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Introduction

Among the main astrophysical sources of information, gravitational waves represent a
completely new way to discover our universe. While the electromagnetic radiation has
been the first direct way “to observe” the universe until now, gravitational waves offer
the possibility “to listen” to it. Gravitational waves appear as ripples in the fabric of
space-time and travel at the speed of light after being emitted coherently by macroscopic
sources. Their undisturbed motion has the effect of squeezing the space-time curvature
perpendicularly to the direction of propagation.
Laser interferometry is a common instrument for the detection of gravitational waves, or
rather, for measuring their effect on the distribution of matter or energy through which
they pass. In this regard LISA (Laser Interferometer Space Antenna) will be a space-
based mission designed to detect gravitational radiation over a frequency range between
0.1 mHz and 1 Hz. The most numerous sources in the low-frequency gravitational wave
spectrum are ultra-compact binary stars: double stars in which two compact objects,
such as white dwarfs and neutron stars, orbit each other with short periods. Massive
black hole binaries with masses between 104 and 107M� can also be detected by LISA,
as well as binaries composed of a compact star orbiting a massive black hole. LISA will
consists of a set of three spacecrafts maintaining a near-equilateral triangular formation,
with a proposed arm-length of 2.5 million km, without the need of the station-keeping [1].
Each spacecraft will host two free-falling “test masses” that define the endpoint of a tri-
angular interferometer.
The fundamental condition for the detection of gravitational waves refers to a cardi-
nal principle of General Relativity: a particle falling under the influence of only the
gravitational force follows a geodesic in space-time. In particular, the curvature of space-
time, as well as its variations caused by the passage of a gravitational wave, can be mea-
sured by exchanging a photon between two free falling particles moving along geodesics.
But the difficulty of achieving high purity free fall motion is that any parasitic force
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can accelerate the masses, perturbing them away from geodesic trajectory. The required
extremely low level of non-gravitational acceleration for LISA, below 3 fm s−2/

√
Hz at

0.1 mHz in terms of square-root of power spectral density, needs therefore the under-
standing, reduction and control of all the disturbances.
In this context LISA Pathfinder (LPF) is the designed space mission to test the critical
experimental challenge for LISA. LPF is an European Space Agency mission launched
on December 3rd, 2015 with the aim of measuring the purity of the free-fall motion be-
tween two test-masses at the level of 30 fm s−2/

√
Hz at 1 mHz. As a precursor mission,

LPF essentially mimics one arm of the LISA constellation by shrinking it down to a few
tens of centimetres: the reduced length makes LPF insensitive to gravitational waves,
but the measurement technology is maintained. LPF is thus a single spacecraft hosting
two LISA test masses at the ends of a short interferometer arm. The key technologies
are extremely demanding: they include the control of a drag-free test mass using high
precision interferometry and micro-Newton thrusters. In essence, a drag-free control sy-
stem consists of a spacecraft shielding a free-falling test mass around which it remains
centered by means of an array of high-precision thrusters. The feedback loop is based
on a sensor and an interferometric readout that measure the displacement between the
spacecraft and the test mass. This system is needed to protect the geodesic test mass
motion from environmental disturbances.
Because in LPF the spacecraft cannot follow both the test masses at the same time, it is
necessary that one test mass (TM) is continuously forced to follow the orbit of the other
TM, in particular along the sensitive x-axis. This force, not present in LISA, is needed
to compensate the gravity imbalance between the two TM but at the same time it consti-
tutes a noise source in the main observable of LPF, the residual differential acceleration
measured between the two TMs along x, at frequencies below 1 mHz. The nature of this
noise is electrostatic: any fluctuation in the voltage amplitude applied to the TM, pro-
duces a force noise which scales directly with the amplitude of the compensation force.
The control of the stability of electronics, which is required to be ∼ 5 · 10−6/

√
Hz in

terms of relative actuation voltage amplitude, as well as the compensation of the space-
craft gravity imbalance are therefore critical requirements in LPF.
The free-fall mode experiment has been proposed in order to reduce the actuation noise:
the actuation is limited to short impulses on one TM, so that it is in free fall between
two successive kicks, while the other TM is drag-free. In the free-fall mode designed
for LPF the duration of the free-fall period and that one of the kicks are fixed. A kick
controller is used to produce the periodic impulses: it keeps track of the motion of the
TM during the free-phase and estimates the impulse needed to “kick it back" into the
center. The amplitude of the following kick is then arranged to apply this impulse and
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the kick-and-flight scheme is repeated. In this way the residual differential acceleration,
free of actuation noise, can be estimated at frequencies below the repetition frequency
of the kicks (ωk ∼ 3mHz). The free-fall mode thus provides a different technique for
measuring the differential TM acceleration without the added force noise and calibra-
tion issues introduced by the actuator. Better performance with respect to the science
measurement, where the actuation is continuously applied, is thus expected at frequency
below 1 mHz, because of the suppression of the actuator noise. Furthermore this exper-
iment gives an opportunity to measure system parameters such as the static force, its
time stability and the gravitational gradient. Finally the data from this experiment can
provide a measurement of the purity of free-fall close to what LISA will achieve.
The free-fall mode experiment poses a challenge in data analysis that is related to the
presence of the periodic impulses: they represent a high-noise contribution and need to
be removed, thus leaving short gaps in data. Gaps corrupt seriously the spectral esti-
mation in the form of spectral leakage, both from low and high frequencies, introducing
thus systematic bias in the underlying spectrum. Three data analysis techniques have
been proposed within the LPF collaboration for dealing with the problem of the spectral
estimation in presence of gaps. These strategies follow different approaches to mitigate
the effect of data gaps. This thesis will be focused on a method that aims at reducing the
spectral leakage at frequencies within the LPF frequency band: it consists of a low-pass
filtering and decimation, after which the kicks samples are set numerically to zero. It
is possible to calibrate the data analysis approach by applying it to a standard science
measurement, where artificial gaps are inserted. This introduces the delicate question of
the bias estimation in the spectral analysis caused by the gaps and the analysis proce-
dure: this calculation depends in general on the spectral shape of the signal and becomes
more complicated when the spectrum of the noise is coloured, as in LPF.
The first results of LPF, based on the first months of science operations, demonstrate
that the system has successfully achieved the expectations: it has operated as a stable
and reliable laboratory in orbit, proving that a space-based gravitational wave observa-
tory is now feasible. The measurement of the residual differential acceleration is indeed
better than the mission requirement by more a factor five, while the quasi-static force
found inside the spacecraft is of the order of tens pm s−2. This has allowed for a reduction
of the maximum force per unit mass on TM2 from 650 pm s−2, the predicted value, to
25 pm s−2. The corresponding lower actuation configuration is typical of the standard
noise measurements performed over the mission.
The free fall experiment has been executed and repeated on board LPF as well as the
other planned experiments aimed at detecting and controlling the disturbances that can
affect the free fall motion of the TMs. In particular the free-fall mode control has been
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successfully achieved and maintained during the science operations and each data ana-
lysis method has extracted the power spectral density of the differential acceleration free
of actuation, despite the presence of gaps. In particular, the spectral bias introduced
by the data analysis procedure described above, has been calculated and the analysis
approach tested on a known spectrum obtained from a standard noise measurement. In
the case of the adopted method, a correlation of the spectral bias with the configuration
applied to set the kicks to zero, has been found.
We have, in total, six free-fall runs that span from June to December 2016 and differ in
flight amplitude, duration, implementation mode and authority configuration on degrees
of freedom except x on TM2. However, the measurements are in agreement at frequencies
between 0.1 and 0.4 mHz, in terms of Amplitude Spectral Density (ASD). In addition, the
results confirm the expectations based on the actuation model. In particular, the longest
free-fall measurement executed in the lowest authority configuration, is in agreement, at
low frequency, with the best standard noise measurement, we have so far, performed in
the same actuation scheme. This result derives from the evidence that actuation in the
lowest-authority standard measurement, is already dominated by the continuous control
around the z-axis, which is always applied over the mission, and removing x-actuation
does not reduce much noise at low frequency from the total LPF noise spectrum. In-
deed, in the lowest actuation authority, actuation noise is reduced by ∼ 15 % at 0.1 mHz
in ASD terms, with respect to the standard measurement. However, the free-fall data
measured in this actuation scheme, validates the accuracy of the actuator calibration
achieved in science mode, as the free-fall mode completely removes the actuation along
the x-axis. In particular, the averaged square root of the residual-acceleration power
spectral density measured in free-fall mode, is (7.19± 0.65) fm s−2/

√
Hz for frequencies

between 0.1 and 0.4 mHz.
Finally, a free-fall experiment has been also executed in the nominal authority scheme,
where the predicted authority levels are applied. As expected from the actuation model,
the resulting spectrum obtained by implementing the intermittent control, shows an ev-
ident noise reduction with respect to the standard measurement performed in the same
actuation authority (∼ 60 % actuation noise reduction at 0.1 mHz in ASD terms).
To conclude, the results demonstrate and confirm that, in the lowest authority scheme,
the actuation is not the dominant source of noise at low frequency, contrary to what
observed in nominal scheme. However this contribution enters in the LISA noise budget,
where all degrees of freedom except x will be controlled. As a consequence, the LPF
performance achieved in the configuration where the control along x is turned off, repre-
sents an upper limit for the LISA sensitivity.
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This thesis is organized as follows: Chapter 1 introduces the question of the measure-
ment of space-time curvature from space and its application to gravitational radiation
observation. Then, the LISA and LISA Pathfinder missions are described, including the
first results achieved by the precursor mission. Chapter 2 concerns the characterization
of actuation noise in LISA Pathfinder and investigates the actuation noise contribution
in different authority configurations, including that arising by adopting an intermittent
control scheme. The free-fall experiment is described in Chapter 3, in terms of dynamics,
implementation and design. The procedure followed to calculate the differential acceler-
ation noise with free-fall data, is included in this chapter. Chapter 4 is focused on the
data analysis technique applied to extract the spectrum from data, despite the presence of
kicks and investigates the spectral bias introduced by the adopted data reduction proce-
dure. The results of the free-fall measurement campaign performed on LPF are presented
in Chapter 5, including a comparison with the performance of the mission achieved in
the standard science mode. Finally, Chapter 6 examines the possible implications of the
free-fall experiment for LISA and for space-based gravity gradiometers.
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(ġ0) and flight amplitude (∆x0). The information on the charge status, before (b) and

after (a) the measurement, is included in the table for both the TMs. The first four runs

have been implemented in the standard mode, while in the last two experiments an out

of the loop compensation force is applied on TM1 to reduce the gravitational imbalance

between the TMs. Finally, the last measurement is characterized by a different control,

where both kick and drift phases have been implemented in High Resolution mode. . . 103
5.3 Averaged ASD values of free-fall measurements in frequency range [0.1, 0.4] mHz. . . . 118

xxiii



xxiv List of Tables

5.4 Averaged ASD values in frequency range [0.1, 0.4] mHz for the the free-fall and noise-

only experiments performed in December. . . . . . . . . . . . . . . . . . . . . . . 120



List of acronyms

ADC Analog to Digital Converter

ASD Amplitude Spectral Density

ASI Agenzia Spaziale Italiana

AST Autonomous Star Trackers

BH Blackmann-Harris

DFACS Drag free and Attitude Control System

DMU Data Management Unit

DOF Degree of freedom

DRS Disturbance Reduction System

EH Electrode Housing

ESA European Space Agency

ESOC European Space Operations Centre

FEE Front End Electronics

FIR Finite Impulse Response

GRS Gravitational Reference Sensor

GW Gravitational Waves

HR High Resolution

xxv



xxvi List of Acronyms

IS Inertial Sensor

LISA Laser Interferometer Space Antenna

LPF LISA PathFinder

LTP LISA Technology Package

MOC Mission Operation Center

OBC On-Board Computer

OMS Optical Metrology Subsystem

PSD Power Spectral Density

RLA Reduced Low Authority

SC SpaceCraft

STOC Science and Technology Operations Centre

TM Test Mass

URLA Ultra Reduced Low Authority

WR Wide Range



Chapter 1

Measuring the space-time curvature
from space: LISA and
LISA Pathfinder

The recent event of the detection of gravitational waves by ground-based interferometers
has opened a new era in astronomy [2]. Indeed, we now have the possibility to access
the high-frequency window of gravitational astronomy, which gives information of astro-
physical sources never observed before, such as heavy stellar origin binary black holes.
At frequencies below the ground-based sensitivity region the universe is populated by the
heaviest and most interesting objects. In this context, LISA, the proposed space-based
GW observatory, will open the gravitational window on the universe in the low-frequency
regime. In this chapter, after an introduction on gravitational radiation, the Laser In-
terferometric Space Antenna will be presented in terms of configuration, sensitivity and
payload. The realization of such an ambitious observatory is very demanding: it requires
high-precision technology to test the critical experimental challenge of detecting GW
from space. In particular, because it is not possible to test, on ground, the level of free-
fall required, a precursor mission is needed. The LPF spacecraft carries two LISA TMs
at the ends of a short interferometer arm, which is insensitive to GWs but sensitive to the
differential acceleration, ∆g, of the TMs arising from parasitic forces. Spurious forces
must be controlled and limited as they would mimic a gravitational wave, perturbing
the free-falling motion of the TMs. In this view the LISA precursor can be considered
as a differential accelerometer in space. LPF will be described with reference to the
main scientific objective, the expected performance and the first results, published after
three months of science operations. In the last section we will discuss how a “free-falling”
accelerometer, effectively implemented on LPF in the form of a dedicated control mode,
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represents an alternative to the common choice in actuation control adopted in geodesy
missions.

1.1 The nature of gravity in General Relativity

Einstein’s basic assumption, which revolutionized our way of viewing the universe, was
that the definition of the Newtonian gravitational “force” should be replaced by the
concept of a “curved” space-time. General Relativity describes gravitation as a geometric
property of the space-time which is determined by the mass and energy distribution. If
this distribution is known, we can write the Einstein equations of the gravitational field,
which are partial differential equations connecting the metric to the mass and energy
distribution and describing the curvature of space-time. Before writing these equations
it is useful to summarize some of the basic notions of physics in curved space-times [3]:

• Space-time is a four-dimensional manifold where distance measurements are de-
termined by a metric. gµν is the common choice to express the metric tensor in
General Relativity.

• Once a coordinate system is chosen to locate and order events in the space-time,
the distance between two events ds is given by:

ds2 = −c2dt2 + dx2 + dy2 + dz2 = gµνdxµdxν , (1.1)

where summation over the indices µ and ν is implied and both indices range over
0, 1, 2, 3, corresponding to t, x, y, z. On the other hand, the time measured by a
clock that experiences two events is given by dτ =

√
−gµνdxµdxν .

• Locally in space-time it is always possible to find a coordinate system for which
the space-time is flat, i.e., the metric can be expressed in the Minkowski form, ηµν .

• Free-falling test bodies (small compared to the space-time curvature and undis-
turbed by other forces) in curved space-time follow geodesic curves or geodesics.
This principle is the extension to a generic curved space-time of the concept of a
“straight line”.

• The laws of physics in a free-falling frame in a uniform gravitational field are
the same as those in an inertial frame (“strong” formulation of the equivalence
principle).

The last formulation derives from the evidence of that, at least locally, it is not possible
to distinguish, through physical measurements, an inertial frame in empty space from a
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free-falling one in a uniform gravitational field. Therefore it is as if gravity is “removed”
by the free-fall. There is also a “weak” formulation of the equivalence principle, which
states that the laws of Physics in a non-inertial (accelerated) frame in empty space are
the same as those in a frame a rest immersed in a gravitational field. In other words, a
gravitational field has the same effect of a non-inertial reference frame.
In Newtonian theory the Poisson equation relates the gravitational potential φ to the
mass density ρ representing the source of the gravitational field:

∇2φ = 4πGρ, (1.2)

where G is the gravitational constant. Since in General Relativity the gravitational field
is considered as a quantity related to the geometry of the space-time, we can expect it to
be replaced by the metric tensor gµν . Moreover, by analogy with the Newtonian limit,
the new field equations should contain derivatives of the metric tensor no higher than the
second order. These considerations, together with a more rigorous treatment involving
the principle of least action on the gravitational field, allow us to express the Einstein
equations in the well-known tensorial form:

Gµν + Λgµν =
8πG

c4
Tµν . (1.3)

These equations represent a set of second-order partial differential equations, where
Gµν := Rµν − 1

2g
µνR is the Einstein tensor. It includes the Ricci tensor, Rµν , and

the Ricci scalar, R, quantities that are related to the Riemann curvature tensor which,
in turn, depends on the metric and its first and second order partial derivatives. Λ is the
cosmological constant, introduced by Einstein to obtain a static cosmological solution
for the universe and c is the speed of light. Finally, Tµν is the energy-momentum tensor
which includes both energetic and dynamical properties of a (perfect) fluid in curved
space-times. In particular, calling P the pressure exerted by the random motions of the
particles in a fluid element with density ρ and four-velocity uµ, the energy-momentum
tensor takes the form: Tµν = (P + ρ)uµuν + Pgµν .
Equation 1.3 thus represents the tight relationship between the space-time’s geometry
(left hand side) and its mass-energy content (right hand side): the distribution of mat-
ter is not a non-interacting “content” of the space-time, but it affects the space-time
framework itself. The interplay between geometry of space-time and matter dynamics is
the important conceptual contribution of Einstein compared with Newton’s gravitation
theory.



4
Chapter 1. Measuring the space-time curvature from space: LISA and

LISA Pathfinder

1.2 Gravitational waves

The existence of wave solutions to Einstein’s field equations is the most “relativistic”
peculiarity of General Relativity. Newtonian gravity describes the gravitational force as
an instantaneous interaction between two massive bodies which depends on the distance
between them. Einstein proposes that the gravitational field (that is the curvature of
space-time) does not change instantaneously at arbitrary distances from a moving source.
Instead, the information about the motion of a source propagates at the speed of light.
The prediction of the existence of gravitational waves (GWs) happened in 1916, and
was first confirmed in 1974 with the indirect evidence of gravitational radiation emis-
sion through energy loss from the Hulse-Taylor binary pulsar [4]. One hundred years
after the prediction, in September 2015, gravitational waves were finally detected: the
two ground-based detectors of the Laser Interferometer Gravitational-Wave Observatory
(LIGO) simultaneously observed a transient gravitational-wave signal coming from the
first observation of a binary black hole merger [2].
The first step toward the understanding of gravitational waves comes from the weak field
approximation: we take into account a (weak) gravitational field generated by a distri-
bution of matter that is far away from the region of space in which it is measured. In
other words, we expand Einstein’s equations around the flat-space metric, assuming that
the metric differs from the Minkowski one, ηµν , only marginally:

gµν = ηµν + hµν , |hµν | � 1. (1.4)

Quadratic and higher order terms in the (weak) perturbation of the flat space hµν , are
thus neglected. An important property of Equation 1.4 is that its form is preserved
under a small change in coordinates xα → xα + ξα(xβ), |ξα| � 1 (a property called
Lorentz invariance). The implementation of this condition simplifies considerably the
gravitational field equations, as will be shown soon. Defining a modified “trace-free”
form of the metric perturbation h̄µν = hµν − 1

2ηµν h, where h is the trace of hµν , we can
write the Lorentz invariance as a set of four equations:

∂h̄νµ
∂xµ

=
∂

∂xµ

(
hνµ −

1

2
δνµ · h

)
= 0, (1.5)

which we can use to write the Ricci tensor Rµν in the weak field limit:

Rµν ' −
1

2
ηαβ

∂2hµν
∂xα∂xβ

≡ −1

2
22hµν , (1.6)
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where 22 ≡ ∂µ∂
µ = ∇2 − 1

c2
∂2

∂t2
is the d’Alambertian operator. It is possible to express

Einstein’s equations in terms of the Ricci tensor as a function of the energy-momentum
tensor Tµν and the cosmological constant, Λ [5]. Thus, if we neglect Λ and assume to be
in free space (Tµν ≡ 0), they can be re-written as:

22hµν = 0. (1.7)

The simplest solution to the linearized Einstein’s equations is that of a plane wave of the
type:

hµν = Aµν exp(ikα x
α), (1.8)

where Aµν is the wave amplitude and kα the wave vector, a four vector defining the
direction of propagation of the wave kα = (ω, ~k), which travels in the spatial direction
~k = (kx, ky, kz)/k

0 with frequency ω := c k0. Thus Equation 1.7 shows that, in the
Lorentz invariance, the metric perturbations propagate as waves travelling at the speed
of light and distort flat space-time.
Gravitational waves, these ripples in the space-time curvature, are the result of astro-
physical processes and gravitational interactions involving mainly compact objects such
as neutron stars and black holes: the dynamics of these massive bodies affects the space-
time framework, according to General Relativity.

1.2.1 Properties of GWs

In this part we will introduce the main properties of gravitational radiation (we refer to
the citations for details). For a start, we can summarize them as follows.
In short terms, gravitational waves:

• are waves travelling at the speed of light and propagating transversally ;

• can be detected by their effect on the relative motion of free-falling particles:

• are waves where absorption and scattering is negligible in all practical situations;

• have two independent polarizations;

• have a quadrupole nature;

• carry energy.

The first property derives from the wave equation (Equation 1.7): the wave ampli-
tude, Aµν , and wave vector, kα, do not assume arbitrary values; on the contrary it is
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possible to demonstrate that they satisfy the following relations (assuming the Lorentz in-
variance):

ηµνk
µkν = 0, kµAµν = 0. (1.9)

The property of transversality is expressed by the second condition. Gravitational waves
thus oscillate orthogonally to the direction of motion. In addition, the Lorentz invariance
allows us to simplify Aµν as its trace is null:

Aαα = Aαβu
β = 0, (1.10)

where uβ is an arbitrary four-velocity. These last two conditions constitute the so-called
transverse traceless (TT) gauge.
In order to study the effects of a gravitational wave on free particles we should consider
two particles. This is due to the fact that a single particle, which is initially at rest,
remain forever at rest in the TT gauge, despite the presence of the gravitational wave [3].
Thus, we assume two particles, at rest, one placed at the origin of a (local) coordinate
system, and the other at x = ε, y = z = 0. We can calculate, within the weak field
approximation, the proper distance between them (i.e. the distance measured in their rest
frame) supposing the passage of a gravitational wave propagating along the z direction:

∆l =

∫
|ds|1/2 =

∫
|gµνdxµdxν |1/2 =∫ ε

0
|gxx|1/2 dx ' |gxx(x = 0)|1/2 ε ' [1 +

1

2
hxx(x = 0)]ε.

