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Iterative Image Reconstruction of Two-dimensional

Scatterers Illuminated by TE Waves
Davide Franceschini, Massimo Donelli, Gabriele Franceschini, and Andrea Massa

Abstract

The iterative reconstruction of unknown objects fromTE measured scattered field data is presented. The paper investigates
the performance of the iterative multiscaling approach (IMSA) in exploiting transverse electric (TE) illuminations.As a matter of
fact, in these conditions, the problem turns out to be more complicated than the TM scalar one in terms ofmathematical model as
well as computational costs. However,it is expected that more information on the scenario under test can be drawn from scattered
data.Therefore, this workis aimedat verifying whether the TE case can provide additional information on the scenario under
test (compared to the TM illumination) and how such an enhancement can be suitably exploited by the IMSA for improving the
reconstruction accuracy of the retrieval process. Such an analysis will be carried out by means of a set of numerical experiments
concerned with dielectric and metallic targets in single and multiple objects configurations. Synthetic as well as experimental data
will be dealt with.

Index Terms

Microwave Imaging, Electromagnetic Scattering, Inverse Problems, Multiresolution Technique, TE Illumination.

I. I NTRODUCTION

The reconstruction of inaccessible areas has been addressed employing electromagnetic fields at microwave frequencies in

a wide number of applications (see [1][2][3][4]).The imaging ofthe unknown targets is generally achieved through a suitable

processing of the field data collected away from the scatterers. Moreover, the exploitation of the complex scattering phenomena

allows a quantitative description of the dielectric and conductivity distributions of the domain under test.

In this framework, two main categories of methodological approaches have been developed. The first class concerns with

approximate techniques, such as the physical optic methods[5][6] and the Born and Rytov approximations [7][8]. These

approaches simplify the imaging problem by considering some approximations, but also limit the range of retrievable profiles.

A second class of methods aims at rigorously solving the nonlinear inverse scattering equations, usually reformulating the

original problem into an optimization one [9][10][11] [12][13][14][15]. Such approaches extend the range of retrievable objects

but they also make the reconstruction problem more troublesome and computationally expensive since the arising non-linearity

and ill-posedness have to be suitably addressed.

Moreover, although many efforts (see for example [16], [17], [18] and [19]) have been addressed to develop effective methods

for 3D reconstructions, tomographic configurations are generally considered if possible, since the dimensionality ofthe problem

requires less computational load.

Furthermore, the inverse scattering problem is generally simplified by considering suitable illumination conditions. The most

widely adopted polarization is the transverse magnetic (TM) one, where the incident electric field is directed along theinvariance

axis of the cylindrical geometry.Such a situation allows to reformulate the original vectorial problem by means of scalar

relations, thus reducing the overall complexity of the mathematical model and the arising computational burden neededfor its

numerical solution.

On the other hand, dealing with a transverse electric (TE) illumination (where the magnetic field is polarized along the axis of

the cylinder) requires a more complex mathematical description since the arising vectorial integral equations present derivatives

of both the background Green’s function and the field [20].Nevertheless, since TM and TE cases are physically uncoupled,

D. Franceschini, M. Donelli, G. Franceschini, and A. Massa are with the Department of Information and Communication Technology, University of
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TE scattered data are expected to give different information on the scenario under test [21] andmaybe a larger amount since

two field components are taken into account.Moreover, as pointed out in [21], the influence of the ill-posedness for TE

inverse scattering is lower than that for TM since the Green’s function is more singular in the formercase.However, the

computational load for exploiting such positive features is unavoidably increased because of the need of solving a vectorial

problem characterized by astronger non-linearity [22]. As a matter of fact, by considering the same spatial resolution for

reconstructing the unknown profile in the investigation domain, the dimension of the space of unknowns turns out to be larger

for TE than for TM case. Thus, retrieval procedures able to effectively deal with large-dimension problems are necessary.

The need of a high resolution accuracy in presence of a limited information content of collectable data [23] hasbeen successfully

addressed for TM data by considering multiresolution strategies [24][25][26][27][28][29],which also allows an increasing of

the ratio between data and unknowns useful forreducing the occurrence of local minima [30]. Therefore, what this paper

accomplishes is to efficiently use a multiresolution strategy [i.e., the Iterative Multi-Scaling Methodology (IMSA)]for TE

scattering data and compare the performance to the TM case. This is the first time, to the best of the authors’ knowledge, that

a multiresolution methodology is applied to TE scattered data.

The paper is organized as follows. After the mathematical formulation of the inverse scattering problem (Sect. 2), Section 3 will

focus on the implementation details of the multistep reconstruction algorithm in dealing with a transverse electric polarization.

