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A B S T R A C T

We present novel flux splitting-based numerical schemes for the 1D blood flow equations with an advection
equation for a passive scalar, considering tube laws that allow to model blood flow in arteries and veins. Our
schemes are inspired by the original flux vector splitting approach of Toro and Vázquez-Cendón (2012) and
represent an extension of the work proposed by Toro et al. (2024), which addressed tube laws suitable for
describing blood flow in arteries. Our schemes separate advection terms and pressure terms, generating two
different systems of PDEs: the advection system and the pressure system, both of which have a very simple
eigenstructure compared to that of the full system. We propose discretization schemes of the Godunov type
that are simple and efficient. These qualities are evaluated on a suite of test problems with exact solution. A
detailed efficiency analysis is performed in order to illustrate situations in which the proposed methodology
results advantageous with respect to standard approaches.
1. Introduction

Blood flow models have a broad scope of applications, including the
examination of healthy and diseased blood vessels hemodynamics, the
development and assessment of medical devices, and the prediction of
surgical outcomes. To investigate blood flow in a particular area of the
cardiovascular system, the 3D incompressible Navier–Stokes equations
are frequently employed as a preferred approach. The primary objective
of these models is to enhance our comprehension of the intricate
phenomena that occur within the cardiovascular system. It is imper-
ative to take into account the mechanical reaction of vessel or organ
walls when simulating the cardiovascular system. As a result, a fluid–
structure interaction (FSI) solver is frequently created by combining a
fluid model with a solid mechanics model [1,2]. However, these models
can be computationally expensive, and in certain situations, it may be
preferable to employ simplified 1D models derived from the 3D system.

This paper focuses on the development of novel algorithms for
solving one-dimensional (1D) blood flow models [3], which have been
widely employed in previous studies to satisfactorily investigate wave
propagation phenomena in arteries [4–6]. More recently, their use
has been extended to the highly deformable, i.e., highly non-linear,
veins [7,8]. It is worth mentioning that the effectiveness of 1D blood
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flow models for various applications has been verified through in-silico
analysis, where the predictions of these models were compared with
those of more complex models [9–11], in-vitro by assessing 1D blood
flow model output with respect to highly controlled experiments [12,
13] and in-vivo by assessing the capacity of these models to reproduce
pressure and flow waveforms observed in the clinical context [14,15].
Moreover, when combined with zero-dimensional models, 1D blood
flow models have enabled the development of comprehensive models
of the entire human circulation [7,16–18]. Additionally, 1D models
have proven to be valuable in their ability to be coupled with three-
dimensional models, thereby providing realistic boundary conditions
necessary for the analysis of detailed 3D problems that focus on the
investigation of spatially localized pathological conditions [19–21].

1D blood flow models can be classified as either hyperbolic systems
of balance laws or systems of partial differential equations with a
dominant hyperbolic behavior, from a mathematical perspective. The
specific mathematical problem to be addressed in practice will heavily
rely on the chosen relationship between vessel deformation and internal
blood pressure, commonly referred to as the tube law. Over the course
of several decades, the employed techniques have undergone significant
advancements in response to the development of numerical methods
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for hyperbolic or hyperbolic-dominant partial differential equations.
Among the various methods utilized, classical finite difference methods
such as the Lax–Wendroff and MacCormack methods [16,22] have been
employed; first- and high-order finite volume methods [23] as well as
discontinuous Galerkin and Taylor–Galerkin methods [24] have also
been utilized and it is worth noting the study of numerical methods
with a focus on developing discretization techniques that maintain
specific steady state solutions, even if this latter task can prove to
be especially difficult when dealing with tubes that have varying me-
chanical and geometrical properties. Interested readers can refer to the
introductions of [25,26] for a concise overview of this topic. One alter-
native approach involves employing splitting techniques that partition
the initial system into two subsystems with a simpler eigenstructure
compared to the entire system [27–31]. In the present study, our
attention is focused on this just mentioned approach.

Our analysis involves a two-step framework that includes flux split-
ting at the level of partial differential equations (PDEs) and numerical
methods for discretizing the ensuing problems. We build upon the flux
vector splitting approach of Toro and Vázquez-Cendón [31], hereafter
called the TV splitting, originally developed for the conservative Euler
equations of compressible gas dynamics. In this approach the flux vec-
tor is split into advection and pressure terms: in this way, two systems
of partial differential equations are obtained, one advection system
and one pressure system. In Toro et al. [32] two main modifications
are introduced with respect to the approach presented in [31]. The
first change is at PDEs level and regards the flux of the continuity
equation: in the TV splitting approach this flux is assigned to the
advection system, here it is assigned to the pressure system. This
property is consistent with zero-dimensional models that are based
on neglecting the inertial term in the momentum equation, followed
by spatial integration [32]. Furthermore, straightforward calculations
show that applying the splitting methodology as presented in [31]
to the 1D blood flow equations, leads to a loss of hyperbolicity of
the two resulting subsystems of PDEs. The second modification is at
numerical level: the numerical fluxes for the advection and the pressure
systems are obtained from exact or approximate Riemann problem
solvers for each system, being the Riemann problem a special Cauchy
problem [33–35]. The difference concerns the way the solution of the
cited Riemann solvers is used to construct the advection numerical
flux. An advection equation for the concentration of a passive scalar is
added, at PDEs level its conservative flux is assigned to the advection
system for simplicity. In this study we extend the work of Toro et al.
[32], which considered a simplified tube law usually used to describe
blood flow in arteries, taking into account a more general tube law
that can accurately describe blood flow in veins [23,36] (for tube
laws in arteries please see [4]). The change from the simplified to
the more general tube law has a significant impact on the complexity
of the various elements that characterize the underlying hyperbolic
PDE system: in fact, in this case, no closed form for the generalized
Riemann invariants is available, affecting the efficiency of the two-
rarefaction approximate Riemann solver proposed in [32]. We first
extend the forementioned solver to this more general setting and then
propose a linearized solution of it. We then use a set of problems to test
their robustness and accuracy: for these tests these schemes are simple,
robust, and accurate compared to existing methods, and correctly solve
the contact waves. Finally, an efficiency test is performed.

Noteworthy, adopting the TV splitting approach has several proper-
ties of potential interest for blood flow simulations in complex vessel
networks. Separating the original problem into an advection and a
pressure system simplifies the wave relations that need to be enforced
when a two-rarefaction Riemann solver is adopted. For more general
blood flow models, wave relations can be very complex and require
to solve non-linear ordinary differential equations to be evaluated
(see [37] for more details). Having simplified wave relations will also
have a positive impact not only in the numerical method used to solve
2

the blood flow equations within vessels, but also in the determination of 𝜕
coupling conditions between one-dimensional domains, which in turn
are determined by wave relations [4,5].

The manuscript is organized as follows: we start with a brief review
of the 1D blood flow equations with an advection equation for the
passive scalar and their exact solution of the Riemann problem (Sec-
tion 2), in Section 3 we describe the proposed flux splitting at the level
of the PDEs, in Section 4 we briefly review some theoretical aspects
of the Riemann problem for the pressure system, and in Section 5 we
present the two approximate Riemann solvers for the pressure system
mentioned above. Finally, the numerical flux splitting scheme is pre-
sented in Section 6, the numerical results are given in Section 7, while
in Section 7.2 the efficiency analysis is performed. The conclusions are
drawn in Section 8.

