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Abstract

Imagebased 3D reconstruction has been employed in industrial metrology for
micro measurements and quality control purposes. However, generating adatglgd
and reliable 3D reconstruction of naoollaborative surfaces (textureless, shinyd an
transparent) is still an open issu€his thesis presentsvarious methodologies to
successfullygenerate a highigetailed and reliable 3D reconstruction of remtlaborative
objectsusing thgoropose photometric steremnage acquisition systerihe first proposed
method employs geometric construction to integrate photogrammetry and photometric
stereo in order to overcome each technique's limitations and to leverage each technique's
strengths in order to reconstruct an accurate and-reggiution topogaphy of non
collaborative surface§ his method uses accurate photogrammetric 3D measurements to
rectify the global shape deviation of photometric stereo meanwhile uses photometric stereo
to recover the high detailed topography of the object. The secotimbaneombines the
high spatial frequencies of photometric stereo depth map with the low frequencies of
photogrammetric depth map frequency domainio produce accurate low frequencies
while retaining high frequencies. For the third aygph, we utilize Ight directionality to
improve texture quality by leveraging shade and shadow phenomena using the proposed
imagecapturing system that employs several light sources for highlighting roughness and
microstructures on the surface. And finally, we present tethads that effectively orient
images by leveraging the legontrast textures highlighted on object surfaces (roughness

and 3D microstructures) using proper lighting system. Various objects with different



surface characteristics including texturelessentife, and transparent are used to evaluate
different proposed approaches. To assess the accuracy of each approach, a comprehensive

comparison between reference data and generated 3D points is provided

Keywords: Imagebased 3DreconstructionPhotogrammetry, Photometric stereo, High

resolution 3D reconstruction, 3D metrologion-collaborative surfaces
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Introduction



1.1 Background

3D reconstructionin computer vision and photogrammetiy the process of
recovering the shape and appearance of avedtl objectstartingwith data acquisition
andendingwith 3D visualization on a computer. It is an interesting and-fomgingtask
in computer vision and photogrammetric communities. There has, for lomgalksenand
for accurate andeliable 3Dmeasurements various application fieldsSansoni et al.,
2009 Luhmann et al., 2I0; Yang et al., 2028 For example, in industrial applicatgr3D
measurementare used for quality inspection ofields (RodriguezMartin et al., 2015,
checking the strength of materiaBhfnueli et al., 20)5reverse engineering of complex
and freeform objects(Carbone et al., 200,Llor measuring the 3D dimension of complex
surfaceqHosseininaveh et al., 20L3n almost all otthe applicatios mentioned above,
high geometric accuracy, and higésolution details of the 3D reconstruction along with
low cost, portability,and pexibility of the method are requirgdluhmann et al., 2019;
Karami et al., 2022c

Generally existing approaches for 3D reconstruction are classified into contact and
nontcontact method¢Luhmann et al., 2099 Contactbased methods usually use some
physical equipment such as coordinate measuring machines, or calipers to measure the 3D
shape of arobject. Even though precise geometrical 3D measurements are possible and
suited for many applications, they have some drawbdeis example, the process of
acquiring data is extremely tirmnsuming; sparse 3D dareconstructed from the
object somepars of the object might remain unmeasudkee toobjectshape complexity

andthesystend s r est r i ct jimather sifuationsnsuahsas with angque, soft,
2



or deformable objects, these methodsraregpropriatedue to the rislof damaging the
object duringhe measurement procefisese equipment are required to be protected from
temperature variation and vibration in a contro#ga/ironment.

In contrast, 3D reconstruction is achieved using-camtact methods that can
overcome the drawbacK oontactbased techniqueShese approaches, accordinghe
type ofsensowused are divided into active and passive. Active methods project structured
light, or lasers on the object and detect them using a camera to generate 3D shape of an
object while passive methodsely on other sources of energy (e.g. natwatight).
Current a&tive approaches rely on costly technologies such as laser scanning arms,
structured light systemer confocal white light; in addition to this, theyay bempractical
in some cases such as deformable okjdeassive imagbased approaches (such as
phobgrammetry, photometric stereshape from shading, shape from texture, shape from
specularity, shape from contour, or shape from 2D edge) reconstruct 3D shape of an object
from 2D images using different mathematical models.

While active methods have adwages in terms of accuracy and robustness, they
are often more expensive, less flexible, and require more complex equipment setups.
Passive imagbased methodssuch as photogrammetry and photometric stereo, are
becoming increasingly popular due to themsteffectiveness, portability, and flexibility
in a wide range of applications, including industrial inspec{i®arazzetti et al., 2012;
Karami et al., 2022cand quality contro(Sansoni et al., 2009; RodriguBtartin et al.,

2015; Luhmann et al., 20),9where highly detailed micrtmpography of surfaces is

required.



However, passive imageased methods have limitations, including sensitivity to
lighting conditionsandthe textural properties of the surfagehich can result in failure.
Despite these hallenges, imagbased methods are gaining more attention recently
because of advancements in image processing algorithms and hardware capabilities. These
advancements have led to improved accuracy, robustness, and performance of passive
imagebased metha making them a viable option for 3D reconstructionnof+
collaborativeobjects. Additionally, with the increasing availability and affordability of
high-quality cameras and software, imdggsed methods have become more accessible to

researchers and iodtries.

