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Abstract—An Offshore Communication Network (OCN) is a
network of fishing vessels at sea aimed at providing wireless
Internet access over the ocean. The connectivity of fishing
vessels is essential to disseminate messages, monitor emergency
management, and provide information services. The impact of
extreme weather conditions on wireless signals, the inability to
deploy additional infrastructure, the movements induced by sea
waves, the expanded mobility freedom at sea, and the non-
uniform density of nodes create connectivity holes in an OCN.

This paper proposes a reinforcement learning-based connec-
tivity restoration scheme for OCNs. During the planning phase,
a node examines the history of its contacts with other nodes and
estimates their mobility vector to determine the expected location.
Mobile nodes discover the best spots to re-establish connectivity
and the most appropriate path to reach these spots via a trial-
and-error strategy. In a reinforcement learning framework, we
simulate actions to move toward the expected contact locations
and learn the optimal movement directions without guessing
the contact’s actual position. During the control phase, these
learned policies are utilized to relocate isolated OCN nodes and
restore high-quality connectivity. Simulation results show that
our scheme improves the nodes’ connectivity probability.

I. INTRODUCTION

One of the critical challenges in deep-sea fishing is the
lack of low-cost offshore communication solutions capable of
working over long distances from the shore. Existing con-
ventional communication technologies like cellular networks
and marine radio only provide offshore connectivity up to 20
km. However, fishing operations typically spread far beyond
100 km from the shore. Although satellite telephone systems
provide communication facilities everywhere, these are very
costly and thus impractical. Due to the lack of low-cost and
real-time communication facilities, fishermen cannot connect
with the external world even in emergencies. Rao et al.
proposed the concept of an ad hoc offshore communication
network (OCN) for fishing vessels to provide Internet access
over the ocean [1]. Through an OCN, smartphones on the
vessels can achieve relayed access to the Internet via the
onboard access network.

Compared to vehicular ad hoc networks, whose mobility
patterns are constrained by the road infrastructure, OCN nodes
have broader freedom of movement at sea. On the other hand,
building an OCN presents unique challenges, such as the
sea-wave-induced mobility of fishing vessels, the impact of
extreme weather conditions on wireless signals, the inability

to deploy additional infrastructure, and the misalignment of
directional antennas. Even when an ad hoc network has been
established, nodes may experience unpredictable movements
due to sea waves. The topology may change rapidly due to
the antenna orientation, the rocking movement of vessels,
and the propagation effects leading to abrupt changes in the
link quality. Therefore, real-time connectivity maintenance is
crucial to ensure adequate network connectivity.

One possible solution to restore connectivity is movement-
based location optimization without affecting the actual task of
the nodes. The nodes need previous contact details to identify
connectivity locations when recovering after a disconnection.
There is no guarantee that the node will be connected when
it reaches the point where connectivity was expected. In this
paper, we use reinforcement learning to learn the path to be
followed by the vessel to connect to the base station after a
disconnection. The algorithm includes two phases: planning
and reorientation. A Q-learning approach is applied to learn
paths without actual movement in the planning phase. The
nodes are positioned virtually to learn the path followed
for expected connectivity and compute the post-movement
reconnection probability. Based on this probability, the node
performs the reorientation phase.

The rest of the paper is organized as follows: Section II
reviews previous works related to movement based connec-
tivity restoration. In Section III, we present the architecture
of an OCN. Section IV describes the reinforcement learning
model for position reorientation. Section V presents simulation
results, followed by the concluding remarks of Section VI.

II. RELATED WORK

Wireless networks are prone to frequent connectivity fail-
ures due to the nature of the environment in which they
operate. To improve the quality of communications among
nodes, methods to restore and improve the connectivity have
been studied [2]–[4]. For example, nodes can be deployed
to establish k-connected networks [2], [5], [6]; such meth-
ods, however, are more suitable for static wireless networks.
Another approach is to use additional infrastructure such as
unmanned areal vehicles and relay nodes to restore or maintain
connectivity [3], [7], [8].

To maintain connectivity, it is also possible to reposition
special nodes, called actor nodes [9], [10]. In this case,



the objective is to reconnect the network with a minimum
number of relay nodes. These methods assume that the nodes
are stationary and additional nodes are always available to
deploy. Transmit power adjustments and topology control can
also ensure strong connectivity [4], [11], both locally and
globally [12], [13].

