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ABSTRACT In the last decade, reinforcement learning (RL) has been used to solve several tasks with
human-level performance. However, there is a growing demand for interpretable RL, i.e., there is the need
to understand how a RL agent works and the rationale of its decisions. Not only do we need interpretability
to assess the safety of such agents, but also we may need it to gain insights into unknown problems. In
this work, we propose a novel optimization approach to interpretable RL that builds decision trees. While
techniques that optimize decision trees for RL do exist, they usually employ greedy algorithms or do not
exploit the rewards given by the environment. For these reasons, these techniques may either get stuck in
local optima or be inefficient. On the contrary, our approach is based on a two-level optimization scheme that
combines the advantages of evolutionary algorithms with the benefits of Q-learning. This method allows
decomposing the problem into two sub-problems: the problem of finding a meaningful decomposition of
the state space, and the problem of associating an action to each subspace. We test the proposed method on
three well-known RL benchmarks, as well as on a pandemic control task, on which it results competitive
with the state-of-the-art in both performance and interpretability.

INDEX TERMS Decision Tree, Evolutionary algorithm, Interpretability, Reinforcement Learning

I. INTRODUCTION

WHILE machine learning (ML) is achieving promising
results in various fields of application, there is an

emergent need to understand what happens in the learned
model, for testing, security, and safety purposes. In fact, as
pointed out by the UNESCO1 and EU2, the lack of under-
standability of mainstream ML approaches poses a real threat
to their applicability in real-world scenarios.

There are mainly two approaches that try to address this
problem, namely eXplainable AI (XAI) and interpretable AI
(IAI) [1].

The field of XAI, in particular, gained significant attention
in recent years. It is important to note, however, that the
currently available XAI techniques are not applicable to all
tasks. As stated by [2], it is not safe to apply most of
the modern XAI techniques to safety-critical or high-stakes
environments. This is because the explanations provided by
modern XAI are usually approximations of the other models

1https://unesdoc.unesco.org/ark:/48223/pf0000380455/
2https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11e

b-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF

and, as a consequence, they do not represent exactly those
original models.

IAI techniques, instead, are based on the use of inter-
pretable models, i.e., models that can be understood and
inspected by a human operator [1] (throughout the paper, this
will be our definition of “interpretability”). These techniques
allow us to assess the security and safety of the produced
models, but they can also serve to better understand a prob-
lem. In fact, by looking at an interpretable model, a human
operator can extract knowledge about the problem at hand.
However, IAI techniques are still less popular than their
black-box counterparts, mainly because of their alleged lower
performance. The idea that there is a trade-off between in-
terpretability and performance is quite established, although
such a trade-off has not been proved [2].

Recent works have addressed the problem of building
interpretable models for reinforcement learning (RL) tasks.
For instance, in [3] the authors implement a differentiable
version of decision trees (DTs) and optimize them by using
backpropagation. Dhebar et al. [4] propose non-linear DTs
(NLDTs) for approximating and refining an oracle policy.
However, while the results of these approaches seem very
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promising, the structure of the tree must be defined a priori.
This issue requires us to either perform a trial-and-error
search or include prior knowledge.

In this paper, we address this issue by proposing a two-
level optimization scheme, based on a combination of evo-
lutionary computation and RL, for training interpretable RL
agents in the form of DTs. This two-level optimization algo-
rithm allows us to decrease the amount of prior knowledge
given to the algorithm (in the sense that there is no need
to pre-define the agent structure a priori). Differently from
the methods from the literature, our approach can learn
automatically both a decomposition of the state space and
the optimal state-action mappings. The main contributions of
this paper can be summarized as follows:

• We propose a two-level optimization approach that opti-
mizes both the topology of the tree and the decisions made
for each state.

• We perform experimental tests on three classic RL prob-
lems from OpenAI Gym [5]: CartPole-v1, MountainCar-
v0, and LunarLander-v2. On these tasks, we perform a
comparison—both in terms of performance and a quanti-
tative measure of interpretability—of the agents produced
by our method against alternative interpretable and non-
interpretable state-of-the-art models. Furthermore, we in-
terpret the solutions produced by our approach, to under-
stand how the agents work.

• We showcase a possible application of the proposed
method in a high-stakes, safety-critical domain, namely
pandemic control [6], demonstrating that our model pro-
duces policies that are more interpretable and, most impor-
tantly, more effective than state-of-the-art policies based
on deep reinforcement learning and handmade control
strategies. This is not an easy task: keeping a balance
between the number of infections and economic losses
can be indeed associated to the immunization problem [7]
and the problem of optimizing social distancing [8], which
are both known to be NP-hard. Moreover, this application
clearly shows that, in high-stakes scenarios, interpretability
is essential. In fact, in the case of pandemic control, a
government cannot use a black-box model to take decision
about how the pandemic should be controlled. Instead,
there is the need for a clear, fairly small set of laws that
can be read and understood by both the lawmaker and
the people. In the long-term, demonstrating comparable or
superior performance in this kind of tasks may lead to the
adoption of AI even in high-stakes contexts, where there
lack of interpretability currently represents a barrier.

The rest of the paper is structured as follows. In Section
II we briefly summarize the most relevant related works,
while Section III describes the method used in our approach.
Section IV presents the experimental setup for the three
control tasks from OpenAI Gym, as well as the metric of
interpretability adopted in our analysis, and the mechanism
used to simplify the produced DTs by pruning the unvisited
nodes and reducing the action nodes. Then, in Section V we

present the results of our experiments on the OpenAI Gym
tasks. In Section V-B, we interpret the solutions obtained on
these tasks, to understand how they work. In Section VI, we
present the results we obtained on the pandemic control task,
in comparison with those obtained by the existing methods
from the literature. Finally, in Section VII we discuss our
results and in Section VIII we draw the conclusions of this
work.

II. RELATED WORKS
The use of DTs to solve RL tasks has been explored in
several previous works. McCallum, in [9], proposes U-Trees:
a kind of tree able to perform RL that handles the following
sub-problems: choice of memories, selective perception, and
value function approximation. In [10], the authors extend
U-Trees to make them able to cope with continuous en-
vironments. They propose two novel tests that are used to
create new conditions that split the state space. They test the
proposed approach in two environments, a continuous one
and an ordered-discrete one, and their results show that their
approach is competitive with other approaches.

Pyeatt and Howe, in [11], propose a novel splitting crite-
rion to build trees that can perform value function approxi-
mation. In their experiments, they compare the performance
obtained by using their approach to the ones obtained using
other splitting criteria, a table-lookup approach, and a neural
network. The results show that the proposed approach usually
achieves better performance than all the other approaches.

In [12], the authors propose a method that predicts the gain
obtained by adding a split to the tree and selecting the best
split to grow the tree. The experimental results show that this
method is more effective than the method proposed in [11]
on the tested environment.

Silva et al. [3] propose an approach to interpretable RL that
uses Proximal Policy Optimization (PPO) on differentiable
DTs. Moreover, they provide an analysis of the learning pro-
cess while using eitherQ-learning or PPO. The experimental
results show that this approach can produce competitive
solutions in some of the tested tasks. However, it is also
shown that when the differentiable DTs are discretized into
canonical DTs, their performance may heavily decrease. A
continuous version of this approach has been proposed in
[13]

In [4], the authors use Evolutionary Algorithms (EAs) to
evolve non-linear DTs. By non-linear, the authors mean that
each split does not define a linear hyperplane in the feature
space. The experimental results show that this approach
can obtain competitive performance w.r.t. a neural-network-
based approach. A case study for this approach is presented
in [14].

