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Abstract 

Image-based 3D reconstruction has been employed in industrial metrology for 

micro measurements and quality control purposes. However, generating a highly-detailed 

and reliable 3D reconstruction of non-collaborative surfaces (textureless, shiny, and 

transparent) is still an open issue. This thesis presents various methodologies to 

successfully generate a highly-detailed and reliable 3D reconstruction of non-collaborative 

objects using the proposed photometric stereo image acquisition system. The first proposed 

method employs geometric construction to integrate photogrammetry and photometric 

stereo in order to overcome each technique's limitations and to leverage each technique's 

strengths in order to reconstruct an accurate and high-resolution topography of non-

collaborative surfaces. This method uses accurate photogrammetric 3D measurements to 

rectify the global shape deviation of photometric stereo meanwhile uses photometric stereo 

to recover the high detailed topography of the object. The second method combines the 

high spatial frequencies of photometric stereo depth map with the low frequencies of 

photogrammetric depth map in frequency domain to produce accurate low frequencies 

while retaining high frequencies. For the third approach, we utilize light directionality to 

improve texture quality by leveraging shade and shadow phenomena using the proposed 

image-capturing system that employs several light sources for highlighting roughness and 

microstructures on the surface. And finally, we present two methods that effectively orient 

images by leveraging the low-contrast textures highlighted on object surfaces (roughness 

and 3D microstructures) using proper lighting system. Various objects with different 



 

 

surface characteristics including textureless, reflective, and transparent are used to evaluate 

different proposed approaches. To assess the accuracy of each approach, a comprehensive 

comparison between reference data and generated 3D points is provided. 
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1.1 Background 

3D reconstruction in computer vision and photogrammetry is the process of 

recovering the shape and appearance of a real-world object starting with data acquisition 

and ending with 3D visualization on a computer. It is an interesting and long-running task 

in computer vision and photogrammetric communities. There has, for long, been a demand 

for accurate and reliable 3D measurements in various application fields (Sansoni et al., 

2009; Luhmann et al., 2010; Yang et al., 2023). For example, in industrial applications, 3D 

measurements are used for quality inspection of welds (Rodríguez-Martín et al., 2015), 

checking the strength of materials (Shmueli et al., 2015), reverse engineering of complex 

and free-form objects (Carbone et al., 2001), or measuring the 3D dimension of complex 

surfaces (Hosseininaveh et al., 2015). In almost all of the applications mentioned above, 

high geometric accuracy, and high-resolution details of the 3D reconstruction along with 

low cost, portability, and flexibility of the method are required (Luhmann et al., 2019; 

Karami et al., 2022c). 

Generally, existing approaches for 3D reconstruction are classified into contact and 

non-contact methods (Luhmann et al., 2019). Contact-based methods usually use some 

physical equipment such as coordinate measuring machines, or calipers to measure the 3D 

shape of an object. Even though precise geometrical 3D measurements are possible and 

suited for many applications, they have some drawbacks. For example, the process of 

acquiring data is extremely time-consuming; sparse 3D data is reconstructed from the 

object; some parts of the object might remain unmeasured due to object shape complexity 

and the system’s restrictions in measuring; in other situations, such as with antique, soft, 
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or deformable objects, these methods are not appropriate due to the risk of damaging the 

object during the measurement process; these equipment are required to be protected from 

temperature variation and vibration in a controlled-environment. 

In contrast, 3D reconstruction is achieved using non-contact methods that can 

overcome the drawback of contact-based techniques. These approaches, according to the 

type of sensor used, are divided into active and passive. Active methods project structured 

light, or lasers on the object and detect them using a camera to generate 3D shape of an 

object while passive methods rely on other sources of energy (e.g. natural sunlight). 

Current active approaches rely on costly technologies such as laser scanning arms, 

structured light systems, or confocal white light; in addition to this, they may be impractical 

in some cases such as deformable objects. Passive image-based approaches (such as 

photogrammetry, photometric stereo, shape from shading, shape from texture, shape from 

specularity, shape from contour, or shape from 2D edge) reconstruct 3D shape of an object 

from 2D images using different mathematical models.  

While active methods have advantages in terms of accuracy and robustness, they 

are often more expensive, less flexible, and require more complex equipment setups. 

Passive image-based methods, such as photogrammetry and photometric stereo, are 

becoming increasingly popular due to their cost-effectiveness, portability, and flexibility 

in a wide range of applications, including industrial inspection (Barazzetti et al., 2012; 

Karami et al., 2022c) and quality control (Sansoni et al., 2009; Rodríguez-Martín et al., 

2015; Luhmann et al., 2019), where highly detailed micro-topography of surfaces is 

required. 
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However, passive image-based methods have limitations, including sensitivity to 

lighting conditions, and the textural properties of the surface, which can result in failure. 

Despite these challenges, image-based methods are gaining more attention recently 

because of advancements in image processing algorithms and hardware capabilities. These 

advancements have led to improved accuracy, robustness, and performance of passive 

image-based methods, making them a viable option for 3D reconstruction of non-

collaborative objects. Additionally, with the increasing availability and affordability of 

high-quality cameras and software, image-based methods have become more accessible to 

researchers and industries. 

1.2 Objects with non-collaborative surfaces  

The term "non-collaborative" offers a nuanced and specific characterization of 

objects that present unique obstacles for 3D digitization using active or passive sensors. 

While other descriptors such as "challenging" or "difficult" may imply a broad category of 

objects, the term "non-collaborative" is more precise and refers specifically to objects that 

do not lend themselves well to the 3D digitization process. These non-collaborative objects 

are typically those that lack texture or contrast, are made of reflective or metallic materials, 

or are translucent or transparent. For example, reflective or metallic objects can create 

reflections or shadows that can obscure key features or details. Similarly, translucent or 

transparent objects may be difficult to capture accurately because the light is not always 

reflected in the same way. The use of the term "non-collaborative" emphasizes the fact that 

these objects do not actively participate in the digitization process. They require specialized 
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approaches and techniques that go beyond standard 3D digitization procedures using active 

or passive sensors. By using this term, we can accurately describe the specific challenges 

involved in capturing these objects digitally, highlighting the need for unique and 

customized solutions. 

a) textureless 

   

b) reflective 

   

c) transparent  

   

Figure 1-1. Various objects featuring non-collaborative surfaces. 

Examples of different objects featuring non-collaborative surfaces, including 

textureless, metallic, reflective, and transparent. 

Figure 1-1 show some example of such non-collaborative objects including 

textureless surfaces (Figure 1-1a) that cause problems or failures of image-based 

approaches, glossy and reflective surfaces (Figure 1-1b) that cause problems for all 3D 

measurement technologies, and transparent objects (Figure 1-1c) that do not diffusely 
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reflect the incoming light and do not have a texture of their own needed for image matching 

tasks. Instead, because of refraction and specular reflections, their appearance depends on 

the object’s shape, surrounding background, and lighting conditions with light traveling 

through the surface, distorting or changing the path of the light in the process. 

1.3 Challenges with photogrammetry and photometric stereo 

Among image-based 3D reconstruction approaches, photometric stereo and 

photogrammetry are two established techniques in image-based 3D reconstruction that 

have gained attention from researchers. These methods are known for their cost-

effectiveness, portability, and versatility in various applications, such as industrial 

inspection and quality control, where a detailed micro-topography of surfaces is necessary. 

Photogrammetry can generate a geometrically accurate and dense model of a real-

world object from a series of images of an object or a scene taken from various viewpoints 

under the assumption of known materials and lighting conditions (Karami et al. 2022c; 

Luhmann et al., 2019). However, it is still challenging to achieve high-accuracy 3D 

measurement of non-collaborative objects (Figure 1-1) due to the sensitivity of 

photogrammetry to the textural properties of the surface (Ahmadabadian et al., 2019; 

Santoši et al., 2019; Karami et al., 2022a). For example, when the surface of an object is 

featureless or displays repetitive patterns, methods based on feature extraction face 

difficulties in finding a sufficient number of corresponding image points that are needed 

for image orientation (Hosseininaveh et al., 2015; Karami et al., 2021). In case of polished 

and shiny surfaces, such as industrial and metallic components (Figure 1-1b), the incoming 
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light is subject to the law of reflection and is observed as specular reflection. Such 

reflections, present in captured images, are undesirable and dense image-matching 

procedures produce noisy results on high-reflective and poorly textured objects (see Figure 

1-2a). In transparent objects, the ability to diffusely reflect light is very limited, and in 

addition, they are almost textureless. Due to refraction and mirror-like reflections, a part of 

the surface recorded textures of such objects is not invariant to the camera viewpoint being 

also dependent on the object's shape, surrounding environment, and illumination 

conditions.  

(a) Photogrammetry (b) Photometric stereo 

  

  

  

Figure 1-2. Visual comparison between photogrammetry and photometric stereo. 

Visual comparison between photogrammetry and photometric stereo in terms of 

low and high-frequency information retrieved by the two techniques. (a) accurate 

low-frequency information but noisy 3D details derived with photogrammetry; (b) 

high-details but deformed global shape derived with photometric stereo. 
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Therefore, standard image-based procedures like those implemented in SfM 

applications become ineffective, leading to significant errors and, most frequently, failures 

in the image matching and orientation process (Hosseininaveh et al., 2015; Wu et al., 2018; 

Karami et al., 2022c). 

Photometric stereo, on the other hand, is an effective method able to retrieve surface 

normal using a set of images captured under various lighting conditions (Woodham, 1980) 

and applying the gradient field (Scherr, 2017; Antensteiner et al., 2018; Li et al., 2020) to 

directly compute object depth from surface normals. This technique can recover a very 

detailed topography of objects even with texture-less or shiny surfaces (Li et al., 2020; 

Jiddi et al., 2020). Indeed, as the photometric stereo technique requires images captured 

under multiple light directions, the problem of specular reflection is partially mitigated. 

However, a global deformation of the recovered 3D shape is generally present (see Figure 

1-2b) due to unfulfilled assumptions and to simplifications made to the mathematical 

model on how light interacts with the object surface (Shi et al., 2018; Ren et al., 2021; 

Karami et al., 2022c), in particular: 

• The surface of the object should have an ideal diffuse reflection with no shadow 

and specularities on the surface. 

• Light rays arriving at the surface should be parallel to each other. 

• Camera uses an orthogonal projection. 

Furthermore, 3D data generated using a photometric stereo are produced up to a 

scale factor, and accurate scaling is not as straightforward as other techniques—such as 

photogrammetry. 
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1.4 Aims and objectives of the research 

Given the difficulties discussed in Section 1.3, the objectives of this research are as 

follows: 

• Needs for an automatic data acquisition system suitable for data collection and 

method integration. 

• Aim at high precision and detailed 3D reconstruction of challenging objects 

including textureless, reflective, and refractive objects. 

• Aim at different method integration to overcome the constraints of one method by 

leveraging the strengths of the other.  

• Evaluate different methodologies on challenging objects. 

1.5 Contributions  

The major contributions presented in this thesis are:  

• Development of an image acquisition system based on the near-field photometric 

stereo lighting system suitable for integrating photogrammetry measurements and 

photometric stereo (Section 3). 

• Development of a simple yet effective method for calibrating the geometry of the 

lighting system and the camera interior and exterior orientation parameters using 

some coded targets embedded in the scene – also useful to address scaling and 

transformation issues (Section 3.2). 
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• A novel algorithm for removing specular reflections and shadows, as well as 

determining lighting direction and illumination attenuation at each surface point, 

using the accurate geometry of the lighting system and the object’s sparse 3D shape 

(Section 4.2). 

• Development of three alternative approaches that take advantage of 

photogrammetric 3D measurements to correct the global shape deviation of 

photometric stereo depth caused by simplified assumptions such as orthogonal 

projection, perfect diffuse reflection, or unknown error resources (Sections 4.2.7 - 

4.2.9). 

• Development of an FFT-based filtering approach to fuse the high spatial 

frequencies of photometric stereo with low frequencies from photogrammetry 

(Section 4.3). 

• Development of a novel procedure that leverages the PS image acquisition system 

with multiple light sources to highlight roughness and microstructures of non-

collaborative surfaces which are not visible under diffuse lighting direction. These 

roughness are then used as a sort of chiaroscuro texture in image orientation and 

multi-view stereo (MVS) algorithms to ensure effective matching procedures 

(Section 4.4). 

• Development of five different image-based fusion methods (average, median, 

albedo, GLCM-based, and deep learning-based) to select out the best grazing-angle 

regions and fuse them into a single, highly detailed, shadow- and highlight-free 



 

 

11 

 

image using the advantage of known geometry of the lighting system and the 

approximate 3D shape of the object (Section 4.4.4). 

• Development of an object-based fusion procedure by combining all the individual 

point clouds generated at various grazing angles in object space to generate a 

reliable, accurate, and complete 3D reconstruction of the non-collaborative surface 

(Section 4.4.5). 

• Development of structure-from-motion (SfM) pipeline for image matching and 

image orientation of refractive objects through leveraging the low contrast textures 

present on the surface of transparent objects. To take full advantage of the 

geometrical content of the patches, the normalized cross-correlation (NCC) must 

be run on the gradient map of the grayscale image since applying NCC on grayscale 

images of transparent objects is not robust enough (Section 4.5). 

1.6 Overview and organization 

The rest of the thesis is organized as follows:  

• Chapter 2 reviews the related works for 3D reconstruction of non-collaborative 

objects featuring textureless, reflective, and refractive surfaces.  

• In chapter 3, we propose an automatic image acquisition system used for collecting 

data. 

• The various developed and investigated methodologies are introduced for generating 

3D reconstruction of non-collaborative objects in Chapter 4.  



 

 

12 

 

• Chapter 5 presents the results achieved with the developed solutions for data 

acquisition, and reports 3D reconstruction of non-collaborative surfaces and essential 

analyses using the proposed algorithms.  

• Finally, conclusions are drawn and presented together with future research plans. 
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2.1 Introduction 

In this chapter, we review the related works for 3D reconstruction of non-

collaborative objects featuring textureless, reflective (metallic and shiny objects), and 

refractive surfaces (transparent and translucent) as presented in Figure 2-1. 

 

Figure 2-1. General taxonomy of 3D digitization of non-collaborative surfaces. 
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We have divided non-collaborative objects into two groups based on their surface 

characteristics and the need for different treatment to reconstruct their 3D models. The first 

group includes transparent and translucent objects with similar surface properties (i.e., light 

refraction and scattering) that may cause image distortions. We use four different 

approaches, including shape-from-X, direct ray measurements, hybrid, and learning-based 

techniques, to correct these distortions. 

The second group comprises textureless and metallic objects that do not allow light 

to pass through, resulting in specular reflections instead of image distortions. We primarily 

use three different methods, such as photogrammetry, photometric stereo, and hybrid 

techniques, to treat this group of objects. 

2.2 Texture-less and shiny objects  

In this Section, we summarize the research works related to the 3D measurement 

of non-collaborative surfaces including textureless and shiny objects into three different 

categories: photogrammetry, photometric stereo, and combined methods. 

2.2.1 Photogrammetry 

Photogrammetry has historically and widely been regarded as one of the most 

effective techniques for 3D modeling of well-textured objects. Photogrammetry allows to 
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reconstruct the 3D shape of the object accurately and reliably compared to photometric 

stereo. However, regions with poorly texture or repetitive patterns are difficult to 

reconstruct since all reconstruction methods of this kind require matching correspondences 

in various images (Santoši et al., 2019; Hosseininaveh et al., 2015). Over the years, various 

photogrammetric methods have been developed to deal with the 3D reconstruction of such 

non-collaborative objects. In the case of textureless Lambertian objects, several solutions 

for enhancing the surface texture are suggested with, for example, the projection of known 

patterns (Menna et al., 2017; Mousavi et al., 2018), random (Hosseininaveh et al., 2015; 

Ahmadabadian et al., 2019) or synthetic (Santoši et al., 2019; Hafeez et al., 2022) ones 

onto the object surface. For example, Ahmadabadian et al. (2019) established a relatively 

inexpensive automated image acquisition system used for 3D modeling of textureless 

objects that works by projecting a random pattern onto the examined object. Menna et al. 

(2017) have developed a similar automatic workflow based on the know pattern projection 

such as structured-light pattern for 3D digitization of heritage artifacts. Methods based on 

the pattern projection improve the surface texture and, as a result, the accuracy of the final 

3D reconstruction when dealing with only Lambertian surfaces (Mousavi et al., 2018). 

However, these methods have problems when dealing with highly reflective surfaces with 

heavy specular reflection or interreflection (Ahmadabadian et al., 2019; Mousavi et al., 

2018). In the case of reflective objects, cross polarisation (Nicolae et al., 2014; Menna et 
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al., 2016) and image pre-processing approaches (Wallis, 1976; shih et al., 2015; Gaiani et 

al., 2016; Calantropio et al., 2020) have also been employed to decrease specular 

reflections. However, these procedures may smooth off surface roughness or vary the 

texture from one view to the next, affecting negatively the results (Karami et al., 2022b). 

Another common approach is to spray the surface with a thin layer of white or colored 

powder (Lin et al., 2017; Palousek et al., 2015; Pereira et al., 2019) can also be used as a 

common solution. However, powdering the object surface might be impractical when the 

surface topography of an object is needed at high spatial resolution since the added layer 

increases the total object volume and can smooth out local information. Besides, surface 

treatment is impossible in the case of delicate cultural heritage assets, or real-time 3D 

surface inspection (Karami et al., 2022a; Lin et al., 2017; Palousek et al., 2015; Pereira et 

al., 2019). 

2.2.2 Photometric stereo 

Photometric stereo is a technique for estimating an object's surface normal using 

illumination changes, which was first proposed by Woodham (1980). Over the years, many 

techniques (Rostami et al., 2012; Antensteiner et al., 2018; Li et al., 2020) have been 

developed to extract the geometry of objects from surface normals using the gradient field. 

However, the classical photometric stereo approaches work with perfectly diffuse 
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(Lambertian) surfaces, which is often an improper assumption for many objects such as 

metallic, glossy, and shiny. Therefore, the performance of such techniques degrades on 

real-world objects, which frequently exhibit non-Lambertian reflectance such as 

interreflection and specular reflection (Shi et al., 2018; Li et al., 2020; Ren et al., 2021). 

To address these issues, different approaches have been developed over the years. The first 

group of approaches classifies and removes the specular highlights when dealing with non-

Lambertian surfaces. For example, earlier approaches (Solomon, and Ikeuchi, 1996; 

Barsky, and Petrou, 2003) used three illumination directions out of four at each surface 

point in which the surface seems more Lambertian to approximate the direction of the 

surface normal. Following this, several algorithms were proposed based on RANSAC 

(Sunkavalli et al., 2010), graph cuts (Quéau et al., 2017), maximum-likelihood estimation 

(Peng et al., 2017), using robust SVD (Cho et al., 2018), or Markov random field 

(Chandraker et al., 2007) to extract Lambertian images in a more stable form. However, 

more input images are also needed for statistical analysis. Moreover, their output 

negatively affects complex objects with interreflection and speculative reflection due to the 

large number of outliers in non-Lambertian surfaces(Chen et al., 2018; Shi et al., 2018). 

Instead of discarding specular reflection as outliers, the second group of 

investigations modeled the behavior of the light using a nonlinear analytic Bidirectional 
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Reflectance Distribution Function (BRDF1). In this regard, different BRDF models were 

developed such as the Ward model (Chung, and Jia, 2008), the Torrance-Sparrow model 

(Georghiades, 2003), the specular spike (Yeung et al., 2014), bivariate BRDF (Otani et al., 

2019), symmetry-based approach (Lu et al., 2017), spatially-varying BRDF (Boss et al., 

2020) and etc. Unlike the previous group, they have the benefit of using more available 

data. The downside to such methods is that analytical models vary considerably from one 

object to the next and each is confined to a specific material class. Such approaches also 

require a complex case-by-case analysis of different content classes in theory (Chen et al., 

2018; Shi et al., 2018).  

Photometric stereo-based methods, unlike photogrammetry techniques, can 

reconstruct a very detailed surface's topography even with non-collaborative objects 

(Zheng et al., 2019; Karami et al. 2021). However, owing to some mathematical 

assumptions, such as parallel light direction and orthogonal projection of the sensor, global 

deformation of the reconstructed 3D shape typically exists (Fan et al., 2017; Shi et al., 

2018; Karami et al. 2021; Ren et al., 2021). The global shape deviation can vary depending 

on the surface properties and dimensions of the object. For instance, the generated 3D 

 
1 . BRDF is a mathematical model that describes the way light is reflected off a surface in different directions. 