2. 1D blood flow model with transport

2.1. Governing equations

Assuming a deformable axially symmetric vessel configuration in
three space dimensions at time 𝑡, and assuming one-dimensional flow
in the axial direction 𝑥, the 1D blood flow model with continuous
mechanical and geometrical properties reads

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝐴 + 𝜕𝑥(𝐴𝑢) = 0,
𝜕𝑡(𝐴𝑢) + 𝜕𝑥(𝐴𝑢2) +

𝐴
𝜌 𝜕𝑥𝑝 = 0,

𝜕𝑡(𝐴𝜙) + 𝜕𝑥(𝐴𝑢𝜙) = 0,

(1)

here 𝐴(𝑥, 𝑡) is the cross-sectional area of the vessel at position x
nd time t, with the assumption that 𝐴 ∈ R+. 𝑢(𝑥, 𝑡) is the averaged

velocity of blood at a cross section, 𝑝(𝑥, 𝑡) is the pressure, 𝜌 is the
density of blood, assumed constant, 𝜙(𝑥, 𝑡) ∈ R+

0 is the concentration
f the passive scalar. The first and second equations in (1) represent
he conservation of mass and momentum, while the third concerns the
dvection equation for the passive scalar 𝜙. To close the system we
dopt the following tube law

= 𝑝𝑒 + 𝜓(𝐴,𝐾,𝐴0), (2)

here 𝑝𝑒 is the external pressure, 𝜓(𝐴,𝐾,𝐴0) is the transmural pressure,
ssumed of the form

(𝐴,𝐾,𝐴0) = 𝐾
[(

𝐴
𝐴0

)𝑚
−
(

𝐴
𝐴0

)𝑛]

, (3)

with

𝐾 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸
(1 − 𝜈2)

(

ℎ0
𝑅0

)

for arteries,

𝐸
12(1 − 𝜈2)

(

ℎ0
𝑅0

)3
for veins,

(4)

𝑚 =

{

1∕2 for arteries,
10 for veins,

𝑛 =

{

0 for arteries,
−3∕2 for veins.

(5)

Here ℎ0 is the wall thickness of the vessel; 𝐴0 and 𝑅0 are the cross-
sectional area of the vessel and the radius at equilibrium: 𝜓(𝐴,𝐾,𝐴0) =
; 𝐸 is the Young’s modulus; 𝜈 is the Poisson’s ratio, which is taken as
= 1

2 , 𝑚 and 𝑛 are real numbers and are generally taken as 𝑚 > 0 and
−2 ≤ 𝑛 ≤ 0. 𝐾 ∈ R+, 𝐴0 ∈ R+, 𝑅0 ∈ R+, 𝑝𝑒 ∈ R, ℎ0 ∈ R+, 𝐸 ∈ R+ are
constants.

System (1) is conservative, in fact it can be written as

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝐴 + 𝜕𝑥(𝐴𝑢) = 0,
𝜕𝑡(𝐴𝑢) + 𝜕𝑥

(

𝐴𝑢2 + ∫ 𝑐(𝐴)2𝑑𝐴
)

= 0,
𝜕𝑡(𝐴𝜙) + 𝜕𝑥(𝐴𝑢𝜙) = 0,

(6)

.e. in the form

𝐐 + 𝜕 𝐅(𝐐) = 0, (7)
𝑡 𝑥
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with

𝐐 =
⎡

⎢

⎢

⎣

𝐴
𝐴𝑢
𝐴𝜙

⎤

⎥

⎥

⎦

,

𝐅(𝐐) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝑢

𝐴𝑢2 + ∫ 𝑐(𝐴)2 𝑑𝐴

𝐴𝑢𝜙

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝑢

𝐴𝑢2 + 𝐾𝐴
𝜌

(

𝑚
𝑚 + 1

(

𝐴
𝐴0

)𝑚
− 𝑛
𝑛 + 1

(

𝐴
𝐴0

)𝑛)

𝐴𝑢𝜙

⎤

⎥

⎥

⎥

⎥

⎦

,

(8)

where

𝑐(𝐴) =

√

𝐴
𝜌
𝜕𝑝
𝜕𝐴

=

√

𝐾
𝜌

[

𝑚
(

𝐴
𝐴0

)𝑚
− 𝑛

(

𝐴
𝐴0

)𝑛]

, (9)

s the wave speed which is always real, for the choice of 𝑚 and 𝑛 in
5) [38].

The Jacobian of system (6) is

(𝐐) =
⎡

⎢

⎢

⎣

0 1 0
𝑐2 − 𝑢2 2𝑢 0
−𝑢𝜙 𝜙 𝑢

⎤

⎥

⎥

⎦

, (10)

nd its eigenvalues are given by

1 = 𝑢 − 𝑐, 𝜆2 = 𝑢, 𝜆3 = 𝑢 + 𝑐 . (11)

possible choice of right eigenvectors corresponding to eigenvalues
11) is

1 =
⎡

⎢

⎢

⎣

1
𝑢 − 𝑐
𝜙

⎤

⎥

⎥

⎦

, 𝐑2 =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

, 𝐑3 =
⎡

⎢

⎢

⎣

1
𝑢 + 𝑐
𝜙

⎤

⎥

⎥

⎦

. (12)

emark 2.1. Note that in this article we refer to the flow rate as 𝐴𝑢
r 𝑞 = 𝐴𝑢, and also refer to 𝑐 in (9) in this way: for example, we write
𝐿 for 𝑐(𝐴𝐿), 𝑐𝑅 for 𝑐(𝐴𝑅), 𝑐∗ for 𝑐(𝐴∗), and so on.

roposition 2.1 (Hyperbolicity). The system of conservation laws defined
n (1) is strictly hyperbolic under the following hypotheses:

1. the set of admissible solutions is restricted to 𝐐 ∈ 𝛺 = [R+ × R ×
R+
0 ] ⊂ R3;

2. the tube law is a monotonically increasing function of the cross-
sectional area 𝐴, i.e. 𝜕𝑝

𝜕𝐴
> 0.

roof. It is straightforward to prove that under the specified hypothe-
es, eigenvalues (11) will always be real and distinct ∀𝐐 ∈ 𝛺. In
articular hypothesis 2 is satisfied by the parameters given in (4), (5).

roposition 2.2 (Nature of the 𝜆1- and 𝜆3-Characteristic Fields). Under
the hypotheses of Proposition 2.1 and under the restrictions on coefficients
𝑚 and 𝑛 specified in (5), the 𝜆1- and 𝜆3-characteristic fields are genuinely
non-linear with
∇𝜆1(𝐐) ⋅ 𝐑1(𝐐) < 0, ∀𝐐 ∈ 𝛺,

∇𝜆3(𝐐) ⋅ 𝐑3(𝐐) > 0, ∀𝐐 ∈ 𝛺.
(13)

roof. Please see Toro and Siviglia [38].

roposition 2.3 (Nature of the 𝜆2-Characteristic Field). Under the hy-
otheses of Proposition 2.1, the 𝜆2-characteristic field is linearly degenerate.

roof. It is straightforward to show that

𝜆 (𝐐) ⋅ 𝐑 (𝐐) = 0, ∀𝐐 ∈ 𝛺. (14)
3

2 2 p
Fig. 1. A possible configuration of the exact solution of the Riemann problem (18).
The green solid lines represent waves associated with genuinely non-linear fields, that
can be either shocks or rarefactions. The purple dashed line represents the contact
discontinuity for the passive scalar and is associated with a linearly degenerate field.
The 𝜆1-wave is sometimes called left wave, while the 𝜆3- one, right wave. It follows
that the related wave patterns in this paper will be called left rarefaction/left shock or
right rarefaction/right shock.

Proposition 2.4 (Generalized Riemann Invariants for the 𝜆1- and 𝜆3 -
Characteristic Fields). The Riemann invariants are given by

𝑢 + ∫
𝑐(𝐴)
𝐴

𝑑𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝜙 = 𝑐𝑜𝑛𝑠𝑡, (15)

for the 𝜆1-characteristic field,

𝑢 − ∫
𝑐(𝐴)
𝐴

𝑑𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝜙 = 𝑐𝑜𝑛𝑠𝑡, (16)

for the 𝜆3-characteristic field.