In [15], the authors use the Grammatical Evolution (GE)
algorithm [16] to evolve behavior trees (i.e., tree structures
that allow more complex operations than a DT) for the Mario
AI competition. The proposed agent can perform basic ac-
tions or pre-determined combinations of basic actions. Their
solution achieved fourth place in the Mario AI competition.
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However, the authors only evolve a controller, not exploiting
the rewards given by the environment to increase the perfor-
mance of the agent.

Hallawa et al., in [17], use behavior trees as evolved
“instinctive” behaviors that are then combined with a learned
behavior. While behavior trees are usually interpretable, the
authors do not take explicitly into account the interpretability
of the whole model, which comprises both a behavior tree
and either a neural network or a Q-learning table.

Several works applied evolutionary computation to evolve
tree structures outside the RL domain. Krȩtowski, in [18],
proposes a memetic algorithm based on genetic program-
ming [19] and local search to optimize DTs. The results show
that this approach can obtain performance that is comparable
to the state-of-the-art while keeping the size of the tree
significantly lower.

In [20], the authors propose a multi-objective EA to evolve
regression trees and model trees. They find a Pareto front for
RMSE, the number of nodes, and the number of attributes.
The experimental results show that this approach can obtain
performance that is comparable to or better than the state-of-
the-art while using fewer nodes and attributes.

In [21], [22], the authors use the Genetic and Artificial Life
Environment (GALE) to evolve DTs. Their results show that
GALE can produce DTs that are competitive with the state-
of-the-art.

III. METHOD
Decision trees are non-linear structures where each non-
terminal node represents a “split” (i.e., a test on a condition),
and each leaf node contains a decision. When creating DTs
for RL tasks, one has to address two problems:
1) How do we choose the splits?
2) Given a leaf, which action do we need to assign to that

leaf?
Clearly, there is a strong relationship between splits and
decisions made in the leaves, so changing one of these
without modifying the other may lead to significant changes
in performance.

Several works [9]–[12] use greedy heuristics to induce
DTs. However, these approaches have the following draw-
backs:
• They use greedy choices to expand the trees. However,

since inducing DTs is an NP-complete problem [23], this
may cause the induction of sub-optimal trees [9], [24].

• They use tests to expand the trees. However, this causes
these algorithms to suffer from the curse of dimensionality
because, for each expansion of the tree, all the input
variables need to be tested [9], [10].
Other works [15] (and [18], [20]–[22], even if they are

not applied to RL tasks) induce trees using evolutionary
approaches. However, these approaches only rely on an EA.
In RL tasks, not exploiting the reinforcement signals obtained
from the environment may slow down the evolution, thus
resulting in a less efficient process. Our approach, instead,

aims to combine evolutionary computation and RL methods
to take the best of both worlds.

In particular, we propose a Baldwinian evolutionary ap-
proach to simultaneously optimize the structure of the tree
and the state-action function. Baldwinian evolution is an
evolutionary theory that states that what an individual learns
during his life is not passed to their offspring, however,
the knowledge acquired by the individual may introduce an
evolutionary advantage that modifies the fitness landscape
[25].

To evolve the structure of the DT, we use an EA, while
we use Q-learning to learn the state-action function. The
evolutionary part optimizes, by searching for tree structures,
a state space decomposition function. The Q-learning part,
instead, learns a mapping between each aggregated state (i.e.,
all the states that end in a given leaf of the tree) and the
corresponding action. We refer to this approach as “two-level
optimization approach”, as there is an outer optimization
loop where the structure of the DT is created, and an inner
optimization loop where Q-learning is performed, as shown
in Figure 1.

The EA we use is the GE [16]. This EA evolves (context-
free) grammars in the Backus-Naur Form.

Figure 1 shows a block diagram that clarifies the inner
working of the proposed algorithm. The blue-colored parts
are the processes inherent to the evolutionary component of
our algorithm, while the red-colored ones are the processes
concerning the RL part.

Genotype Phenotype Environment

Actions

Rewards

Selection

Crossover

Mutation

Q-Learning

Initialization

FIGURE 1: A scheme of the inner working of the proposed
algorithm. The blue blocks are the ones that derive from the
evolutionary part of our algorithm, while the red blocks are
the ones that derive from the Q-learning part.
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A. EVOLUTIONARY ALGORITHM
To evolve DTs, we define a grammar, similarly to the ap-
proach described in [16]. In the following, we describe our
algorithm design, highlighting the differences with the origi-
nal GE introduced in [16]

1) Individual encoding
The genotype of an individual is encoded as a list of codons
(represented as integers). However, differently from [16], our
genotypes have fixed lengths.

2) Mutation operator
Instead of the mutation operator described in [16], we use
uniform mutation. This operator mutates each gene according
to a predefined probability. The new value of the gene is
drawn uniformly from 0 and M (a number much higher
than the maximum number of productions in the grammar,
to ensure that all the productions are chosen according to a
uniform probability distribution). Then, by using the modulo
operator, we choose the production from the production rule.

3) Crossover operator
As for the crossover operator, we use standard one-point
crossover. This operator sets a random cutting point and
creates two individuals by mixing the two sub-lists of the
parent genotypes. Differently from the original GE [16], we
do not prune the individuals that have unexpressed codons
(i.e., the parts of the genotype that are not used to create the
phenotype, that is the DT). The reason underlying our choice
not to prune the unexpressed codons lies in the fact that these
may be a source of diversity that, in future generations, may
lead to an evolutionary advantage for some individuals.

4) Replacement of the individuals
We use the same steady-state selection used in [16].

This mechanism allows us to preserve diversity between
the individuals and, at the same time, guarantee elitism (i.e.,
make sure that good individuals are not lost during the
evolutionary process).

5) Fitness evaluation
The fitness evaluation process consists of the following steps.
First of all, the genotype is translated to the corresponding
phenotype. I.e., given a genotype (in the form of a list of
integers), we translate it into a phenotype (i.e., Python code).
To do so, the first non-expanded symbol (the starting symbol
is “dt”) is expanded using the value of the current gene. To
do so, for each production rule (i.e., a symbol enclosed in
angular brackets) we retrieve the list (of size |L|) of possible
productions (i.e, their outputs). Then, given the value of
the current codon c, we replace the production rule with
the (c mod |L|)-th string. Then, the next production rule is
expanded using the following codon, and so on.

After translating the genotype into a phenotype, we have
a DT without leaves. Then, we assign “empty” leaves to the

DT, where each leaf contains a list of values, one for each
action.

Then, the DT is used to simulate e training episodes where,
at each step, the DT takes in input a state and returns one
of the actions, in accordance with the corresponding leaf of
the tree (i.e., with probability 1 − ε, it returns the argmax
of the values of the leaf, and with probability ε it returns
a random action). Then, using the feedback coming from
the environment, the corresponding leaf is updated using the
Bellman’s equation for Q-learning [26]:

Q(s, a)← (1− α)Q(s, a) + α(r + γmax
a′

(Q(s′, a′)), (1)

where Q(s, a) is the a-th value in the list contained by the
leaf, α is the learning rate, r is the reward, s and a refer to
the current state and the current action, respectively; and s′

and a′ refer to the next state and the next action, respectively.
Finally, the fitness assigned to the agent is the mean of the

returns obtained during the e episodes:

f(π) = Ei∈[1,e][Ri(π)] = Ei∈[1,e][

T∑
k=0

r(sik, π(s
i
k))] (2)

where f is the fitness of the agent that encodes the policy π,
Ri is the return obtained in the i-th episode (i.e., the sum
of the rewards obtained during the i-th episode), T is the
number of steps performed for each episode, r is the reward
function, sik is the k-th state of the i-th episode, and π(sik) is
the action taken by the policy given the state sik.

