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Abstract 

Image-based 3D reconstruction has been employed in industrial metrology for 

micro measurements and quality control purposes. However, generating a highly-detailed 

and reliable 3D reconstruction of non-collaborative surfaces (textureless, shiny, and 

transparent) is still an open issue. This thesis presents various methodologies to 

successfully generate a highly-detailed and reliable 3D reconstruction of non-collaborative 

objects using the proposed photometric stereo image acquisition system. The first proposed 

method employs geometric construction to integrate photogrammetry and photometric 

stereo in order to overcome each technique's limitations and to leverage each technique's 

strengths in order to reconstruct an accurate and high-resolution topography of non-

collaborative surfaces. This method uses accurate photogrammetric 3D measurements to 

rectify the global shape deviation of photometric stereo meanwhile uses photometric stereo 

to recover the high detailed topography of the object. The second method combines the 

high spatial frequencies of photometric stereo depth map with the low frequencies of 

photogrammetric depth map in frequency domain to produce accurate low frequencies 

while retaining high frequencies. For the third approach, we utilize light directionality to 

improve texture quality by leveraging shade and shadow phenomena using the proposed 

image-capturing system that employs several light sources for highlighting roughness and 

microstructures on the surface. And finally, we present two methods that effectively orient 

images by leveraging the low-contrast textures highlighted on object surfaces (roughness 

and 3D microstructures) using proper lighting system. Various objects with different 



 

 

surface characteristics including textureless, reflective, and transparent are used to evaluate 

different proposed approaches. To assess the accuracy of each approach, a comprehensive 

comparison between reference data and generated 3D points is provided. 
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1.1 Background 

3D reconstruction in computer vision and photogrammetry is the process of 

recovering the shape and appearance of a real-world object starting with data acquisition 

and ending with 3D visualization on a computer. It is an interesting and long-running task 

in computer vision and photogrammetric communities. There has, for long, been a demand 

for accurate and reliable 3D measurements in various application fields (Sansoni et al., 

2009; Luhmann et al., 2010; Yang et al., 2023). For example, in industrial applications, 3D 

measurements are used for quality inspection of welds (Rodríguez-Martín et al., 2015), 

checking the strength of materials (Shmueli et al., 2015), reverse engineering of complex 

and free-form objects (Carbone et al., 2001), or measuring the 3D dimension of complex 

surfaces (Hosseininaveh et al., 2015). In almost all of the applications mentioned above, 

high geometric accuracy, and high-resolution details of the 3D reconstruction along with 

low cost, portability, and þexibility of the method are required (Luhmann et al., 2019; 

Karami et al., 2022c). 

Generally, existing approaches for 3D reconstruction are classified into contact and 

non-contact methods (Luhmann et al., 2019). Contact-based methods usually use some 

physical equipment such as coordinate measuring machines, or calipers to measure the 3D 

shape of an object. Even though precise geometrical 3D measurements are possible and 

suited for many applications, they have some drawbacks. For example, the process of 

acquiring data is extremely time-consuming; sparse 3D data is reconstructed from the 

object; some parts of the object might remain unmeasured due to object shape complexity 

and the systemôs restrictions in measuring; in other situations, such as with antique, soft, 
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or deformable objects, these methods are not appropriate due to the risk of damaging the 

object during the measurement process; these equipment are required to be protected from 

temperature variation and vibration in a controlled-environment. 

In contrast, 3D reconstruction is achieved using non-contact methods that can 

overcome the drawback of contact-based techniques. These approaches, according to the 

type of sensor used, are divided into active and passive. Active methods project structured 

light, or lasers on the object and detect them using a camera to generate 3D shape of an 

object while passive methods rely on other sources of energy (e.g. natural sunlight). 

Current active approaches rely on costly technologies such as laser scanning arms, 

structured light systems, or confocal white light; in addition to this, they may be impractical 

in some cases such as deformable objects. Passive image-based approaches (such as 

photogrammetry, photometric stereo, shape from shading, shape from texture, shape from 

specularity, shape from contour, or shape from 2D edge) reconstruct 3D shape of an object 

from 2D images using different mathematical models.  

While active methods have advantages in terms of accuracy and robustness, they 

are often more expensive, less flexible, and require more complex equipment setups. 

Passive image-based methods, such as photogrammetry and photometric stereo, are 

becoming increasingly popular due to their cost-effectiveness, portability, and flexibility 

in a wide range of applications, including industrial inspection (Barazzetti et al., 2012; 

Karami et al., 2022c) and quality control (Sansoni et al., 2009; Rodríguez-Martín et al., 

2015; Luhmann et al., 2019), where highly detailed micro-topography of surfaces is 

required. 
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However, passive image-based methods have limitations, including sensitivity to 

lighting conditions, and the textural properties of the surface, which can result in failure. 

Despite these challenges, image-based methods are gaining more attention recently 

because of advancements in image processing algorithms and hardware capabilities. These 

advancements have led to improved accuracy, robustness, and performance of passive 

image-based methods, making them a viable option for 3D reconstruction of non-

collaborative objects. Additionally, with the increasing availability and affordability of 

high-quality cameras and software, image-based methods have become more accessible to 

researchers and industries. 

1.2 Objects with non-collaborative surfaces  

The term "non-collaborative" offers a nuanced and specific characterization of 

objects that present unique obstacles for 3D digitization using active or passive sensors. 