Proof. Omitted. See Toro and Siviglia [38].

Proposition 2.5 (Generalized Riemann Invariants for the 𝜆2-Characteristic
Field). The generalized Riemann invariants for the 𝜆2-characteristic field are

𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝑞 = 𝑐𝑜𝑛𝑠𝑡, 𝜙 ≠ 𝑐𝑜𝑛𝑠𝑡. (17)

Proof. Omitted. See Toro and Siviglia [38].

2.2. Riemann problem for the full system

The Riemann problem for system (7) is

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝐐 + 𝜕𝑥𝐅(𝐐) = 0, 𝑥 ∈ R, 𝑡 > 0,

𝐐(𝑥, 0) =

{

𝐐𝐿 if 𝑥 < 𝑥𝑑 ,
𝐐𝑅 if 𝑥 > 𝑥𝑑 ,

(18)

here 𝑥𝑑 ∈ R is the spatial location of the discontinuity at 𝑡 = 0. The
eft and right initial conditions are 𝐐𝐿 and 𝐐𝑅, while the unknowns are

∗
𝐿 =

⎡

⎢

⎢

⎣

𝐴∗

𝐴∗𝑢∗

𝐴∗𝜙∗
𝐿

⎤

⎥

⎥

⎦

, 𝐐∗
𝑅 =

⎡

⎢

⎢

⎣

𝐴∗

𝐴∗𝑢∗

𝐴∗𝜙∗
𝑅

⎤

⎥

⎥

⎦

. (19)

ig. 1 depicts the structure of the exact solution of the Riemann
roblem (18). The waves associated with the genuinely non-linear 𝜆1-
nd 𝜆3-characteristic fields can be either shocks (elastic jumps) or
arefactions [39], while the wave related to the linearly degenerate
2-characteristic field is a contact discontinuity.

The complete exact solution of the Riemann problem for the en-
ire system is not explicitly provided in this paper, as it is widely
ocumented in existing literature. For comprehensive details, we refer
nterested readers to sources such as Toro and Siviglia [38] and Spilim-
ergo et al. [40]. It is important to note that the exact solution of the
iemann problem for the 1D blood flow equations with continuous

arameters, which we consider in this study, is a specific case within
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the broader exact solution framework discussed in Toro and Siviglia
[38],Spilimbergo et al. [40] for the 1D blood flow equations with
discontinuous parameters.

3. Flux splitting at the level of PDEs

We split 𝐅(𝐐) in (8) into advection and pressure fluxes as follows

(𝐐) = (𝐐) +  (𝐐), (20)

nd we propose to split system (7) via (20) into the two subsystems
{

𝜕𝑡Q + 𝜕𝑥(Q) = 0, (21a)
𝜕𝑡Q + 𝜕𝑥 (Q) = 0, (21b)

where

=
⎡

⎢

⎢

⎣

𝐴
𝐴𝑢
𝐴𝜙

⎤

⎥

⎥

⎦

,

(𝐐) =
⎡

⎢

⎢

⎣

0
𝐴𝑢2

𝐴𝑢𝜙

⎤

⎥

⎥

⎦

,

(𝐐) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝑢

∫ 𝑐(𝐴)2 𝑑𝐴

0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝑢
𝐾𝐴
𝜌

(

𝑚
𝑚 + 1

(

𝐴
𝐴0

)𝑚
− 𝑛
𝑛 + 1

(

𝐴
𝐴0

)𝑛)

0

⎤

⎥

⎥

⎥

⎥

⎦

.

(22)

System (21a) is called ‘‘advection system’’, system (21b) is called
‘‘pressure system’’. As it will be presented in Section 6, the aim is to
compute a numerical flux

𝐅𝑖+ 1
2
= 𝑖+ 1

2
+  𝑖+ 1

2
, (23)

where 𝑖+ 1
2

and  𝑖+ 1
2

are obtained from appropriate Cauchy problems
or the advection (21a) and pressure (21b) systems, respectively. The
umerical strategy to determine the advection and pressure numerical
luxes in (23) relies on first solving the Riemann problem for the
ressure system in (21b). The solution of this system will fully deter-
ine the pressure numerical flux  𝑖+ 1

2
and will also provide advection

information for determining the advection numerical flux 𝑖+ 1
2

in (23).
In other words, we only need to solve the Riemann problem for the
pressure system in (21b). This is carried out in the next sections.

4. Riemann problem for the pressure system

The Jacobian of system (21b) is

  (𝐐) =
⎡

⎢

⎢

⎣

0 1 0
𝑐2 0 0
0 0 0

⎤

⎥

⎥

⎦

. (24)

The eigenvalues of   (𝐐) are given by

𝜆1 = −𝑐, 𝜆2 = 0, 𝜆3 = 𝑐, (25)

moreover a possible choice of right eigenvectors corresponding to
eigenvalues (25) is

𝐑1 =
⎡

⎢

⎢

⎣

1
−𝑐
0

⎤

⎥

⎥

⎦

, 𝐑2 =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

, 𝐑3 =
⎡

⎢

⎢

⎣

1
𝑐
0

⎤

⎥

⎥

⎦

. (26)

where 𝑐 is the wave speed (9).
We can now state the following propositions about the eigenstruc-

ure of pressure system (21b).

roposition 4.1 (Hyperbolicity). System (21b) is strictly hyperbolic under
he following hypotheses:
4

1. the set of admissible solutions is restricted to 𝐐 ∈ 𝛺 = [R+ × R ×
R+
0 ] ⊂ R3;

2. the tube law is a monotonically increasing function of the cross-
sectional area 𝐴, i.e. 𝜕𝑝

𝜕𝐴
> 0.

Proof. This can be clearly seen from the definition of wave speed given
in (9). Under the conditions considered in this proposition 𝑐 ∈ R+ ∀𝐐 ∈

, which results in 𝜆1 ∈ R−, 𝜆3 ∈ R+, ∀𝐐 ∈ 𝛺. In particular this is
true for the parameters given in (4), (5).

Proposition 4.2 (Nature of the 𝜆1- and 𝜆3-Characteristic Fields). Under
he hypotheses of Proposition 4.1, in case of arteries (parameters are given
n (4),(5)) the 𝜆1- and 𝜆3-characteristic fields are genuinely non-linear
with
∇𝜆1(𝐐) ⋅ 𝐑1(𝐐) < 0, ∀𝐐 ∈ 𝛺,

𝜆3(𝐐) ⋅ 𝐑3(𝐐) > 0, ∀𝐐 ∈ 𝛺,
(27)

nstead in case of veins, they are not. In fact

𝜆1(𝐐) ⋅ 𝐑1(𝐐)

⎧

⎪

⎨

⎪

⎩

> 0 for 𝐴 < 𝐴𝑐 ,
= 0 for 𝐴 = 𝐴𝑐 ,
< 0 for 𝐴 > 𝐴𝑐 ,

𝜆3(𝐐) ⋅ 𝐑3(𝐐)

⎧

⎪

⎨

⎪

⎩

< 0 for 𝐴 < 𝐴𝑐 ,
= 0 for 𝐴 = 𝐴𝑐 ,
> 0 for 𝐴 > 𝐴𝑐 ,

(28)

here 𝐴𝑐 , for parameters in (5), is

𝑐 ≈ 0.7190𝐴0. (29)

roof. It can be easily verified that

𝜆1(𝐐) ⋅ 𝐑1(𝐐) = − 𝜕𝑐
𝜕𝐴

, (30)

and

∇𝜆3(𝐐) ⋅ 𝐑3(𝐐) = 𝜕𝑐
𝜕𝐴

, (31)

where 𝐑1 and 𝐑3 are the right eigenvectors (26). For genuine non-
inearity we must prove that 𝜕𝑐