1.2 Obijects with non-collaborative surfaces

The term "norcollaborative" offers a nuanced and specific characterization of
objects that present unique obstacles for 3D digitization using active or passive sensors.
While other descriptors such as "ttbaging" or "difficult"” may imply a broad category of
objects, the term "nenollaborative" is more precise and refers specifically to objects that
do not lend themselves well to the 3D digitization process. Theseallaborative objects
are typically hose that lack texture or contrast, are made of reflective or metallic materials,
or are translucent or transparent. For example, reflective or metallic objects can create
reflections or shadows that can obscure key features or details. Similarly, wahsiuc
transparent objects may be difficult to capture accurately betlaBght is not always
reflected in the same way. The use of the term-gwlaborative" emphasizes the fact that

these objects do not actively participate in the digitizationgg®cT hey require specialized
4



approaches and techniques that go beyond standard 3D digitization procedures using active
or passive sensors. By using this term, we can accurately describe the specific challenges
involved in capturing these objects digitallizighlighting the need for unique and

customized solutions.

a) textureless

b) reflective

c) transparent

Figurel-1. Variousobjects featuringion-collaborativesurfaces

Examples of different objects featuring rmoilaborative surfaces, including
textureless, metallic, reflective, and transparent.

Figure 1-1 show someexample of such necollaborative objectancluding
textureless surfacesFigure 1-1a) that cause problems or failures of imdgesed
approaches, glossy and reflective surfadegufe 1-1b) that cause problems for all 3D

measurement technologies, and transparent objegaré 1-1c) that do not diffusely

5



reflect thencoming light and do not have a texture of their own needed for image matching
tasks. Instead, because of refraction and specular reflections, their appearance depends on
the objectds shape, surrounding badingground

through the surface, distorting or changing the path of the light in the process.

1.3 Challenges with photogrammetry and photometric stereo

Among imagebased B reconstruction approacheghotometric stereo and
photogrammetry are two established techegyjin imagebased 3D reconstruction that
have gained attention from researchers. These methods are known for their cost
effectiveness, portability, and versatility in various applications, such as industrial
inspection and quality control, where a detait@dro-topography of surfaces is necessary.

Photogrammetry can generate a geometrically accurate and dense model-of a real
world object from a series of images of an object or a scene taken from various viewpoints
under the assumption of known materialsl dighting conditiongKarami et al. 2022c;
Luhmann et al., 2099 However, it is still challenging to achieve highcuracy 3D
measurement of necollaborative objects(Figure 1-1) due to the sensitivity of
photogranmetry to the textural properties of the surfg@émadabadian et al., 2019;
Sant ogi ;Karamadt al.,, 202dFar @xample, when the surface of an object is
featureless or displays repetitive patterns, methods based on feature extraction face
difficulties in finding a sufficient number of corresponding image points that are needed
for image orientatioffHosseininaveh et al., 2015; Karami et al., 20R1case of polished

and shiny surfaces, such as industrial and metallic compqifégise 1-1b), the incoming
6



light is subject to the law of reflection and is observed as specular reflection. Such
reflections, present in captured images, anelegirable and dense imagmatching
procedures produce noisy results on higthective and poorly textured obje¢seeFigure

1-2a). In transparent objects, the ability to diffusely reflect light is very limited, and in
addition, they are almost textureless. Due to refraction and Hikeoreflections, a part of

the surface recorded textures of such objects is not invariant to tkeac@swpoint being

also dependent on the object's shape, surrounding environment, and illumination
conditions.

(a) Photogrammetry (b) Photometric stereo

e el ,}-,

Figurel-2. Visual comparison between photogrammetry and photometric stereo.

Visual comparison between photogrammetry and photometric stereo in terms of
low and highfrequency information retrieved by the two techniqussa¢curate
low-frequency information but noisy 3D details derived with photogramméjry; (
high-details but deformed global shape derived with photometric stereo.
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Therefore, standard imadpased procedures like those implemented in SfM
applications become ineffectivedding to significant errors and, most frequently, failures
in the image matching and orientation procéfssgeininaveh et al., 2015; Wu et al., 2018;
Karami et al., 2022c

Photometric stereo, on the other hand, is an effective method a¢ledwe surface
normal using a set of images captured under various lighting condiimwiham, 198D
and applying the gradient fie(@cherr, 2017; Antensteiner et al., 20LBet al., 2020 to
directly compute object depth from surface normals. Tétadnique can recover a very
detailed topography of objects even with texti@®s or shiny surfacggi et al., 2020;
Jiddi et al., 202D Indeed, as the photometric stereo technique requires images captured
under multiple light directions, the problem sgecular reflection is partially mitigated.
However, a global deformation of the recovered 3D shape is generally [sessfigure
1-2b) due to ufulfilled assumptions and to simplifications made to the mathematical
model on how light interacts with the object surfé8éi et al., 2018; Ren et al., 2021,
Karami et al., 2022c¢in particular:

1 The surface of the object should have an ideal diffusectegn with no shadow
and specularities on the surface.

1 Light rays arriving at the surface should be parallel to each other.

1 Camera uses an orthogonal projection.

Furthermore, 3D data generated using a photometric stereo are produced up to a
scale factorand accurate scaling is not as straightforward as other techdiiguek as

photogrammetry.



1.4 Aimsand objectives of the research
Given the difficulties discussed in Section 1.3, the objectives of this research are as
follows:
1 Needs foran automatic data acquisition systemitable fordata collectionand
methodintegration
1 Aim at high precision and detailed 3D restruction of challenging objects
including textureless, reflectivand refractive objects.
1 Aim at differentmethodintegraion to overcome the constraints of one method by
leveraging the strengths of the other

1 Evaluatedifferentmethodologie®n challeging objects

1.5 Contributions

The major contributions presented in this thesis are:

1 Dewelopment ofanimage acquisition system based on the 4fiedat photometric
stereo lighting system suitable for integrating photogrammetry measurements and
photometric stere(Section3).