While other descriptors such as "challenging" or "difficult" may imply a broad category of 

objects, the term "non-collaborative" is more precise and refers specifically to objects that 

do not lend themselves well to the 3D digitization process. These non-collaborative objects 

are typically those that lack texture or contrast, are made of reflective or metallic materials, 

or are translucent or transparent. For example, reflective or metallic objects can create 

reflections or shadows that can obscure key features or details. Similarly, translucent or 

transparent objects may be difficult to capture accurately because the light is not always 

reflected in the same way. The use of the term "non-collaborative" emphasizes the fact that 

these objects do not actively participate in the digitization process. They require specialized 
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approaches and techniques that go beyond standard 3D digitization procedures using active 

or passive sensors. By using this term, we can accurately describe the specific challenges 

involved in capturing these objects digitally, highlighting the need for unique and 

customized solutions. 

a) textureless 

   

b) reflective 

   

c) transparent  

   

Figure 1-1. Various objects featuring non-collaborative surfaces. 

Examples of different objects featuring non-collaborative surfaces, including 

textureless, metallic, reflective, and transparent. 

Figure 1-1 show some example of such non-collaborative objects including 

textureless surfaces (Figure 1-1a) that cause problems or failures of image-based 

approaches, glossy and reflective surfaces (Figure 1-1b) that cause problems for all 3D 

measurement technologies, and transparent objects (Figure 1-1c) that do not diffusely 
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reflect the incoming light and do not have a texture of their own needed for image matching 

tasks. Instead, because of refraction and specular reflections, their appearance depends on 

the objectôs shape, surrounding background, and lighting conditions with light traveling 

through the surface, distorting or changing the path of the light in the process. 

1.3 Challenges with photogrammetry and photometric stereo 

Among image-based 3D reconstruction approaches, photometric stereo and 

photogrammetry are two established techniques in image-based 3D reconstruction that 

have gained attention from researchers. These methods are known for their cost-

effectiveness, portability, and versatility in various applications, such as industrial 

inspection and quality control, where a detailed micro-topography of surfaces is necessary. 

Photogrammetry can generate a geometrically accurate and dense model of a real-

world object from a series of images of an object or a scene taken from various viewpoints 

under the assumption of known materials and lighting conditions (Karami et al. 2022c; 

Luhmann et al., 2019). However, it is still challenging to achieve high-accuracy 3D 

measurement of non-collaborative objects (Figure 1-1) due to the sensitivity of 

photogrammetry to the textural properties of the surface (Ahmadabadian et al., 2019; 

Santoġi et al., 2019; Karami et al., 2022a). For example, when the surface of an object is 

featureless or displays repetitive patterns, methods based on feature extraction face 

difficulties in finding a sufficient number of corresponding image points that are needed 

for image orientation (Hosseininaveh et al., 2015; Karami et al., 2021). In case of polished 

and shiny surfaces, such as industrial and metallic components (Figure 1-1b), the incoming 
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light is subject to the law of reflection and is observed as specular reflection. Such 

reflections, present in captured images, are undesirable and dense image-matching 

procedures produce noisy results on high-reflective and poorly textured objects (see Figure 

1-2a). In transparent objects, the ability to diffusely reflect light is very limited, and in 

addition, they are almost textureless. Due to refraction and mirror-like reflections, a part of 

the surface recorded textures of such objects is not invariant to the camera viewpoint being 

also dependent on the object's shape, surrounding environment, and illumination 

conditions.  

(a) Photogrammetry (b) Photometric stereo 

  

  

  

Figure 1-2. Visual comparison between photogrammetry and photometric stereo. 

Visual comparison between photogrammetry and photometric stereo in terms of 

low and high-frequency information retrieved by the two techniques. (a) accurate 

low-frequency information but noisy 3D details derived with photogrammetry; (b) 

high-details but deformed global shape derived with photometric stereo. 
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Therefore, standard image-based procedures like those implemented in SfM 

applications become ineffective, leading to significant errors and, most frequently, failures 

in the image matching and orientation process (Hosseininaveh et al., 2015; Wu et al., 2018; 

Karami et al., 2022c). 

Photometric stereo, on the other hand, is an effective method able to retrieve surface 

normal using a set of images captured under various lighting conditions (Woodham, 1980) 

and applying the gradient field (Scherr, 2017; Antensteiner et al., 2018; Li et al., 2020) to 

directly compute object depth from surface normals. This technique can recover a very 

detailed topography of objects even with texture-less or shiny surfaces (Li et al., 2020; 

Jiddi et al., 2020). Indeed, as the photometric stereo technique requires images captured 

under multiple light directions, the problem of specular reflection is partially mitigated. 

However, a global deformation of the recovered 3D shape is generally present (see Figure 

1-2b) due to unfulfilled assumptions and to simplifications made to the mathematical 

model on how light interacts with the object surface (Shi et al., 2018; Ren et al., 2021; 

Karami et al., 2022c), in particular: 

¶ The surface of the object should have an ideal diffuse reflection with no shadow 

and specularities on the surface. 

¶ Light rays arriving at the surface should be parallel to each other. 

¶ Camera uses an orthogonal projection. 

Furthermore, 3D data generated using a photometric stereo are produced up to a 

scale factor, and accurate scaling is not as straightforward as other techniquesðsuch as 

photogrammetry. 
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1.4 Aims and objectives of the research 

Given the difficulties discussed in Section 1.3, the objectives of this research are as 

follows: 

¶ Needs for an automatic data acquisition system suitable for data collection and 

method integration. 

¶ Aim at high precision and detailed 3D reconstruction of challenging objects 

including textureless, reflective, and refractive objects. 

¶ Aim at different method integration to overcome the constraints of one method by 

leveraging the strengths of the other.  

¶ Evaluate different methodologies on challenging objects. 

1.5 Contributions   

The major contributions presented in this thesis are:  

¶ Development of an image acquisition system based on the near-field photometric 

stereo lighting system suitable for integrating photogrammetry measurements and 

photometric stereo (Section 3). 