(1.11)

Since hxx 6= 0 and, in general, is not constant, it follows that the proper distance between
the particles will change as the gravitational wave passes.
The change in the proper distance between test particles, whether at rest or free-falling,
and therefore the deviation from their geodetic motion, is essentially what gravitational
wave detectors aim to measure. It is important to focus again on Equation 1.11: it shows
that the change in the distance between two particles is proportional to their initial
separation ε. As a consequence, the effect of a gravitational wave is more intense if the
original distance is bigger. This is the reason why modern gravitational wave detectors,
which we will discuss in the next section, are designed and built on huge scales, measuring
changes in separations over many kilometers (for ground-based detectors) or millions of
kilometers (in space).
In addition, looking at Equation 1.11, we can observe that the effect induced by a GW
is very small (the amplitude |hµν | is tipically 10−21 or smaller, as we will show later).
Gravitational wave detectors have therefore to measure relative distance changes of the
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order one part in 10−21; an experimental challenge. Finally, because the effect of GWs on
matter is small, the back-action of matter on them will be of the same order of smallness.
In other words, the smallness of the gravitational cross-section, makes GWs insensitive
to absorption and scattering during their propagation [6].
To derive the expression of gravitational waves, we consider again the case of a wave
propagating along the z direction with wave vector kµ = (ωc , 0, 0, kz). From the TT gauge
it follows that there are only two independent components of Aµν , Axx = −Ayy ≡ h+

and Axy = Ayx ≡ h×. With these considerations, the metric perturbation hµν [5] takes
the form:

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 ei(ωt−
~k·~z). (1.12)

In other words, it is possible to decompose a gravitational wave into two components,
which correspond to the two polarization states that it can assume, h+ (“h plus”) and h×
(“h cross”), Aµν = aĥµν+ + bĥµν× , where a and b are scalar constants and the polarisation
tensors ĥµν+ and ĥµν× are:

ĥµν+ =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 , ĥµν× =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 . (1.13)

To make this intuitively clear, consider a circle of test particles in the x-y plane which are
initially at rest (see Figure 1.1). The perturbation h+ for a while extends the distances
along the y-axis, simultaneously shrinking them along the x-axis. On the other hand,
the h× component produces an analogous deformation but with main axes rotated of
45◦ to the y axis. Since h+ and h× are independent, Figure 1.1 provides a pictorial
representation for two different linear polarizations.
We can note from Figure 1.1 that the distortion produced by a gravitational wave is
quadrupolar. This is a direct consequence of the fact that gravitational waves are related
to changes in the curvature of space-time induced by processes involving astrophysical
objects. To understand better, we can make an analogy with electromagnetism [7].
The electromagnetic radiation emitted by slowly varying charge distributions can be
decomposed into a series of multipoles: the strongest is the electric dipole radiation,
followed by the weaker magnetic dipole and electric quadrupole radiation. A similar
approach can be followde for gravitational waves: the mass conservation (equivalent to
charge conservation in electromagnetic theory) excludes monopole radiation. In addition,
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Figure 1.1: An illustration of the deformations due to the two polarizations of a gravitational wave,
h+ and h×, propagating along the z direction. The effect of the wave is shown by how it changes the
distances between a set of free-falling test masses arranged in two circles. As depicted, GWs displace
the test masses transversally, with respect to their direction of propagation.

the rate of change of the mass dipole moment scales as the linear momentum of the
system, which is a conserved quantity, and therefore also mass dipole radiation does
not exist in Einstein’s relativity theory. The next strongest form of electromagnetic
radiation is the magnetic dipole. For the case of gravity, the change of the magnetic
dipole is proportional to the angular momentum of the system, which is again a conserved
quantity. As a consequence, there is no dipolar gravitational radiation. It follows that
gravitational radiation is of quadrupolar or higher nature. The (reduced) quadrupole
moment of a mass distribution has the following form:

Iµν =

∫
ρ(~r)

(
xµxν −

1

3
δµνr

2

)
dV (1.14)

where ρ(~r) is the mass density and ~r the vector indicating the position of the mass dis-
tribution with respect to the observer. It can be shown that the quadrupole moment of a
spherically symmetric mass distribution is identically zero. This leads to the important
result that metric perturbations produced by spherically symmetric mass distributions
do not produce gravitational radiation.
Another analogy with electromagnetism involves the radiated field: the second time
derivative of the mass quadrupole moment Iµν plays the same role in gravitational ra-
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diation as does the first time derivative of the charge dipole moment in electromagnetic
radiation. More specifically, the expression of the gravitational wave in the weak field
approximation, |hµν | � 1, is [6]:

hµν(t, ~x) =
2G

rc4
Ïµν(t− r/c), (1.15)

where Ïµν is evaluated at the retarded time t − r/c. To have a quantitative idea of the
GW’s amplitude, we examine the waves emitted by a pair of equal neutron stars with
mass M moving in a circular orbit about their common center of mass. Assume that the
total distance between them is 2r0 and their orbital frequency is f . For simplicity we
define a coordinate system so that the orbital plane of the stars lies in the x-y plane and
that at coordinate time t = 0 they lie along the x axis. It is possible to calculate that
the only interesting components of Iµν are:

Ixx = 2Mr2
0

[
cos2(2πft)− 1

3

]
, Iyy = 2Mr2

0

[
sin2(2πft)− 1

3

]
(1.16)

and
Ixy = Iyx = 2Mr2

0 cos
2(2πft) sin2(2πft), (1.17)

while the components involving z are constant (Izz) or null.
If, for instance, we want to calculate the GW amplitude at a point along the z axis at a
distance R from the system, from Equation 1.15 we obtain:

hxx = −hyy =
32π2G

Rc4
Mr2

0f
2cos(2 · 2πft) = h cos(2 · 2πft) (1.18)

and

hxy = hyx = −32π2G

Rc4
Mr2

0f
2sin(2 · 2πft) = −h sin(2 · 2πft), (1.19)

where the (adimensional) amplitude term h, called strain amplitude, is:

h =
32π2G

Rc4
Mr2

0f
2. (1.20)

We can note from Equations 1.18 and 1.19, that gravitational waves are emitted at twice
the orbital frequency of the binary system.
To get a sense of the scale of the problem, suppose that the system is composed of
two neutron stars, each with mass equal to the Chandrasekhar mass, M = 1.4M�'
2.78 · 1030 kg. If we take r0 = 20 km, at which it is reasonable to assume an orbital
frequency of about f ≈ 400 Hz, and R = 15 MPc (corresponding to the distance of, for
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instance, the Virgo cluster), then we find that:

h ≡ |hµν | ≈ 1 · 10−21. (1.21)

Thus the detection of the signal produced by a typical gravitational wave source is
extremely demanding. In the following section we will see how it is feasible.
The last property of GWs we show here, regards the energy they carry. It can be
demonstrated that a source of gravitational quadrupole radiation has a total gravitational
luminosity, L, given by [8]:

L =
G

5c5

〈 ...
I2
µν

〉
, (1.22)

where the brackets indicate a time average over several periods of the wave. In the case of
a binary system, this energy comes from the orbital energy: as GWs carry away energy,
the distance between the two bodies must reduce and consequently their orbital velocities
increase.

1.2.2 GW detection principle

As anticipated, the physical quantity which gravitational wave detectors aim to measure
is the change in the proper distance between two test particles due to the passage of
a gravitational wave. In most of GW detectors, currently operational or planned, this
quantity is monitored measuring the light time travel of a laser beam travelling back
and forth along the perpendicular arms of a Michelson Interferometer (Figure 1.2). This
kind of instrument is particularly suited for the detection of gravitational waves as they
have a quadrupole nature (we will return to this in a while). As already observed, the
amplitude of a GW can be expressed in terms of the dimensionless parameter h, that
indicates the relative variation of the distance between two test particles (such as the
test mass mirrors of the interferometer). This is clear if we look at Equation 1.11, which
can be written in a simpler form, if we neglect the time dependence:

∆L

L
=

1

2
h, (1.23)

where L (i.e. ε, as defined in the previous section) is the proper distance between the
test masses (i.e. the proper length of one interferometer arm) and ∆L the length varia-
tion. Equation 1.23 corresponds, for instance, to the effect in the arm-length along the
x direction of a gravitational wave with “+” polarization and propagating perpendicular
to the plane of the detector. Because of the quadrupole nature of gravitational waves, an
opposite change will appear in the arm-length along the y direction (see Figure 1.3), to
give a total relative variation distance of ∆L/L ∼ h. For a gravitational wave with am-
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Figure 1.2: Schematic of gravitational wave detector using laser interferometry.

plitude h ∼ 10−21 and an arm-length of 4 km (such as LIGO), this will induce a change
in the arm-length of about ∆L ∼ 10−18 m. In the general case, when a gravitational
wave with arbitrary polarization passes through the detector from a random direction,
Equation 1.23 will be modified by some angular coefficients of order 1 [7].

Figure 1.3: Effect of the passage of a gravitational waves on an interferometric detector, where a laser
beam with wavelength λ is split in two perpendicular beams along the detector arms, each with proper
length L, and reflected by two test mass mirrors. The picture shows the perturbation due to the two
GW polarizations [7].

To understand how a GW detector works, and therefore how the space-time perturbation
due to GWs changes the arrival times of the two beams, we calculate the time it takes
for light to travel along each arm [9]. We know that the interval between two events
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connected by a ray of light is:
ds2 = 0. (1.24)

We assume, for simplicity, that the arms of our free-mass Michelson interferometer are
aligned along the x and y axes, with the origin at the beam splitter (see Figure 1.2).
Recalling the plane wave solution (Equation 1.8) we suppose that the gravitational wave
assume only the “plus” polarization:

hµν = h(2πfgwt− ~k · ~x)ĥ+. (1.25)

First, we consider the arm along the x axis and calculate the time interval for the light
to travel along it:

ds2 = 0 = gµνdxµdxν

= (ηµν + hµν)dxµdxν

= −c2dt2 + [1 + h11(2πfgwt− ~k · ~x)]tdx2.

(1.26)

Equation 1.26 thus expresses the action of the gravitational wave as a modulation of
the distance between two close points separated by a fixed distance dx, by a fractional
amount h11. The light travel time from the beam splitter to the end of the x arm will
be: ∫ τm

0
dt =

∫ L

0

√
1 + h11dx ≈

1

c

∫ L

0

[
1 +

1

2
h11(2πfgwt− ~k · ~x)

]
dx. (1.27)

A similar Equation is valid for the trip from the mirror to the beam splitter:∫ τtot, x

τm

dt = −1

c

∫ L

0

[
1 +

1

2
h11(2πfgwt− ~k · ~x)

]
dx, (1.28)

to give the total travel-time along the x arm, τtot, x:

τtot, x =
2L

c
+

1

2c

∫ L

0
h11(2πfgwt− ~k · ~x)dx− 1

2c

∫ 0

L
h11(2πfgwt− ~k · ~x)dx. (1.29)

To evaluate the integrals we can write the arguments as a function of just the wavefront
position, that is substituting t = x/c in the first integral and t = (2L−x)/c in the second
one. Similar expressions can be written for the travel time along the y arm.
We recall that in a Michelson interferometer an eventual optical path difference ∆x be-
tween the two beams that interfere upon returning to the beam splitter, can be expressed
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in terms of the phase difference ∆φ:

∆x =
λ

2π
∆φ ⇒ ∆φ = 2πf∆t, (1.30)

where λ is the wavelength of the laser beam. The differential phase shift due to gravita-
tional wave passage is thus given by 2πf times the difference in travel-time due to the
perturbation in the two arms. If the gravitational wave propagates along the z direction,
its amplitude is hxx = −hyy = h, as already seen. In addition, if 2πfgwτtot, x � 1 we
can assume the metric perturbation as constant and thus extract it from the integrals of
Equation 1.29. With these assumptions, the total travel-time difference between the x
and y arms is:

∆τ(t) =
2L

c
h(t), (1.31)

which can be expressed as a phase shift:

∆φ(t) =
4πL

λ
h(t). (1.32)

This last equation shows that the longer the path length in the detector, the larger will
be the phase shift due to the gravitational wave.

GWs as source of tidal accelerations.

Another approach to the same question of how gravitational waves affect free parti-
cles involves the equation of geodesic deviation. As stated above, a geodesic is a curve
along which a freely falling particle moves. The meaning of “geodetic-deviation” is not
that of a deviation from a purely geodetic motion resulting from the application of a
force. Rather, the concept of geodetic deviation is related to the comparison between
two adjacent geodesics, by measuring how and when their separation varies. Thus, let
us consider two geodesics (with tangent vectors ~V and ~V ′) that begin parallel and near
each other, as in Figure 1.4, at points A and A′. Calling with λ the affine parameter,
which parametrizes a geodesic curve, and ~ξ a “connecting vector” which reaches from one
geodesic to another, connecting points at equal intervals in λ (i.e., A to A′, B to B′,
etc.), it is possible to demonstrate that [10]:

∇V∇V ξα = RαµνβV
µV νξβ, (1.33)

where ∇V∇V ξα is the full second covariant derivative. Equation 1.33, called the equa-
tion of geodesic deviation, expresses the fact that the separation between two adjacent
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geodesics will vary if they move in a spacetime with a non-null curvature (that is if the
Riemann curvature tensor is not null, Rαµνβ 6= 0). Thus, only in flat space geodesics
maintain their separation and remain parallel. Equation 1.33 describes, therefore, how
the space-time curvature influences two nearby geodesics, making them either diverge or
converge. Because of this, we conclude that tidal forces of a gravitational field, which
cause trajectories of neighboring particles to diverge, can be represented by curvature of
a spacetime in which particles follow geodesics.

Figure 1.4: Two geodesics differentiated by their tangent vectors and connected by a vector ~ξ in A
and B.

If we work in a local inertial frame set at the point of the first geodesic where ξ originates,
in this coordinate system the components of ξ correspond to proper distances, if the
geodesics are near enough to one another. In addition, the second covariant derivative
can be replaced by an ordinary second derivative with respect to the proper time τ . The
resulting expression of the equation of geodesic deviation is, in a locally inertial frame:

d2

dτ2
ξα = RαµνβU

µUνξβ, (1.34)

where we are calling the tangent to the geodesic U here, instead of V ; in this coordinates
~U = d~x/dτ is the four-velocity of the two particles. To first order in hµν , it is possible
to demonstrate that Equation 1.34 reduces to:

d2

dτ2
ξα =

∂2

∂t2
ξα = −εRα0x0, (1.35)

where ε is the initial separation between geodesics. Equation 1.35 shows the fundamental
result that the Riemann tensor can be locally measured by detecting the proper distance
changes between nearby geodesics. This second formulation of the action of a gravita-
tional wave is not a solution as that given by Equation 1.23 but it corresponds to a
differential equation. It shows that perturbations in the space-time curvature measured
in a local frame and caused by the gravitational radiation, reveal themselves as acceler-
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ations induced on free-falling test particles moving along geodesics. In this view, GWs
can been effectively described as sources of tidal accelerations. Finally, it can be shown
that, in this context, each arm of an interferometer detector behaves as a differential
dynamometer as it measures the difference between the forces acting on free-falling test
particles along their joining line [11].

1.3 An overview of the LISA mission

Some of the most interesting gravitational wave signals, resulting from the mergers of
supermassive black holes with masses in the range from 103 to 106 M� and cosmological
stochastic backgrounds1, are located in the frequency region below that of ground-based
detectors (see Figure 1.5). The low frequency limit on Earth is imposed by the envi-
ronmental noise in the form of seismic noise and gravity gradient noise, which are very
difficult to eliminate at frequencies below 5-10 Hz. The only way to surpass this barrier
is to fly a laser interferometer in space.
LISA (Laser Interferometer Space Antenna) is the proposed space-based GW interfer-
ometer, developed by the European Space Agency with the support of NASA, for the
detection of gravitational radiation at low frequencies, from 0.1 mHz to 1 Hz [1].
It will be formed by three identical spacecrafts, 2.5 million km apart, orbiting around
the Sun in a near-equilateral triangular configuration, which can be maintained without
the need for station-keeping (Figure 1.6). Celestial mechanics indeed allows the trian-
gle to rotate almost rigidly about its centre, with variations in the opening angle and
arm-length at the percent level. In addition, the configuration can be kept at an approx-
imately constant distance to the Earth.
Each spacecraft at the corner of the triangle constellation contains two free-falling test
masses (TMs) that serve both as mirrors of the interferometer and as geodesic reference
test particles. The three-interferometer configuration has been designed not only for re-
dundancy purposes, but also to increase the detection probability as well as to determine
the polarisation of the gravitational radiation.
Because the test masses must be maintained in free-fall as far as possible, the satellites
are actuated to follow them without any mechanical contact. This is the task of the drag-
free actuation control system (DFACS). In addition to the TMs, the payload comprises
the interferometric measurement system, including the optical bench and the telescope,
the micro-propulsion system and the Gravitational Reference Sensor (GRS), used both
to measure the position of the TM needed for the DFACS, and to control its orientation

1A stochastic gravitational signal can derive from the superposition of the signals from collapse of a
vast cosmic population of black holes. Another source of stochastical gravitational waves could be strong
space-time anisotropies arising from quantum gravitational processes in the early universe.
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Figure 1.5: A diagram showing the gravitational spectrum: a range of predicted gravitational wave
sources are associated with the instruments able to detect them (Credit: NASA Goddard Space Flight
Center).

and position in the directions different from the one identified by the laser beam. The
latter indeed defines the sensitive axis along which the detection of gravitational waves
is performed.
The telescope, with a 30 cm aperture, is used to reduce diffraction losses on transmis-
sion of the light of a 2 W laser with 1064 nm wavelength, and to increase the collecting
area for reception [1] (see Figure 1.7). The relative distance between each couple of test
masses is detected by means of three measurements: two between the test mass and the
respective spacecraft (or better the optical bench that is fixed to the spacecraft) and one
between the two spacecrafts. The (science) measurement of the distance between the
test masses, obtained by combining the three measurements above, is thus insensitive to
the noise in the position of the spacecraft, due for instance to the solar radiation pressure
and thrusters’ noise. The measurement of the distance between the spacecrafts is based
on a scheme similar to that used for the spacecraft radar-tracking. Because a direct
reflection of the laser beam, as in a ordinary Michelson interferometer, is not feasible due
to the large distance between the spacecrafts2, each laser at the end of one arm works as

2The power of the laser, along the path from one spacecraft to the other, is reduced from 2 W to
about 500 pW due to diffraction.
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Figure 1.6: The LISA orbit: the triangular constellation follows a heliocentric orbit that is inclined by
60◦ to the ecliptic and it trails the Earth at a distance between 10◦ and 30◦.[12]

a transponder. In other words, a laser beam is sent from one spacecraft to the distant
one. Here, the local laser is phase-locked to the incoming beam, providing a phase replica
beam at high-power. The latter is then sent to the first spacecraft and its phase is in
turn compared with the one of the local laser. The measurement of the phase thus allows
to determine changes in the optical path between the two spacecrafts.

Differently to ground-based detectors, LISA will detect gravitational waves in the
tidal acceleration they cause between the distant free-falling TMs. The relative acceler-
ation is observable in the variation of the Doppler frequency shift detected between the
beam received from one TM (“emitter”, e) and the local light beam generated with the
equivalent laser at the other TM (“receiver”, r). The time derivative of the interference,
due to the passage of a GW and expressed in terms of frequency ν of the beam, can be
written in the following simplified form [11]:

c(ν̇r − ν̇e)
ν

= c

[
ḣr(t)− ḣe

(
t− L

c

)]
+

[
ar(t)− ae

(
t− L

c

)]
, (1.36)

where L is the separation between the TMs, ar and ae are the accelerations of the TMs
due to any stray forces, measured relative to their locally free-falling reference frames at
the time of emission t− L/c and detection t and projected onto the axis separating the
TMs. Thus the modulation of the frequency beam, observed along the “link” between the
TMs, could not be the result of the gravitational wave passage only, but it might be due
to the difference in the stray acceleration between the two TMs. This last contribution
is a source of noise that needs to be suppressed and the upper limit for LISA, in terms
of Amplitude Spectral Density of relative acceleration, is

√
2 · 3 fm s−2 Hz−1/2, as we will

discuss in the next section.
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Figure 1.7: Schematic of the LISA triangular constellation. It includes three pairs of lasers, one for
each spacecraft with associated test masses and an optical bench [12].

1.3.1 LISA sensitivity

LISA is designed to be sensitive to gravitational waves in the frequency band between
0.1 mHz and 1 Hz, with a strain amplitude sensitivity, in terms of power spectral den-
sity, of S1/2

h = 10−20 Hz−1/2 around few mHz. This frequency range is characteristic of
signals coming from binary systems in our Galaxy or from extragalactic sources such as
the so-called EMRI (Extreme Mass Ratio Inspiral), that are binary systems composed of
a stellar mass compact object orbiting around a supermassive black hole. Other interest-
ing sources of GWs which enter in LISA frequency band, are supermassive BH binaries
located at the center of external galaxies. Figure 1.8 shows examples of potential GW
sources in the frequency range of LISA, compared with its sensitivity.
The sensitivity of LISA is determined mainly by two competing contributions: the effect
of various force noise sources that can change the relative distance between the TMs
and thus fake gravitational wave signals, and the interferometer displacement noise, that
induces fluctuations in the measured lengths of the optical path.
As stated in the previous sections, the fundamental condition for the detection of grav-
itational radiation is to have two separated free-falling test masses, as the passage of a
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Figure 1.8: Examples of gravitational wave astrophysical sources in the frequency range of LISA,
compared with the sensitivity curve of LISA. The tracks of three equal mass black hole binaries, located
at redshift z = 3 with total intrinsic masses 107, 106and 105M�, are shown. The source frequency (and
SNR) increases with time, and the remaining time before the plunge is indicated by the vertical bars.
The 5 harmonics of an Extreme Mass Ratio Inspiral source at z = 1.2 are also shown, as well as the
tracks of some binaries-BH of stellar origin of the type discovered by LIGO [1].

gravitational wave perturbs the distance between them. To achieve this, it is necessary
that the TMs are free from any spurious forces (or accelerations) relative to their local
inertial frame. In fact any non-gravitational force would perturb the geodesic motion
of the TMs, entering thus in competition with GWs, according to what stated above.
The drag free control system effectively shields TMs from outside influences but some
residual force noise arises, for instance, from the interactions between the spacecraft and
the gravitational reference sensor, as we will discuss in section 1.3.2.
In this regard, if the TMs are subject to external forces, the distance variation between
the TMs ∆x, can be described by the following equation of motion:

∂2∆x

∂t2
=

∆fx
m

+ L
∂2h

∂t2
, (1.37)

where m is the mass of each TM, ∆fx the differential force acting on them, h(t) the
GW amplitude and L the proper distance between the two test masses. This equation
derives from Equation 1.35 and 1.36 where we consider only the perturbation along the
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x sensitive axis. If we convert Equation 1.37 in frequency domain, we find that any force
with power spectral density Sf (ω) would mimic a gravitational wave h̃(t) with spectral
density [13]:

S
1/2

h̃
(ω) =

1

m

S
1/2
∆fx

(ω)

ω2L
. (1.38)

Because it scales as 1/ω2, the effect dominates in the low frequency range of the strain
amplitude spectral density. In order for LISA to reach the requirements, it is necessary
to limit as much as possible any source of spurious acceleration. If we look at Figure 1.9,
that shows different stray acceleration levels, it is straightforward to deduce that, to
fulfill the specifications, the acceleration noise must be maintained within the following
limit [12]:

S1/2
a ≤ 3 · 10−15

√
1 +

(
f

8mHz

)4 m
s2 Hz1/2

, (1.39)

with f between 0.1 mHz and 1 Hz.

Figure 1.9: LISA strain sensitivity curves calculated with different stray acceleration levels. At low
frequencies the spectrum scales as 1/ω2, whereas at high frequencies it is dominated by the shot noise
and by the finite time of light propagation. The blue curve indicates the minimum sensitivity level that
LISA must achieve. The dashed black line marks the background noise from galactic white-dwarf binary
systems, which dominates over the instrumental noise in the range from ≈ 0.1 - 1 mHz [13].

At high frequencies the sensitivity is dominated by the interferometer displacement noise,
which is proportional to ω2 once it is converted into acceleration. In particular two
sources of noise are included in this category: the photon shot noise and the pointing
instabilities. To achieve the performance in terms of strain amplitude, the interferometer
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readout noise must be suppressed, in terms of ASD, below 10 pmHz−1/2 at 2 mHz [1].