A different approach performs movement-based connec-
tivity restoration. For example, Basu and Redi propose to
rearrange the network topology by moving existing nodes
in a one-dimensional robotic network unfortunately requiring
centralized control to avoid connectivity holes [10]. Abbasi
et al. discussed a method to restore connectivity failure due
to a single node through relocation towards a neighbor with
the lowest node degree [14]. However, this approach can not
tolerate multiple node failures simultaneously.

Heuristic algorithms were used to reconnect the networks
based on the total distance traveled [15]. This technique
requires identifying the relay points in advance and then
filling connectivity holes based on a greedy heuristic. Kim
et al. proposed a neighborhood-aware restoration algorithm
in a drone network, where each node moves to its last
connected neighbor location [16]. Nevertheless, this method
does not guarantee connectivity because the node may not
be available at the last known location. Instead of waiting
until disconnection, proactive approaches were also applied to
prepare backup plans in advance [17], but typically require a
much more significant coordination overhead.

Most of the node (re)deployment strategies proposed for
terrestrial wireless network connectivity restoration cannot be
employed for OCNs. Since additional infrastructure or relay
nodes are unavailable to fill connectivity holes in an OCN,
role-based connectivity restoration is also not applicable.
Moreover, movement control algorithms may not always be
appropriate because they depend on the node’s fishing tasks
and communication context. Therefore, OCNs require an adap-
tive node position relocation scheme to restore connectivity.
Our work in the following proceeds along this line.

III. ARCHITECTURE OF OCN

The offshore communication network (OCN) is a vehicular
network that provides Internet access to fishing vessels over
the ocean [1], [18]–[20]. The network is designed to extend
the wireless connectivity range over 100 km offshore and
uses a distributed architecture integrated with edge computing.
Fishing vessels are considered edge nodes in this architecture
that processes the data collected locally, avoiding dependency
on the base station for analysis.

Currently, fishermen resort to limited hand-held radios for
communications, barely reliable in rough sea conditions. Cel-
lular network coverage is restricted to 15 km from the shore.
Conversely, OCN enables fishermen to access applications
such as WhatsApp and communicate directly through their
smartphones. The onboard Internet access facilitates the use
of information services provided by the Government to the
fishermen at sea and emergency communication to the shore.
Fig. 1 shows the architecture.

Fig. 1. Architecture of an Offshore Communication Network.

OCN edge nodes are grouped into three categories: access
nodes, adaptive nodes, and super nodes, depending on the
communication resources available in the fishing vessels.
Access nodes are vessels that contains only a wireless ac-
cess router (AR); adaptive nodes contain adaptive back-haul
equipment (ABE), while super nodes equipped with ABEs
and one AR. Adaptive and super nodes are also called long-
range (LR). Each AR has an omnidirectional antenna to
provide WiFi access up to 500 m, connecting devices such as
smartphones and other nearby ARs. The ABEs are provided
with 120◦ sector antennas that provide connectivity of nearly
20 km, using long-range WiFi links.

The architecture is partitioned into three layers:
• Layer 0 provides Wi-Fi with a mesh network of access

nodes;
• Layer 1 provides LR Wi-Fi with an ad hoc backbone

network of LR nodes;
• Layer 2 is the network of base stations on the shore.

A test implementation of the OCN architecture has been
evaluated over the Arabian Sea from a coastal village in
Kerala, India. In the field tests, the network provided a 50+
km range in the first hop and 20+ km in every succeeding
hop.

IV. REINFORCEMENT LEARNING-BASED CONNECTIVITY
RESTORATION

Maintaining connectivity between nodes is a fundamental
problem since OCNs operates over a large geographical area,
and the network is sparse. In case of disconnection, recom-
mendations on the direction and distance to relocate for better
connectivity will immensely benefit fishermen at sea.

A. Communication Requirements

The communication requirements in each fishing state are
identified based on the interviews conducted with over a
hundred fishers. Although the ability to make audio calls is
essential, fishermen also use video calls and entertainment
facilities depending on the fishing phase. According to the fish-
ing tasks, we can divide the states of fishing into four groups:
sailing, searching, fishing, and resting. Fig. 2 summarizes the
mobility and required communication level in each state.



Fig. 2. OCN fishing states and communication requirements. MM: Mobility
Model, CR: Communication Requirements. (From [21].)