1 Development of @imple yet effective method for calibrating the geometry of the
lighting system and the camera interior and exterior orientation pararasiegs
some coded targets embedded in the stealso useful to address scaling and

transformation issue$séction3.2).



A novel algorithm for removing specular reflect®and shadow as well as
determining lighting direction and illumination attenuation at each surface point,
using the accurategeometryf t he | i ghting system and t
(Section4.2).

Development of three alternative approaches that take advantage of
photogranmetric 3D measurements to correct the global shape deviation of
photometric stereo depth caused sisngified assumptions such as orthogonal
projection, perfect diffuse reflection, or unknown error resougestiors 4.2.7-
4.2.9.

Development of & FFT-based filtering approach to fuse the high spatial
frequencies of photometric stereo with low frequencies from photogrammetry
(Sectiord.3).

Development of movel procedure that leverages B®image acquisition system
with multiple light sources to highlight roughness and microstructures of non
collaborative surfaces which are not visible under diffuse lighting direction. These
roughness are then used as a sort of chiaroscuro texture in inegatmn and
multi-view stereo (MVS) algorithms to ensure effective matching procedures
(Sectiord4.4).

Development of five differentmagebasedfusion methods(average, median,
albedo, GLCMbased, and deep learnibgsed}o select out the best graziaggle

regions and fuse them into a single, highly detailed, shado@ highlightfree
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1.6

image using the advantage of known geometry of the lighsygtem and the
approximate 3D shape of the objéSectiond.4.4).

Development of an objedtased fusion procedure by combining all itheividual

point clouds generated at various grazing angles in object space to generate a
reliable, accurate, and complete 3D reconstruction of theolbetborative surface
(Section4.4.5.

Development ofstructurefrom-motion (SfM) pipelinefor image matching and
image orientatioof refractive objectshrough everaging the low contrast textures
present on the surface of transparent objetCts.take full advantage of the
geometrical content of the patches, the normalized -c@msslation (NCC) must

be run on the gradient map of the grayscale image since applying NCC on grayscale

images of transparent objects is not robust eno8gbtipon4.5).

Overview and organization

The rest of the thesis is organized as follows:

Chapter2 reviews the related works for 3D reconstruction of-ooltaborative
objects featuring textureless, reflective, and refractivéaces

In chapter 3, we propose an automatic image acquisition system used for collecting
data

The variousleveloped anthvestigatednethodologies are introduced for generating

3D reconstruction of nenollaborative objects i€hapter.

11



Chapter5 presents theaesults achieved with the developed solutidos data
acquisitionand reports 3D reconstruction of Roollabordive surfaces and essential
analyses using the proposed algorithms.

Finally, conclusions are drawn and presented together with future research plans.

12



CHAPTER I

Literature



2.1 Introduction

In this chapter, we revievthe related worksor 3D reconstruction of nen

collaborative objects featuring textureless, reflectineetéllic and shiny objects), and

refractivesurfaceqtransparent and transluceat presented iRigure2-1.

» Monocular depth estimation
» Correction of RGB-D point cloud
» Fusion of multi-view depths

» PS & Multi view stereo

» PS & Range scanner

» PS & Photogrammetric disparity

» PS & Shape from silhouette

» PS & RGB-D sensors

» PS & Contact measurements (CMM)

Figure2-1. General taxonomy of 3D digitization of n@ollaborative surfaces.
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We havedivided noncollaborative objects into two groups based on their surface
characteristics and the need for different treatment to reconstruct their 3D models. The first
group includes transparent and translucent objects with similar surface propertigghti.e.
refraction and scattering) that may cause image distortions. We use four different
approaches, including shafrem-X, direct ray measurements, hybrid, and learsiaged
techniques, to correct these distortions.

The second group comprises textassl and metallic objects that do not allow light
to pass through, resulting in specular reflections instead of image distortions. We primarily
use three different methods, such as photogrammetry, photometric stereo, and hybrid

techniques, to treat this grp of objects.

2.2 Texture-less and shiny objects

In this Section, wesummarize theesearch works related to the 3D measurement
of noncollaborative surfaces including textureless and shiny objectshree tlifferent

categories: photogrammetry, photomestiereoandcombined methods

2.2.1 Photogrammetry

Photogrammetry has historically and widely been regarded as one of the most

effective techniques for 3D modeling of wadixturedobjects. Photogrammetry allows to
15



reconstructhe 3D shape of the object accurately and reliably compared to photometric
stereo. However, regions with poorly texture or repetitive patterns are difficult to
reconstruct since all reconstruction methods of this kind require matching correspondences
invaiousimage¢ Sant ogi et al ., 20 10verthelyears aiionsi nav e
photogrammetric methods have been developed to deal with the 3D reconstruction of such
nontcollaborative objects. In the case of textureless Lambertian olgevtra solutions

for enhancing the surface textaesuggested with, for example, thejectionof known
patterngMenna et al., 2017; Mousavi et al., 2p1&ndom(Hosseininaveh et al., 2015;
Ahmadabadian et al., 20L8r synthetic(S a n t o g 2019 Hafeex let.al., 202®nes

onto the object surface. For exampMymadabadian et a{2019)established a relatively
inexpensive automated image acquisition system used for 3D modeling of textureless
objects that works by projectingrandompattern mto the examined objed¥lenna et al.
(2017)have developed a similar automatic workflow based on the know pattern projection
such as structurdibht pattern for 3D digitization of heritage artifacts. Methods based on
the pattern projection improve therface texture and, as a result, the accuracy of the final
3D reconstruction when dealing with only Lambertian surfgbésusavi et al., 2018
However, these methods have problems when dealing with highly reflective surfaces with
heavy specular reflectioor interreflection(Ahmadabadian et al., 201®jousavi et al.,