1.3.2 Drag free control

In LISA each spacecraft plays the dual role of following the test masses without any
mechanical contact on one side and shielding them from external disturbances on the
other side. The high level of purity in the free fall motion for the gravitational waves
detection requires a spacecraft that is stationary around the test masses as much as
possible, at least along the two directions identified by the laser beams. This condition
makes it possible to limit the spacecraft gravity noise as well as position dependent
forces3. The “drag-free” control loop scheme is the designed system for this purpose:
it essentially consists of a spacecraft surrounding a floating test mass around which it
remains centered by means of an array high-precision thrusters. The feedback loop is
based on a capacitive position sensor (the GRS) and on the interferometric readout along
the sensitive axis x both used for measuring the displacement between the spacecraft and
the test mass. However, both the spacecraft and the position sensor themselves could
produce force noise on the test masses, as will be discussed later.
It is possible to analyze the drag-free control loop scheme in the case where the satellite
(with mass M) contains a single test mass (with mass m). The dynamics of this system
is described by the equations of motion for the TM and the spacecraft:

mẍ(t) = g(t)− k[x(t)−X(t)], (1.40)

MẌ(t) = −g(t) +G[x(t) + xn(t)−X(t)] + k[x(t)−X(t)] + Fext(t), (1.41)

where:

• x(t) and X(t) are the position of the test mass and the spacecraft respectively
relative to an inertial frame, such as that provided by the interferometer wavefront.

• k indicates the electrostatic spring-like coupling between the TM and the spacecraft
(“stiffness”). This source of noise reveals itself as forces dependent of the relative
position TM - spacecraft. As motion is expected to be small, position dependent
forces may be approximated as simple linear gradients.

• g(t) includes any position independent force due to TM-SC interaction (“stray”
forces), such as non-gravitational external forces or forces produced by the space-
craft itself, as those due to thermal noise or to pressure fluctuations.

3Position dependent forces appear in the equation of motion of the TM, as will be shown shortly, and
can have an impact within the frequency band of LISA.
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• Fext(t) indicates external forces acting directly on the spacecraft and deriving for
instance from the thrusters’ noise.

• xn is the contribution to the parasitic forces due to the readout sensor

• G is the gain of the open loop drag-free control, which depends on frequency.

A schematic of the LISA drag-free control system is shown in Figure 1.10. Combining the
equations of motion, it is possible to obtain the expression of the residual acceleration of
the test mass in the domain of the Laplace angular frequency s [13]:

an(s) =
ω2
DF

s2 + µω2
p + ω2

DF

{
g(s)

m

[
1 +

s2

ω2
DF

]
+ ω2

p

[
xn(s) +

Fext(s)

Mω2
DF

]}
, (1.42)

where µ = m/M , ω2
DF = G/M is the square of the characteristic frequency of the drag-

free loop, ω2
p = k/m is the square of the natural frequency of oscillation of the test-mass

relative to the S/C (we call it “parasitic stiffness” per unit mass). Because it is expected
to be ω2

DF � ω2,
∣∣ω2
p

∣∣ and M � m we obtain:

an(s) ' g(s)

m
+ ω2

p

[
xn(s) +

Fext(s)

Mω2
DF

]
=
g(s)

m
+ ω2

pxc, (1.43)

where xc indicates the residual jitter in the relative motion test mass - spacecraft due

Figure 1.10: Drag-free control loop system used in LISA to follow and shield a floating test mass
from external disturbances. The thrusters drive the satellite to keep it centered around the test mass
according to the readout of the position sensor. The parasitic forces to be counteracted arise from the
sensor noise xn, the feedback loop gain ωDF , the test mass - spacecraft springlike coupling k = mω2

p as
well as any external forces acting directly on the spacecraft Fext or local stray forces independent of the
position affecting the test mass motion fstr.

to the noise of the position sensor and to any imperfect compensation of external forces
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acting on the spacecraft. Equation 1.43 thus includes the main contributions to force
noise that can affect the test mass motion, that we summarize here:

1. position independent forces fstr acting directly on the test mass;

2. spring-like couplings, originating by relative position dependent forces: the residual
relative motion test mass - spacecraft ∆x is turned into acceleration noise through
any steady force gradient or parasitic stiffness per unit mass ω2

p.

The above highlights the fact that the reduction of only the stray forces that can arise
on the test mass is not sufficient to achieve the requirement in terms of acceleration
noise (Equation 1.39): Equation 1.43 poses constraints also on the parasitic test mass -
spacecraft coupling ω2

p, on the sensor noise xn, on the feedback open loop gain G and
on the external forces to be counteracted Fext. In particular the residual coupling has to
be minimized as well as the sensor displacement noise, while the drag free gain must be
maximized in order to counteract the external forces acting on the S/C effectively. More
specifically, in the overall LISA low frequency sensitivity goal the contribution to the
acceleration noise deriving from the coupling term must be smaller than 1 fm/s2/

√
Hz,

allocated between the spacecraft control (2.5 nm/
√
Hz) and the interferometer noise

(10 pm/
√
Hz), with the parasitic stiffness frequencies |ωp| /2π to be maintained below

0.1 mHz [14]. The main contribution to the noise budget thus arises from parasitic forces
(see Equation 1.43). The LISA and LPF requirements at low frequency are reported
in Table 1.1. In reality, the requirement on acceleration noise of LISA will have some
frequency relaxation, as will be discussed on section 1.4.3.

LISA LPF units

Acceleration noise an 3 30 fm/s2
√
Hz

Control position noise xc 2.5 4.7 nm/
√
Hz

Parasitic stiffness
∣∣ω2
p

∣∣ 4 20 10−7s−2

Table 1.1: LISA and LISA Pathfinder requirements at 0.1 mHz and 1 mHz respectively [14].

As is clear in Equation 1.43, the effective measurement of the acceleration noise re-
quires the knowledge of the system parameters, such as the spring-like coupling. This is
achieved by means of dedicated calibration experiments, where some external excitations
are applied in order to measure the corresponding system response.
In the next section we will describe the capacitive position sensor designed for LISA, the
Gravitational Reference Sensor (GRS). We will show how the spacecraft to test mass
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coupling arises mainly from electrostatic forces between the test mass and the GRS and
from the relative gravitational interaction.

1.3.3 The Gravitational Reference Sensor

In the context of the drag-free control from space, capacitive detection is the common
choice for the control implementation [15]. In the case of LISA as well as in LISA
Pathfinder, the drag-free control loop is in reality driven by the interferometric readout
of the TM1 position along the sensitive x axis (see Figure 1.14). The Gravitational Refer-
ence Sensor, also called Inertial Sensor (IS) if we include the test mass, serves instead as a
position sensor and electrostatic force actuator. The geometric configuration of the GRS
is shown in Figure 1.11. The inertial sensor measures the position of the test mass in all
six degrees of freedom by means of a set of 18 electrodes that surround it. The electrodes
are mounted on the faces of a cubic Electrode Housing (EH) to form a capacitance with
the test mass itself. The electrodes are distributed around the test mass in such a way
that each couple of opposite electrodes forms a differential capacitive-inductive bridge:
a change in the position of the test mass induces a capacitance modulation and thus a
current flowing from which the signal is extracted.

Figure 1.11: Geometric configuration of the electrodes surrounding the test mass: the six red electrodes
are the ones used for the bias voltage injection. The remaining green are the sensing electrodes also
employed to actuate the TM. Holes for the interferometer in x and y faces are visible; that big one in z
face leaves space for the caging mechanism, needed for holding the TM during the launch phase [16].
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To go into detail, the capacitance bridge current is provided by polarizing the TM with
an oscillating voltage VAC at resonance frequency ω0 = 2π·100 kHz, with roughly 0.6 V
amplitude. This voltage is applied through a set of six injection electrodes (2+2 on
the z faces plus 1+1 on the y faces, in red in Figure 1.11). The remaining six pairs of
electrodes are defined sensing electrodes (in green in Figure 1.11) as the information of
the TM degrees of freedom is recovered by combining these six readout channels. The
same electrodes are also employed to apply electrostatic forces to the TM by modulating
the amplitude of audio frequency carriers (between 30 and 270 Hz). The GRS is indeed
not just a capacitive readout sensor on which the drag free control system is based but
it is also used as actuator to force the test mass: the actuation is needed to stabilize the
TM motion along degrees of freedom other than the sensitive one of LISA (i.e. the x
axis). The readout circuitry of the capacitive sensor bridge is shown in Figure 1.12. A
100 kHz voltage bias VAC , is applied through the injection electrodes. The motion of
the test mass changes the clearance (gap) between the test mass itself and the opposing
electrodes. As a result, the difference between the two capacitances, for instance C1A

and C1B, is modulated, causing a difference between the current flowing through the two
inductances L1 and L2. The signal passes through a preamplifier and then it is read
by a phase sensitive detector (PSD), which uses the 100 kHz signal as a reference to
demodulate the signal and thus extract the test mass motion. The demodulated signals
are then A/D converted and processed by the on board computer.
A simplified scheme of two pairs of sensing electrodes is shown in Figure 1.13: if the
TM translates the capacitive imbalance has the same sign, if it rotates the imbalance is
opposite on the two bridges. Figure 1.12 shows for example the linear combination of the
signals from the x axis electrodes corresponding to the translation along x and rotation
along φ.

GRS requirements. The design of the GRS has been chosen to meet the requirements in
terms of readout sensitivity, stray stiffness and residual stray forces. Because it is located
very close around the test mass, it is considered the first direct source of parasitic forces.
This requires a very accurate optimization in the design procedure [15]. First of all the
gap between the test mass and the electrodes are kept as large as possible, compatibly
with the position sensitivity needed. Large gaps rapidly suppress several effects which
are difficult to model and that increase with decreasing gap. These are for instance
charge effects, magnetic impurities, surface imperfections. The GRS has been designed
with 4.0 mm gaps for the x axis, sensitive to the gravitational radiation, 3.5 mm and
2.9 mm for the y and z respectively. DC voltages on the TM and electrode surfaces are
not allowed, because of their coupling with other sources of voltage noise or with stray
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Figure 1.12: Scheme of the capacitive resonant bridge readout and actuation circuitry for both the
channels of the x axis. The sum of the signal in the two channels provides the translational displacement,
while the difference gives the rotation of the test mass. Actuation voltages Vact can be applied directly
to the electrodes through the modulation of audio frequency signals [13].

charges. Moreover the voltage VAC used to sense the test mass motion has to be as low
as possible because voltages produce stiffness, as will be shown in the next chapter. In
particular the electrostatic stiffness increases with the voltage squared, while the sensor
noise decreases linearly with the applied sensing voltage. Finally, the choice of materials
is very crucial: a high thermal conductivity is desired in order to limit temperature gra-
dients across the electrode housing and, in particular for the test mass, materials with
low level of magnetic impurities are used.
The inertial sensor has two different modes of operation, Wide Range mode (WR) and
High Resolution mode (HR) [17]. These two modes of operation differ in the accuracy
of the measurements as well as in the measurement ranges. WR mode is a coarser mode
with a large measurement range, whereas HR mode is the mode with high accuracy and
a smaller measurement range.
The inertial sensor designed for LISA (and LISA Pathfinder) has been developed and
tested, by means of several prototypes, at the University of Trento with the torsion
pendulum facility [18, 19].
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Figure 1.13: Sketch of the TM surrounded by a pair of electrodes employed for translational and
rotational motions. The colours indicate the two capacitive bridges. The translation of the TM is
characterized by a capacitive imbalance with the same sign, while if the sign changes the TM rotates.

1.4 LISA Pathfinder mission

The detection of gravitational radiation in LISA requires high-precision technology to
fulfill the very demanding specifications in terms of acceleration and readout noise. In
view of such an ambitious project, an in-flight technology demonstrator has been designed
with the objective of testing the low frequency GW detection metrology and the drag-free
control from space. In particular LISA Pathfinder, the precursor mission of LISA, will
provide an overall upper limit on all sources of stray force noise that could arise in LISA.
LISA Pathfinder (LPF) is an European Space Agency mission launched on December 3rd

from Europe’s spaceport in Kourou, French Guiana. After a cruise about 50 days long,
LISA Pathfinder arrived at its final orbit around the L1 Lagrangian point of the Sun-
Earth system. The LTP nominal science operations started on March 1, 2016, after the
commissioning of the instrument and the release of the TMs and lasted three months.
Then, on June 26, there was the time of the DRS payload operations, which lasted
until the end of October. An extended mission, approved by ESA’s Science Programme
Committee, began on 1 November, for seven months.
The scientific objective of LPF is the measurement, in such a quiet environment, of the
nearly-pure free-fall motion close to the level of LISA. The LPF spacecraft contains two
LISA TMs at the ends of a short interferometer arm. In other words, the 1 million
kilometer armlength of LISA is shrunk down to a few tens of centimeters. At such a
scale it is no longer possible to detect gravitational waves, nevertheless the scientific
return for LISA in terms of stray force noise measurement and interferometric readout,
is guaranteed. In practice, the LPF requirement on the differential acceleration arising
from parasitic forces is relaxed a factor ∼ 7 with respect to that of LISA (i.e. S1/2

∆g =

30 fm s−2 Hz−1/2 at 1 mHz) within the nominal frequency band 1 mHz ≤ f ≤ 30 mHz.
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The relaxation of the acceleration noise floor is due to limitations related to having a
single spacecraft system, whereas the increase of the minimum frequency shortens the
testing time. LPF must also achieve a sensitivity level of the local interferometric readout
close to that of LISA (S1/2

IFO < 9 pmHz−1/2 above 3 mHz). Because is not possible for a
single spacecraft to follow both the trajectories of the TMs along the sensitive degree of
freedom x, only one TM is in free fall mode (TM1, the “drag-free” test mass), whereas
the second TM (TM2) must be electrostatically controlled to follow the first by means
of the capacitive sensor. TM1 is also the inertial reference for the drag-free control loop,
that maintains the spacecraft (SC) centered about it. The continuous actuation along
x for TM2, performed by the so-called electrostatic suspension loop, is applied mainly
to compensate for the difference of static gravitational force between the TMs: the
controller, which works at low frequencies compared to the LPF bandwidth, forces TM2
to stay at a fixed distance from TM1. The LPF control scheme is shown in Figure 1.14.
Actually, in LPF all degrees of freedom (dof) for both the TMs, except x for TM1 are
controlled. But unavoidable instabilities in the control voltages induce fluctuations in
the applied force which add acceleration noise to the TM motion, as will we show in the
next chapter. The actuation is therefore a limiting factor in LPF but not in LISA, where
the two TMs at the ends of the arm-length can be followed by their respective spacecraft
along the direction identified by the laser beam.

Figure 1.14: A schematic of the two control loops on LPF along the x-axis. The spacecraft follows
the two TMs without any mechanical contact by using the interferometric readout o1 as a reference.
The second test mass is subjected to control voltages applied on the x electrodes to follow TM1 (the
drag-free test mass); the suspension loop is based on the differential interferometer readout o12. Hdf and
Hsus indicate the gain of the drag-free and suspension loop respectively [20].

In LPF, as well as in LISA, the spacecraft is thus effectively a part of the instrument:
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as described above the attitude control of the spacecraft is driven by the payload. In
addition, the spacecraft has been designed and built with the requirements of free-falling
test masses in mind: the usual structural and thermal analysis of the spacecraft has
been extended to reduce at minimum, for instance, the gravitational effects on the TMs.
The two main payloads carried by LPF are the LISA Technology Package (LTP) and the
Disturbance Reduction System (DRS). LTP includes the GRS, the TMs, each surrounded
by the Electrode Housing and enclosed in vacuum containers, and the Optical Metrology
Subsystem (OMS), that is the laser interferometric readout of the TM’s. The test mass
is a cube made of an alloy of about 73% gold and 27% platinum with a mass of 1.928 kg
and dimension of 46 mm. A representation of LTP is shown in Figure 1.15.
The DRS is a NASA-supplied system, which uses the sensor information of the LTP (test
masses position and attitude) to control the spacecraft attitude with an independent
drag-free software and colloidal thrusters as actuators.

Figure 1.15: The LISA Technology Package (on the left) which is included in the “science module” of
LPF (the gold-coloured structure on the right, covered by the solar array). Credit: ESA/ATG medialab.

1.4.1 The physics of LPF

The central measurement of LPF is the evaluation of the differential force per unit mass
between the TMs arising from stray forces, that is the differential acceleration that
the TMs would experience in the absence of any forces, applied or known, and elastic
couplings to the satellite. This observable, which we indicate with ∆g, can be calculated
from the measured interferometric signals with reference to Figure 1.16. Similarly to
the single-TM acceleration case (Equation 1.43), we can write Newton’s equations along
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Figure 1.16: Schematic representation of the LTP capacitive actuation along x and housing coordinate
systems. In black, g1 and g2 represent the stray acceleration experimented by TM1 and TM2 respectively.

the x axis of the two TMs by considering the applied electrostatic force per unit mass
on TM2, gc, and the effective resonant angular frequencies associated with the elastic
coupling between each TM and the spacecraft, ω2

1 and ω2
2:

ẍ1 = g1 − ω2
1(x1 − xSC)

ẍ2 = g2 − ω2
2(x2 − xSC) + gc,

(1.44)

where g1 and g2 indicate the stray forces per unit mass acting on the two TMs and
induced by the SC and environment. If we combine the equations above, considering the
interferometric readout inclusive of noise, o1 ≡ x1 − xSC + n1 and o12 ≡ x2 − x1 + n12,
indicated in Figure 1.14, and expliciting the time dependence, we obtain:

∆ĝ(t) ≡ ö12(t) + ∆ω2o1(t) + ω2
2o12(t)− gc(t)

= ∆g(t) + n̈12 + ∆ω2n1 + ω2n12,
(1.45)

where and ∆ω2 ≡ ω2
2 − ω2

1 defines the differential stiffness per unit mass. Thus ∆ĝ is
an estimator of the differential acceleration noise ∆g. It comprises the “true” differential
acceleration noise ∆g, we are interested in, plus a noise contribution due to the interfer-
ometric displacement noise.
Similarly to LISA, dedicated “system identification” experiments are performed in order
to extract the calibration parameters. In the case of LPF, large motion signals in both
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o1 and o12 as well as large forces per unit mass gc are applied by means of modulated
“guidance signals” into the drag-free and suspension loops. Is it possible to evaluate the
dynamical parameters of the system by fitting the second time derivative of o12 to the
following simple model:

∆ö12(t) = (1 + λ)gc(t)−∆ω2o1(t)− ω2
2o12(t), (1.46)

where λ, ∆ω2 and ω2
2 are free parameters in the fit. After having calibrated the system,

the differential acceleration ∆g can be estimated in the standard science configuration
on LPF, typical of “noise-only” runs, where the electrostatic control on TM2 is applied
and no calibration forces are implemented.

1.4.2 LPF performance budget

As stated before, the goal of LPF is to provide an overall upper limit on all stray force
noise sources that could affect free-falling TMs in a space environment. In other words,
LPF is designed to set up a noise model for LISA by means of a full projection of the
differential acceleration noise into its components. To achieve this, the mission is not
performing just a measurement of acceleration, but a set of experiments to characterize
the noise budget. The idea behind these experiments is to generate a calibration signal
with high signal-to-noise ratio in order to estimate the induced coupling between the sys-
tem and the perturbation under study. In this sense LPF can be effectively considered
as a laboratory in orbit.
Many disturbances, in form of parasitic forces or metrology noise, have been analyzed
during the numerous laboratory campaigns with prototype hardware representative of
the final flight hardware. Some contributions, for which ground tests are not feasible, are
predicted by extended simulations based on the final flight configuration of the system.
Figure 1.17 shows the main acceleration noise sources thin lines, while the two domi-
nant instrumental contributions, from the interferometer metrology and from fluctuating
actuation forces, as thicker dashed lines. We report here a brief description for each
contribution [21]:

• Brownian force noise: residual gas inside the vacuum chamber produces Brownian
noise on the test masses. The gas damping coefficient and the resulting force
noise have been estimated analytically and calculated with numerical simulations
based on the GRS model. With the torsion pendulum the physical model has been
quantitatively verified.

• Magnetics: the remnant magnetic moment and magnetic susceptibility of the test
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mass couples to the fluctuations of magnetic field and magnetic gradient fields,
producing forces on the test mass along the x axis. Magnetically-induced forces
are expected to be one of the dominant contributions to the mission noise bud-
get at low frequencies. The magnetic contribution has been estimated consider-
ing the spacecraft magnetic environment and shielding. The value at 1 mHz is
2.8 fm s−2 Hz−1/2 [21].

• Random TM charging: in orbit, the random arrival of cosmic ray particles charge
the TMs producing force noise. The charge can be controlled using a non-contact
discharge system based on the photo-electric effect. UV light from Mercury vapour
lamps is channelled to the electrode housing or to the TM, depending on the sign
of the charge of the TM. The expected value of the TM charge in roughly 1 day is
107 charges.

• Stray voltages: the dominant electrostatic disturbance for the TM is the interaction
between the TM charge and the residual stray electrostatic field inside the electrode
housing. This source of noise has been studied in dedicated torsion pendulum test
campaigns.

• Laser radiation pressure: laser radiation pressure exerts a fluctuating force on the
TM because of amplitude fluctuations of the laser. The power spectral density of
this source of noise increases as 1/f2 at low frequency.

• Thermal gradient effects: thermal gradients across the sensor housing are expected
to cause force noise on the TM via the radiometric and radiation pressure effects.
Torsion pendulum measurements are performed to characterize this contribution.

• Cross-talk: the dynamics of the other dof may generate an unwanted force along the
x axis. This effect can arise from commanded electrostatic forces which have a non-
null component along x; another source of cross-talk derives from the dynamical
coupling that converts the motion of the other dof into a force along x. The
calculation of these effects is based on ground tests and simulation campaigns.

• x/φ actuation: any instability in the applied voltage induces a fluctuation in the
commanded force which scales as the applied force (see section 2.3). This source
of noise is the dominant contribution at low frequency for LPF but it can be
limited by increasing the voltage stability levels and improving the gravitational
balancing of the satellite, in order to reduce the force that needs to be applied
on TM2. The actuation noise has been estimated by assuming the specification
value of the spacecraft self-gravity imbalance of 0.65 nm s−2 and referring to the
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model that is developed in chapter 2. Its value at 1 mHz, based on ground tests,
is 7.5 fm s−2/

√
Hz [21].

• Interferometric noise: noise in the differential interferometry readout converts into
an effective force noise. This contribution dominates the noise power spectrum
above 3 mHz. The IFO performance has been measured with prototype flight
optical bench, laser, and phasemeter hardware. The interferometer displacement
readout noise is required to be below 9 pm /

√
Hz above 3 mHz, approaching the

specifications for the measurement of the TM position by the local interferometer
in LISA.

The total acceleration noise upper limit for LISA provided by the expected sensitivity
of LPF (before the launch) can be obtained by adding up the contributions to the ac-
celeration noise which are shown in Figure 1.17. In order to compare it with the single
TM acceleration requirement for LISA, we have divided it by root two. Because the
actuation noise along x is not present in LISA, a dedicated experiment is implemented
in LPF where the actuation is removed: the control along x on TM2 is limited to brief
kicks, such that it is effectively left free between two successive impulses. Details of this
test (called “free-fall mode” experiment) are given in chapter 3. The resulting pre-flight
upper limit achieved in this configuration is marked in black in Figure 1.18. The im-
proved noise however includes the needed electrostatic control of the TM rotation, as
will be maintained in LISA.