The sailing state includes the journey towards the high sea
and the return to the shore. In this case, the communication is
predominantly with peer groups, and can be classified it as a
medium requirement. However, the base station connectivity is
occasionally required. When the required sea depth is reached,
the vessels start searching the fishing zones, and the state is
called searching state. This stage focuses more on discov-
ering potential fishing zones. The connectivity requirement
is medium, as more communication occurs merely to the
peer nodes. Since the fishermen work as a group to discover
the fishing zones, the vessels are seen in clusters, and the
cluster members follow the path of the cluster head. Nodes
can adjust their positions within the cluster to obtain more
reliable connectivity. Once a fishing zone has been found, the
state changes to fishing state. The communication requests are
very low in this state since the fishermen engaged totally in the
fishing task as a group. The mobility is also limited. During the
night, the vessels stop fishing and move to resting state. Since
mobility is significantly less, this stage is considered a static
state, and all others are dynamic. Base station connectivity is
more demanding here as they mostly communicate with the
shore or use mobile entertainment applications. In a few cases,
peer connectivity is also required. Hence, the requirement is
categorized as high.

B. Formulation of Position Reorientation Model

Connectivity restoration after disconnection in an OCN is
formulated as a Markov Decision Process (MDP). The MDP is
represented using 5-tuples ⟨S,A, T,R, γ⟩, where S is the set
of environmental states, A is the distinct set of agent actions,
T is the state transition function T : S × A × S → [0, 1], R
is the reward function of the agent R : S × A → R and γ is
the discount factor. To solve the MDP, we apply reinforcement
learning.

Reinforcement Learning (RL) is a machine learning tech-
nique that learns a system by interacting with the environment
via trial-and-error [22]. The learner in an RL system is
termed as an agent. The agent constantly interacts with the
environment by selecting arbitrary actions. The environment
returns feedback on how good the selection is for each action.
At each stage t, the agent selects an action that transforms the
state of the environment from st to st+1 and gains a reward.

Fig. 3. Sample scenario for connectivity restoration after a disconnection.

It is incapable of delivering the best performance at the initial
learning phase, since the environment is unknown. It explores
possible actions to achieve the goal and examines the impact
of those actions. After the initial phase, the agent operates on
the learned parameters and increases the expected reward.

Fig. 3 illustrates a sample connectivity restoration scenario
of an OCN. Assume that the ocean environment can be viewed
as a grid where each cell has size 1 km×1 km. The position
information of all nodes in an OCN is available via GPS.
Nodes communicate with each other either through long-range
(LR) WiFi or standard WiFi links. Link quality is classified
into five levels, from 1 to 5, depending on the received
signal strength. The thresholds for the link classification are
derived from data collected from field trials performed over the
Arabian Sea. Fig. 4 shows the signal strength collected from
an LR link between the base station and a fishing vessel. From
the analysis of our signal strength vs. distance measurement
dataset, we divided the link quality into the above five grades,
and determine the corresponding distances as shown in Fig. 4.

When two nodes come in contact, they exchange their
current position and movement direction. Fig. 3 shows the
locations of three nodes: p, n1 and n2 at time epochs t1 to tk.
During the time interval from t1 to t3, node p is connected to
both n1 and n2 at time t1 and only n2 at time t2. After t3,
p lost connectivity and wants to reconnect. Therefore node p
will look up the history of previously connected nodes. The
history includes the locations of last contact nodes, last contact
time, and contact mobility vector with speed and direction of
motion. Here, node p has two previous contacts n1 and n2.
Node p computes the expected location of the contact ni as a
function of time and average velocity as

x̂ni
(tk) = α v̄ni

(tk − tc) + xni
(tc), (1)

where tk is the time at which node p wants to reconnect, tc
is the last contact time with neighbor and v̄ni

is the average
velocity of neighbor i. A decision making scenario of node p is
shown in Fig. 5. It can select the direction of previous contacts
n1 and n2. The moving node must follow a sequence of
grid positions to reach a well-connected area. This sequential



Fig. 4. Signal strength vs. distance data collected from sea trial experiments
and the threshold selection for grading link quality.

decision-making problem is represented using an MDP with
the following state, action, and reward function.
States—Nodes store the history of previous contacts, including
node connectivity quality, location, and contact time. The state
of the agent is defined as (x̂ni

