitive to its hyper-parameters making
it prone to converge to poor solutions or even diverge.

Besides this quantitative comparison, we could also try to
qualitatively compare our results with the ones reported for
DDPG in [11]. Among their tests, the most similar to ours is
the fixedReacher, where a 3-DoF arm must reach a fixed target;
this has the same dimensions as our manipulator test. However,
our cost/reward function is highly non-convex, particularly due
to the obstacle avoidance term, while theirs was quadratic and
consisted of only two terms. This makes it harder to reach
convergence in our DNN training. Using CACTO in such a
simple setting, with a convex cost-function, would not make
sense: TO would converge to the global optimum even with
a trivial warm-start (indeed DDPG converged to roughly the
same policy found by iLQG). Consequently, it makes no sense
to use these results for a comparison with CACTO, which
should instead be based on highly non-convex problems, where
TO cannot find the global optimum with a naive initial guess.

IV. CONCLUSIONS

This paper presented a new algorithm for finding quasi-
optimal control policies. In particular, we addressed the open
problems affecting Trajectory Optimization and deep Rein-
forcement Learning: the possibility of getting stuck in poor
local minima when TO is not properly warm-started on one
side, and the low sample efficiency of deep RL. The proposed
algorithm relies on the combination of TO and RL in such a
way that their interplay guides efficiently the RL state-control
space exploration process towards the globally optimal control
policy, to be used then as TO initial guess provider.

We provided a global convergence proof for a discrete-
space version of our algorithm, which gives insight into its
underlying theoretical principles.

We have shown the effectiveness of the algorithm testing it
on four systems of increasing complexity, with highly non-
convex cost functions, where TO struggles to find “good”
solutions. Even though preliminary, our results validate our
methodology and unlock a wide range of possible applications.

Despite our encouraging results, we believe that CACTO
can still be improved, in particular concerning its computation
time. We are investigating how to speed up the learning of
the critic using Sobolev Training [32], which could exploit
the derivatives of the Value function computed by a DDP-
like TO algorithm [33]. We are also considering to implement
CACTO using sampling-based multi-query planners, as done
with PRMs in [34]. Moreover, besides using CACTO as initial
guess provider for TO, where the RL and TO environments
must match, we are interested in using it as a deep RL
technique to find directly a control policy, where the two
environments do not need to match (e.g., the TO problem could
be a simplified version of the RL environment without noise
sources). Finally, we plan to extend CACTO to optimize also
hardware parameters, to create a concurrent design (co-design)
framework robust against the local minima problem, which is
a crucial issue in co-design applications [35].

REFERENCES

[1] B. Katz, J. Di Carlo and S. Kim, “Mini Cheetah: A Platform for Pushing
the Limits of Dynamic Quadruped Control,” in Proc. of ’19 IEEE ICRA,
Montreal, Canada, pp. 6295–6301, 2019.

[2] M. Neunert et al., “Whole-Body Nonlinear Model Predictive Control
Through Contacts for Quadruped” in IEEE RA-L, 3(3), pp. 1458–1465,
2018.

[3] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev and E. Todorov, “An
integrated system for real-time model predictive control of humanoid
robots,” in Proc. of ’13 IEEE-RAS Humanoids, Atlanta, Georgia, USA,
pp. 292–299, 2013.

[4] N. Scianca, D. De Simone, L. Lanari and G. Oriolo, “MPC for Humanoid
Gait Generation: Stability and Feasibility” in IEEE T-RO, 36(4), pp.
1171–1188, 2020.

[5] N. Mansard, A. Del Prete, M. Geisert, S. Tonneau and O. Stasse, “Using
a Memory of Motion to Efficiently Warm-Start a Nonlinear Predictive
Controller,” Proc. of ’18 IEEE ICRA, Brisbane, QLD, Australia, pp. 2986–
2993, 2018.

[6] M. Bardi and I. Capuozzo Dolcetta, Optimal Control and Viscosity
Solutions of Hamilton-Jacobi-Bellman Equations, 1st ed., 12, Birkhäuser,
1997.

[7] J.N. Tsitsiklis, “Globally Optimal Trajectories” in IEEE Trans. Automat.
Contr., 40(9), pp. 1528–1538, 1995.

[8] L.C. Polymenakos, D.P. Bertsekas and J.N. Tsitsiklis, “Implementation
of efficient algorithms for globally optimal trajectories” in IEEE Trans.
Automat. Contr., 43(2), pp. 278–283, 1998.

[9] A. Gorodetsky, S. Karaman and Y. Marzouk, “Efficient high-dimensional
stochastic optimal motion control using tensor-train decomposition” in
Proc. of ’15 RSS, Rome, Italy, 2015.

[10] E. Stefansson and Y.P. Leong, “Sequential alternating least squares for
solving high dimensional linear Hamilton-Jacobi-Bellman equation” in
Proc. of ’16 IEEE/RSJ IROS, Daejeon, Korea, pp. 3757–3764, 2016.