𝜕𝐴
≠ 0. Having

𝜕𝑐
𝜕𝐴

=

𝐾
𝜌

((

𝐴
𝐴0

)𝑚
𝑚2 −

(

𝐴
𝐴0

)𝑛
𝑛2
)

2𝐴

√

𝐾
𝜌

((

𝐴
𝐴0

)𝑚
𝑚 −

(

𝐴
𝐴0

)𝑛
𝑛
)

, (32)

being
√

𝐾
𝜌

((

𝐴
𝐴0

)𝑚
𝑚 −

(

𝐴
𝐴0

)𝑛
𝑛
)

= 𝑐 > 0, (33)

by hypothesis, with 𝑐 as in (9) and being by hypothesis 𝐾 > 0, 𝜌 > 0,
0 > 0 and 𝐴 > 0, we must prove that

((

𝐴
𝐴0

)𝑚
𝑚2 −

(

𝐴
𝐴0

)𝑛
𝑛2
)

≠ 0, (34)

for our considered values of variables and parameters. It is easy to
verify that for the case of arteries, i.e 𝑚 = 0.5 and 𝑛 = 0, (34) always
holds, and in particular
𝜕𝑐
𝜕𝐴

> 0, ∀𝐴 ∈ R+, (35)

hat gives the result. On the contrary, for the case of veins i.e 𝑚 = 10
nd 𝑛 = −1.5

𝑦(𝜁 ) = 𝜁10102 − 𝜁−1.51.52, (36)

changes its sign from negative to positive and there exists one and only
𝜁𝑧 in the interval  = ]0,∞[ such that 𝑦(𝜁𝑧) = 0, that is approximately

𝜁𝑧 =
𝐴𝑐 ≈ 0.7190, (37)

𝐴0
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this means that in case of veins

𝜕𝑐
𝜕𝐴

⎧

⎪

⎨

⎪

⎩

< 0 for 𝐴 < 𝐴𝑐 ,
= 0 for 𝐴 = 𝐴𝑐 ,
> 0 for 𝐴 > 𝐴𝑐 .

(38)

Proposition 4.3 (Nature of the 𝜆2-Characteristic Field). Under the hy-
potheses of Proposition 4.1, the 𝜆2-characteristic field is linearly degener-
ate.

Proof. It is straightforward to show that

∇𝜆2(𝐐) ⋅ 𝐑2(𝐐) = 0, ∀𝐐 ∈ 𝛺. (39)

Proposition 4.4 (Generalized Riemann Invariants for the 𝜆1- and 𝜆3 -
Characteristic Fields). The Riemann invariants are given by

𝑞 + ∫ 𝑐(𝐴)𝑑𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝐴𝜙 = 𝑐𝑜𝑛𝑠𝑡, (40)

for the 𝜆1-characteristic field,

𝑞 − ∫ 𝑐(𝐴)𝑑𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝐴𝜙 = 𝑐𝑜𝑛𝑠𝑡, (41)

for the 𝜆3-characteristic field.

Proof. The problem can be solved applying the generalized Riemann
invariant method [38], i.e for a given hyperbolic system of 𝑛 unknowns
[𝑤1, 𝑤2,… , 𝑤𝑛]𝑇 , for any 𝜆𝑘-characteristic field with right eigenvec-
tor 𝐑𝑘 = [𝑟1,𝑘, 𝑟2,𝑘,… , 𝑟𝑛,𝑘]𝑇 the generalized Riemann invariants are
solutions of the following 𝑛 − 1 ordinary differential equations in
phase-plane
𝑑𝑤1
𝑟1,𝑘

=
𝑑𝑤2
𝑟2,𝑘

= ⋯ =
𝑑𝑤𝑛
𝑟𝑛,𝑘

. (42)

For the 𝜆1-characteristic field we have

𝑑𝐴
1

=
𝑑𝑞
−𝑐

=
𝑑(𝐴𝜙)

0
, (43)

.e. from the first and the second term

−𝑐)𝑑𝐴 = 𝑑𝑞, (44)

nd from the third

(𝐴𝜙) = 0 ⟹ 𝐴𝜙 = 𝑐𝑜𝑛𝑠𝑡. (45)

For the 𝜆3-characteristic field

𝑑𝐴
1

=
𝑑𝑞
𝑐

=
𝑑(𝐴𝜙)

0
, (46)

i.e. from the first and the second term

𝑐𝑑𝐴 = 𝑑𝑞, (47)

and from the third

𝑑(𝐴𝜙) = 0 ⟹ 𝐴𝜙 = 𝑐𝑜𝑛𝑠𝑡. (48)

Proposition 4.5 (Generalized Riemann Invariants for the 𝜆2-Characteristic
Field). The generalized Riemann invariants for the 𝜆2-characteristic field
are

𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝑞 = 𝑐𝑜𝑛𝑠𝑡, 𝜙 ≠ 𝑐𝑜𝑛𝑠𝑡. (49)

Proof. Applying again the generalized Riemann invariant method [38]
for the 𝜆2-characteristic field, we obtain

𝑑𝐴
0

=
𝑑𝑞
0

=
𝑑(𝐴𝜙)

1
, (50)

that implies

𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝑞 = 𝑐𝑜𝑛𝑠𝑡, 𝜙 ≠ 𝑐𝑜𝑛𝑠𝑡. (51)
5

𝜆

Fig. 2. The configuration of the exact solution of the Riemann problem for the pressure
system (52). The green solid lines, in case of arteries, represent waves associated with
genuinely non-linear fields, while in case of veins this property is lost. The purple
dashed line represents the contact discontinuity for the passive scalar and is associated
with a linearly degenerate field.

The Riemann problem for system (21b) is

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝐐 + 𝜕𝑥 (𝐐) = 0, 𝑥 ∈ R, 𝑡 > 0,

𝐐(𝑥, 0) =

{

𝐐𝐿 if 𝑥 < 𝑥𝑑 ,
𝐐𝑅, if 𝑥 > 𝑥𝑑 ,

(52)

here 𝑥𝑑 ∈ R is the spatial location of the discontinuity at 𝑡 = 0. The
nitial data are 𝐐𝐿 and 𝐐𝑅. The unknowns are 𝐐∗

𝐿 and 𝐐∗
𝑅 defined

s

∗
𝐿 =

⎡

⎢

⎢

⎢

⎣

𝐴∗
𝐿
𝑞∗𝐿

(𝐴𝜙)∗𝐿

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐴∗

𝑞∗

𝐴∗𝜙∗
𝐿

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐴∗

𝐴∗𝑢∗

𝐴∗𝜙∗
𝐿

⎤

⎥

⎥

⎥

⎦

,

∗
𝑅 =

⎡

⎢

⎢

⎢

⎣

𝐴∗
𝑅
𝑞∗𝑅

(𝐴𝜙)∗𝑅

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐴∗

𝑞∗

𝐴∗𝜙∗
𝑅

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐴∗

𝐴∗𝑢∗

𝐴∗𝜙∗
𝑅

⎤

⎥

⎥

⎥

⎦

,

(53)

hanks to Proposition 4.5 that states clearly that across the 𝜆2-wave,
nly variable 𝜙 changes. Fig. 2 depicts the structure of the exact
olution of the Riemann problem (52) for the pressure system (21b): the
ave related to the 𝜆2-characteristic field is associated with a linearly
egenerate field and is a contact discontinuity, instead the waves
elated to the 𝜆1- and 𝜆3-characteristic fields, in case of arteries,
re associated with genuine non-linear fields (Proposition 4.2) and can
e either shocks (elastic jumps) or rarefactions [39]; in case of veins,
he loss of genuine non-linearity can lead to a formation of compound
aves [41].

emark 4.1. It is worth noting that for the pressure system, the
aves associated with 𝜆1- and 𝜆3-characteristic fields will always be
ubsonic, since