It takes into account the incoming light direction, the surface normal, and the viewing direction, among other 

factors, to calculate the amount of light that is reflected in each direction. BRDF is typically used in 

physically-based rendering to generate realistic images of 3D models under different lighting conditions. 
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reconstruction can be deformed with a maximum shape deviation of about 13mm on a 

Lambertian flat object with 340*270mm dimensions when ignoring the assumptions 

mentioned above (Fan et al., 2017; Karami et al. 2021). 

2.2.3 Combined methods 

Various researchers combined photometric stereo with other techniques such as 

structured light or photogrammetry. In the developed methods, high-frequency spatial 

information is recovered from photometric stereo, whereas the other techniques are applied 

to retrieve low-frequency information. For example, Smithwick and Seibel (2002) 

proposed a Single Fiber Scanning Endoscope (SFSE) system for generating dense range 

maps and 3D measurements based on the fusion of photogrammetric and photometric 

stereo methods, providing precise volume measurements for dosage, risk estimate, and 

healing progress analyses. Nehab et al. (2005) combined 3D reconstruction generated from 

a range scanner with photometric normals to improve the accuracy and level of detail. 

Hernandez et al. (2008) used a multi-view geometric constraint from shape from silhouette 

(SFS) to mitigate photometric stereo's low-frequency surface distortion. Although this 

method is simple and flexible, it works only with particular parametric BRDF models 

(Kaya et al., 2020a). Several works (Peng et al., 2017; Zollhöfer et al., 2018; Bylow et al., 

2019) combined photometric stereo with RGB-D sensors to derive the 3D details from 
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Photometric stereo while improving the low-frequency  information using RGB-D data. 

Later, Park et al. (2013, 2016) then after suggested an uncalibrated multi-view photometric 

stereo (MVPS) approach for recovering precise 3D reconstruction of the object utilizing a 

coarse mesh with a 2D displacement map. However, the approach is unable to reconstruct 

objects with a wide range of surface reflectance characteristics as well as textureless 

surfaces (Li et al., 2020). Logothetis et al. (2019) Proposed a new MVPS approach capable 

of modeling objects with complex geometry where occlusions and/ or cast shadows may 

occur. More recently, Ren et al. (2020, 2021) integrated photometric stereo with sparse 3D 

points generated using contact measurements (CMM) to correct the global distortion 

caused by photometric stereo. The use of expensive technology restricts the method to 

special laboratories and projects with particular metrological demands, despite the fact that 

these systems may achieve high precision performances. Li et al. (2020) developed an 

MVPS approach which uses a sparse 3D point to improve the geometry of the depth map 

generated by photometric stereo. However, this procedure includes explicit geometric 

modeling stages such as multi-view depth propagation, iso-depth contour estimation, 

and/or tracing contours, which must be processed and completed properly in order to obtain 

a 3D reconstruction of the surface making it more difficult, time-consuming, and 

challenging. Furthermore, they used a turntable to rotate the object while keeping the 

camera and light sources fixed in order to capture multi-view images, which means that 
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the light sources are not constant from one view to the other. This could change the object 

texture from one view to the other resulting in noise or false matching during the image 

orientation and dense matching process. Recently, a few works have investigated the use 

of different learning-based approaches (Kaya et al., 2022a; Kaya et al., 2022b) to fuse 

photometric stereo and MVS for effectively utilizing their complementary strengths. 

Although these approaches are simple and easy to use, they are much less precise than 

traditional integration methods, making them unsuited for industrial applications where 3D 

measurement precision and reliability are required. Furthermore, training such algorithms 

necessitates large datasets labeled for a unique object type, making generalization to real-

world objects problematic. 

2.3 Transparent objects  

In this Section, we provide an overview of research works related to the 3D 

measurement of transparent surfaces summarizing them into four different categories: 

shape-from-X, direct ray measurements, hybrid, and learning-based approaches. 
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2.3.1 Shape from X 

Several approaches known as Shape from X techniques have been developed for 

extracting shape information from 2D images, where X could be distortion, Silhouette, 

reflection, polarization, heating, and so on. 

Shape from distortion, also known as Deflectometry, is one of the earliest 

methods specifically developed for transparent objects. This technique recovers the 3D 

shape of an object by analyzing the distortion of a known pattern placed behind or near the 

surface. This approach has been investigated for long to reconstruct either mirror-like 

surfaces (Tarini et al., 2005), liquids (Murase, 1990; Gao et al., 2022), or solid refractive 

surfaces (Ben-Ezra and Nayar, 2003; Wetzstein et al., 2011; Tanaka et al., 2016; Kim et 

al., 2017). The 3D reconstruction of refractive surfaces is more complex than the 

corresponding specular, or textureless surfaces because the ray path depends on the 

refractive index in addition to the dependence on the surface normal (Wu et al., 2018; Lyu 

et al., 2020). These approaches are also limited to the recovery of a single refractive surface 

or the reconstruction of parametric surface with simple geometry and therefore are not 

generalizable if not with approximation to a wider range of object categories (Wu et al., 

2018; Lyu et al., 2020). 

Shape from Silhouette (SFS) is a well-known 3D reconstruction method applied 

to a wider range of object categories. This method reconstructs the 3D shape of an object 
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using a sequence of images taken from different views, where the silhouette of the object 

is the sole relevant feature of the image. Depending on the geometric projection of the 

imaging system (e.g.: telecentric, central perspective) the silhouette of the object at each 

station (image) can be seen as the base of a prismatic /conic volume in three-dimensional 

space. The silhouette itself represents the locus of tangent points on the straight line 

departing from the perspective center of the camera (for a central perspective). By 

intersecting the pyramidal volumes, which is also known as Space Carving, a 3D 

reconstruction of an object can be generated. This method was first presented by Baumgart 

in 1974. Since then, various versions of the SFS have been proposed. For example, Martin 

and Aggarwal (1983) used volumetric descriptions to represent the reconstructed shape. 

Following this, Potmesil (1987) used an octree data structure to speed up the 3D 

reconstruction process. Szeliski (1993) built a non-invasive 3D digitizer using a turntable 

and a single camera with SFS as the reconstruction method.  

SFS can recover the 3D shape of an object regardless of the object’s property and 

shape as long as the region of the object in each image is distinguishable from the 

background (Karami et al., 2022a). However, the accuracy of SFS is directly depending on 

the silhouette boundary binarization, which can be done using automated or user-defined 

global thresholding of an image. In many cases, it might be difficult to determine the 

optimum threshold for distinguishing transparent objects from the background. As a result, 
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the silhouette of an object may be reduced or increased, making the resulting 3D model 

smaller or larger than the real size of the object or making it noisier. Moreover, another 

primary issue with SFS is that concavities on an object's surface remain unseen, finding it 

unsuitable for reconstructing the inside of a hole or concave areas (Karami et al., 2022a). 

To deal with this issue, Zuo et al. (2015) incorporate internal occluding contours into 

traditional SFS methods to recover the concavities on an object's surface. Wu et al. (2018) 

and Lyu et al. (2020) started with an initial 3D shape reconstruction generated from 

traditional SFS, and then gradually optimizes the model. 

Shape from reflection/refraction is also another approach introduced for the first 

time by Morris and Kutulakos (2007) to recover the 3D shape of transparent objects. This 

approach usually describes the behavior of rays as they pass through a refractive object by 

controlling the background behind the refractive object itself (Morris and Kutulakos, 2007; 

Yeung et al. 2015; Han et al., 2021). 

However, this method may be challenging and inefficient when it comes to 

collecting data. Moreover, it is necessary to manually rotate a spotlight around the 

hemisphere to illuminate the object and a reference sphere from various angles. Following 

a similar idea, Yeung et al. (2015) used a more convenient data collection method to obtain 

the specular reflection information on the surface of a transparent object and applies the 

graph cut theory to recover and optimize the normal vectors, consequently the depth map. 
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Although the results are insufficiently precise for industrial inspection, they are promising 

for 3D computer graphics animation.  

Iwabuchi et al. (2011) also presented a similar method based on inverse ray-tracing. 

This method uses multiple CCD cameras placed around a transparent object with simple 

geometry and can recover the shape and refraction index of the object. Chari and Sturm, 

(2013) proposed a method that combines both geometric and radiometric information to do 

reconstruction. The position and direction for each light-path were recovered and combined 

with light radiance at the beginning and end of each light-path. More recently, Han et al. 

(2021) employed a single camera that was set in place with a refractive object in front of a 

checkerboard background. The approach required two images with the background pattern 

placed in two different known locations. However, the approach required a change in 

refractive index, necessitating immersion of the object in water, which is a significant 

disadvantage for industrial purposes. 

Shape from Polarization (SFP) Miyazaki et al., (2002), Huynh et al. (2010), and 

Sun et al. (2020) recover the 3D shape of an object from polarization information of the 

reflected light. The basic principle is that after capturing the polarization information such 

as the intensity, degree of polarization, and polarization phase angle, the surface normal 

can be recovered by analyzing the relationship between the surface normal and the 

polarization image formation model. This method has been applied on different object 
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types with various reflection properties such as dielectrics (Huynh et al., 2010), black 

(Miyazaki et al., 2016), and transparent (Miyazaki et al., 2002; Huynh et al., 2010; Sun et 

al., 2020) objects. This method is also quite robust and stable in different lighting 

conditions such as indoors, outdoors, or under patterned illumination as long as incident 

light is unpolarized (Durou et al., 2020). These methods calculate surface normals, which 

must afterward be converted into a height map. However, the results are highly vulnerable 

to noise since they depend solely on the weak shape cue supplied by polarization and do 

not ensure integrability (Durou et al., 2020). The ambiguity in polarization analysis is also 

one of the main issues for this approach. To resolve the azimuth and zenith angle 

ambiguity, for example, Miyazaki et al. (2002) used the polarization degree in the far-

infrared wavelength for estimating the surface orientation instead of the visible 

wavelength. Stolz et al. (2012) proposed a multispectral method for determining the 

optimal zenith angle. More recently, ambiguities in this approach are adjusted by 

combining with other approaches in which rough geometric information is provided such 

as Multi-View Stereo (Miyazaki et al., 2004), light-path triangulation (Xu et al., 2017), etc. 

(Durou et al., 2020; Karami et al., 2022a). 

Shape from heating is another technique for 3D reconstruction of transparent 

objects (Eren et al., 2009) that, unlike the previously described approaches, ignores the 

refractive properties of the object. Laser range scanning of transparent objects is possible 
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using an IR laser rather than visible light since long-wave and thermal infrared spectrum is 

not refracted by glass. This technique is based on the principle of infrared thermal imaging, 

in which the infrared source heats up the object, and then the IR-sensitive sensor detects 

and records the geometric surface information of the object. Aubreton et al. (2013) also 

demonstrated a very similar approach for high-specular objects utilizing high-power lasers. 

Since these approaches utilized single laser spots as activating light sources, their 

measurement areas and acquisition speed are restricted owing to the time required for 

scanning. There are additional limitations in spatial resolution and precision because of the 

size of the laser dots. To overcome these restrictions, Brahm et al. (2016) developed a 

stereo-vision configuration consisting of two uncooled long-wave infrared (LWIR) 

cameras to detect the emitted heat radiation from an object induced by a pattern projection 

unit generated by a CO2 laser. More recently, Landmann et al. (2019) demonstrated real-

time 3D thermographs with a 30-frames per second frame rate (fps). This technique is well 

suited to applications where the geometry or temperature distribution of the objects is 

rapidly changing. Landmann et al. (2021) developed a simplified and robust projection 

approach based on a focused single thermal fringe that can rapidly scan across the object's 

surface. Higher intensities were obtained using such focused single thermal fringe 

compared to multi-fringe projection, which increased acquisition speed while improving 

measurement accuracy. 
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2.3.2 Direct-ray measurements 

Direct ray measurement techniques, which detect light rays directly, have for long 

been utilized for refractive surface 3D reconstruction. Kutulakos et al. (2008) published 

foundational work on measuring the geometry of refractive objects using light-ray 

correspondences. By mapping the light rays which reach and depart from the object, the 

geometry of transparent objects characterized by depths and surface normal can be 

determined. As shown in Figure 2-2, The projection of a point is defined by the 3D path(s) 

that light would take to reach the camera, given an arbitrary 3D point p, a known viewpoint 

c, and a known image plane. As expressed by Kutulakos et al. (2008), refractive surface 

reconstruction problems are expressed as N-K-M triangulation, where N represents view-

points required for reconstruction, K represents refractive surface points on a piecewise 

linear path, and M represents the number of calibrated reference points along the ray exiting 

the refractive object. 
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Figure 2-2. The geometry of N-K-M triangulation. 

The geometry of N-K-M triangulation expressed by Kutulakos et al. (2008). To 

reach point q on the image plane, the light path from p crosses three surfaces, 

including refractive and mirror-like ones, passing from three vertices, v1, v2, and 

v3, which form four segments. The objective of light-path triangulation is to 

estimate the normals and coordinates of the vertices using the known coordinates 

of c, q, and p. 

However, methods based on light-path triangulation are known to have collinearity 

ambiguities as the 3D surface point can be located anywhere along the optical ray that 

passes through the pixel. To remove the ambiguity, Tsai et al. (2015) assumed that the light 

rays are refracted twice. They recovered the geometry of a transparent object with only one 

monocular image using a monitor controlling the background image without even needing 

to immerse the object in the water. 
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Morris and Kutulakos (2011) employed stereo/multiple cameras to record the 

refractive surface, relying on a cross-view normal consistency constraint: the normals 

computed using the pixel-point correspondences obtained from multiple viewpoints must 

be consistent. Alternatively, some studies have been conducted to estimate ray-ray 

correspondences utilizing specific devices such as Bokode (Ye et al., 2012) and light field 

probes (Wetzstein et al., 2011; Tsai et al., 2021) by capturing the incident rays released 

from the background and the exiting rays traveling to the camera. Although 3D results 

appear to be highly promising, the high cost of such devices is an important downside. In 

addition, one of the main common shortcomings of the aforementioned approaches is that 

they provide only normals but noisy depths. To provide the boundary condition for the 

integration of normal, they need to presume a planer surface near the boundary (Ye et al., 

2012; Karami et al., 2022a) or approximate the border using noisy depths (Morris and 

Kutulakos, 2011; Wetzstein et al., 2011). To address the restrictions mentioned above, Qian 

et al. (2017) propose a position-normal consistency based on a global optimization method 

to restore depth maps of the surface from front and back. Similarly, Kim et al. (2017) 

proposed a method based on optimizing the object's shape and refractive index to minimize 

the disparity between observed and simulated transmission/refraction rays traveling 

through an object. It cannot, however, be applied to any non-symmetric objects. Following 

that, Wu et al. (2018) expanded this technique and provided the non-intrusive method to 
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reconstruct the whole geometry of a transparent object; nevertheless, the results are always 

over-smoothed due to their independent optimization and multi-view fusion of recovered 

point clouds. Lately, Lyu et al. (2020) expanded this work by optimizing directly the 

surface mesh generated from the SFS method using differentiable rendering 

algorithms. However, these approaches rely on feature correspondence across several 

views to discover similar features for triangulation, requiring more assumptions and 

constraints making it insufficient for actual industrial applications that must struggle with 

a wide range of circumstances or environments. 

2.3.3 Hybrid approaches  

This group of methods includes combinations of different approaches. The primary 

goal of combining two techniques is to overcome the constraints of one method by 

leveraging the strengths of the other, allowing complete and precise 3D reconstruction of 

optically non-cooperative objects to be generated. For instance, SFS is considered a more 

suitable and practical approach to reconstruct the 3D shape of transparent objects 

regardless of object’s property and shape. However, the concavities on an object's surface 

remain unseen. Therefore, some works (Kampel et al., 2002; Tosovic, 2002) have been 

conducted to correct the problem of SFS by combining a structured light method. 
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Narayan et al. (2015) merged the silhouette information and depth images on the 

2D image domain, which can improve 3D reconstruction for concave and transparent 

objects with interactive segmentation. Ji et al. (2017) also combined silhouette information 

and depth from an RGB-D sensor to retrieve the missing surface of transparent objects. 

First, they seek the 3D region from multiple views that includes the transparent object using 

incorrect depth led by transparent materials. The 3D shape was then retrieved inside these 

noisy areas using SFS technology. 

Another solution developed to deal with transparent surfaces is to combine 

SFP with other approaches such as light-path triangulation (Xu et al., 2017), conventional 

raytracing (Miyazaki et al., 2007), and Multi-View Stereo (Miyazaki et al., 2004). For 

instance, Miyazaki et al. (2007) developed a polarization raytracing approach, which 

combines traditional raytracing (calculates the path of light rays) with SFP (calculates the 

polarization state of the light). Starting with an initial shape of the transparent object, by 

modifying the shape, the difference between the input polarization data and the rendered 

polarization data obtained by polarization raytracing was minimized. 

More recently, He et al., (2022) developed a pipeline based on the fusion of the 

laser tracking frame to frame (LTFtF) method and stereo vision to distinguish and extract 

the reflected laser lines on the front surface from several laser reflection candidates caused 

by the refraction of the transparent objects. 



 

 

 

34 

 

 

2.3.4 Learning-based methods 

Recently, many researchers have used (machine or deep) learning-based 

approaches to solve the problem of measuring 3D transparent objects. These approaches 

could be categorized into three groups as follows. 

2.3.4.1 Multi-view 3D reconstruction 

Li et al. (2020) suggested a physically-based network for generating the 3D 

geometry of transparent objects using multiple images acquired from different viewpoints 

while also taking into account light transport patterns. More similar to Lyu et al. (2020), 

this method (Li et al., 2020) optimizes surface normals corresponding to a back-projected 

ray from both sides of the object using an in-network differentiable rendering layer, given 

the visual hull construction as an initial 3D reconstruction. Despite the fact that their 

method is less restrictive than previous ones (Wu et al., 2018; Lyu et al., 2020) that utilized 

multi-view images, it still requires the environment map and the object's refraction index. 

It is also difficult to be used in real-time applications because of the time-consuming 

optimization procedure. Furthermore, these data-driven algorithms rely on training 

synthetic images since getting a significant quantity of real image training data is 

difficult (Lyu et al., 2020). 
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Recently, Mildenhall et al. (2020) proposed NeRF (Neural Radiance Fields) which 

is a 3D scene representation technique for implicit 3D reconstruction. The original NeRF 

method uses a neural network to learn a representation of the 3D shape of an object from 

2D images. Although NeRF provides an alternative solution for 3D reconstruction of 

transparent objects compared to traditional photogrammetry methods and can produce 

promising results in situations where photogrammetry may fail to deliver accurate results, 

it still faces several limitations (Zhang et al., 2021; Barron et al., 2022; Guo et al., 2022; 

Yu et al., 2022). Some of the main issues from a 3D metrological perspective that need to 

be considered include the 3D mesh resolution, requiring significant amounts of computing 

power and memory, requiring a large number of input images with small baselines. 

However, in recent years, researchers have proposed several modifications and extensions 

to the original NeRF method to improve its performance for various scenarios. For 

exmaples, researchers have focused on improving the resolution of the generated mesh in 

different way including model acceleration (Müller et al., 2022), compression (Chen et al., 

2022), and relighting (Verbin et al., 2022). Some works (Jain et al., 2021; Yu et al., 2022; 

Niemeyer et al., 2022) have aimed to reduce the number of input images. To improve the 

accuracy of 3D reconstruction in the presence of noise, previous studies have also 

incorporated various priors including semantic similarity (Jain et al., 2021), depth 
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smoothness (Niemeyer et al., 2022), surface smoothness (Zhang et al., 2021), Manhattan 

world assumptions (Guo et al., 2022), and monocular geometric priors (Yu et al., 2022). 

2.3.4.2 Depth completion (from partial RGB-D depths) 

These approaches use different learning-based methods to fill in missing depths 

(where transparent objects are) acquired with an RGB-D sensor (Figure 2-3). Sajjan et al. 

(2020) presented a deep learning approach (named ClearGrasp) for predicting the 3D 

geometry of transparent objects partly surveyed with an RGB-D sensor. Deep networks are 

used to identify masks, occlusion borders, and surface normals given RGB images, and 

then the initial depth is optimized using the network predictions. The optimization, 

however, needs transparent objects having interaction boundaries with non-transparent 

objects. Otherwise, the depth of the transparent region remains unpredictable. Figure 2-3 

shows an example of a depth completion using the method of Sajjan et al. (2020): the 

missing parts of the scene (where both transparent objects are located) are predicted and 

the new point cloud is more complete.  

