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a b s t r a c t

Different authors have addressed a number of problems in the area of distributed control proposing
convincing solutions to specific problems such as static coverage, dynamic coverage/exploration,
rendezvous, flocking, formation control. However, a major limitation of problem-specific approaches
is a fundamental lack of flexibility when the group meets unexpected conditions and has to change
its goal on the fly. In this paper, we show that a large class of distributed control problems can be
cast into a general framework based on the adoption of the Lloyd methodology. The adoption of a
unified framework enables efficient solutions for the specific problems guaranteeing at the same time
important safety and functional properties and a large degree of flexibility in the execution of group
tasks. The paper sets the theoretical basis for this development and proves the efficacy of the proposed
solutions through extensive simulations and experimental results.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Distributed coordination and control of multi-robot systems
s a very active research area and is attracting interest from
ifferent scientific communities. The main idea is to define dis-
ributed strategies, in which each robot senses its surroundings
nd takes a decision coordinating with its neighbours. The com-
ination of these different local decisions produces a collective
ehaviour (also called emergent behaviour) for the system as a
hole [1]. The problem of distributed control is about designing

ocal control laws such that the emerging collective behaviour
ulfils the desired control goals. The complexity of distributed
ontrol design is compensated by its undisputed benefits in terms
f communication, sensing and computing power requirements,
lexibility and robustness. In the following, we are going to review
ome of the most important problems that can be addressed using
istributed control of multi-robot systems.
Static Coverage. The problem of static coverage amounts to

inding a deployment for a group of robots such that a given
rea is optimally covered by their sensors. A seminal paper by
ortes et al. [2] sets up the problem for convex environments.
he authors exploit a technique based on Voronoi partitions and
irst proposed by Lloyd [3] for the optimal design of quantisers,
nd adopt a gradient descent strategy that provably converges to
he centroidal Voronoi configurations. Extensions to non-convex
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environments have been proposed by different authors. A com-
bination of the Lloyd algorithm and the TangentBug method
is proposed by Breitenmoser et al. [4], while Pimenta et al. [5]
use geodesic Voronoi tessellation in order to account for the
heterogeneous range of the sensors embedded on the robots.
Stergiopoulos et al. [6] compare Euclidean and geodesic sensing
discs and also Euclidean and geodesic Voronoi partitioning. In
[7–9] the authors proposed coverage solutions based on the vis-
ibility set to deal with non-convex spaces. Other approaches are
based on potential fields [10], time-inverted Kuramoto dynam-
ics [11], on the maximisation of the joint detection probabilities
of random events [12] or address specific application areas [13].

Dynamic Coverage.When the number of agents is not sufficient
o statically cover all the mission space, exploration algorithms
eaturing dynamic coverage are in order. In 1997, Yamauchi [14]
ntroduced the concept of frontier, which is a region between
he unexplored space and the open space that the robot moves
owards to increase its knowledge of the environment. The idea
f the frontier-based navigation was extended by the same author
o the case of multi-robot teams [15]. Effective multi-robot explo-
ation strategies have been proposed by Burgard et al. [16] using
decision-theoretic approach, in which frontiers are used as a
eans to coordinate the robots. Franchi et al. in [17] present a de-
entralised cooperative exploration strategy using sensor-based
andom graph. A behavioural approach is adopted by Cepeda
t al. [18]: the authors combine four simple behaviours to obtain
complex emergent behaviour which results into the exploration
f unknown environments by a group of robots. Furthermore,
n interesting interpretation of the exploration problem is pro-

osed by Semnani et al. [19], who introduce the concept of

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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nti-flocking and semi-flocking. Schwager et al. [20] propose a
io-inspired control strategy for coverage and exploration of a
onvex area. Haumann et al. [21] combine the frontier-based
trategy with the Voronoi partition, thus ensuring collision avoid-
nce between robots, due to the properties of the Voronoi par-
ition [22]. Franco et al. [23] proposes a persistent coverage
lgorithm based on the combination of local and global strategies
n order to guarantee full coverage. In the same line of work,
ellone et al. [24] provide a distributed control law for persis-

ent coverage of a team of heterogeneous robots in a structured
nvironment, while Zhou et al. [25] propose an event-driven solu-
ion for one-dimensional persistent monitoring problems. Other
olutions for one-dimensional persistent monitoring are proposed
n [26–28].

Connectivity Maintenance. When a group of robots moves,
ome of the agents in the team could be delayed and lose connec-
ion with the group. With a motion strategy that is connectivity-
reserving this situation never occurs and the communication
raph is always connected. Sabattini et al. [29] ensure connectiv-
ty maintenance by relying on a gradient descent based algorithm
nd a decentralised estimation of the second smallest eigenvalue
f the Laplacian matrix (i.e. the algebraic connectivity). De Gen-
aro et al. [30] seek to maximise the algebraic connectivity in a
ecentralised way, when no obstacle is in the workspace, while
tump et al. [31] extend their solution to the presence of obsta-
les. A similar approach is adopted by Kim et al. [32], who set
p a semi-definite programming solution to solve the problem.
churesko et al. [33] deal with connectivity maintenance ac-
ounting for imperfect information in the communication system,
hile Zavlanos et al. in [34] present an algorithm able to preserve
-hop connectivity. The same research group proposes a theoreti-
al framework conceived for connectivity graph control [35], and
network topology-based solution with no restrictions on the
esired connectivity specification [36].
Navigation. Navigation strategies for multi-robot groups were

pioneered by Reynolds [37], who introduced a model of po-
larised, non-colliding aggregate motion (i.e. flocking), and by
Olfati-Saber [38], who set up a theoretical framework for the
design and analysis of flocking algorithms. Olfati-Saber, in partic-
ular, proposed a potential-based method that forces the robot to
converge to a lattice structure (i.e. formation). There are plenty
of literature results on multi-robot navigation, a large part of
these being derived from the works of Reynolds and Olfati-Saber,
however a complete survey is beyond the scope of this paper.

Rendezvous. The rendezvous problem can be described in the
following terms: define a control strategy such that all the robots
converge to the same point. To solve this problem, Ando et al.
introduce the circumcenter algorithm in [39], which was later
extended by different authors [40,41]. Dimarogonas et al. [42]
propose a decentralised feedback control strategy that steers a
set of nonholonomic agents to a rendezvous pose. Ji et al. [43]
achieve rendezvous through nonlinear feedback control based
on weighted Laplacian matrix. To the best of our knowledge,
the rendezvous problem in non-convex spaces has been rarely
addressed. The most relevant existing solutions are the Perimeter
Minimising Algorithm for non-convex connected spaces [44] or
potential field-based approaches [45].
Paper Contribution. In this paper, we propose a unified frame-
work for the whole class of the distributed control problems
mentioned above. The mainstay of our methodology is the Lloyd
algorithm [3]. With respect to previous papers that used this
approach, we combine two key features. First, we modify the
geometry of the Voronoi partitions to account for visibility and
communication constraints as well as for the physical encum-
brance of the agents. Second, we change dynamically the at-

tractiveness of the different areas inside the Voronoi partitions

2

to push the agents towards the execution of dynamic goals.
These two features were used in a different context in previous
papers [46,47]. In our framework, their combination allows us
to synthesise a family of different control algorithms within the
same framework. Specifically, we provide:

(1) An adaptive static coverage algorithm dealing with non-
convex environments. Preliminary results on static cover-
age were provided in our previous paper [7], but we did not
offer any formal proof of safety and, in some pathological
conditions, the agents could be trapped in local minima.
The solution presented in this paper comes with a formal
proof of safety, mitigates the problem of local minima and
offers a test, in the case of homogeneous sensors, to decide
if the environment has been fully covered;

(2) A comprehensive solution for dynamic coverage that con-
siders three different scenarios: i. memoryless robots,
ii. robots with memory of past positions, iii. robots with
memory of past positions and exchanging information.
Unlike the frontier-based methods [14], our solution does
not require the support of planning algorithms to reach the
frontiers;

(3) A novel motion control algorithm for connectivity mainte-
nance;

(4) A group navigation technique that switches between a
flocking behaviour, i.e., the robots maintain a loose forma-
tion [48,49], and a constrained formation behaviour, where
each robot has to keep a fixed distance from its neighbours;

(5) A rendezvous algorithm that operates in generic non-convex
environments (e.g., a room cluttered with obstacles).