2018. In the case of reflective objects, cross polarisgidinolae et al., 2014; Menna et

16



al., 2016)and image prprocessing approach@#/allis, 1976;shihet al., 2015Gaiani et

al.,, 2016 Calantropio et al., 2020have also been employed to decrease specular
reflections. However, these procedures may smooth off surface roughness or vary the
texture from one view to the next, affecting negatively the re@dieami et al., 20223).
Anothercommon approach is to spray the surface with a thin layer of white or colored
powder(Lin et al., 2017; Palousek et al., 2015; Pereira et al., 2ed®plso be used as a
common solution. However, powdering the object surface might be impractical when the
surfacetopography of an object is needatdhigh spatial resolutiosince theaddedlayer
increases the total object volume and can smootlooatinformation. Besides, surface
treatment is impossible in the case of delicate cultural heritage assetattome 3D
surface inspectiofKarami et al., 2022a; Lin et al., 2017; Palousek et al., 2015; Pereira et

al., 2019.

2.2.2 Photometric stereo

Photometric stereo is a technique for estimating an object's surface normal using
illumination changes, which wagdt proposedy Woodhanm(1980. Over the years, many
technigueqRostami et al.,, 2012; Antensteiner et al., 2018; Li et al., 820e been
developed to extract the geometry of objects from surface normalshsgrgdient field.

However, the classical photometric stereo approaches work with perfectly diffuse
17



(Lambertian) surfaces, which is often an improper assumption for maegt®lsuch as
metallic, glossy, and shiny. Therefore, the performance of such techniques degrades on
realtworld objects, which frequently exhibit ndrambertian reflectance such as
interreflection and specular reflecti¢8hi et al., 2018; Li et al., 202Ren et al., 2021
To address these issues, different approaches have been developed over the years. The first
group of approaches clagsgand removsthe specular highlights when dealing with non
Lambertian surfaces. For example, earlier approa¢Bdemon, and Ikeuchi, 1996;
Barsky, and Petrou, 20p8sed three illumination directions out of four at each surface
point in which the surface seems more Lambertian to approximate the direction of the
surface normal. Following this, several algorithms wereposed based on RANSAC
(Sunkavalli et al., 2000 graph cutgQuéau et al., 2037maximumlikelihood estimation
(Peng et al.,, 2037 using robust SVD(Cho et al., 2018 or Markov random field
(Chandraker et al., 20pTo extract Lambertian images imaore stable form. However,
more input images are also needed for statistical analysis. Moreover, their output
negatively affects complex objects with interreflection and speculative reflekcteoto the
large number obutliers innonLambertiansurface@Chen et al., 2018; Shi et al., 2018

Instead of discarding specular reflection as outliers, the second group of

investigationanodeled the behavior of the light usiaghonlinear analytic Bidirectional
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Reflectance Distribution Function (BRE)FIn this egard, different BRDF modelsere
developed such as the Ward mo@@&hung, and Jia, 2008the TorranceSparrow model
(Georghiades, 2003the specular spikg'eung et al., 2014 bivariate BRDKOtani et al.,
2019, symmetrybased approacfiu et al., 201Y, spatiallyvarying BRDF(Boss et al.,
2020 and etc. Unlike the previous group, they have the benefit of usorgavailable
data. The downside to such methods is that analytical models vary considerably érom on
object to the next and each is confined to a specific material class. Such approaches also
require a complex cad®y-case analysis of different content classes in th@@ingn et al.,
2018; Shi et al., 2028

Photometric sterebased methods, unlike plogrammetry techniques, can
reconstruct a very detailed surface's topography even withcol@borative objects
(Zheng et al., 2019; Karami et al. 202However, owing to some mathematical
assumptions, such as parallel light direction and orthogona&qpianj of the sensor, global
deformationof the reconstructed 3D shapgically exists(Fanet al., 2017; Shi et al.,
2018;Karami et al. 2021; Ren et al., 202The global shape deviation can vary depending

on the surface properties and dimensions efdhject. For instance, the generated 3D

1 BRDF is a mathematical model that describes the way light is reflected off a surface in diffextirdir

It takes into account the incoming light direction, the surface normal, and the viewing direction, among other
factors, to calculate the amount of light that is reflected in each direction. BRDF is typically used in
physicallybased rendering toegerate realistic images of 3D models under different lighting conditions.
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reconstruction can be deformed with a maximum shape deviation of about 13mm on a
Lambertian flat object with 340*270mm dimensions when ignoring the assumptions

mentioned abov@-anet al., 2017Karami et al. 2021

2.2.3Combined methods

Various researchers combined photometric stereo with other techniques such as
structured light or photogrammetry. In the developed methods;flaghency spatial
information is recovered from photometric stereo, whetleasther techniges are applied
to retrieve lowfrequency information. For example, Smithwick and Sei{202
proposed a Single Fiber Scanning Endoscope (SFSE) system for generating dense range
maps and 3D measurements based orfukien of photogrammetric and photomiet
stereo methods, providing precise volume measurements for dosage, risk estimate, and
healing progress analys&ghab et al(2005 combined 3D reconstruction generated from
a range scanner with photometric normals to improve the accuracy and level of detail.
Hernandez et a(2008)used a multview geometric constraint from shape from silhouette
(SFS) to mitigate photometric ster@dbow-frequency surface distortion. Although this
method is simple and flexible, it works only with particular parametric BRDF models
(Kaya et al., 2020a Several work¢Peng et al., 201 Zollhoferet al., 2018; Bylow et al.,