¶ Development of a simple yet effective method for calibrating the geometry of the 

lighting system and the camera interior and exterior orientation parameters using 

some coded targets embedded in the scene ï also useful to address scaling and 

transformation issues (Section 3.2). 
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¶ A novel algorithm for removing specular reflections and shadows, as well as 

determining lighting direction and illumination attenuation at each surface point, 

using the accurate geometry of the lighting system and the objectôs sparse 3D shape 

(Section 4.2). 

¶ Development of three alternative approaches that take advantage of 

photogrammetric 3D measurements to correct the global shape deviation of 

photometric stereo depth caused by simplified assumptions such as orthogonal 

projection, perfect diffuse reflection, or unknown error resources (Sections 4.2.7 - 

4.2.9). 

¶ Development of an FFT-based filtering approach to fuse the high spatial 

frequencies of photometric stereo with low frequencies from photogrammetry 

(Section 4.3). 

¶ Development of a novel procedure that leverages the PS image acquisition system 

with multiple light sources to highlight roughness and microstructures of non-

collaborative surfaces which are not visible under diffuse lighting direction. These 

roughness are then used as a sort of chiaroscuro texture in image orientation and 

multi-view stereo (MVS) algorithms to ensure effective matching procedures 

(Section 4.4). 

¶ Development of five different image-based fusion methods (average, median, 

albedo, GLCM-based, and deep learning-based) to select out the best grazing-angle 

regions and fuse them into a single, highly detailed, shadow- and highlight-free 
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image using the advantage of known geometry of the lighting system and the 

approximate 3D shape of the object (Section 4.4.4). 

¶ Development of an object-based fusion procedure by combining all the individual 

point clouds generated at various grazing angles in object space to generate a 

reliable, accurate, and complete 3D reconstruction of the non-collaborative surface 

(Section 4.4.5). 

¶ Development of structure-from-motion (SfM) pipeline for image matching and 

image orientation of refractive objects through leveraging the low contrast textures 

present on the surface of transparent objects. To take full advantage of the 

geometrical content of the patches, the normalized cross-correlation (NCC) must 

be run on the gradient map of the grayscale image since applying NCC on grayscale 

images of transparent objects is not robust enough (Section 4.5). 

1.6 Overview and organization 

The rest of the thesis is organized as follows:  

¶ Chapter 2 reviews the related works for 3D reconstruction of non-collaborative 

objects featuring textureless, reflective, and refractive surfaces.  

¶ In chapter 3, we propose an automatic image acquisition system used for collecting 

data. 

¶ The various developed and investigated methodologies are introduced for generating 

3D reconstruction of non-collaborative objects in Chapter 4.  



 

 

12 

 

¶ Chapter 5 presents the results achieved with the developed solutions for data 

acquisition, and reports 3D reconstruction of non-collaborative surfaces and essential 

analyses using the proposed algorithms.  

¶ Finally, conclusions are drawn and presented together with future research plans. 
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2.1 Introduction  

In this chapter, we review the related works for 3D reconstruction of non-

collaborative objects featuring textureless, reflective (metallic and shiny objects), and 

refractive surfaces (transparent and translucent) as presented in Figure 2-1. 

 

Figure 2-1. General taxonomy of 3D digitization of non-collaborative surfaces. 
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We have divided non-collaborative objects into two groups based on their surface 

characteristics and the need for different treatment to reconstruct their 3D models. The first 

group includes transparent and translucent objects with similar surface properties (i.e., light 

refraction and scattering) that may cause image distortions. We use four different 

approaches, including shape-from-X, direct ray measurements, hybrid, and learning-based 

techniques, to correct these distortions. 

The second group comprises textureless and metallic objects that do not allow light 

to pass through, resulting in specular reflections instead of image distortions. We primarily 

use three different methods, such as photogrammetry, photometric stereo, and hybrid 

techniques, to treat this group of objects. 

2.2 Texture-less and shiny objects  

In this Section, we summarize the research works related to the 3D measurement 

of non-collaborative surfaces including textureless and shiny objects into three different 

categories: photogrammetry, photometric stereo, and combined methods. 

2.2.1 Photogrammetry 

Photogrammetry has historically and widely been regarded as one of the most 

effective techniques for 3D modeling of well-textured objects. Photogrammetry allows to 
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reconstruct the 3D shape of the object accurately and reliably compared to photometric 

stereo. However, regions with poorly texture or repetitive patterns are difficult to 

reconstruct since all reconstruction methods of this kind require matching correspondences 

in various images (Santoġi et al., 2019; Hosseininaveh et al., 2015). Over the years, various 

photogrammetric methods have been developed to deal with the 3D reconstruction of such 

non-collaborative objects. In the case of textureless Lambertian objects, several solutions 

for enhancing the surface texture are suggested with, for example, the projection of known 

patterns (Menna et al., 2017; Mousavi et al., 2018), random (Hosseininaveh et al., 2015; 

Ahmadabadian et al., 2019) or synthetic (Santoġi et al., 2019; Hafeez et al., 2022) ones 

onto the object surface. For example, Ahmadabadian et al. (2019) established a relatively 

inexpensive automated image acquisition system used for 3D modeling of textureless 

objects that works by projecting a random pattern onto the examined object. Menna et al. 

(2017) have developed a similar automatic workflow based on the know pattern projection 

such as structured-light pattern for 3D digitization of heritage artifacts. Methods based on 

the pattern projection improve the surface texture and, as a result, the accuracy of the final 

3D reconstruction when dealing with only Lambertian surfaces (Mousavi et al., 2018). 

However, these methods have problems when dealing with highly reflective surfaces with 

heavy specular reflection or interreflection (Ahmadabadian et al., 2019; Mousavi et al., 

2018). In the case of reflective objects, cross polarisation (Nicolae et al., 2014; Menna et 
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al., 2016) and image pre-processing approaches (Wallis, 1976; shih et al., 2015; Gaiani et 

al., 2016; Calantropio et al., 2020) have also been employed to decrease specular 

reflections. However, these procedures may smooth off surface roughness or vary the 

texture from one view to the next, affecting negatively the results (Karami et al., 2022b). 