As well as being relevant in their own rights, these different
algorithms are rooted in the same conceptual model, are formu-
lated and analysed uniformly and share two properties of the
greatest importance: they secure collision and obstacle avoidance
and they can operate with heterogeneous sensors.

The paper is organised as follows. In Section 2 we lay down
the basic pillars upon which the rest of the paper is built upon.
Section 3 uses the Lloyd algorithm and act on the Voronoi cell
geometry to ensure collision avoidance, adaptive static coverage
as well as connectivity maintenance, while Section 4 act on the
cell densities to ensure dynamic coverage, navigation and ren-
dezvous. The qualitative and quantitative results are offered both
in simulation and experimentally in Sections 5 and 6. The paper
ending comments are reported in Section 7, where the future
research directions and developments are also discussed.

2. Problem formulation and solution overview

In this section, we formalise the different control problems
and we briefly review the results of Lloyd that underpin the
unified framework proposed in this paper.

2.1. Problem formulation

Given the mission space Q ⊂ R2, the obstacle space O ⊂
2 and a finite number n of robotic agents with initial position
i(0) ∈ Q ∀i = 1 . . . n, our goal is to design control laws that
perate through local interactions so that the collective (global)
ehaviour of the group fulfils one of the following goals:

• Static coverage: the system reaches a stable configuration
that deploys the robot in the mission space so that a cov-

erage metric is optimised;
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• Connectivity maintenance: given an initial connectivity graph
defined by edges and vertices, the robots move so that if two
vertices (robots) are linked through an edge (connectivity
constraint), they remain connected, i.e. if a connectivity con-
straint is imposed between two robots, each robot moves
in order to respect the constraint and does not leave the
communication set of its neighbour(s);

• Dynamic coverage: the robot motion strategy guarantees that
the entire mission space is covered by the sensing range of
the robots in finite time; in case the number of robots is
not sufficient to statically cover the whole mission space, we
need a dynamic solution such that each location is covered
at least in some time intervals;

• Navigation: (i) Flocking: move the robotic agents from the
starting positions P = {p1(0), p2(0), . . . , pn(0)} to the goal
positions E = {e1, e2, . . . , en}, keeping the pairwise distance
between agents smaller than a specified amount; (ii) For-
mation: move the robotic agents from the starting positions
P = {p1(0), p2(0), . . . , pn(0)} to the goal positions E =

{e1, e2, . . . , en}, keeping constant pairwise distance between
the agents;

• Rendezvous: each robot of the system converges to the same
rendezvous position.

For all these problems, we require to:

• Avoid collisions with obstacles;
• Avoid collisions between the robots in the group;
• Deal with heterogeneous sensing ranges.

We assume a single integrator dynamics ṗi = ui, for each agent
n the scene (i.e., we can independently set the velocities along
ith the two coordinates). In the following, we will use the terms

‘robot’’ or ‘‘agent’’ with the same meaning.

.2. Lloyd-based algorithms

More than a decade ago Cortes et al. [2] proposed a Lloyd-
ased solution to solve the coverage problem in a distributed way.
heir idea was to define a coverage cost function

cov(p,V) =

n∑
i=1

∫
Vi

∥q − pi∥2ϕ(q)dq, (1)

where p = [p1, . . . , pn]T , pi = [xi, yi]T is the position of the i-th
gent, q ∈ Q are the points belonging to the mission space, ϕ(q)
s the probability density function that weighs the relevance of
oint q, and Vi is the Voronoi cell associated with the i-th agent,

i(p) =
{
q ∈ Q | ∥q − pi∥ ≤ ∥q − pj∥, ∀j ̸= i

}
. (2)

y following the gradient descent (i.e. − ∂ Jcov(p,V)
∂pi

), and assuming
he single integrator dynamics ṗi = ui, Cortes et al. obtained the
following proportional control law

ṗi(Vi) = −kp
(
pi − CVi

)
, (3)

where kp > 0 is a tuning parameter, and CVi = [Cx
Vi

, Cy
Vi

]
T is

the centroid position computed over the i-th Voronoi cell. They
proved that each agent converges asymptotically to its Voronoi
centroid position and the overall system achieves an optimal
deployment for the coverage problem. They showed this fact by
3

using Jcov(p,V) as a Lyapunov function:

d
dt

Jcov(p,V) =

n∑
i=1

∂

∂pi
Jcov(p,V)ṗi

=

n∑
i=1

2mi(pi − CVi )
T (−kp(pi − CVi ))

= −2kp
n∑

i=1

mi∥pi − CVi∥
2

(4)

where mi =
∫
Vi

ϕ(q)dq. The convergence to the central Voronoi
tessellation is a consequence of LaSalle’s invariance principle.

The framework proposed in this paper relies on the Lloyd-
based relations (1), (2) and (3). It retains the simplicity and the
effectiveness of the approach of [2] but it applies to a far more
general and challenging category of distributed control problems.

2.3. Unified Lloyd-based distributed coordination

The general control law to solve the problems described in
Section 2.1 can be written as follows:

ṗi(Ai,Zi) = argmin
ν

(ν + kp(pi − CAi ) − ke
ĊAi

∥ĊAi∥

)
,

s.t. ν ∈ int(T̂ (Zi, pi)) if pi ∈ ∂Zi

(5)

where kp and ke are tuning parameters, int(T̂ (Zi, pi)) is the in-
terior of the sequential Bouligant tangent cone [50] (also called
contingent cone) to Zi at pi and ∂Zi is the boundary of the Zi set.
In practice, the constraint in (5) enforces the i-th agent to belong
to the cell Zi, which is a fundamental requirement to prove safety
and functional properties. By properly choosing the setsAi, Zi and
the density function ϕ(q) used to compute the centroid CAi of Ai,
the system emergent behaviours fulfil one or more of the tasks
summarised in Section 2.1. As a particular case, when (5) is used
with just one parameter, e.g. ṗi(Ai), it is implicitly intended as
ṗi(Ai,Ai). Notice that (3) is then ṗi(Vi) in (5) with ke = 0.

3. Cell geometry adaption

In this section, we show that by simply operating on the cell
geometry, we can extend the applicability of Lloyd-based solution
to a far greater class of problems than the coverage maximisation
of convex spaces recalled in Section 2.

3.1. Collision avoidance between agents

In the model discussed in Section 2, the agents were ap-
proximated as particles. However, in many applications, their
encumbrance must be considered. For a single agent having to
avoid static obstacles, the solution can simply be to inflate the ob-
stacles in order to account for its physical encumbrance. Collision
avoidance between agents requires more effort.

Previous approaches for homogeneous agent dimensions [5]
and for heterogeneous agent dimensions [51], provide useful
ideas. Let us consider Fig. 1 and assume that the i-th agent can
be approximated with a circle of radius δi. Hence, the Voronoi
tessellation can be modified as follows

Ṽi =

{{
q ∈ Q |∥q − pi∥≤∥q − pj∥

}
,if ∆ij ≤

∥pi−pj∥
2 ,{

q ∈ Q |∥q − pi∥≤∥q − p̃j∥
}
,otherwise,

(6)

where ∆ij = δj + δi and p̃j = pj + 2
(
∆ij −

∥pi−pj∥
2

)
pi−pj

∥pi−pj∥
. By

considering the cell partition (6) and by applying ṗi(Ṽi) as defined
in (3) (i.e., ke = 0 in (5)), the agents do not collide, as shown in
the following.
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Fig. 1. (a) Voronoi set Ṽi defined in (6) to take into account the agents’
ncumbrance.

heorem 1 (Collision Avoidance). Given the mission space Q, by
mposing to agent i to always remain in its cell Ṽi, e.g by imposing
˙ i(Ṽi) as defined in (3), if the agents position at time t = 0
atisfies ∥pi(0)−pj(0)∥ > ∆ij, collision avoidance between agents is
uaranteed ∀t ≥ 0.