1(𝐐) < 0 and 𝜆3(𝐐) > 0, i.e. 𝑐 > 0, ∀𝐐 ∈ 𝛺. (54)

emark 4.2. In this paper, we do not provide a complete description
f the exact solution of the Riemann problem for the pressure system
52). Our approach considers a simplified configuration characterized
y two rarefaction waves associated with the 𝜆1- and 𝜆3-fields,
ith a contact discontinuity linked to the 𝜆2-field situated between

hem. This choice is motivated by the proposed numerical schemes and
lso by the complexity of the mathematical analysis of the mentioned
olution in the case of veins, due to the lack of genuine non-linearity
f the 𝜆1- and 𝜆3-characteristic fields (Proposition 4.2). A complete
escription of the solution of the Riemann problem for tube laws with
espect to veins will be treated in a separate paper. Here we restrict
urselves to observing empirically how the splitting schemes behave in
ases where the loss of genuine non-linearity occurs for the 𝜆1- and

3-characteristic fields of the pressure system.
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5. Approximate Riemann solvers for the pressure system

Having introduced the relations across the waves (Propositions 4.4,
4.5), we can introduce two approximate Riemann solvers for the pres-
sure system (21b). For the purposes of this article, we restrict ourselves
to the presentation of the solution in the Star Region (i.e., the unknowns
𝐐∗

𝐿 and 𝐐∗
𝑅).

5.1. A two-rarefaction approximate Riemann solver for the pressure system

The two-rarefaction approximate Riemann solver operates under
the assumption of two rarefaction waves, disregarding the shock wave
relations. The solution in the Star Region in this case is

𝐐∗
𝑇𝑅,𝐿 =

⎡

⎢

⎢

⎢

⎣

𝐴∗
𝑇𝑅
𝑞∗𝑇𝑅

𝐴∗
𝑇𝑅𝜙

∗
𝑇𝑅,𝐿

⎤

⎥

⎥

⎥

⎦

, 𝐐∗
𝑇𝑅,𝑅 =

⎡

⎢

⎢

⎢

⎣

𝐴∗
𝑇𝑅
𝑞∗𝑇𝑅

𝐴∗
𝑇𝑅𝜙

∗
𝑇𝑅,𝑅

⎤

⎥

⎥

⎥

⎦

. (55)

iven the wave relations described in Proposition 4.4

∗ = 𝑞𝐿 − ∫

𝐴∗

𝐴𝐿
𝑐(𝐴)𝑑𝐴,

∗ = 𝑞𝑅 + ∫

𝐴∗

𝐴𝑅
𝑐(𝐴)𝑑𝐴,

(56)

with 𝑐 the wave speed (9), in case of left and right rarefactions

𝑞∗𝑇𝑅 = 1
2
(𝑞𝐿 + 𝑞𝑅) +

1
2

(

∫

𝐴∗

𝐴𝑅
𝑐(𝐴)𝑑𝐴 − ∫

𝐴∗

𝐴𝐿
𝑐(𝐴)𝑑𝐴

)

= 1
2
(𝑞𝐿 + 𝑞𝑅) −

1
2 ∫

𝐴𝑅

𝐴𝐿
𝑐(𝐴)𝑑𝐴.

(57)

Having found 𝑞∗𝑇𝑅, we obtain 𝐴∗
𝑇𝑅 solving one of (56), for example

∗
𝑇𝑅 = 𝑞𝐿 − ∫

𝐴∗
𝑇𝑅

𝐴𝐿
𝑐(𝐴)𝑑𝐴, (58)

where the integrals in case of veins are calculated with a six-point Gauss
quadrature rule thanks to the Python function scipy.integrate.fixed_quad,
and Eq. (58) is solved with a globally convergent Newton–Raphson
method Appendix (for arteries with 𝑚 = 0.5 and 𝑛 = 0 in (5), the
solution is explicit).

Regarding the last variable, considering Propositions 4.4 and 4.5

𝜙∗
𝑇𝑅,𝐿 =

𝐴𝐿
𝐴∗
𝑇𝑅
𝜙𝐿, 𝜙∗

𝑇𝑅,𝑅 =
𝐴𝑅
𝐴∗
𝑇𝑅
𝜙𝑅. (59)

5.2. A linearized two-rarefaction approximate Riemann solver for the pres-
sure system

Now we proceed as in the case of the two-rarefaction Riemann
solver and additionally approximate the relations (56). In this case, the
solution in the Star Region is

𝐐∗
𝐿𝑇𝑅,𝐿 =

⎡

⎢

⎢

⎢

⎣

𝐴∗
𝐿𝑇𝑅
𝑞∗𝐿𝑇𝑅

𝐴∗
𝐿𝑇𝑅𝜙

∗
𝐿𝑇𝑅,𝐿

⎤

⎥

⎥

⎥

⎦

, 𝐐∗
𝐿𝑇𝑅,𝑅 =

⎡

⎢

⎢

⎢

⎣

𝐴∗
𝐿𝑇𝑅
𝑞∗𝐿𝑇𝑅

𝐴∗
𝐿𝑇𝑅𝜙

∗
𝐿𝑇𝑅,𝑅

⎤

⎥

⎥

⎥

⎦

. (60)

Given the wave relations from Proposition 4.4 described in (56), we
approximate the integrals in this way

∫

𝐴∗

𝐴𝐿
𝑐(𝐴)𝑑𝐴 ≈ 𝑐𝐿(𝐴∗ − 𝐴𝐿), (61)

∫

𝐴∗

𝐴𝑅
𝑐(𝐴)𝑑𝐴 ≈ 𝑐𝑅(𝐴∗ − 𝐴𝑅). (62)

olving the system

𝑞∗ = 𝑞𝐿 − 𝑐𝐿(𝐴∗ − 𝐴𝐿),
∗ ∗

(63)
6

𝑞 = 𝑞𝑅 + 𝑐𝑅(𝐴 − 𝐴𝑅),
e obtain

∗
𝐿𝑇𝑅 =

𝑐𝑅(𝐴𝐿𝑐𝐿 − 𝐴𝑅𝑐𝐿 + 𝑞𝐿) + 𝑐𝐿𝑞𝑅
𝑐𝐿 + 𝑐𝑅

,

𝐴∗
𝐿𝑇𝑅 =

𝐴𝐿𝑐𝐿 + 𝐴𝑅𝑐𝑅 + 𝑞𝐿 − 𝑞𝑅
𝑐𝐿 + 𝑐𝑅

.
(64)

For the definition of 𝑐𝐿 and 𝑐𝑅 we refer again to Remark 2.1.
Regarding the last variable, as before

𝜙∗
𝐿𝑇𝑅,𝐿 =

𝐴𝐿
𝐴∗
𝐿𝑇𝑅

𝜙𝐿, 𝜙∗
𝐿𝑇𝑅,𝑅 =

𝐴𝑅
𝐴∗
𝐿𝑇𝑅

𝜙𝑅. (65)

. Advection-pressure numerical splitting schemes for the com-
lete system of 1D blood flow equations with transport

To numerically solve the system (1), we employ a conservative
ethod following the approach outlined in Toro and Vázquez-Cendón

31]. The numerical scheme is

𝑛+1
𝑖 = 𝐐𝑛

𝑖 −
𝛥𝑡
𝛥𝑥

(𝐅𝑖+ 1
2
− 𝐅𝑖− 1

2
), (66)

here

𝑛
𝑖 ≈

1
𝛥𝑥 ∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝐐(𝑥, 𝑡𝑛)𝑑𝑥, (67)

ith 𝛥𝑥 = 𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2
, 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛. As anticipated in Section 3, the

im is to compute a numerical flux

𝑖+ 1
2
= 𝑖+ 1

2
+  𝑖+ 1

2
, (68)

where 𝑖+ 1
2

and  𝑖+ 1
2

are obtained from appropriate Cauchy problems
for the advection (21a) and pressure (21b) systems, respectively.