,∆ti}) where x̂ni
denote the

location of the connected contact i in a threshold time interval.
∆ti is the difference between the time connectivity restoration
is initiated and time of the last contact with node i.
Actions—An action is defined as choosing one of the grid
cells (i, j) to move from the current position. Possible actions
from the current grid include moving to north, south, east,
west, north-east, north-west, south-east, and south-west. Also,
the node can move in the direction of the base station or
to one of the available potential fishing zones (PFZ), where
more vessels are expected. Hence the action space A =
{N ,S ,E ,W ,NE ,NW ,SE ,SW ,BS ,PFZ k}.
Reward function—The environment returns a reward to the
agent conveying the impact of its action. The agent’s main
objective is to achieve a connection to the base station (BS).
The reward is assigned based on the quality of the radio link
between the moving node and the BS, Qcom(p,BS ), which
maps to the probability of actually establishing a connection
successfully (Pconn) as follows:

R1 =



+50, if Qcom(p,BS ) = grade 1 (Pconn = 1),
+30, if Qcom(p,BS ) = grade 2 (Pconn = 0.8),
+20, if Qcom(p,BS ) = grade 3 (Pconn = 0.7),
+10, if Qcom(p,BS ) = grade 4 (Pconn = 0.5),
+5, if Qcom(p,BS ) = grade 5 (Pconn = 0.4),
−1, otherwise (Pconn = 0).

(2)

Based on data collected from sea experiments, we analyzed
the connectivity quality for each signal strength range and
designed the reward function. Good-quality communications
are rewarded with high positive values. For grade 1 com-
munication, we give a high positive reward of +50 in the
simulations. A grade 2 quality radio link is still good but
its signal strength is less stable, whence a reward of +30.
Similarly, we proceed down to a +5 reward for communication
grade 5. For all other communication grades where the quality

n2

n1

p

Fig. 5. Decision making context.

of the signals was poor, a negative reward was used as a
penalty. This reward range is chosen considering the total
cumulative reward obtained in each simulation episode. Note
that the BS connectivity can be restored via either a single-hop
or a multi-hop link. In the multi-hop case, one or more contact
nodes act as relays to and from the BS when the moving node
reaches their communication range, and the connection quality
is the lowest quality of all links along the multi-hop path. For
instance, with two relays n1 and n2, we have Qcom(p,BS ) =
max{Qcom(p, n1),Qcom(n1, n2),Qcom(n2,BS )}, and the re-
sulting grade maps to its corresponding connection probability
as in Eq. (2) above.

Let the initial location of node p be xinit, the desired
location to get connectivity be xtgt and location in next time
step be xnext. Based on the signal availability of the next
location and travel distance minimization constraints, we can
define reward as

Rt = R1 +
d(xinit,xtgt)− d(xnext,xtgt)

d(xinit,xtgt)
, (3)

where d(x1,x2) represents distance between x1 and x2.
Learning—We apply an off-policy Q-learning algorithm to
learn the actions that lead to better connectivity. When a node
wants to reconnect to the network, it computes the expected
locations of the last contacts using the history. Then the node
performs a planning phase by choosing the grid positions to
reach the target. In every step, it selects the highest Q-valued
action with 1− ε probability. The action value is updated as

Q(st, at)← (1−α)Q(st, at) + α[Rt+γmax
a
Q(st+1, a)] (4)

Algorithm 1 details the steps of our relocation scheme.

V. RESULTS

We have simulated the ocean environment by modeling it as
a grid of size 200 km×200 km, where each cell in the grid has
size 1 km×1 km. When a node needs to relocate, it performs a
planning phase to learn the Q-table. In the actual reorientation,
the node uses this learned Q-table to reach locations yielding
better connectivity. We consider a scenario with 12 LR nodes
and a single base station at the shore for the learning phase.
The convergence of the learning phase is plotted in Fig. 6,
where the algorithm converges after 2000 iterations. After this



Algorithm 1: Adaptive Connectivity Restoration
Initialization
State S={(x̂ni ,∆t)}
Action A={N,S,E,W,NE,NW,SE,SW,BS,PFZ k}
Exploration coefficient ε = 0.01
if Node x has to restore connectivity then

a. Cx ← Contacts of x over interval [tc, tk]
b. Compute expected node locations using (1)
c. Compute signal strength from the BS to the expected

location of all contacts using the channel model
d. Define terminal states T of the MDP based on the

communication range of selected contacts
e. foreach i ∈ s , a ∈ A do

Q(i, a) = 0 ;
f. while iterations ≤ max episodes or
current state ∈ terminal states do

Generate a random number p ∈ [0, 1]
if ε ≤ p then

xnext = random grid position
else

xnext = grid with highest Q values
Update Q value using (4)

planning phase, the agent takes steps towards the best contact
locations using the learned Q-table. Fig. 7 shows a sample of
the path that the agent follows to reach a contact’s expected
location over subsequent learning steps.