1.4.3 First results of LISA Pathfinder

The first results of LISA Pathfinder have been published in June 2016, after the first
month of science operations. They refer to a noise measurement 6.5 days long, performed
in May 2016 and starting 127 days after launch [23]. Figure 1.19 shows the square root
of the power spectral density (the ASD, Amplitude Spectral Density) of the differential
acceleration between the TMs evaluated as reported in section 1.4.1. The results are
compared with the LPF and LISA requirements4. The spectrum is evaluated according
to the standard Welch’s averaged periodogram method [24], using 50% overlapping data
stretches 40000 s long and a Blackmann-Harris spectral window. The spectrum is the
result of 26 averaged periodograms, which give a relative error, with 1σ precision, of
10%. The first four frequency bins of the averaged periodogram are discarded, as they
are heavily biased by the spectral leakage from very low frequency noise. The figure

4As anticipated in section 1.4.2, the requirements of LISA, in terms of ASD, has been calculated
by multiplying the specification on the single acceleration by

√
2. This derives from the assumption

that force fluctuations around each TM of LISA are incoherent, as the relative distance between the
spacecrafts is large.
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Figure 1.17: Estimate of differential acceleration noise sources for LISA Pathfinder based on ground
measurements and simulation campaigns, as reported in [22]. The dashed lines indicate the pre-flight
instrumental noise (interferometry readout and x axis actuation), while the remaining lines are the main
sources of stray acceleration that are relevant for LISA.

includes also the expected contribution to the noise originated from the actuation con-
trol, evaluated in two different experiments: the standard science measurement and the
free-fall mode experiment.
The results demonstrate that LISA Pathfinder has exceeded the requirements: the rel-
ative acceleration noise experienced by the TMs is of (5.57 ± 0.04) fm s−2/

√
Hz for

frequencies between 0.7 and 20 mHz. This value is lower than the LPF requirements by
more than a factor 5 and within a factor 1.4 of the specifications for LISA. Moreover
the noise in the interferometer displacement readout, which dominates at higher fre-
quencies (above 60 mHz), is almost two orders of magnitude better than requirements,
(34.8 ± 0.3) fm/

√
Hz. In particular, the noise is below the LISA requirements at fre-

quencies higher than 10 mHz.
The time-series of ∆g has been found to be dominated by its quasi-static part, of a
few tens of pN, while its fluctuations are of the order of fN/

√
Hz. Its value has var-

ied over the mission, from a maximum of about 20 pm/s2. The decrease was partially
due to the propellant depletion while its variation was caused by the switching between
branches used to regulate the propellant emission over the mission. Because of this low
static gravitational acceleration level achieved in space compared with the prediction of
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Figure 1.18: Prediction of the single TM acceleration noise upper limit for LISA provided by the
expected performance of LPF in the dedicated “free-fall mode” experiment, where the x actuation on
TM2 is turned off (black line). The predicted estimate is compared with LISA and LPF requirements [22].

650 pm/s2, the maximum force per unit mass along x2 has been reduced to ∼ 25 pm/s2

(the specification in nominal control authority was of 1141 pm/s2). The actuation noise
is thus expected to be much lower than 7.5 fms−2/

√
Hz at 1 mHz and this has been

measured, as will be shown in chapter 2. The corresponding lower actuation configu-
ration, to which the actuation predictions in Figure 1.19 refer, is called URLA (Ultra
Reduced Low Authority, see Figure 2.4). At this level, we will show that the sensitivity
achieved during the free-fall mode experiment, in reality, is expected to be compatible
with the performance of the standard noise measurement. Details on the actuation noise
characterization are given in chapter 2.
Looking again at Figure 1.19, we can distinguish the following main contributions to the
spectrum:

• Interferometer readout noise, which contributes to the ASD of the differential ac-
celeration a term S

1/2
IFO(2πf)2. As reported above, it dominates the spectrum above

60 mHz.

• Brownian noise, which dominates the spectrum at frequencies between 0.7 and
20 mHz. It is frequency-independent, with an amplitude of (5.57± 0.04) fm s−2/

√
Hz

in terms of ASD. Its value has decreased further over time during the mission and
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this is likely due to the venting of the vacuum system to space.

• Low frequency tail, which appears at frequencies below 0.5 mHz. This source of
noise increases above the Browninan noise with decreasing frequency. This low-
frequency noise has been observed to decrease of about 1 order of magnitude over
the first 55 days of operations. Its origin could be associated to errors found in
actuation force subtraction introduced by digitization (see section 1.5.1), but a full
understanding of this contribution is still under study.

It must be specified that the ASD of ∆g shown in Figure 1.19 has been corrected for
two effects. These corrections, shortly described in the following, are currently applied
to data over the mission.

Correction for the centrifugal force. The DFACS controller on LPF applies torques
on the TMs in order to keep them with a fixed orientation relative to the spacecraft.
As the spacecraft rotates, a centrifugal force is induced on the TMs. In particular, the
component of this force from rotation of the spacecraft around y and z is directly picked
up along the x axis. Indeed, it is possible to demonstrate that the differential acceler-
ation along the sensitive axis x experienced by the TMs because of the rotation of the
spacecraft, is:

∆gΩ,x = −∆(~Ω× (~Ω× ~L))x ≈ (Ω2
φ + Ω2

η)L (1.47)

where ~L is the vector that identifies the separation between the TM (0.376 m), Ωφ and
Ωη are the angular velocities of the SC around the z and y axis respectively.
The centrifugal force is expected to be relevant at frequencies below 0.5 mHz, as the SC
attitude is controlled by a set of autonomous star trackers (AST) which present a relative
high sensing noise of about 3 rad/

√
Hz at 0.1 mHz.

The centrifugal correction is calculated by decomposing the angular velocity into a quasi-
DC part ~ΩDC and a noisy part ~Ωn(t). ~ΩDC is given by the following vectorial expression:

~ΩDC = 2
d~Q

dt
⊗ ~QT, (1.48)

where ~Q is a four-dimension vector indicating the quaternions measured by star trackers
and used to calculate the angular velocity of the spacecraft. The DC part, a few degrees
per day, corresponds to the angular velocity applied to the SC to keep the communication
antenna oriented toward the Earth.
The noisy part can be recovered by assuming the TMs as inertial gyroscope, namely by
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integrating the torque of the TMs, Ni according to the expression:

Ωn,i(t) =

∫ tf

t0

1

2

(
Ni,1

Iii,1
+
Ni,2

Iii,2

)
dt, (1.49)

where i indicates a generic axis and Iii,1 the momentum of inertia of TM1, for instance.
The correction for the centrifugal force is not constant over the mission as it depends on
orbital dynamics and on the noise in angular velocities. The data shown in Figure 1.19
are an example of one of the largest corrections over the first month of operations. The
reduction of the noise at low frequency is quite evident in Figure 1.20. This effect will not
be present in LISA, as the angular control of the spacecraft refers to the interferometer
wavefront.

Correction for the SC coupling. Another effect that was observed in the data relates
to the cross coupling of the high frequency and noisy spacecraft motion with the sensi-
tive interferometer readout x12. This effect appears as a “bulge” at high frequencies in
the spectrum of ∆g, from 20 to 200 mHz, as it is visible in Figure 1.20. This feature
can be minimized in software, by fitting a linear combination of translational and rota-
tional acceleration of the spacecraft from ∆g. Another approach consists in adjusting
the alignment of the TMs, during the so-called engineering days. The spectrum reported
in Figure 1.19 has been corrected using both approaches. In particular, the alignment
operation reduced the bulge by roughly a factor 2 in ASD around 80 mHz. Details on
this correction are left to future publications.
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Figure 1.19: First LPF results measured for 6.5 days starting 127 days after launch in URLA con-
figuration (Fmax,TM2 = 50 pN). The data are compared with the specification in terms of differential
acceleration for LPF and LISA. The red and orange curves indicate the predicted actuation contribution
to the noise for two different configurations in the same authority, the science mode (red) and the free-fall
mode (orange).

Figure 1.20: ASD of ∆g as reported in Figure 1.19 (blue) compared with the “raw” one (red curve),
obtained before the correction for the centrifugal force and the SC coupling.

The acceleration noise performance achieved by LISA Pathfinder provides a consistent
basis to define an upper limit on the LISA sensitivity. The results of LPF referring to
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the period from November to December 2016 in terms of single TM acceleration noise,
have been released for the final draft of the LISA proposal in response to the ESA call for
L3 mission concepts [1]. The results display a further decrease of the Browninan noise,
below 3 fm s−2/

√
Hz, achieved over the last months of operations (see Figure 1.21). In

particular, the noise in the 3 − 8 mHz frequency band is consistent with a 1/(t − t0)

time decay, where t0 is the time of venting to space (February 3, 2016). The Browninan
motion from residual gas is likely ascribed to the residual pressure, as it is compatible
with the radiometric effect [23].
On the basis of LPF results, the proposed LISA requirement on stray acceleration on a
single TM is:

S1/2
a ≤ 3 · 10−15

√
1 +

(
0.4mHz

f

)2

·

√
1 +

(
f

8mHz

)4 m · s−2

√
Hz

(1.50)

with 100µHz < f < 0.1Hz for the requirements, 20µHz < f < 1Hz for the goal. The
new LISA requirement, compared with one of the latest average TM acceleration noise
measured on LISA Pathfinder, is shown in Figure 1.21. The spectrum is the result of
averaging over 12 periodograms 200 000 s long, measured in 3 separate noise-only runs
between late November 2016 and early January 2017. The data are corrected for the
centrifugal effect due to SC rotation, and roughly 10 clearly identifiable glitches have
been removed from the data by fitting.

1.5 Geodesy with LPF

LISA Pathfinder can be considered as a differential (electrostatic) accelerometer in space
as it measures the relative acceleration between two TMs. These accelerometers are
widely used in gravity gradiometer systems for geodesy studies of the Earth’s gravity
and fundamental gravity gradient tests. This kind of research requires a very high level
of instrumental sensitivity and an accuracy in the measurement of the gravity gradient of
the order of 1 mE/

√
Hz 5 in presence of a static differential acceleration of ∼ 1µms−2.

In its most conceptually simple form, a gravity gradiometer measures the differential
gravitational accelerations of two objects and divides it by the distance between them to
obtain a gradient. The most recent gradiometer from space is the ESA mission GOCE
(Gravity field and steady-state Ocean Circulation Explorer), which mapped the variations
in the gravity field in the mHz frequency band (5-100 mHz) from a low-Earth orbit
(LEO orbit, at an average altitude of ∼ 250 km) [25]. GOCE is a drag-free satellite
which consists of three gradiometers arranged orthogonally, each one formed by a pair

5E is the abbreviation of Eötvös, the standard unit to express the gravity gradient (1E = 10−9 s−2).
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Figure 1.21: Averaged ASD of single TM acceleration noise measured with LISA Pathfinder (in blue)
compared against the LISA requirement (the dashed red curve). [1].

of accelerometers mounted at the end points of a half meter baseline (see Figure 1.22).
Each accelerometer is composed of a test mass that is suspended by a capacitive feedback
system inside a chamber with eight pairs of electrodes, used both as capacitive sensors
and electrostatic actuators. GOCE has measured the gravity-gradiometer tensor, that
is a 3×3 tensor defined by the second derivatives of the gravitational potential, with
a precision of 20 mE/

√
Hz at frequencies above 30 mHz (for the 50 cm baseline this

corresponds to an error in acceleration of 10 pm s−2/
√
Hz) [25].

The principle of operation is based on the measurement of the compensation forces needed
to maintain a proof mass at the center of a cage. This is performed, similar to LPF, by
the capacitive system used to control the proof mass’s position. However compensating
1µms−2 accelerations is a limiting factor for GOCE (the acceleration noise corresponds
to roughly 10 ppm/

√
Hz in actuator stability). In addition, the spacecraft is affected by

the drag forces which increase in a low orbit. Moving away from the Earth would not
necessarily improve much. In particular, the main limitations in GOCE with respect to
LPF are related to surface forces and to the electrostatic sensor design (the gaps between
electrodes and TM are about one order of magnitude smaller than the LPF ones [26])
and to the contact method applied to discharge the TMs.
The configuration of LISA Pathfinder is essentially that of a gravity gradiometer designed
for the measurement of one component of the gravity-gradient tensor, ∂gx/∂x, as it
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Figure 1.22: Configuration of GOCE accelerometers (indicated with A1, ..., A6) in the gradiometer
reference frame (GRF) [25].

is composed of a single accelerometer aligned along the x axis. As anticipated, the
improvement achieved by LPF in terms of sensitivity (section 1.4.3) derives from its
location: in L1 the stray forces of non-gravitational origin which can arise on the satellite
are reduced with respect to a LEO orbit and, more especially, the gravity difference
experienced by the TMs is six orders of magnitude lower, from µms−2 to of order nm s−2

(by requirement) and order 10 pm s−2 measured in orbit. We note that this is limited
by spacecraft self gravity, which dominates over the Earth gradient, of order 100 fm s−2

at L1. Moreover, in LPF the measurement of relative displacement of the TMs (and
thus their relative acceleration) is performed with a very high precision interferometer.
This performance, again, has been favoured by the LPF location. In this view LISA
Pathfinder can be considered an extremely sensitive gravity gradiometer.

1.5.1 A free-falling differential accelerometer: the free-fall mode

The principle of operation of a servo-controlled electrostatic accelerometer, such as LPF
or those developed for geodesy applications from space, combines the measured TM ac-
celeration and the applied feedback force, as in Equation 1.45. A schematic illustration
of the concept of measuring a force for compensation, such as gravity, is visible in Fig-
ure 1.23a. In this respect, LPF is an hybrid differential accelerometer as it measures,
in the mHz frequency band, the commanded force (per unit mass, gc) applied on TM2
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to follow TM1 to balance the differential force, whereas at high frequency it detects the
relative acceleration of the TMs (ö12). In practice, what LPF measures is the differential
acceleration between the TMs from which the acceleration noise due to parasitic forces
(∆g) is evaluated, as reported in section 1.4.1: ∆g ≈ ö12 − gc.
In fact, what we know is the force that is commanded to the electrostatic actuator. Thus,
to calculate the actual applied force, we need to calibrate the actuator, with the issues
that it entails. Moreover, the electrostatic control produces an additional source of noise,
as already stated. To calibrate the electrostatic actuator, dedicated runs have been per-
formed on LPF where a low-amplitude calibration signal is applied [23] . The first results
of this campaign had shown fluctuations in the actuator gain. This was due to an error
in force subtraction related to a non-uniform digitization in the ADC voltage conversion.
This systematic error in the determination of the actual commanded force was causing
an excess in actuation noise at low frequency in ∆g spectrum. Currently, the correction
of this effect is based on analytic and experimental calibration [27].
An alternative technique to the continuous suspension control for measuring a force, con-
sists in applying the compensation force in the form of periodic pulses, between which the
TM freely falls without any further compensation forces. This configuration is illustrated
in Figure 1.23b. The intermittent control and measurement scheme is commonly used

a) b)

Figure 1.23: Schematic illustration of the two possible methods to measure a force F , such as gravity,
by measuring the applied compensation force to the system in contrast to the direction of the static
force (Fig.a) or by releasing the system free of any forces and measuring its acceleration (Fig.b).

in ground-based gravimeters such as classical drop-towers and atomic fountains [28]. In
LPF it has been implemented in the form of a “drift” or “free-fall” operational mode, as
anticipated in section 1.4.2, where the suspension system is turned on for 1 s at 350 s
intervals. The potential of this “free-falling” accelerometer is thus to estimate the accel-
eration noise without both the actuator, and therefore without the need to calibrate it,
and the relative actuation noise. Indeed, in the absence of the actuation force per unit
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mass applied on TM2 along x, gc, we can write Equation 1.44 as:

ö12 = ∆g −∆ω2o1 − ω2
2o12 (1.51)

Without the actuator, we thus remove acceleration noise coming from the control forces
on the x axis. However, in this control mode implemented on LPF, the actuation noise
from φ torque control remains. On the other hand, the free-fall mode allows us to esti-
mate, by comparison, the power of the actuation noise in the standard measurement.
The intermittent control however might introduce non-linearities in the interferometer
readout because of the larger displacement (∼ 150 nm in presence of 10 pm s−2). More-
over, it poses a challenge in data analysis: the impulses represent a high noise configu-
ration and must be removed, thus leaving gaps in data (see chapter 4).

After this introduction to the gravitational radiation, its observation from space and
the overview of LISA and LISA Pathfinder, included the first results of the precursor
mission, the next chapter will investigate the noise source due to actuation arising on
LISA Pathfinder. As stated above, this noise contribution is related, in particular, to the
control along the x degree of freedom of TM2. The actuation model analysis is crucial
to characterize the inertial sensor with effect on LISA, as this source of noise will enter
also in the LISA noise budget.





Chapter 2

Actuation noise in LPF

The electrostatic control on LPF is principally needed to force TM2 to be maintained
at a fixed distance from TM1 to compensate the DC and slowly varying differential
acceleration experienced between the two TMs along the sensitive degree of freedom.
But the actuation is also necessary to stabilize the TMs at low frequencies and along the
non-measurement degrees of freedom. As anticipated, any instability in the electronics
actuation circuitry induces a fluctuation in the commanded force which scales as the
applied force. This chapter aims to investigate the source of noise deriving from actuation.
We start by describing the electrostatic model on LPF and present the capacitive actuator
design. The second part of the chapter is devoted to the characterization of the actuation
noise on LPF. Using the actuation noise data campaign, the actuation contribution to
the noise spectrum in different authority configurations will be investigated. Moreover,
this analysis will allow us to project not just the actuation noise, but also the expected
total noise in experiments different from the standard science measurement, such as the
free-fall mode.

2.1 The GRS electrostatic model

As anticipated in the previous chapter, the gravitational reference sensor designed for
LISA, and thus for LPF, is used both for the measurement of TM position along some
degrees of freedom and for controlling them by means of voltages Vi applied to the
surrounding electrodes. To achieve actuation, a voltage difference is thus established
across electrode and TM.
The inertial sensor housing represents a capacitance with respect to the test mass that
cannot be modeled like a simple single electrode. In this context, the formula of the
instantaneous electrostatic force acting on the test mass along a generic degree of freedom

45
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q, considering the test mass itself and N electrodes as a system of conductors, derives
from the fully representative electrostatic model which is schematically described by
Figure 2.11. It considers all the set of test mass and sensor surfaces, including electrodes
and guard-rings surfaces, in a configuration of conductors and capacitances. In this
scheme, the general form of the electrostatic force acting on the test mass is:

Fq =
1

2

N∑
i=1

N∑
j=i+1

∂Ci,j
∂q

(Vi − Vj)2, (2.1)

where q is a generalized coordinate of all possible degrees of freedom, Vi and Vj are con-
ductor potentials in a system of N conductors and Ci,j is the corresponding capacitance
between them. This equation can be developed with reference to the x degree of freedom,
considering all the contributions of the gradient of the electrode to test mass capacitance
(CELi,TM ) between each electrode and its surrounding housing (CELi,H), those between
the test mass and its surrounding housing (CTM,H) and also the in-between electrode
capacitance gradient (CELi,ELi):

Fx =
1

2

18∑
i=1

∂CELi,TM
∂x

(Vi − VTM )2 +
1

2

∂CTM,H

∂x
V 2
TM

+
1

2

18∑
i=1

∂CELi,H
∂x

V 2
i

+
1

2

18∑
i=1

18∑
j=i+1

∂CELi,ELj
∂x

(Vi − Vj)2.

(2.2)

Therefore, the computation of the force does not consider the TM-electrode and TM-
housing capacitances only. The test mass potential VTM in equation 2.2, is given by:

VTM =
1

Ctot

(
QTM +

18∑
k=1

CELk,TMVk

)
, (2.3)

where QTM is the test mass charge and Ctot = CTM,H +
∑

k CELk,TM , that is the total
capacitance. The fourth term in Equation 2.2 is shown to be negligible with respect to
the other gradients by finite-element analysis and thus is neglected. In addition, for the
sake of the actuation design and the actuation voltage noise analysis that follows, we
neglect the second term, as it is zero by design symmetry for a centered TM and the first
order correction is small for TM displacements.

1This model, based on finite-element analysis has been carried out by Airbus Defence and Space
GmbH, the prime contractor responsible for providing the integrated LTP payload [29].
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Figure 2.1: On the left: schematic representation of the inertial sensor as a system of electrostatic
conductors. The 18 electrodes are indicated from EL1 to EL18, H is the grounded Electrode Housing,
TM is the test mass. The sketch shows all the possible capacitances between the conductors [29].

After the considerations above and assuming the TM voltage zero in the absence of any
free charge2, we can express the resulting force and the effective capacitance gradient
with respect to the x displacement for a single electrode, ∂C∗act/∂x, as follows:

Fx =
1

2

18∑
i=1

∂CELi,TM
∂x

(Vi − VTM )2 +
1

2

18∑
i=1

∂CELi,H
∂x

V 2
i , (2.4)

∂C∗act
∂x

≡
∂Cx (EL,TM)

∂x
+
∂Cx (EL,H)

∂x
. (2.5)

For nominal case of our actuation scheme, with TM centered and VTM = 0, the actuation
force along x, for instance, will be:

Fx =
1

2

4∑
i

∂C∗act
∂x

V 2
i ,

=
1

2

∣∣∣∣∂C∗act∂x

∣∣∣∣ [V 2
1 (t) + V 2

2 (t)− V 2
3 (t)− V 2

4 (t)
]
,

(2.6)

as the first derivative of the capacitance changes sign on the opposing electrode. Here
we have considered the four electrodes involving in the x-φ actuation scheme only (i.e.
electrodes 1 to 4, see Figure 2.2). In addition, we have defined the applied voltages as
a function of time, as these are given by the product of a voltage amplitude Vi and a
zero-mean waveform, as will discussed in the next section.
In the following, it is assumed that nominally only the x-facing electrodes have an influ-

2This condition is imposed in order to limit unwanted couplings between different degrees of freedom.
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ence on the force along x, at least to first order, and the contribution coming from the
other derivatives of the capacitance are considered negligible [30].

Actuation stiffness.

Electrostatics forces induce an electrostatic spring constant. In the x-φ actuation con-
figuration, applying only forces in order to maintain the TM average voltage at zero,
the averaged variation of the electrostatic force along the x direction can be derived by
differentiating Equation 2.5 and by using 2.3:

−
〈
∂Fx
∂x

〉
=−

〈
1

2

∣∣∣∣∂2C∗act
∂x2

∣∣∣∣ [V 2
1 (t) + V 2

2 (t) + V 2
3 (t) + V 2

4 (t)]

− 1

Ctot

(∣∣∣∣∂CEL,TM∂x

∣∣∣∣ [V 2
1 (t) + V 2

2 (t)− V 2
3 (t)− V 2

4 (t)]

)2〉
.

(2.7)

Equation 2.7 corresponds to the electrostatic spring-like coupling between the test mass
and all the surfaces of the electrode housing, namely the electrostatic stiffness associated
to actuation. Because of this term, the system behaves like a negative spring as the test
mass becomes unstable towards the sensor surfaces.

2.2 Capacitive actuator design

As anticipated, commanded forces are applied via AC voltages. DC voltages are not
allowed as they may couple with other sources of voltage noise or stray charges. In the
most general form the AC actuation voltages can be written as a peak voltage amplitude
(VAC) multiplied by an actuation waveform χi. The waveforms are designed to give
〈χiχj〉 = 0, to avoid cross-coupling effects arising from the actuation along different
degrees of freedom [31].
In general, in order to have an actuation scheme with VTM = 0 and constant actuation
stiffness, the electrodes in the x-φ configuration for instance, are biased according to (see
[30] and Figure 2.2):

V1(t) = V1x sin(ωxt) + V1φ sin(ωφt),

V2(t) = −V1x sin(ωxt) + V2φ cos(ωφt),

V3(t) = V2x cos(ωxt)− V1φ sin(ωφt),

V4(t) = −V2x cos(ωxt)− V2φ cos(ωφt).

(2.8)
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The time dependence of the voltage amplitudes is omitted because it is assumed that
time variations of these occur on time scales longer than the periodicity of the waveform.
The actuation voltage can thus be separated into a contribution for x-actuation and
φ-actuation. Translational control is based on 60 Hz waveform, torque actuation is
performed with 270 Hz frequency voltages.

Figure 2.2: Actuation configuration for x and φ degrees of freedom. The corresponding voltage
amplitudes are depicted, as reported in Equation 2.8. [32].