We define

 𝑖+ 1
2
=  (𝐐𝑖+ 1

2
(0)), (69)

where  is in (22) and 𝐐𝑖+ 1
2
(0) denotes the Godunov state, i.e. the value

𝐐𝑖+ 1
2

(𝑥 − 𝑥𝑖+ 1
2

𝑡

)

calculated at
𝑥 − 𝑥𝑖+ 1

2

𝑡
= 0, i.e. the solution of the

following Riemann problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝐐 + 𝜕𝑥 (𝐐) = 0, 𝑥 ∈ R, 𝑡 > 𝑡𝑛,

𝐐(𝑥, 𝑡𝑛) =

⎧

⎪

⎨

⎪

⎩

𝐐𝐿 = 𝐐𝑛
𝑖 , if 𝑥 < 𝑥𝑖+ 1

2
,

𝐐𝑅 = 𝐐𝑛
𝑖+1, if 𝑥 > 𝑥𝑖+ 1

2
,

(70)

evaluated at the interface 𝑥𝑖+ 1
2
, for each cell 𝑖. Due to the fact that

the wave configuration of the solution of the Riemann problem for
the pressure system (70) will always result in two subsonic waves,
𝐐𝑖+ 1

2
(0) = 𝐐∗

Press,𝑖+ 1
2

= [𝐴∗
Press,𝑖+ 1

2

, 𝑞∗
Press,𝑖+ 1

2

, 𝐴∗
Press,𝑖+ 1

2

𝜙∗
Press,𝑖+ 1

2

]𝑇 , the
solution in the Star Region of the Riemann problem (70) for each cell
𝑖.

𝑖+ 1
2

is computed as proposed in Toro et al. [42], which repre-
sents a modification of the original splitting presented in Toro and
Vázquez-Cendón [31] namely,

𝑖+ 1
2
=

⎡

⎢

⎢

⎢

⎢

⎣

0
𝑞∗
Press,𝑖+ 1

2

𝑢𝑘

𝑞∗
Press,𝑖+ 1

2

𝜙𝑘

⎤

⎥

⎥

⎥

⎥

⎦

, (71)

here

𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑢𝐿 if 𝑞∗
Press,𝑖+ 1

2

> 0,

𝑢𝑅 if 𝑞∗
Press,𝑖+ 1

2

≤ 0,
𝜙𝑘 =

⎧

⎪

⎨

⎪

⎩

𝜙𝐿 if 𝑞∗
Press,𝑖+ 1

2

> 0,

𝜙𝑅 if 𝑞∗
Press,𝑖+ 1

2

≤ 0.
(72)

To compute 𝐐∗
1 we use two different methods
Press,𝑖+ 2
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Table 1
Initial conditions for Tests from 1 to 6. The wave patterns are: R=rarefaction, C=contact discontinuity, S=shock. The units of
measures used for this paper are: m, s, Kg, Pa.

Test 𝐴𝐿[m2] 𝑢𝐿[m∕s] 𝜙𝐿 𝐴𝑅[m2] 𝑢𝑅[m∕s] 𝜙𝑅 Wave pattern

1 3.50 ⋅ 10−4 0.00 1.00 3.00 ⋅ 10−4 0.00 0.00 RCS
2 10.00 ⋅ 10−4 0.00 1.00 1.00 ⋅ 10−4 0.00 0.00 R(sonic)CS
3 2.80 ⋅ 10−4 −0.50 1.00 2.80 ⋅ 10−4 0.50 0.00 RCR
4 2.90 ⋅ 10−4 0.00 1.00 2.40 ⋅ 10−4 0.00 0.00 RCS
5 2.34 ⋅ 10−4 0.10 0.00 2.74 ⋅ 10−4 0.20 1.00 SCR
6 1.90 ⋅ 10−4 1.00 1.00 2.20 ⋅ 10−4 0.50 0.00 SCS
Table 2
Parameters used for Tests from 1 to 6: domain length 𝓁, blood density 𝜌, vessel wall stiffness 𝐾, reference cross-sectional
area 𝐴0, external pressure 𝑝𝑒, location of the initial discontinuity 𝑥𝑑 and output time 𝑡𝐸𝑛𝑑 .

Test Vessel 𝓁 [m] 𝜌 𝐾[Pa] 𝐴0[m2] 𝑝𝑒[Pa] 𝑥𝑑 [m] 𝑡𝐸𝑛𝑑 [s]

1 Artery 0.50 1000.00 20 005.00 3.14 ⋅ 10−4 0.00 0.50𝓁 0.05
2 Artery 0.50 1000.00 20 005.00 3.14 ⋅ 10−4 0.00 0.50𝓁 0.04
3 Vein 0.50 1000.00 333.00 3.14 ⋅ 10−4 0.00 0.50𝓁 0.09
4 Vein 0.50 1000.00 333.00 3.14 ⋅ 10−4 0.00 0.50𝓁 0.10
5 Vein 0.50 1000.00 333.00 3.14 ⋅ 10−4 0.00 0.50𝓁 0.10
6 Vein 0.50 1000.00 333.00 3.14 ⋅ 10−4 0.00 0.30𝓁 0.15
s

R

1. (TV+TR) 𝐐∗
Press,𝑖+ 1

2

= 𝐐∗
𝑇𝑅,𝑖+ 1

2

, with 𝐐∗
𝑇𝑅,𝑖+ 1

2

= [𝐴∗
𝑇𝑅,𝑖+ 1

2

, 𝑞∗
𝑇𝑅,𝑖+ 1

2

, 0]𝑇

the (modified) approximate two rarefaction solution of the Rie-
mann problem for the pressure system (70) in the Star Region
presented in Section 5.1, for each cell 𝑖.

2. (TV+Lin.TR) 𝐐∗
Press,𝑖+ 1

2

= 𝐐∗
𝐿𝑇𝑅,𝑖+ 1

2

, with 𝐐∗
𝐿𝑇𝑅,𝑖+ 1

2

= [𝐴∗
𝐿𝑇𝑅,𝑖+ 1

2

,

𝑞∗
𝐿𝑇𝑅,𝑖+ 1

2

, 0]𝑇 the (modified) approximate linearized two rarefac-
tion solution of the Riemann problem for the pressure system
(70) in the Star Region presented in Section 5.2, for each cell 𝑖.

It is worth remarking that the third component of any solution just
presented is set equal to 0 because the variable 𝜙 has no value due
to the contact discontinuity 𝜆2 at the interface. In fact, there are two
values 𝜙∗

𝐿 and 𝜙∗
𝑅 for each solution type, one to the left and one to the

right of the interface, but we do not actually need them because the
pressure flux in (22) has 0 as its third component.

7. Numerical results

In this section, we design test problems and assess the performance
of the numerical splitting methods of type TV presented in this paper.