roof. Consider the cell partition in (6) (see Fig. 1) and the
ontrolled dynamics ṗi(Ṽi). When dij = ∥pi(t)−pj(t)∥ > ∆ij (i.e. no
ollision), two cases can occur: ḋij ≥ 0 and ḋij < 0. The former
ase is inherently safe. On the contrary, if ḋij < 0 the condition
ij = ∆ij (i.e. close to collision) could eventually be reached. In
his condition, both the scalar products become non positive by
onstruction, i.e., ⟨pj − pi, ṗi(Ṽi)⟩ ≤ 0 and ⟨pi − pj, ṗj(Ṽj)⟩ ≤ 0,
hich implies ḋij ≥ 0. As a consequence, the robots will not get
ny closer. □

.2. Obstacle avoidance

The solution discussed next brings about important improve-
ents on our previous work [7] and provides formal proof of

ts safety properties. The idea was to generalise the approach of
ortes et al. [2] to non-convex spaces. We define the Voronoi-
isibility set

i = {Vi ∩ Si} , (7)

here the Visibility set Si associated with the i-th agent (see
ig. 2), is defined as

i={q ∈ Q |pi − γ (pi − q) /∈ O} ∩
{
q ∈ Q |∥q − pi∥ ≤ rs,i

}
, (8)

γ ∈ [0, 1], where rs,i ∈ (0, Rs,i] is a tunable sensing radius, which
lives in the range between zero and the maximum sensing range
Rs,i of the i-th agent, while O is the obstacle space that each agent
as to avoid.
The fact that the centroid position falls inside the cell is

ot in general guaranteed, since the Voronoi-Visible set is no
ore necessarily convex. To overcome this problem, we impose

hat the velocity selected by the controller constraints the agent
ithin the cell, by choosing ke = 0 and ṗi(Wi) in (5). Notice that
y intersecting Wi (or any arbitrary set) with Ṽi and imposing

˙ i(Wi ∩ Ṽi), Theorem 1 still holds true.

heorem 2 (Obstacle Avoidance). Given the mission space Q, and
he obstacle space O, by using the control law ṗi(Wi) with ke = 0
given by (5), if the i-th agent position at time t0 satisfies pi(0) ∈ Q,
obstacle avoidance is guaranteed.
4

Fig. 2. Voronoi-Visible set Wi defined in (7) with static obstacles inflated.

Fig. 3. In (a) the Voronoi-Visible set Wi , defined in (7), while in (b) the partition
i∩Si defined in (9), (8) to take into account the heterogeneous sensing ranges.

roof. The i-th agent velocity ṗi(Wi) in (5) determines pi(t) ∈

Wi ⊆ Si, ∀t , by construction. As a result, the agents will never
nter in the obstacle space O along the controlled trajectories,
ince Si ∩ O = ∅ by definition (8). □

Notice that, As we mentioned before, the encumbrance of the
gents can be managed by inflating the obstacle dimensions of an
mount equal to the occupancy radius of the agent.

.3. Heterogeneous sensing ranges

When the sensing ranges of the agents differ by a significant
mount, the Voronoi partitioning proposed above does not neces-
arily produce a good coverage. Existing approaches to deal with
his issue are the power-weighted Voronoi diagram (PWVD) [52]
nd the multiplicatively weighted Voronoi diagram (MWVD) [53].
oth approaches have an important limitation: they either dis-
upt the cell convexity when moving in free space or construct a
ell that does not contain the agent pi, which may not be desirable
n our framework. This problem can be directly addressed by
ntroducing a weight accounting for the sensing range in Voronoi
artitions. By defining αij = atan

(
yj−yi
xj−xi

)
, our weighted Voronoi

tessellation is constructed as follows

Hi=

{
q ∈ Q |wij(q)<

rs,i
rs,i + rs,j

∥pi − pj∥
}

∩{q |∥w∥<Rs,i}, (9)

where wij(q) = [cosαij, sinαij](q−pi). A graphical representation
of the differences induced by (9) is depicted in Fig. 3, while its
advantages in the static coverage algorithm is clearly shown in
Fig. 4. Notice that the first set in (9) is a generalisation of the
Voronoi partition Vi, indeed rs,i = rs,j H⇒ {q ∈ Q | wij(q) <
1
2∥pi − pj∥} ≡ Vi.

Trivially, the safety properties stated in Theorem 1 (absence of
collisions between the agents) and in Theorem 2 (absence of col-
lisions with static obstacles) are preserved by considering either
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Fig. 4. In (a) the result of the Lloyd algorithm by considering the Voronoi-Visible
set Wi , defined in (7), while in (b) the Lloyd algorithm final configuration by
considering the partition Hi ∩Si to take into account the heterogeneous sensing
anges.

he intersection Si ∩ Ṽi or Si ∩ H̃i, ∀i, in the centroid computation,
here H̃i is the analogous of (6) for the heterogeneous Voronoi
artition (9).

emark 1 (Distributed Algorithm). The proposed algorithm can
e computed in a fully distributed manner, since each agent has
o compute quantities that depend only on local information.
ndeed, the Voronoi diagram in (2) has not to be computed
ntirely by each agent, i.e. accounting ∀j ̸= i, but just ∀j ∈ Ni,
here the neighbours set Ni is equal to

i = {j | pj ∈ S⋆
i },

here S⋆
i is defined as in (8), with rs,i equal to the communication

adius i.e., rs,i = Rc,i.

.4. Adaptive static coverage in non-convex spaces

The static coverage solutions described above are based on the
ontrol law (3), which is based on a gradient-descent idea. As a
onsequence, configurations in which the robots remain trapped
n a local minimum cannot be ruled out, with an important
mpact on the level of coverage eventually achieved. A possible
ay to mitigate this problem is to enable the agents to ‘‘push’’
ach other towards the free space. This effect can be obtained by
sing a weighted Voronoi partition as in (9) in which the sensing
adius rs,i is artificially manipulated. To this end, let us consider
he following dynamics,

˙s,i =

{
k0(r s,i − rs,i), if ∃ q ∈ Wi |∥q − pi∥ = Rs,i,

k1(Rs,i − rs,i), otherwise,
(10)

where Rs,i is the actual sensing range, while r s,i > 0 is a lower
ound and is a design parameter along with the two constants
0 > 0 and k1 > 0. The rationale of (10), once combined with (9),
s to inflate the cell (by increasing rs,i) when it is constrained by
he presence of other agents or obstacles (i.e., when the points
n the set Wi do not reach the boundary of the sensing range
s,i), or deflate it when there is some free space (hence, leaving
pace for the inflation of the other agents). In Fig. 5, we depict
he ‘‘pushing’’ effect of the adaptive law. The adaptive control
aw obtained combining the equation ṗi(Si ∩ H̃i) with ke = 0
in (5) with the adaptive rule (10) does not guarantee the absence
of local minima. However, as shown in Section 5, its coverage
performance is much better than its non-adaptive counter-part.

3.5. Coverage test

The performance of the coverage algorithms introduced above
and the presence of local minima are highly influenced by the
environment configuration and by the initial conditions of the
agents, i.e. the same area may require a different number of
agents depending on the position and the shape of the obstacles.
5

Fig. 5. Comparison between static coverage tessellation (i.e using Wi , in orange)
and the adaptive static coverage tessellation (i.e. using Si ∩Hi and the adaptive
law (10), in blue). The crosses are the corresponding centroid positions. We
also depict an example of ‘‘blind spot’’ for the i-th agent in direction θ = β2
(i.e. ri(β−

2 ) ̸= ri(β+

2 )). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Unfortunately, determining the minimum number of agents re-
quired to reach the full coverage given the initial configuration is
a too challenging problem, unless restrictive assumptions about
the obstacles’ shapes are considered. However, we will now show
a sufficient condition to test if the area has been fully covered in
the case of homogeneous sensing ranges.