[11] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver
and D. Wierstra, “Continuous control with deep reinforcement learning,”
2015. Online available: arXiv:1509.02971

[12] S. Fujimoto, H. van Hoof, D. Meger, “Addressing Function Ap-
proximation Error in Actor-Critic Methods,” 2018. Online available:
arXiv:1802.09477

[13] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V.
Kumar, H. Zhu, A. Gupta, P. Abbeel, S. Levine, “Soft Actor-Critic Al-
gorithms and Applications,” 2019. Online available: arXiv:1812.05905v2

[14] Y. Hou, H. Hong, Z. Sun, D. Xu and Z. Zeng, “The Control Method of
Twin Delayed Deep Deterministic Policy Gradient with Rebirth Mecha-
nism to Multi-DOF Manipulator” in Electronics, 10(7:870), 2021.

[15] Z. Zhang, J. Chen, Z. Chen and W. Li, “Asynchronous Episodic Deep
Deterministic Policy Gradient: Toward Continuous Control in Compu-
tationally Complex Environments” in IEEE Trans. Cybern., 51(2), pp.
604–613, 2021.

[16] S. Levine and V. Koltun, “Guided Policy Search,” in Proc. of ’13 ICML,
Atlanta, Georgia, USA, pp. III-1–III-9, 2013.

[17] I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization,” in Proc. of ’14 RSS, 4, 2014.

[18] M. Vecerik et al., "Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards," 2017. Online avail-
able: arXiv:1707.08817

[19] A. Filos et al., "PsiPhi-Learning: Reinforcement Learning with Demon-
strations using Successor Features and Inverse Temporal Difference
Learning." in Proc. of ’21 ICML, pp. 3305–3317, 2021.

[20] T. Osa, A. M. G. Esfahani, R. Stolkin, R. Lioutikov, J. Peters and G.
Neumann, “Guiding Trajectory Optimization by Demonstrated Distribu-
tions,” in IEEE RA-L, 2(2), pp. 819–826, 2017.

[21] S. Gu, T. Lillicrap, I. Sutskever and S. Levine “Continuous Deep Q-
Learning with Model-based Acceleration,” in Proc. of ’16 ICML, New
York, New York, USA, vol 48, 2016.

[22] S. Fujimoto, D. Meger and D. Precu, “Off-Policy Deep Reinforcement
Learning without Exploration,” in Proc. of ’19 ICML, Long Beach,
California, USA, pp. 2052–2062, 2019.

[23] D.P. Bertsekas, Reinforcement Learning and Optimal Control, Athena
Scientific, Belmont, Massachusetts, USA, pp. 256–266, 2019.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning - An Introduction,
The MIT Press, Cambridge, Massachusetts, USA, 2018.

[25] M.L. Bynum, G.A. Hackebeil, W.E. Hart, C.D. Laird, B.L. Nicholson,
J.D. Siirola, J.P. Watson and D.L. Woodruff, Pyomo — Optimization
Modeling in Python, 3rd ed., 67, Springer, 2021.

GRANDESSO et al.: CACTO: CONTINUOUS ACTOR-CRITIC WITH TRAJECTORY OPTIMIZATION—TOWARDS GLOBAL OPTIMALITY 9

[26] A. Wächter and L. T. Biegler, “On the Implementation of a Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear
Programming,” in Math. Program., 106, pp. 25-57, 2006.

[27] L. Lu, Y. Shin, Y. Su and G. E. Karniadakis, “Dying ReLU and
Initialization: Theory and Numerical Examples,” in Commun. Comput.
Phys., 28(5), pp. 1671-1706, 2020.

[28] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
2017. Online available: arXiv:1412.6980v9

[29] J. Nocedal, A. Wächter and R.A. Waltz, “Adaptive Barrier Update
Strategies for Nonlinear Interior Methods,” in SIOPT, 19, pp. 1674-1693,
2009.

[30] L. E. Dubins, "On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents,"
in Am. J. Math., 79(3), pp. 497-–516, 1957.

[31] R. Islam, P. Henderson, M. Gomrokchi and D. Precup, “Reproducibility
of Benchmarked Deep Reinforcement Learning Tasks for Continuous
Control,” 2017. Online available: arXiv:1911.11679

[32] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz and R. Pas-
canu, “Sobolev Training for Neural Networks,” in Proc. of ’17 NeurIPS,
Atlanta, Georgia, USA, 30, 2017.

[33] C. Mastalli et al., “Crocoddyl: An Efficient and Versatile Frame-
work for Multi-Contact Optimal Control,” 2020. Online available:
arXiv:1509.02971

[34] E. Jelavic, F. Farshidian and M. Hutter, "Combined Sampling and
Optimization Based Planning for Legged-Wheeled Robots," in Proc. of
’21 IEEE ICRA, pp. 8366–8372, 2021.

[35] G. Grandesso, G. Bravo-Palacios, P. M. Wensing, M. Fontana and A. Del
Prete, "Exploring the Limits of a Redundant Actuation System Through
Co-Design," in IEEE Access, 9, pp. 56802–56811, 2021.