Another common approach is to spray the surface with a thin layer of white or colored 

powder (Lin et al., 2017; Palousek et al., 2015; Pereira et al., 2019) can also be used as a 

common solution. However, powdering the object surface might be impractical when the 

surface topography of an object is needed at high spatial resolution since the added layer 

increases the total object volume and can smooth out local information. Besides, surface 

treatment is impossible in the case of delicate cultural heritage assets, or real-time 3D 

surface inspection (Karami et al., 2022a; Lin et al., 2017; Palousek et al., 2015; Pereira et 

al., 2019). 

2.2.2 Photometric stereo 

Photometric stereo is a technique for estimating an object's surface normal using 

illumination changes, which was first proposed by Woodham (1980). Over the years, many 

techniques (Rostami et al., 2012; Antensteiner et al., 2018; Li et al., 2020) have been 

developed to extract the geometry of objects from surface normals using the gradient field. 

However, the classical photometric stereo approaches work with perfectly diffuse 
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(Lambertian) surfaces, which is often an improper assumption for many objects such as 

metallic, glossy, and shiny. Therefore, the performance of such techniques degrades on 

real-world objects, which frequently exhibit non-Lambertian reflectance such as 

interreflection and specular reflection (Shi et al., 2018; Li et al., 2020; Ren et al., 2021). 

To address these issues, different approaches have been developed over the years. The first 

group of approaches classifies and removes the specular highlights when dealing with non-

Lambertian surfaces. For example, earlier approaches (Solomon, and Ikeuchi, 1996; 

Barsky, and Petrou, 2003) used three illumination directions out of four at each surface 

point in which the surface seems more Lambertian to approximate the direction of the 

surface normal. Following this, several algorithms were proposed based on RANSAC 

(Sunkavalli et al., 2010), graph cuts (Quéau et al., 2017), maximum-likelihood estimation 

(Peng et al., 2017), using robust SVD (Cho et al., 2018), or Markov random field 

(Chandraker et al., 2007) to extract Lambertian images in a more stable form. However, 

more input images are also needed for statistical analysis. Moreover, their output 

negatively affects complex objects with interreflection and speculative reflection due to the 

large number of outliers in non-Lambertian surfaces(Chen et al., 2018; Shi et al., 2018). 

Instead of discarding specular reflection as outliers, the second group of 

investigations modeled the behavior of the light using a nonlinear analytic Bidirectional 
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Reflectance Distribution Function (BRDF1). In this regard, different BRDF models were 

developed such as the Ward model (Chung, and Jia, 2008), the Torrance-Sparrow model 

(Georghiades, 2003), the specular spike (Yeung et al., 2014), bivariate BRDF (Otani et al., 

2019), symmetry-based approach (Lu et al., 2017), spatially-varying BRDF (Boss et al., 

2020) and etc. Unlike the previous group, they have the benefit of using more available 

data. The downside to such methods is that analytical models vary considerably from one 

object to the next and each is confined to a specific material class. Such approaches also 

require a complex case-by-case analysis of different content classes in theory (Chen et al., 

2018; Shi et al., 2018).  

Photometric stereo-based methods, unlike photogrammetry techniques, can 

reconstruct a very detailed surface's topography even with non-collaborative objects 

(Zheng et al., 2019; Karami et al. 2021). However, owing to some mathematical 

assumptions, such as parallel light direction and orthogonal projection of the sensor, global 

deformation of the reconstructed 3D shape typically exists (Fan et al., 2017; Shi et al., 

2018; Karami et al. 2021; Ren et al., 2021). The global shape deviation can vary depending 

on the surface properties and dimensions of the object. For instance, the generated 3D 

 
1 . BRDF is a mathematical model that describes the way light is reflected off a surface in different directions. 

It takes into account the incoming light direction, the surface normal, and the viewing direction, among other 

factors, to calculate the amount of light that is reflected in each direction. BRDF is typically used in 

physically-based rendering to generate realistic images of 3D models under different lighting conditions. 
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reconstruction can be deformed with a maximum shape deviation of about 13mm on a 

Lambertian flat object with 340*270mm dimensions when ignoring the assumptions 

mentioned above (Fan et al., 2017; Karami et al. 2021). 

2.2.3 Combined methods 

Various researchers combined photometric stereo with other techniques such as 

structured light or photogrammetry. In the developed methods, high-frequency spatial 

information is recovered from photometric stereo, whereas the other techniques are applied 

to retrieve low-frequency information. For example, Smithwick and Seibel (2002) 

proposed a Single Fiber Scanning Endoscope (SFSE) system for generating dense range 

maps and 3D measurements based on the fusion of photogrammetric and photometric 

stereo methods, providing precise volume measurements for dosage, risk estimate, and 

healing progress analyses. Nehab et al. (2005) combined 3D reconstruction generated from 

a range scanner with photometric normals to improve the accuracy and level of detail. 

Hernandez et al. (2008) used a multi-view geometric constraint from shape from silhouette 

(SFS) to mitigate photometric stereo's low-frequency surface distortion. Although this 

method is simple and flexible, it works only with particular parametric BRDF models 

(Kaya et al., 2020a). Several works (Peng et al., 2017; Zollhöfer et al., 2018; Bylow et al., 

2019) combined photometric stereo with RGB-D sensors to derive the 3D details from 
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Photometric stereo while improving the low-frequency  information using RGB-D data. 