Successively, the advantages of the IMSA-TE will be analyzed and discussed in Sect. 4 through a numerical analysis concerned

with the reconstruction of dielectric and metallic profiles fromboth synthetic and experimental data.Finally, some conclusions

and future developments will be outlined (Sect. 5).

II. M ATHEMATICAL FORMULATION

Let us consider a set of monochromatic incident electric fields (Ev

inc(r), v = 1, ..., V ) at a fixed angular frequencyω that

illuminates, fromV different angles of incidence, an inhomogeneous object located in a bounded investigation domainDI

lying in free-space (Fig. 1). The unknown object is described through the so-called object functionτ(r) given by

τ (r) = εr (r) − 1 − j
σ (r)

ωεo

(1)

whereεr (r) is the relative permittivity with respect to the backgroundandσ (r) is the conductivity of the scatterer. The total

electric fieldEv

tot(r), v = 1, ..., V , inside and outside the scatterer satisfies the following integral equation

Ev
tot(r) = Ev

inc(r) + k2
0

∫

DI

τ(r′)Ev
tot(r

′) ·G(r|r′) dr′ (2)

wherek2
0 = ω2µ0ε0, G(r|r′) is the dyadic Green’s functionandr′ ∈ DI identifies a point inside the investigation area, while

r refers to a location of the investigation domain or of the measurement domainDM external toDI .

Equation (2) is the basic relationship for developing any inversion algorithm based on the integral equation formulation.

Moreover, in the following, a tomographic configuration will be assumed [τ(r) = τ(x, y), z being the axis of symmetry of

the scatterer].

For 2D TM polarization, the electric field is parallel to the invariance axis of the cylindrical target,Ev

inc(x, y) = Ev

z,inc(x, y)ẑ.

Thus, equation (2) reduces to a scalar relation

Ev
z,tot(x, y) = Ev

z,inc(x, y) + k2
0

∫

DI
G(x, y|x′, y′)τ(x′, y′)

Ev
z,tot(x

′, y′) dx′dy′ ∀(x, y); (x′, y′) ∈ DI

(3)

where G(x, y|x′, y′) = − j
4H

(2)
0

(

k0

√

(x − x′)
2

+ (y − y′)
2

)

, H
(2)
0 being the second kind 0th-order Hankel function and

j2 = −1.

Because of the non linear nature of the problem in hand and itsintrinsic ill-posedness, the electromagnetic inversion is

performed by looking for a configuration of the unknowns [i.e., τ(x, y) and Ev
z,tot(x, y) in DI ] that minimizes the fitting

between retrieved and known field samples.
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For 2D TE polarization, the problem in hand turns out to be more complicated since it cannot be described in terms of

electric-field formulation through a scalar formulation(1)1. In this case,Ev

inc(x, y) = Ev

x,inc(x, y)x̂ + Ev

y,inc(x, y)ŷ.

The domain integral equation for the electric field vectors is given by

Ev
tot(r) = Ev

inc(r) + (k2
0 + ∇∇·)

∫

DI

G(r|r′) · τ(r′)Ev
tot(r

′) dr′

where the spatial differentiation operates onr.

Starting from this vectorial equation, a TE-based inversion procedure is aimed at retrieving the object functionτ(x, y) and

simultaneously two components of the electric field [i.e.,Eυ
x,tot(x, y) andEυ

y,tot(x, y), v = 1, ..., V ] in DI .

III. T HE MULTI -SCALING APPROACH FOR THETE PROBLEM

Starting from the mathematical description in terms of Dataand State equations, the inverse problem is solved by means

of the iterative multiscaling procedure. Since the IMSA hasbeen widely described for the TM case[26][27], in the following

only the main issues concerned with the TE case will be brieflyresumed.

In general, the main motivation for adopting a multiresolution methodology lies in the limited information content of the

collectable data [23] that does not allow an arbitrary resolution level for the unknowns in the investigation domain. Especially

for the TE case, the optimal representation of the unknown has to be efficiently addressed since such a vectorial problem is

characterized by more unknown parameters with respect to the TM scalar one.

As a matter of fact, the IMSA defines a suitable discretization of the unknown distributions according to the available data [31].

At each step (p being the step index) of the multiscaling process, only a limited number ofN(p) basis functions is employed

for representing the unknowns in the region-of-interest (RoI) where the scatterer is supposed to be located. Iteratively, the

same number of basis functions is reallocated in a reduced area defined according to the criteria given in [27]. Therefore,

the original investigation domain (i.e.,DI) turns out to be discretized in a non-uniform way since the spatial resolution is

step-by-step enhanced only in a limited sub-domain ofDI . Such a zooming strategy limits the total number of unknown

coefficients (weighting theN(p) basis functions) allowing a detailed representation of thescenario where necessary.