Zhu et al. (2021) proposed another learning-based technique which uses a local implicit 

neural representation built on ray-voxel pairs that can generalize to unseen objects and 

fill in missing depth on given noisy depth maps. 
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a) Input Image 
b) Input incomplete RGB-D 

depth 
c) Depth completion 

   

Figure 2-3. Depth completion using a learning-based method 

Depth completion using a learning-based method (Sajjan et al., 2020): a depth 

map of a scene with two transparent objects (glass bottle and tea cup) placed at 

the scene. Given an RGB input image (a) with an uncompleted depth map (b), the 

missing areas from input depth were predicted (c). 

2.3.4.3 Monocular shape prediction 

This group of approaches requires only a single image as input in order to predict 

the 3D shape of transparent objects. Stets et al. (2019) proposed a deep convolutional 

neural network (CNN) method for determining depths and normals of a transparent 

object using a single image obtained under an arbitrary environment map. More recently, 

Eppel et al. (2022) presented a method for predicting 3D points of transparent objects 

straight from an image taken from unknown source using an advanced neural net that is 

independent of camera parameters. In this method, each pixel in the predicted map is 

assigned with the X, Y, Z coordinates of a point rather than the distances to that point. To 
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train the net, 50k transparent container images containing 13k different objects, 500 

different environments, and 1450 material textures were utilized. A total of 104 real-world 

transparent images of various containers with depth maps were also utilized. Instead of 

using absolute XYZ coordinates to calculate the training loss, the distance between pairs 

of points inside the 3D model was utilized, making the loss function translation invariant. 

Unlike previous methods, this approach does not require camera parameters and 

can work with images from unknown cameras. The method was designed for specific 

manipulation applications of transparent chemical bins but with specific re-training 

operations, it could be generalized to other objects.  

a) bottle of water b) glass bottle c) transparent teacup 

   

Figure 2-4. Monocular shape prediction 

Learning-based 3D reconstruction of three transparent objects (bottle of water, 

glass bottle, and teacup) from a single image based on Eppel et al. (2022). 
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Figure 2-4 shows some results obtained using the method presented in Eppel et al. 

(2022). It can be seen that the predicted 3D shape is only an approximate 3D shape with 

also anisotropic scaling issues remaining unsolved. 

2.4 Summary 

In this chapter, we presented a general overview of 3D digitization methods for 

non-cooperative objects featuring textureless, reflection, and refraction. First, we reviewed 

the related investigations for 3D reconstruction of textureless and reflection surfaces using 

photogrammetry, photometric stereo, and the combined methods. Then, the most relevant 

research works for 3D reconstruction of transparent objects were reviewed, summarizing 

them into four categories, including shape-from-X, direct ray measurements, hybrid, and 

learning-based. 
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3.1 Introduction 

In this chapter, we aim to propose our automatic image acquisition system which 

is used for collecting data suitable for the integration of both photogrammetry and 

photometric stereo approaches. The general overview of the proposed image acquisition 

system with its calibration steps is summarized in Figure 3-1. In order to prepare for the 

data processing that will be discussed in Chapter 4, an automatic image acquisition system 

is developed to capture multiple images under varying illuminations and from different 

camera stations (camera positions). To this end, two image acquisition systems (Single and 

multi-synchronized cameras) along with their system calibration process are presented. 

3.2 Proposed data acquisition system 

In this section, two automatic and semi-automatic image acquisition systems based 

on the near-field photometric stereo lighting system are presented, which are suitable for 

integrating photogrammetry measurements and photometric stereo. Table 3-1 shows a 

summary of the specified features for each system.  
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Figure 3-1. The general overview of the capturing system with its calibration steps. 
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Table 3-1. A summary of the system specifications for both developed system. 

 Camera model Resolution 
Distance 

from object 
LEDs Focal length GSD 

Arduino 

model 

Single 

system 

Nikon D3X 

Nikon D750 
24 Mpx ~400 mm 20 

60 mm 

120 mm 

0.04 mm 

0.02 mm 

Arduino 

Nano- Atmel 

Atmega328 

Multi-

synchronized 

system 

five synchronized 

GigE MER-1520-7GC 
12Mpx ~400 mm 20 8 mm 0.06 mm 

Arduino 

Nano- Atmel 

Atmega328 

3.2.1 Designed system with a single camera 

The proposed image acquisition system (Figure 3-2) is a modular system built using 

off-the-shelf and customized 3D-printed parts mounted on an optical breadboard. The 

hardware of the system is composed of four main segments: 1) a single digital camera; 2) 

multiple dimmable LED lights mounted on vertical poles; 3) a turntable; 4) a 

microcontroller (Arduino) with electronic circuitry to allow synchronization between the 

camera and LEDs. 

The camera (Nikon D3X, 24 Mpx) is placed on a tripod with adjustable height, at 

nearly 50 cm from the objects. The lighting system consists of 20 high-power LEDs 

attached on four vertical poles. The poles are symmetrically placed on the breadboard, 

close to the object table.  
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Figure 3-2. The implemented version of the proposed single image acquisition system. 
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On each pole, five LEDs are mounted at a distance of 10 cm from each other. The 

distance from each light to the object is approximately 40 cm. The system is highly modular 

with the orientation and position of each component adjustable to accommodate different 

object sizes. 

The light sources are positioned in locations allowing various parts of the object to 

be illuminated under different grazing angles. This is to make sure roughness and micro-

structures on the object surface can be properly highlighted. We use an Arduino Nano 

microcontroller to synchronize the camera, lights, and turntable. 

To define a reference coordinate system, rigid square plates containing eight coded 

targets were fixed at the corners of the optical breadboard on the main plane in a horizontal 

position. A fifth plate was placed horizontally in the middle of the board near the object 

under inspection. Placing the targets in clusters over rigid square plates has several 

advantages. Repositioning each plate is flexible and using a single plate for camera pose 

estimation is possible, which significantly simplifies the image orientation. Also, by using 

the optical breadboard and standard studs, the lighting system can be easily reconfigured 

and optimized for objects of different sizes. In addition to these targets, four smaller (35x35 

mm2) target plates are mounted around the object in a vertical position. These, positioned 

at a distance within the camera’s depth of field, are used as control points to register the 
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generated dense clouds to the calibrated coordinate system. Once the object is placed on 

the turntable and the camera parameters are set, images are acquired for each LED light. 

Before starting the image acquisition, the system needs to be calibrated. The goal 

is to establish a geometric reference frame to which individual 3D surfaces can be 

registered to. The reference coordinate system is meant to remain stable and unchanged 

over time. Some coded targets are therefore fixed on the optical breadboard (Figure 3-3a) 

which are arranged in a cluster of 8 on each plate.  

This allows computing the 6 degrees of freedom (6DoF) of the target plate. Targets 

are also placed vertically in the middle of the board, i.e., in front of the object being 

inspected, and are measured during the calibration stage. In this way, whenever an image 

is taken, the camera pose can be registered to the fixed reference system of the optical 

breadboard. During the calibration process, the coded targets and the light source 

coordinates are also calculated. To this purpose, two certified Brunson scale bars with a 

length of 350 ± 0.013 mm are also placed on the board to scale the measurements (Figure 

3-3b). To perform the system calibration, all LEDs are switched on, and the whole system 

is imaged from 52 different positions (Figure 3-3c). Taking the images from many stations 

ensures that all coded targets and LEDs are imaged with a reliable camera network 

geometry. 
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a b 

  
c 

Figure 3-3. The calibration set-up of the proposed single acquisition system. 

The calibration set-up of the proposed data acquisition system: a) detected coded 

targets and circular targets (LEDs). b) reference bars and coded targets useful to 

accurately calibrate the system. c) image network with recovered camera poses 

and 3D tie points (images taken from 52 stations). 
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Thereafter, the images are processed in AgiSoft Metashape V1.6.3 Build 10732 

which is able to measure the image coordinates of the coded targets automatically. With 

the origin of the system fixed to the left bottom target (Figure 3-3c), the images are 

oriented, and the interior as well as exterior orientation parameters of the camera, are 

computed. Overall, a total number of 72 coded targets along with four scale-bar endpoints 

are used to perform a self-calibration of the system. The 20 LED center points are instead 

triangulated after the self-calibrating bundle adjustment. The results of this process include 

the adjusted internal camera parameters, the external orientation parameters of the camera 

in all 52 stations, and the 3D coordinates of all measured target points and LEDs centers. 

Table 3-2 reports the estimated Root Mean Squares (RMS) of image residuals (px) 

averaged over all points on all images during the calibration process. 

Table 3-2. The estimated RMS of image residuals for scaling. 
 Coded targets LED Lights scale-bar endpoints Tie points 

Number of the points 72 20 4 30,556 

Error (pix) 0.1 0.3 0.17 0.7 

The estimated RMS of image residuals (px) during the calibration process for all 

coded targets, light sources, scale bars, and observed tie points. 

Regarding the radiometric calibration, we take two different kinds of light 

attenuation into consideration. The first is radial intensity attenuation, which occurs due to 
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the decrease in light energy that is proportional to the inverse squared distance between the 

light source and the surface point. This means that the intensity of the light decreases as it 

travels away from the source. In addition to radial attenuation, which refers to the decrease 

in light energy with distance from the source, angular intensity attenuation is another 

important factor to consider. Many light sources are directional, meaning they are brightest 

along a principal direction and become less bright at angles further from the main direction. 

This behavior can be observed and effectively simulated by multiplying the light intensity 

with the cosine of the angle between the light direction and the surface normal, also known 

as the attenuation coefficient. More details regarding intensity attenuation are expressed in 

Section 4.2.4. 

3.2.2 Designed system with multi-synchronized cameras 

The proposed PS image acquisition system with multi-synchronized cameras is 

presented in Figure 3-4. The capturing system is built to enable acquiring images under 

different view and illumination-conditions, explicitly allowing various parts of the object 

to be illuminated under different grazing angles (Karami et al., 2021) which is latter used 

to improve image orientation and dense 3D reconstruction of non-collaborative surfaces. 
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The system is similar to the one represented in Section 3.2.1, with the exception that instead 

of utilizing a single DSLR camera and manually moving to each station, we employ five 

synchronized industrial cameras mounting on three vertical poles at a distance of roughly 

400mm from the object. A microcontroller (Arduino) with electronic circuitry is used to 

manage the synchronization and control the GigE cameras and LEDs. 

An array of five synchronized GigE MER-1520-7GC cameras (See Figure 3-4) are 

positioned in a plus sign arrangement in front of the object. The cameras are distributed 

equally and mounted on three vertical poles placed on the optical breadboard, with each 

camera approximately fourteen degrees away from its neighbor(s). Table 3-3 lists the 

general specifications for GigE MER-1520-7GC cameras. Each camera has a LCM-10MP-

08MM-F2.8-1.5-ND1 lens with a narrow field of view oriented towards the object placed 

on a rotating table. The lens features a variety of focal lengths to ensure that the appropriate 

working distance is met for each object. The aperture and focus are both adjustable and can 

be locked in place with a screw. 
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Figure 3-4. The proposed photometric stereo multi-view image acquisition system. 

Table 3-3. The general specifications for GigE MER-1520-7GC camera. 
Resolution 4608×3288 

Pixel Size 1.4μm×1.4μm 

Frame Rate 7fps@4608×3288 

Dimensions 29mm×29mm×29mm 

The cameras also are equipped with a standard GigE interface, and support Power 

over Ethernet (PoE, compatible of IEEE802.3af standard) making it easy to install and 

transmit power and data through a CAT6 network cable using a Power over Ethernet 

switch. 

Once the object is placed on the rotating table, the camera parameters, i.e. distance 

to the object, focal length, F-Stop, and ISO, are manually set by an operator and kept 

constant. 
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(a) (b) 
 

(c) 

 
(d) (e) 

Figure 3-5. Self-calibration for multi synchronized GigE camera.  

Three samples of the plate with embedded coded targets that moved/rotated in 

front of GigE cameras (a-c). The structure of imaging network (d) with sparse 

generated points with detected targets (e). the distance between targets are known 

(12.5mm) which is used to scale the model.  

To begin image acquisition, turn on the first LED, take five synchronized images, 

turn off the LED, turn on the second LED, and capture the second image. This procedure 
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is carried out again for the remaining LEDs (twenty LEDs). Images are obtained within 

five seconds. 

To calibrate the GigE cameras, we applied a self-calibration approach. To do this, 

we used a plate with embedded coded targets that moved/rotated in front of GigE cameras 

as shown in Figure 3-5. Instead of moving the cameras to acquire multi-view images for 

self-calibration, we freely moved/rotated the plate around while synchronized GigE 

cameras captured images. For each camera, 25 images were captured. Then after, the 

images were processed in AgiSoft Metashape V1.7.6 Build 13779 same procedure was 

done for single cameras in the previous Section 3.2.1. 

3.3 Effect of lighting system on the generated 3D reconstruction 

This experiment aimed to evaluate the adaptability and robustness of the proposed 

method to changes in the lighting system, specifically, to determine the extent to which the 

method's outcomes were affected by shifts in the lighting system's position. To achieve 

this, we employed Monte Carlo simulation, a methodology that can model various 

outcomes in complex processes that involve random variables. By using this method, the 

researchers were able to identify the impact of risk and uncertainty in the 3D reconstruction 

process when the lighting system was perturbed. 
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The simulation involved randomly perturbing each light position within a limited 

range to establish a statistical distribution of light positions that served as input for the 

proposed method's integrated algorithm. The algorithm generated a 3D reconstruction for 

each set of input parameters (i.e., perturbed light positions), and the Root Mean Squared 

Error (RMSE) of each reconstruction was calculated using a cloud-to-cloud comparison 

with reference data. This process was repeated 200 times, with each iteration randomly 

perturbing the light locations and yielding a different RMSE outcome. 

Two scenarios were used in the simulation. In the first scenario, the position of the 

light sources was randomly disturbed within a range of ±5mm, and in the second scenario, 

within a range of ±10mm. We used object J as the test object for the simulation. The results 

of these experiments are shown in Figure 3-6 and Figure 3-7. 
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Figure 3-6. The result of perturbing the light locations. 

The estimated RMS on the generated 3D reconstruction of object J as a result of 

perturbing the light locations randomly in the range of ±5mm. 

Figure 3-6 and Figure 3-7 show the results of the Monte Carlo simulation for 

modeling the effect of perturbing light positions on the generated 3D reconstruction using 

the proposed algorithm. The average error in the first scenario, where the coordinate of 

light sources were perturbed with ±5mm, was 0.33mm with an uncertainty of ± 0.027mm. 

While in the second scenario, with perturbation of ±10mm, the average estimated RMSE 

was 0.35mm with an uncertainty of ± 0.05mm. This demonstrates the proposed integrated 

algorithm's flexibility and robustness to the perturbation of the lighting system. 
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Figure 3-7. The result of perturbing the light locations. 

The estimated RMSE on the generated 3D reconstruction of object J as a result 

of perturbing the light locations randomly in the range of ±10mm. 

3.4 Summary 

In this chapter, we proposed different image capture systems. First, we proposed an 

image acquisition system using a single camera. Then, we developed the same system with 

multi-synchronized cameras for fully-automatic data collection. Their calibration 

processes were also explained for each system.  



 

 

 

4. METHODOLOGY 

CHAPTER IV 

Methodology 

 



 

 

 

58 

 

 

 

4.1 Introduction 

This thesis proposes different pipelines for 3D reconstruction of non-collaborative 

surfaces (textureless, shiny, and transparent) using our proposed PS data acquisition 

system. The general overview of the proposed methodology is summarized in Figure 4-1. 

 

Figure 4-1. The general overview of the proposed method. 
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The first step is to provide an automatic image acquisition system to capture images 

under different illuminations and from different camera stations (camera positions) to 

satisfy the input requirement for each method. To this end, two image acquisition systems 

(Single and multi-synchronized cameras) along with their system calibration are proposed 

and discussed in Section 3. Following that, four different strategies are presented utilizing 

the proposed image acquisition system. The first proposed solution utilizes geometric 

construction to integrate photogrammetry and photometric stereo, leveraging the 

advantages of both techniques while overcoming their inherent limitations. (Section 4.2). 

This method uses photogrammetric 3D measurements to rectify the global shape deviation 

of photometric stereo depth induced by assumptions such as orthogonal projection, ideal 

diffuse reflection, or unknown error resources. The second method (Section 4.3) aims to 

provide detailed and precise 3D reconstructions of non-collaborative surfaces by fusing 

photogrammetry with photometric stereo depth maps in the frequency domain. To that aim, 

both photogrammetry and photometric stereo depth maps are transformed to the frequency 

domain in order to merge the high spatial frequencies of photometric stereo with the low 

frequencies of photogrammetry, resulting in accurate low frequencies while keeping high 

frequencies. Section 4.4 discusses how to utilize light directionality to improve texture 

quality by leveraging shade and shadow phenomena using the proposed image-capturing 
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system that employs several light sources to highlight roughness and microstructures on 

the surface. Finally, in Section 4.5, we first provide two methods that effectively orient 

images by leveraging the low-contrast textures highlighted on object surfaces (roughness 

and 3D microstructures). Second, a dense reconstruction of the testing objects is produced 

using various approaches given the oriented images. 

The methodology underlying each approach is described in depth in the following 

sections. 

4.2 Proposed integrated method  

In this section, we propose a method for the 3D reconstruction of non-collaborative 

surfaces which combines photogrammetry and photometric stereo taking advantage of both 

methods and overcoming their own limits. The proposed method is summarized in Figure 

4-2. The first step is to provide an automatic image acquisition system to capture images 

under different illuminations and from different camera stations (camera positions) to 

satisfy the input requirements of the integrated method (Section 4.2). A 3D point cloud is 

then generated with a photogrammetry pipeline (Karami et al., 2022b). The 

photogrammetric 3D shape measurements and the calibrated light positions are utilized to 

compute light direction and intensity attenuation (radial and angular) at each surface point. 
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The initial surface normal is then recovered given the light direction and the corresponding 

intensities at each surface point. Following this, the object's regions with shadow and 

specular reflection are detected and removed on the captured images depending on the 

angle between the light direction and the initial surface normal at each surface point. After 

removing outliers from images, the surface normal is updated given the light direction and 

the corresponding intensities at each surface point. A depth map is afterward generated 

from the integration of the surface normal. The scale factor is computed using 

corresponding 3D points between photogram-metric 3D reconstruction and photometric 

stereo depth maps. At the final stage, to further mitigate the shape deformation errors, three 

different approaches are proposed as follows: 

1. Method A: it corrects the shape deviation by applying polynomial adjustment 

globally on the whole object. 

2. Method B: it segments the object based on the normal and curvature then apply 

shape correction procedure on each segment separately. 

3. Method C: it splits the object into small patches and then applies shape 

correction procedure on each patch separately. 
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Figure 4-2. The proposed integration method. 

The general overview of three methods to integrate Photogrammetry and 

photometric stereo. 
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4.2.1 Basic photometric stereo 

Photometric stereo is a method to recover surface normal from multiple images that 

are taken under different lighting directions. The mathematical form of photometric stereo, 

for each surface point (X), is expressed in Equation (4-1). 

𝐼𝑖(𝑋) = 𝑙𝑖(𝑘�̂�) (𝑖 = 1,2, … , 𝑡) (4-1) 

Where 𝐼𝑖 is the intensity observed in the 𝑖-th image, 𝑙𝑖 is normalized light direction 

of the 𝑖-th source, 𝑘 is the Lambertain reflection albedo, and �̂� is the normalized surface 

normal at each surface point (X), which is unknown. 

If 𝑡 > 3, 𝑙 can be inversed as 𝑙−1. 𝐼 = 𝑘�̂�. But, when the vector of light direction 

(𝑙) is non-square, the generalization of the inverse is computed by multiplying both sides 

of the Equation (1) with 𝑙𝑇 as following. 

𝑙𝑇 . 𝐼 = 𝑙𝑇 . 𝑘�̂� 
(4-2) 

(𝑙𝑇𝑙)−1. 𝑙𝑇 . 𝐼 = 𝑘�̂� 

If we consider 𝑘�̂� as a vector, the length of this vector is 𝑘 and �̂� is the normalized 

direction of that vector. Therefore, the surface normal and albedo can be recovered using 

Equation (4-3). 
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In theory, at least three lighting directions (images that are taken under different 

illuminations) are required to recover normal at each point. However, practically, more 

than three images are used to minimize noises involved in the process.  

𝑘 = ||𝑘�̂�| 

�̂� =
𝑘�̂�

𝑘
 

(4-3) 

After computing the surface normal, the surface from gradients technique (Scherr, 

2017; Shi et al., 2018) is applied to generate a 3D shape of the object from the field of 

normal vectors. The depth map is specifically given as 𝑧 =  𝑓(𝑝, 𝑞), and the normal of the 

surface points towards the gradient direction. Where the p and q values are obtained as 𝑝 =

−
𝑛𝑥

𝑛𝑧
 and 𝑞 = −

𝑛𝑦

𝑛𝑧
. 