Later, Park et al. (2013, 2016) then after suggested an uncalibrated multi-view photometric 

stereo (MVPS) approach for recovering precise 3D reconstruction of the object utilizing a 

coarse mesh with a 2D displacement map. However, the approach is unable to reconstruct 

objects with a wide range of surface reflectance characteristics as well as textureless 

surfaces (Li et al., 2020). Logothetis et al. (2019) Proposed a new MVPS approach capable 

of modeling objects with complex geometry where occlusions and/ or cast shadows may 

occur. More recently, Ren et al. (2020, 2021) integrated photometric stereo with sparse 3D 

points generated using contact measurements (CMM) to correct the global distortion 

caused by photometric stereo. The use of expensive technology restricts the method to 

special laboratories and projects with particular metrological demands, despite the fact that 

these systems may achieve high precision performances. Li et al. (2020) developed an 

MVPS approach which uses a sparse 3D point to improve the geometry of the depth map 

generated by photometric stereo. However, this procedure includes explicit geometric 

modeling stages such as multi-view depth propagation, iso-depth contour estimation, 

and/or tracing contours, which must be processed and completed properly in order to obtain 

a 3D reconstruction of the surface making it more difficult, time-consuming, and 

challenging. Furthermore, they used a turntable to rotate the object while keeping the 

camera and light sources fixed in order to capture multi-view images, which means that 
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the light sources are not constant from one view to the other. This could change the object 

texture from one view to the other resulting in noise or false matching during the image 

orientation and dense matching process. Recently, a few works have investigated the use 

of different learning-based approaches (Kaya et al., 2022a; Kaya et al., 2022b) to fuse 

photometric stereo and MVS for effectively utilizing their complementary strengths. 

Although these approaches are simple and easy to use, they are much less precise than 

traditional integration methods, making them unsuited for industrial applications where 3D 

measurement precision and reliability are required. Furthermore, training such algorithms 

necessitates large datasets labeled for a unique object type, making generalization to real-

world objects problematic. 

2.3 Transparent objects  

In this Section, we provide an overview of research works related to the 3D 

measurement of transparent surfaces summarizing them into four different categories: 

shape-from-X, direct ray measurements, hybrid, and learning-based approaches. 
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2.3.1 Shape from X 

Several approaches known as Shape from X techniques have been developed for 

extracting shape information from 2D images, where X could be distortion, Silhouette, 

reflection, polarization, heating, and so on. 

Shape from distortion, also known as Deflectometry, is one of the earliest 

methods specifically developed for transparent objects. This technique recovers the 3D 

shape of an object by analyzing the distortion of a known pattern placed behind or near the 

surface. This approach has been investigated for long to reconstruct either mirror-like 

surfaces (Tarini et al., 2005), liquids (Murase, 1990; Gao et al., 2022), or solid refractive 

surfaces (Ben-Ezra and Nayar, 2003; Wetzstein et al., 2011; Tanaka et al., 2016; Kim et 

al., 2017). The 3D reconstruction of refractive surfaces is more complex than the 

corresponding specular, or textureless surfaces because the ray path depends on the 

refractive index in addition to the dependence on the surface normal (Wu et al., 2018; Lyu 

et al., 2020). These approaches are also limited to the recovery of a single refractive surface 

or the reconstruction of parametric surface with simple geometry and therefore are not 

generalizable if not with approximation to a wider range of object categories (Wu et al., 

2018; Lyu et al., 2020). 

Shape from Silhouette (SFS) is a well-known 3D reconstruction method applied 

to a wider range of object categories. This method reconstructs the 3D shape of an object 



 

 

 

24 

 

 

using a sequence of images taken from different views, where the silhouette of the object 

is the sole relevant feature of the image. Depending on the geometric projection of the 

imaging system (e.g.: telecentric, central perspective) the silhouette of the object at each 

station (image) can be seen as the base of a prismatic /conic volume in three-dimensional 

space. The silhouette itself represents the locus of tangent points on the straight line 

departing from the perspective center of the camera (for a central perspective). By 

intersecting the pyramidal volumes, which is also known as Space Carving, a 3D 

reconstruction of an object can be generated. This method was first presented by Baumgart 

in 1974. Since then, various versions of the SFS have been proposed. For example, Martin 

and Aggarwal (1983) used volumetric descriptions to represent the reconstructed shape. 

Following this, Potmesil (1987) used an octree data structure to speed up the 3D 

reconstruction process. Szeliski (1993) built a non-invasive 3D digitizer using a turntable 

and a single camera with SFS as the reconstruction method.  

SFS can recover the 3D shape of an object regardless of the objectôs property and 

shape as long as the region of the object in each image is distinguishable from the 

background (Karami et al., 2022a). However, the accuracy of SFS is directly depending on 

the silhouette boundary binarization, which can be done using automated or user-defined 

global thresholding of an image. In many cases, it might be difficult to determine the 

optimum threshold for distinguishing transparent objects from the background. As a result, 
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the silhouette of an object may be reduced or increased, making the resulting 3D model 

smaller or larger than the real size of the object or making it noisier. Moreover, another 

primary issue with SFS is that concavities on an object's surface remain unseen, finding it 

unsuitable for reconstructing the inside of a hole or concave areas (Karami et al., 2022a). 

To deal with this issue, Zuo et al. (2015) incorporate internal occluding contours into 

traditional SFS methods to recover the concavities on an object's surface. Wu et al. (2018) 

and Lyu et al. (2020) started with an initial 3D shape reconstruction generated from 

traditional SFS, and then gradually optimizes the model. 

Shape from reflection/refraction is also another approach introduced for the first 

time by Morris and Kutulakos (2007) to recover the 3D shape of transparent objects. This 

approach usually describes the behavior of rays as they pass through a refractive object by 

controlling the background behind the refractive object itself (Morris and Kutulakos, 2007; 

Yeung et al. 2015; Han et al., 2021). 