As far as the retrieval of the profile under investigation is concerned, the values of the TE unknowns, i.e.τ
(

xn(p)
, yn(p)

)

,

Ev
x,tot

(

xn(p)
, yn(p)

)

, Ev
y,tot

(

xn(p)
, yn(p)

)

, are obtained by minimizing the following cost function

Φ(p)

{

τ
(

xn(p)
, yn(p)

)

, Ev
c,tot

(

xn(p)
, yn(p)

)

; c = x, y

n(p) = 1, ..., N(p) v = 1, ..., V
}

= ΦData
(p) + ΦState

(p)

ΦData
(p) =

∑

c=x,y

{

∑V
v=1

∑M(v)

m(v)=1

αData
c

∣

∣ Ev
c,tot

(

xm(v)
, ym(v)

)

− Ev
c,inc

(

xm(v)
, ym(v)

)

−
∑N(p)

n(p)=1

∑

d=x,y τ
(

xn(p)
, yn(p)

)

Ev
d,tot

(

xn(p)
, yn(p)

)

Gcd

(

xm(v)
, ym(v)

∣

∣ xn(p)
, yn(p)

)
∣

∣

2
}

ΦState
(p) =

∑

c=x,y

{

∑V
v=1

∑N(p)

n(p)=1 βState
c

∣

∣ Ev
c,inc

(

xn(p)
, yn(p)

)

−
[

Ev
c,tot

(

xn(p)
, yn(p)

)

−
∑N(p)

u(p)=1

∑

d=x,y τ
(

xu(p)
, yu(p)

)

Ev
d,tot

(

xu(p)
, yu(p)

)

Gcd

(

xn(p)
, yn(p)

∣

∣xu(p)
, yu(p)

)

]∣

∣

∣

2

(4)

where
αData

c = αc
P

V
v=1

P
M(v)
m(v)=1

˛

˛

˛
Ev

c,tot

“

xm(v)
,ym(v)

”

−Ev
c,inc

“

xm(v)
,ym(v)

”
˛

˛

˛

2 (5)

and

βState
c =

βc
∑V

v=1

∑N(p)

n(p)=1

∣

∣Ev
c,inc

(

xn(p)
, yn(p)

)∣

∣

2
. (6)

1 In the TE case, the domain integral equation can be formulated as a scalar-domain integral equation with the one non-zeromagnetic-field component as
the unknown field or in terms of a vector integral equation with the electric-field vector (two nonzero components) as the unknown field. In [20], it has been
shown that the single magnetic-field formulation turns out to be inferior to the dual electric-field formulation.
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Moreover,αc andβc are weighting coefficients related to thec-th field component;Gxx, Gxy = Gyx, andGyy are given by

Gxx (xh, yh|xk, yk) =



















−j πakJ1(koak)
2ρ3

hk

[

koρhky2
hkH

(2)
o (koρhk)

+
(

x2
hk − y2

hk

)

H
(2)
1 (koρhk)

]

h 6= k

− j
4

[

πkoakH
(2)
1 (koak) − 4j

]

h = k

(7)

Gxy (xh, yh|xk, yk) =















−j πakJ1(koak)
2ρ3

hk

xhkyhk

[

2H
(2)
1 (koρhk)

−koρhkH
(2)
o (koρhk)

]

h 6= k

0 h = k

(8)

Gyy (xh, yh|xk, yk) =



















−j πakJ1(koak)
2ρ3

hk

[

koρhkx2
hkH

(2)
o (koρhk)

−
(

x2
hk − y2

hk

)

H
(2)
1 (koρhk)

]

h 6= k

− j
4

[

πkoakH
(2)
1 (koak) − 4j

]

h = k

(9)

where ρhk =
√

x2
hk + y2

hk , xhk = (xh − xk) and yhk = (yh − yk). Moreover,J1 is the first order Bessel function and

H
(2)
1 is the second kind Hankel function of first order, respectively; ak =

√

Ak

π
, Ak being the area of thek-th discretization

sub-domain.

The minimization of (4) is iteratively performed with a conjugate-gradient procedure. Even though more efficient optimization

techniques are currently under study for the TE case and theyhave been already developed for the TM case [32], the use

of a deterministic technique for this analysis is motivatedby the need of focusing on the effectiveness of a “pure” IMSA in

dealing with TE date neglecting the ”overboost” effects as well as the randomness arising from its integration with a stochastic

optimizer (more effective in avoiding the solution is trapped in the local minima of the cost function).

Finally, the multistep procedure terminates atp = popt when the stability conditions, defined in [27] for the TM case, hold

true.