Intuitively, to cover the mission space, two conditions have
to be met: 1. each Voronoi cell falls entirely within the visibility
range of the agent that it contains, i.e., ∀q ∈ Vi, we have ∥q−pi∥ ≤

rs,i, ∀i, 2. all the points within the mission space that belong
to a Voronoi cell are visible to the agent, i.e., ∀q ∈ {Vi \ O},
it holds q ∈ Si, ∀i. In order to formalise the second condition,
which we will refer to as absence of ‘‘blind spots’’, let us define
B(Si∩Vi) as the points belonging to the border of the i-th Voronoi-
Visible set. We can provide a mathematical definition of this set
using polar coordinates

(
rSi∩Vi
i , θ

)
with pi as centre, where the

distance rSi∩Vi
i of each point is a function of the angle θ . To

this end, we first consider (8) and the set R(Si, θ ) = {ri(θ ) ∈

R | pi + ri(θ ) [cos θ sin θ ]T ∈ Si}. The radius rSi
i (θ ), defined

∀θ ∈ [0, 2π ) as rSi
i (θ ) = maxri(θ ) {ri(θ ) ∈ R(Si, θ )} defines the

boundary B(Si). Due to the fact that Vi is a convex set, it follows
that ∀θ ∈ [0, 2π ) there exists a unique point on the boundary
associated within R(Si ∩ Vi, θ ), with distance from pi given by
the radius rSi∩Vi

i (θ ). As a consequence, it is possible to express
the set B(Si ∩Vi) as B(Si ∩Vi) = {pi + rSi∩Vi

i (θ ) [cos θ sin θ ]T }2πθ=0.
This definition is instrumental to check for the existence of ‘‘blind
spots’’ (see Fig. 5 for a graphical representation of such a spatial
region).

Proposition 1 (Blind Spots). A blind spot for the i-th agent exists
when

lim
θ→β−

rSi∩Vi
i (θ ) ̸= lim

θ→β+
rSi∩Vi
i (θ ), ∀β ∈ [0, 2π ), (11)

Proof. We first notice that each cell defined by Si ∩Vi represents
a region whose boundary is given by: (1) set of points at the
maximum sensing range from pi; (2) set of points located on
the boundary with another cell; (3) sets of points belonging to
an obstacle. In the first case, the boundary is an arc of circle,
hence the radius rSi∩Vi

i (θ ) is a constant function of θ . In the
second case, following the same properties of Voronoi cells, the
boundary is given by a segment, hence rSi∩Vi (θ ) is a continuous
i
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unction of θ . In the third case, the obstacle boundary is described
y a sequence of arbitrarily curved segments. Notice that the
onnection between the different (curved or straight) segments
generated by either another cell or by obstacles) makes the
unction rSi∩Vi

i (θ ) continuous in θ , although not differentiable,
ince the condition in (11) holds with an equality (see Fig. 5
or β1). However, given the visibility set definition (8), there
ay exists points q ∈ Vi such that q lies in the sensing range,

.e., ∥q − pi∥ ≤ rs,i, but ∃γ1, γ2 ∈ [0, 1], γ2 > γ1, verifying: (i)
i − γ (pi − q) /∈ O ∀0 ≤ γ ≤ γ1; (ii) pi − γ (pi − q) ∈ O,
γ1 < γ ≤ γ2; (iii) pi − γ (pi − q) /∈ O, for γ2 < γ ≤ 1. We
efine as S i as the set of all points q satisfying the properties
bove (the blind spot in Fig. 5). The set S i is said to be adjacent to
i if ∃q ∈ S i and ∃g ∈ R2 such that q + εg ∈ Si for any arbitrary

small ε > 0. When the S i and Si are adjacent, the boundary
etween them is by construction given by a segment starting in
i and touching both sets. Let this segment have angular polar

coordinate β2 (see Fig. 5). Assume, without loss of generality,
hat the obstacle is found for polar coordinates larger than β2.
hile rSi∩Vi

i (β+

2 ) is determined by the obstacle, either rSi∩Vi
i (β−

2 )
s equal to the sansing range rs,i (as in Fig. 5) or it is defined by
nother Voronoi cell (or by another obstacle). In any of this cases
Si∩Vi
i (β−

2 ) − rSi∩Vi
i (β+

2 ) is equal to the length of the boundary
etween S i and Si, which is non-null if the two sets are adjacent.
he last point to discuss to end the proof is if it can be the case
hat S i is not adjacent to Si. This situation occurs if the obstacle
splits apart the set Vi, as in the case of a wall delimiting two
rooms. However, this is not a blind spot since, by the arguments
presented earlier, rSi∩Vi

i (θ ) is continuous in θ (i.e., the obstacle
boundary is entirely visible). □

Using Proposition 1, we can now prove the following coverage
Theorem.

Theorem 3 (Coverage Test). The coverage of the environment, in
the case of homogeneous sensor ranges, is reached if ∀i = 1, . . . , n,
rSi∩Vi
i (θ ) < rs,i, ∀θ ∈ [0, 2π ), and condition (11) does not hold true.

roof. If rSi∩Vi
i (θ ) < rs,i, ∀θ ∈ [0, 2π ), ∀i, it implies that q ∈

(Si ∩ Vi), either q ∈ B(Sj ∩ Vj), with j ̸= i, or q ∈ B(Si ∩ Vi) is
n an obstacle contour (i.e., there is not any uncovered areas for
ach cell contour).
In order to achieve complete coverage of the environment, we

ave to show that for all i, all the points in Vi \ O are visible.
he fact that condition (11) never holds allows us to rule out the
xistence of blind spots. We have therefore to exclude the case
n which S i is not adjacent to Si. Let us assume, by contradiction,
hat the set S i is not covered by any other agent j ̸= i. However,
eing the mission space Q connected, there exists a free path in
he mission space from pi to S i. Therefore, there exists at least
one agent j such that r

Sj∩Vj
j (θ ) = rs,j for some θ , i.e., whose

cell contour reaches the sensing range, which contradicts the
hypothesis. Hence, the proof. □

Wewant to remark that Theorem 3 holds true only for the case
of homogeneous sensing ranges, i.e., by considering the set Si∩Vi.
y accounting for the set Si ∩ Hi there can be cases where a cell
oundary touches neither another agent’s cell, nor an obstacle or
ts sensing radius, as is shown in Fig. 3-b, hence we cannot say
nything about coverage.
The accomplishment of full coverage is an information that

an be decided solely at the team level, hence information ex-
hange protocols are needed. Therefore, conditions for message
xchanges, i.e. the maintenance of global connectivity, is unavoid-
ble. In the next section, we will show that even this problem can
e solved in the proposed framework.
6

3.6. Connectivity maintenance

We propose here a novel technique for connectivity mainte-
nance between agents by using the proposed framework. The
focus here is on the motion strategy that allows the system
to preserve the connectivity constraints imposed by a topology
controller. The latter is assumed to be an external component
and is not in the scope of this paper. In the following, we assume
that agent i can communicate with agent j if: 1. their distance
is smaller than the communication range Rc,i, 2. there are not
bstacles in between them (the agents are in line-of-sight). Fur-
her, for the sake of simplicity and without loss of generality, we
ssume a communication range rc,i ≤ Rc,i that is equal to the
ensing range Rs,i (indeed, typically Rc,i ≫ Rs,i). Our strategy to
reserve connectivity is to modify the cell geometry in order to
uarantee that two connected agents will remain so. To this end,
et us define the set

i =

⎧⎨⎩Si ∩
⋂
j∈N i

S⋆
j

⎫⎬⎭ , (12)

here N i ⊆ Ni is a subset of the i-th neighbour set, while S⋆
j is

the same as Sj in (8) where rs,j = rc,j. If each agent follows the
entroid computed on Mi, we force the agents to stay within the
isibility set of the neighbours, thus guaranteeing connectivity
aintenance (for undirected graphs), as reported in the next
heorem.

heorem 4 (Connectivity Maintenance 1.). Given a communication
opology where rc,i = Rs,i = Rs, ∀i, if the agent network is connected
t the initial time t = 0 (i.e. there are no detached subnetworks)
nd each agent is subjected to the controlled dynamics ṗi(Mi) with
e = 0 as defined in (5), the network will remain connected ∀t ≥ 0.

Proof. The i-th agent velocity ṗi(Mi) in (5) determines pi(t) ∈

Mi. By the definition in (12), we have Mi ⊆ Si and Mi ⊆ S⋆
j .