Equation 2 is used by the Grammatical Evolution to eval-
uate the quality of each of the individuals in the current
population.

IV. EXPERIMENTAL SETUP
We now present the details of our experimental setup, namely
the interpretability metric used for our comparative analysis,
the three OpenAI control tasks considered in the experimen-
tation, and the mechanism devised to simplify the produced
DTs. All the other details of our setup (i.e., grammar and
parameters) can be found in the Supplementary Material. All
the experiments have been conducted on a Linux workstation
powered by an Intel®CoreTM i9-7940x CPU with 36 cores
@3.10GHz and 64GB RAM, by using the DEAP Python
library [27] for implementing the evolutionary algorithm3.

For all the experiments, we perform 10 runs to assess
the statistical repeatability of our results. Given the com-
putational cost of the search, we found that 10 runs was
an acceptable trade-off between the time required for the
experiments and the statistical significance of the results. In
fact, as shown in Table 2, the standard deviations are quite
small, indicating that the process is statistically repeatable.

A. INTERPRETABILITY METRIC
In the next sections, we will show the results obtained by
our method and compare them to the state-of-the-art using

3Our code is publicly available on a GitLab repository: https://gitlab.com
/leocus/ge_q_dts
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two metrics, namely the performance score given by the
environment, and a metric of complexity used as a proxy for
interpretability. For the latter, we adopt the interpretability
metric proposed in [28], which is defined as follows:

Morig = 79.1− 0.2l − 0.5no − 3.4nnao − 4.5nnaoc

where:
• l is the size of the formula (i.e., the sum of constants,

variables, and operations);
• no is the number of operations;
• nnao is the number of non-arithmetical operations;
• nnaoc is the number of consecutive compositions of non-

arithmetical operations.
However, this metric is meant to lie in [0, 100] but, with

“big” models (in terms of the number of operations), one can
easily exceed these bounds, making the metric meaningless.
For this reason, we modify the metric to make it work as a
measure of complexity. For this purpose, the metric used is
the following:

M = −0.2 + 0.2l + 0.5no + 3.4nnao + 4.5nnaoc

The changes we made yield the following properties:
• By changing the sign of all the terms, we obtain that a

model with a higher complexity is harder to interpret.
• We replace the positive constant (79.1) with a negative

one (-0.2) so that, when we have a constant formula, its
complexity becomes 0 (this is the best case from the point
of view of interpretability).

Furthermore, it is worth noting that this metric is in line with
what stated in [29]. In fact, deep DTs can be as interpretable
as black-box methods, because the terms l, no, nnao and
nnaoc have a high magnitude. Also,M seems to be (loosely)
in line with what stated in [30]. In fact, by using a metric
proportionate to the number of operations, we approximate
the computational complexity of the model that we are exe-
cuting.

Finally, we should note that while metrics for computing
the complexity of specific machine learning models (e.g.,
DTs) do exist, the M metric gives us the advantage to be
model-agnostic, i.e., it is in principle applicable to every
machine learning model that can be expressed as a set of
equations. This property is extremely important, as it allows
us to compare the interpretability of fundamentally different
ML models, such as DTs and neural networks.

B. OPENAI CONTROL TASKS
To test our approach, in the first part of our experimentation
we consider the following OpenAI Gym [5] environments:
CartPole-v1, MountainCar-v0, and LunarLander-v2.

To assess the statistical repeatability of our experiments,
we perform 10 independent runs for each environment and
experimental setting. As required by [5], we test (a posteriori,
i.e. after the evolutionary process) the best model obtained in
each run over 100 independent episodes, to assess its perfor-
mance. By “testing”, we mean in this case the execution of

the best policy in 100 testing episodes (i.e., episodes whose
starting points are different from those used for training).

In the following, we describe the three environments and
their properties, i.e., the observation and action spaces, the
reward function, the termination, and the resolution criteria.

1) CartPole-v1

In this task, the agent must balance a pole (placed on top of a
cart) by moving the cart.

a: Observation space

The state of the environment is composed of the following
features:

• Cart position: x ∈ [−4.8, 4.8] m
• Cart velocity: v ∈ (−∞,∞) m/s
• Pole angle: θ ∈ [−0.418, 0.418] rad
• Pole angular velocity: ω ∈ (−∞,∞) rad/s

b: Action space

The actions that the agent can perform are:

• Push the cart to the left by applying a force of 10N:
move_left

• Push the cart to the right by applying a force of 10N:
move_right

c: Reward

The agent receives a reward of +1 point for each timestep.

d: Termination criterion

The task episode terminates if:

• The cart position lies outside the bounds for the x variable.
• The angle of the pole lies outside the bounds for the θ

variable.

e: Goal of the task

This task is solved if the agent receives a mean total reward
of R ≥ 475 points on 100 episodes.

2) MountainCar-v0

In this environment, the agent has to drive a car, starting from
a random position in a valley (surrounded by two hills, one
on the left and one on the right of the valley), with the goal of
reaching a goal position on the right hill. However, the car’s
engine is not powerful enough, so the agent must learn how
to build momentum by exploiting the two hills until the car
reaches the goal position.

a: Observation space

The state of the environment consists of the following vari-
ables:

• Horizontal position of the car: x ∈ [−1.2, 0.6] m
• Horizontal velocity of the car: v ∈ [−0.07, 0.07] m/s
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b: Action space
The agent can perform 3 actions:

1) Accelerate to the left by applying a force of 0.001N:
acc_right

2) Do not accelerate: nop
3) Accelerate to the right by applying a force of 0.001N:

acc_left

c: Reward
The agent receives a reward of -1 point for each timestep.

d: Termination criterion
The task episode terminates after 200 timesteps.

e: Goal of the task
This task is solved if the agent receives a mean total reward
of R ≥ −110 points on 100 episodes.

3) LunarLander-v2
In this task, the agent has to land a lander on a landing pad.

a: Observation space
The state of the environment consists of 8 variables:

• Horizontal position: px ∈ [−1, 1]m
• Vertical position: py ∈ [−0.5, 2] m
• Horizontal velocity: vx ∈ [−2, 2] m/s
• Vertical velocity: vy ∈ [−2, 0.5]m/s
• Angle w.r.t. the vertical axis: θ ∈ [−2, 2] rad
• Angular velocity: ω ∈ [−2.5, 2.5] rad/s
• Left leg contact: cl ∈ {0, 1}
• Right leg contact: cr ∈ {0, 1}

b: Action space
The agent can perform 4 actions:

1) All engines disabled: nop
2) Enable left engine: left
3) Enable main engine: main
4) Enable right engine: right

c: Reward
The rewards (defined by the OpenAI Gym environment) for
moving from the initial point to the landing pad with a final
velocity of zero varies between 100 and 140 points. If the
lander crashes, it receives a reward of -100 points. If the
lander lands correctly, it receives a reward of +100 points. For
each leg contact, the agent receives a reward of +10 points.
Firing the main engine gives a reward of -0.3 points; firing a
side engine rewards the agent with -0.03 points.

d: Termination criterion
The task episode ends if at least one of these conditions is
met: the duration exceeds 1000 timesteps, the lander crashes,
or it passes the bounds of the environment.

e: Goal of the task
This task is solved if a mean total reward R ≥ 200 points are
obtained on 100 episodes.