IV. N UMERICAL ANALYSIS

In this section, illustrative reconstructions will be displayed and discussed in order to assess the effectiveness of the IMSA in

dealing with TE data. Three different scenarios will be considered: the case of a single dielectric scatterer (Sect. 4.1), the case of

multiple dielectric scatterers (Sect. 4.2), and the case ofmetallic targets in both synthetic and experimental environments (Sect.

4.3). The results will consist of gray-level maps of the object functions, variations of the multiresolution cost function versus

the iteration numberk, behaviors of some representative error figures versus the signal-to-noise ratio (SNR) characterizing the

scattered data, and samples of the cost function along fixed directions in the solution space.

A. Single Dielectric Scatterer

The first example deals with a homogeneous square dielectricprofile (τ0 = 0.5) of side L0 = 0.48λ0, positioned at

x0 = −0.24λ0, y0 = 0.48λ0 [Fig. 2(a)]. A square investigation domainLDI
= 2.4λ0 in side has been assumed and it has

been partitioned inN(p) = 36 cells. The reconstruction has been carried out exploiting multiview data collected fromV = 4

different directions of illumination by means ofM(v) = 21 receivers located on a circular observation curve of radius1.8λ0.

The maps of the retrieved profiles during the multistep reconstruction process are reported in Figs. 2(b)-2(e). As it can be

observed, the retrieved object function evolves from a low-resolution representation [τ̃(1) - Fig. 2(b)] to the convergence profile

[τ̃(popt) - Fig. 2(e) and Fig. 3(c)-(d)], achieved afterpopt = 4 steps and characterized by the lowest values of the error figures

given in Tab. I and computed as follows

δ(s) =

√

[

x̃
(s)
0 − x

(s)
0

]2

+
[

ỹ
(s)
0 − y

(s)
0

]2

λ0
, s = 1, ..., S (10)
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∆(s) =







∣

∣

∣
L̃

(s)
0 − L

(s)
0

∣

∣

∣

L
(s)
0







× 100, s = 1, ..., S (11)

ξ
(s)
(i) =

popt
∑

p=1

1

N
(j)
(p)

N
(j)

(p)
∑

n(p)=1

{
∣

∣

∣

∣

∣

τ̃ (s)
(

xn(p)
, yn(p)

)

− τ
(s)
0

(

xn(p)
, yn(p)

)

τ
(s)
0

(

xn(p)
, yn(p)

)

∣

∣

∣

∣

∣

}

× 100 (12)

wherej ranges over the whole investigation domain (j = int), over the area occupied by the actual scatterers (j = int) or

over the background (j = ext) and the indexs indicates thes-th object lying in the investigation domain.

Focusing on such a convergence profile, the numerical valuesof Tab. I confirm the effectiveness of the inversion algorithm

in exploiting TE data for reconstructing the shape of the object (δTE = 2.0 × 10−4, ∆TE = 12.33) as well as its dielectric

properties (ξTE
tot = 0.21).

In order to better appreciate the reconstruction accuracy achieved by the IMSA applied to TE data (even though in noiseless

conditions), the same profile has been retrieved using TM data. Since the TE illumination provides two components of the

field (Ev
x, Ev

y ) and more information it is expected to be collected on the sensed scenario, an overall imaging enhancement

compared to the reconstruction obtained with aTM illumination should be verified. In order to check such a supposition,

the result of the IMSA-TM inversion is shown in Fig. 3(a)-(b). As expected, despite the reconstruction is satisfactory, the

estimated error figures (Tab. I) are higher than those of the TE experiment. In particular, although for a noiseless experiment,

the localization accuracy is decreased (δT M

δT E ≃ 20) and the overall estimation of the dielectric distributionworse as indicated

by the values of the quantitative error figures:ξT M
ext

ξT E
ext

≃ 21.5, ξT M
int

ξTE
int

≃ 1.4, and ξT M
tot

ξT E
tot

≃ 1.5.

As far as the trade-off between enhancement of the reconstruction accuracy and increasing of the computational costs indealing

with a TE illumination is concerned, Fig. 4 gives some indications on the minimization of the multiresolution cost function Φ(p)

at the different steps of the IMSA. The spikes occur when the investigation area is scaled and the supports of the basis functions

are redefined. In such points, the minimization of the functional starts with an higher level of resolution. For a comparative

analysis, the behavior of the cost function for the TM case inshown, as well. As can be noticed, onthe one hand, the TE cost

function reaches a lower value and a more accurate fitting with the problem data, thus justifying a better reconstruction. On

the other hand, the processing of the TE scattering data requires an additional amount of computational resources (Tab.II) in

terms of both total number of iterationsKTE
opt ≃ 4.5KTM

opt (Kopt =
∑popt

p=1 kconv
(p) , kconv

(p) being the number of iterations needed

to achieve “convergence” at thepth step of the multiscaling process)and mean time per iteration(tTE
iter = 120 ms versus

tTM
iter = 36 ms). Such an increment is related to the presence of two components of the fields that contribute at enlarging

the amount of independent achievable data as well as the number of unknowns, which causes a larger memory allocation

UTE = 3UTM and processing load.