2019 combined photometrictasreo with RGBD sensors to derive the 3D details from
20



Photometric stereo while improving thav-frequency information using RGH data.
Later,Park et al(2013, 201%then after suggested an uncalibrated muaéiv photometric

stereo (MVPS) approachrfoecovering precise 3D reconstruction of the object utilizing a
coarse mesh with a 2D displacement map. However, the approach is unable to reconstruct
objects with a wide range of surface reflectance characteristics as well as textureless
surfaceqLi et al., 2020. Logothetis et al(2019 Proposed a new MVPS approach capable

of modeling objects with complex geometry where occlusions and/ or cast shadows may
occur. More recentlyRen et al(2020, 2021)ntegrated photometric stereo with sparse 3D
points generated using contact measurements (CMM) to correct the global distortion
caused by photometric stereo. The use of expensive technology restricts the method to
special laboratories and projects with particular metrological demands, despite the fact that
these systems may achieve high precision performahces.al. (2020) developed a

MVPS approach which uses a sparse 3D point to improve the geometry of the depth map
generated by photometric stereo. However, this procedure includes explicit geometric
modeling stages such as muliew depth propagation, isdepth contour estimation,
and/or tracing contours, which must be processed and completed properly in order to obtain
a 3D reconstruction of the surface making it more difficult, toorsuming, and
challenging. Furthermore, they used a turntable to rotate the object while keeping the

camera and light sources fixed in order to capture migdtv images, which means that
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the light sources are not constant from one view to the other. This could chanpgette

texture from one view to the other resulting in noise or false matching during the image
orientation and dense matching procédscently, &ew works have investigatdtle use

of different learningbased approachd&aya et al., 2022a; Kaya et ,aR022l) to fuse
photometric stereo and MVS for effectively utilizing their complementary strengths.
Although these approaches are simple and easy to use, they are much less precise than
traditional integration methods, making them unsuited for induapiaications where 3D
measurement precision and reliability are required. Furthermore, training such algorithms
necessitates large datasets labeled for a unique object type, making generalizatien to real

world objects problematic.

2.3 Transparent objects

In this Section, weprovide an overview ofesearch works related to the 3D
measurement of transparent surfasasmamarizing themnto four different categories:

shapefrom-X, direct ray measurements, hybrid, and learsfiaged approaches.
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2.3.1Shape from X

Severalapproaches known as Shape from X techniques have been developed for
extracting shape information from dMages, where X could be distortion, Silhouette,
reflection, polarization, heating, and so on.

Shape from distortion, also known adeflectometry, is one of the earliest
methods specifically developed for transparent objects. This technique recovers the 3D
shape of an object by analyzing the distortion of a known pattern placed behind or near the
surface. This approach has been ingaddd for long to reconstruct either mirtike
surfaces Tarini et al., 200} liquids Murase, 1990Gao et al., 2022 or solid refractive
surfaces BenrEzra and Nayar, 2003; Wetzstein et al., 2011; Tanaka et al., 2016; Kim et
al.,, 2013. The 3D recortsuction of refractive surfaces is more complex than the
corresponding specular, or texturelesgfaces because the ray path depends on the
refractive index in addition to the dependence on the surface natfat(al., 2018; Lyu
et al., 2020 These apmaches are also limited to the recovery of a single refractive surface
or the reconstruction of parametric surface with simple geometry and therefore are not
generalizable if not with approximation to a wider range of object catedivie®t al.,

2018; Lyu et al., 2020)
Shape from Silhouette (SFSis a weltknown 3D reconstruction method applied

to a wider range of object categories. This method reconstructs the 3D shape of an object
23



using a sequence of images taken from different views, where theesithofithe object

is the sole relevant feature of the image. Depending on the geometric projection of the
imaging system (e.g.: telecentric, central perspective) the silhouette of the object at each
station (image) can be seen as the base of a prismwanic #olume in threglimensional

space. The silhouette itself represents the locus of tangent points on the straight line
departing from the perspective center of the camera (for a central perspective). By
intersecting the pyramidal volumes, which is algmown as Space Carving, a 3D
reconstruction of an object can be generated. This method was first preseBéearigart

in 1974 Since then, various versions of the SF&ehaeen proposed. For exampartin

and Aggarwal (1983used volumetric descriptignto represent the reconstructed shape.
Following this, Potmesil (198Y used an octree data structure to speed up the 3D
reconstruction procesSzeliski (1993)uilt a noninvasive 3D digitizer using a turntable

and a single camera with SFS as the recoatsbn method.

SFS can recover the 3D shape of an obje
shape as long as the region of the object in each image is distinguishable from the
backgroundarami et al., 2022aHowever, the accuracy of SFS is dilpctepending on
the silhouette boundary binarization, which can be done using automated-defused
global thresholding of an image. In many cases, it might be difficult to determine the

optimum threshold for distinguishing transparent objects frorbalkground. As a result,
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the silhouette of an object may be reduced or increased, making the resulting 3D model
smaller or larger than the real size of the object or making it noisier. Moreover, another
primary issue with SFS is that concavities on araly surface remain unseen, finding it
unsuitable for reconstructing the inside of a hole or concave &aeanii et al., 2022a
To deal with this issueZuo et al. (2015)ncorporate internal occluding contours into
traditional SFS methods to recovketconcavities on an object's surfagai et al. (2018)
and Lyuet al. (2020)started with an initial 3D shape reconstruction generated from
traditional SFS, and then gradually optimizes the model.