However, this method may be challenging and inefficient when it comes to 

collecting data. Moreover, it is necessary to manually rotate a spotlight around the 

hemisphere to illuminate the object and a reference sphere from various angles. Following 

a similar idea, Yeung et al. (2015) used a more convenient data collection method to obtain 

the specular reflection information on the surface of a transparent object and applies the 

graph cut theory to recover and optimize the normal vectors, consequently the depth map. 
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Although the results are insufficiently precise for industrial inspection, they are promising 

for 3D computer graphics animation.  

Iwabuchi et al. (2011) also presented a similar method based on inverse ray-tracing. 

This method uses multiple CCD cameras placed around a transparent object with simple 

geometry and can recover the shape and refraction index of the object. Chari and Sturm, 

(2013) proposed a method that combines both geometric and radiometric information to do 

reconstruction. The position and direction for each light-path were recovered and combined 

with light radiance at the beginning and end of each light-path. More recently, Han et al. 

(2021) employed a single camera that was set in place with a refractive object in front of a 

checkerboard background. The approach required two images with the background pattern 

placed in two different known locations. However, the approach required a change in 

refractive index, necessitating immersion of the object in water, which is a significant 

disadvantage for industrial purposes. 

Shape from Polarization (SFP) Miyazaki et al., (2002), Huynh et al. (2010), and 

Sun et al. (2020) recover the 3D shape of an object from polarization information of the 

reflected light. The basic principle is that after capturing the polarization information such 

as the intensity, degree of polarization, and polarization phase angle, the surface normal 

can be recovered by analyzing the relationship between the surface normal and the 

polarization image formation model. This method has been applied on different object 
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types with various reflection properties such as dielectrics (Huynh et al., 2010), black 

(Miyazaki et al., 2016), and transparent (Miyazaki et al., 2002; Huynh et al., 2010; Sun et 

al., 2020) objects. This method is also quite robust and stable in different lighting 

conditions such as indoors, outdoors, or under patterned illumination as long as incident 

light is unpolarized (Durou et al., 2020). These methods calculate surface normals, which 

must afterward be converted into a height map. However, the results are highly vulnerable 

to noise since they depend solely on the weak shape cue supplied by polarization and do 

not ensure integrability (Durou et al., 2020). The ambiguity in polarization analysis is also 

one of the main issues for this approach. To resolve the azimuth and zenith angle 

ambiguity, for example, Miyazaki et al. (2002) used the polarization degree in the far-

infrared wavelength for estimating the surface orientation instead of the visible 

wavelength. Stolz et al. (2012) proposed a multispectral method for determining the 

optimal zenith angle. More recently, ambiguities in this approach are adjusted by 

combining with other approaches in which rough geometric information is provided such 

as Multi-View Stereo (Miyazaki et al., 2004), light-path triangulation (Xu et al., 2017), etc. 

(Durou et al., 2020; Karami et al., 2022a). 

Shape from heating is another technique for 3D reconstruction of transparent 

objects (Eren et al., 2009) that, unlike the previously described approaches, ignores the 

refractive properties of the object. Laser range scanning of transparent objects is possible 
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using an IR laser rather than visible light since long-wave and thermal infrared spectrum is 

not refracted by glass. This technique is based on the principle of infrared thermal imaging, 

in which the infrared source heats up the object, and then the IR-sensitive sensor detects 

and records the geometric surface information of the object. Aubreton et al. (2013) also 

demonstrated a very similar approach for high-specular objects utilizing high-power lasers. 

Since these approaches utilized single laser spots as activating light sources, their 

measurement areas and acquisition speed are restricted owing to the time required for 

scanning. There are additional limitations in spatial resolution and precision because of the 

size of the laser dots. To overcome these restrictions, Brahm et al. (2016) developed a 

stereo-vision configuration consisting of two uncooled long-wave infrared (LWIR) 

cameras to detect the emitted heat radiation from an object induced by a pattern projection 

unit generated by a CO2 laser. More recently, Landmann et al. (2019) demonstrated real-

time 3D thermographs with a 30-frames per second frame rate (fps). This technique is well 

suited to applications where the geometry or temperature distribution of the objects is 

rapidly changing. Landmann et al. (2021) developed a simplified and robust projection 

approach based on a focused single thermal fringe that can rapidly scan across the object's 

surface. Higher intensities were obtained using such focused single thermal fringe 

compared to multi-fringe projection, which increased acquisition speed while improving 

measurement accuracy. 
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2.3.2 Direct-ray measurements 

Direct ray measurement techniques, which detect light rays directly, have for long 

been utilized for refractive surface 3D reconstruction. Kutulakos et al. (2008) published 

foundational work on measuring the geometry of refractive objects using light-ray 

correspondences. By mapping the light rays which reach and depart from the object, the 

geometry of transparent objects characterized by depths and surface normal can be 

determined. As shown in Figure 2-2, The projection of a point is defined by the 3D path(s) 

that light would take to reach the camera, given an arbitrary 3D point p, a known viewpoint 

c, and a known image plane. As expressed by Kutulakos et al. (2008), refractive surface 

reconstruction problems are expressed as N-K-M triangulation, where N represents view-

points required for reconstruction, K represents refractive surface points on a piecewise 

linear path, and M represents the number of calibrated reference points along the ray exiting 

the refractive object. 
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Figure 2-2. The geometry of N-K-M triangulation. 

The geometry of N-K-M triangulation expressed by Kutulakos et al. (2008). To 

reach point q on the image plane, the light path from p crosses three surfaces, 

including refractive and mirror-like ones, passing from three vertices, v1, v2, and 

v3, which form four segments. The objective of light-path triangulation is to 

estimate the normals and coordinates of the vertices using the known coordinates 

of c, q, and p. 