Figure 2.3 shows a particular actuation configuration where only the x degree of freedom
is controlled: again, the voltage amplitudes V1x and V2x have been applied maintaining
the TM voltage at zero, assuming the TM centered and not rotated. In this case, from
Equation 2.7 it follows that, to maintain the actuation stiffness constant the quantity
V 2

1x+V 2
2x ≡ V 2

max,x must be kept constant (and similarly V 2
1φ+V 2

2φ ≡ V 2
max,φ). Moreover,

using the voltages reported in Equation 2.8, the force applied along x in the configuration
depicted by Figure 2.3 can be obtained:

Fx =
1

2

∣∣∣∣∂C∗act∂x

∣∣∣∣ (V 2
1x − V 2

2x). (2.9)

From Equation 2.9, it is possible to express the voltage amplitudes, for the φ control
also, as a function of the maximum and commanded force and torque [30]:

V1x =

√√√√Fx,max + Fx∣∣∣∂C∗
act
∂x

∣∣∣ V2x =

√√√√Fx,max − Fx∣∣∣∂C∗
act
∂x

∣∣∣ ,

V1φ =

√√√√Nφ,max +Nφ∣∣∣∂C∗
act
∂φ

∣∣∣ V2φ =

√√√√Nφ,max −Nφ∣∣∣∂C∗
act
∂φ

∣∣∣ ,

(2.10)

where Fx,max and Nφ,max are the maximum force and torque that can be commanded,
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while Fx and Nφ the force and torque actually applied.

Figure 2.3: Actuation configuration for the x degree of freedom with actuation scheme of constant
stiffness and TM voltage zero. The amplitude voltages applied on the four electrodes are indicated in
the figure.

In addition, by using Equations 2.6 and 2.10, the actuation stiffness along the x-axis,
kxx,act, can be write a a function of the maximum force and torque allowed as well:

kxx,act = −∂Fx
∂x

= −Fmax

∣∣∣∂2C∗
act

∂x2

∣∣∣∣∣∣∂C∗
act
∂x

∣∣∣ −Nmax

∣∣∣∂2C∗
act

∂x2

∣∣∣∣∣∣∂C∗
act
∂φ

∣∣∣
1− 4

1

Ctot

∣∣∣∂CEL,TM∂x

∣∣∣2∣∣∣∂2C∗
act

∂x2

∣∣∣


≈ −2Fmax
d
− 2Nmax

dRφ
,

(2.11)

where d is the TM-electrode gap along x, while Rφ = 10.75mm is half the separation
between the centres of two adjacent x-electrodes. Here the infinite parallel plates ap-
proximation has been assumed [33].
Equation 2.11 thus shows the dependence of the actuation stiffness on the distance be-
tween the TM and the electrodes. The requirement on the absolute value of the ac-
tuation stiffness per unit mass along the x axis and in nominal High Resolution mode
(Fx,max = 2.2 nN and Nφ,max = 10.5 pN·m, see Figure 2.4) is 6.50 · 10−7s−2, while the
maximum voltage allowed in this configuration is 4.45 V [34].

2.3 Actuation noise model

The LISA and LPF acceleration requirements are set at frequencies where it is difficult
to achieve high levels of electronics stability. Unavoidable “in band” fluctuations in the
applied voltages induce fluctuations in the force exerted along x2 which add acceleration
noise to the TM2 motion. The resulting noise in force for a given relative fluctuation of
voltage δVx on a certain electrode is proportional to the force applied by that electrode,
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Fx as shown by the following relationship:

Fx ∝ V 2
x ⇒

δFx
Fx
∝ 2

δVx
Vx

, (2.12)

As a consequence, the relative stability of the voltage gives the relative stability of the
force that is applied to compensate the DC differential acceleration ∆aDC between the
TMs. If the actuation were limited to a single force, applied with a single electrode, we
would have a noise contribution due to actuation of:

S1/2
aact ≈ 2∆aDCS

1/2
δVx/Vx

, (2.13)

in ASD terms. The true actuation noise is complicated by the simultaneous application
of actuation torques in φ and the “constant stiffness” actuation scheme which pulls on
both sides of the TM. The ASD of the relative voltage amplitude measured on ground
and confirmed in flight, takes a value in a range between 3 and 8 ppm/

√
Hz at 1 mHz [21,

23]. Considering the requirement levels for ∆aDC < 0.65 nm s−2 and rotational φ angular
acceleration below 2 nrad s−2, the pre-flight estimates of actuation noise were roughly
7.5 fm s−2/

√
Hz at 1 mHz [21]. In this case, this source of noise is thus expected to be

the dominant contribution at low frequency in LPF.

The estimation of the contribution of the actuation for the noise budget in LPF is one
of the mission’s priorities. Indeed, an experimental investigation of the actuation force
noise contributes to the GRS characterization with effect on the LISA instrument design,
especially for the x-φ scheme as in LISA the φ degree of freedom will be controlled. In this
chapter we report the characterization of the actuation noise on LPF described in [35]
and [36].
The actuation force noise can either be multiplicative or additive. Multiplicative noise
can be originated from fluctuations of the reference voltage and other gain fluctuations
of the actuation system. This kind of noise is likely to be the dominant noise source
for the measurement of ∆g at low frequencies. Additive noise can be any noise that is
independent of the voltage amplitude. The overall voltage error for each j electrode in
the x-φ actuation scheme of TM j (TM1 for instance) can be expressed as:

δV11(t) = (α+ α1 + α11) [V1x sin(ωxt) + V1φ sin(ωφt)] + n11

δV12(t) = (α+ α2 + α12) [−V1x sin(ωxt) + V2φ cos(ωφt)] + n12

δV13(t) = (α+ α3 + α13) [V2x cos(ωxt)− V1φ sin(ωφt)] + n13

δV14(t) = (α+ α4 + α14) [−V2x cos(ωxt)− V2φ cos(ωφt)] + n14,

(2.14)
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where the description of the multiplicative and additive factors is the following:

• α refers to a common mode fluctuation involving all electrode amplifiers on both
the TMs due, for instance, to a common fluctuation in the DC voltage reference
used to stabilize the carrier amplitude.

• αi is the correlated actuation noise arising from voltage fluctuations of the DC ref-
erence and revealing as a common mode fluctuation of the four electrodes involved
in the x-φ actuation control, for instance. This derives from the fact that each
group of four electrodes (x-φ, y-θ, z-η) shares the same actuation board and the
same reference voltage.

• αij is the uncorrelated contribution to the actuation noise arising from a single
electrode amplifier, for instance due to an independent gain fluctuation.

• nij is the additive noise arising from internal amplifier noise that is uncorrelated
from one electrode to the other.

The full expression of the applied actuation voltage Vij(t) on the electrode j of the test
mass i has thus the following form:

Vij(t) = [1 + α+ αi + αij ]Vij, cmd(t) + nij , (2.15)

where Vij, cmd(t) is the commanded actuation voltage. In the following we consider just
the acceleration noise along the x degree of freedom, that is we take into account only
the contribution of the x-φ actuation on TM2, which is assumed to be centered. In
addition, for simplicity, we neglect for a moment the additive noise, to consider only the
multiplicative contribution to the noise. Using the model in Equation 2.15 and observing
that F ∝

〈
V 2
〉
⇒ δF ∝ 2 〈V δV 〉, we can write:

〈
V 2
ij

〉
−
〈
V 2
ij, cmd

〉
∝ 2

〈
V 2
ij, cmd

〉
(α+ αi + αij). (2.16)

We assume that the commanded voltages are dominated by their DC component, as ex-
pected in practice. This consideration, together with the force/torque to voltage conver-
sion laws (Equation 2.10), allows us to express the acceleration noise due to an actuation
fluctuation on electrode 1 of the TM1, for instance, as:

δg11 ∝
1

m

∣∣∣∣∂C∗act∂x

∣∣∣∣ 〈V 2
11, cmd

〉
(α+ α1 + α11)

∝ 1

2
(ḡ1c + g1m +R∗γ̄1c +R∗γ1m)(α+ α1 + α11),

(2.17)
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where ḡ1c and γ̄1c are the commanded force per unit mass and the commanded torque per
unit moment of inertia on TM1 respectively, while the corresponding maximum values
allowed (authorities) are indicated by g1m and γ1m. R∗ is a geometrical arm-length factor
that for the x-electrodes is given by:

R∗ =
I

m

∣∣∣∂C∗
act
∂x

∣∣∣∣∣∣∂C∗
act
∂φ

∣∣∣ ≈ s2

6Rφ
≈ 33 cm, (2.18)

where s is the TM side length and Rφ is half the separation between the centres of
two adjacent x-electrodes, as previously defined. Considering the contributions of the
actuation noise from all x-electrodes to the differential acceleration between the two TMs,
we obtain:

δ(∆g(t)) = 2 (ḡ2c − ḡ1c)α+ 2ḡ2cα2 − 2ḡ1cα1

+
1

2
[ (ḡ2c + g2m +R∗γ̄2c +R∗γ2m)α21 + (ḡ2c + g2m −R∗γ̄2c +R∗γ2m)α22

+ (ḡ2c − g2m −R∗γ̄2c −R∗γ2m)α23 + (ḡ2c − g2m +R∗γ̄2c −R∗γ2m)α24

− (ḡ1c + g1m +R∗γ̄1c +R∗γ1m)α11 − (ḡ1c + g1m −R∗γ̄1c +R∗γ1m)α12

− (ḡ1c − g1m −R∗γ̄1c −R∗γ1m)α13 − (ḡ1c − g1m +R∗γ̄1c −R∗γ1m)α14 ].

(2.19)

The first term 2(ḡ2c−ḡ1c) = −∆gDC represents the difference in the applied forces needed
to compensate the gravitational imbalance between the two TMs (the major contribution
to the dc-imbalance). The corresponding contribution to the acceleration noise, which is
common for the two TM, is thus the same in any standard science measurement (except
for the free-fall experiment where there are not applied forces, see next chapter) and
it does not depend on the actuation scheme. The α1 and α2 factors indicate common
mode fluctuations in the voltage reference or on the actuation board involving each set
of four electrodes. These contributions depend only on the commanded forces, not on
the applied torque or force/torque authorities. The remaining eight terms, dependent of
the force/torque applied and authorities, represent the independent fluctuations of the
individual electrodes.
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2.4 Estimation of actuation contribution to noise spectrum

The model for the acceleration noise spectrum, including just the multiplicative contri-
bution for the actuation noise, can be derived from Equation 2.19 [36]:

S(∆g)act = A0S0 +A1Sα1 +A2Sα2

+ A11Sα11 +A12Sα12 +A13Sα13 +A14Sα14

+ A21Sα21 +A22Sα22 +A23Sα23 +A24Sα24 .

(2.20)

Here Sα1 and Sα2 are the correlated gain noise of the four amplifiers for each TM, whereas
Sαij is the uncorrelated gain noise for amplifier j of TM i. The coefficients Ai and Aij
coupling the correlated and uncorrelated noise respectively and are defined as follows:

• A0 = 4(ḡ2c − ḡ1c)
2 = 4(∆gDC)2

• A1 = 4ḡ2
1c , A2 = 4ḡ2

2c

• A21 = 1
4(ḡ2c + g2m +R∗γ̄2c +R∗γ2m)2, for example for electrode 1 of TM2.

The last expressions lead to important observations. The first one is that the commanded
torque on φ produces uncorrelated noise in the control along x. In addition, the noise
spectrum of ∆g changes with the actuation configuration. In fact, the coefficients Aij
depend not just on the commanded forces/toques but also on the authority levels. This
is not the case of the correlated noise.
A possibility to reduce for example the contribution arising from the eight terms Aij can
be to limit the authority to very near the needed force or torque levels.
Different actuation configurations, which vary by force/torque commanded and author-
ity levels, have been implemented on board LPF. In particular, during the mission the
authority for the critical x and φ degrees of freedom has been gradually reduced thanks
to the force level actually needed in flight which has proven to be lower than the ex-
pectations, as anticipated in section 1.4.3. Indeed, the quasi-static part of ∆g measured
during the first weeks of operations, was slightly more than 20 pm s−2 and it decreases
over time, while the specification in these terms was about 650 pm s−2 [37]. This fact has
allowed us to reduce the noise arising from actuation and at the same time to constrain
this source of noise in different LPF actuation configurations. The main configurations
for the x-φ scheme are included in Figure 2.4.
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2.4.1 Data fitting technique

To estimate the actuation noise contribution, a dedicated campaign has been carried
out during the LTP science operations. It consisted of a set of science measurements
(noise-only runs) performed in four different authority schemes. Details of the actuation
campaign are given in Table 2.1. As it it shown, the first and second measurements corre-
spond to standard noise-runs in URLA and Nominal authority respectively, whereas the
third one was performed implementing a DFACS mode with “matched stiffness”, where a
maximum force of 5000 pN is set on both TMs (we call this configuration “Big” author-
ity). The same authority characterizes the last run, but with an additional offset force of
4000 pN applied on TM1 in the positive direction. A measurement of the TMs charge,
by a modulating electric field applied with 10 and 12 mHz, is also included in the last
measurement. The choice of increasing the applied forces and authorities, although not
needed for the control of TM2, is motivated by the purpose of characterize the increasing
actuation noise, as anticipated. In this section we report the procedure followed in [38]
and the relative results.

Configuration k FOFFx1 FMAX
x1 FMAX

x2 NMAX
φ1 NMAX

φ2 DOY duration

(run) (pN) (pN) (pN) (pN·m) (pN·m) (h)

URLA 1 0 0 50 1.5 1 137 52 (8 win)

Nominal 2 0 0 2200 10.4 10.4 140 47 (7 win)

Big 3 0 5000 5000 10.4 10.4 142 40 (7 win)

Big + offset 4 4000 5000 5000 10.4 10.4 144 48 (7 win)

Table 2.1: Actuation noise experiments analyzed during the actuation noise campaign. The number
of hours refers to that analyzed to estimate the spectrum.

The time-series of ∆g was evaluated in each experiment and corrected for the centrifugal
effects, as anticipated in the previous chapter. Then, the spectra were extracted using
40000 s windows long and fitted simultaneously to a model, assumed to be representative
of the low frequency spectrum of ∆g (the actuation noise is expected to be the dominant
contribution at these frequencies).
Before performing the fit, the uncorrelated term of the actuation contribution is divided
in two parts, in order to separate the contribution of +X actuators (electrode 1 and 2)
from that one of the −X actuators (electrode 3 and 4, see Figure 2.2):

AUC+ = A11 +A12 +A21 +A22

AUC− = A13 +A14 +A23 +A24.
(2.21)
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Figure 2.4: Some of the actuation schemes for the x-φ configuration that have been implemented
during the LTP operations (Big authority, Nominal authority and Ultra Reduced Low Authority). Force
and torque authorities are expressed per unit mass/moment of inertia (blue and green respectively) with
values decreasing from top to bottom. The net commanded force per unit mass on TM2 in all cases is
10pm s−2, on TM1 it is always zero. The net commanded torque per unit momentum of inertia around
z is 0.17nrad s−2 on TM2, −1.6nrad s−2 on TM1.

This choice is motivated by the four experiments, in which we change the force on all
four +X actuators together (and the same for the four −X electrodes).
The model we use in the fit corresponds to a combination of contribution which show
different dependence on frequency:

S∆g(tk, f) = S
(0)
∆g

tF − tV
t− tV

+ S
(−1)
∆g

1mHz
f

+ AkC

[
SC,1

1mHz
f

+ SC,2

(
1mHz
f

)2
]

+AkUC+

[
SUC,1+

1mHz
f

+ SUC,2+

(
1mHz
f

)2
]

+AkUC−

[
SUC,1−

1mHz
f

+ SUC,2−

(
1mHz
f

)2
]
.

(2.22)

Here tk indicates the starting time of the k-experiment and with f the frequency. The
terms proportional to AkC and AkUC represent the actuation contribution to the spectrum,
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with phenomenological dependences on frequency and they can be written as follows:

SαC =

[
SC,1

1mHz
f

+ SC,2

(
1mHz
f

)2
]
, SαUC =

[
SUC,1

1mHz
f

+ SUC,2

(
1mHz
f

)2
]
. (2.23)

All the actuation terms are normalized to their values at 1 mHz. S0
∆g indicates the “white”

Brownian noise associated with the viscous gas damping which has been observed to be
nearly frequency-independent at frequencies above 1 mHz. In addition, as anticipated in
the previous chapter, it decreases with time due to the venting to space which started
on February 3rd, 2016 at 07:00 UTC (tV , the time of venting). S0

∆g in Equation 2.22 is
actually the Brownian level value at the time tF , the end of the measurement campaign.
Finally S(−1)

∆g is a contribution which is independent of actuation. It is assumed to be
stationary and that it varies as f−1. Together with the Brownian term, it represent the
background contribution (the numbers in brackets in the background terms refer to the
frequency dependence).
To obtain a more robust result, also the four spectra of the differential acceleration
evaluated along the φ degree of freedom (∆γφ) are included in the fit. In this case the
model for the multiplicative actuation noise does not contain the Browninan contribution
in the background part, but two terms which are purely phenomenological and scales as
f and 1/f2:

S∆γφ(tk, f) = S
(1)
∆γφ

(
f

1mHz

)
+ S

(−2)
∆γφ

(
1mHz
f

)2

+ BkC

[
SC,1

1mHz
f

+ SC,2

(
1mHz
f

)2
]

+BkUC+

[
SUC,1+

1mHz
f

+ SUC,2+

(
1mHz
f

)2
]

+BkUC−

[
SUC,1−

1mHz
f

+ SUC,2−

(
1mHz
f

)2
]
.

(2.24)

Therefore, a “full” 10-terms model for the multiplicative actuation noise, converting into
noise in ∆g and ∆γφ, is considered in the fit.
The terms AkC , B

k
C , A

k
UC± and Bk

UC± are calculated from the averaged applied forces,
torques and authority levels using a dedicated routine implemented in LTPDA3. Their
values during the four actuation tests are shown in Figure 2.5. As is shown, the effect of
increasing the authority (from URLA to Nominal to BIG authority, that is from run 1
to 3) increases the coefficients for both the negative and positive electrode uncorrelated
noise, and this does not effect the correlated noise. The fourth experiment, with a large

3LTPDA (LISA Technology Package Data Analysis) is a MATLAB c© toolbox used within the LPF
collaboration which implements an object-oriented data analysis infrastructure based around the concept
of analysis objects (AOs) [39].
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positive force, increases both the positive electrode uncorrelated translational/rotational
noise contributions, A+

UC and B+
UC , as well as the correlated translational noise contri-

bution, AC . This last effect is not evident in the corresponding contribution along φ.
Thus, including the φ data breaks the degeneracy in the analysis between the SαC and
Sα+

UC
terms. Finally, is it possible to observe that in the last test both the uncorrelated

translational and rotational contributions of the +X actuators are higher than the ones
of the −X actuators.
The fit of the eight spectra simultaneously is performed in frequency domain (4 for ∆g

Figure 2.5: Values of A and B coefficients for each experiment. Whereas they are calculated from the
commanded and maximum forces/torques, they do not have uncertainties.

and 4 for ∆γφ) to the models in Equation 2.22 and 2.24 using a MCMC fit. The frequency
range selected in the fit is from 0.1 to 6 mHz in the case of ∆g and from 0.1 to 2 mHz in
the case of ∆γφ, as the model to describe the φ-spectrum, at higher frequencies, would
be more complicated with respect to Equation 2.24. To avoid correlated data, the fit
uses every fourth frequency bin4. In addition to the Metropolis-Hastings sampling rules
to derive the a posteriori distributions of the parameters (λi), two important conditions
are implemented [38]:

1. All noise generator parameters were constrained to be positive, as negative coeffi-
cients are not physically sensible.

2. The likelihood function is that of the χ2 distribution with two degrees of freedom
4We remind that when using the Blackmann-Harris spectral window, as within the LPF collaboration,

nearby values of the PSD km and kn with coefficient spacing ∆k = n−m, are correlated for ∆k < 4 [40].
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(x and φ). The χ2 has been found to be the characteristic distribution of the
experimental values for a single-window PSD, estimated according to the standard
Welch’s averaged periodogram method [41]. The expression used for the likelihood
function is thus the following:

p
(
{λi} |Sk∆gq (fj)

)
=

1∏
j,k,q S

mod−k
∆gq

(fj ; {λi})
exp

−∑
j,k,q

Sk∆gq (fj)

Smod−k∆gq
(fj ; {λi})

 , (2.25)

where the sum is over points at frequencies j, for the k = 1...4 experiments and for
the differential degrees of freedom q = x and φ.

The first condition forces any negative values to be positive. The second condition
provides to use, for the MCMC fit, single-window PSDs of the data set Sk∆gq(fj) (7 or 8
for each measurement, see Table 2.1).
The results of the MCMC fit, for both ∆g and ∆γφ, are shown in Figure 2.6. The values
for actuation contributions, with 1σ confidence level, are reported in Table 2.2.
We can make a few comments on results:

• the actuation noise is dominated by the uncorrelated fluctuations between elec-
trodes, not the correlated fluctuations due to, for instance, fluctuations in the
digital-to-analog conversion of the voltage reference. This result is visible in Fig-
ure 2.8, which shows the spectrum of each actuation contribution.

• The f−1 terms for the +X and −X actuators are similar, as shown by the his-
tograms in Figure 2.7 (this is visible at “high” frequencies in Figure 2.8), while the
+X actuators are clearly noisier at low frequencies.

• The positive X actuators are, on average, noisier than the negative ones and this
result is compatible with ground predictions. This finding thus suggests variations
amongX-electrodes, especially at low frequency. However, their nature is statistical
and not systematic, as the different channels are equivalent with each other. The
effective gain of +X actuators is roughly 7 and 50 ppm/Hz1/2 at 1 and 0.1 mHz
respectively (see Figure 2.9).

• The correlated noise is not resolved, but we can give an upper limit of roughly
3 ppm/Hz1/2 at 1 mHz and 25 ppm/Hz1/2 at 0.1 mHz, as the errors on this contri-
bution are not gaussian (the same applies to the 1/f2 term of the −X electrodes
uncorrelated noise, as shown in Figure 2.7).
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Figure 2.6: Results of MCMC fit to ∆g and ∆γφ spectra and noise model for each actuation experiment.
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Figure 2.7: Histograms of parameters for the actuation noise, including f−1 and f−2 contributions to
board correlated noise and the uncorrelated +X and −X electrode actuator noise.



62 Chapter 2. Actuation noise in LPF

Parameter value error units

SUC,1+ , 1/f , 1mHz 18.0 2.7 ppm2/Hz

SUC,2+ , 1/f2, 1mHz 23.7 2.5 ppm2/Hz

SUC,1− , 1/f , 1mHz 12.2 3.1 ppm2/Hz

upper limit

SUC,2− , 1/f2, 1mHz 3.6 - ppm2/Hz

SC,1, 1/f , 1mHz 3.2 - ppm2/Hz

SC,2, 1/f2, 1mHz 5.8 - ppm2/Hz

Table 2.2: Parameter values for actuation contributions obtained with the MCMC method. For values
compatible with zero we report the 1σ upper limit.

Figure 2.8: Actuation noise spectra for board correlated noise and the uncorrelated +X and −X
electrode actuator noise, compared with the ground results (the values with vertical error bars at 1 mHz).