4.2.2 Light direction per-pixel 

Conventional photometric stereo assumes that the light rays coming from the source 

are parallel. Providing parallel illumination conditions is more complicated and inefficient 

to implement in a close-range lighting system. Furthermore, it is also clear that rays coming 

from the light sources are not parallel anymore, especially when the lighting system is near 

to the object. Therefore, this impact must be addressed for accurate measurement of the 
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normal surface as any change in light position negatively affect the normal and 

consequently the resulting 3D reconstruction. For these reasons, we explored a geometric 

model with punctiform light sources and light divergence as expressed in (Karami et al., 

2021; Zollhöfer et al., 2018). 

To compute a unique light direction at each surface point, the 3D shape of the object 

and the light positions must be known in the same reference system (camera coordinate 

system). For doing this, the light positions are accurately measured with respect to the 

camera coordinate system during the system calibration (Karami et al., 2021; MacDonald 

et al., 2015). Then the sparse 3D points (𝑃𝑠(𝑋, 𝑌, 𝑍)) are then back-projected to the camera 

coordinate system using collinearity equation and known interior and exterior orientation 

parameters to find their corresponding pixels on the image ((I(u, v))). Then, as expressed 

in Equation (4-4), the normalized light direction (𝑣𝑘,�̂�) for each surface point(𝑃𝑠(𝑋, 𝑌, 𝑍) is 

computed given the coordinate of the kth light source (𝑙𝑘) (Karami et al., 2021; Fan et al., 

2017). 

𝑣𝑘,�̂�  =
(𝑙𝑘 − 𝑝𝑠(𝑋,𝑌,𝑍))

‖𝑙𝑘 − 𝑝𝑠(𝑋,𝑌,𝑍)‖
 (4-4) 

Finally, the surface normal is computed at each surface point given 𝑣𝑘,�̂�, and their 

associated image intensities (I(u,v)) as expressed in Equation (4-5). 
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𝑛�̂� =
(𝑣𝑘,𝑠

𝑇 . 𝑣𝑘,𝑠)
−1. 𝑣𝑘,𝑠

𝑇 . 𝐼𝑘

‖(𝑣𝑘,𝑠
𝑇 . 𝑣𝑘,𝑠)

−1. 𝑣𝑘,𝑠
𝑇 . 𝐼𝑘‖

 (4-5) 

4.2.3 Backprojection 

As we explained in the previous section, in order to compute a unique light direction 

for each surface point, we need to have the 3D coordinate of each light source as well as 

surface point in the camera coordinate system where the depth from photometric stereo is 

computed. The 3D points and the light positions, measured during the calibration process 

are transformed into the camera coordinate system using Equation (4-6). 

[
𝑥
𝑦
𝑧
] = 𝑅 ∗ [

𝑋
𝑌
𝑍
] + 𝑡 (4-6) 

Where (X, Y, Z) are the 3D coordinates of a surface point or light source in the 

local coordinate system defined during the calibration step, R and t are the rotation matrix 

and translation vector, respectively. 

Successively, the 3D points are back-projected in the image coordinate system 

using the perspective transformation expressed in Equation (4-7), and then to the pixel 

coordinate system. 

[
𝑥′

𝑦′] = [
𝑥

𝑧⁄
𝑦

𝑧⁄
] (4-7) 
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Generally, the lenses used in any project have some distortion, which could be 

modeled as radial distortion and tangential distortion (Brown, 1971). These distortions are 

modeled using Equation (4-8). 

[
𝑥′′

𝑦′′] = [
𝑥′(1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6 + 𝑘3𝑟
8) + (𝑝1(𝑟

2 + 2𝑥′2) + 2𝑝2𝑥
′𝑦′)(1 + 𝑝3𝑟

2 + 𝑝4𝑟
4)

𝑦′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6 + 𝑘4𝑟

8) + (𝑝2(𝑟
2 + 2𝑦′2) + 2𝑝1𝑥

′𝑦′)(1 + 𝑝3𝑟
2 + 𝑝4𝑟

4)
] (4-8) 

Where  

𝑟2 = 𝑥′2 + 𝑦′2;  

𝑘1, 𝑘2, 𝑘3, and 𝑘4 are radial distortion coefficients;  

𝑝1, 𝑝2 , 𝑝3 , 𝑝4 are tangential distortion coefficients. 

After estimating the lens's distortion, we can ultimately reach to the pixel 

coordinate system by utilizing the Equation (4-9). 

[
𝑢
𝑣
] = [

𝑓𝑥. 𝑥
′′ + 𝑐𝑥 + 𝑤. 0.5 + 𝐵1. 𝑥

′′ + 𝐵2. 𝑦
′′

𝑓𝑦. 𝑦
′′ + 𝑐𝑦 + ℎ. 0.5

] (4-9) 

Where (u, v) is the coordinate of the image point in pixels corresponding to the 

reconstructed 3D points (𝑃𝑠(𝑋, 𝑌, 𝑍)), 𝑓𝑥 , and 𝑓𝑦  are the focal lengths in pixel unit, and 

(𝑐𝑥, 𝑐𝑦) is the coordinate of the principal point. 𝐵1, 𝐵2 are affinity and non-orthogonality 

(skew) coefficients, respectively; w, h are image width and height in pixels. 
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4.2.4 Intensity attenuation 

There are two different kinds of light attenuation that are needed to be taken into 

consideration when point light sources are used (see Figure 4-3). The first factor is caused 

by a decrease in light energy which is proportional to the inverse squared distance between 

the light source to the surface point (radial intensity attenuation). The second attenuation 

factor that we address is a realistic directional model of a light source (angular intensity 

attenuation). 

 

Figure 4-3. Radial and angular intensity attenuations. 
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4.2.4.1 Radial intensity attenuation 

The intensity of the light decreases when the object moves away from the 

illumination source (Mecca et al., 2014). In theory, this behavior of the light is modeled 

using Equation (4-10). 

𝐹𝑘,𝑠
𝑅 =

1

ℎ𝑐 + ℎ𝑙|�⃗⃗� 𝑘,𝑠| + ℎ𝑞(|�⃗⃗� 𝑘,𝑠|)
2

 (4-10) 

Where |�⃗⃗� 𝑘,𝑠|  is the distance between the 𝑘 -th light source and surface point 

(𝑃𝑠(𝑋, 𝑌, 𝑍)). ℎ𝑐, ℎ𝑙, and ℎ𝑞 are the attenuation coefficients. However, in practice, the first 

and the second terms are ignored since their values are negligible compared to the third 

term. In this paper we also considered ℎ𝑞 equal to one. 

4.2.4.2 Angular intensity attenuation 

The light intensity decreases as we move away from a light source, but also when 

the light moves angularly (β) further from the cone axis (𝒍 𝑪) (Mecca et al., 2014). Equation 

(4-11) is a commonly-used approach to model such phenomenon: 

𝑐𝑜𝑠(𝛽)µ = (𝒍 𝑪. 𝒍 𝒔)
µ (4-11) 

Where β is the angle between the cone axis (𝒍 𝑪) and the direction from the light 

position to the surface point (𝒍 𝒔), and μ is the attenuation coefficient. 
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4.2.5 Shadow and specular reflection removal 

The known camera geometry, lighting system, and approximate 3D shape of the 

object were used to automatically detect shadow and specular reflection and keep only the 

best-highlighted parts on each image where 3D microstructures and roughness are seen. 

After capturing multiple images from different stations, the images are automatically 

inspected, and those regions on each image that appear to result in inferior quality and/or 

noise (shadow and secularity) are excluded (Karami et al., 2022b). To do this, as shown in 

Figure 4-4, the incoming angle (𝜃1) and reflected angle (𝜃2) are estimated at each surface 

point P(x,y,z) corresponding to each pixel (i,j) given the light direction 𝑙(𝑥,𝑦,𝑧), camera 

direction 𝑟(𝑥,𝑦,𝑧) and normal 𝑛(𝑥,𝑦,𝑧) using Equations (4-12) and (4-13): 

𝜃1 = 𝑐𝑜𝑠−1 (
𝑛(𝑥,𝑦,𝑧). 𝑙(𝑥,𝑦,𝑧)

‖𝑛‖‖𝑙‖
) (4-12) 

𝜃2 = 𝑐𝑜𝑠−1 (
𝑛(𝑥,𝑦,𝑧). 𝑟(𝑥,𝑦,𝑧)

‖𝑛‖‖𝑟‖
) (4-13) 

Specular reflection occurs when an incoming light ray (𝑙(𝑥,𝑦,𝑧)) reflects off of a 

surface point 𝑃(𝑥,𝑦,𝑧) at an equal but opposite angle (𝜃2) to its incoming angle 𝜃1. In our 

experiment, we consider a small amount of light scattering (e) around the reflection vector 

(r) as the specular reflection zone, which is tuned to ±2 degrees. This value can be changed 
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depending on the strength of the light source. By increasing this value we assure that a 

larger area around the reflection vector (r) is considered as an outlier. 

A self-shadowed pixel is shaded by itself. Geometrically, the angle between the 

surface normal (n) and the light source direction (l) is more than 90 degrees (𝜃1 > 90). In 

this experiment, a pixel is considered as self-shadow if the computed incoming angle 𝜃1 is 

larger than 85 degrees. Once self-shadow and specular reflection are removed from images, 

the surface normal is updated for further processing. 

 

Figure 4-4. Shadow and specular reflection removal. 

Removing shadow and specular reflection using the accurate geometry of the 

lighting system and object’s sparse 3D shape. 
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4.2.6 Helmert transformation 

The Helmert 3D transformation is one of the most often used transformation 

methods in geodetic applications. This transformation is defined with seven parameters, 

including three translations, three rotations, and a scale factor, which allow us to transform 

the photometric stereo depth map to a defined coordinate system from which 

photogrammetric 3D points are obtained. When this transformation is performed to a 

3D point cloud, it rotates, transforms, and scales the point cloud with respect to the defined 

coordinate systems. The mathematical form of this transformation is expressed in Equation 

(4-14). 

𝑋𝑇 = 𝐶 + 𝜇𝑅𝑋 (4-14) 

Where 𝑋𝑇  is the original 3D Points (3D reconstruction from photogrammetry), and 

X is the transformed 3D points (3D reconstruction from photometric stereo), C is the three 

translations (𝑥𝑡 , 𝑦𝑡, 𝑧𝑡) along the coordinate axes, R is the rotation matrix, and 𝜇 is the scale 

factor. The seven Helmert transformation parameters must be calculated using 

corresponding points from both datasets. 

https://en.wikipedia.org/wiki/Translation_(geometry)
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4.2.7 Global shape correction with polynomial model (Method A) 

The 3D reconstruction computed using the photometric stereo principle shows 

residual deformation even after correcting the light directions and applying intensity 

attenuations because of the other mathematical simplifications and unknown error sources. 

Therefore, to further mitigate the residual errors we use a polynomial mapping from the 

3D model obtained with the photometric stereo to the one obtained through 

photogrammetry. This technique was inspired by polynomial adjustment in aerial 

triangulation (Mikhail et al., 2001) with 20 coefficients. The 20 coefficients are computed 

using least square principles after forming the design matrix containing Equation (4-15) 

one for each common point in the photogrammetric (X,Y,Z) and photometric stereo (x,y,z) 

models. 

𝑋 = 𝑥 + 𝑎1 + 𝑎3𝑥 − 𝑎4𝑦 + 𝑎5(𝑥
2 − 𝑦2)2𝑎6𝑥𝑦 + 𝑎7(𝑥

3 − 3𝑥𝑦2) − 𝑎8(3𝑥2𝑦 − 𝑦3) 

𝑌 = 𝑦 + 𝑎2 + 𝑎4𝑥 + 𝑎3𝑦 + 𝑎6(𝑥
2 − 𝑦2) + 2𝑎5𝑥𝑦 + 𝑎7(3𝑥2𝑦 − 𝑦3) + 𝑎8(𝑥

3 − 3𝑥2𝑦) 

𝑍 = 𝑧 + 𝑏0 − 2𝑏2𝑥 + 2𝑏1𝑦 + 𝑐1𝑥
2 + 𝑐2𝑥

3 + 𝑐3𝑥
4 + 𝑑1𝑥𝑦 + 𝑑2𝑥

2𝑦 + 𝑑3𝑥
3𝑦 + 𝑑4𝑥

4𝑦 + 𝑒1𝑦
2 + 𝑒2𝑥𝑦

2 

(4-15) 

It is worth noting that both the deformed model (from photometric stereo depth 

map) and reference data (photogrammetric 3D points) should be approximately scaled and 

aligned before computing the coefficients. The application of global polynomial 

adjustment (Method A) to complex-geometry surface objects can present a notable 
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disadvantage, as these adjustments have the potential to smooth out the edges and 

boundaries of the object. This is particularly evident in objects with complex shapes, such 

as those represented by Objects C and D. The reason for this is that polynomial adjustments 

are designed to fit a single global polynomial onto the entire object based on a set of 3D 

control points. When dealing with objects with complex shapes, this approach can prove 

challenging, and the resulting fit may not accurately represent the true edges and details of 

the object. 

To address this issue and ensure that the edges of complex-geometry objects are 

preserved, two alternative approaches (Methods B and C) have been developed. These 

methods involve dividing the object into smaller patches and applying shape deformation 

adjustments to each patch separately. By breaking the object down in this way, it is possible 

to preserve the finer details and edges of the object while still achieving an accurate overall 

fit. 
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4.2.8 3D surface segmentation (Method B) 

A 3D segmentation is performed to the point cloud in order to divide the object into 

many parts, and then applied transformation and shape correction to each segment 

separately (Figure 4-5). 

Point cloud Normal on a cross-section 3D segmentation 

 

 

Figure 4-5. 3D Surface Segmentation (Method B) 

Schematic view of the region growing 3D segmentation approach (Method B). 

Each color represents different segment. 

To segment the point cloud, a region-growing approach (Murtiyoso, and 

Grussenmeyer, 2020) is adopted. This method uses local features (point cloud normal and 

curvature values) obtained from neighboring points to segment nearby points with similar 
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properties. After obtaining the k-NN for a point p, the salient local 3D features (e.g. point 

normal, curvature, etc.), are calculated for each point p. The point p with the minimum 

curvature value is chosen as the first seed point to begin the region-growing process. 

Therefore, the point might be selected in a smoother area on the object where the surface 

variation is lower. Following the selection of seed points, the region-growing segmentation 

starts and gradually expands by adding new points. Once the first segment is complete 

according to region-growing criteria (Murtiyoso, and Grussenmeyer, 2020), a new seed 

point is selected for the following segment. 

4.2.9 Piecewise shape correction (Method C) 

The object is divided into small patches (𝑃𝑛) as illustrated in Figure 4-6, and then 

the shape correction is applied to each patch (𝑃𝑛) individually. As a result, the global 

geometry of the surface in each patch becomes less complicated, with fewer edges and 

boundaries, hence, the object's deformation is more likely to be corrected more effectively. 

To this end, after splitting the object into small patches in the image space, we select the 

first patch and then using the corresponding points in both models (photometric stereo and 

photogrammetry), the patch from the deformed model is roughly transformed and fitted to 
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the course photogrammetric model using helmet transformation. Then, a polynomial 

adjustment is applied to the same patch to mitigate the deformation locally. This procedure 

should be performed for the next patch (𝑃2) and the remaining patches. Although this 

approach corrects the global deformation, the model's 3D details might be negatively 

affected near the patch's borders due to disconnectivity. To solve this, two constrains are 

considered: (i) each patch must have an overlapping area with its neighboring patches, (ii) 

there must be always some corresponding points in the overlapping area to stitch all the 

patches together. 

 

Figure 4-6. shape correction approach (Method C). 

Schematic view of pricewise shape correction approach (Method C).  
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4.3 Fusion in frequency domain  

In this section, we aim to combine photogrammetry and PS depth maps in 

frequency domain to get detailed and precise 3D reconstructions of non-collaborative (i.e. 

shiny, texture-less, translucent, etc.) surfaces.  

In PS depth map, inaccurate low frequencies are normally present due to several 

not-fulfilled assumptions of the PS mathematical model, such as ideal diffuse reflection 

with no shadow nor specularities on the surface, parallel illumination direction, and 

orthogonal projection. But high-frequency information is preserved with high accuracy 

regardless of these assumptions.  Photogrammetric depth, on the other hand, fails to exploit 

high frequencies when the assumption of ideal diffuse reflection with a well-textured 

surface is not satisfied, despite the fact that its low-frequency information is still reliable. 

Therefore, we propose an FFT-based method to fuse the high spatial frequencies of 

photometric stereo with low frequencies from photogrammetry in order to have accurate 

low frequencies and meanwhile keep high frequencies. 

Figure 4-7 shows a general overview of 3D integrated depth maps using the 

proposed method. After collecting a stack of images obtained under different illuminations 

from different viewpoints, the depth maps using both photogrammetry and PS are 

generated (Karami et al., 2021, 2022b).  
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Figure 4-7. Fusion in frequency domain. 

General steps to fuse photogrammetry and PS data using FFT filter. A) acquire 

the images, B) generate depth using both photogrammetry and PS, C) transfer 

them to the frequency domain, D) Filter low-frequency from PS and high-

frequency from photogrammetry, E) fuse them using a non-linear blending 

approach, F) apply inverse FFT to convert the fused depth back to spatial domain 

and convert the depth map to a point cloud. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/spatdom.htm
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Then, they are converted to frequency domain using Fourier transformation 

decomposing each 2D depth map into its sine and cosine components. In this way, it is 

more convenient to distinguish and modify low and high frequencies. In the frequency 

domain, we first create a weighting plane to assign value to each pixel, and then we use a 

non-linear interpolation to eliminate incorrect frequencies while fusing accurate low and 

high frequencies. Finally, the generated fused depth maps are transferred back to spatial 

domain using an inverse Fourier transformation and then converted to 3D point clouds. 

4.3.1 Fourier transformation 

Photogrammetric depth map (Figure 4-7C) is generated using image pair captured 

from different stations (Karami et al., 2021, 2022b). On the other side, the PS depth map 

(Figure 4-7D) is generated given the stack of 20 images taken only at one viewpoint and 

the known calibrated light direction (Karami et al., 2021, 2022b). Afterward, both depth 

maps are transferred to the frequency domain using FFT. For an image of size M×N, the 

two-dimensional Fourier Transform is expressed in Equation (4-16). 
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𝐹(𝑝, 𝑞) =  ∑ ∑ 𝑓(𝑢, 𝑣) ∗ 𝑒−𝑗(2𝜋/𝑀)𝑝𝑚𝑒−𝑗(2𝜋/𝑁)𝑞𝑛

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 

(4-16) 
𝑝 = 0, 1, … ,𝑀 − 1 

𝑞 = 0, 1, … ,𝑁 − 1 

Where f(v, u)  is a 2D image in the spatial domain and the exponential term is the 

basis function corresponding to each point F(p, q) in the frequency domain. 

4.3.2 Weighting plane 

Typically, the Fourier image is shifted in a way that F(0,0) is displayed in the center 

of the image. An image point's associated frequency rises with distance from the center. 

Thus, low-frequency power is concentrated in a small area at the center of the shifted 

frequency plane, while high-frequency power is displayed as one moves away from the 

center as shown in Figure 4-8. 

Therefore, we define a Gaussian weighting plane (W) using Equation (4-17), which 

assigns each pixel in the frequency domain a weight between 0 and 1 based on its distance 

from the plane's center (Fourier image). 
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Figure 4-8. Depth transformation using FFT.  

Two examples of photogrammetric (A) and PS (B) depth transformation in 

frequency domain using FFT for Object 03. 

𝑊 = 𝑒𝑥𝑝
−�̂�2

2∗𝑇⁄  (4-17) 

�̂� =
𝑅 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
 (4-18) 

Where, �̂� is the normalized radial from center of the image. This should be noted 

that Rp (Figure 4-7E) in the weighting plane, where allocated weight to both depths are 

equal, can be changed by modifying parameter T in Equation (4-17). This parameter must 

be set empirically depending on the dataset. 
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4.3.3 Depth fusion in frequency domain 

To fuse both depths, a non-linear interpolation (Figure 4-7E) expressed in 

Equations (4-19) is used to generate a fused 2D depth out of the photogrammetry and PS 

depth maps. 