However, methods based on light-path triangulation are known to have collinearity 

ambiguities as the 3D surface point can be located anywhere along the optical ray that 

passes through the pixel. To remove the ambiguity, Tsai et al. (2015) assumed that the light 

rays are refracted twice. They recovered the geometry of a transparent object with only one 

monocular image using a monitor controlling the background image without even needing 

to immerse the object in the water. 
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Morris and Kutulakos (2011) employed stereo/multiple cameras to record the 

refractive surface, relying on a cross-view normal consistency constraint: the normals 

computed using the pixel-point correspondences obtained from multiple viewpoints must 

be consistent. Alternatively, some studies have been conducted to estimate ray-ray 

correspondences utilizing specific devices such as Bokode (Ye et al., 2012) and light field 

probes (Wetzstein et al., 2011; Tsai et al., 2021) by capturing the incident rays released 

from the background and the exiting rays traveling to the camera. Although 3D results 

appear to be highly promising, the high cost of such devices is an important downside. In 

addition, one of the main common shortcomings of the aforementioned approaches is that 

they provide only normals but noisy depths. To provide the boundary condition for the 

integration of normal, they need to presume a planer surface near the boundary (Ye et al., 

2012; Karami et al., 2022a) or approximate the border using noisy depths (Morris and 

Kutulakos, 2011; Wetzstein et al., 2011). To address the restrictions mentioned above, Qian 

et al. (2017) propose a position-normal consistency based on a global optimization method 

to restore depth maps of the surface from front and back. Similarly, Kim et al. (2017) 

proposed a method based on optimizing the object's shape and refractive index to minimize 

the disparity between observed and simulated transmission/refraction rays traveling 

through an object. It cannot, however, be applied to any non-symmetric objects. Following 

that, Wu et al. (2018) expanded this technique and provided the non-intrusive method to 
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reconstruct the whole geometry of a transparent object; nevertheless, the results are always 

over-smoothed due to their independent optimization and multi-view fusion of recovered 

point clouds. Lately, Lyu et al. (2020) expanded this work by optimizing directly the 

surface mesh generated from the SFS method using differentiable rendering 

algorithms. However, these approaches rely on feature correspondence across several 

views to discover similar features for triangulation, requiring more assumptions and 

constraints making it insufficient for actual industrial applications that must struggle with 

a wide range of circumstances or environments. 

2.3.3 Hybrid approaches  

This group of methods includes combinations of different approaches. The primary 

goal of combining two techniques is to overcome the constraints of one method by 

leveraging the strengths of the other, allowing complete and precise 3D reconstruction of 

optically non-cooperative objects to be generated. For instance, SFS is considered a more 

suitable and practical approach to reconstruct the 3D shape of transparent objects 

regardless of objectôs property and shape. However, the concavities on an object's surface 

remain unseen. Therefore, some works (Kampel et al., 2002; Tosovic, 2002) have been 

conducted to correct the problem of SFS by combining a structured light method. 
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Narayan et al. (2015) merged the silhouette information and depth images on the 

2D image domain, which can improve 3D reconstruction for concave and transparent 

objects with interactive segmentation. Ji et al. (2017) also combined silhouette information 

and depth from an RGB-D sensor to retrieve the missing surface of transparent objects. 

First, they seek the 3D region from multiple views that includes the transparent object using 

incorrect depth led by transparent materials. The 3D shape was then retrieved inside these 

noisy areas using SFS technology. 

Another solution developed to deal with transparent surfaces is to combine 

SFP with other approaches such as light-path triangulation (Xu et al., 2017), conventional 

raytracing (Miyazaki et al., 2007), and Multi -View Stereo (Miyazaki et al., 2004). For 

instance, Miyazaki et al. (2007) developed a polarization raytracing approach, which 

combines traditional raytracing (calculates the path of light rays) with SFP (calculates the 

polarization state of the light). Starting with an initial shape of the transparent object, by 

modifying the shape, the difference between the input polarization data and the rendered 

polarization data obtained by polarization raytracing was minimized. 

More recently, He et al., (2022) developed a pipeline based on the fusion of the 

laser tracking frame to frame (LTFtF) method and stereo vision to distinguish and extract 

the reflected laser lines on the front surface from several laser reflection candidates caused 

by the refraction of the transparent objects. 
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2.3.4 Learning-based methods 

Recently, many researchers have used (machine or deep) learning-based 

approaches to solve the problem of measuring 3D transparent objects. These approaches 

could be categorized into three groups as follows. 

2.3.4.1 Multi -view 3D reconstruction 

Li et al. (2020) suggested a physically-based network for generating the 3D 

geometry of transparent objects using multiple images acquired from different viewpoints 

while also taking into account light transport patterns. More similar to Lyu et al. (2020), 

this method (Li et al., 2020) optimizes surface normals corresponding to a back-projected 

ray from both sides of the object using an in-network differentiable rendering layer, given 

the visual hull construction as an initial 3D reconstruction. Despite the fact that their 

method is less restrictive than previous ones (Wu et al., 2018; Lyu et al., 2020) that utilized 

multi-view images, it still requires the environment map and the object's refraction index. 

It is also difficult to be used in real-time applications because of the time-consuming 

optimization procedure. Furthermore, these data-driven algorithms rely on training 

synthetic images since getting a significant quantity of real image training data is 

difficult  (Lyu et al., 2020). 
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Recently, Mildenhall et al. (2020) proposed NeRF (Neural Radiance Fields) which 

is a 3D scene representation technique for implicit 3D reconstruction. The original NeRF 

method uses a neural network to learn a representation of the 3D shape of an object from 

2D images. Although NeRF provides an alternative solution for 3D reconstruction of 

transparent objects compared to traditional photogrammetry methods and can produce 

promising results in situations where photogrammetry may fail to deliver accurate results, 

it still faces several limitations (Zhang et al., 2021; Barron et al., 2022; Guo et al., 2022; 

Yu et al., 2022). Some of the main issues from a 3D metrological perspective that need to 

be considered include the 3D mesh resolution, requiring significant amounts of computing 

power and memory, requiring a large number of input images with small baselines. 