C. SIMPLIFICATION MECHANISM
To make our solutions even more interpretable, we use a
simplification mechanism for the best solution found across
the various runs. The simplification mechanism is the fol-
lowing. First of all, we execute the given policy for 100
validation episodes (i.e., different from both training and
testing episodes). Here, we keep a counter for each node
of the tree that is increased each time the node is visited.
Once this phase finishes, we remove all the nodes that have
not been visited. Finally, we iteratively search for nodes in
the tree whose leaves correspond to the same action. Each
time we find such a node, we replace it with a leaf that
contains such action. The iteration stops when the tree does
not contain nodes of this type.

V. RESULTS
A. OPENAI CONTROL TASKS: NUMERICAL RESULTS
In this section we present the numerical results obtained
on the three considered OpenAI control tasks, and com-
pare them with the state-of-the-art. Please note that in the
Supplementary Material we provide further details on this
comparison, and perform an ablation study that confirms that
our two-level approach boosts the performance w.r.t. a one-
level method.

1) CartPole-v1
In this environment, we tested two different grammars: one
to evolve orthogonal DTs, and one to evolve oblique DTs.
Orthogonal DTs are DTs in which each condition tests a
single variable. Thus, each split defines a hyperplane that
is orthogonal to the axis of the tested variable. In contrast,
oblique DTs handle multiple variables for each condition,
resulting in oblique hyperplanes.

We initialize the leaves randomly in [−1, 1]. The number
of episodes used for Q-learning is quite low (10 episodes).
This choice was made because, since this is a “simple”
environment (i.e., the agent does not need to see a great
number of episodes in order to solve it), we want to lower
the computational cost of the search by exploiting the ran-
domness used to initialize the state-action function. So, in
this case, Q-learning is used to “fine-tune” the state-action
function instead of learning it from scratch. In fact, the
whole evolutionary process has a computational complexity
of O(pge), where p is the size of the population, g is the
number of generations, and e is the number of episodes for
each individual. Thus, reducing the number of episodes can
significantly reduce the computational cost of the evolution-
ary process, although this increases the risk that the agents
will not learn the optimal state-action function.

The results are shown in Table 1 (second and third rows).
The detailed results for each run are shown in the Supple-
mentary Material. Here we observe that, while the orthogonal
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grammar can solve the task in 100% of the cases (a case
is defined simply as a set of episodes), the testing score is
optimal (500 ± 0) only in 40% of the testing episodes. The
oblique grammar, instead, can solve the task in 90% of the
cases but achieves the optimal score in 80% of the runs. This
result suggests that, while the oblique grammar makes the
search space more complex, it usually leads to more stable
(as in Lyapunov’s concept of stability) solutions.

TABLE 1: Descriptive statistics (mean and std. dev. over the
best solutions found in 10 independent runs) on the three
OpenAI environments considered in the experimentation.
The results obtained with the orthogonal grammar are not
shown for the LunarLander-v2 environment since we were
not able to find a set of hyperparameters that led to solutions
for this task.

Environment Type
Mean Std. dev. Mean Std. dev. No.

training training testing testing runs
score score score score solved

CartPole-v1 Orthogonal 499.75 0.55 497.34 5.19 10
Oblique 500.00 0.00 495.66 12.27 9

MountainCar-v0 Orthogonal -110.62 4.57 -108.16 6.20 7
Oblique -107.90 3.09 -110.31 4.39 5

LunarLander-v2 Oblique 255.58 14.58 213.09 18.73 10

TABLE 2: Testing scores (mean and std. dev. over 100
episodes) for the solutions obtained in each run tested on a
104 steps long version of CartPole-v1.

Tree type Run Testing mean Testing std. dev.

Orthogonal

R1 878.08 346.85
R2 767.94 202.24
R3 3271.99 2718.79
R4 5845.54 2898.37
R5 1237.18 775.24
R6 2589.85 2715.03
R7 4561.71 3670.16
R8 5738.87 3227.96
R9 1179.21 543.78
R10 688.75 183.64

Oblique

R1 10000.00 0.00
R2 9900.68 988.22
R3 10000.00 0.00
R4 10000.00 0.00
R5 10000.00 0.00
R6 10000.00 0.00
R7 10000.00 0.00
R8 10000.00 0.00
R9 10000.00 0.00
R10 9200.95 2709.71

To better assess this hypothesis, i.e., that oblique trees are
more stable than orthogonal ones, in Table 2 we compare all
the trees produced by using the two grammars on a modified
environment that has a maximum duration of 104 timesteps
instead of 500. These results confirm our hypothesis, showing
that all the oblique trees are able to obtain significantly better
scores, often reaching a perfect score (i.e., 104±0) also in this
setting. Figure 2c shows how the testing mean score varies
by varying the number of maximum timesteps for the best
agents.

In Figures 2a and 2b, we show instead the mean distance
from the point of equilibrium (peq = [0, 0, 0, 0]T ) averaged
over 100 episodes (of length 500 timesteps). In these figures,

we can easily observe that the oblique policy shows stable be-
havior (according to Lyapunov’s concept of stability), while
the orthogonal policy does not.

Moreover, we tested the robustness of the produced agents
w.r.t. noise on the inputs received by the sensors. In Figure
2d, we show how the performance of the two best agents
varies with additive input noise (distributed as N (0, σ2)).
The orthogonal tree is robust only up to noise with σ as big
as twice the sampling step used for the constants. In contrast,
the oblique tree proves to be significantly more robust, being
able to cope with noises that have a σ about 50 times bigger
than the sampling step used for the constants.

Finally, in Table 3 we compare our best solutions with
the best solutions found in the literature. The complexi-
ties computed for the neural-network-based approaches are
approximations, i.e., we did not take into account all the
details of the methods but only those related to the network
architectures (which however account for the major part of
the complexity). For our comparison purposes, this omission
is acceptable. Our best solutions (in terms of the best score,
used for the comparison) are shown in Figures 3a and 3b. The
other solutions obtained (in terms of best M) can be found
in our public repository.

Please note that, for all the tables comparing our approach
to the state-of-the-art (i.e. Table 3 and, similarly for the
other two OpenAI tasks, Table 4 and Table 5), we compare
our solutions that achieve either the best score or the best
interpretability. In these tables, “Best score” refers to the so-
lution(s) that achieve the maximum score. Thus, theM value
in the corresponding row indicates the meanM value of all
our solution(s) that achieve the maximum score. Similarly, in
the row indicated by “BestM”, we show the statistics of the
solution(s) that achieve minimumM, and their mean score.

2) MountainCar-v0
As for the previous environment, we test both the orthogonal
and the oblique grammar. Note that, in this environment, we
normalize the variables in the oblique case whereas in the
other environments we do not. Normalization is necessary
because the ranges of variation of the two variables are
quite different. Moreover, a preliminary experimental phase
confirmed that it was hard to obtain good results by not
normalizing the inputs.

Since this can be considered a “simple” task (i.e., the agent
does not need to see a great number of episodes in order
to solve it), also in this case we train the agent only for 10
episodes, exploiting the randomness of the initialization.

The results obtained by the best solution for each run are
shown in Table 1 (fourth and fifth rows). As we can see
from the table, the solutions obtained by using the orthogonal
grammar solve the task in 70% of the cases. Conversely, we
observe that oblique trees perform poorly on this problem.
This result suggests that this problem is more difficult to
solve by using oblique trees than orthogonal ones. While
this may seem counter-intuitive, since oblique trees are a
generalization of orthogonal trees, it may be because our
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FIGURE 2: (a) Mean distance of the CartPole-v1 system from the point of equilibrium when using the best orthogonal tree as
policy; (b) Mean distance of the CartPole-v1 system from the point of equilibrium when using the best oblique tree as policy;
(c) Comparison between the best orthogonal tree with the best oblique at different maximum timesteps for the CartPole-v1
environment; (d) Performance of the two best agents on CartPole-v1 as the input noise changes; (e) Mean testing score with
different input noises for the best orthogonal and oblique trees on MountainCar-v0.

grammar (the one used to produce oblique trees) hinders
obtaining an orthogonal DT.