𝐹𝑢𝑠𝑑𝐹 = 𝑊 ∗ 𝐹𝑃ℎ𝑜 + (1 − 𝑊) ∗ 𝐹𝑃𝑆 ∗
𝑇𝑜𝑡𝑎𝑙𝐹𝑃ℎ𝑜

𝑇𝑜𝑡𝑎𝑙𝐹𝑃𝑆

 

(4-19) 𝑇𝑜𝑡𝑎𝑙𝐹𝑃ℎ𝑜
= ∑∑𝐹𝑃ℎ𝑜(𝑖, 𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 

𝑇𝑜𝑡𝑎𝑙𝐹𝑃𝑆
= ∑∑𝐹𝑃𝑆(𝑖, 𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 

Where, W is a Gaussian weighting plane defined in Equation (4-19); 𝐹𝑃ℎ𝑜 and 𝐹𝑃𝑆 

represent the transferred depth maps in frequency domain for both photogrammetry and 

PS, respectively; 𝑇𝑜𝑡𝑎𝑙𝐹𝑃ℎ𝑜
 and 𝑇𝑜𝑡𝑎𝑙𝐹𝑃𝑆

 are also the total frequency power for both 

photogrammetry and PS, respectively. 

With such interpolation, PS high frequencies are gradually replaced 

with photogrammetric low frequencies. As one moves away from the center, where the 

distribution of high-frequency power is, the weighting trend progressively turns inverted. 

The weight assigned to photogrammetric frequency (Pho) drops to 0 while the weight 

assigned to photometric stereo (PS) rises to 1.  
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4.3.4 Depth transformation to 3D point cloud 

The final step after fusing both depths is to apply the inverse Fourier Transform to 

transfer the generated fused depth to spatial domain (Figure 4-7F). Successively, the depth 

is converted to 3D point cloud given the 2D depth map and an RGB image (Pan et al., 

2016).  To this end, as shown in Equation (4-20), the 3D vertex 𝑣(𝑝) = (𝑥, 𝑦, 𝑧) of image 

point p in the camera’s coordinate space is created by using a calibration matrix: 

𝑣(𝑝) = 𝐷(𝑝)𝐾−1[𝑝, 1] (4-20) 

Where 𝐷(𝑝) is the depth value, and K is the 33 intrinsic camera parameters, which 

is estimated during camera calibration. 𝑣(𝑝) is the 3D vertex corresponds to image point 

p(i,j). 

To compute the normal vector 𝑛(𝑝)corresponding to each 3D vertex 𝑣(𝑝) through 

computing the cross product of the nearby re-projected points as expressed in Equation 

(4-21): 

𝑛(𝑝) = (𝑣(𝑖 + 1, 𝑗)) − 𝑣(𝑖, 𝑗)) ∗ (𝑣(𝑖, 𝑗 + 1) − 𝑣(𝑖, 𝑗) (4-21) 

Finally, Exterior orientation matrix (rotation R and translation T) is applied to 

convert the 3D vertex and corresponding normal from camera coordinate system to global 

coordinate system using Equations (4-22) and (4-23). 
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𝑉(𝑝) = [𝑅 𝑇]𝑣(𝑝) (4-22) 

𝑁(𝑝) = [𝑅 𝑇]𝑛(𝑝) (4-23) 

4.4 3D Reconstruction through PS data acquisition system 

In this section, we aim to present, for the first time, the effects of light directionality 

on the quality of 3D reconstruction of non-collaborative objects by photogrammetry. To 

this aim, we used our image-capturing system that utilizes multiple light sources to 

highlight roughness and microstructures of non-collaborative surfaces which are not visible 

under diffuse lighting direction. These roughness are then used as a sort of chiaroscuro 

texture in image orientation and multi-view stereo (MVS) algorithms to ensure effective 

matching procedures.  

4.4.1 Effects of light directionality 

To illustrate the effects of light direction on highlighting 3D microstructures, we 

designed and printed an object with a surface topography displaying sinusoidal waves in 

four distinct orientations (Figure 4-9). The surface was then illuminated with diffuse 

lighting and with light coming from different angles (i.e., left, bottom, diagonal). As shown 

in Figure 4-9, when light interacts with rough surfaces, the highlighted microstructures 
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vary according to the surface structure and direction of the light. For example, when light 

is coming from the left, parts B, C, and D are more noticeable than part A. On the other 

hand, light from the bottom highlights the micro-topography in part A and makes part D 

shadowless. 

a) Diffuse lighting 
b) Light coming 

from left 

c) Light coming 

from bottom 

d) Light coming 

diagonally 

    

Figure 4-9. Generating different sinusoidal waves through different illumination. 

The importance of light directions for highlighting microstructures on a surface: 

a) an object featuring different patterns (seen under diffuse light). b-d) the same 

object seen under different illumination directions (shown with the yellow 

arrows). 

Therefore, the use of light directionality, obtained through a photometric stereo 

image acquisition protocol, can be used also for better highlighting microstructures on the 

surface. Thus, depending on the light direction, shadows and shading phenomena can 

produce different spatially varying chiaroscuro patterns. The patterns can be used as a kind 
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of texture for successful matching processes within image orientation and multi-view 

stereo (MVS) algorithms. 

4.4.2 Grazing angle 

As shown in Figure 4-10, the grazing angle (g) is the angle between the ray incident 

on a surface and the tangent surface at the point of incidence. In other words, it is defined 

as the 90-degree complement to the angle of incidence (α). 

 

Figure 4-10. Schematic of the grazing incidence geometry. 

When a light ray is incident on a surface at an angle, it interacts with the surface in 

various ways, depending on the nature of the surface and the angle of incidence. If the 

surface is perfectly smooth and flat, and the angle of incidence is less than the critical angle 

(which would be 90 degrees in this case), the light ray would be reflected at an equal angle 

https://en.wikipedia.org/wiki/Incident_ray
https://en.wikipedia.org/wiki/Complementary_angle
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to the incident angle, according to the law of reflection. The law of reflection states that 

the angle of incidence is equal to the angle of reflection, and the reflected ray lies in the 

same plane as the incident ray and the normal to the surface. If the angle of incidence is 

greater than the critical angle, the light ray would be reflected back into the medium (create 

shadow on the image). This phenomenon is known as total internal reflection. If the surface 

is rough or irregular, the behavior of the light ray upon incidence would depend on the 

nature and orientation of the surface irregularities. In general, when a light ray is incident 

on a rough surface, it is scattered in all directions due to the varying angles of incidence at 

different points on the surface. 

4.4.3 Selecting the best-highlighted regions 

Once the multiple images from different stations are captured, the images are 

automatically inspected using the advantage of known geometry of lighting system and the 

approximate 3D shape of the object, and only those regions with the best and favorable 

grazing angles are selected as shown in Figure 4-11. Consequently, on each image, only 

parts in which surface roughness and microstructures are best highlighted remain, with the 

rest that seems to lead to lower quality and/or noise (shadow and secularity) disregarded. 
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To this end,  the grazing angle (g), shown in Figure 4-11, is computed at each surface point 

(P(i, j)) given the light direction (l) and normal (n) using Equation (4-24). 

𝑔 = 90 − cos−1 (
𝑛. 𝑙

‖𝑛‖‖𝑙‖
) (4-24) 

 

 

Figure 4-11. Selecting the best-highlighted region. 

Synopsis of the presented analyses over a spherical object to show the effect of 

the grazing angles in relationship with point cloud accuracy analysis. The grazing 

angles between 10 to 20 degrees significantly enhance the texture content of the 

image due to the chiaroscuro effect created at a micro-scale level. 
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4.4.4 Image-based fusion 

The technique of fusing relevant information from two or more images into a single 

image is known as image fusion which is more informative than the input images. The 

input images are fused at the pixel level followed by the information extraction. The idea 

of such fusion is to improve the signal-to-noise ratio, obtain an image free from shadows 

and highlights, and improve the image quality of the output image. In this regard, five 

different methods are proposed including average, median, albedo, GLCM-based, and deep 

learning based. 

4.4.4.1 Median and Average 

The first approach for Image fusion was to extract the median and average images 

from a stack of images taken under different illuminations. Since the original grazing angle 

images at any station are all captured from the same position, they all overlap. Therefore, 

for any pixel (i, j), there exist multiple intensities (equal to n the number of light sources), 

with lower intensity values representing shadow and higher intensity values referring to 

the highlighted points. The value of a pixel in the median or average images is defined by 

the average or median of its intensities. Pixels in the images generated in these methods 

cast diffuse illumination with reduced shadow and secularity effects. The main aim of using 
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these images was to provide a diffuse lighting condition where the intensity on the object 

is independent to the viewer and constantly reminds from one station to another station. 

4.4.4.2 Albedo image 

To produce fused images with diffuse illumination, the authors considered a second 

method: using photometric stereo to extract the albedo map for each viewpoint and then 

using these maps for 3D reconstruction. As shown in Figure 4-12, if we consider 𝑘𝑠�̂�𝑠 as 

a vector at each surface point (𝑃𝑠) corresponding to (𝐼(𝑢,𝑣)), the length of this vector is 

albedo (𝑘𝑠) and �̂�𝑠  is the normalized direction of that vector, as expressed in Equation 

(4-3). Figure 4-13 shows an example of extracted albedo image and normal map. Albedo 

is a measure of the diffuse reflection observed when light interacts with a surface and is 

determined by the ratio of radiosity to the irradiance observed by a surface. Obtaining the 

albedo map from multiple images taken under varying illuminations using photometric 

stereo allows for a resulting image that casts a minimal shadow and highlights effects, 

similar to median and average images.  
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Figure 4-12. Visual representation of normal and albedo at each surface point.  

albedo normal 

  

Figure 4-13. A sample of extracted albedo and normal map  
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Additionally, the texture of the resulting albedo image remains constant and 

independent of the viewer's perspective, which is a necessary condition in photogrammetry 

procedures. This map is a unitless and non-dimensional value that varies between zero and 

one, indicating the surface whiteness in a grayscale image. A value of zero indicates that 

the pixel is black, representing a perfect reflector, while a value of one indicates that the 

surface is white, representing a perfect absorber. By utilizing this method, the authors were 

able to obtain a high-quality albedo map that accurately represents the diffuse reflection 

observed by the surface. This map can then be used in 3D reconstruction procedures to 

produce fused images with diffuse illumination, resulting in a final image with minimal 

shadow and highlight effects and constant texture independent of the viewer's perspective. 

4.4.4.3 Image fusion based on the GLCM features 

The third methodology to fuse images is to use GLCM (Gray Level Co-occurrence 

Matrix) feature extraction as shown in Figure 4-14. The main aim of this work is to 

investigate the use of the gray-level co-occurrence matrix technique as an absolute image 

quality metric to extract the region on the image where the roughness and micro-structures 

are highlighted better. 
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Figure 4-14. Image fusion based on the GLCM features. 

The general steps of fusing images using GLCM .(1) Take the images (2) Select 

the best highlighted region (3) Sort the images according to the GLCM values (4) 

create the fused images Using the grazing images valued by GLCM features (5) 

Generate 3D reconstruction. 

The GLCM is a symmetric matrix, where each element (i,j) represents the 

frequency of occurrence of a pair of pixels with gray-level values i and j and a specific 

spatial relationship. The matrix is normalized to obtain probabilities, which represent the 

likelihood of a pair of pixels occurring at a specific distance and direction with specific 
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gray-level values. Once the GLCM is constructed, several statistical measures can be 

derived from it, which are used as texture features for image analysis. These features 

include contrast, dissimilarity, and homogeneity, which are used to characterize the spatial 

distribution of gray-level values in the image.  

To do this, first, a small area (window size) is defined to be used for filling in the 

GLCM and measuring the texture. Then, a window is placed in the first position over top 

left of the image. Once the first calculation is completed, the window is shifted one pixel 

to the right and the procedure of calculating a new GLCM and a new texture measure is 

repeated. 

Once the first row was done, the window is moved down one row and the procedure 

is repeated. This process is repeated until the entire image is covered. In this way, a new 

image is created with texture values. To measure the texture, three statistical texture 

measures (Haralick, 1979) including Contrast (Con), Dissimilarity (Dis), and Homogeneity 

(Hom) were used to summarize the normalized symmetrical GLCM in helpful ways. 

𝐶𝑜𝑛 =  ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 (4-25) 

𝐷𝑖𝑠 =  ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)

𝑁−1

𝑖,𝑗=0

 (4-26) 
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𝐻𝑜𝑚 =  ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 (4-27) 

Where, 𝑃𝑖,𝑗 is the probability of values i and j occurring in adjacent pixels in the 

image within the defined window. i and j are the labels of the columns and rows 

(respectively) of the GLCM. 

The difference between contrast and dissimilarity is the assigned weight to GLCM 

values as they move away from the diagonal. Values on the GLCM diagonal show no 

contrast, and contrast increases away from the diagonal. In Con, the weight is the square 

of the distance, but in Dis, the weight is the absolute value of the distance. 

Once the texture measure calculation was done for all the images in the first station 

(view), a weight 𝑤(𝑖𝑚)  ranging from 0 (worst) to 1 (best), is assigned to each grazing 

image. The images are sorted in descending. The higher the value, the more roughness, and 

microstructure appear on the images. 

𝑤(𝑖𝑚) =
(𝐶𝑜𝑛 +  𝐷𝑖𝑠 + (1 − 𝐻𝑜𝑚))

3
 (4-28) 

Then after, the first image with the highest weight is selected as the first candidate 

and used to create the fused image in the first station. To create the fused image in the next 

station, we must first find the corresponding region in the following station using interior 
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and exterior camera parameters and then fill this region with the same image candidate but 

from the second station. The same procedure is repeated for other stations. In this way, the 

object texture for the corresponding regions remains constant, avoiding false matches and 

artifacts in the final generated 3D dense point clouds. 

However, using only one grazing image can't cover the entire object because some 

parts/regions of each image that were saturated or shadowed were removed during the 

previous stage (Section 4.4.3). Thus, to cover/fill the empty region on the objects, the 

second image candidate with the highest GLCM value is used. This procedure is repeated 

until the whole object is covered in each station.  And finally, the 3D point cloud is 

reconstructed given fused images. 

It should be noted that since the fused image is the combination of all images 

illuminated from different light sources, the appearance texture on each region to the 

neighboring one can be different. Furthermore, disconnectivity and brightness changes at 

the border of each region appear on the images making fused images unbalanced and chaos. 

Therefore to avoid this, we blend the candidated grazing images. To this end, we first use 

a smoothing weighting function based on the Euclidean distance to weight each image. The 

weighting value (𝑤𝑖) that is assigned to each pixel is the function of the distance of that 
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pixel from the closest boundary, hence, it decreases gradually from one to zero as getting 

close to the borders (see Figure 4-15). Then considering this weighting map corresponding 

to each image (𝑤𝑖), both images (𝐼1,  𝐼2) are fused/ blended as expressed in Equation (4-29).  

𝐼(𝑓𝑢𝑠𝑒𝑑) =
𝑤1 ∗ 𝐼1 + 𝑤2 ∗ 𝐼2

𝑤1 + 𝑤1

 (4-29) 
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Figure 4-15. Weighting grazing images. 

This is an example of weighting each image pixel according to the  

Euclidean distance between a pixel and the nearest nonzero pixel (border) on 

image. 
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4.4.4.4 Image fusion based on deep learning 

In this Section, we use a deep-learning approach to fuse images. The first step is to 

select the best areas on each view and later apply the fusion using all the resulting views. 

The architecture of the adopted network is presented in Figure 4-16. 

 

Figure 4-16. Image fusion based on deep learning. 

The used CNN model is a standard CNN for classification composed of blocks, 

each block is composed of 2 or 3 layers of 2D convolution followed by a max-pooling 

layer. The last layer is flattened and connected to a fully connected network with one 
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output. All layers have a ReLU as an activation function except the last one (the output) 

where the hyperbolic tangent activation function is used. 

To train the net, an automatic procedure is applied to avoid manually selecting the 

best and the worse part on each image taking the advantage of known geometry lighting 

system and approximate 3D shape of the objects. To this end, as shown in Figure 4-17, 

pixels on each image are segmented and classified into three different groups according to 

their corresponding grazing angles. The first category belongs to those pixels that are 

illuminated at the grazing angle larger than 30 degrees and below zero (mostly area in 

shadow and around specular reflection). According to the experiment presented by Karami 

et al. (2022a), pixels (area) on each image that are illuminated at a grazing angle ranging 

from 10 to 20 degrees are selected as the best-highlighted region where 3D microstructure 

and roughness are best highlighted (Second category). This angle can also be modified 

depending on the object. By decreasing or narrowing  this angle, a smaller area is selected 

as the best-highlighted region while by increasing this angle, it is more likely to 

select/consider areas where the roughness and microstructure are not highlighted well. And 

the third category is comprised of areas where we are unsure whether roughness and 

microstructure are sufficiently highlighted or not, and it is situated between the first and 

second groups. 
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To train the model, we utilize pixels (regions) from the second group, then we apply 

the trained net to the second and third groups to obtain the fused image. 

 

Figure 4-17. Training data generation for image fusion using the CNN model. 

 

Each image (view) is fully scanned with a window of size 32x32 and an overlap of 

8 pixels. Each crop of 32x32 is passed through the CNN to decide whether this selected 

area is good or no. Because of the overlapping, many pixels are selected many times and 

can have different labels (with some crops classified as good whereas others are not). The 
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final decision for such ambiguity is to classify each pixel as good if it was classified at least 

one time as good during the scanning/classification of the whole image. 

4.4.5 Object-based fusion 

In this method instead of fusing images in the image space, for each LED, n 

different point clouds are produced and combined to form the final model. As shown in 

Figure 4-18, for each LED, a stereo pair is captured using the proposed image acquisition 

prototype. Then the images are automatically inspected using the advantage of known 

geometry of lighting system and the 3D shape of the object, and only those regions with 

the best and favourable grazing angles are selected (For more detail please refer to Section 

4.4.3). Consequently, on each image, only parts in which surface roughness and 

microstructures are best highlighted remain, with the rest that seems to lead to lower quality 

and/or noise (shadow and secularity) disregarded. However, this procedure highlights 

locally the surface’s topography depending on the light direction, and some parts including 

shadow and specular reflection are removed as shown In Figure 4-18(b), the individual 

point clouds are incomplete. To address this issue and generate a complete 3D shape of the 

object, in each dataset, the individual point clouds generated under each grazing angle can 
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be merged into a unique 3D model shown in Figure 4-18(c). Since the selected point clouds 

are all oriented and registered within the same reference coordinate system, merging them 

to create the final point cloud is a simple process. Thus, in this way, a complete 3D object 

reconstruction can be achieved. 

 
(a) (b) (c) 

Figure 4-18. Object-based fusion. 

Samples of stereo images taken under different grazing angles and a closer view 

that shows the highlighted roughness (a). Individual 3D reconstructions 

generated under favorable grazing angles using only a stereo pair (b). Result of 

the merged point cloud and the point-to-point comparison between the reference 

data and the proposed 3D reconstruction method (c). 



 

 

 

104 

 

 

 

The final point cloud might include outliers resulting from specular reflection and 

undesired shadows in the individual models, especially when the object has a complex 

shape. Therefore, in the proposed system, a statistical noise/outlier removal algorithm is 

applied. The noise removal algorithm can also help save memory and computational 

resources. The algorithm used in this paper is described in Carrilho et al. (2018). To detect 

the outliers, a plane is fitted to any surface point and its K surrounding points. The point is 

considered as an outlier if it is too far away from the fitted plane. This decision is made 

based on the standard deviation and the sum of the mean distance. 

4.5 Image orientation and dense reconstruction of transparent objects 

In this section, we first analyze the critical issues that cause image orientation 

failures of transparent objects, and then we propose two approaches that leverage the low-

contrast textures present on object surfaces (roughness and 3D microstructures) to 

accurately orient images. Unlike conventional SfM-based methods that prioritize high-

contrast textures, both approaches privilege tie point detection on low-contrast textures, 

discarding specular reflections and static tie points. For the first approach, local descriptors 

are extracted in those regions where roughness and micro-structures are better highlighted, 

applying the normalized cross-correlation (NCC) on the gradient map of the images to fully 
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exploit the geometrical content of the patches. The second approach builds on the first 

method adapting the classic SIFT pipeline and obtaining a faster and more reliable 

approach. Finally, given the oriented images, several methodologies are used to generate a 

dense reconstruction of the testing objects. 

4.5.1 The main challenges of transparent surfaces 

During our investigations, we analyzed the results of COLMAP (Schonberger and 

Frahm, 2016) and Agisoft Metashape2, which failed at the image-matching stage, thus no 

camera parameters could be recovered as shown in Figure 4-19.  