We test two main metrics: the probability that the reorienting
node can connect to a contact along its path towards the
reorienting destination, and the probability that this actually
translates into a (possibly multi-hop) connection to the base
station. We consider five test cases for our Q-learning-based
framework, as listed in Table I. Furthermore, we compare
against two baseline schemes: (i) the node reorients to a
random location in the map, or (ii) the node reorients towards
one of its previous contacts, chosen at random. These cases
are labeled 6 and 7. The probability that the reorienting
node successfully connects to a contact as a result of its
own movement is shown in Fig. 8. When the contact nodes
follow the same trajectory as in the planning phase (Case 1),
the relocating node’s connectivity probability to the contact
and the base station is in the range [0.975, 0.99]. This result
confirms that the node learns where to relocate. Moreover, it
provides a realistic baseline for the case where several vessels
tend to move around the same fishing area, as their trajectories
would typically approach known potential fishing zones.

After the learning phase, we evaluated the connectivity
probability with six unseen contacts. In this case, the con-
nectivity probability to the contact and the base station is
in the range [0.75, 0.85]. This confirms that the learning
framework allows a node to restore its connection with high
probability by moving to a well-chosen location. Fig. 9 shows
the connectivity probability of the reorienting node to the base
station. We observe that the results have a slightly higher
statistical dispersion than those related to the contact nodes in
Fig. 8. This is because the quality of the (typically multi-hop)
connection from the reorienting node to the BS is bounded by

Fig. 6. Reward acquired vs number of iterations.

Fig. 7. Path followed by the agent at different learning steps from a start
location to the expected location of a contact.

TABLE I
SIMULATION SCENARIOS

Scenario Learning phase Testing phase
Case 1 12 nodes 6 nodes from training phase
Case 2 12 nodes 6 new nodes with different moving patterns
Case 3 12 nodes 12 new nodes with different moving patterns
Case 4 18 nodes 6 new nodes with different moving patterns
Case 5 18 nodes 12 new nodes with different moving patterns

Case 6 — 12 nodes in the topology and the node selects
a random target location

Case 7 — 12 nodes in the topology and the node selects
a random neighbor from its previous contacts

the lowest-quality link, and the corresponding probability of
successfully establishing a connection behaves as in Eq. 2.

To check the impact of increasing the number of nodes in
the test scenario during reorientation, we placed 12 unseen
nodes in the environment. Due to the increase in density
of the contact nodes, the relocating node gets better con-
nectivity to the contact and base station, as seen in case
3 of Fig. 8 and 9. In the following test scenario, case 4,



Fig. 8. Connectivity probability between the reorienting node and the contact
in different test scenarios.

we increased the number of nodes in the training phase to
18 and observed better connectivity than in case 3. When a
node chooses a random reorienting direction, the connectivity
probability is low compared to the other cases discussed
in Table I. After disconnection, a node is unaware of the
location where reconnection is possible. Moving to a random
location without knowing the current topology reduced the
connection probability. However, moving towards any one
of the previously connected contacts increased reconnection
probability compared to a random reorientation. Instead, RL-
based relocation tries possible paths in the learning phase, and
those learned paths are utilized in actual movement. This path
planning improved the connectivity probability in RL-based
relocation. Moreover, the results in Fig. 9 indicate that the
connectivity probability is improved with the increase in node
density in the reorientation scenario.

VI. CONCLUSIONS

The connectivity of fishing vessels is critical for information
services and message dissemination among fishing vessels
at sea. While an offshore communication network enables
long-range connectivity for fishing vessels, OCN nodes tend
to undergo abrupt connectivity failures due to the extreme
environment in which the network operates.

In this paper, we proposed a reinforcement learning algo-
rithm to restore connectivity in an OCN after a disconnection.
In the first planning phase of the algorithm, a node utilizes
its history of contacts to estimate the locations expected to
offer the best connectivity, and computes the most suitable
path to reach these zones. The paths learned from the planning
phase are used in the second phase of the algorithm to reach
potential connectivity spots. Our simulation results show that
the connectivity probability improves by using our RL-based
approach, compared a random search of the best location.
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