To compare the two kinds of trees, we analyze the ro-
bustness to input noise for both versions. The result is
shown in Figure 2e. In this case, both approaches proved
to be not robust to noise. Surprisingly, we can observe that
the orthogonal tree is not even robust to input noise with
σ < min

i
(stepi), where stepi is the sampling step for the

constants of the i-th variable.

Finally, we perform a comparison of our solutions w.r.t.
the state-of-the-art. In Table 4, we show the results of the
comparison. The best trees (in terms of mean testing score)
used for the comparison are shown in Figures 3d and 3c. We
can see that our models achieve the best results both in terms
of score as well asM metric.

3) LunarLander-v2
For this environment, we did not find a configuration that
gave satisfying results with orthogonal trees. For this reason,
we show only the results obtained by using the oblique
grammar.

In this case, we significantly increased the number of
episodes used for training (i.e., we set it to 1000). The
rationale for this choice is the following:

• The LunarLander-v2 environment is not as easy to solve as
the previous environments.

• In this case, we do not use a random initialization of the
leaves, but we leverage only Q-learning to learn the state-
action function and remove the bias due to the randomness.

4https://github.com/ZhiqingXiao/OpenAIGymSolution
5https://github.com/StepNeverStop/RLs
6https://github.com/harshitandro/Deep-Q-Network
7https://github.com/CM-Data/Noisy-Dueling-Double-DQN-MountainC

ar
8https://github.com/amitkvikram/rl-agent
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TABLE 3: Comparison (testing score and M metric of the
best agents trained on 10 independent runs) of the solutions
obtained by using the proposed approach w.r.t. the state-of-
the-art in the CartPole-v1 environment. The boldface indi-
cates the best value of the score and M metric. Note that
the results from [31] are averaged over 10 runs, while the
results from [3] regard the discretized tree shown in Figure 3
(right) reported in [3], tested on the same episodes used for
the evaluation of our solutions.
(*): Result confirmed by personal communication with the
first author of the study.
(**): The tree has been simplified by using the technique used
in our work.

Source Method Score M
Meng et al. [31] Deep Q Network 327.30 1157.20
Meng et al. [31] Tree-Backup(λ) 494.70 1157.20
Meng et al. [31] Importance-Sampling 498.70 1157.20
Meng et al. [31] Qπ 489.90 1157.20
Meng et al. [31] Retrace(λ) 461.10 1157.20
Meng et al. [31] Policy discrepancy 499.90 1157.20
Meng et al. [31] Policy discrepancy 493.20 1157.20
Meng et al. [31] Watkins’s Q(λ) 484.30 1157.20
Meng et al. [31] Policy discrepancy 494.90 1157.20
Meng et al. [31] Policy discrepancy 493.30 1157.20
Meng et al. [31] P&W Q(λ) 496.70 1157.20
Meng et al. [31] Policy discrepancy 500.00 1157.20
Meng et al. [31] Policy discrepancy 499.40 1157.20
Meng et al. [31] General Q(λ) 499.90 1157.20
Meng et al. [31] Policy discrepancy 500.00 1157.20
Meng et al. [31] Policy discrepancy 500.00 1157.20
Xuan et al. [32] Deep Q Network 98.33 5170174.80
Xuan et al. [32] Bayesian Deep RL 113.52 8090.40
Xuan et al. [32] Bayesian Deep RL 136.75 8090.40
Beltiukov [33] K-FAC 321.00 70786.20
Silva et al. [3] Differentiable DTs 388.76 89.20
Silva et al. [3] Differentiable DTs (*) 500.00 106.80
Silva et al. [3] Differentiable DTs (**) 500.00 53.40
Ours – Best score Orthogonal DT 500.00 35.60
Ours – Best score Oblique DT 500.00 24.10
Ours – Best M Orthogonal DT 500.00 35.60
Ours – Best M Oblique DT 500.00 24.10

TABLE 4: Comparison (testing score and M metric of the
best agents trained on 10 independent runs) of the solutions
obtained by using the proposed approach to the state-of-
the-art in the MountainCar-v0 environment. The boldface
indicates the best value of the score andM metric.

Source Method Score M
Zhiqing Xiao4 Closed-form policy -102.61 54.70
Keavnn5 Soft Q Networks [34] -104.58 31079.20
Harshit Singh6 Deep Q Network -108.85 984160.30
Colin M7 Double Deep Q Network -107.83 46681.60
Amit8 Tabular SARSA -105.99 381.50
Dhebar et al. [4] NLDT (Open-loop) -128.87 66.80
Ours – Best score Orthogonal DT -101.72 106.80
Ours – Best score Oblique DT -106.02 46.80
Ours – Best M Orthogonal DT -116.68 35.60
Ours – Best M Oblique DT -106.50 23.40

Moreover, we use a slightly different Q-learning configura-
tion for this environment. In fact, in this case, we use a decay
for ε, to better explore the search space. The decay works as
follows: in the k-th visit to the leaf, an ε = ε0 · decayk is
used. We set the learning rate to 1

k , where k is the number

of visits of the state-action pair. This choice guarantees
that the state-action function converges to the optimum with
k → ∞. Finally, to save computation time, we implement
an early stopping criterion that works as follows: if the mean
score over the current period (i.e., a predefined number of
episodes) is smaller than the one obtained in the previous
period, then training is stopped. This mechanism relies on
the following assumption: if the current score worsens, but
the state-action function is converging, the worsening is due
to small oscillations caused by randomness.

The results obtained in this environment are summarized
in Table 1 (last row). In this case, our approach solves the
task in 100% of the testing episodes.

A comparison of our two best solutions (w.r.t. score and in-
terpretability) with the state-of-the-art is shown in Table 5. As
we can observe, even though we do not achieve (in absolute
terms) the best score and the bestM, our solutions represent
the best compromise between the two metrics. Moreover, we
can observe that a Pareto front that explains the trade-off
between interpretability and performance seems to exist in
this task. However, our best solution achieves a performance
comparable to the best score reported in the state-of-the-art,
while having a substantially smaller complexity. Our best
solution is shown in Figure 3e.

TABLE 5: Comparison (testing score and M metric of the
best agents trained on 10 independent runs) of the solutions
obtained by using the proposed approach and the state-of-
the-art in the LunarLander-v2 environment. The boldface
indicates the best value of the score andM metric. Note that
the results from [35] are averaged over 5 runs.

Source Method Score M
Keavnn9 Soft Actor Critic 217.92 210733.2
liu10 Soft Q Network 217.09 647691.1
Ash Bellet11 Deep Q Network 225.79 1295307.1
Sanket Thakur12 Deep Q Network 200.65 259285.8
Mahmood13 Deep Q Network 200.30 237079.7
Daniel Barbosa14 Proximal Policy Optimization 201.47 1673.0
XinlyYu15 Deep Q Network 278.23 518153.0
Ruslan16 Dueling Deep Q Network 200.22 30878.1
Ollie Graham17 Deep Q Network 201.46 30878.1
Nikhil Barhate18 Actor Critic 254.58 4337.3
Udacity19 Deep Q Network 201.46 30878.1
Sigve Rokenes20 Deep Q Network 266.00 1.21 · 108
Peng et al. [35] Advantage-weighting 229.00± 2.00 518153.0
Xu et al. [36] Value-difference 248.20± 21.00 632620.2
Malagon et al. [37] Shallow neural network 258.80 77.6
Silva et al. [3] Rule list -78.40 89.0
Dhebar et al. [4] NLDT* – Depth 3 132.83 136.7
Ours – Best score Oblique DT 272.14 118.9
Ours – Best M Oblique DT 262.18 86.9
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B. OPENAI CONTROL TASKS: INTERPRETATION OF
THE OBTAINED POLICIES
In the following, we interpret the best solutions found on the
three OpenAI control tasks, to understand how they work and
highlight the potentialities of our proposed approach in terms
of interpretability.