We propose six test problems; these tests have been chosen to repre-
sent the different admissible solutions of the 1D blood flow equations in
the case of arteries (Tests 1 and 2) and veins (Tests 3, 4, 5, 6), namely
smooth solutions (rarefactions), elastic jumps (shocks), and contact
discontinuities. Of the three waves, the contact discontinuity is usually
the one that presents a greater challenge, especially for linearized or
incomplete solvers, since excessive numerical diffusion occurs in the
form of smearing of the contact discontinuity. In the case of veins,
the tests are constructed to explore different positions of 𝐴𝑐 in (29)
with respect to the tests data. This value is of critical importance for
the wave pattern of the pressure system. As mentioned earlier, we will
not address this issue in this paper, but we will restrict ourselves to
showing that the presented schemes work properly even in cases when
genuine non-linearity of the 𝜆1- and 𝜆3-characteristic fields of the
pressure system is lost. The numerical results of the methods 1 and 2
are compared with the exact solution of the Riemann problem for the
full 1D blood flow equations and some competing methods in literature.
The initial data, expressed in terms of the physical variables 𝐴, 𝑢, and
𝜙, can be found in Table 1. Meanwhile, the model parameters are
provided in Table 2. The discussion of the numerical results is covered
in Section 7.1, while an efficiency test is performed in Section 7.2.
7

7.1. Results discussion

Numerical results for both methods 1 and 2 are shown and plotted
against the exact solution of the Riemann problem for the full 1D
blood flow Eqs. (6) and the results of the Godunov method [43] used
in conjunction with the exact Riemann solver for the complete 1D
system (fully described in Toro [35]). For all tests, we use a Courant–
Friedrichs–Lewy number 𝐶𝑐𝑓𝑙 = 0.9 and a mesh of 𝐼 = 50 computational
cells (Figs. 3–8). In this work the Courant–Friedrichs–Lewy number 𝐶𝑐𝑓𝑙
is defined as follows

Definition 7.1.

𝐶𝑐𝑓𝑙 =
𝛥𝑡
𝛥𝑥
𝑆𝑛𝑚𝑎𝑥, (73)

where

𝑆𝑛𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖
{

𝑚𝑎𝑥𝑘
|

|

|

𝜆𝑛𝑘,𝑖
|

|

|

}

, 𝑘 = 1,… , 𝑁, 𝑖 = 1,… , 𝐼 ; (74)

where 𝜆𝑛𝑘,𝑖 is the 𝑘-𝑡ℎ eigenvalue of the complete system (7) evaluated in
cell 𝑖 at time 𝑡𝑛, and 𝑁 is the number of eigenvalues of the considered
ystem.

esults from Test 1 (Artery). The solution of Test 1 consists of three
waves, namely a left-facing rarefaction wave, a middle contact dis-
continuity, visible for the tracer 𝜙, and a right-facing elastic jump,
or shock (RCS). The left rarefaction wave carries smooth transitions
of cross-sectional area 𝐴 and velocity 𝑢, while the right shock carries
discontinuous jumps in these quantities. The numerical results of the
two new methods presented are comparable to those of the Godunov
scheme: all approximations are accurate and very similar among them-
selves for the rarefaction wave, the contact and the shock wave, we
can appreciate monotone shocks, i.e. there are no spurious oscillations
in the vicinity of shocks and also the contact discontinuity presents a
minimal smearing and its speed of propagation is correct.

Results from Test 2 (Artery). Test 2 contains the same wave pattern as
Test 1, that is a left rarefaction, a middle contact and a right shock
(RCS). However, there are two important differences. First, the strength
of the waves; this may pose a challenge to the robustness of the meth-
ods. Second, the left rarefaction in Test 2 is transonic; i.e. the associated
left eigenvalue 𝜆1 = 𝑢 − 𝑐 transits monotonically from negative values

to positive values, passing through a critical point at which 𝑢 = 𝑐.
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Fig. 3. Test 1. Artery. RCS. Numerical results of methods 1, 2 vs. the classic Godunov method with 𝐶𝑐𝑓𝑙 = 0.9, 𝐼 = 50 cells, and the exact solution of the Riemann problem for
the complete system presented in [38,40]. Initial conditions and parameters are given in Tables 1 and 2.
Fig. 4. Test 2. Artery. R(sonic)CS. Numerical results of methods 1, 2 vs. the classic Godunov method with 𝐶𝑐𝑓𝑙 = 0.9, 𝐼 = 50 cells, and the exact solution of the Riemann problem
for the complete system presented in [38,40]. Initial conditions and parameters are given in Tables 1 and 2.
Even though the wave is smooth, the correct approximation of the
sonic point is challenging for all numerical methods. Some schemes
will present a jump (shock) instead of a smooth transition across the
sonic point; this is sometimes referred to as the entropy glitch and arises
only in the presence of sonic rarefaction waves. Such a shock is entropy
violating and therefore unphysical. This problem was overcome by the
8

two new schemes, which present smooth transitions for the area 𝐴 and
the velocity 𝑢. On the other hand, the results for both splitting schemes
show a small overshoot for the velocity 𝑢 in agreement with the shock
front. The results for the contact discontinuity follow the path of the
Godunov scheme and show a higher numerical diffusion. However, the
propagation velocity and average position remain correct.
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Fig. 5. Test 3. Vein. RCR. Numerical results of methods 1, 2 vs. the classic Godunov method with 𝐶𝑐𝑓𝑙 = 0.9, 𝐼 = 50 cells, and the exact solution of the Riemann problem for the
complete system presented in [38,40]. Initial conditions and parameters are given in Tables 1 and 2. 𝐴𝑐 in Eq. (29) is located inside both rarefactions.

Fig. 6. Test 4. Vein. RCS. Numerical results of methods 1, 2 vs. the classic Godunov method with 𝐶𝑐𝑓𝑙 = 0.9, 𝐼 = 50 cells, and the exact solution of the Riemann problem for the
complete system presented in [38,40]. Initial conditions and parameters are given in Tables 1 and 2. 𝐴𝑐 in Eq. (29) is located below the range covered by the Riemann problem
results.
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Fig. 7. Test 5. Vein. SCR. Numerical results of methods 1, 2 vs. the classic Godunov method with 𝐶𝑐𝑓𝑙 = 0.9, 𝐼 = 50 cells, and the exact solution of the Riemann problem for the
complete system presented in [38,40]. Initial conditions and parameters are given in Tables 1 and 2. 𝐴𝑐 in Eq. (29) is located below the range covered by the Riemann problem
results.

Fig. 8. Test 6. Vein. SCS. Numerical results of methods 1, 2 vs. the classic Godunov method with 𝐶𝑐𝑓𝑙 = 0.9, 𝐼 = 50 cells, and the exact solution of the Riemann problem for the
complete system presented in [38,40]. Initial conditions and parameters are given in Tables 1 and 2. 𝐴𝑐 in Eq. (29) is located inside both shocks.
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Fig. 9. Efficiency plots for Tests 1, 2, in Tables 1, 2, calculated for meshes 𝐼 = [50, 100, 200, 400]. The lines represent the least square approximation (where possible) of the data.
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Results from Test 3 (Vein). The solution of Test 3 consists of a left
rarefaction, a middle contact discontinuity for 𝜙 and a right rarefaction
(RCR), in this problem 𝐴𝑐 is located inside the rarefactions; we can
appreciate that the accuracy of the methods is not affected by this
particular position of 𝐴𝑐 , and the results of the new schemes are com-
parable with those of the Godunov method: in particular, the contact
discontinuity is well described without smearing.

Results of Test 4 (Vein). The solution of Test 4 consists of a left
rarefaction, a middle contact discontinuity, and a right shock (RCS),
𝐴𝑐 is outside the range covered by the exact solution and its numerical
approximations. The comments are similar to those of Test 3, with
minimal diffusion in the approximation of the contact discontinuity.

Results from Test 5 (Vein). With the same position of 𝐴𝑐 as in Test 4,
this test scenario features a left shock, a middle contact discontinuity,
and a right rarefaction (SCR) problem. Once again, the results obtained
from the two new methods are comparable to those of the Godunov
scheme. Notably, the left shock exhibits some smoothing in all of these
schemes, while the contact discontinuity experiences minimal diffusion.

Results from Test 6 (Vein). Finally, the solution of Test 6 shows a left
shock, a middle contact discontinuity, and a right shock (SCS) with 𝐴𝑐
inside both shocks. While for the concentration of the passive scalar the
results of the two new methods are comparable to those of the Godunov
scheme, which describes the contact discontinuity with some diffusion,
the left shock is smeared in the case of 𝐴 and 𝑢, unlike in the Godunov
cheme. We think that this difference could be due to the strength of
he left shock and the non-linear behavior of the veins, and not to the
articular position of 𝐴𝑐 , because the latter is the same as that of the
ight shock.