It follows that the i-th agent is constrained to move inside the
intersection between its visible set and the visible set (communi-
cation set) of the j-th agent, with j ∈ N i. Since we are assuming
rc,i = Rs,i = Rs, the same result holds for all the agents, hence the
proof. □

The previous result assumes that all agents have the same
communication range. This assumption can be relaxed, by using
a more general version of (12):

Mi =

⎧⎨⎩Si ∩
⋂
j∈N i

S⋆,i
j

⎫⎬⎭ , (13)

where S⋆,i
j is computed as in (8) but replacing rs,j with rc,i,j =

in{rc,i, rc,j}. By using this modified set, we can generalise
heorem 4:

orollary 5 (Connectivity Maintenance 2.). Given a communication
opology where rc,i = Rs,i, if the agent network is connected at the
nitial time t = 0 (i.e. there is no detached subnetworks) and each
gent is subjected to the controlled dynamics ṗi(Mi) with ke = 0

as defined in (5), the network will remain connected for any time
t ≥ 0.

Proof. By considering Mi in (13), the same proof of Theorem 4
can be derived. □

The connectivity maintenance enforcement strategy discussed
above can be thought of as a ‘‘module’’ that can be combined
with other control tasks. For instance, by simply intersecting the
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Fig. 6. Representation of the set Mi ∩ Wi defined in (12) (7).

set in (12) with (7) and adopting the definition of the controller
dynamics ṗi

(
Mi ∩ Ṽi

)
with ke = 0 in (5), we can obtain coverage

and connectivity maintenance at the same time, while ensuring
obstacle and collision avoidance. The same holds true for the
heterogeneous case. Fig. 6 shows an example of this construction.
Other applications are shown in the next section.

Remark 2 (Performance). As previously presented, the connec-
tivity constraint set Mi can be used directly to compute the
centroid position and then the control law. However, especially
in a coverage oriented application, the connectivity constraint
may be stricter than necessary, and thus may affect the coverage
performance. To overcome this issue we can compute the cen-
troid over the cell without the intersection with the connectivity
set Mi, and then select the velocity to constrain the i-th agent’s
motion within the set Mi ∩ Ṽi. This can be achieved by choosing
ṗi(Si ∩ Ṽi,Mi ∩ Ṽi) and ke = 0 in (5).

By adopting the proposed change, the hypotheses of
Theorem 4 are not violated: the system is able to maintain
connectivity, minimising the effect of the connectivity constraint,
hence improving the performance in fulfilling the assigned task.
The performance improvement is paid in terms of robustness,
since small localisation uncertainties may easily lead to failures.

Theorem 6 (Convergence Towards the Centroid). The convergence
towards the centroid position is guaranteed imposing ṗi(Ai) in (5)
with ke = 0, if two conditions are satisfied: 1. ∂Ai = {pi +

rAi
i (θ ) [cos θ sin θ ]T }2πθ=0 and 2. the centroid falls inside the cell at
any time i.e., CAi ∈ Ai.

Proof. Condition 1. guarantees the existence of a straight path,
which belongs to the cell and connects each point in the cell
to the agent’s position pi, i.e., pi − γ (pi − q) ∈ Ai, ∀γ ∈

[0, 1], ∀q ∈ Ai. This condition is trivially satisfied for every con-
vex set i.e., Vi, Ṽi,Hi, H̃i, for the visibility set Si (see
Proposition 1) and for all the possible intersections between
them. If also Condition 2. is satisfied, it means that there exist
a straight path, which belongs to the cell Ai and connects the
agent’s position pi with the centroid position CAi . Hence, by
applying ṗi(Ai) in (5) with ke = 0 the agent converges towards
the centroid position, since Jcov(p,A) is still a valid Lyapunov
function (see (4)), as the constraint in (5), under these conditions,
is never active. The convergence to the centroid is a consequence
of the LaSalle’s invariance principle. □

Notice that Condition 2. may be not satisfied when the cell

is non-convex, for pathological cases (e.g., it may happen by

7

considering the cell Mi). However, even in this case, safety and
connectivity maintenance are secured by the constraint on the
velocity selection in (5). If the problem occurs in the case of static
coverage with connectivity maintenance, we should consider to
increase the number of agents or to use a dynamic coverage
algorithm (discussed in the next section).

4. Controlling the position of the centroid

In the distributed control algorithms described in Section 3,
we have used a constant density function ϕi(q) in (1), i.e. all
the points in the Q space have the same weight. Therefore, the
changes in the positions of the centroid and hence in the motion
of the agents are solely dictated by geometric constraints. In this
section, we will show how to use ϕi(q) as an additional degree of
freedom to move the centroid. By imposing time-varying density
function ϕi(q), we can address a new class of control problems in
the same framework.

As a preliminary observation, since we are considering a time-
varying density function, the derivative of the Lyapunov function
Jcov(p,A) in (1) is no more guaranteed to be negative. Indeed, its
sign is in part determined by the variation in time of the density
function:

d
dt

Jcov(p,A) =

n∑
i=1

∂

∂pi
Jcov(p,A)ṗi +

∂

∂t
Jcov(p,A) =

= −2kp
n∑

i=1

mi
pi − CAi

2
+

n∑
i=1

∫
Ai

∥q − pi∥2 ∂ϕ(q, t)
∂t

dq =

=

n∑
i=1

Γi.

(14)

This issue, however, has no significant impact for the class of al-
gorithms presented next, because they do not require asymptotic
convergence. In the following we omit the time dependence in
the notation for clarity, i.e., φ(q, t) = φ(q).

4.1. Dynamic coverage through exploration in non-convex spaces

As aforementioned, the ability to statically cover an area is
related to the number of agents, to their sensing ranges, to their
initial conditions and to the geometry of the mission space. An
obvious precondition is that the sum of all the areas covered
by the agents’ sensing ranges be larger than the area of the
mission space. If this condition is violated, static coverage is not
possible, no matter the algorithm we use. If the precondition
is satisfied, we can apply the techniques proposed in Section 3,
and use a-posteriori the test in Theorem 3. If the test fails, we
cannot decide if the coverage is complete. In both cases, we can
opt for dynamic coverage. Informally speaking, while for static
coverage we require that each point is always statically covered
by at least one agent, for dynamic coverage we require that is
covered by at least one agent at some time instant. Let us consider
the homogeneous sensing range case with obstacle and collision
avoidance capability i.e., let us consider the i-th cell W̃i = Si ∩ Ṽi.

ith respect to the previous section, dynamic coverage can be
chieved by setting ke > 0 in (5), i.e. considering the additional
erm that generates an exploratory behaviour, whose definition
equires the construction of the Perturbed Voronoi Visibility set
˜ i, η , where η ≪ rs,i is a positive random variable. The set W̃i, η
s constructed by taking the interior of the boundary B(W̃i, η) =

pi + (rW̃i
i (θ ) − η) [cos θ sin θ ]T }2πθ=0. The exploratory control law

˙ (W̃ ) is hence defined as in (5). If the total sensed area covered
i i,η
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y the agents is smaller than the mission space, the presence of
p > 0 only produces configurations in which the agents are
paced out of a sufficient amount and then remain still (i.e., they
tabilise on the fixed centroid positions). The addition of the
erivative exploration term given by ke > 0 generates inertia,
hich makes the agent prolong its motion along the direction
f the centroid until it interacts with an obstacle or with other
gents. To avoid periodic behaviours (e.g., the agent periodically
oes back and forth along the same direction), we inject the
andom noise term η, which reshapes the geometry of the cells
nd avoids the repetition of the same motion patterns for the
entroid.
This behaviour ensures the coverage of a larger area over time

han with a static approach, but it does not guarantee that the
otion will be oriented towards unexplored areas (e.g., an agent
ould never be pushed through a narrow hallway). This is what
e called memoryless robots, i.e., we do not keep trace of the
isited areas.
The ability of the system to visit unexplored areas can be

ignificantly improved by giving memory of visited positions
o each agent, and in particular, by combining the control law
˙ i(W̃i,η) (5) with a non-uniform and time-varying function ϕi(q),
hich depends on the past position of the i-th agent. Let Qi(t)
epresent the portion of the mission space known to the i-th
gent at time t . Contrary to the work of Cortes et al. [2], the
unction ϕi(q) is no longer a probability distribution but it simply
eighs the knowledge of the environment about the point q.
hen the point is unknown, it takes the maximum value ϕi.
hen the point is discovered and remains within the sensing

ange of the agent, the function decreases exponentially. Finally,
hen the point goes out of sight, the knowledge decreases, hence
i(q) increases exponentially back to the asymptotic value ϕi. The
esulting function is defined as follows:

˙ i(q) =

⎧⎨⎩
−kdϕi(q), if q ∈ Si,

ku(ϕi − ϕi(q)), q ∈ Qi(t) \ Si

ϕi q ∈ Q \ Qi(t).
(15)

The kd constant quantifies the efficiency in gaining knowledge on
a spot once it becomes visible, while ku quantifies how quickly
our information disappears when the point is no longer visible.
Notably, a higher value of ku pushes the agent to return soon to
a visited place, while a lower value of ku pushes it towards the
exploration of new places. As a final observation, the efficiency
of exploration and monitoring improves if the information on the
visited place is shared among the agents, i.e., if the explored maps
Qi(t) and the ϕi(q) functions are shared in a unified Q(t) and ϕ(q),
hus building a group of robots with memory of past positions
nd exchanging information. In this case, the connectivity main-
enance strategy described in Section 3.6 can be used to guarantee
reliable connection between the agents.

.2. Navigation

The centroid position can be modified to ensure group naviga-
ion, which, as mentioned before, can be subdivided into flocking
nd formation control. Since in both cases the agents are required
o follow a sequence of way-points, the rationale is to let the
entroid converge towards each way-point in the sequence. The
roposed solution can enforce a flocking or a formation behaviour
r even a switching behaviour. Notice that the Lloyd algorithm
sed for navigation is crucial to coordinate the agents and avoid
ollisions between them; by simply following the way-point se-
uence, the agents would avoid static obstacles but there would
e no guarantee of avoiding collisions between agents.
The main idea is once again to act on the ϕi(q) function in

¯
order to move the position of the centroid. Let pi represent the

8

current goal the i-th agent have to reach. We use the following
exponential expression for ϕi(q):

ϕi(q) =

{
κiexp

(
−

∥q−p̄i∥
ρi

)
if q ∈ Ai

0 otherwise.
(16)

he function is centred on the goal, κi is the normalisation factor
o ensure that ϕi(q) is a properly defined pdf, while ρi is a spread-
ng factor that, intuitively, quantifies the relative importance of
he goal. Indeed, if ρi → ∞, all the points in the mission space
ave the same weight (as in the coverage case), while if ρi → 0
he weight is concentrated on p̄i, thus attracting the centroid on
¯ i. The spreading factor has the following dynamics

˙ i(Ai) =

{
−ρi, if ∥CAi − pi∥ < di,min

−(ρi − ρD
i ), otherwise,

(17)

here di,min is a threshold value for the distance between the cen-
roid and the actual agent position pi, ρD

i is the desired spreading
factor, and Ai is a generic i-th agent cell. The rationale of (17) is
o avoid configurations in which the centroid stabilises on a point
ifferent from p̄i, generating a deadlock condition.
As a result, convergence guarantees can only be given by

making strong assumptions. Under the sufficient condition that
p̄i, CAi ∈ Ai ∀t , with ∂Ai = {pi + (rAi

i (θ )) [cos θ sin θ ]T }2πθ=0, the
gent is guaranteed to reach the goal as shown by Theorem 7,
hich is based on results in the following proposition.

roposition 2. Assuming the variation of CAi due to the variation
of Ai is negligible with respect to the variation of CAi due to (17),
then for any set Ai the following holds true:

d∥CAi−p̄i∥
dt < 0 when

CAi (t) − pi∥ < di,min, while
d∥CAi−p̄i∥

dt ≥ 0 otherwise.

roof. We start by recalling the centroid definition, i.e.,

Ai =

∫
Ai

qϕ(q)dq∫
Ai

ϕ(q)dq

We can rewrite

CAi (t) =

∫
Ai

(z + p̄i)κi exp(− ∥z∥
ρi(t)

)∫
Ai

ϕ(q)dq
dz,

y recalling that
∫
Ai

ϕ(q)dq = 1, we have

CAi (t) − p̄i∥ =


∫
Ai

zκi exp(− ∥z∥
ρi(t)

)∫
Ai

ϕ(q)dq
dz

 . (18)

Let us now consider the time t when ∥CAi (t) − pi∥ < di,min:
n such a case, after δt > 0 seconds, we have that, under the
ffect of (17), ρi(t + δt) = e−δtρi(t) = αρi(t), where α ∈ [0, 1).
ince 0 ≤ ρi(t + δt) < ρi(t) ≤ ρD

i , we have immediately by
pplying (18) to ρi(t + δt) that ∥CAi (t + δt)− p̄i∥ < ∥CAi (t)− p̄i∥.

The same argument holds when ∥CAi (t) − pi∥ ≥ di,min in (17),
which concludes the proof. □

The following results are based on Proposition 2, thereby hinge
on the assumption that the influence on the centroid position due
to the variation of the cell geometry is negligible with respect to
the variation of the centroid position induced by (17).

Theorem 7 (Navigation 1). Given p̄i, CAi ∈ Ai ∀t, with ∂Ai =

{pi + (rAi
i (θ )) [cos θ sin θ ]T }2πθ=0, by applying the control law ṗi(Ai)

with ke = 0 as defined in (5) with the density function (16) and the
spreading factor dynamics ρ̇i(Ai) in (17), it follows pi → p̄i.

Proof. By assuming to be in the condition ∥pi−CAi∥ ≥ di,min, the
value of ρ is constant (constant function (16)), thus the control
i
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aw ṗi(Ai) with ke = 0 as defined in (5) ensures pi → CAi ,
ee Theorem 6. Hence, there exists a time instant t1 such that
pi(t1) − CAi (t1)∥ < di,min. According to (17), the value of ρi start
ecreasing and, as such, we may have that Γi > 0 in (14). In
uch a case, there may exist a time t2 > t1 such that ∥pi(t2) −

Ai (t2)∥ ≥ di,min. However, we noticed that ∀t ∈ [t1, t2], CAi (t)
oves towards p̄i, as shown in Proposition 2, i.e., ∥CAi (t2) −

¯ i∥ < ∥CAi (t1) − p̄i∥, while pi(t) moves towards CAi (t). Hence,
pi(t2) − p̄i∥ < ∥pi(t1) − p̄i∥. When ∥pi(t) − CAi (t)∥ ≥ di,min,
> t2, ρi(t) → ρD by (17), hence there exists t3 > t2 such

hat ∥pi(t3) − CAi (t3)∥ < di,min. By means of (5) and noticing that
i < 0 in (14) ∀t ∈ [t2, t3] (see Proposition 2), we have that
i(t) → CAi (t), ∀t ∈ [t2, t3], therefore ∥pi(t3)− p̄i∥ < ∥pi(t2)− p̄i∥.
ince ∂∥pi(t)−p̄i∥

∂t < 0, ∀t , ∥pi(t) − p̄i∥ acts as a common Lyapunov
function for the switching dynamic induced by (17), hence the
asymptotic stability is proved. □

To reach locations that do not belong to the set Ai, we plan
an a-priori feasible path for each agent. By discretising the i-th
planned path in way-points WP i = {wp1i , wp2i , . . . , wpmi }, given
the agent position pi, and assuming wpki the closest way-point to
pi, we select as active way-point wpk+li

i which is the point ahead
of a preview length li with respect to wpki . The preview length li
is a generic function of the visibility set of the robot. Since we
assume to have planned a safe path for each robot, i.e., a path
composed of a sequence of elementary path segments that link
the starting agents’ positions P with the goal positions E and
do not intersect any obstacle in the set O, we can assert that
there always exist a value for the preview length li such that
wpk+li

i ∈ Ai (at least, li = 1). Hence by centring the density
function on the active way-point, we are able to steer the robot
towards the goal.