In Figure 2.9a we report, for each experiment, the projection actuation noise in terms
of relative acceleration ASD obtained with the parameters of the fit. The total noise
projection of ∆g, inclusive of the other terms, is shown in Figure 2.9b. It is important
to note, by comparing the two figures, that the actuation noise is the dominant source
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of noise at low frequency in authority configurations “higher” than URLA.

a)

b)

Figure 2.9: Figure a: actuation noise projection in terms of differential acceleration specturm for each
experiment. Figure b: projection of the total noise along x for each actuation experiment performed in
May 2016, obtained with the parameters of the fit x-φ.
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2.5 Minimization of actuation noise: the free-fall mode

The actuation model described in the previous section can be applied to other experi-
ments. One of these is the so-called “drift-mode” or “free-fall” mode experiment, in which
the compensation force on TM2 along x is applied by means of periodic pulses, in be-
tween which the test-mass freely falls without any further control force. This experiment
will be described in detail in the next chapter. In particular, the limiting suspension
force operates with a low duty cycle, such that we can neglect the time intervals when
the kicks are applied. The free-fall experiment thus offers the possibility to measure the
differential acceleration without the actuation noise coming from the control along the
sensitive axis and moreover, without calibration issues introduced by the actuator, as
discussed in the previous chapter.
Since in this experiment the force between two pulses is null, the coefficient A0 is zero
(see Equation 2.20). However, during the free-phases the control along the φ degree of
freedom is still applied and therefore it contributes to the actuation noise on the x degree
of freedom.
In order to predict the actuation noise contribution in the free-fall experiment we can
calculate the coefficients of the uncorrelated actuation noise AUC± and BUC± by setting
to zero the commanded force and authority level on the x degree of freedom of TM2.
Using the parameters of the fit obtained with the MCMC fit, we obtain the actuation
noise projection in the free-fall experiment performed in different authority configura-
tions and compare it with the standard science measurement. The results for URLA and
Nominal authority, are shown in Figure 2.10a. We observe that the actuation noise re-
duction achieved with the free-fall mode, is more significant in Nominal authority rather
than the URLA case.
It is possible also to calculate the expected total noise on ∆g for both standard noise
and free-fall. Figure 2.10b shows that, in URLA authority configuration, the predicted
noise in free-fall is compatible with the noise-only measurement performed in the same
actuation authority, as anticipated in section 1.4.3. This last observation is related to
the fact that φ actuation already dominates in URLA standard measurement, as shown
in Figure 2.10a, and removing the x actuation the free-fall mode does not reduce much
noise at low frequency. In addition, if we increase the authorities in free-fall mode to the
nominal levels, we will make worsen the noise with respect to URLA authority.
Finally, if both x and φ degrees of freedom were kicked, we would have no x-electrode
applied actuation forces. This configuration, indicated by the magenta curve in Fig-
ure 2.10b, would eliminate roughly 20 (fm s−2)2/Hz actuation noise contribution that we
have in URLA at 0.1 mHz.
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a)

b)

Figure 2.10: Figure a: actuation noise projection for a standard science measurement and a free-fall
experiment in Nominal and URLA actuation configuration. Figure b: expected noise in ∆g in standard
measurement and in free-fall for both URLA and Nominal authority configuration. The predicted noise
in the case where the control is turned off on x and φ for both TMs is included.
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The actuation noise characterization is a crucial aspect of the mission, as this source
of noise arises in the low frequency part of the residual acceleration spectrum. The ac-
tuation noise campaign was intended to give a projection of this source of disturbance
in different LPF actuation configurations. Among these, a scheme characterized by an
intermittent control on the sensitive degree of freedom for TM2, is included. As shown
by results, the implementation of the free-fall mode in Nominal authority, subtracts a
substantial fraction of noise from the standard measurement, while the expected perfor-
mance in the lowest actuation scheme is compatible with the noise-only run executed
in the same control authority. In this case, therefore, the actuation noise is not the
dominant source at low frequency. The next chapter will describe the free-fall mode,
which is an alternative scheme to the continuous suspension control. Ii will present the
dynamics of the experient, the implementation and design. The last part will be focused
on the data analysis procedure proposed to evaluate the residual acceleration during the
free-actuation phases of this experiment.



Chapter 3

The free-fall mode experiment on
LPF

This chapter describes in detail the implementation of the free-fall mode on LPF. After
a brief introduction to the dynamics, specific of this experiment, the control system is
presented with reference to the possible design choices in terms of kick control cycle
and degrees of freedom. Then, we will anticipate the challenge that this experiment
poses from the data analysis point of view: the presence of kicks in acceleration data
series, forces us to investigate which would be the “best” data analysis reduction with
which to remove the impulses and, at the same time, to limit the spectral bias. The
last section is dedicated to illustrate the free-fall measurement data set to describing the
analysis procedure needed to extract the dynamical parameters for the ∆g estimation.
Finally we will discuss another effect, in addition to the centrifugal force described in
section 1.4.3, that we will have to subtract.

3.1 Principles of the free-fall mode

As stated in the previous chapters, one of the main differences between the configura-
tion of LPF and that of LISA is that in LPF the acceleration measurement is evaluated
between test masses hosted in the same spacecraft. As a result, because the spacecraft
cannot simultaneously follow the trajectories of both the TMs along the same degree
of freedom, one of the two test masses must be electrostatically suspended along the
sensitive axis. On the other hand on LISA each spacecraft will host two test masses with
the difference that the acceleration measurement is made between two test masses inside
different spacecrafts. Because in LISA the two TMs are used for drag-free control along
two independent axes, the SC can follow the two TM in the plane defined by these two

67
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axes.
Additional control forces needed for the second test mass on LPF introduce a source of
disturbance that will not be present on LISA, as previously mentioned. The free-fall
mode is an actuation scheme that solves the problem on actuation noise: the control
of the coordinate x2 is performed by means of short electric impulses. In this way the
actuation is limited to brief kicks, so that the test mass is in free fall between two suc-
cessive kicks. The actuation-free motion is then analyzed for the remaining sources of
acceleration noise. In fact this mode solves, at least partially, the problem of actuation
noise, as the φ control remains. In any case, the free-fall mode provides an alternative
technique for measuring the differential TM acceleration without the added force noise
and calibration issues introduced by the actuator. Moreover this experiment gives an
opportunity to measure parameters such as the DC-force acting on the TMs and its time
stability, the gravitational gradient and the possible coupling between x and φ. Finally
the data from this experiment can provide a measurement of the purity of free-fall close
to what LISA will measure.

Recalling the dynamics of the experiment described in section 1.5.1, we report the dif-
ferential equation of motion for the TMs in the free-fall mode experiment:

ö12 = ∆g −∆ω2o1 − ω2
2o12. (3.1)

Assuming that the noise in the differential acceleration is stationary during the impulse,
we can combine data from successive flights to estimate the spectrum at frequencies
below the frequency of the experiment, fexp = 1/(Tflight+Tkick), where Tflight and Tkick
are the duration of the flight and kick phase respectively. This assumption is acceptable
since the background noise is independent on the control chosen.
The free-fall mode experiment thus consists of a sequence of quasi-parabolic flights1 along
x2 periodically alternated with very short kicks (Figure 3.1). All degrees of freedom of
TM2, except for x, are continuously controlled.

3.2 The control strategy

The electrostatic suspension applied on TM2 in the standard science mode is necessary
to compensate the differential DC acceleration due mainly to the satellite self-gravity
imbalance experimented by the two TMs. Force noise associated with this electrostatic
control depends on the amplitude of the applied force levels, as reported in the previous

1The trajectory of TM2 is not exactly a parabola because of spring-like coupling between TM2 and
the spacecraft.
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a) b)

Figure 3.1: a) Free-fall mode configuration in terms of relative displacement between the TMs, with
349.2 s flight and 1 s kick durations. The data comes from the first free-fall experiment performed in
Nominal authority (see chapter 5), when the differential DC acceleration was roughly −2.5pm s−2 and
thus, the amplitude of the kick force was ∼ 2 nN. The corresponding flight amplitude is ∼ 40 nm. b)
Time series of the differential readout of the interferometer, o12 = x2 − x1 and the one of the kick force
on TM2.

chapter. During the free-fall mode experiment the compensation of the static field is
performed by means of discrete kicks, so that the electrostatic actuation can be turned off
between the kicks. The amplitude of the kick force is therefore strictly related to the DC
gravity imbalance but it is also set by the duty cycle of the experiment, χ ≡ Timp/Texp:

Fkick =
FDC
χ

. (3.2)

A kick controller is used to produce periodic kicks (details on the control cycles are
described in section 3.2.1): it keeps track of the motion of TM2 during the free-phase
and estimates the impulse needed to “kick it back” on the other side. The amplitude
of the following kick is then set to apply this impulse and the kick-and-drift scheme is
repeated (Figure 3.2). The flight duration is limited by the amplitude of the constant
force FDC and by the constraint on the position allowed, |x2| < xmax. In this respect,
Tflight must satisfy the approximated relationship:

Tflight < 4 ·
√
xmax ·

mi

FDC
. (3.3)

On the other hand, the minimum kick duration depends on the maximum actuation
authority, Fc,max:

Tkick > Tflight ·
FDC
Fc,max

. (3.4)
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Figure 3.2: Schematic representation of the free-fall mode configuration [42].

In the free-fall mode designed for LTP the duration of the free-fall period and of the
kicks is fixed. The characteristic duration of the flight is 349.2 s, while the kick lasts 1 s,
resulting in a duty cycle of ∼ 0.3%. These values have been set to limit the displacement
to reduce non-linearity issues: in presence of the maximum gravitational acceleration im-
balance predicted (gDC, pred ∼ 5 ng [37]), the TM exceeds the sensing range (±5 µm [43])
in ∼ 400 s.
During the free-fall mode electrodes are used in Wide Range (WR) for kicking, because
of actuation authority constraint, while the free-phases are performed in High Resolution
mode (HR) due to the noise level. In this experiment is therefore necessary to switch
fast and many times between the two modes.

3.2.1 Design choices

The intermittent control on just the x2 coordinate is not the only possibility for a free-
fall mode. Different configurations exist and can be implemented, depending on which
test mass(es) is kicked, which coordinate is continuously controlled using drag-free or
capacitive actuation, which ones is kicked. The kick control cycle can have different
solutions as well. In this respect, Figure 3.3 shows four possible strategies developed
in [44] which we describe here:

1. Open-Loop Kicks:
configuration characterized by 2n+1 phases per cycle, with n free-phases alternated
with n open-loop kicks, followed by one continuous control phase. The “open loop"
expression refers to the fact that the kicks are set on a predefined timeline and
their amplitude and duration are fixed.

2. Open-Loop Kicks with event detection:
control strategy consisting in 2 phases per cycle: 1 free-phase and 1 open loop kick.
The kicks are called “open-loop" because their intensity and duration are fixed and



3.2 The control strategy 71

a kick detector (“event detector”) is used to trigger them.

3. Closed-Loop Kicks:
The kicks are started from either a telecommand or a clock. A speed and state
observer is used as an input of the kick control law along x2. The kicks are periodic
but their amplitude is variable and set by the controller.

4. Closed-Loop Kicks with event detection:
The kicks are started by the kick detector. A speed and state observer is used as
an input of the kick control law along x2. There are 2 phases per cycle: a kick
followed by a free-phase. The amplitude of the kick is variable.

The cycles with a constant kick amplitude are limited in terms of robustness and stability,
although they are much simpler to implement on the DFACS. In the free-fall mode
experiment implemented on LPF, kicks are repeated periodically using a timeline trigger
(control cycle n◦3, see also Figure 3.3).

Figure 3.3: Representation of four different control cycles of the free-fall mode. The letters K, D
and C, stand for kick, drift (free) and control phases. The configurations on top are characterized by
a constant kick force with a continuous control phase, while on the bottom the amplitude of the kick
is variable. On the right the kick is triggered using an event detector, on the left a time detector is
employed [45].

As is shown in Figure 1.16 the x and φ degrees of freedom share the same electrodes.
This means that a force applied along φ may produce an unwanted torque around x and
vice-versa. It is therefore necessary to study carefully and reduce as much as possible
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the cross-coupling between these two degrees of freedom. And since one of the goals
of the free-fall mode experiment is to minimize the actuation noise, it is important to
understand in which cases the actuation produces noise. Three possibilities for the kick
controlled degrees of freedom exist:

• x2 only. In this configuration φ1 and φ2 are continuously controlled using the
capacitive actuation and x1 is drag-free controlled. This option is preferred if the
noise level observed in the standard mode with continuous control is small or if
the cross-coupling effect on φ2 due to the kicks on x2 is high. In this case a faster
controller (continuous) for φ2 is better.

• x2 and φ2. In this option φ1 is suspended via capacitive control, whereas x1 is
drag-free controlled. This configuration produces less noise by eliminating the TM2
φ-control. It is thus interesting in the case of a high capacitive actuation noise.

• x1, φ1, x2 and φ2. In this case the DFACS is used to follow (x1 + x2)/2. This is
preferred if the actuation is noisy and the x-φ cross-coupling is not too much.

The first case has been chosen and used over the mission. As a result, this configuration
eliminates any applied force along the sensitive x axis on both TMs. However, it must
be specified that in URLA authority the actuation noise is dominated by the continuous
control of the φ degree of freedom, as discussed in the previous chapter.

3.3 Data analysis challenge

A peculiarity of the free-fall experiment data is the large amplitude of the motion of
TM2 compared to the displacement sensitivity. For instance, the flight amplitude in the
first free-fall measurements performed in June was ∼ 40 nm in the presence of a DC dif-
ferential acceleration of 3 pm s−2 (see section 5.1.1). The wide dynamic range may cause
non-linearities in the interferometer readout as well as in the inertial position sensor, as
observed in the free-fall measurements performed in July and August, where the differ-
ential acceleration increased to 20 pm s−2, resulting in a flight amplitude of ∼ 300 nm
(see chapter 5).
As regards the analysis, the main difficulty is related to the presence of the kicks. Fig-
ure 3.4a shows the time-series of the second derivative of the differential displacement.
The kicks appear as spikes which contaminate the spectrum of the relative acceleration
at frequencies of the multiple of the experimental frequency, fexp = 1/Texp = 2.85 mHz,
right in the LPF measurement bandwidth (Figure 3.4b). Because the kick samples rep-
resent a high noise configuration where the actuation is turned on, they must be set to
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zero, creating the so called “gaps" in the acceleration time-series. Gaps may corrupt the
spectral estimation in the form of spectral leakage, both from low frequencies and high
frequencies, in addition to produce systematic bias in the underlying spectrum. The
nature of this bias is related to the kick characteristics (duration, repetition) and to the
original spectrum of the signal. The understanding of this effect is fundamental, as it
might corrupt the spectrum especially at low frequencies, between 0.1 and 1 mHz, where
the actuation contribution to the noise might be dominant and needed to be investigated.

a) b)

Figure 3.4: Effect of the presence of kicks in the numerical second derivative of the differential displace-
ment time-series, o12 (time-series and ASD). The data refer to the free-fall experiment performed in June
with flight phase executed in URLA authority (to be more precise: Fmax,x2 = 0, Nmax,φ2 = 1 pNm).

The next chapter will describe in detail the three data analysis techniques that have been
proposed, within the LPF collaboration, for mitigating the adverse effect of data gaps in
the spectral estimation. These methods are applied to ∆g, which, in turn, is estimated
after having “calibrated” the free-fall data, that is once the dynamical parameters of
the experiment are extracted, such as the elastic couplings. Then, ∆g is corrected for
the effects observed in the standard science mode data. Details of the calibration and
correction procedures are given in the next section.

3.4 ∆g estimation with free-fall data

The free-fall experiment has been implemented on LPF several times. Details on each run
are reported in chapter 5. Here we will just describe the procedure we have followed to
calculate ∆g in this specific experiment. In practice, the ∆g estimate is based on fitting
the second derivative of the relative displacement ö12, to the following model, which
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corresponds to Equation 3.1 with an additional term related to the time-drift observed
in ∆g, as anticipated in section 1.4.3:

ö12 = ∆gDC + ġ0 t− ω2
2o12 −∆ω2o1. (3.5)

∆gDC , ġ0, ω2
2 and ∆ω2 are the fit parameters. ∆g is thus separated into ∆gDC and

ġ0. The fit is performed in acceleration flight by flight, by means of a dedicated routine
implemented in LTPDA.
To simplify the fit procedure, we filter the telemetry channels included in the model
(ö12, o12, o1, t). This is achieved by means of an anti-aliasing Finite Impulse Response
filter with coefficients of a Blackmann-Harris window (BH) and with duration equal to
350.2/4 s. The coefficients of a BH window with length N are given by the following
expression: w(n) =

∑3
j=0 ajcos

(
2πj
N−1n

)
.2

Next, we decimate the data according to a new sampling frequency of ∼ 57 mHz. As a
result, we have 20 samples per experimental time, of which we throw out three samples
at the edges of flight to not be affected by the kicks. We thus consider 14 samples per
flight to perform the fit, as shown in Figure 3.5 which depicts, for instance, the relative
displacement profile of the first free-fall measurement.

Figure 3.5: Example of the time-series of the differential displacement x12 measured during the free-fall
mode experiment and sampled at 10 Hz (blue curve). The coloured curves indicate the samples used in
the fit to the model in Equation 3.5. Note that the samples are more widely displaced, as these are the
result of the downsampling. The data refer to the first free-fall run, performed in Nominal authority.

We thus obtain as many sets of parameters as flights. An example of the profile of each
2with 0 ≤ n ≤ N − 1 and a0 = 0.35875, a1 = −0.48829, a2 = 0.141284 and a3 = −0.01168.
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parameter as a function of the flight index, relative to the first measurement considered
here, is shown in Figure 3.6. Each parameter is then averaged over its N-values to get a
single estimate needed to evaluate ∆g (N is the total number of flights in the experiment).
The associated error is calculated as the standard deviation of the mean, assuming the
error to be Gaussian (in general N & 200). This is confirmed by the histograms extracted
for each parameter shown in Figure 3.7, which do not suggest a deviation from a Gaus-
sian distribution (the DC differential acceleration is not included as it varies over time).
However, some unexpected outliers are visible both in the two stiffness parameters and
time-drift figures. We will discuss the presence of these spikes, visible also in the fit
residuals (see Figure 3.8), in chapter 5.

Figure 3.6: Values of fit parameters as a function of the flight index obtained in the first free-fall
experiment, with Nominal authority. The time-drift in ∆g is clearly visible in the bottom left plot.
Some outliers are visible, especially in ω2

2 , ∆ω2 and ġ0 series.
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Figure 3.7: Histograms of calibration parameters (ω2
2 , ∆ω2 and ġ0) for the first free-fall measurement,

in Nominal authority. The distribution of values is approximately gaussian.

The relative residuals time-series of the fit is shown in Figure 3.8 on the left, while at
the center and on the right it is shown as a function of o12 and o1. We use the latter
figures as tools to verify the correctness of the model, for instance to check if there are
systematic errors related to possible non-linear dependences on o12 and o1, not included
in Equation 3.5. Despite the presence of spikes in residuals, in all cases we do not observe
any systematic behaviour, as it possible to see in Figure 3.8. Because of the goodness of
this result, we maintain the model of Equation 3.5 to analyze the free-fall data, although
we included other possibilities in the analysis routine.
The fitting parameters for each free-fall measurement are reported in Table 3.1. As
regards the coupling terms, the stiffness of TM2 is quite in agreement with the predicted
value in URLA free-fall (ω2

2, pred = (−4.49±0.10) ·10−7 s−2 in URLA free-fall), while ∆ω2

is consistent with zero, as expected. However, in Nominal case, a similar agreement is not
fulfilled (ω2

2, pred = (−6.05±0.20) ·10−7 s−2 in Nominal free-fall)3. At the moment, we do
not explain this discrepancy. In both cases the stiffness parameter of TM2 is evaluated
within a ∼ 0.4% error (except for the September and December measurements, where
the estimate does not show the same accuracy), while the error on the DC part of the
differential acceleration is smaller than 4%.

3The expected values of the stiffness terms derive from an ongoing global analysis on the system
identification experiments performed over the mission, as reported in [46].
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Figure 3.8: Example of residuals acceleration time-series (on the left) and residuals as a function of o12

(at center) and o1 (on the right). The spikes in residuals time-series are likely due to glitches produced
by the time-stamping correction on board the satellite (see section 5.1.1). In the plot on the left the two
colors disentangle the points before the parabola vertex (in blue) from those after the vertex (in red).
This distinction allows us to check if there is eventual systematic effects related to the TM2 trajectory.
The results regards the first measurement in Nominal authority. Some outliers are visible in the residuals
time-series, but no systematic effect is observed.

Run ω2
2 error ∆ω2 error ∆gDC error ġ0 error

(2016) (10−7 s−2) (10−7 s−2)
(pm

s2
) (

pm
s2 day

)
June Nominal -7.116 0.029 -1.715 0.403 -2.500 0.007 -0.400 0.021

(DOY161)

June URLA -4.586 0.019 -1.272 0.407 -3.029 0.009 -0.493 0.016

(DOY162)

July URLA -4.689 0.010 0.726 0.286 -19.072 0.016 -0.307 0.056

(DOY202-204)

August URLA -4.662 0.008 0.460 0.287 -15.042 0.010 0.353 0.0351

(DOY215-218)

Sept. URLA -4.478 0.047 -1.051 0.198 0.666 0.0002 -0.020 0.009

(DOY265-267)

Dec. URLA -4.414 0.0775 2.935 0.482 0.513 0.020 -0.500 0.187

(DOY353-358)

Table 3.1: Fit parameters of all the free-fall measurements.
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After having averaged the dynamical coefficients, we can calculate the time-series of ∆g,
using the original telemetry channels sampled at 10 Hz, as follows from Equation 3.5:

∆g(t) = ö12(t) + ω2
2o12(t) + ∆ω2o1 − ġ0 t (3.6)

The resulting time-series is then analyzed with the proposed data analysis techniques
described in the next chapter. Then, they are corrected for the centrifugal force (see sec-
tion 1.4.3) and the tangential acceleration (see next section), but not for the optical
crosstalk from spacecraft coupling, as we low-pass the data at ∼ 100 mHz (this analysis
procedure will be discussed in the next chapter, see section 4.1). Indeed, we are inter-
ested in investigating the low frequency noise, that is the spectrum at frequencies below
the “experimental” one (∼ 2.8 mHz) which is not affected by the bump induced by the
SC motion and observed at high frequency (see Figure 1.20).

3.4.1 Correction for the tangential acceleration

An additional correction that has been applied to ∆g data over the mission is related to
a misalignment between the sensitive axis of the interferometer and the line joining the
TMs’ centers of mass. This effect was observed just before the beginning of DRS opera-
tions (starting on DOY177, June 26), when the TMs’ position was moved in hardware.
In general, a system rotating with time varying angular velocity Ω, would feel an accel-
eration perpendicular to the radial direction ~r. As in LPF the test-masses are kept with
a fixed orientation relative to the rotating spacecraft, they experience a fictitious inertial
force per unit mass:

∆~gtang = −~L× Ω̇ (3.7)

which has no component along the measurement axis if this axis, defined by the inter-
ferometer, coincides with ~L, joining the TM centers. If instead there is a slight offset
angle, then this angular acceleration has a projection into the measurement axis. Indeed
it must be underlined that the interferometer axis is not necessarily aligned with ~L. If
it is the case, it is possible to show that, at first order, the tangential force along the
sensitive x axis, identified by the î direction, is:

∆~gtang,x = (LzΩ̇y − LyΩ̇z )̂i = (LαyΩ̇y − LαzΩ̇z )̂i (3.8)

where L is the nominal distance between the TMs (0.376 m) and αy and αz are the angles
that the vector ~L forms in the x-z and x-y planes respectively, as is shown in Figure 3.9.
Therefore, in this case ∆g picks up the component of the angular acceleration around
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the y and z axes due to the misalignment between the interferometer sensing axis and
the line between the center of mass of the TMs.
This effect was observed in the data after DOY177 in form of a peak at around 0.3 mHz
in the spectrum of ∆g, visible for instance in the noise-only measurement performed in
September and corrected for the centrifugal force only (blue curve in Figure 3.10, on the
right). This peak corresponds to the correlation of the differential acceleration along x
with the angular acceleration of the spacecraft around the y and z axes, and thus with
the applied torques on the TMs. Coherent oscillations at low frequency (∼ 0.3 mHz) are
indeed visible in the torques exerted on the TMs around y and z during the noise run
measured in September (see Figure 3.10, on the left).