Shape from reflection/refraction is also another approaattroduced for the first
time byMorris and Kutulakos (200D recover the 3D shape of transparent objddtis
approach usually describes the behavior of rays as they pass through a refractive object by
controlling the background behind the refractibgeotitself (Morris and Kutulakos, 2007;
Yeung et al. 2015; Han et al., 2021

However, this method may be challenging and inefficient when it comes to
collecting data. Mreover it is necessary to manually rotate a spotlight around the
hemisphere to illuminate the object and a reference sphere from various angles. Following
a similar ideayYeung et al. (2015)sed a more convenient data collection method to obtain
the specular régction information on the surface of a transparent object and applies the

graph cut theory to recover and optimize the normal vectors, consequently the depth map.
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Although the results are insufficiently precise for industrial inspection, they are prgmisin
for 3D computer graphics animation.

Iwabuchi et al. (20113lso presented a similar method based on inversiaeing.
This method uses multipleCD cameraplaced around a transparent object with simple
geometry and can recover the shape and refraatidex of the objecChariand Sturm
(2013)proposed a method that combines both geometric and radiometric information to do
reconstruction. The position and direction for each {jgth were recovered and combined
with light radiance at the beginnirand end of each lighgath. More recentlyiian et al.
(2021)employed a single camera that was set in place with a refractive object in front of a
checkerboard background. The approaajuired two images with the background pattern
placed in twdifferent knownlocations. However, the approach required a change in
refractive index, necessitating immersion of the object in water, which is a significant
disadvantage for industrial purposes.

Shape from Polarization (SFPMiyazaki et al., (200 Huynh et al(2010),and
Sun et al(2020)recover the 3D shape of an object from polarization information of the
reflected light. The basic principle is that after capturing the polarization information such
as the intensity, degree of polarizatiamd polarizationphase angle, the surface normal
can be recovered by analyzing the relationship between the surface normal and the

polarization image formation model. This method has been applied on different object
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types with various reflection properties such as dietsctfHuynh et al., 201)) black
(Miyazaki et al., 2016)and transpareriMiyazaki et al., 2002; Huynh et al., 2010; Sun et
al., 2020 objects. This method is also quite robust and stabldifferent lighting
conditions such as indoors, outdoors, or unmterned illumination as long as incident
light is unpolarized@urou et al., 2020)These methods calculate surface normals, which
must afterward be convert@uto a height map. However, the results are highly vulnerable
to noise since they depend sgleh the weak shape cue supplied by polarization and do
not ensure integrabilitydurou et al., 2020 The ambiguity in polarization analysis is also
one of the main issues for this approach. To resolve the azimuth and zenith angle
ambiguity, for exampleMiyazaki et al. (2002used the polarization degree in the-far
infrared wavelength for estimating the surface orientatiostead of the visible
wavelength Stolz et al. (2012)proposed a multispectral method for deterimg the
optimal zenith angle More recently, ambiguities in this approach are adjusted by
combining with other approaches in which rough geometric information is provided such
as MultiView Stereo fliyazaki et al., 2004 light-path triangulationXu et al., 201Y, etc.
(Durou et al., 2020Karami et al., 2022a

Shape from heatingis another techniquier 3D reconstruction of transparent
objects Eren et al., 2009hat, unlike the previously described approaches, ignores the

refractive properties of the objetiaser range scanning of transparent objects is possible
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using an IR laser rather than visible light sitaeg-wave and thermal infrared spectrum is

not refacted by glass. This technique is based on the principle of infrared thermal imaging,
in which the infrared source heats up the object, and then tkengttive sensor detects

and records the geometric surface information of the objedireton et al. Z013)also
demonstrated a very similar approach for ksglecular objects utilizing higbower lasers.

Since these approaches utilized single laser spots as activating light sources, their
measurement areas and acquisition speed are restricted owingtitmehequired for
scanning. There are additional limitations in spatial resolution and precision because of the
size of the laser dots. To overcome these restrictBrad)m et al. (2016¥eveloped a
stereavision configuration consisting of two uncoolddng-wave infrared (LWIR)
cameras to detect the emitted heat radiation from an object induced by a pattern projection
unit generated by a CO2 laser. More recertindmann et al. (201@emonstrated real

time 3D thermographs with a 3tames per seconddme rate (fps). This technique is well
suited to applications where the geometry or temperature distribution of the objects is
rapidly changingLandmann et al. (2021developed a simplified and robust projection
approach based on a focused single thefrimgle that can rapidly scan across the object's
surface. Higher intensities were obtained using such focused single thermal fringe
compared to mukfringe projection, which increased acquisition speed while improving

measurement accuracy.
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2.3.2 Direct-ray measirements

Direct ray measurement techniques, which detect light rays directly, have for long
been utilized for refractive surface 3D reconstructidatulakos et al. (2008published
foundationawork on measuring the geometry of refractive objects usigbtiay
correspondences. By mapping the light rays which reach and depart from the object, the
geometry of transparent objects characterized by depths and surface normal can be
determined. As shown HRigure2-2, The projection of a point is defined by the 3D path(s)
that light would take to reach the camera, given an arbitrary 3D point p, a known viewpoint
¢, and a known image plane. As expresset& bulakos et al. (2008ygefractive surface
reconstruction problems are expressed #&M triangulation, where N represents view
points required for reconstruction, K represents refractive surface points on a piecewise
linear path, and M represents the fngmof calibrated reference points along the ray exiting

the refractive object.
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Refractive object

mirror-like object

Pm

Figure2-2. The geometry of NK-M triangulation.
The geometry of I&-M triangulation expressed kgutulakos et al. (2008)To
reach point g on the image plane, the light path from p crosses three surfaces,
including refractive and mirrctike ones, passing from three vertices, v1, v2, and
v3, which formfour segments. The objective of ligidth triangulation is to

estimate the normals and coordinates of the vertices using the known coordinates
of ¢, gand p.