Theorem 8 (Navigation 2). By applying the control law ṗi(Ai) with
ke = 0 in (5), ∂Ai = {pi + (rAi

i (θ )) [cos θ sin θ ]T }2πθ=0 and with
the density function (16), assuming 1. CAi ∈ Ai and 2. p̄i = wpk+li

i
belong to the discretised path WP i = {wp1i , wp2i , . . . , wpmi } and to
the set Ai, and 3. that the spreading factor dynamics ρ̇i(Ai) is given
by (17), then we have pi → wpmi .

Proof. By Theorem 7, the distance ∥pi − wpk+li
i ∥ → 0. The new

active way-point, assuming constant preview length li = 1 to
simplify the notation, becomes wpk+2

i . Since the existence of a
new reachable way-point is ensured because the path planned is
assumed to be safe, wpk+li

i → wpmi , hence the proof. □

The flocking behaviour can be achieved by combining the
navigation strategy just explained and the connectivity mainte-
nance strategy. The formation behaviour, where each agent has
to keep constant the distance from each other along the motion,
is obtained combining the navigation strategy, the connectivity
maintenance strategy and by imposing virtual radii ∆̃ij, equal
to the desired formation distance to be used in (6) for colli-
sion avoidance. Let us define ∆̃ij = Rc,i,j − χ , where Rc,i,j =

in{Rc,i, Rc,j}, by adjusting the parameter χ > 0 we can control
he group behaviour. In fact, assigning small values to χ , we
re imposing a rigid formation configuration, and the allowable
istance da,ij between the i-th and the j-th agent becomes Rc,i,j −

< da,ij < Rc,i,j. On the contrary when χ = Rc,i,j − ∆ij, where
ij = δi + δj is the physical encumbrance of the agents, we fall in

the flocking case i.e., we are allowing for a flexible formation.

Remark 3. In a multi-agent navigation, the condition p̄i ∈ Ai,
t , is a quite strong assumption. In fact, the condition does not
old true when p̄i ∈ Aj, but this does not imply that the agent
emains in a deadlock condition. Indeed, the simulations and the
9

experimental results in Sections 5, 6 show convergence to the
goal positions despite the violation of this sufficient condition.
This is an important evidence of the fact that this condition
it is only sufficient (quite conservative) and not necessary. We
want also to point out that the intersection of the considered
set, e.g., W̃i, with the set Mi in (12), used for flocking and
formation behaviour, does not guarantee anymore the sufficient
condition ∂Ai = {pi + (rAi

i (θ )) [cos θ sin θ ]T }2πθ=0; in fact in some
pathological cases, this condition does not hold true, hence we
cannot ensure convergence.

4.3. Rendezvous in non-convex spaces

For the rendezvous problem, two of the presented strategies
have to be combined together. The connectivity of the system
has to be guaranteed and at the same time the agents position
have to converge to the same location. The connectivity can be
guaranteed by applying Theorem 4, the convergence behaviour
instead can be ensured by Theorem 7. In particular, let us select
ϕi(q) as in (16), where p̄i is the closest point to the mean of
he neighbouring positions that belongs to the i-th agent cell. By
sing the set Mi in (12), the controlled dynamics ṗi(Mi) with

ke = 0 in (5), the weighting function (16) and the spreading factor
dynamics ρ̇i(Mi) in (17), the agents rendezvous is ensured. To
rove it, we first introduce the following definition.

efinition 1. A topological space Q is simply connected (or
-connected) if no holes are passing all the way through it.

We are now in a position to prove the following Theorem.

heorem 9 (Rendezvous 1). Consider a non-convex simply con-
ected space, a visibility dependent graph topology G, and assume
hat the agent network is connected at the initial time t = 0
i.e. there is no detached subnetworks). By applying: 1. the dynamics
˙ i(Mi) with ke = 0 in (5), 2. the density function (16) with

¯ i =

∑
j∈Ni

pj/card(Ni),

hich satisfies

i − γ (pi − p̄i) ∈ Mi, ∀γ ∈ [0, 1], (19)

. the centroid position that satisfies

i − γ (pi − CMi ) ∈ Mi, ∀γ ∈ [0, 1] (20)

and 4. the spreading factor ρ̇i(Mi) in (17), each agent will converge
to the same single position.

Proof. Since the communication graph is connected for all t >
0 (Theorem 4), the communication between the i-th and the
neighbouring j-th agent (∀j ∈ Ni) is guaranteed. By using ṗi(Mi)
with the density function (16) and a spreading factor following
ρ̇i(Mi) in (17), each agent converges asymptotically towards its
p̄i by means of Theorem 7 (indeed, ∥pi(t)− p̄i∥ acts as a common
Lyapunov function for the switching dynamic induced by (17)).
Notice that (19), (20) ensures that p̄i, CMi ∈ Mi and that there
exists a straight path that links pi with p̄i and CMi . Since the
means p̄i are updated in due course, ∀i, they follows a linear
consensus-like dynamic. If visibility among the agents is com-
plete, p̄i =

∑n
j=1 pj/n, ∀i = 1 . . . n and convergence is enforced

y Theorem 7.
Otherwise, we have to account for the dynamics of p̄i. We first

recall that restricting to non-convex simply connected environ-
ments, the agents do not encircle any obstacle. Therefore, the
communication topology does not define any cyclic path around

an obstacle. As a consequence, if there is partial visibility, due to
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Fig. 7. Simply connected environment with 9 agents (faded circles). Top row:
snapshots at time t0 = 0 s (a), t1 = 3.3 s, (b), and t2 = 9.09 s (c) of the static
coverage simulation. Bottom row: snapshots at time t0 = 0 s (a), t1 = 3.3 s,
(b), and t2 = 7.26 s (c) of the adaptive coverage simulation. Yellow regions
represent the agents’ cells with Rs,i = 3.0 m. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

the fact that the communication is undirected, it is also rooted. In
such a case, p̄i is equal to the average position of its visibility set.
By means of ṗi(Mi), we have pi(t) → p̄i, hence the i-th leaf agent
converges to the average position of its visibility set by means of
Theorem 7 applied locally. Along with the convergence, the aver-
age point p̄i is continuously updated and moves towards the root.
Due to this continuous convergence, there exists t̄ such that for
t > t̄ all the agents are in view of the root, i.e., p̄i coincides with
the root ∀i, therefore complete visibility is enforced, Theorem 7
applies and hence the proof. □

Notice that also in this case the conditions (19) (20) are suffi-
cient and not necessary conditions.

By manipulating the communication topology we are also able
to assert convergence in more complex situations. Indeed, we can
ensure rendezvous in a generic non-convex space if the graph
topology, on which we compute the agent cells (12), is fixed,
connected acyclic and undirected. This assumption allows ren-
dezvous also in cluttered environments, not only in a non-convex
simply connected space, as described next.

Corollary 10 (Rendezvous 2). A sufficient condition to guarantee
rendezvous in a generic non-convex environment is the existence of
a fixed connected acyclic undirected communication topology.

Proof. By considering a fixed connected acyclic undirected graph
the communication topology cannot by definition encircle obsta-
cles in the map, thus the proof of Theorem 9 applies directly. □

5. Simulation results

The proposed approach has been extensively tested in sim-
ulations. In the following we show simulation results for the
algorithms described in the previous sections.

5.1. Static coverage vs Adaptive static coverage

From the simulations, it has been empirically observed that
there are obstacle configurations not allowing static coverage us-
ing the algorithm in Section 3.2. In this cases, we show that, apart
 e

10
Fig. 8. Percentage of the sensed area (SA) versus time. Comparison between the
simulations in Fig. 7: in orange the static coverage, in blue the adaptive static
coverage. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 9. Non-convex cluttered environment with 10 agents (faded circles). Top
row: snapshots at time t0 = 0 s (a), t1 = 1.32 s, (b), and t2 = 5.94 s (c) of the
tatic coverage simulation. Bottom row: snapshots at the same time instants
f the adaptive coverage simulation. Yellow regions represent the agents’ cells
ith Rs,i = 3.0 m. (For interpretation of the references to colour in this figure

egend, the reader is referred to the web version of this article.)

rom increase the number of agents or increase the rs,i ranges,
ull coverage can be achieved by using the adaptive coverage
resented in Section 3.4. In Fig. 7 we compare qualitatively the
tatic coverage and the adaptive static coverage for the same
nitial conditions and in the same environment (simply connected
nvironment). Fig. 8 depicts quantitatively the level of coverage
ercentage versus time. Both qualitatively and quantitative it can
e notice how the adaptive static coverage achieves full coverage,
hile the static coverage is stuck in a local minimum. In Figs. 9
nd 10 we provide further evidence for a cluttered environment,
ith similar results.