1) CartPole-v1
a: Orthogonal tree
The tree shown in Figure 3a is extremely easy to interpret.
This agent moves the cart to the left if:

ω < 0.074 ∧ θ < 0.022. (3)

Otherwise, it moves the cart to the right. Note that there
is a case in which the pole is falling to the right but the
agent moves the cart to the left: θ ∈ [0, 0.022)rad ∧ ω ∈
[0, 0.074)rad/s. This is not a problem, because when the
agent moves the cart to the right, it increases the velocity of
the pole, resulting in a “move_right” action in the subsequent
steps.

b: Oblique tree
In this case (Figure 3b), the interpretation of the policy is a
bit harder. The condition used by the agent to discriminate
between the two states is:

−0.274xk − 0.543vk − 0.904θk − 0.559ωk < −0.169 (4)

where k refers to the current timestep. To simplify the pro-
cess, we write Eq. (3) as the following:

−axk − bvk − cθk − dωk < t. (5)

First of all, we want to analyze the role of the constant
t in the policy. By testing it with different values (i.e., t =
−0.169, t = 0.169, t = −0.1, t = 0.1, t = 0) we observed
that it holds that the final point in which the pole is balanced
can be obtained as follows:

xn ≈ −
t

a
(6)

where n is the index of the last timestep. For simplicity, let
us assume that xn = − t

a . This means that we can rewrite Eq.
(5) as follows:

−xk −
b

a
vk −

c

a
θk −

d

a
ωk <

t

a
= −xn. (7)

9https://github.com/StepNeverStop/RLs
10https://github.com/createamind/DRL
11https://github.com/nextgrid/deep-learning-labs-openAI
12https://github.com/sanketsans/openAIenv
13https://github.com/cpow-89/Extended-Deep-Q-Learning-For-Open-A

I-Gym-Environments
14https://github.com/danielnbarbosa/angela
15https://github.com/XinliYu/Reinforcement\_Learning-Projects
16https://github.com/RMiftakhov/LunarLander-v2-drlnd
17https://github.com/Cozmo25/openai-lunar-lander-v2
18https://github.com/nikhilbarhate99/Actor-Critic-PyTorch
19https://github.com/udacity/deep-reinforcement-learning
20https://evgiz.net/article/2019/02/02/

We can then perform other algebraic steps and obtain:

−xk − b′vk − c′θk − d′ωk < −xn ⇒ (8)

−b′vk − c′θk − d′ωk < −xn + xk ⇒ (9)

−b′vk − c′θk − d′ωk <− xn + xn−1 − · · ·+ xk =

=

k+1∑
j=n

−xj + xj−1.
(10)

Then, by noting that:

xk − xk−1

τ
= vk (11)

we can rewrite Eq. (10) as:

−b′vk − c′θk − d′ωk < −
n∑

j=k+1

vjτ (12)

−c′θk − d′ωk < −
n∑

j=k

gjvjτ (13)

where:

gj =

{
−b′

τ if j = k

1 otherwise

Now, by observing that:

θk − θk−1

τ
= ωk (14)

we obtain:

−c′θk − d′
θk − θk−1

τ
< −

n∑
j=k+1

gjvjτ (15)

−(d′ + τc′)θk + d′θk−1 < −τ2
n∑

j=k+1

gjvj . (16)

Finally, noting that, usually, in the first 50 timesteps of the
episodes the velocities are high (max

k
|vk| < 1.5) and then

they become small (max
k
|vk| < 0.55) because the pole is

balanced, we can write that:∣∣∣∣∣∣
n∑

j=k+1

gjvj

∣∣∣∣∣∣ ⪅ b′

τ
· 1.5 + 49 · 1.5 + 450 · 0.55 = 420 (17)

where the approximate equality holds in the worst case (i.e.,
k = 0 and all the velocities have the same sign). However,
considering that in our observations the magnitude of the ve-
locities was usually significantly smaller than the maximum
and that the summation is multiplied by τ2 (τ = 0.02 in this
environment), we can safely consider only the term with the
highest magnitude, i.e., b′

τ vk. Moreover, using only vk sets
xn ≈ 0, which makes the system easier to understand.

Then, we obtain:

−(d′ + τc′)θk + d′θk−1 < τb′vk (18)

cθk > −(bvk + dωk). (19)

10 VOLUME 0, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3236260

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Custode and Iacca: Evolutionary learning of interpretable decision trees

ω < 0.074

θ < 0.022

move_left move_right

move_right

T F

T F

(a) Best orthogonal DT (w.r.t. score) evolved
in the CartPole-v1 environment.
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(b) Best oblique DT (w.r.t. score) evolved in
the CartPole-v1 environment.
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(c) Best oblique DT (w.r.t. score) evolved in
the MountainCar-v0 environment.
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(d) Best orthogonal DT (w.r.t. score) evolved in the MountainCar-v0
environment.
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(e) Best oblique DT (w.r.t. score) evolved in the LunarLander-v2
environment.

FIGURE 3: Best tree (w.r.t. score) for each tested scenario. The weights for the oblique trees are shown in the Supplementary
Material.

Approximating the constants, we set b = 0.543 ≈ 0.5,
c = 0.904 ≈ 1, d = 0.559 ≈ 0.5, so the final policy is21:

π(x, v, θ, ω) =

{
move_right if θk > − 1

2 (vk + ωk)

move_left otherwise.

A dimensionally consistent policy is θk + 1
2 (vk/l +

ω)ntsτ
τ > 0, where l = 1 is the pole length and nts is

the number of steps that we are taking into consideration to
balance the pole (in our case, nts = 1). This policy can be

21Implementing this policy by using the ω value given by the environment
may give slightly lower than perfect scores: in our opinion, this is due to
the error carried by the integration method used. Alternatively, using ωk =
(θk − θk−1)/τ gives the desired results.

interpreted as follows. If the sum of the current angle and
the mean angle given by the two contributions (i.e., the linear
velocity of the cart and the angular velocity of the pole) are
positive (it is a kind of “prediction” of the future angle), then
move the cart to the right, because it is going to fall to the
right. Otherwise, move the cart to the left.

2) MountainCar-v0

a: Orthogonal tree

Also in this case, the orthogonal tree (Figure 3d) is easy
to interpret. If we look at the leaves, we see that the agent
accelerates to the left only in two cases: (v < 0 ∧ x >
−0.9) ∨ (v ∈ [0, 0.035) ∧ x ∈ [−0.4,−0.3]). This means
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that the agent accelerates to the left when:
• it is going towards the left hill to build momentum, and it

is far from the border (x > −0.9), so it tries to maximize
the potential energy of the car;

• velocity is positive but not enough to reach the target hill
(v < 0.035) and it is near the valley.

In all the other cases, the agent accelerates to the right.

b: Oblique tree
In this case (Figure 3c), the agent accelerates to the left when
both conditions are False. This means that we have to solve
the following system of two inequalities:{

0.717x̂− 0.697v̂ ≥ −0.229
0.138x̂− 0.883v̂ ≥ −0.389

In practice, the agent accelerates to the left when v ≤
7.5799·10−2 ·x+6.6955∧v ≤ 1.1516·10−2 ·x+5.495·10−3.
Note that, to facilitate interpretability, here the variables have
been denormalized. The decision hyperplane can be easily
obtained by combining the two inequalities.