However, in recent years, researchers have proposed several modifications and extensions 

to the original NeRF method to improve its performance for various scenarios. For 

exmaples, researchers have focused on improving the resolution of the generated mesh in 

different way including model acceleration (Müller et al., 2022), compression (Chen et al., 

2022), and relighting (Verbin et al., 2022). Some works (Jain et al., 2021; Yu et al., 2022; 

Niemeyer et al., 2022) have aimed to reduce the number of input images. To improve the 

accuracy of 3D reconstruction in the presence of noise, previous studies have also 

incorporated various priors including semantic similarity (Jain et al., 2021), depth 
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smoothness (Niemeyer et al., 2022), surface smoothness (Zhang et al., 2021), Manhattan 

world assumptions (Guo et al., 2022), and monocular geometric priors (Yu et al., 2022). 

2.3.4.2 Depth completion (from partial RGB-D depths) 

These approaches use different learning-based methods to fill in missing depths 

(where transparent objects are) acquired with an RGB-D sensor (Figure 2-3). Sajjan et al. 

(2020) presented a deep learning approach (named ClearGrasp) for predicting the 3D 

geometry of transparent objects partly surveyed with an RGB-D sensor. Deep networks are 

used to identify masks, occlusion borders, and surface normals given RGB images, and 

then the initial depth is optimized using the network predictions. The optimization, 

however, needs transparent objects having interaction boundaries with non-transparent 

objects. Otherwise, the depth of the transparent region remains unpredictable. Figure 2-3 

shows an example of a depth completion using the method of Sajjan et al. (2020): the 

missing parts of the scene (where both transparent objects are located) are predicted and 

the new point cloud is more complete.  

Zhu et al. (2021) proposed another learning-based technique which uses a local implicit 

neural representation built on ray-voxel pairs that can generalize to unseen objects and 

fill in missing depth on given noisy depth maps. 
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a) Input Image 
b) Input incomplete RGB-D 

depth 
c) Depth completion 

   

Figure 2-3. Depth completion using a learning-based method 

Depth completion using a learning-based method (Sajjan et al., 2020): a depth 

map of a scene with two transparent objects (glass bottle and tea cup) placed at 

the scene. Given an RGB input image (a) with an uncompleted depth map (b), the 

missing areas from input depth were predicted (c). 

2.3.4.3 Monocular shape prediction 

This group of approaches requires only a single image as input in order to predict 

the 3D shape of transparent objects. Stets et al. (2019) proposed a deep convolutional 

neural network (CNN) method for determining depths and normals of a transparent 

object using a single image obtained under an arbitrary environment map. More recently, 

Eppel et al. (2022) presented a method for predicting 3D points of transparent objects 

straight from an image taken from unknown source using an advanced neural net that is 

independent of camera parameters. In this method, each pixel in the predicted map is 

assigned with the X, Y, Z coordinates of a point rather than the distances to that point. To 
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train the net, 50k transparent container images containing 13k different objects, 500 

different environments, and 1450 material textures were utilized. A total of 104 real-world 

transparent images of various containers with depth maps were also utilized. Instead of 

using absolute XYZ coordinates to calculate the training loss, the distance between pairs 

of points inside the 3D model was utilized, making the loss function translation invariant. 

Unlike previous methods, this approach does not require camera parameters and 

can work with images from unknown cameras. The method was designed for specific 

manipulation applications of transparent chemical bins but with specific re-training 

operations, it could be generalized to other objects.  

a) bottle of water b) glass bottle c) transparent teacup 

   

Figure 2-4. Monocular shape prediction 

Learning-based 3D reconstruction of three transparent objects (bottle of water, 

glass bottle, and teacup) from a single image based on Eppel et al. (2022). 
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Figure 2-4 shows some results obtained using the method presented in Eppel et al. 

(2022). It can be seen that the predicted 3D shape is only an approximate 3D shape with 

also anisotropic scaling issues remaining unsolved. 

2.4 Summary 

In this chapter, we presented a general overview of 3D digitization methods for 

non-cooperative objects featuring textureless, reflection, and refraction. First, we reviewed 

the related investigations for 3D reconstruction of textureless and reflection surfaces using 

photogrammetry, photometric stereo, and the combined methods. Then, the most relevant 

research works for 3D reconstruction of transparent objects were reviewed, summarizing 

them into four categories, including shape-from-X, direct ray measurements, hybrid, and 

learning-based. 
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3.1 Introduction  

In this chapter, we aim to propose our automatic image acquisition system which 

is used for collecting data suitable for the integration of both photogrammetry and 

photometric stereo approaches. The general overview of the proposed image acquisition 

system with its calibration steps is summarized in Figure 3-1. In order to prepare for the 

data processing that will be discussed in Chapter 4, an automatic image acquisition system 

is developed to capture multiple images under varying illuminations and from different 

camera stations (camera positions). To this end, two image acquisition systems (Single and 

multi-synchronized cameras) along with their system calibration process are presented. 

3.2 Proposed data acquisition system 

In this section, two automatic and semi-automatic image acquisition systems based 

on the near-field photometric stereo lighting system are presented, which are suitable for 

integrating photogrammetry measurements and photometric stereo. Table 3-1 shows a 

summary of the specified features for each system.  
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Figure 3-1. The general overview of the capturing system with its calibration steps. 

 






















































































































































































































