.2. Efficiency: Error against CPU time

Efficiency is determined by the CPU time required by a method to
chieve a specified error 𝐸. To assess the efficiency of the TV-type
ethods presented in this study (methods 1 and 2), we compare the

esults with those obtained with standard and well known numerical
ethods. We consider two non-linear and complete solvers: the Go-
11

unov method with the exact Riemann solver (Section 7.1), the DOT s
iemann solver [44,45] and a centered, and thus incomplete, scheme:
he FORCE scheme [35,46]. Here we calculate the CPU cost and the
1 error for each method cited above, for variables 𝐴, 𝑢 and 𝜙, with
eshes 𝐼 = [50, 100, 200, 400] and a 𝐶𝑐𝑓𝑙 = 0.95. 𝐿1 error defined

𝑒𝑟𝑟
1 (𝑡𝐸𝑛𝑑 , 𝛥𝑥𝑗 ) = 𝛥𝑥𝑗

𝐼𝑗
∑

𝑖=1
|𝑞𝑡𝐸𝑛𝑑𝑘,𝑖 − 𝑞𝑒𝑘,𝑖|, 𝑘 = 1, 2, 3; (75)

eing 𝑡𝐸𝑛𝑑 the output time, 𝑞𝑡𝐸𝑛𝑑𝑘,𝑖 the 𝑘-𝑡ℎ component of 𝐐𝑛
𝑖 at time 𝑡𝐸𝑛𝑑 ,

𝑒
𝑘,𝑖 the corresponding exact solution and 𝛥𝑥𝑗 = 𝓁∕𝐼𝑗 , with 𝓁 the vessel
ength and 𝐼𝑗 the actual mesh. Results are depicted in Figs. 9, 10, 11.

In case of arteries, the two new methods prove to be the most
fficient numerical methods (Figs. 9, 11). For the test in subsonic
egime (Test 1) concerning the first two variables 𝐴 and 𝑢, the new
ethods reach an accuracy comparable with that of the three classical
umerical schemes (Godunov, FORCE, DOT) but with less computa-
ional effort. Regarding the concentration of the passive scalar, all
ethods reach the same level of accuracy with the exception of FORCE,
ue to its expected excessive numerical diffusion in the description
f the intermediate wave (Fig. 9). In Test 2, where a left transonic
arefaction is depicted, the accuracy of the solution obtained with the
ew schemes is lower than the one of the solutions obtained with DOT
nd Godunov, regarding variables 𝐴 and 𝑢 (Fig. 9); however, the so-
alled entropy glitch must be taken into account. The two new methods
n fact prove to reproduce this rarefaction in a smooth way.

As for veins, the method TV+Lin.TR proves to be the most efficient
f the two new methods and for Tests 3, 4, 5 the most efficient of all
he methods under analysis, achieving the same accuracy as the others,
ut in a lower CPU time. Also, the description of the concentration of
he passive scalar 𝜙 is very accurate, a situation where instead FORCE
sually fails, due to a high numerical diffusion (Figs. 10, 11). Test 6,
n the other hand (left shock - middle contact - right shock in a vein),
hows a remarkable decrease in accuracy for the two new methods,
or variables 𝐴 and 𝑢, with respect to the Godunov method and the
OT one, due to a higher diffusion in the description of the left shock

Fig. 10). In this case, the accuracy of the new methods is comparable
o that of FORCE, on the contrary, the efficiency in describing the
oncentration 𝜙 is very good. In particular, the new methods exhibit a

mall diffusion in the description of 𝜙, which, in contrast, is not present
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Fig. 10. Efficiency plots for Tests 3, 4, 5, 6 in Tables 1, 2, calculated for meshes 𝐼 = [50, 100, 200, 400]. The lines represent the least square approximation (where possible) of the
data.
in Test 3. For this reason, the concentration plot for this test is the result
of round-off errors and the results in Fig. 11 are omitted.

It is worth noting that the FORCE scheme for the passive scalar 𝜙
generally does not achieve the chosen reference error with the given
meshes, but the CPU time is calculated using an extrapolation of the
observed convergence pattern. Furthermore, regarding both arteries
and veins, we can conclude that the two TV methods here proposed
proved to be as accurate as Godunov’s scheme in describing the contact
discontinuity.

8. Conclusions

In this work we have presented a flux splitting method at PDEs
level for the original hyperbolic system of 1D blood flow equations
with continuous parameters and an advection equation for a passive
scalar, for both arteries and veins, separating the given system in
12
advection system and pressure one. Consequently we have presented
two approximated Riemann problem solvers for the obtained pressure
system, and after, two final numerical flux splitting schemes for the
complete 1D blood flow model have been built. These latter have been
compared with the classic Godunov scheme and the exact solution of
the Riemann problem for the complete system, in various test problems
for arteries and veins, both in subsonic and transonic regime, proving
that the issues faced with the lack of genuine non-linearity of two
characteristic fields of the pressure system do not prevent the final
splitting scheme from working properly. Finally an efficiency analysis
has been carried out. The two proposed methods have proved to be in
general considerably more efficient than the original Godunov method,
the FORCE centered numerical scheme and the DOT Riemann solver,
and can be considered as competitive methods to solve the Riemann
problems under study. In the forthcoming research, the proposed tech-
niques will be implemented to solve networks of 1D blood flow models.
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Fig. 11. Efficiency bar plots for Tests 1, 2, 3, 4, 5, 6 in Tables 1, 2 representing the
actual time each method takes to reach errors given in Figs. 9, 10, for each variable.

Additionally, a comprehensive investigation of the complete solution of
the Riemann problem for the pressure system will be conducted, with a
focus on analyzing the implications of the loss of genuine non-linearity.

CRediT authorship contribution statement

Alessandra Spilimbergo: Conceptualization, Methodology, Soft-
ware, Validation, Writing – original draft, Writing – review & editing.
Eleuterio F. Toro: Conceptualization, Methodology, Software, Super-
vision, Validation, Writing – review & editing. Annunziato Siviglia:
Conceptualization, Methodology, Supervision, Validation, Writing –
review & editing. Lucas O. Müller: Conceptualization, Methodology,
Software, Supervision, Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.
13
Acknowledgments

Lucas O. Müller and Alessandra Spilimbergo are members of the
Gruppo Nazionale per il Calcolo Scientifico dell’ Istituto Nazionale di Alta
Matematica (INdAM-GNCS, Italy). Alessandra Spilimbergo acknowl-
edges the University of Trento, Italy for financing her Ph.D. studentship.

Appendix. Newton–Raphson method

Here we present the Newton–Raphson method used to solve (58).
The others are similar in structure, with the same tolerances. This
method is written in the Python language.

################################################
Newton−Raphson method
################################################

i n i t i a l va lu e f o r As :
As=AL
for i in range (50 ) :
#functTR i s d e s c r i b e d in (58)
#c i s t h e wave speed (9)
fun=s e l f . functTR (As , AL , qS , qL )
df=s e l f . c ( As )
alpha = 1.
for i2 in range (50 ) :

aAux = As − alpha∗ fun/ df
i f aAux > 0 . :

fAux=s e l f . functTR (aAux , AL , qS , qL )
i f np . abs ( fAux ) <= np . abs ( fun ) :

break
else :

alpha ∗= 0.8
else :

alpha ∗= 0.8
AsOld=As
As = As − alpha∗ fun/ df
i f np . abs (np . abs (As−AsOld ) / ( ( As+AsOld )/2.)) <1e−7:

break
i f i ==(50−1):

print ( ’ No_convergence ’ )
e x i t (−1)

return [As , qS]
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