Figure 3.9: Schematic of the leakage of the tangential acceleration into the interferometer sensitive
axis. It shows the cases when the angular velocity Ω has a component along the y axis (on the left) and
along the z axis (on the right).

The “de-correlation” between ∆g and the angular acceleration is performed using a global
set of averaged parameters for αy and αz which are obtained by fitting the noise-only
measurements before and after DOY177. In particular, they are the result of fitting ∆g

to LΩ̇y and LΩ̇z in frequency domain, with angular accelerations derived as averaged
commanded torques Γη and Γφ on the TMs divided by the corresponding momentum of
inertia:

Ω̇y =
Γη1 + Γη2

2Iyy
Ω̇z =

Γφ1 + Γφ2

2Izz
(3.9)

This analysis have been performed within the LPF collaboration, specifically by Stefano
Vitale and Daniele Vetrugno and the values for αy and αz are reported in Table 3.2.
They suggest an averaged lateral shift of one TM to the other, for instance after June 26,
of αy ·L ∼ 50µm. The effect of the correction for the tangential force on the September
science measurement is shown, in ASD terms, in Figure 3.10 (on the right, in red).
However, we have to point out that, since we evaluate this effect by fitting ∆g along x
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with the torques around the z-axis, the tangential acceleration effect is not distinguish-
able from an actuation cross-coupling due to the control on φ, which might convert into
a non-null force component along x. In this context, by using free-fall data, the fit pa-
rameters could change with respect to the values of table 3.2, as the free-fall experiment
is characterized by a different actuation scheme compared to the standard mode. In any
case, the results of this correction are still under investigation.

Period αy error αz error

(mrad) (mrad)

Before June, 26 -0.043 0.006 -0.270 0.034

After June, 26 -0.130 0.007 -0.430 0.067

Table 3.2: Global set of averaged parameters to correct ∆g for tangential force.

Figure 3.10: On the left: Time-series of the TMs’ torques around z and y axes during the noise-only
measurement performed in September. On the right: ASD of ∆g only corrected for centrifugal effects
(blue) and that of ∆g also de-correlated (red). The data tip indicates the peak at around 0.3 mHz
observed at low frequency. It is reduced after having applied the “de-correlation”.

The values of Table 3.2 measured during the continuous actuation noise experiments
have been used to correct, at first, the free-fall data as well. However, we also evaluated
these apparent angular acceleration couplings independently for the free-fall runs and we
found that the values obtained allow to subtract the low-frequency noise more effectively.
We thus used the values obtained by fitting the free-fall data, run by run, to the model
of Equation 3.8. Table 3.3 reports the parameter sets of this correction.
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Run αy error αz error

(mrad) (mrad)

June Nominal -0.103 0.036 -0.976 0.267

June URLA -0.048 0.016 -0.270 0.122

July -0.206 0.012 -0.798 0.095

August -0.121 0.011 -0.341 0.086

September -0.150 0.018 -0.474 0.098

December -0.137 0.005 -0.207 0.052

Table 3.3: Fit parameters of de-correlation of free-fall data.

Except for the July measurement and the value of αz evaluated with the December data,
αy and αz are in agreement with the values of Table 3.2 within 1σ. The discrepancy
obtained in particular with December data, is currently under study. For this run, we are
analyzing a possible correlation of this result with an unexpected roll of the spacecraft
occurred in the central part of the measurement, as confirmed by the torque time-series
around the z-axis of both the TMs (see Figure 3.11). The other free-fall measurements
are not affected by a similar behaviour of the spacecraft.

Figure 3.11: Time-series of the TMs’ angular accelerations around z-axis during the free-fall expe-
riment performed in December, after having subtracted the DC value. An evident roll is visible in the
central part of the measurement on both the time-series.
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To summarize the analysis procedure with free-fall data, we first estimate ∆g at 10 Hz
by following the preliminary analysis described above in section 3.4, then we analyze it
according to a specific approach to mitigate the effect due to the presence of kicks (see
Chapter 4). Then, the result is corrected for the centrifugal effects and the tangential
acceleration. The final results of this procedure are reported in chapter 5.

As described above, the free-fall experiment represents an alternative method to con-
trol TM2 along the sensitive axis. The motivation behind this experiment is the need to
subtract the actuation noise contribution induced by the unavoidable control on TM2.
Without the controller, free-fall data will provide an independent measurement of the
residual acceleration which will be unaffected by possible calibration issues introduced by
the actuator. Two main challenges are posed by this experiment: the first is the presence
of the kicks, which represent a high noise configuration where actuation is turned on.
As a consequence, they must be removed in some way. The second potential problem
is related to the size of flights compared to the displacement sensitivity, with possible
non-linearities which might affect in the interferometer readout. The experiment cali-
bration procedure, proposed to extract the parameters for the estimation of the residual
acceleration, has produced reliable results. The subtraction of the tangential acceleration
from ∆g, is quite in agreement with the results obtained in noise-only measurements,
except for the last free-fall experiment performed on LPF. The next chapter presents the
data analysis approaches proposed within the LPF community, to mitigate the effect on
spectral estimation caused by the presence of gaps.



Chapter 4

Approaches to data analysis

As reported in the previous chapter the free-fall mode experiment is characterized by
periodic force peaks in the acceleration data series, which need to be removed, producing
gaps in data. This chapter describes the main data analysis approaches that have been
developed for the analysis of the free-fall mode experiment. The analysis strategies differ
from one another, but all of them have allowed us to extract the power spectrum density
of the differential acceleration noise (∆g) despite the presence of gaps. In this thesis
we focus on a method that low-pass filters and decimates the data before setting the
samples where the kicks occur, to zero. The delicate question of the spectral estimation
in presence of gaps will be discussed in section 4.1.1, with reference to the spectral bias
estimation. We will test the data analysis technique on data with a known spectrum in
order to demonstrate the accuracy of the proposed data reduction procedure.
Chapter 5 will show the results of applying this specific data analysis technique only.
Other approaches, that we will be just briefly described in this chapter, were adopted
within the LPF collaboration. The so-called “windowing” technique consists of masking
the kicks by means of spectral windows, while a third method, the “Constrained-Gaussian
gap patching”, makes use of artificial data to fill the gaps.
The chapter ends with the comparison among the above-mentioned methods in terms of
∆g time-series with gaps filled.

4.1 Blackmann-Harris low-pass filtering technique with kicks
set to zero

The purpose of this method is to reduce the spectral leakage at frequencies within the
LPF frequency band that derives from the high frequency noise [47]. It essentially con-
sists of a low-pass filtering and downsampling applied to the ∆g data, after which the

83
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kick samples are set numerically to zero. The name of the approach refers to the shape
of the low-pass filter chosen, that is a normalized Blackmann-Harris (BH) window. This
section describes the analysis procedure on which this approach is based.
Before going into detail of the filtering, we define the parameters related to the downsam-
pling. The first step of the analysis consists of setting up the correct number of samples
per experimental time after having decimated the ∆g data series, initially sampled at 10
Hz. This number must be an integer factor of the total number of samples per experi-
mental time in the 10 Hz data series such that each experimental segment still contains,
after decimation, a fixed number of data points. It is straightforward to understand that
this number, ntot, will fix the new sampling time Tsamp after the decimation:

Tsampntot = Tflight + Tkick (4.1)

We also define with nkeep the number of samples we keep per flight time after the down-
sampling. In practice, this is evaluated after having removed Tcut seconds at the begin-
ning and at the end of the flight in order to avoid transients which may be close to the
kicks. As a consequence, the length of the flight is reduced to Tflight − 2Tcut. Then
we can set up the low-pass filter in such a way as to have an integer number of finite
windows per flight time:

Tflight − 2Tcut = Tsampnkeep + (Twin − Tsamp)

⇒ Twin = Tflight − 2Tcut − (nkeep − 1)Tsamp (4.2)

The low-pass filtering is achieved by means of an anti-aliasing Finite Impulse Response
filter, in order to not mix in the data in the gap, with coefficients of a Blackmann-Harris
window (to be precise we use the “minimum 4-term Blackman-Harris window”, also known
as “BH92”). The choice of such a window is justified by the requirements in terms of
spectral leakage performance [48]. The 4-term Blackman-Harris window has a small lobe
adjacent to the main peak in the transfer function (92 dB below the main peak) with
the first zero located at frequency f = ±4.00 bins. Thus the power within the side lobes,
which contributes to the spectral estimation, is suppressed of 92 dB, making the BH92
one of the best-performing available windows in terms of spectral leakage suppression.
The equation of this window with length N is the following, as reported in section 3.4:

w(n) =
3∑
j=0

ajcos
(

2πj

N − 1
n

)
0 ≤ n ≤ N − 1 (4.3)
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where a0 = 0.35875, a1 = −0.48829, a2 = 0.14128, a3 = −0.01168.
The BH filter is applied by sliding it over the ∆g time-series with a rate equal to the
new sampling time: filtering and decimation are thus applied at the same time, as it is
shown in Figure 4.3. The transfer function of the filter is depicted in Figure 4.1.
The free-fall data have been downsampled with a factor that guarantees the correctness
of decimation: the number of decimated samples per experimental time is 34, as it is an
integer factor of the total number of samples per experimental time (Nexp = (Tflight +

Timp) · fsamp = (349.2 + 1) s · 10Hz = 3502), whereas the number of decimated samples
that has been chosen per flight time is 25. The decimation factor Nd is thus equal to
103. According to Equations 4.1 and 4.2, it follows that the new sampling time is Tsamp
= 10.3 s and the filter length is Twin = 98 s. Data points corresponding to windows
that overlap with the kick period are set to zero (ngap = ntot − nkeep = 9 samples). The
downsampling configuration chosen and the data analysis procedure are schematized in
Figure 4.2 and Figure 4.3 respectively.

Figure 4.1: Blackmann-Harris transfer function for Twin = 98 s. The green vertical line marks the
sampling frequency, the red one identifies the Nyquist frequency. The figure shows that the filter has a
sharp roll-off at a frequency well below the Nyquist frequency.

Figure 4.4 shows the result of the procedure on the differential acceleration noise time-
series, ∆g: the data are sampled at ∼ 98 mHz with 9 samples set to zero every 25
points. After setting to zero the data around the kicks, the Power Spectra Density
(PSD) can be estimated, as shown in Figure 4.3, adopting the the configuration reported
in section 1.4.3 (40000-s BH windows averaged with 50% overlap). Finally the spectrum
of ∆g must be corrected for the bias related to the “gap ratio” ntot/nkeep, as reported
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in Figure 4.3, because of presence of zeros in data and normalized for the BH window
transfer function. The first correction will be discussed in detail in the next section. The
routine implemented in LTPDA to perform the steps of the Blackmann-Harris low-pass
method, as depicted by the block diagram of Figure 4.3, is reported in Appendix.

Figure 4.2: The effect of decimation on a data series according to the Blackmann-Harris method.

Figure 4.3: Block diagram of the Blackmann-Harris low-pass approach. The plot shows the effect of
the technique: the filter is slid over the ∆g data stretch with a rate equal to the new sampling time,
10.3 s. The bold coloured windows are those that are contaminated by the kick interval, as it is shown
in the ∆g time-series below. The corresponding samples in will be set to zero. The vertical dashed lines
delimit the resulting gap.
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4.1.1 Calibration of the BH low-pass technique

It is possible to demonstrate that in the case of BH low-pass technique, spectral bias
introduced by gaps and analysis procedure can be calculated. This is based on an analytic
calculation of the reduction procedure operations we perform to data that allows for a
posteriori correction to eliminate the bias, as discussed in [47]. To have an idea of the

Figure 4.4: Differential acceleration time-series (blue) after having applied the BH low-pass technique,
compared with the kick force one (red), which is equal to zero during the flights. In the configura-
tion chosen, 25 samples are kept per flight and 9 are set to zero. The data refer to the first free-fall
measurement performed in June in Nominal authority (see section 5.5).

effect that the analysis procedure might introduce, we consider the data of a noise-only
run and apply the same procedure described to analyze the free-fall experiment. Gaps of
same duration and repetition rate of those in the free-fall data are inserted. The result
in terms of ∆g ASD, is shown in Figure 4.5. The main effect after having applied the
analysis procedure, beyond the presence of peaks due to the inserted gaps, is visible
especially at frequencies below the experimental one (∼ 2.8 mHz), where the resulting
spectrum underestimates the “native” one.
To calculate the bias on the spectrum, we start by recalling the standard procedure for
the spectral estimation. The Power Spectral Density of a zero-mean stochastic process
x[n] with sampling time Tsamp (i.e. 0.1 s in the standard case) can be evaluated from the
following complex coefficient, which correspond to the Discrete Fourier Transform of the
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Figure 4.5: Effect of the BH low-pass technique on the ASD of the noise-only run performed in URLA
on May 16, 2016 (red curve). The blue curve is the original ASD, with ∆g sampled at 10 Hz.

“windowed” data, w[n] x[n]:

sk =
N−1∑
n=0

w[n] x[n]e−ik
2π
N

n, (4.4)

where N is the number of samples used to evaluate the spectrum, w[n] is the normalized
spectral window, such that:

1

N

N∑
n=1

|w[n]|2 = 1. (4.5)

The window is applied to the data stretch to ensure that it smoothly approaches zero at
its ends, according to the standard Welch’s averaged periodogram method. Within the
LPF collaboration, a Blackman-Harris window is used. k = f T = f NTsamp is the index
of the spectrum related to the length of the window T used, f is the frequency at which
the spectrum is evaluated. The PSD is estimated as:

Sk = sks
∗
k (4.6)

This holds for the two-sided discrete time PSD, which can be converted into a single
sided continuous-time PSD by multiplying Sk by 2Tsamp. The coefficients Sk represent
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the “true” discrete time PSD, as their mean value is:

〈Sk〉 =
1

N

N−1∑
n,m=0

〈x[n] x[m]〉w[n]w[m]e−ik
2π
N

(n−m)

=
1

N

N−1∑
n,m=0

Rx[n−m]w[n]w[m]e−ik
2π
N

(n−m)

=
1

2π

∫ π

−π
Sx(φ)

∣∣∣∣h(φ− k2π

N

)∣∣∣∣2 dφ
(4.7)

where φ is the Discrete Time frequency. Indeed, we recall that the autocorrelation of the
stochastic process Rx is the inverse Fourier transform of the spectrum Sx(φ = 2π/N)

behind the data:
Rx(n−m) =

1

2π

∫ π

−π
Sx(φ)eiφ(n−m)dφ (4.8)

The window h(φ) is defined as:

h(φ) =
1√
N

N−1∑
n=0

w[n]e−iφn (4.9)

in other words, h is the Discrete Time Fourier Transform of the window:

1/
√
N Θ[n] Θ[N-1-n]w[n] (4.10)

In the case of free-fall measurement, the spectral window w[n] is the result of the con-
volution of the standard BH spectral window with the periodic window with duration
Texp = Tflight + Timp and length Ntot = Texp/Tsamp = 3502, which is 0 within the kicks
and 1 outside. The resulting window can be thus expressed as follows:

Hk[φ] =
1

Ntot

Ntot/2∑
j=−Ntot/2

w

[
j

2π

Ntot

]
h

[
φ− k2π

N
− j 2π

Ntot

]
(4.11)

where w[φ] is the Discrete Time Fourier Transform of the “pulse-train” window.
According to the BH low-pass technique, we filter and downsample ∆g data. As a
consequence the autocorrelation must be convoluted with the low-pass filter and also
decimated:

R[m] = (h⊗R⊗ h)m×Nd (4.12)

here h is the impulse response of the discrete filter (the Blackman-Harris low-pass filter)
and Nd is the decimation factor (Nd = Ntot/ntot = 103 in our case). We thus can express
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the PSD coefficients of the stochastic process in issue (∆g, the noise on differential
acceleration) with the complete spectral window and the autocorrelation corrected:

〈Sk〉 =
1

Ns

Ns−1∑
n,m=0

R∆g[n−m]w[n]w[m]e−ik
2π
Ns

(n−m) (4.13)

where Ns is the effective number of (decimated) samples used for the spectral estimation
(Ns = NTsamp/Tsamp) and w[n] is the inverse Discrete Time Fourier Transform of Hk.
It is possible to write Equation 4.13 in matrix form, by defining:

Rn,m = R∆g[m− n] γk,m =
1√
Ns

w[n]e−ik
2π
Ns

n (4.14)

to get finally:

〈Sk〉 =

Ns−1∑
n,m=0

γk,nRn,mγ
†
m,k = [diag(γ · R · γ†)]k (4.15)

The mean values of the spectrum of ∆g evaluated during the free-fall measurement,
biased by gaps and the spectral window, corresponds thus to the diagonal of the triple
matrix product of Equation 4.15. An analogous procedure can be followed to estimate
the PSD of the filtered and decimated data but without setting periodic samples to zero.
By comparing the resulting spectrum with the one that includes gaps, we can finally
estimate the spectral bias introduced by the presence of gaps.
To estimate the correction to be applied, we assume that the PSD of the underlying
statistical process for the continuous variable ∆g is composed of various contributions,
the combination of which gives a continuous spectrum that, when passed through the
filter of our analysis process, is expected to match the calculated gapped-data spectrum.
For each contribution we thus calculate the autocorrelation R∆g as the inverse Fourier
transform of the corresponding theoretical spectrum. Then we follow the procedure
described above to estimate the PSD of each contribution, as in Equation 4.15. After
that, we perform an iterative weighted linear least square fitting, using the parameters of
the preceding iteration with weights from theoretical error PSD estimate (see section 5.1),
of the spectra combination to the PSD of ∆g according to the following model:

Sgapmod = αw[diag(γ · Rw · γ†)] + αb[diag(γ · Rb · γ†)] + αd2 [diag(γ · Rd2 · γ†)]

+ α1/f [diag(γ · R1/f · γ†)] + α1/f2 [diag(γ · R1/f2 · γ†)]
(4.16)

where the α coefficients are the free parameters in the fit. The autocorrelation functions
are defined a follows:
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• Rw is the autocorrelation of white noise, corresponding to the Brownian noise
which is independent of frequency and dominates the spectrum between 0.7 and
20 mHz.

• Rb is the autocorrelation of a low-frequency contribution characterized by a “bump”
shape and observed in almost all free-fall spectra at frequencies below 0.3 mHz. The
model used for this contribution is:

Sb(f) =

f4

f4
0

1 + f12

f12
0

(4.17)

with a roll-off frequency f0,b = 2.1 · 10−4 Hz.

• Rd2 is the autocorrelation of second derivative of Discrete Time Fourier Transform
of white noise, which corresponds to the conversion of the interferometer readout
into acceleration.

• R1/f is the autocorrelation of the following “low-pass” noise spectrum:

S1/f (f) =
1mHz
|f |+ f0

(4.18)

that shows a roll-off frequency f0,1/f at 100 nHz after which it decays as 1/f .

• R1/f2 is the autocorrelation of the “low-pass” noise spectrum:

S1/f2(f) =
1

2

1

1 + f2

f2
0

(4.19)

with roll-off frequency f0,1/f2 at 0.1 nHz after which it decays as 1/f2.

It must be underlined that, though the chosen model may suggest some physical inter-
pretation of the various contributions, it only constitutes a smooth function of frequency
for the purpose of fitting data. In particular for the low frequency parts, the dependence
on frequency is purely phenomenological.
In this view, the modelled continuous spectrum is given by the following expression:

Scontmod = αw+αb

 f4

f4
0

1 + f12

f12
0

+αd2

(
f

f0,d2

)4

+α1/f

(
1mHz
|f |+ f0

)
+α1/f2

 1/2

1 + f2

f2
0

 (4.20)



92 Chapter 4. Approaches to data analysis

Before discussing the fitting results, we will show an example of bias estimation for two
different spectral models.
Let consider, for a moment, the white and 1/f2 contributions. It is possible to calculate,
in this case, the ratio between the theoretical spectrum one would obtain after having
applied the BH low-pass technique, with gaps included and the same spectrum but with-
out gaps, according to Equation 4.15. In other words, this is the ratio between the mean
value of the PSD, with autocorrelation filtered and decimated, when w[n] is the “gapped”
window (i.e. the inverse Discrete Time Fourier Transform of Hk, see Equation 4.11) to
that when w[n] has no gaps (i.e. the standard BH spectral window). The results, shown
in Figure 4.6, evidence that for the white noise the bias is equal to the ratio between
the number of decimated data per flight (nkeep = 25, as it is reported in the previous
section) and the total decimated data per experimental time (ntot = 34). This factor
derives from the presence of gaps in data and it can be calculated also analytically [49].
As regards the low-pass contribution 1/f2, the PSD ratio is equal to the square of the
inverse of the “gap ratio”: (nkeep/ntot)

2.
In the case where we have the white and 1/f2 contributions only, the correction thus
consists in multiplying the “white” part of the spectrum with gaps by ntot/nkeep, while
the 1/f2 profile must be multiplied by (ntot/nkeep)

2.

Figure 4.6: Ratio between the PSD obtained using the “gapped” window and the standard window,
for two different spectral models (white noise and 1/f2 noise). As it is indicated, the correction of the
white contribution consists in dividing the gapped data PSD by 0.693 (= nkeep/ntot), whereas the 1/f2

noise must divided by 0.541 (= (nkeep/ntot)
2).
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This numerical calculation thus leads to the observation that the bias, mainly due to the
presence of gaps, depends on spectrum shape.
In order to correct the entire spectrum for it, instead of proceeding for individual com-
ponents, we fit the estimated ∆g spectrum to a smooth one transformed according to
Equation 4.16. The fit is performed with 4-sample spacing up to 10 mHz, as the down-
sampling frequency is ∼ 98 mHz. An example of the fit result, corresponding to the
free-fall measurement performed in December (see chapter 5) is shown in Figure 4.7a
(the PSD data are obtained after having subtracted the DC and time-drift contribu-
tions). The red curve indicates the fit to the experimental spectrum (marked in blue).
In this case the theoretical model includes all the contributions of Equation 4.16 except
the term modeling the bump, as it is not visible in this specific spectrum. The corre-
sponding parameters obtained from the fit are summarized in Table 4.1. The resulting
number of degrees of freedom is 97, the estimated reduced χ2 is equal to 1.56, obtained
after 10 iterations.

Parameter value error units

√
αw 2.48 0.10 (fm/s−2)/

√
Hz

√
αd2 0.61 0.05 (pm/s−2)/

√
Hz

√
α1/f 1.81 0.11 (fm/s−2)/

√
Hz

√
α1/f2 0.36 0.01 (fm/s−2)/

√
Hz

Table 4.1: Parameter values obtained with the linear square fit to the free-fall spectrum performed in
December (DOY 353-358).

By using the fitting parameters we can construct the predicted spectrum of ∆g when w[n]
has not gaps and compare it with that one resulting from the fit with gaps included. The
comparison is shown in Figure 4.7a. In other words, the green curve corresponds to the
“native” spectrum of the free-fall measurement which converts into the red curve because
of presence of gaps. The ratio between the two spectra, which assumes the functional
form of the PSD model in Equation 4.20 but is independent of the amplitudes of the
various terms, corresponds to the bias introduced by the gaps and spectral window. We
can thus correct the PSD of the free-fall data for it. The original and corrected PSDs
are displayed in Figure 4.7b. To note that the kicks disappear in the corrected spectrum
(marked in magenta in the figure), as they are entirely fitted by the model.
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a)

b)

Figure 4.7: Fig.a: Comparison between the predicted spectrum with gaps (red curve) and without
gaps (green curve) evaluated during the free-fall measurement performed in December. Fig.b: ASD
of ∆g before (in blue) and after the bias correction (in magenta). ∆g has been “detrended”, i.e. we
subtracted the DC and time-drift contributions.