  

Figure 4-19. Incorrect image orientation in Metashape and COLMAP. 

 
2 . https://www.agisoft.com/ 
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The reason is that SIFT-like descriptors prioritize image patches with high contrast, 

e.g. textures along the silhouette of the transparent object (Figure 4-20a), or reflections 

coming from surrounding objects and light sources (Figure 4-20b), and discard all the low-

contrast textures. 

 
(a) 

 
(b) 

 
(c) 

Figure 4-20. The challenges of transparent surfaces. 

Silhouette regions (a) and specular reflections (b) appear almost constant in 

different images. Low contrast textures areas (c). 

If the camera position and the surroundings remain constant and only the object 

rotates, the reflected textures remain quite steady from one image to the next if the object 

is a solid of revolution (or the surface of the surveyed object changes slowly). In this 
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situation, the descriptor finds matches in the same position across all images, assuming that 

the object stayed consistent. Conversely, if the object is not a solid of revolution, a patch 

that is first located on the silhouette in a successive image will be located inside the object 

with a completely different appearance. In both cases, the matching step of SfM generally 

fails. In addition, regular descriptors that prioritize high-contrast textures ignore low-

contrast textures on extremely high-resolution images that roughness and microstructures 

(Figure 4-20c), even if they can be utilized for image matching. 

4.5.2 Cross-correlation pipeline (first approach) 

The detection is strongly related to the description which relies on the similarity of 

patches extracted on the gradient map. Therefore, the best candidate tie points should be 

those surrounded by discriminative regions, where there is enough gradient. Furthermore, 

we need to eliminate reflection regions since they usually do not move solidly with the 

object rotating on the turn table. Based on these assumptions, Figure 4-21 depicts the 

essential steps of the proposed detection pipeline with an example. 

• A sequence of images is used as input.  High-resolution images must be preferred to 

highlight surface roughness and details on the transparent surfaces. 
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• (2-3) Backgrounds are removed with Removal.AI (https://removal.ai/), a deep-learning 

tool for background removal, and converted to masks. 

• (4) Masks are applied to process only image areas containing the transparent object, 

and especially discarding the coded targets for metric evaluations. The purpose of the 

paper is in fact to orient the images with only the texture of the object. 

1. Data acquisition 

2. Background 

removed with 

Removal.AI 

3. Mask 
4. Mask without 

ground truth 

      

5. Gradient map 
6. Remove high-contrast regions 

and update mask 

7. Harris detector applied on 

low contrast areas 

 

 

 

Convolution with a gaussian kernel 

with a high standard deviation that 

discards microstructure areas 

Figure 4-21. Proposed detection pipeline based on cross-correlation. 
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• (5-6) The gradient of the image is estimated to highlight and emphasize the geometrical 

content of the textures, then a gaussian kernel with a large standard deviation is applied 

to mask specular reflections and keep only those parts where roughness and 

microstructures are highlighted better. 

• Finally, the Harris detector is applied to low-contrast areas to extract keypoints. 

The description and matching step leverage the knowledge of the approximate 

epipolar lines (almost horizontal because of the acquisition network) to search for the best 

match of a candidate 33x33 pixel patch cropped around each keypoint (Figure 4-22a). Each 

patch is converted in its gradient map and compared with NCC within a rectangular 

searching window extracted along the a-priori known epipolar lines (Figure 4-22b). For 

NCC we used the formula expressed in Equation (4-30) without the window normalization 

since our datasets do not present scale changes. 

𝑆𝑚1,𝑚2 = ∑ ∑ [[𝐴𝑢𝑣 − 𝐴] ⋅ [𝐵𝑢𝑣 − 𝐵]] / (𝜎(𝐴) 𝜎(𝐵))

𝑤

𝑣=−𝑤

𝑤

𝑢=−𝑤 

 (4-30) 

Where 𝑆 is the score, 𝑚1 is the reference patch cropped around the keypoint, and 

𝑚2 is one of all the possible patches inside the rectangular searching window. The patch 

size is (2𝑤 + 1) ⋅ (2𝑤 + 1), 𝑢 and 𝑣 are the local coordinate system with (0, 0) located in 
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the center of the patch, 𝐴𝑢𝑣 and 𝐵𝑢𝑣 are the gradient intensity in position (𝑢, 𝑣). 𝐴 and 𝐵 

are the average intensity value of each patch, 𝜎(𝐴) and 𝜎(𝐵) are the standard deviations. 

The output is a score map (Figure 4-22c) and the best match is extracted in the 

maximum (Figure 4-22d). For computational constraints, the matches of each image are 

calculated for only two images forward and two backward.  

a) Patch around key 

point 

b) Searching window 

on gradient map 
c) NCC score 

d) Patch with max 

score 

 

 

 

 

Figure 4-22. Description and matching with NCC. 

(a) patches extracted around each candidate keypoint, (b) searching window on 

the previous or following gradient maps, (c) score map after NCC, (d) 

visualization of the patch around the maximum score. 
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The patches are limited to a 33x33 pixel size. The method has several hyper-

parameters that have been chosen to balance computation times and final accuracy. 

The raw matches are imported to be geometrically verified in COLMAP with 

RANSAC. All matches, both inliers, and outliers are extracted along approximate epipolar 

lines, therefore the RANSAC maximum error threshold was set to 1 pixel to be very 

restrictive and be able to extract more correct matches. Because of the simple, non-

redundant acquisition network, a weak initialization might lead the solution to converge to 

a local minimum rather than the global maxima. 

4.5.3 SIFT-based pipeline (second approach) 

From the analyzes done in Section 4.5.1, it is possible to adapt the SIFT pipeline to 

work with low-contrast local features and discard high-contrast features for these types of 

datasets. To this end, this approach is based on the following changes to the standard SIFT 

pipeline. The adaptations and changes are mainly based on the rough knowledge of the 

camera motion and increasing the matching reliability. 
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• The pipeline was forced to extract local features also in the low-contrast areas by 

optimizing the "peak threshold". The contrast peak threshold was decreased from 0.066 

to 0.026. 

• using a not rotation invariant descriptor (the “upright” version) increases the number 

of absolute correct matches and the inlier ratio. 

• The use of nearest neighbor strategy (NN) instead of the nearest neighbor ratio (NNR) 

to increase the number of matches. 

• The usage of sequential matching instead of the brute-force approach. The brute-force 

matching without NNR can lead to consider as good matching images without overlap, 

causing a partial failure in the orientation. Sequential matching works in our case study 

with only a strip of circularly acquired images, but in other cases, a rough knowledge 

of the camera motion is enough to avoid failures. 

• The elimination of static tie points checks the optical flow for each consecutive image 

pair needed to be larger than a certain threshold, e.g., 50 px (see Figure 4-23). 

• Finally the usage of RANSAC as a global geometric constraint to filter outlier matches. 
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Figure 4-23. Ground-truth flux calculated from manually taken tie points. 

The SIFT-based pipeline contains several hyper-parameters (see Table 4-1): the 

optimal value for the contrast threshold in the detection step, the threshold error for 

RANSAC, SIFT upright vs rotation invariant SIFT, the nearest neighborhood ratio (NNR) 

vs the nearest neighborhood (NN) approach, intersection vs union strategy for brute-force 

matching (Jin et al., 2021), RGB images vs the gradient map as input for the descriptor. To 

set these hyper-parameters, we selected a pair of images and determined the parameters 

combination that generates the higher number of correct matches with a high inlier ratio. 

To estimate the number of correct matches, we employed a reference fundamental matrix 

calculated from a set of manually selected tie points. 
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To further filter out the incorrect matches that lie along the epipolar lines, we also 

calculated the approximate flux from the manually taken tie points (yellow lines in Figure 

4-23) and we interpolated the data to estimate the optical flow for all the areas covered by 

the bottle. This approximate ground-truth flux has been used to filter out the outliers along 

the epipolar lines, not filtered by the fundamental matrix. Table 4-1 reported the results for 

different sets of hyper-parameters in terms of absolute correct matches and inlier-ratio. The 

parameters to be evaluated are reported in bold, while the best parameters are highlighted 

in green, which are: 0.0026 for the contrast (peak) threshold, NN and not NNR with the 

intersection strategy for the brute-force matching, SIFT upright as a descriptor, and RGB 

images used as input for the descriptor. 

Table 4-1. Fine-tuning of the hyper-parameters of the SIFT-based pipeline. 
HYPER-PARAMETERS MATCHES RESULTS 

input RootSIFT NNR 
NNR 

strategy 

gradient 

peak 

RANSAC 

error 

matches 

after NN 

static 

filtering 

after 

RANSAC 

correct 

matches 

inlier 

ratio 

RGB upright 1.00 intersection 0.0026 4 px 5469 228 165 124 0.75 

RGB upright 1.00 intersection 0.0026 2 px 5469 228 155 122 0.79 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB upright 1.00 intersection 0.0036 1 px 4565 205 117 97 0.83 
RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB upright 1.00 intersection 0.0016 1 px 6764 249 143 118 0.83 

RGB upright 1.00 intersection 0.0066 1 px 2673 118 66 50 0.76 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB upright 0.90 intersection 0.0026 1 px 1563 109 89 76 0.85 

RGB upright 0.80 intersection 0.0026 1 px 768 56 51 43 0.84 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB upright 1.00 union 0.0026 1 px 25430 698 217 157 0.72 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB no rotation 1.00 intersection 0.0026 1 px 5673 158 97 79 0.81 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

gradient upright 1.00 intersection 0.0026 1 px 4087 201 86 65 0.76 
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4.6 Summary 

In this chapter, four different methodologies for 3D reconstruction of non-

collaborative objects were developed utilizing the proposed multi-view photometric stereo 

data acquisition. The first method uses geometric construction to combine photogrammetry 

and photometric stereo, whilst the second approach employs FFT filtering to combine both 

techniques in order to generate a precise and high-detailed 3D reconstruction of non-

collaborative objects. Then, we utilized the PS lighting system to highlight microstructure 

and roughness to enhance image orientation and dese reconstruction. Finally, we presented 

two different image orientation solutions for transparent objects. 
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5.1 Introduction 

In this chapter, the objective is to report experiments and results achieved for each 

proposed method, in particular: the findings for the proposed integrated technique (Section 

5.4) and FFT-based fusion approach (Section 5.5), the results regarding the proposed 

pipeline obtained through our PS lighting system to improve the quality and reliability of 

dense reconstruction of non-collaborative objects (Section 5.6) and, finally, the outcomes 

for the image orientation and 3D reconstruction of transparent objects (Section 5.7). The 

objects used in our experiments are presented in Section 4.2 along with their ground truth 

in Section 5.3. 

5.2 Testing objects 

In this thesis, various objects with different surface characteristics including 

textureless, reflective, and transparent are used to evaluate different proposed approaches.  

5.2.1 Textureless objects 

Figure 5-1 shows various texture-less objects used to evaluate the proposed pipeline 

featuring complex geometry, poor texture, and/or diffuse that scatter incident illumination 



 

 

 

118 

 

 

 

evenly in all directions, with almost no specular highlights in the images. The first object 

is a white paper (Object A), which has been glued to a flat aluminum surface. Object B is 

an industrial sphere with a known radius of 25 mm±0.0134 mm which was provided by 

IAPG – Jade University (Oldenburg, Germany). Object C is a standard ping pong ball with 

a radius of 20mm with an uncertainty measurement of 0.1mm. The surface of these two 

objects is exceptionally smooth and featureless. Finally, object D is a flat wood with a 

slightly better texture than the others. Moreover, its surface is quite rough, which helps us 

better understand the grazing angle's ability to improve the dense matching process by 

highlighting microstructures (Section 5.6). 

Object A Object B Object C Object D 

    
110*80mm 50*50 mm 39*39mm 70*70mm 

Figure 5-1. Textureless Objects. 

Example of surveyed objects with non-collaborative surfaces featuring 

textureless. 
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5.2.2 Shiny and metallic objects 

Various metallic and reflective objects (Figure 5-2), with complicated geometry, 

are used for the assessment. Objects E, F, and G are metallic with reflectivity while 

featuring a geometrically complex shape. Objects H and I are also two reflective objects 

with a curved and flat shapes. The phenomenon of interreflection makes it more complex 

compared to the other objects. 

Object E Object F Object G Object H 

    
50*50mm 140*50mm 120*70mm 92*92mm 

Object I Object J Object K Object L 

     
200*160mm 100*100mm 26*26mm 26*26mm 

Figure 5-2. Metallic and reflective objects.  
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Object J is a gold foiled surface shaped like a Euro coin and objects K and L are 

the back and front sides of a two-euro coin. The surface of objects is very reflective, with 

very detailed structures. These objects are good examples to emphasize the proposed 

method's capability for recovering microstructures on the surface while keeping the low-

frequency information. 

5.2.3 Transparent objects 

To evaluate the accuracy of the proposed pipeline for image orientation and 3D 

reconstruction of transparent objects, various objects shown in Figure 5-3 were used.  

Object M 

 

Object N 

 

 Object O 

 

Figure 5-3. Transparent objects. 
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For each object, a set of images was captured using our proposed image acquisition 

system (Chapter 3) from 36 different stations under constant lighting, directed to enhance 

the appearance of the low-contrast texture. To provide a metric assessment for the proposed 

method performance, a set of photogrammetric coded targets with known relative distances 

were printed and mounted on a rotating table. 

5.3 Ground truth 

5.3.1 Low-frequency ground truth 

In order to provide reference data in the low-frequency domain (Figure 5-4), a 

Hexagon active scanner called AICON Primescan (Hexagon, 2020) with a nominal 

accuracy of 63µm was used to scan the objects E, F, G, and I. Also, an Evixscan 3D Fine 

Precision (Evixscan, 2022) with a special resolution of 20m was used to scan object K. 

Since the object's laser scanner 3D model was unavailable for object J, an additional 

photogrammetric 3D reconstruction is employed as reference data since its low-frequency 

information is still accurate. To generate this dataset 30 additional images were taken 

(Karami et al., 2021). 
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To generate reference data for objects M and N, their surfaces were covered with a 

thin layer of random colored powder to i) make it diffusely reflecting and remove refraction 

and ii) provide texture on the surface. After surface treatment, an additional 

photogrammetric 3D reconstruction was employed to generate a dense 3D reconstruction 

(considered as reference data). 

The reference for objects A, B, C, D, and H was provided by a geometric constraint 

(Mohammadi et al., 2021; karami et al., 2022b). For example, for objects A, D, and H, a 

best-fit plane was used as the reference, whereas for objects B and C, a sphere with a known 

radius was used. Indeed, according to the international table tennis federation 

(https://www.ittf.com/), the maximum allowed manufacturing tolerance for a ping-pong 

ball (Object C) radius is ± 0.1 mm, which we assumed as its known uncertainty in this 

study. 

The reference data generated using active/passive scanners were used to evaluate 

the accuracy of the point cloud, while the reference data provided by geometric constraint 

was used mainly to evaluate the precision at a local scale. 

The generated 3D points were aligned to the reference data using the ICP technique 

(Besl and McKay, 1992) and the RMSEs of the Euclidean distances were measured and 

https://www.ittf.com/
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compared to analyze low-frequency information. This geometric comparison allows 

estimating possible global deformations of the recovered 3D shapes. 

Object E Object F Object G Object I 

    

Object J Object K Object M Object N 

    

Figure 5-4. Generated reference data for low-frequency evaluation. 

5.3.2 High-frequency ground truth 

Objects K and L were used to evaluate the proposed methodology in the high-

frequency domain. These objects can be a good example to emphasize the proposed fusion 
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method's capability for recovering microstructures on a surface while keeping the low-

frequency information since its surface is very reflective, with very detailed structures. A 

small patch (2.5mm*3mm) on Object K (Figure 5-5a) was selected and measured with a 

non-contact 3D optical SENSOFAR scanner (Figure 5-5b) at 0.5µm resolution which was 

provided by IAPG – Jade University (Oldenburg, Germany). The selected patch (letter R) 

was completely scanned using 12 acquisitions with overlap (Figure 5-5c&d). 

 

Figure 5-5. Reference data for high-frequency evaluation. 

(a) A small area (letter R with the dimension of 2.5 mm*3mm) on a two Euro coin 

(Object K) was selected and measured. (b)  The SENSOFAR scanner with an 

optical resolution of 0.5µm and (c) the 12 overlapping scans to form the entire 

letter (R). (d) Final 3D model after alignment and co-registration of the scans. 

A contact-type profilometer (Mitutoyo, Surftest SJ-210 [mm]; R2µm; 0,75mN; 

Item number: 178-560-11D) was used to collect reference data for Object L. The 

profilometer has a diamond stylus of radius 2µm and is used to measure several profiles 
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(red lines in Figure 5-6) on the surface of object L to provide an accurate high-frequency 

profile. 

 

Figure 5-6. High-frequency sections scanned using a contact-type Mitutoyo profilometer.  

5.4 Proposed integrated method 

The proposed integrated method (Figure 4-2) was evaluated on the six non-

collaborative objects (E, F, I, J, and K) presented in Figure 5-2. For each object, a set of 

images with a GSD of ≈20 µm are acquired from three stations using the proposed image 
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acquisition system (proposed in Chapter 3). From each station, multiple images are 

acquired under twenty different illuminations. 

A 3D point cloud with a photogrammetric pipeline was generated using images 

taken from three different stations. The 3D coordinates of LEDs (as obtained during system 

calibration) and 3D object shape were then utilized to estimate light directions and intensity 

attenuations at each surface point. Regions with shadows and specular reflections were 

detected and masked out from the captured images, given the estimated light directions and 

the initial normal at each surface point. Following that, the surface normal was computed 

at each surface point given the light directions and intensities (only multiple images from 

the first station were used to generate surface normal). The depth map was then generated 

from the integration of the surface normal. Using the interior and exterior orientation 

camera parameters, the estimated depth map was transformed to the same coordinate 

system where the photogrammetric 3D point cloud was reconstructed. The scale factor was 

computed using corresponding points between photogrammetric 3D reconstruction and the 

refined photometric stereo depth map. Finally, the three different methods were proposed 

(Method A, Method B, and Method C) described in Section 4.2 to adjust the remaining 

global deformation of the estimated photometric stereo depth map. Figure 5-7 reported 

some examples of the 3D results obtained using the proposed integrated method with 
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respect to those achieved using a photometric stereo implemented by Xiong et al. (2014) 

and standard photogrammetry (AgiSoft Metashape V1.7.6 Build 13779). 

Object (a) Photometric stereo (b) Photogrammetry (c) Integration method 

C 

   

B 

   

F 

 

 

 

 

 

 

Figure 5-7. 3D point could generated using the proposed integrated method. 

3D reconstruction was generated using the basic photometric stereo (a), 

photogrammetry (b), and proposed integration method (c) on three different non-

collaborative objects (F, I, and J). 
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The obtained 3D results indicate the clear advantage of the proposed integration. 

The proposed approach took the advantages of photogrammetry and photometric stereo to 

generate a reliable and high-detail 3D reconstruction of the non-collaborative objects. 

Indeed, thanks to the inclusion of photogrammetric 3D measurement, the global shape 

deviation, caused by assumptions and unknown error resources, was greatly mitigated 

(Figure 5-7c). Photogrammetric 3D reconstruction (Figure 5-7b) provided accurate 

geometric information compared to 3D photometric stereo (Figure 5-7a), where the 

generated 3D reconstruction was globally deformed. The proposed integrated algorithm 

reduced the global shape deformation aided by photogrammetry while keeping the 3D 

details from the photometric stereo. 

5.4.1 Low-frequency evaluation 

In order to provide a comprehensive qualitative low-frequency evaluation, two 

different tests (cloud-to-cloud comparison and profiling) were accomplished using 

different non-collaborative objects. 

5.4.1.1 Cloud-to-cloud comparison 
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To provide a cloud-to-cloud comparison, all the ground truth data were registered 

and transferred to a defined coordinate system (from which photogrammetric 3D points 

were obtained) using an Iterative Closest Point (ICP) technique. The RMSE of the 

Euclidean cloud-to-cloud distances between the 3D points on the reconstructed and 

reference models was then computed and compared in CloudCompare.  

Method Object I Object J Object K  
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RMSE: 5.5 mm 

Max error: 18 mm 

RMSE: 2.76 mm 

Max error: 10.1 mm 

RMSE: 0.14 mm 

Max error: 0.4 m 
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RMSE: 0.4 mm 

Max error: 1.8 mm 

RMSE: 0.16 mm 

Max error: 0.6 mm 

RMSE: 0.025 mm 

Max error: 0.1 mm 

 

Figure 5-8. Cloud-to-cloud comparisons. 