It is important to note that the lack of robustness for
this solution does not allow us to further approximate the
constants.

3) LunarLander-v2
In this case, since the oblique tree (Figure 3e) has 4 condi-
tions and 8 unknowns, it is a bit harder to interpret.

a: First condition
This condition, when it evaluates to False, turns on the right
engine for a timestep. So, we turn on the right engine when:

apx − bpy + cvx − dvy − eθ − fω − gcl − hcr ≥ 0 (20)

where a, b, . . . , h replace the constants shown in Figure 3e.
To simplify the analysis, let us assume cl = cr = 0, since

they can assume only two values: 0, 1. This simplification
does not affect the generality of our analysis, since we are
only assuming that there is no contact with the ground. We
can simply say that, when contact with the ground happens,
then the threshold is not 0 anymore, but it can take one of
the following values: 0.2 (only right leg touches the ground),
0.597 (only right leg touches the ground), 0.797 (both legs
touch the ground).

So, we can rewrite condition 20 as follows:

apx + cvx − bpy − dvy − eθ − fω ≥ 0. (21)

By merging some terms we obtain:

a(px + vxc
′)− b(py − vyd

′)− e(θ − ωf ′) ≥ 0. (22)

We analyzed the terms in parenthesis and we discovered
that they approximate the position (or the angle) in the
following timestep. The constants c′ ≈ f ′ ≈ 1.23 lead to
an overestimation of the magnitude of the future position (or
angle), while the constant d′ ≈ 0.53 increases the precision
of the approximation. By denoting the predictions of the next

position on x, y and θ with pk+1
x , pk+1

y , θk+1, respectively,
we can write:

apk+1
x − bpk+1

y ≥ eθk+1. (23)

To understand how this condition works, let us suppose that
pk+1
x ≈ 0 (i.e., the lander is in the center of the environment).

Then, if pk+1
y ≈ 1 (i.e., near the starting point), the agent fires

the right engine if θk+1 ≤ −b/e ≈ −0.15rad, i.e., the angle
of the lander is going to fall to the right. When pk+1

y ≈ 0
(i.e., near the landing pad), the agent fires the right engine if
θk+1 ≤ 0. So, we can say that the farther the lander is from
the landing pad (vertically), the more margin we have on the
threshold of the angle. Let us now suppose that pk+1

y = 0,
to study the effect of pk+1

x on the policy. In this case, we can
say that the agent turns on the right engine when θ ≤ a

ep
k+1
x .

So, when the agent is in the right part of the environment, it
uses a linear threshold to activate the engine to avoid both
high angles and high displacements from the landing pad
location. Similarly, when pk+1

x is negative, the threshold is
negative so the agent tries both to compensate for negative
angles (that would move it farther on the left) and distance
from the landing point.

b: Second condition
The second condition, when evaluates to True, leads to the
firing of the left engine. Also in this case, let us neglect the
terms cl and cr. We can write the condition as:

apx − bpy + cvx − dvy − eθ − fω < 0. (24)

It should be noted that the coefficients a, . . . , f are different
from the previous ones. By grouping the terms as before, we
obtain:

a(px + vxc
′)− b(py + vyd

′)− e(θ + ωf ′) < 0. (25)

Also in this case, the constants seem to have the same role
(i.e., some lead to an overestimation of the next position
while some to a better estimate), so we can write:

apk+1
x − bpk+1

y < eθk+1. (26)

This condition is easy to understand given the previous
one: in fact, it is the opposite condition. This means that we
can use the same reasoning used above to understand it.

c: Third condition
This condition handles the firing of the main engine. For this
reason, we expect it to work differently from the previous
two. We can easily observe that the signs of the terms in x
and y are inverted. Moreover, the two angular terms do not
have the same sign. Also in this case, let us use a, . . . , f to
rename the constants and ignore cl and cr. This leads to:

−apx + bpy − cvx + dvy − eθ + fω < 0. (27)

By performing a grouping of the variables similar to the
previous conditions we obtain:

−a(px+vx)+b(py+vy)−(c−a)vx+(d−b)vy−eθ+fω < 0.
(28)
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Then, by denoting with vk+1 and vk−1 the value of the
variable v in the next and the previous timestep respectively,
we can write:

−apk+1
x +bpk+1

y −c′vx+d′vy−eθ+f
θ − θk−1

τ
< 0. (29)

Experimental measurement of the τ variable led us to set τ =
0.05. By multiplying all the members by τ we obtain:

−τapk+1
x +τbpk+1

y −τc′vx+τd′vy−τeθ+f(θ−θk−1) < 0.
(30)

Then, by noting that τa ≈ 5 · 10−3, τb ≈ 6.7 · 10−3, τc′ ≈
3.5 · 10−2, τd′ ≈ 2.6 · 10−2 and τe ≈ 10−2, we can decide
to neglect the effects of the first two terms. So we have:

−τc′vx + τd′vy + (f − τe)θ − fθk−1 < 0. (31)

By merging the terms in θ and θk−1 we obtain:

−c′vx + d′vy + (f − τe)ω + τeθk−1 < 0. (32)

By moving all the terms except the one in ω to the second
member we get:

ω <
1

f − τe
(c′vx − d′vy − τeθk−1). (33)

Then, by noting that all the states that are tested in this con-
dition have c′| vx | ≈ 5d′| vy | and c′| vx | ≈ 120e| θk−1 |
(where v is the mean value of the variable v), we can neglect
(as shown by experimental results) the effects of vy and θk−1.
Finally, the condition checked to fire the main engine is:

ω < c′′vx. (34)

While we expected the main engine to depend on py or
vy , by analyzing the activation of the condition in several
episodes we found that this condition represents the landing
phase. The goal of this check is to balance angular velocity
and linear velocity to make the agent gently stop on the
landing pad.

d: Fourth condition
When this condition evaluates to True, it does not fire any
engine. Conversely, when it evaluates to False, it fires the
main engine.

The condition is the following (also in this case we replace
the constants with symbols):

apx − bpy − cvx − dvy − eθ + fω < 0. (35)

By analyzing the mean values of the variables and their
coefficients we obtain: a| px | ≈ 8.5 ·103, b| py | ≈ 8.7 ·103,
c| vx | ≈ 7 · 102, d| vy | ≈ 2.5 · 102, e| θ | ≈ 1.3 · 102,
f | ω | ≈ 4.7 · 102. This suggests that we can neglect the
values of px, py , and θ because their mean value is lower
than the maximum. The experiments confirmed that these
variables have a low impact on the performance of the agent.

So, the agent does not fire any engine when:

ω <
c

f
vx +

d

f
vy. (36)

This seems an extension of what we obtained in the pre-
vious condition, where we also have a dependency from vy .
Moreover, it is important to note that this check is performed
only when the third condition is not True. Finally, from
experiments, we observed that this condition is True usually
when the agent has successfully landed. In this case, the
terms in cl and cr can be seen as a further margin to the agent,
so that when a leg touches the ground the agent is more likely
to not fire any engine.

In the opposite case, i.e., when ω ≥ c′vx + d′vy , the agent
turns on the main engine to balance the high angular velocity
of the lander. Note, again, that if the angular velocity is too
low, the lander is balanced by the previous condition.

VI. EXAMPLE APPLICATION
To show the potential applicability of our method in high-
stakes domains, we conclude our experimentation with an
application related to pandemic control.