Because of the increased dimension of the solution space andof the use of a deterministic procedure, it is convenient to analyze

the “shape” of the IMSA cost function as well as the occurrence of local minima in such a functional. As a matter of fact,the

inversion process is performed minimizing (4), thus the complexity as well as the reliability of the reconstruction is strongly

related to the presence of local minima that represent falsesolutions of the problem in hand. For illustrative purposes, Figs.

5(a)-(b) show the plots of the values of the cost function computed incorrespondence with an object with the same support

of the actual scatterer and varying the value of the object function in the range0.0 ≤ τ̃ ≤ 16.0. By so doing, a particular

direction of the solution space is explored and some indications about the shape ofΦ(p) can be inferred. First of all, let us

observe that, as expected, the global minimum of the cost function turns out to be at̃τ = τ0 = 0.5.

As can be noticed, the comparison between TE and TM (concerned with V = 1) points out that the number of local minima

for the TE case [Fig. 5(a)] is slightly inferior than for the TM case [Fig. 5(b)]. Moreover, even though the number of views

is increased (V ≥ 2), other minimum points in addition to the global one occur inthe TM case [Fig. 5(b)], while no local
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minima can be observed along this “direction” of the solution space under TE illumination [Fig. 5(a)].

Therefore, although such an example cannot be considered asa definitive indication on the number and on the occurrence

of the local minima (since it considers only a sampling direction in the solution space), it seems to confirm also for the TE

illumination a key-feature of the IMSA, that is the “reduction” of local minima and, in the first resort/approximation, acertain

reason of using a deterministic method as minimizer.

Finally, since the TE exploits the information from two independent field polarizations (Ev
x - TEx, Ev

y - TEy) and it outperforms

the TM inversion of dielectric profiles, which considers only a scalar field component (Ev
z - TM ), it could be interesting to

assess the effectiveness of the IMSA procedure when each TE scalar component is individually processed. Towards this end, the

inversion process has been carried out by assumingαx = βx = 1.0 andαy = βy = 0.0 (TEx illumination) andαx = βx = 0.0

andαy = βy = 1.0 (TEy illumination) in the cost function (4). The grey-level mapsof the retrieved profilesare shown in Fig.

3(e) and Fig. 3(f ), respectively. The obtained results highlight that only the simultaneous processing of both the TE components

is needed for obtaining a more faithful reconstruction thanthe TM inversion. Moreover, it seems to further confirm that TM and

TE illuminations give unrelated data about the scatterer [21] (as a matter of fact different reconstructions have been obtained

with the two different datasets), but also that each TE component supplies a differentinformation on the scenario under test.

B. Multiple Dielectric Scatterers

The second example of the numerical validation considers a more complex scenario where a multiple scatterers configuration

lies. Let us refer to the reference geometry shown in Fig. 6 where three equal square cylinders (L
(s)
0 = 0.67λ0, s = 1, ..., 3,

in side) located at (x(1)
0 = y

(1)
0 = 0.67λ0), (x(2)

0 = −y
(2)
0 = −0.67λ0), and (x(3)

0 = 0, y
(3)
0 = −0.67λ0) are embedded in a

search areaLDI
= 4λ0-sided. The value of the object function in the region occupied by the scatterers is equal toτ

(s)
0 = 0.5,

s = 1, ..., 3. The objects have been probed fromV = 8 directions and the scattered fields have been collected atM(v) = 35,

v = 1, ..., V positions. Moreover, at the first step (p = 1) of the multiscaling process, the investigation domain hasbeen

partitioned inN(1) = 100 subdomains. For comparison purposes, the reconstruction has been carried out with both TE and

TM illuminations. Moreover, for a more exhaustive assessment also noisy data have been taken into account. Towards thisend,

the scattered field values have been blurred as in [26] by adding a gaussian contribution with a zero mean value and identified

by a fixedSNR value.