Cloud-to-cloud comparisons with reference data for basic photometric stereo and 

the proposed method (method A) on objects I, J, and K. 
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The cloud-to-cloud comparisons for the basic photometric stereo and the proposed 

approach (Method A) on three objects were represented in Figure 5-8. 

It can be seen that the highest low-frequency error belongs to object I with an 

RMSE of 0.4 mm. This is because the object’s size is quite large with a complex shape and 

a highly reflecting surface, making the 3D reconstruction challenging. However, there is a 

dramatic improvement compared to photometric stereo (RMSE of 5.5 mm). The low-

frequency error for the rest of the objects is less than 0.2 mm proving that the proposed 

integration method can reduce the global shape deformation of 3D reconstructions. 

The larger errors observed in the boundaries of object I, as shown in Figure 5-8, 

were likely due to the absence of control points in those areas. The lack of control points 

made it challenging to accurately predict and adjust the 3D model outside of the control 

point regions using the polynomial model. Furthermore, another downside of performing 

polynomial adjustment globally (Method A), as previously stated, was that the edges and 

boundaries of complex-geometry surface objects (e.g., objects E and F) can be smoothed 

out. Therefore, to preserve the edges of objects with complicated geometry, methods B and 

C were proposed. The proposed methods were tested on two objects with complex 

geometry (objects E and F). The comparative 3D results after final shape correction using 

three proposed methods were presented in Figure 5-9. 
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Object Method A Method B Method C 

E 

   
RMSE: 0.54 mm RMSE: 0.41 mm RMSE: 0.06 mm 

F 

   
RMSE: 0.61 mm RMSE: 0.35 mm RMSE: 0.09 mm 

Figure 5-9. Cloud-to-cloud comparisons for the proposed methods on objects C and D. 

As shown in Figure 5-9, the worst results for both objects were obtained by method 

A where the shape correction was applied globally at once on the object. This was due to 

the geometry of the objects' surfaces, which had many edges and borders; hence, applying 

such a polynomial can smooth out the edges and boundaries, negatively affecting the low-

frequency information. However, these results were slightly improved for method B, where 

the object is first segmented and divided into small parts and then applied shape adjustment 

to each segment independently. For instance, the estimated RMSE in method A for object 
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C is 0.61 mm while this value for method B decreased to 0.35 mm. The disadvantage of 

method B is that the 3D segmentation of the object takes time. Furthermore, the 

segmentation outcome is constantly dependent on certain input parameters, making precise 

segmentation of the object problematic. The final result is directly depending on the 

segmentation part and therefore it is not always reliable.  

The method that yielded the best results for both objects was method C, which 

involved dividing the object into smaller patches and applying shape deformation 

adjustment to each patch. The estimated RMSE was less than 0.09 mm. While this 

approach effectively corrected global deformation, the 3D details of the model near patch 

borders were dependent on patch size, an overlapping area with neighboring patches, and 

the number of control points used for stitching patches together. These parameters were 

selected manually through trial and error, but they could be further studied to automate the 

optimization of the final 3D model.  

5.4.1.2 Profiling 

Profiling, or the extraction of a cross-sectional profile, was another helpful criterion 

to evaluate the performance of the proposed method in low-frequency domain. A cross-

sectional profile can display the linear route of the obtained 3D points on a perpendicular 
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plane which provides well-detailed geometric features of the profile. Object J was 

considered to be evaluated for this test. As shown in Figure 5-10 with different colors, four 

cross-sectional profiles were extracted and evaluated using photogrammetry, basic 

photometric stereo, the proposed method, and the algorithm implemented in (Peng et al., 

2017). The extracted section in each dataset was geometrically compared against the 

photogrammetric dataset using the well-known formula of Root Mean Square Error 

(RMSE). It is worth mentioning that the photogrammetric 3D reconstruction was chosen 

as a point of reference due to its reliable low-frequency data, which could be used to 

validate other measurements in low-frequency domain. Additionally, the unavailability of 

the laser scanner 3D model for the object made the photogrammetric reconstruction the 

best available option for this purpose. 

In Figure 5-10, the green line presents the photogrammetric cross-sectional profile 

while the red, blue, and magenta ones represent the basic photometric stereo, the proposed 

method, and the Peng approach, respectively. From Figure 5-10, it can be seen that the 

proposed cross-sectional profile (red line) shows smaller errors (RMSE of 0.09 mm) and 

is closer to the photogrammetric section (green line) compared to the other approaches. 
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Figure 5-10. The comparison result of profiling for object J. 

The green profile represents the reference data (photogrammetry), the red profile 

represents the proposed method, the blue represents basic photometric stereo, 

and the magenta profile represents the algorithm implemented by Peng et al., 

(2017). 

5.4.2 High-frequency evaluation 

In order to evaluate the accuracy of the reconstructed high-frequency information 

by the proposed methodology, the obtained 3D results are compared against reference data 

collected with a contact-type profilometer (Mitutoyo, Surftest SJ-210 [mm]; R2µm; 0,75 
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mN; Item number: 178-560-11D). The profilometer was used to measure a profile on the 

surface of object K to provide an accurate high-frequency profile. Then, the reference 

profile (the green profile in Figure 5-11) is compared to the same profile generated on the 

3D data obtained by the proposed method (the red profile shown in Figure 14). The height 

of ridges on both extracted profiles is measured and compared. The results of this 

comparison are shown in Tables 4-1, 4-2, and 4-3.  

 

Figure 5-11. High-resolution evaluation using profiling. 

High-resolution evaluation between the profiles measured with the profilometer 

in green and the proposed method in red for object E. 
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From the achieved results, it can be seen that the estimated ridge heights for the 

proposed method is quite close to the ground truth provided by the profilometer. For 

instance, a maximum residual of 15.36 µm is measured for ridge P14-P15 while the 

estimated RMSE and Mean Absolute Error (MAE) for all ridges are about 1.5 µm and 5.48 

µm, respectively. The achieved results generate a highly-detailed 3D reconstruction of the 

surface topography, with a high level of agreement with the ground truth. 

Table 5-1. The estimated residuals of the ridge height (µm) between the proposed method 

and reference data from point 1 to point 13. 
 P1-P2 P2-P3 P3-P4 P4-P5 P5-P6 P6-P7 P7-P8 P8-P9 P9-P10 P10-P11 P11-P12 P12-P13 

Reference 53.79 60 54.03 59.73 58.53 58.03 56.03 58.63 57.7 51.8 52.85 52.05 

Proposed 55.683 57.523 53.52 60.4 54.46 54.63 53.11 62.07 65.59 51.35 41.55 46.61 

Residual 1.893 −2.477 −0.51 0.67 −4.07 −3.4 −2.92 3.44 7.89 −0.45 −11.3 −5.44 

 

Table 5-2. The estimated residuals of the ridge height (µm) between the proposed method 

and reference data from point 13 to point 23. 
 P13-P14 P14-P15 P15-P16 P16-P17 P17-P18 P18-P19 P19-P20 P20-P21 P21-P22 P22-P23 

Reference 55.56 56.56 56.8 52.77 46.97 47.7 49.8 49.4 55 63.4 

Proposed 50.44 41 58.95 61.57 41.24 52.39 55 44.68 41.99 48.72 

Residual −5.12 −15.36 2.15 8.8 −5.73 4.69 5.2 −4.72 −13.01 −14.68 

 

Table 5-3. The results of high-frequency evaluation (µm) for the proposed method. 
Mean of Residuals Maximum Residual RMSE MAE 

−2.46 −15.36 1.5 5.48 
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5.5 Fusion in frequency domain 

To evaluate the proposed FFT-based fusion method (Section 4.3), three non-

collaborative objects (Figure 5-2 objects F, J, and K) were used. Two different experiments 

were carried out to evaluate the accuracy potential of the proposed fusion method. The first 

test was accomplished to evaluate the accuracy of low-frequencies obtained by the 

proposed method. The second test was performed to evaluate the potential of the proposed 

method to exploit the high frequencies. 

5.5.1 Low frequencies evaluation 

To evaluate the accuracy potential of the proposed FFT-based method in the low-

frequency domain, 3D results achieved with photometric stereo (Figure 5-12a), 

photogrammetry (Figure 5-12b), and the proposed method (Figure 5-12c) were 

geometrically compared using available reference data.  

After aligning the generated 3D points to the reference data, the RMSEs of the 

Euclidean distances were measured and compared to analyze low-frequency information. 

This geometric comparison allows estimating possible global deformations of the 

recovered 3D shapes. The results of this comparison was shown in Figure 5-12.  
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The negative values of the legend (towards blue color) in Figure 5-12 indicate that 

the generated 3D surface is below the reference surface, while the positive values (towards 

red color) show areas above the reference surface.  

Object a) Photometric stereo b) Photogrammetry c) Proposed fused method 

F 

   
RMSE: 2.4mm RMSE: 0.07mm RMSE: 0.09mm 

I 

 

-- 

 

RMSE: 5.4mm  RMSE: 0.14mm 

K 

   

RMSE: 0.1mm RMSE: 0.02mm RMSE: 0.04mm 

Figure 5-12. The cloud-to-cloud comparison For the FFT-based fusion method. 

The result of the cloud-to-cloud comparison with reference data for photometric 

stereo, photogrammetry, and proposed method on three non-collaborative 

objects. 
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The quantitative analysis demonstrates that the proposed fusion method performs 

noticeably better than photometric stereo. For instance, the estimated RMSE of Euclidean 

distances for photometric stereo for objects F and J are 2.4mm and 5.76 mm, respectively. 

On the other hand, values for the proposed method decreases remarkably for both objects 

to 0.09mm and 0.14mm, respectively, which was quite close to the estimated RMSE for 

photogrammetry (0.07mm). This analysis demonstrates that the proposed integrated 

method maintained high frequencies while also improving low spatial frequencies. 

5.5.2 High frequencies evaluation 

Object K was a good example to emphasize the proposed fusion method's capability 

for recovering microstructures on a surface while keeping the low-frequency information 

since its surface is very reflective, with very detailed structures. A small patch 

(2.5mm*3mm) on Object K was selected and measured with a non-contact 3D optical 

SENSOFAR scanner (Figure 5-5). Then, the reference data was compared to the same 

patch/area on the 3D data generated by the proposed method, photometric stereo, and 

photogrammetry. To this end, the RMSE of the Euclidean cloud-to-cloud distances 
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between the 3D points on the reconstructed and reference models was computed and 

compared using CloudCompare software (Figure 5-13).  

A) Photometric stereo B) Photogrammetry C) Proposed method 

   

RMSE:  15µm RMSE: 35µm RMSE: 19µm 

Figure 5-13. High-frequency evaluation For FFT-based fusion method. 

Evaluation results for the high-frequencies on Object K: cloud-to-cloud 

comparisons using reference data for photometric stereo, photogrammetry, and 

the proposed approach on the small 2.5mm * 3mm patch of the coin. 

From the achieved results, it can be seen that the estimated RMSE for the proposed 

method was less than 19 µm which was quite close to the photometric stereo with an RMSE 

of 15 µm. While the estimated RMSE for photogrammetry was almost two times higher 

(about 35µm) than the proposed method. The achieved 3D results indicated how the 

proposed method generates a high-detail 3D reconstruction of the surface topography quite 
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similar to photometric stereo while preserving low-frequency information (Figure 5-12) 

thanks to the fusion of photogrammetric and photometric stereo depth measurements. 

5.6 3D reconstruction through PS data acquisition system 

In this section, we aim to incorporate and quantify the effect of directional lighting, 

obtained through our PS lighting system, as a method to improve the quality and reliability 

of dense reconstruction of non-collaborative objects. The designed system employs several 

light sources that can better highlight roughness and microstructures on the surface 

(Section 4.4). The shadows and shading that occurred, due to the interaction of the grazing 

rays with microstructures, can produce spatially varying chiaroscuro patterns that increase 

the local contrast of the image thus facilitating image matching in orientation and multi-

view stereo-dense reconstruction. Eight different shiny and textureless objects of varying 

complexity were used. The experiments, first, analyzed the effect of light directionality 

using different tests including density the number of extracted tie points, measuring 

photometric consistency of generated point cloud, and geometric evaluation of the point 

cloud generated under grazing angle illumination. Then, we reported the results of five 

different image fusion-based methods including average, median, albedo, GLCM, and 

learning-based to improve 3D reconstruction of non-collaborative using our PS image 
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acquisition system (Section 4.4.4). And finally, the 3D results of object-based fusion 

(Section 4.4.5) are presented. 

5.6.1 Evaluating the effect of light directionality 

The objective is to study and compare the quality of 3D surveys achieved under 

individual grazing angles against those obtained under conventional diffuse lighting. To 

this end, 20 stereo pairs (ground sample distance – GSD ≈ 38 µm) were acquired, each 

illuminated with one of the LEDs. Figure 5-14 shows some sample stereo pairs for objects 

C and E, respectively. The main reason to use only two stations (a stereo image) was to 

investigate to what extent dense image matching could be enhanced with the minimum 

number of required images. Otherwise, increasing the number of images (captured from 

different stations) might help to overcome the low signal-to-noise ratio and mitigate 

random and systematic errors. As the grazing angle images are acquired under different 

lighting conditions, the diffuse images are expected to mitigate shadow and specular 

effects, simulating a diffuse lighting condition needed to produce a reasonable dense cloud. 

To take the diffuse images, two large LED panels (about 50x50 cm2) were mounted on a 

mini adjustable tripod stand and positioned at about 1.5m distance from the object.  
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 LED 01 LED 05 Diffuse images 

Station 01 Station 02 Station 01 Station 02 Station 01 Station 02 
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Figure 5-14. Sample grazing angles and diffuse images. 

Sample grazing angles and diffuse images captured from objects C and E using 

the proposed image acquisition device. LED 01 and LED 05 are two examples of 

grazing angles. 

In front of each panel, a flat light diffuser was installed to uniformly scatter the 

incoming light in all directions. 

5.6.1.1 Density and distribution of tie points 

Feature extraction is the first essential step in photogrammetric 3D reconstruction. 

The number of tie points extracted in diffuse and grazing angle images are hereafter 

compared. The goal is to assess the object texture quality in each of these images. Objects 

A, C, D, and E were used. For the 20 grazing angle stereo pairs, we used those illuminated 
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by LED lights 01, 05, 16, and 20, which, on average, provided less shadow and specular 

reflections on the test objects. To extract the tie points, the AgiSoft Metashape V1.6.3 Build 

10732 was used with exactly the same settings for all of the objects. The number of tie 

points refers to the number of feature-based points extracted and matched during the image 

orientation process. 

The results are shown in Figure 5-15, Table 5-4, Table 5-5, and  

 

Table 5-6. The blue dots in Figure 5-15 represent tie points. As can be seen from 

Table 5-4 and Table 5-5, the number of tie points extracted in grazing angle images for 

textureless and shiny objects is significantly higher than that obtained by diffuse lighting.  
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Figure 5-15. The visual impression of extracted tie points on four objects. 

For example, Light 16 has the fewest tie points in grazing angle images for object 

D, with 4580 features, which is still far more than diffuse lighting images. The pattern 

holds true for the other objects as well. 

Table 5-4. The extracted tie points on shiny objects. 
Object Diffuse lighting Light 01 Light 05 Light 16 Light 20 

E 259 825 581 154 569 

F 1913 1875 2865 2064 1962 

G 505 749 510 800 530 

H 552 853 176 430 313 

The extracted tie points on shiny objects using diffuse lighting, and four grazing 

angles. The best and worst results are represented by green and brown colors, 

respectively. 

Table 5-5. The number of extracted tie points on textureless objects. 
Object Diffuse lighting Light 01 Light 05 Light 16 Light 20 

A 21 137 304 166 167 

B 1061 1536 1298 1271 1710 

C 19 106 26 28 32 

D 365 4642 5422 4580 5840 

Number of extracted tie points on textureless objects using diffuse lighting, and 

four grazing angles. The best and worst results are represented by green and 

brown colors, respectively. 



 

 

 

146 

 

 

 

 

 

Table 5-6. The estimated RMS of image residuals (pix). 
Object Diffuse lighting Light 01 Light 05 Light 16 Light 20 

A 1.1 0.2 0.2 0.18 0.2 

B 1.0 0.4 0.45 0.4 0.48 

C 0.6 0.3 0.6 0.2 0.61 

D 0.51 0.19 0.2 0.19 0.19 

E 0.3 0.11 0.13 0.12 0.13 

F 0.21 0.2 0.2 0.12 0.15 

G 0.2 0.2 0.19 0.16 0.18 

H 0.3 0.2 0.3 0.15 0.29 

The estimated RMS of image residuals (pix) averaged over all tie points on a 

stereo image. The best and worst results are represented by green and brown 

colors, respectively. 

 

 

Table 5-6 shows that the estimated RMS of reprojection errors for grazing angles 

were substantially lower than diffuse images. This may highlight the fact that the image 

matching and orientation in the dataset created utilizing grazing angles is far superior to 

the other due to the higher contrast and stronger signal in the corresponding images. A 

higher reprojection error for generated tie points may indicate the presence of a problem in 



 

 

 

147 

 

 

 

the project, such as a low-quality surface texture or an insufficient number of tie points 

incorrectly detected. 

Overall, from Table 5-4, Table 5-5, and  

 

Table 5-6, it can be observed that there was at least one grazing angle image for 

each object, which resulted in significantly more tie points with lower error than diffuse 

images. 

5.6.1.2 Photometric consistency  

The Photometric Consistency Score (PCS) is defined by the normalized cross-

correlation value of pixels across corresponding images in which the point can be seen 

(Furukawa and Ponce, 2009). In this experiment, PCS is used to assess the quality of 

extracted correspondences across multiple input images using the open-source PMVS2 

software. The generated 3D points are projected into each visible image, and the similarity 

of image textures near their projections is estimated. PCS is a scalar value that can be 

associated with any 3D point and ranges from -1 (worst) to 1 (best). The higher the value, 

the more reliably the corresponding match is found across the different images. 
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Visual results for objects A, C, D, and E, are reported in Figure 5-16, with dark 

blue color for a PCS of -1 and dark red color for a PCS of +1.0. The point clouds created 

using grazing angle images present significantly higher PCS for all objects than diffuse 

images.  

Table 5-7 confirms this, where the grazing angle images have not only contained 

more points, but the majority of the extracted points also have higher scores. For example, 

for object D, more than 800 thousand points were extracted using grazing angle images, 

with PCS values mostly bigger than 0.7. A similar pattern can be seen for other objects.  
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Figure 5-16. Comparison of photometric consistency. 

Comparison of photometric consistency of points produced using different image 

types. The unitless photometric consistency values range between -1.0 (worst) to 

+1.0 (best). 
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It should be noted that, with the complex shape of object E, the total number of 

extracted points by grazing angle images is slightly less than that of diffuse lighting images 

although grazing angle images outperformed diffuse lighting images in terms of PCS. This 

could be due to occlusions, which prevent light from reaching the covered areas. Of course, 

increasing the number and distribution of light sources is one solution to this problem. 

Table 5-7. Photometric consistency score of 3D points. 

Object Image 
Consistency groups Total 

points 0.7 to 1 0.4 to 0.7 0 to +0.4 -1 to 0 

A 
Diffuse lighting 68380 282800 170900 3287 525367 

Grazing angle 481700 132500 10410 0 624610 

C 
Diffuse lighting 29330 54150 24180 394 108054 

Grazing angle 42170 53020 16700 232 112122 

D 
Diffuse lighting 165000 67890 27260 1240 261390 

Grazing angle 851200 3861 0 0 855061 

E 
Diffuse lighting 205800 46720 10150 0 262670 

Grazing angle 232000 20160 0 0 252160 

The results of photometric consistency on four different objects. The best and 

worst results are represented by green and brown colors, respectively. 

5.6.1.3 Geometric evaluation of individual models 

The acquired and produced images were used to create individual models used for 

evaluations. To evaluate the accuracy of the point clouds, we first register the generated 
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3D point cloud to the ground truth (GT). The Euclidean distances of each point from the 

ground truth surface are then considered as an error. We report the Root Mean Square of 

Errors (RMSE) according to the definition also given in Gruen and Beyer (2001). Figure 

5-17 shows the results, with a negative (blue) or positive (red) value indicating whether the 

generated point is below or above the closest point on the reference mesh surface, 

respectively. Table 5-8 reports the estimated RMSE (mm) of the point-to-point comparison 

between the generated point clouds and the reference mesh for both shiny and textureless 

objects. 