In [6], the authors propose a pandemic simulator to opti-
mize policies to reduce both the spreading and the economic
damage due to COVID-19 (in the following, we refer to this
environment as “PandemicSimulator”). In the same study,
they consider as baseline a simple policy that always applies
the same restriction level, as well as three handmade policies,
and finally, they propose a deep reinforcement learning pol-
icy to control the diffusion of the pandemic. These policies
are briefly described below:

• Stage i: always apply stage i restrictions (See Table 6);
• S0-4-0: Apply stage 0 at the beginning. When the number

of infected people reaches the 10% apply stage 4 and then,
after 30 days, go back to stage 0;

• S0-4-0GI: similar to S0-4-0, with a gradual return to stage
0, moving back one stage every 10 days;

• S0-4-0FI: similar to S0-4-0GI, but the restrictions move a
level back every 5 days;

• Soft Actor-Critic: uses a Deep Neural Network trained
using the Soft Actor-Critic method.

In this task, the agent represents a national decision maker
(e.g., the government) that, based on the information regard-
ing the pandemic, has to make decisions about the regulations
to apply. The state of the environment is composed of: the
status of the pandemic (Infected, Recovered, Critical, Dead,
None); daily report (Infected, Recovered, Critical, Dead,
None); current stage (referred to the restrictions applied); and
a binary value that indicates whether hospitals are saturated.
Note that “None” refers to people that have never been
infected. The actions that an agent can take correspond to 5
stages, shown in Table 6. Finally, the reward is the weighted
sum between two objectives: one that seeks to minimize
the number of people in critical conditions (proportional to
the hospital’s capacity), and one that tries to minimize the
severity of the regulations applied (see [6] for more details
on the reward formulation). By maximizing this reward, the
agent is encouraged to find a trade-off between the number
of critical cases and economic damage.
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TABLE 6: Stages for COVID regulations used as actions for
the regulatory agents.

Stage Stay home Mask Social distancing Gatherings Closed
activities

0 No No No Allowed None
1 Yes Yes No Low risk None
2 Yes Yes Light Moderate risk Schools,

hairstylists
3 Yes Yes Moderate Not allowed Schools,

hairstylists
3 Yes Yes Heavy Not allowed Schools,

hairstylists,
offices,
stores

To evolve interpretable agents, we employ an orthogonal
grammar that performs splits on the normalized variables. To
normalize the status of the pandemic, we divide each value
by the sum of all the values, and we normalize the current
stage by dividing it by the number of stages.

Note that, in preliminary experiments, we observed that
the actual values of the daily report and the number of people
in critical conditions (w.r.t. the hospital’s capacity) were not
crucial to the agents’ performance. For this reason, for these
two features, we only allow for the evolution of conditions in
the form x > 0.

Our final results are summarized in Table 7, in comparison
to the aforementioned policies proposed in [6]. Additional
results are provided in the Supplementary Material. The table
shows the average results obtained across 10 runs for both the
best score and the bestM.

Our best DT is shown in Figure 4, which can be interpreted
as follows. If the number of daily recovered patients is equal
to zero (i.e., we are in the initial phase of the pandemic), then
the policy applies stage 3 restrictions to stop the pandemic at
the beginning. Otherwise, the policy checks if the number of
daily deaths is equal to zero (i.e., the pandemic is beginning
to fade away). If so, it does not apply any restriction, oth-
erwise, it applies stage 2 restrictions to keep the pandemic
under control.

While the evolved policy is very simple, it can largely
outperform all the other policies described earlier, as shown
in Figure 5 and Table 7. On the other hand, it is important to
note that there is no guarantee that such a policy would be
more effective also in the real world. For such validation, a
separate study would be needed.

VII. DISCUSSION
In the first part of our experimentation, we considered three
classic control tasks from OpenAI Gym. Our results show
that the proposed approach can generate DTs that are com-
parable to, or even better than, the non-interpretable state-
of-the-art (from the performance point of view) while hav-
ing significantly better interpretability. Moreover, we have
shown that the produced agents can be practically interpreted,
demonstrating the advantage of interpretable models w.r.t.
black boxes.

These advantages are even more evident in the second part
of the experimentation, where we considered a high-stakes

TABLE 7: Comparison of the solutions obtained by using
the proposed approach and the state-of-the-art in the Pan-
demicSimulator environment. Note that (*) indicates that the
numerical result is not publicly available and it has been
approximated from graphical data reported in [6].

Method Score M
Stage 0 -6.09 0.0
Stage 1 -6.78 0.0
Stage 2 -4.80 0.0
Stage 3 -6.80 0.0
Stage 4 -10.28 0.0
S0-4-0 -4.70 9.9
S0-4-0FI -3.84 49.7
S0-4-0GI -3.77 49.7
Soft Actor-Critic (*) -5.00 34542.1
Orthogonal DT (Best score) -2.37 71.2
Orthogonal DT (Best M) -3.14 35.6

dr > 0

gr > 0.5

2 dd > 0

2 0

3

T F

T F

T F

FIGURE 4: Best DT evolved for the PandemicSimulator
environment. dr stands for “daily recovered”; gr stands for
“globally recovered”, meaning the number of people recov-
ered in the whole pandemic so far; dd stands for “daily
deaths”.

problem related to pandemic control. The policy evolved by
our method resulted not only much easier than state-of-the-
art methods based on deep reinforcement learning, but also
more effective. At the same time, the obtained policy was
more effective than the handmade policies presented in [6].

Overall, our suggestion is that the widely thought
performance-interpretability trade-off does not always hold
(as also suggested e.g. in [2]), and that interpretable models
can be competitive with state-of-the-art techniques, even on
hard-to-solve high-stakes RL tasks such as pandemic control.
For this reason, we believe that research in this field must be
encouraged.

One of the points of attention of this study regards the met-
ric of interpretability adopted for our comparative analysis.
While we expect that changing the metric of interpretability
should not significantly affect the difference (in terms of the
measure of complexity) between our models and those from
the literature (especially the black-box ones), we believe
that future work should nevertheless focus on more tailored
interpretability metrics (i.e., tailored on machine learning
models).
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FIGURE 5: Cumulative reward obtained in the Pandemic-
Simulator environment by all the approaches considered in
the experimentation. All the results for the compared policies
are taken from [6]. Note that the “Soft Actor-Critic” approach
proposed in [6] has not been shown because the correspond-
ing data are not publicly available. “Best DT” refers to the
best DT w.r.t. score found with our method.

VIII. CONCLUSIONS
While in recent years AI has made significant progress,
understanding how a model works is becoming more and
more critical. To overcome this limitation, many efforts have
been made to advance the field of XAI. However, XAI is not
always a suitable solution. XAI methods typically provide
only a-posteriori explanations, and their use can be unsafe in
safety-critical or high-stakes processes.

IAI, instead, consists of using transparent approaches to
have a complete understanding of what happens in the model,
a priori. However, these models are not widely used in
practice because of their widely thought lower performance.

In this paper, we proposed a two-level optimization
method for inducing DTs in RL settings. The trees ob-
tained demonstrate comparable (or, superior) performance
to state-of-the-art approaches, while having a much higher
interpretability, as demonstrated by the results shown in the
results’ Section.

Future research directions include: broader experimenta-
tion on more complex RL domains; the extension of the
proposed method to the imitation learning domain; the devel-
opment of an algorithm that can automatically tune the con-
stants, reducing the prior knowledge included in the gram-
mar; a flexible grammar that easily allows oblique trees to
become orthogonal, to automatically choose the appropriate
type of splits depending on the problem.
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