.2. Memoryless exploration vs intelligent exploration

Fig. 11 reports the comparison of the explored areas for the
emoryless exploration (a), the exploration with memory of past
ositions (b) and for the exploration with memory of past posi-
ions and exchanging information between agents (c) after t =

6.5 s. The graphs report in blue the gained knowledge measured
ith ϕ(q), whose dynamic is reported in (15). A darker colour rep-
esents a lower value (higher knowledge), while yellow areas are
he value associate to the maximum ϕi (no knowledge). The cor-
esponding quantitative analysis is offered in Fig. 12 representing
he accumulated sensed area (ASA) percentage, confirming the
fficiency of the memory-based solutions.
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Fig. 10. Percentage of the sensed area (SA) versus time. Comparison between
the simulations in Fig. 9: in orange the static coverage, in blue the adaptive static
coverage. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 11. Snapshots at time t = 16.5 s of the memoryless exploration
(a), exploration with memory of past positions (b) and exploration with memory
of past positions and exchanging information (c) of a non-convex environment
with 5 agents (faded circles) with rs,i = 2 m. We depict in yellow the unexplored
areas with value ϕi . (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

Fig. 12. Percentage of the accumulated sensed area (ASA) versus time. Com-
arison between the simulations in Fig. 11: (a) blue, (b) orange, (c) pink. (For
nterpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)

.3. Rendezvous in non-convex space

The effectiveness of the rendezvous algorithm is tested in two
ifferent conditions. First, an ideal scenario where agents are
ssumed to be points is considered. Hence, we impose ṗi(Mi),

ignoring collision between agents and rendezvous is reached
with each agent converging to the same point. Fig. 13 reports
both qualitative and quantitative results. In particular, the sum
of the norm of the difference between the agents’ position and
the mean of the agents’ positions in time (rendezvous error)
is used as quantitative metric, which, in this ideal case, con-
verges to zero. In a realistic case, instead, collision avoidance is
active, i.e. the centroid position is computed on the set M̃i ={
Ṽi ∩ Si ∩

⋂
j∈N i

S⋆
j

}
. For empirical evidence, we use two addi-

ional scenarios, reported in Fig. 14 with three snapshots: in the
op row, the case of a connected non-convex environment with
visibility-based communication graph topology (starting from
connected configuration): in the bottom row, the case of a
11
Fig. 13. Ideal rendezvous simulation in non-convex cluttered environment,
where the graph topology is fixed and satisfy the properties in Corollary 10.
Snapshots at time t0 = 0 s (a), t1 = 1.15 s, (b), and t2 = 11.55 s (c) are
eported, where the yellow areas represent Wi defined in (12), blue crosses
ndicate the centroid positions CMi , rs,i = 3 m, rc,i = 2rs,i . (d) sum of the norm
f the rendezvous errors versus time. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this
rticle.)

Fig. 14. Rendezvous simulations. Top row: non-convex simply connected en-
vironment with 8 agents (faded circles) with snapshots at time t0 = 0 s (a),
t1 = 0.66 s, (b), and t2 = 2.31 s (c). Bottom row: non-convex cluttered
environment with snapshots at time t0 = 0 s (a), t1 = 0.99 s, (b), and t2 = 3.96 s
c). The yellow areas are points belonging to M̃i =

{
Ṽi ∩ Si ∩

⋂
j∈N i

S⋆
j

}
,

blue crosses indicate the centroid positions CM̃i
, rs,i = 3 m, rc,i = 2rs,i . (For

interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

non-convex cluttered environment where we keep the commu-
nication graph fixed in time, connected acyclic and undirected to
satisfy the hypotheses of Corollary 10. The quantitative analysis
by means of the rendezvous errors versus time (Fig. 15) clearly
show convergence towards a fixed value dictated by the agents
encumbrance.

5.4. Navigation: flocking vs formation control

Simulations for the navigation task are reported in Fig. 16,
for both the formation case (top row) and the flocking case
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Fig. 15. Rendezvous errors for the upper (a) and bottom (b) scenarios of Fig. 14.

Fig. 16. Six navigation task simulations. Top row: three simulation results of the
formation control algorithm, each figure depicts three snapshots in different time
instants. Bottom row: the same scenarios addressed by the flocking algorithm.
The link between the agents represent the edges considered by the connectivity
maintenance policy.

(bottom row). Three different simulations for each approach are
reported. For all the simulations, we keep the graph topology
time invariant. In Figs. 16-a and 16-b we have the homogeneous
case, i.e., Rs is equal for all the agents, and two isostatic topology
onfigurations (minimally rigid configurations), while in 16-c we
onsider the heterogeneous case with a flexible topology configu-
ation (non-rigid). We recall that the number of maintenance link
n a minimally rigid topology configuration with n agents in R2 is
equal to 2n − 3: if we have more links, we fall in a redundantly
rigid topology configuration; otherwise, if we have less links
between agents, we have a flexible topology configuration [54].

In Fig. 17 we depict quantitative results from the simulation
in Fig. 16-a. In particular, Fig. 17-a shows the distances between
agents (solid lines) and the limits imposed by the collision avoid-
ance with virtual agent dimensions ∆̃ij (bottom dashed line) and
the minimum sensing range Rs,i,j (top dashed line) for the forma-
ion control case. As it can be noticed, the constraints are always
atisfied. Instead, Fig. 17-b reports similar results for the flocking
ase, which is constrained between the real agent dimensions ∆ij
bottom dashed line) and the minimum sensing range Rs,i,j (top
dashed line).

6. Experimental results

In this Section, we provide experimental evidence to prac-
tically prove the feasibility and the effectiveness of the unified
Lloyd-based distributed control law (5). We present here the
rendezvous and the flocking algorithms with three unicycle-like
12
Fig. 17. Distances between agents for the simulation reported in Fig. 16, on the
top the formation case, on the bottom the flocking case.

robots, developed at the University of Trento, in a non-convex
environment. The results obtained from the experiments are con-
sistent with the simulated evidences presented in Section 5 for all
the different control goals enumerated in Section 2.1. To account
for the nonholonomic constraints of the unicycle dynamics, we
used the controller introduced in [55] and re-adapted in [56].
Figs. 18 and 19 depict three time instants for the rendezvous
and flocking algorithms. In both the experiments the robots re-
spect safety, the imposed connectivity constraints and converge
towards the goal. In these experiments we select as topology
control strategy the one proposed in [56].

Fig. 20 and Fig. 21 report the rendezvous error and the dis-
tances between agents for the experiments in Figs. 18 and 19
respectively, thus resembling Fig. 20 and Fig. 17 of Section 5.

From these graphs it is evident the nice accordance between
simulations and experiments. In the attached multimedia ma-
terial we show some video of the experiments illustrated in
Figs. 18, 19.

7. Conclusions

We proposed a unified Lloyd-based framework for multi-agent
systems able to deal with static and dynamic coverage, connec-
tivity maintenance, rendezvous, flocking and formation control
in complex environments and in a distributed fashion. To vali-
date our approach, we provide theoretical foundations, simula-
tion and experimental evidences. In the near future we plan to
define necessary conditions for the convergence of the naviga-
tion and rendezvous algorithms, and to validate experimentally
all the proposed algorithm by increasing the number of robots.
Moreover, we plan to analyse the system behaviour under robot
failures, delays in communication or cyber attacks.
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Fig. 18. Rendezvous in non-convex environment with three robots. We picked three significant instant of time of the experiment.
Fig. 19. Flocking in non-convex environment with three robots. We picked three significant instant of time of the experiment.
Fig. 20. Rendezvous errors for the experiment reported in Fig. 18.

Fig. 21. Distances between agents for the experiments reported in Fig. 19.

Appendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.robot.2022.104207.
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