Figure 7 shows in a comparative fashion the achieved results. Pictorially, one can notice a better estimation of the supports

of the scatterers when a TE illumination is used. Such an indication is quantitatively confirmed by the values of the error

index ∆ reported in Tab. III and IV. More in detail, whenSNR ≤ 10 dB, 11.42 6 ∆
(s)
TE 6 16.44 for the TE case, while

its range of variations turns out to be higher in correspondence with TM reconstructions (15.80 6 ∆
(s)
TM 6 25.82). As far as

the quantitative imaging is concerned, the total errorξTE
tot is lower than2.6 in the TE configuration whatever theSNR value,

while ξTM
tot

∣

∣

SNR=10 dB
≃ 3 and ξTM

tot

∣

∣

SNR=5 dB
≃ 4.2. Moreover, the values ofξ(s)

int clearly indicate a more accurate retrieval

of the object function in the regions occupied by the scatterers.

For completeness, Tab. V provides some details of the computational burden of the iterative reconstruction processes.When

the noise level is negligible, the same conclusions drawn for the single scatterer scenarios hold true and theIMSA − TM

turns out to be more effective in reaching the convergence. On the other hand, the convergence rates are quite similar forlower

SNRs. However, theIMSA − TE seems to converge faster in strong noise conditions (5dB) and to enhance the accuracy

(
ξT M

tot |SNR=5dB

ξTE
tot |SNR=5dB

≃ 1.7). This points out the positive effect of the exploitation ofthe two field components especially in critical

measurement conditions.

To further assess the proposed approach with multiple scatterers and noisy conditions, also evaluating the “discrimination”

capabilities of the method, a third experiment concerned with a two-objects configuration [Fig. 8(a) - τ
(s)
0 = 0.5, s = 1, 2] has

been carried out. The scatterers differ in dimensions,L
(1)
0 = 1.33λ0 andL

(2)
0 = 0.67λ0, while the illumination/measurement

setup is the same of the previous example.

In order to give a complete overview of the obtained results,Fig. 9 shows the behaviors of the error indexes versus theSNR.

In general, whatever the noise level, theIMSA − TE yields better inversions both in locating [Fig. 9(a)] and shaping [Fig.

9(b)] the scatterers, as well as in quantitatively estimating their dielectric profiles [Fig. 9(c)]. In particular, theTE-based
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approach significantly overcomes theTM -based technique when the noise level grows (i.e.,SNR < 15 dB). In such a

situation, the inversion turns out to be more difficult and the IMSA benefits of the enhanced amount of information. Such an

improvement can be also pictorially appreciated in Fig. 8 where the grey-levels maps of the dielectric profiles retrieved when

SNR = 5 dB underTE illumination [Fig. 8(b)] andTM illumination [Fig. 8(c)] are reported, respectively. In particular, for

such a configuration, the details of the error figures are reported in Tab. VI.

As far as the computational burden is concerned, the same conclusions of the previous example can be inferred also for this

test case (Tab. VII).

C. Metallic Targets

Finally, the last set of experiments is aimed at evaluating the reconstruction of metallic targets both considering synthetic and

real data. Figure 10(a) shows the reference distribution of the metallic (σ = 20 S/m) object under test of sideL0 = 0.48λ0

and centered atx0 = −0.24λ0, y0 = 0.48λ0. As far as the configuration of the experimental setup is concerned, the following

parameters have been used:LDI
= 1.6λ0, V = 4, andM(v) = 36. Moreover,DI has been partitioned inN(1) = 21 subdomains.

The reconstruction results give different indications on the effectiveness ofIMSA − TE vs. IMSA − TM in comparison

with those carried out for the dielectric configurations (Sect. 4.1 and Sect. 4.2). As a matter of fact, the profile under test is

generally better imaged when aTM illumination is considered as pointed out by the maps in Figs. 10(b)-(c) (SNR = 10 dB).

Quantitatively,ξTE
tot = 7.16 vs. ξTM

tot = 3.86, ξTE
int = 41.72 vs. ξTM

int = 27.73, and∆TE = 2.2∆TM .

However, such a behavior is not surprising since the same difficulties in dealing with aTE illumination of impenetrable

obstacles have been encountered also byRamananjaona et al.[33] both using synthetic and real data.

To further analyze such an issue, also laboratory-controlled data concerned with the experimental dataset“Marseille” [34] have

been used. In particular, for a comparative study, the scattered data related to a rectangular metallic target (25.4× 12.7 mm2)

probed with aTM (“ rectTM_cent.exp”) and aTE (“ rectTE_8f.exp”) incident field have been considered. Because of the limited

aspect of the measurement, the whole set of data (V = 36, M(v) = 49) at f = 4 GHz has been precessed imposing a constraint

on the real part of object function [Re (τ̃ ) = 0] and performing a thresholding (as suggested in [35]) toΥmax = −10.5 if

Im {τ(x, y)} > Υmax.