As illustrated in Figure 5-17, the grazing angle point cloud fit very well to the 

reference data, particularly for smooth and textureless objects (A and C), whereas diffuse 

lighting images produced very noisy results. Furthermore, the estimated RMSE of points 

reconstructed using grazing angle images ranges between 0.059 mm and 0.15 mm, 

depending on the surface type and the direction of the light source, as shown in Table 5-8. 

The grazing angle concept performed best on objects A and D with an RMSE of less than 

0.1 mm. Objects C have slightly higher values (0.15 mm and 0.2 mm, respectively) than 

the other objects. This could be due to occlusions, which occur when light is unable to 

interact properly with an object's surface.  
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The diffuse lighting method produced a very noisy point cloud with an RMSE of 

0.25 mm for object C and 0.17 mm for object A, while these values for grazing angle 

images, were less than 0.1 mm and 0.15 mm for objects A and C, respectively. 

It also should be noted that when the object is extremely polished, smooth, and 

reflective (e.g., object G), the grazing angle model RMSE is slightly higher but still better 

than the others. 
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Figure 5-17. Cloud-to-cloud comparison for two textureless and two shiny objects. 

Table 5-8. The results of point-to-point comparison. 
Object Diffuse lighting Light 09 Light 11 Light 14 Light 16 

A 0.178 0.09 0.1 0.072 0.059 
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C 0.25 0.15 0.13 0.14 0.12 

D 0.12 0.097 0.106 0.094 0.079 

E 0.165 0.13 0.125 0.13 0.126 

F 0.24 0.08 0.094 0.097 0.097 

G 0.185 0.14 0.14 0.14 0.145 

H 0.22 0.11 0.11 0.12 0.12 

The estimated RMSE (mm) of the point-to-point comparison for four grazing 

angles against diffuse images. The best and worst results are represented by green 

and brown colors, respectively. 

5.6.2 3D reconstruction using image fusion-based methods 

In this section, we aim to present the results of image-based fusion methods 

(average, median, albedo, GLCM, and deep learning) for improving 3D reconstruction 

using our proposed image acquisition system. As mentioned before, the idea of fusing 

multiple images, that are taken under different illuminations, is to improve the signal-to-

noise ratio, obtain a fused image free from shadows and highlights, and improve the image 

quality. Each method was tested on two different objects (one pure textureless and one 

reflective object). We provided a cloud-to-cloud comparison for each method using 

reference data. Figure 5-18 shows the results, with a negative (blue) or positive (red) value 

indicating whether the generated point is below or above the closest point on the reference 

mesh surface, respectively. Max error is set based on the three-sigma limits. Table 5-9 
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reports the estimated RMSE, MAE, and STD of the point-to-point comparison between the 

generated point clouds and the reference mesh for each method on both shiny and 

textureless objects. From the estimated results, it can be seen that the method based on 

GLCM outperforms the other method regardless of the object’s property. While the 

performance of other methods directly depends on the object’s type therefore their 

performance can be different from one object to the other.  

 Average Median Albedo GLCM Deep learning 
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Figure 5-18. Comparison results of image fusion for objects E and B. 

The visual representation of the point-to-point comparison for five image-based 

fusion approaches (Average Median, Albedo, GLCM, and Deep learning) on two 

non-collaborative objects (object B: texture-less and object E: shiny). 

Table 5-9. Comparison results of image fusion for objects B and E.  
 

metric Average Median Albedo GLCM 
Deep 

learning 

O
b

j

ec
t 

B
 RMSE 0.16 0.47 0.13 0.13 0.23 
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MAE 0.23 0.34 0.16 0.13 0.26 

STD 0.22 0.58 0.11 0.16 0.3 

ME 0.16 -0.07 0.16 0.15 0.13 

O
b

je
ct

 E
 

RMSE 0.07 0.05 0.1 0.05 0.08 

MAE 0.07 0.06 0.1 0.05 0.07 

STD 0.09 0.08 0.15 0.06 0.1 

ME 0 0 0 0 0 

The estimated results (in millimeters) of the point-to-point comparison on two 

shiny (object E) and textureless (object B) objects for five different approaches 

(Average Median, Albedo, GLCM, and Deep learning). The best and worst results 

are represented by green and brown colours, respectively. 

For instance, for object B (pure textureless), the GLCM and Albedo provided the 

best results in comparison with other methods with an estimated RMSE of 0.13mm and the 

worst results belonged to Median with RMSE of 0.47 mm. Whereas, for object E (metallic 

and shiny), the best results were achieved for the Median and GLCM methods with an 

estimated RMSE of less than 0.05 mm while the poorest results were obtained for Albedo 

with a measured RMSE of more than 0.1 mm. The results also show that GLCM is more 

robust and produces more reliable results than the other techniques. Furthermore, when the 

object has no texture (object B), the GLCM results are somewhat higher but still better than 

the others. This is because the surface of object E has higher roughness and 3D 

microstructures which can be better emphasized under grazing angles. 
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5.6.3 3D reconstruction using object-based fusion 

In this method, instead of fusing images in the image space (Section 4.4.4), n 

different point clouds, generated under the best-selected grazing angles (Section 4.4.3), 

were combined in object space to form the final model (see details in Section 4.4.5). To 

evaluate this method, four different objects, two texture-less and two metallics, were used/ 

compared. For each dataset, at least three individual 3D point clouds were selected and 

merged in object space to shape the final model.  
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Figure 5-19. Comparison results of object-based fusion. 

The visual representation of the point-to-point comparison of object-based fusion 

on four different non-collaborative objects (two texture-less and two shiny 

objects). 

Table 5-10. Comparison results of object-based fusion on four objects, Unit: mm. 
Object type Texture-less Shiny 

Object Object A Object B Object E Object G 

RMSE 0.03 0.08 0.05 0.10 

MAE 0.05 0.11 0.05 0.11 

STD 0.06 0.09 0.06 0.14 

ME 0 0.11 0.0 0.01 

Max error 0.32 0.35 0.3 0.5 

The results of a point-to-point comparison between the object-based fusion 

approach and reference data are represented in Figure 5-19. The estimated RMSE, MAE, 

and STD for each object are reported in Table 5-10. 
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This comparison aimed to understand how much the idea of merging different 3D 

reconstructions generated under grazing angles can improve the final 3D model instead of 

increasing the number of images. As shown in Table 5-10, the estimated error metrics 

(RMSE, MAE, and STD) for 3D reconstruction observed after merging was changeable 

between 0.03 mm to 0.14 mm depending on the surfaces' roughness. For example, the best 

performance for the method based on the merging 3D reconstruction in object space was 

obtained for Objects A and E with the RMSE, MAE, and STD less than 0.06mm, which 

has a relatively rougher surface than other objects (C, G). 

Whereas the worst-performing results were achieved on Object G with an estimated 

error two times larger than objects A and E. This is because the surface of this object is 

high-reflective, textureless, and smoothed making it difficult to generate noiseless 3D 

reconstruction. This test can indicate that the rougher a surface is, the better 3D 

reconstruction is observed in general. 

In another effort, this evaluation was extended to compare the proposed methods 

based on image fusion (Section 4.4.4) against the object-based fusion method (Section 

4.4.5). The results of this comparison for object E are presented in Figure 5-20. From the 

estimated error metrics of the point-to-point comparison, it can be seen that GLCM (one 
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of the image-based fusion methods) and the method based on the integration of individual 

3D reconstruction under the best grazing angles (object-based fusion) produce a better 3D 

results compared to other methods (Average, Median, Albedo, and Deap learning). For 

instance, the estimated STD for GLCM and object-based fusion methods was less than 0.06 

mm while this value for other approaches were larger than 0.08 mm. 

 

Figure 5-20. Comparison of image-based fusion against object-based fusion. 

The comparison results obtained by five image-based methods (Average, Median, 

Albedo, GLCM, and Deep Learning) in comparison with the method based on the 

merging 3D reconstruction (object-based fusion). 
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5.7 Image orientation and 3D reconstruction of transparent surfaces  

In this section, we first evaluate the performance of two suggested approaches for 

determining the orientation of transparent objects (cross-correlation and SIFT-based 

pipelines). Using three different pipelines (Shape from silhouette, OpenVMS, and 

COLMAP), a 3D dense cloud of the objects were then generated and evaluated given the 

image orientation. 

5.7.1 Image orientation evaluation 

To evaluate the accuracy of the two proposed pipelines, we tested the plastic bottle 

(object M), the glass bottle (object N), and the teacup (object O) shown in Figure 5-21. The 

visual representation of the generated sparse 3D reconstruction and an example image for 

each of the three transparent objects are presented in Figure 5-21. For each object, a set of 

images was captured from 36 different stations under constant lighting, directed to enhance 

the appearance of the low-contrast texture. A set of photogrammetric coded targets were 

printed and mounted on a rotating table with known relative distances to provide a metric 

assessment using different criteria such as mean reprojection error (MRE), and the mean 

error and standard deviation. The results are reported in Table 5-11 
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Plastic Bottle (object M) Glass Bottle (object N) Tea Cup (object O) 

 
(a) 

 
(b)  (a) (b)  

(a) (b) 

 
 

(c)  
 

(c) 

  
(c) 

Figure 5-21. Visual representation of image orientation for three transparent objects  

Sparse reconstruction (a and b) and image detail (red boxes) for the three 

transparent objects used in the accuracy evaluation. (a)  Image matching using 

adapted SIFT descriptor, (b) image matching using Cross Correlation descriptor, 

and (c) recovered camera network. 

For object O, both pipelines achieve an MRE of about 0.4 pixels. SIFT obtains an 

Std of 0.052 mm with Mean Absolute Error (MAE) of 0.048 mm, while the cross-

correlation pipeline obtains an Std of 0.079 mm with MAE of 0.083 mm, twice larger than 

SIFT. For object N with GSD of 0.05 mm/px, the SIFT-based pipeline has an Std of 0.012 
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mm, MAE of 0.011 mm, and MRE of 0.581 px. The cross-correlation pipeline achieves a 

similar MRE of 0.532 px, while a significantly worse Std and MAE of 0.068 mm and 0.106, 

respectively.  

Table 5-11. Quantitative image orientation evaluation.  
 Adapted SIFT-BASED APPROACH CROSS-CORRELATION 

DATASET 

Camera 

Focal 

length 

Pixel size 

Distance 

GSD 

[mm/px] 

Mean 

Absolute 

Error 

[mm] 
 

Std 

[mm] 

Mean 

Reprojection 

Error 

[px] 

Mean 

Absolute 

Error 

[mm] 
 

Std 

[mm] 

Mean 

Reprojection 

Error 

[px] 

 

NIKON 

D750 

28 mm 

5.98 µm 

240 mm 

0.05 0.011 0.012 0.581 0.106 0.068 0.532 

 

NIKON 

D750 

28 mm 

5.98 µm 

240 mm 

0.05 0.054 0.044 0.648 0.016 0.011 0.291 

 

NIKON D3X 

60 mm 

5.98 µm 

300 mm 

0.03 0.048 0.052 0.436 0.083 0.079 0.423 
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Average  0.043 0.037 0.036 0.555 0.068 0.052 0.41 

Accuracy evaluation for two proposed pipelines (adapted sift-based approach 

and cross-correlation) using different criteria of Mean Reprojection Error (MRE) 

in pixel, the residuals in mm (Mean Absolute Error (MAE) and standard 

deviation(std)). The green color represents the best results and the red color 

represents the worse results. 

This is because it did not orient four images so in this case, we do not have a loop-

closure with a decrease in accuracy. Failure to close the network may also be due to the 

lower number of local features used in the cross-correlation method compared to SIFT, 

which has been kept small for computational reasons. For object M the cross-correlation 

approach reaches a better result for all criteria compared to SIFT approach. 

5.7.2 Dense cloud evaluation 

After orienting the images, the dense cloud was generated using different pipelines, 

including OpenMVS (Moulon et al., 2013), COLMAP (Schonberger and Frahm, 2016), 

and Shape from Silhouette (SFS) to propose different possible solutions for 3D dense 

reconstruction. To generate reference data for each object, their surface was covered with 

a thin layer of random colored powder to i) make it diffusely reflecting and remove 

refraction and ii) provide texture on the surface. After surface treatment, an additional 
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photogrammetric 3D reconstruction was employed to generate a dense 3D reconstruction 

(considered as reference data). 

To evaluate the accuracy potential of the suggested method in low-frequency 

domain, the 3D results achieved with each pipeline were geometrically compared against 

reference data (photogrammetry). To this end, the obtained 3D point clouds were registered 

to the reference data using an Iterative Closest Point (ICP) algorithm. The RMS of the 

shortest distance between the homologous points on the reconstructed and reference 

models was then calculated and compared. The results of the point-to-point comparison for 

both objects (M and N) are presented in Figure 5-22. 

The quantitative analysis shown in Figure 5-22 demonstrates that the SFS can 

recover the 3D shape of an object regardless of whether it is textureless or transparent, as 

long as the region of the object in each image is distinguishable from the background. 

However, SFS failed to reconstruct concavities or holes on an object's surface making it 

difficult for geometrically complex objects. It is quite possible that the silhouette of an 

object would be trimmed or expanded, resulting in a 3D model that is smaller or bigger 

than the actual size of the object. 

On the other hand, the 3D results using OpenMVS and COLMAP (Figure 5-22) 

directly depend on the high-resolution texture of the object surface, hence it completely 
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failed or generate noisy point clouds in the area where microstructure and roughness are 

not highlighted well (see red boxes). 

 Reference data SFS OpenMVS COLMAP 
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 RMSE: 0.68 mm RMSE: 0.75 mm RMSE: 1.4 mm 
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N
) 

    
 RMSE: 0.71 mm RMSE: 0.79 mm RMSE: 1.6 mm 

Figure 5-22. Results of the point-to-point comparison for transparent objects. 

The comparison results for objects M and N using three different dense 

reconstruction pipelines. 

5.8 Summary  
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This chapter demonstrates in depth the advantages of the proposed methods. First, 

we presented a variety of objects with distinct surface characteristics, such as textureless, 

reflective, and transparent, that were utilized to evaluate various proposed methods. Then, 

the procedure of gathering ground truth to quantitatively assess our proposed 

methodologies in the low and frequency domains. The quantitative results of the four 

strategies provided in Chapter 4 were then presented.



 

 

6. CONCLUSIONS AND FUTURE 

WORKS 

CHAPTER VI 

Conclusions and 

future works 

 



 

 

 

167 

 

 

 

6.1 Conclusions 

This thesis proposed various pipelines for 3D shape reconstruction of non-collaborative 

surfaces including textureless, shiny, and transparent, using our proposed PS data 

acquisition system. Unlike the most of existing approaches, the proposed solutions can 

generate an accurate and high-resolution topography of non-collaborative surfaces. In 

chapter 5 we demonstrated extensively the advantages of the proposed methods, which can 

be briefly summarized as follows: 

• As a first step, we presented two automatic and semi-automatic image acquisition 

systems based on the near-field PS lighting system, as well as a straightforward but 

effective calibration procedure for measuring the lighting system's system geometry 

and the camera's internal and exterior orientation parameters. The designed system is 

suited for collecting data for photogrammetry and photometric stereo techniques, as 

well as merging photogrammetry and photometric stereo measurements (Chapter 3). 

• We proposed an integrated method for correcting the global shape deviation of the PS 

depth map by utilizing the advantage of reliable photogrammetric 3D measurements. 

We utilized the measured camera geometry, lighting system, and approximate 3D 

geometry of the object to correct the light directions, compute intensity attenuations, 

and automatically detect and remove shadow and specular reflection (Section 4.25.4). 
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• Then, the integration strategy was extended through a combination of photogrammetry 

and PS depth maps in the frequency domain. We proposed an FFT-based approach for 

fusing the high spatial frequencies of photometric stereo with the low spatial 

frequencies of photogrammetry in order to obtain accurate low spatial frequencies 

while maintaining high spatial frequencies. Regarding this, we first built a weighting 

plane in the frequency domain to assign a value to each pixel, followed by a non-linear 

interpolation to eliminate wrong frequencies while fusing accurate low and high 

frequencies. The achieved 3D results indicated that the proposed FFT-based fusion 

recovered high-resolution details with an estimated RMSE below 20 µm quite close to 

photometric stereo results while inheriting the geometric information (low-frequency) 

from photogrammetry with the RMSE of less than 100 µm (Section 5.5). 

• Moreover, we presented a pipeline to improve the quality and reliability of dense 

reconstruction of non-collaborative objects by employing the directional lighting 

obtained from our PS lighting system. Due to the interaction of grazing rays with 

microstructures, shadows and shading could produce spatially varying chiaroscuro 

patterns on the surface, which improve the local contrast of the image, hence improving 

image matching in orientation and multi-view stereo-dense reconstruction. We 

analyzed the effect of light directionality on the generated point clouds through 
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different criteria including the density of extracted tie points, photometric consistency 

score, and geometric cloud-to-cloud evaluation (Section 5.6.1). 

• We proposed five different image fusion-based methods including average, median, 

albedo, GLCM, and learning-based to fuse grazing images into a unique image where 

the signal-to-noise ratio is improved, and the output image is free from shadows and 

highlights. The achieved results indicated that the method based on GLCM outperforms 

the other method regardless of the object’s property. While the performance of other 

methods directly depends on the object’s type therefore their performance can be 

different from one object to the other (Section 5.6.2). 

• After that, instead of fusing images in image space, n different point clouds generated 

utilizing the best grazing angles, were merged in object space (3D space) to generate 

the final model. Since the selected point clouds were all orientated and registered within 

the same reference coordinate system, combining them to generate the final point cloud 

was a straightforward process. From the obtained results, it is clear that object-based 

fusion is more robust to objects with diverse surface properties and shape geometries 

than image-based fusion techniques (Section 5.6.3). 

• Lastly, we proposed two principles that successfully orient images of transparent 

objects by exploiting the low-contrast textures emphasized on object surfaces 
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(roughness and 3D microstructures) with the aid of an appropriate lighting system 

(Section 5.7.1). Both methods prioritize tie point detection on low-contrast textures 

over high-contrast textures, hence rejecting specular reflections and static tie points. 

Unlike conventional SfM-based methods that prioritize high-contrast textures, both 

approaches privilege tie point detection on low-contrast textures instead of high-

contrast textures, discarding specular reflections and static tie points. For the first 

approach, local descriptors are extracted in those regions where roughness and micro-

structures are better highlighted. Also, the normalized cross-correlation (NCC) was 

applied on the gradient map of the images to fully exploit the geometrical content of 

the patches. The second approach builds on the first method by adapting the classic 

SIFT pipeline. Although both approaches may effectively orient images, the SIFT-

based method is slightly quicker and more accurate. 

6.2 Recommendations for future works 

The data acquisition and techniques proposed in this thesis have several limits and 

drawbacks, which have led to the identification of the following areas as suggestions for 

further research. 
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• As possible future work, the LED number in the system could be increased in order to 

boost its flexibility and take advantage of light directionality for better surface 

inspection, allowing more images to be captured under a wider range of grazing angles, 

and making the system more flexible for object inspection of varying complexity. 

• For some particular objects, like a 3D inspection of plants, using LEDs with infrared 

light can also be useful. 

• Spatially varying BRDF will be also investigated for better surface rendering. 

• RTI (Reflectance Transformation Imaging) is a technique used to capture and display 

the surface texture of an object. It involves taking multiple photographs of the object 

under different lighting conditions, and then combine them into a single image that can 

be interactively lit from different angles. RTI can reveal fine details in the surface 

texture of an object that might be difficult to see in a single photograph. 

• The size and weight of the system restrict it to the laboratory and cannot be taken to 

the site where objects are located, thus, working on its mobility might be an alternative. 

• Another alternative would be to install the cameras and light sources on adjustable arms 

in order to handle objects of various sizes. 

• It would be possible to completely automate the system for mass 3D digitization in 

industrial sectors. 
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• Regarding the 3D reconstruction of transparent objects, deep learning descriptors could 

be investigated as an alternative to cross-correlation and SIFT method, considering 

more complex datasets featuring more than one strip or multi-camera acquisitions.  

• Starting from the estimated image orientation, it would be important to evaluate the 

potential of Neural Radiance Fields (NeRF) for 3D reconstruction of non-collaborative 

objects (Morelli et al., 2022).  

• Combining photometric stereo with nerf can be also interesting to generate a precise 

and high-resolution 3D shape for a transparent object. 

• Regarding the radiometric calibration, the radiometric response of the imaging system 

can be calculated using for example a macbeth chart. This involves measuring the pixel 

values of the images and comparing them to the known reflectance or emissivity values 

of the calibration targets. Then, using the radiometric response values, generate a 

radiometric correction map that can be used to correct the pixel values of the actual 

images captured by the imaging system. 
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