However, methods based on ligydth triangulation are known to have collinearity
ambiguities aghe 3D surface point can be located anywhere along the optical ray that
passes through the pixel. To remove the ambiguU#gi et al. (2015assumed that the light
rays are refracted twice. They recovered the geometry of a transparenwithjectly ore
monocular image using a monitor controlling the background image without even needing

to immerse the object in the water.
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Morris and Kutulakos (2011gmployedstereo/multiple cameras to record the
refractivesurface, relying on a crossew normal constency constraint: the normals
computed using the pixgloint correspondences obtained from multiple viewpoints must
be consistent. Alternatively, s studies have been conductied estimate rayay
correspondences utilizing specific devices such as BoRéalet al., 201pand light field
probes Wetzstein et al., 2011; Tsai et al., 2D2¥ capturing the incident rays released
from the background and the exiting rageveling to the camera. Although 3D results
appear to be highly promising, the high cosuch devices is an important downside. In
addition, one of the main common shortcomings of the aforementioned approaches is that
they provide ont normals but noisy depths. To provide the boundary condition for the
integration of normal, they need poesume a planer surface near the boundéeye( al.,

2012; Karami et al., 2022aor approximate the border using noisy deptiler(is and
Kutulakos, 2011; Wetzstein et al., 201To address the restrictions mentioned abQvan

et al. (2017propose gositiorrtnormal consistency based on a global optimization method

to restore depth maps of the surface from front and back. Simikirty,et al. (2017)
proposed a method based on optimizing the object's shape and refractive index to minimize
the disparity between observed and simulated transmission/refraction rays traveling
through an object. It cannot, however, be applied to amsgommetric objects. Following

that, Wu et al. (2018expanded this technique and provided the-intnusive method to
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reconstuct the whole geometry of a transparent object; nevertheless, the results are always
oversmoothed due to their independent optimization and fieltv fusion of recovered

point clouds. LatelyLyu et al. (2020)expanded this work by optimizing directlizet
surface  mesh generated from the SFS method using differentiable rendering
algorithms.However, these approaches rely on feature correspondence across several
views to discover similar features for triangulation, requiring more assumptions and
constraing making it insufficient for actual industrial applications that must struggle with

a wide range of circumstances or environments.

2.3.3 Hybrid approaches

This group of methods includes combinations of different approaches. The primary
goal of combining two tdmiques is to overcome the constraints of one method by
leveraging the strengths of the other, allowing complete and precise 3D reconstruction of
optically norcooperative objects to be generatédr instance, SFS is considered a more
suitable and practid approach to reconstruct the 3D shape of transparent objects
regardless of objectds property and shape.
remain unseen. Therefore, some workangpel et al., 2002; Tosovic, 200Bave been

conducted to cora the problem of SFS by combining a structured light method.
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Narayan et al. (2015nerged the silhouette information and depth images on the
2D image domain, which can improve 3D reconstruction for concave and transparent
objects with interactive segmetitan. Ji et al. (2017also combined silhouette information
anddepth from an RGHD sensor to retrieve the missing surface of transparent objects.
First, they seek the 3D region from multiple views that includes the transparent object using
incorrect depthed by transparent materials. The 3D shape was then retrieved inside these
noisy areas using§FS technology.

Another solution developed to deal with transparent surfaces is to combine
SFPwith other approaches such as liglath triangulationXu et al.,2017) conventional
raytracing Miyazaki et al., 200), and Multi-View Stereo Kiyazaki et al., 200 For
instance,Miyazaki et al. (2007)developed a polarization raytracing approach, which
combines traditional raytracing (calculates the path of ligl#)ravith SFP(calculates the
polarization state of the light). Starting with an initial shape of the transparent object, by
modifying the shape, the difference between the input polarization data and the rendered
polarization data obtained by polarizati@ytracing was minimized.

More recentlyHe et al., (2022)leveloped a pipeline based on the fusion of the
laser tracking frame to frame (LTFtF) method and stereo vision to distinguish and extract
the reflected laser lines on the front surface from selasat reflection candidates caused

by the refraction of the transparent objects.
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2.3.4 Learning-based methods

Recently, many researchers have used (machine or deep) |caased)
approaches to solve the problem of measuring 3D transparent objects. Thesehagproa

could be categorized into three groups as follows.
2.3.4.1Multi -view 3D reconstruction

Li et al. (2020)suggested a physicallyased network for generating the 3D
geometry of transparent objects using multiple images acquired from different viewpoints
while also taking into account light transport patterns. More similaytoet al. (2020),
this method (i et al., 2020 optimizes surface normals corresponding to a {paojected
ray from both sides of the object using amatwork differentiable renderingyer, given
the visual hull construction as an initial 3D reconstruction. Despite the fact that their
method is less restrictive than previous ohga €t al., 2018; Lyu et al., 20Rthat utilized
multi-view images, it still requires the environment mag ¢he object's refraction index.