The reconstruction exploitingTM scattered data [Fig. 11(b)] is more accurate. The boundaries of the object are better detected

and the metallic nature of the scatterer is more faithful estimated. Similar observations have been also made in [33] and[36]

where different inversion methods were used. For a preliminary comparison between IMSA-TE and another inversion approach,

Fig. 11(c) reports the reconstructed profile obtained with the CSI-TEalgorithm [36]. The inversion of the experimental data

has been carried out considering single frequency measurements (f = 4 GHz) for reconstructing an investigation region17 cm

in side. Such single-step strategy achieves a reconstruction in which the dimension of the profile is slightly underestimated, as

well as the retrieved value of the imaginary part is greater thanIm {τ(x, y)}
min
CSI−TE = −0.6 (while Im {τ(x, y)}

min
IMSA−TE =

−3.1). However, for further comparisons with CSI and other different kinds of inversion algorithms the reader may refer to

the papers in [34].

The worse reconstructions withTE data could be related to the measurement setup. As a matter offact, for theTE case only

one electric field component (i.e., perpendicular to the radial direction) has been measured instead of two orthogonal in the

azimuthal plane as required by the vectorial nature of the problem insideDI . Such supposition agrees with other works in

literature on the same dataset, but should be further verified other impenetrable objects or experiments in which the electric

field is completely measured.

Moreover, problems are expected with the metallic or high contrast objects when the TE problem is formulated in term of the

electric field. As a matter of fact, it is the electric flux rather that the electric field that is continuous in an inhomogeneous

medium, right at the boundary of an object. Unfortunately, enforcing this physics in the IMSA would make the gradient quite

nonlinear and involved.

V. CONCLUSION

An iterative multiresolution method for the reconstruction of unknown scatterers illuminated byTE incident fields has been

presented. Such a multiscaling algorithm provides a multistep reconstruction of the scenario under test focusing on some RoIs
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adaptively determined by means of the information acquiredduring the iterative minimization of a suitable multiresolution

cost function.

The numerical analysis carried out through the paper has shown that the proposed methodology presents very attractive

capabilities in imaging single and multiple scatterers anda better reconstruction accuracy compared to theTM illumination

when dielectric scatterers are dealt with. An opposite conclusion has been carried out when metallic scatterers are probed both

considering synthetic and real data. This behavior, even though a more exhaustive analysis would be necessary, suggests the

need of extending theIMSA procedure to a hybrid strategy whereTM andTE illuminations (when available) are alternatively

processed as proposed in [21].

Moreover, the IMSA-TE has been compared with a single-step CSI-TE inversion algorithm. The multiresolution reconstruction

has given better results in estimating the metallic characteristics of the scatterer, however a wider analysis should be carried out

in order to fully asses the comparative analysis between thetwo methodologies. Certainly, it would be interesting to develop

a multiscaling procedure based on the contrast source formulation.

Finally, it should be pointed out that the proposed solutionof the TE case is an intermediate and mandatory step towards

the solution of the full three-dimensional problem where all the three scalar components of the electric field play their role.

The main differences for such an extension lie in the computation time (expected to substantially increase) as well as in the

minimization procedure to be carefully implemented in order to suitably deal with the larger solution space.
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FIGURE CAPTION

• Figure 1. Problem Geometry.

• Figure 2. Reconstruction of an off-centered square dielectric cylinder (τ0 = 0.5) under TE illumination (Noiseless

Conditions). Actual profile (a) and reconstructed profile at: (b) p = 1, (c) p = 2, (d) p = 3, and (e) p = Popt = 4.

• Figure 3. Reconstruction of an off-centered square dielectric cylinder (τ0 = 0.5 - Noiseless Conditions). Results obtained

(a),(b) under TM illumination, (c),(d) under TE illumination, (e) exploiting theTEx component, and (f ) the TEy

component.

• Figure 4. Reconstruction of an off-centered square dielectric cylinder (τ0 = 0.5 - Noiseless Conditions). Behavior of the

multiresolution cost function at the different steps of theminimization procedure for theTE andTM cases.

• Figure 5. Reconstruction of an off-centered square dielectric cylinder (τ0 = 0.5 - Noiseless Conditions). Behavior of the

cost functionΦ(p) along a direction of the solution space obtained varying theobject function in the range0 < τ < 16:

(a) TE case and (b) and TM case.

• Figure 6. Reconstruction of three square dielectric scatterers (τ
(s)
0 = 0.5, s = 1, ..., 3). Actual profile.

• Figure 7. Reconstruction of three square dielectric scatterers (τ
(s)
0 = 0.5, s = 1, ..., 3). Retrieved profiles underTE

illumination (a)(c)(e) andTM illumination (b)(d)( f ) in (a)(b) noiseless condition, when (c)(d) SNR = 10 dB, and (e)(f )

whenSNR = 5 dB.

• Figure 8. Multiple scatterers configuration (SNR = 5 dB). Actual profile (a) and reconstructions achieved underTE

illumination (b) andTM illumination (c).

• Figure 9. Multiple scatterers configuration. Reconstruction errorsversusSNR: (a) location errorsδ(s), (b) dimensional

errors∆(s), (c) internal errorsξ(s)
int, and (d) external errorsξ(s)

ext (s = 1, 2).
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• Figure 10. Reconstruction of an off-centered square metallic cylinder (τ0 = j89.73). Map of the imaginary part of the

reference object function (a). Reconstruction of the imaginary part of the object function under (b) TE illumination and

(c) TM illumination (SNR = 10 dB) .

• Figure 11. Experimental validation against the real data (Dataset “Marseille” [34]). Reconstruction of the rectangular

metallic cylinder at the frequencyf = 4GHz when probed with (a) a TE incident field ( “rectTE_8f.exp”) and (b) a

TM incident field ( “rectTM_cent.exp”). (c) Result obtained with the single-step CSI-TE algorithm.

TABLE CAPTION

• Table I. Reconstruction of an off-centered Square Dielectric Cylinder (τ(x, y) = 0.5 + j0.0). Comparison of the error

figures for the TM and the TE illumination.

• Table II. Reconstruction of an off-centered Square Dielectric Cylinder (τ(x, y) = 0.5 + j0.0). Computational Burden.

• Table III. Three scatterer configuration. Error figures for the TE illumination.

• Table IV. Three scatterer configuration. Error figures for the TM illumination.

• Table V. Three scatterer configuration. Convergence step and total iterations number under TE illumination and TM

illumination.

• Table VI. Multiple Scatterer configuration. Error figures for the TE and TM illumination (SNR = 5dB).

• Table VII. Multiple Scatterer configuration. Convergence step and total iterations number in the TE case and in the TM

illumination.
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TM TE TEx TEy

ξtot 0.31 0.21 3.25 3.72
ξint 6.64 4.77 28.72 29.35
ξext 0.43 0.02 1.32 1.91
δ 0.004 0.0002 0.32 0.30
∆ 14.44 12.33 27.32 27.57
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TE TM
Kopt 8000 1693
popt 4 2

titer [ms] 120 36
U [MB] 2.4 0.8

Table II - D. Franceschini et al., “Iterative Image Reconstruction of ...”
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SNR [dB] ∞ 10 5
ξtot 2.00 2.14 2.58

ξ
(1)
int 2.56 4.32 4.59

ξ
(2)
int 4.26 4.37 5.11

ξ
(3)
int 4.96 6.44 6.91

ξext 1.21 1.43 1.72
δ(1) 0.02 0.05 0.01
δ(2) 0.02 0.05 0.05
δ(3) 0.01 0.05 0.10
∆(1) 14.28 11.42 16.23
∆(2) 14.41 13.46 11.44
∆(3) 19.02 15.47 16.44

Table III - D. Franceschini et al., “ Iterative Image Reconstruction of ...”
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SNR [dB] ∞ 10 5
ξtot 2.09 2.95 4.20

ξ
(1)
int 3.97 5.50 6.68

ξ
(2)
int 4.06 8.06 11.78

ξ
(3)
int 4.97 7.01 8.68

ξext 1.77 2.60 4.17
δ(1) 0.01 0.02 0.03
δ(2) 0.04 0.04 0.08
δ(3) 0.01 0.04 0.07
∆(1) 18.53 25.82 25.81
∆(2) 13.58 26.70 27.41
∆(3) 12.57 16.16 15.8

Table IV - D. Franceschini et al., “Iterative Image Reconstruction of ...”
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SNR [dB]
∞ 20 10 5

TE Kopt 4000 6000 4000 4000
popt 2 3 2 2

TM Kopt 2309 4000 4000 6000
popt 2 2 2 3

Table V - D. Franceschini et al., “Iterative Image Reconstruction of ...”
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SNR 5dB TE TM

ξ
(1)
int 6.50 7.60

ξ
(2)
int 15.83 19.32

ξext 1.32 3.54
δ(1) 0.14 0.21
δ(2) 0.07 0.69
∆(1) 29.52 33.60
∆(2) 23.78 47.70

Table VI - D. Franceschini et al., “Iterative Image Reconstruction of ...”
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SNR [dB]
∞ 20 10 5

TE Kopt 4000 5100 4000 4000
popt 2 3 2 2

TM Kopt 747 770 946 3790
popt 2 2 2 3

Table VII - D. Franceschini et al., “Iterative Image Reconstruction of ...”
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