It is also difficult tobe used in redime applications because of the thtmEnsuming
optimization procedure. Furthermotkese datalriven algorithms rely on training
synthetic images singgetting a significant quanyi of real image training data is

difficult (Lyu et al., 202D
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Recently, Mildenhall et al. (202@yroposedNeRF (Neural Radiance Fieldshich
is a 3D scene representation technique for implicit 3D reconstruction. The original NeRF
method uses a neuraltm®rk to learn a representation of the 3D shape of an object from
2D images. Although NeRF provides an alternative solution for 3D reconstruaftion
transparent objectsompared to traditional photogrammetry methods and can produce
promising results isituations where photogrammetry may fail to deliver accurate results,
it still faces several limitations (Zhang et al., 2021; Barron et al., 2022; Guo et al,, 2022
Yu et al., 2022 Some of the main issues from a 3D metrological perspective that need to
be considered includiae 3D mesh resolutiongquiring significant amounts of computing
power and memoryrequiring a large number of input images with small baselines.
However, in recent years, researchers have proposed several modifications and extension
to the original NeRF method to improve its performance for various scenkoos.
exmaplesresearcherbBave focused on improving the resolution of the generated mesh in
different way including model acceleration (Muller et al., 2022), compression @Zlakn
2022, and relighting (Verbin et al., 20283 o0meworks Jain et al., 2021Yu et al., 2022;
Niemeyer et al., 2022) have aimed to reduce the number of input infagesprove the
accuracy of 3D reconstruction in the presence of noise, previodgesthavealso

incorporated various priors including semantic similarity (Jain et al.,, 2021), depth
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smoothness (Niemeyer et al., 2022), surface smoothness (Zhang etBl. Medrthattan

world assumptions (Guo et al., 2022), and monocular geometric (rioest al., 2022).
2.3.4.2Depth completion (from partial RGB-D depths)

These approaches use different learsbaged methods to fill in missing depths
(where transparent objects are) acquired with an ®G®nsor Figure2-3). Sajjan et al.
(2020) presented a deep learning approach (named ClearGrasp) for predicting the 3D
geometry of transparent objects partly surveyed with an-BGBnsor. Deep networks are
usedto identify masks, occlusion borders, and surface normals given RGB images, and
then the initial depth is optimized usitite network predictions. The optimization,
however, needs transparent objects having interaction boundaries withansparent
objects. Otherwise, the depth of the transparent region remains unprediEighle.2-3
shows an example of a depth completion using the meth&ajgin et al. (2020)the
missing parts of the scene (where both transparent objects are located) are predicted and
the new point cloud is more complete.

Zhu et al. (2021proposed another learnitgised technique which uses a local implicit
neural representian built on rayvoxel pairsthat can generalize to unseen objects and

fill in missing depth on given noisy depth maps.
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b) Input incomplete RGEB®

depth c) Depth completion

a) Input Image

Figure2-3. Depth completion using a learndbgsed method
Depth completion using a learnidzased method (Sajjan et al., 2020): a depth
map of a scene with two transparent objects (glass bottle and tea cup) placed at

the scene. Given @&GB input image (a) with an uncompleted depth map (b), the
missing areas from input depth were predicted (c).

2.3.4.3Monocular shape prediction

This group of approaches requires only a single image as input in order to predict
the 3D shape of transparent obje@tets et al. (2019proposed a deep convolutional
neural network (CNN) method for determining depths and normals tr@@ngparent
objectusinga single image obtained underarbitrary environment map. More recently,
Eppel et al. (2022presented a metl for predicting 3D points of transparent objects
straight from an image taken from unknown source using an advanced neural net that is
independent of camera parameters. In this method, each pixel in the predicted map is

assigned with the X, Y, Z coordites of a point rather than the distances to that point. To
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train the net, 50k transparent container images containing 13k different objects, 500
different environments, and 1450 material textures were utilized. A total of 164a0ddl
transparent imagesf various containers with depth maps were also utilized. Instead of
using absolute XYZ coordinates to calculate the training loss, the distance between pairs
of points inside the 3D model was utilized, making the loss function translation invariant.

Unlike previous methods, this approach does not require camera parameters and
can work with images from unknown cameras. The method was designed for specific
manipulation applications of transparent chemical bins but with specHi@ingng
operations,ticould be generalized to other objects.

a) bottle of water b) glass bottle c) transparent teacup

s

Figure2-4. Monocular shape prediction

Learningbased 3D reconstruction of three transparent obj@otdtle of water,
glass bottle, and teacup) from a single image basddppel et al. (2022).
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Figure2-4 shows some results obtained using the method preseriggah et al.
(2022) It can be seen that the predicted 3D shape is only an approximate 3D shape with

also anisotropic scaling issuesmnaining unsolved.

2.4 Summary

In this chaptey we presented a general overview of 3D digitization methods for
norrcooperative objects featuring textwasd, reflection, and refraction. First, we reviewed
the related investigations for 3Bconstruction of textureless and reflection surfaces using
photogrammetry, photometric steremdthe combired methodsThen, the most relevant
research works for 3D reconstruction of transparent objects were reviewed, summarizing
them into four categaes, including shapom-X, direct ray measurements, hybrid, and

learningbased.
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CHAPTER I

Data capturing



3.1 Introduction

In this chapter, we aim to proposar automatic image acquisition systerhich
is used forcollecting data suitable forthe integration ofboth photogrammetryand
photometricstereo approache¥he general overview of theroposed image acquisition
systemwith its calibration stepss summarized irFigure 3-1. In order to prepare for the
data processing that will be discusse@€apter 4an automatic image acquisition system
is developed to capture multiple images under varying illuminations and from different
camera stations (camera positiod%) this end,wo image acquisition systems (Single and

multi-synchronized cameras) along with their system calibrgtiooessarepresented

3.2 Proposed data acquisition system

In this section, tw@utomatic and serautomatic image acquisition systems based
on the neafield photometric stereo lighting system are presented, which are suitable for
integrating photogrammetry measurements and photometric stable 3-1 shows a

summay of the specifed feaures for each system.
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Figure3-1. The general overview of tlmapturingsystemwith its calibrationsteps
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