Calibration of BH techinque on science measurement data. In order to verify the accuracy
of the proposed method to estimate the bias, we have applied it to noise-only data. As
described at the beginning of the section, we inserted artificial gaps in a ∆g time series,
after having applied the low-pass and decimation procedure. Then, we perform the fit
to the spectrum to obtain the predictions of the PSD with and without gaps. With 198
degrees of freedom, as we fit up to 20 mHz in this case, we obtain the parameters in
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Table 4.2 with a reduced χ2 equal to 2.10. The noise measurement was performed from
December 26 to January 2, and the spectrum is the result of 28 BH-segments 40000 long
and with 50% overlap.

Parameter value error units

√
αw 2.84 0.04 (fm/s−2)/

√
Hz

√
αd2 0.11 0.01 (pm/s−2)/

√
Hz

√
α1/f 1.64 0.08 (fm/s−2)/

√
Hz

√
α1/f2 0.191 0.003 (fm/s−2)/

√
Hz

Table 4.2: Parameter values obtained with the linear square fit to the spectrum of the noise measure-
ment performed in December.

The resulting ASD corrected for the bias is shown in green on the left of Figure 4.8.
The figure includes also the original spectrum of ∆g filtered and downsampled only (red
curve) and the “native” one sampled at 10 Hz (blue curve). Figure 4.8, on the right,
depicts the ratio between the two decimated spectra (green curve divided by red curve
of Figure 4.8, left), which is consistent with one within the errors (13% relative error, 1σ

confidence level). We can conclude that the method applied to correct the spectrum for
the bias is accurate at least at low frequency.

Figure 4.8: On the left, in blue: “native” spectrum of ∆g sampled at 10 Hz and measured in a standard
noise measurement at the end of December. It converts into the red curve once filtered and decimated.
The result obtained after having inserted artificial gaps in the latter spectrum also corrected for the bias,
is depicted by the green curve. On the right: the ratio between green and red curves respectively.
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4.2 Other data analysis methods

In this section we briefly describe the other two approaches developed within the LPF
collaboration to analyze the free-fall data. Further details are reported in the cited
documents.

4.2.1 Windowing of data gaps

The basic idea of this approach is to zero out the kicks in ∆g by means of spectral
windows. The analysis is based on that developed by Adrien Grynagier from Institute
of Flight Mechanics and Flight Control, Universität Stuttgart and is described in detail
in [50]. The concept is similar to what is adopted for the spectral estimation, where
the time series is multiplied by a normalized windowing function before computing the
spectrum. In this case the windowing ensures that the data stretch smoothly approaches
zero at its ends, avoiding artifacts in the spectrum caused by the unavoidable truncation
of the data series to a finite length.
In the approach proposed to analyze the free-fall data, the choice of the window is
crucial because it must guarantees two conditions: it has to take the value zero at both
the extremities of the time-series and also during each gap and furthermore it has to
minimize the spectral leakage in the LPF bandwidth. The window used here is the
product of two normalized windows [50]:

• a “low frequency" window that covers the whole dataset and reduces the leakage
at low frequencies;

• a “high frequency" window that is set to zero at each kick and decreases the leakage
at high frequencies due to the gaps.

The “high frequency" window is a standard Hahn window. If we call k1 the last sample of
a kick and k2 the first sample of the successive kick, the window is given by the formula:

yHF (k) =
1− cos

(
2π k−k1

k2−k1

)
2

, k ∈ [k1; k2] (4.21)

The “low frequency" window is still a Hahn window but it spans over the whole stretch
which, we assume, is N samples long:

yLF (k) =
1− cos

(
2π k−1

N−1

)
2

, k ∈ [1;N ] (4.22)

∆g data are therefore multiplied by a window which is obtained from the product of the
two windows (Figure 4.9a). The effect of the windowing is visible in Figure 4.9b, where
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the kick force time series is compared with the overall window.

a) b)

Figure 4.9: Time series of the window used to zero out the kicks in ∆g time-series (a) and comparison
with the kick force (b).

4.2.2 Constrained-Gaussian gap patching

Another strategy proposed for the free-fall data analysis consists of filling the gaps with
proper random noise that has the same statistics as the rest of the free-fall data [51].
In this section we will not go into detail, but we will just describe the general concept
of this method. The purpose of the approach is to generate a reconstructed data series
with a Power Spectral Density (PSD) as close as possible to that one would obtain if the
data had been taken continuously but without the application of force kicks.

The basic algorithm of the method is the following:

1. make a guess for the expected PSD describing the data;

2. compute the autocorrelation function as the inverse Fourier transform of the ex-
pected function above;

3. from the autocorrelation function calculate the conditional probability distribution
of data within the gaps, conditioned to the observation of some properly chosen
set of data outside the gaps;

4. generate random data according to this conditional distribution and place them
within the gaps;

5. estimate the spectrum of this reconstructed data series and compare it with the
initial guess.
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If agreement is not found at step (5), the initial guess is adjusted, and the loop from (1)
to (5) is performed again until the agreement is eventually reached.
To minimize the bias resulting from the patches, the data in the patches should have the
same spectral content as the missing data it is replacing. In particular, two requirements
must be fulfilled: the first is that the data points in the patches must have proper
correlations with one another, the second is that the data points in the patches must be
properly correlated with the existing data. It is possible to demonstrate that the second
condition can be reached by biasing the mean values of the random data used to make
the patches, a technique that is called “Constrained-Gaussian Gap Patching" or “CG
patching" [51].
Figure 4.10 shows the concept of this technique applied to a generic time series. Once
patched, standard approaches can be used to compute the spectrum of the entire data
set as if it were continuous.

Figure 4.10: Example of Constraint Gaussian gap patching technique approach. [42]

4.2.3 Comparison among data analysis techniques

In this section we compare the three data analysis approaches described above. This is
shown in terms of ∆g time-series with gaps filled according to each method (see Fig-
ure 4.11). As described above, while the Blackmann-Harris low pass and the windowing
approaches aim at setting to zero, in a different way, the data of the kick phase, in the
Constraint-Gaussian Gap Patching the impulse data are filled with artificial noise. Data
refer to the free-fall measurement executed in June in URLA authority.
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Figure 4.11: Resulting ∆g data of the free-fall experiment performed in June in URLA authority after
having applied the three data analysis approaches.

The approach we adopted to analyze free-fall data, namely the BH low-pass technique,
aims to suppress the spectral leakage which is caused by the high frequency noise with
effect in the low frequency band of the residual acceleration spectrum. To facilitate the
analysis procedure needed to estimate the spectral bias, the data are also decimated
according to criteria aimed at limiting aliasing effects. The spectral bias introduced by
the data analysis method has been calculated numerically, on the basis of an algorithm
which takes into account all the analysis steps performed on data. This calculus has
revealed a relation, which varies with the spectral shape, of the bias with the number of
missing data over the total samples considered per experimental time. The calibration
of the analysis approach, performed on data with a known spectrum, demonstrates the
accuracy of the above-mentioned procedure, at least at low frequency. The next chapter
will present the spectra of the free-fall data set, analyzed with the Blackmann-Harris
method and corrected for the bias.





Chapter 5

The free-fall mode experiment
results

This chapter shows the results of the free-fall measurement campaign performed on board
LISA Pathfinder. Each experiment will be described in detail, with reference to the imple-
mentation choice, time duration, dynamical profile and analytic corrections. Regarding
the analysis, we follow this procedure: we apply the BH low-pass approach described in
chapter 4 to ∆g data, then we correct it for the effects described in the preceding chapters,
namely the centrifugal effects (see section 1.4.3) and the correlation with the tangential
acceleration (see section 3.4.1). Finally, the spectra are extracted and corrected for the
spectral bias introduced by the data reduction procedure. The five free-fall measurements
we have (in URLA authority) will be compared in section 5.1.6. Finally, the “best” re-
sult will be discussed with respect to a noise-only measurement performed in the same
actuation configuration and time period. A similar comparison will be performed for the
single free-fall measurement executed in Nominal authority.

5.1 Free-fall measurement results

In this section we report the results of the free-fall measurement data set performed on
LPF. The free fall mode experiment has been performed successfully more than once
on LPF. The control has been achieved and maintained stable over the mission. We
have, in total, six free-fall runs that span from June to December 2016 and differ in
authority configuration on degrees of freedom except x2 and flight amplitude. Table 5.2
summarizes the free-fall mode experiments performed so far. It includes the initial values
of the static differential force, the kick force and the flight amplitude. Except the first
experiment, implemented in Nominal authority, the URLA authority was maintained in

101
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the following ones as in case of the standard science measurement.
As regards the PSD estimate, we compute the spectrum by averaging 40000-s BH win-
dows with 50% overlap. The resulting PSD coefficients are evaluated with theoretical
PSD uncertainties and 1σ confidence level. As reported in section 4.1.1, the standard
Welch’s averaged periodogram method estimates the power spectral density of processes
from finite length discrete time-series. To reduce the uncertainty, the data stretch may be
divided into N segments of the same length, and the operations described in section 4.1.1
performed on each of them. The best estimate of the spectrum is then computed as the
average of the power spectral density obtained from each segment, or periodogram, Pn(f),
as follows:

S(f) =
〈
P̄ (f)

〉
=

〈
1

N

N∑
n=1

Pn(f)

〉
, (5.1)

where f is the frequency at which the spectrum is evaluated. The uncertainty is thus
reduced by a factor

√
N , by assuming Pn(f) random gaussian variables. In particular,

it can be demonstrated that [52]:

S(f) ≈ P̄ (f)± P̄ (f)√
N

⇒ δS

S
≈ 1√

N
, (5.2)

with 1σ confidence level. Here δS indicates the uncertainty on the PSD estimation.
Once the spectra are obtained, we correct them for the bias induced by the data analysis
reduction as well as for the filter transfer function, as reported in section 4.1.1.
For convenience, we report in Table 5.1, the averaged values of the calibration parameters
needed to evaluate ∆g which have been obtained by fitting each flight, as described in
section 3.5.

Run DOY ω2
2 ∆ω2 ∆gDC ġ0

(2016) (10−7 s−2) (10−7 s−2)
(pm

s2
) (

pm
s2 day

)
June Nominal 161 -7.116 -1.715 -2.500 -0.400

June URLA 162 -4.586 -1.272 -3.029 -0.493

July URLA 202-204 -4.689 0.726 -19.072 -0.307

August URLA 215-218 -4.662 0.460 -15.042 0.353

September URLA 265-267 -4.478 -1.051 0.666 -0.020

December URLA 353-358 -4.414 2.935 0.513 -0.500

Table 5.1: Averaged values of calibration parameters of all the free-fall measurements.
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Experiment run DOY length ∆gDC,0 ġ0 ∆x0 QTM1 QTM2

(hours)
(pm

s2
) (

pm s−2

d

)
(nm) (pC) (pC)

Nominal, June 161 20 -2.5 -0.45 38 -0.66 (b) -1.39 (b)

(Nmax,φ1 = 10.4 pNm, +0.52 (a) -0.82 (a)

Nmax,φ2 = 10.4 pNm)

URLA, June 162 24 -3.3 -0.49 42 -0.66 (b) -1.39 (b)

(Nmax,φ1 = 1.5 pNm, +0.52 (a) -0.82 (a)

Nmax,φ2 = 1 pNm)

URLA, July 202-204 33 -18.2 -0.31 270 -0.98 (b) -0.50 (b)

(Nmax,φ1 = 1.5 pNm, +0.97 (a) +1.48 (a)

Nmax,φ2 = 1 pNm)

URLA, August 216-218 73 -15.0 0.35 220 -0.90 (b) -0.83 (b)

(Nmax,φ1 = 1.5 pNm, +1.30 (a) +1.73 (a)

Nmax,φ2 = 1 pNm)

URLA∗, September 265-268 44 0.7 -0.02 10 -2.28 (b) -1.91 (b)

(Nmax,φ1 = 1.5 pNm, +2.37 (a) +2.21 (a)

Nmax,φ2 = 1 pNm,

FOOL,x1 = +9 pN)

URLA∗∗, December 353-358 132 2.2 -0.50 27 -1.10 (b) +1.17 (b)

(Nmax,φ1 = 1.5 pNm, +2.54 (a) +2.98 (a)

Nmax,φ2 = 1 pNm,

FOOL,x1 = +11.2 pN)

Table 5.2: Free-fall mode experiments performed on LPF. The table reports the maximum torques
on TMs, the initial value of the DC differential acceleration (∆gDC,0), the time-drift (ġ0) and flight
amplitude (∆x0). The information on the charge status, before (b) and after (a) the measurement, is
included in the table for both the TMs. The first four runs have been implemented in the standard
mode, while in the last two experiments an out of the loop compensation force is applied on TM1 to
reduce the gravitational imbalance between the TMs. Finally, the last measurement is characterized by
a different control, where both kick and drift phases have been implemented in High Resolution mode.

5.1.1 June runs, DOY160-161: free-fall in Nominal and URLA confi-
guration

The first free-fall mode experiment was performed on June and it lasted two days: it
was implemented in Nominal authority on the first day (DOY161), then the maximum
forces and torques were reduced according to URLA configuration on the second day
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(DOY162). As the initial mean value of the static differential acceleration was about
−2.5 pm s−2, according to the results obtained in the preceding noise-only measurement,
the flights have a downward concavity and amplitude of the order of roughly 40 nm,
as reported in Table 5.2. Moreover, because of the negative sign of ∆gDC , the TM2
moves away from TM1 (this configuration is common to the first four free-fall runs). As
a consequence, the kick force applied on TM2 is expected to be positive with respect
to the TM2 reference frame (see Figure 1.16) as it forces TM2 toward TM1. We see a
confirmation of this in Figure 5.1.

Figure 5.1: Time-series of differential readout (on top) and kick force (on bottom) of the free-fall
measurement performed in June in Nominal authority (DOY161). The flights orientation, as well as the
one of the force on TM2, agrees with the sign of the static differential acceleration.

By using the fit parameters obtained in the calibration phase, we can evaluate the time-
series of ∆g sampled at 10 Hz, which includes the kicks and we correct it for the cen-
trifugal force and the tangential acceleration (the values are reported in table 3.3). Then
we apply the BH low-pass technique and finally remove the impulses and obtain the
spectrum. The time-series of ∆g, after the subtraction of the DC and time-drift con-
tributions, and the relative spectrum are reported in Figure 5.2. The time-series are
the result of low-pass filtering and decimation with a sampling frequency of ∼ 98 mHz,
according to what reported in section 4.1. The kicks are replaced by zeros in the gaps
as it is visible in Figure 5.2, on the left. In both Nominal and URLA ∆g time-series,
some glitches are visible. Their origin is likely related to the time-stamping adjustment
between DMU-OMS and OBC (On Board Computer) clocks, which is applied on board
the satellite over the mission. The effect of this correction is more evident during the
free-fall measurement because the TM2 velocity is higher with respect to a standard
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noise experiment (∼ nm s−2 in free-fall against ∼ 10 pm s−2 in standard measurement).
In particular, when the static differential acceleration is larger, the glitches are more
intense and this is the case of July and August runs (see section 5.1.2). After having
evaluated ∆g, the Amplitude Spectral Density is extracted. Its spectral resolution is set
by the spectral window length and is ∆f ' ± 50µHz. The ASD for the Nominal run is
the result of averaging 2 periodograms of 40000 s, as the measurement lasted actually
just 20 hours, which results in a relative error of 35% in S1/2

∆g . In URLA case the relative
error is 29%, as we average 3 periodograms. As expected, the low frequency noise is
higher in Nominal authority with respect to the URLA authority (see Figure 5.2, on the
right). In addition, in the URLA spectrum a “bump” is visible at low frequency, whose
origin is still unclear.

Figure 5.2: June free-fall runs (on top: Nominal authority, on bottom: URLA authority). On the left:
∆g time-series (on the left) not corrected (in blue) and corrected for all the effect described in chapter 3.
Both the time-series are obtained after having subtract the DC and time-drift. On the right: ASD of
the corrected time-series.
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Finally, Figure 5.3 shows the profile of ∆g evaluated during the two free-fall measure-
ments (in Nominal and URLA authority) and analyzed with the Blackmann-Harris ap-
proach, before subtracting the DC and time-drift from the relative acceleration. The
figure includes also the result of the noise-only measurement preceding the first free-fall
run. The overall profile covers the period from June 6th to June 10th. We can observe
that the three time-series match with each other.

Figure 5.3: ∆g time-series estimated in June, from 6th to 10th. Before the free-fall measurements, a
noise-only run occurred. The free-fall time-series are depicted by the flight samples only, as the kicks
are set to zero.

5.1.2 July run, DOY202-204: free-fall in URLA configuration

The free-fall mode experiment performed in July lasted three days, from DOY202 (July
20) to DOY204 (July 22). It started in Nominal authority, switching to URLA authority
after roughly one hour. Because the average differential acceleration between the TMs
was about 18 pm s−2, the flight amplitude was about a factor ten higher than the previ-
ous run (∼ 270 nm). As a consequence, the effect of the clocks correction is more relevant
on data with respect to the June run ones. This is visible in Figure 5.4, which shows
the time-series of ∆g, filtered, downsampled and with gaps, before having correct the
telemetry data for the glitches.
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Glitches due to time stamping.

The OMS and DMU clocks accumulate a time slip of about 10 ms every roughly 2400
s. It is possible to note in Figure 5.4 that the glitch amplitude is not constant, but it
depends on the velocity of TM2: it is higher when the slip correction occurs close to a
kick, where the velocity of TM2 is high and it appears smaller when the correction occurs
near the middle, the high or low point of the flight, when the TM velocity is small. In
addition, we observed that the glitches are not exactly periodic: the correction is thus
not trivial. An attempt to correct the data consisted of re-stamping o12 with a time
vector sampled at 1 Hz. However, an ad-hoc method has to be still implemented as this
correction allows us to remove just some glitches.

Figure 5.4: Time-series of ∆g obtained in July run, after having applied the BH low-pass technique.
The missing samples correspond to the kick phase, while during flights some timing glitches are visible.
They appear roughly every 2400 s.

With the fixed o12 we re-estimated the dynamical parameters and re-calculated the ∆g

time-series (the fit parameters are reported in Table 5.1). Because the ∆g time-series
contains still some glitches, we extracted only a segment from it, which is depicted in
Figure 5.5a. We thus correct just that timespan for the centrifugal force and tangential
acceleration. The results of the last correction are reported in Table 3.3, while the
corrected time-series is shown in red in Figure 5.5a. As is visible, the correction introduces
an evident low frequency signal in the data stretch. This is likely related to the procedure
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followed to subtract the centrifugal force and it was observed in the August run as well
(see Figure 5.6a). We do not have a clear explanation of why this effect is visible
only in these measurements. However, it could be related to the systematic error in
the determination of the actual commanded forces and torques (see section 1.5.1) which
affects these data. Indeed, the process applied to correct data presents limitations related
to which telemetry packet is used for the analysis and currently it does not work on this
specific measurements. The other free-fall measurements have been all fixed and do not
show this problem.

a) b)

c)

Figure 5.5: Fig.a, blue curve: time-series of ∆g filtered, decimated and with gaps in place of kicks
of July measurement. For the analysis we consider the data between two consecutive glitches, from
2016-07-20 at 18:11:37 UTC to 2016-07-22 at 04:20:07 UTC. The corresponding segment is corrected for
the centrifugal force and the tangential acceleration (red curve). Fig.b: mean Power Spectral Density as
a function of time from 0.1 to 0.4 mHz for ∆g not corrected, ∆g corrected just for the centrifugal force
and ∆g corrected also for the tangential acceleration. Fig.c: the ASD of ∆g corrected for both effects.
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In Figure 5.5b we compare the effect of the correction for the centrifugal force and tan-
gential acceleration on ∆g in terms of the mean Power Spectral Density as a function of
time, for frequencies between 0.1 and 0.4 mHz. It is possible to observe a noise reduction
especially in the second averaged periodogram. Finally, the ASD of the corrected seg-
ment is reported in Figure 5.5c. It is the result of averaging 5 windows, as the segment
lasts 33 hours (relative error of 22%).

5.1.3 August run, DOY215-218: free-fall in URLA configuration

The measurement performed in August lasted four days, from August 2 to 6 (DOY 202-
205). At that time, the static differential acceleration estimated between the TMs dur-
ing the previous noise-only run, was roughly equal to the July run (−15 pm s−2, see
Table 5.2). As a consequence, TM2 was expected to have high velocity, compared to
the first run and, and as a result, the experiment could have been affected by possible
glitches due to the timestamp correction. To prevent this effect it was agreed to downlink
to ground the 10 Hz DMU telemetry packet as it includes the time vector sampled at
10 Hz needed to re-stamp the data. However this packet does not contain the kick force,
needed to split the flights correctly for the calibration analysis and also for setting kicks
to zero. To disentangle the kick phase from the flight one, we used the DFACS mode
telemetry channels, as they contain the needed information of the switch between HR
and WR mode, typical of the DFACS free-fall mode.
By fitting each flight we estimated the calibration parameters as reported in Table 5.1
and calculated ∆g. Figure 5.6a shows the resulting time series before and after the cor-
rection for the centrifugal and tangential accelerations. We have to specify that, because
of the presence of an evident glitch whose origin is still unknown, we analysed just the
data before this unexpected event. The mean noise power from 0.1 to 0.4 mHz as a
function of time and the ASD of the selected segment (from 2016-07-20 at 18:11:37 UTC
to 2016-07-22 at 04:20:07 UTC) are extracted, as reported in Figure 5.6b and 5.6c.
The effect of the overall correction is quite evident, especially on the last stretch used for
the PSD estimation (Figure 5.6b). To compute the spectrum we used 11 periodograms;
the relative error on the ASD is thus 15%. The spectrum shows evident unexpected
spikes, at frequencies different from the experimental one or its multiples (∼ 2.8 mHz),
whose origin is still unclear (see Figure 5.6c).
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a) b)

c)

Figure 5.6: Fig.a, in blue: time-series of ∆g filtered, decimated and with gaps in place of kicks
of August measurement before any correction. In the analysis we consider the data after the glitch,
from 2016-08-02 at 09:03:20 UTC to 2016-08-05 at 07:20:09 UTC. In red: ∆g after the corrections the
centrifugal force andthe tangential acceleration. In both cases we have subtracted the DC and time-
drift. Fig.b: mean Power Spectral Density as a function of time from 0.1 to 0.4 mHz of the selected
∆g timespan not corrected (blue), corrected just for the centrifugal force (green) and corrected also for
the tangential acceleration (red). Fig.c: the ASD of the segment chosen in the analysis. The data tips
indicate unexpected spikes that occur at frequencies not related to the characteristic frequency of the
experiment.
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5.1.4 September run, DOY265-267: URLA free-fall with offset force

The free-fall measurement that occurred in September was implemented with DC-bias
compensation voltages applied on x electrodes during the kick phase. This was needed to
balance, via charge accumulation, the drift observed in the differential acceleration [53].
The resulting drift was reduced from 0.3 pm s−2 per day, measured during a previous
noise-only measurement, to 0.02 pm s−2 per day. Moreover, in order to reduce as much
as possible the DC value of the differential acceleration as well, TM1 was actuated along
the x degree of freedom with a constant out of loop force of +9 pN. The purpose of these
“expedients” was to minimize the velocity acquired by TM2 during the flight, such to
avoid an impact of the time-stamping correction on data, as observed in the previous
experiments.
The measurement started on September 22nd (DOY 266) and lasted roughly two days.
The profile of the resulting relative acceleration, in form of DC value and drift, is vis-
ible in Figure 5.7a. Because the mean value of the differential acceleration is reduced
to 0.67 pm s−2 and has positive sign, the flight amplitude decreased to 10 nm and the
concavity of the parabola is upward, as shown in Figure 5.7b.
Following the standard data analysis procedure illustrated in the previous sections, we
get the results which are reported in Figure 5.8. The reduction of the low frequency noise
in ∆g data corrected for all effects, is quite evident in all the averaged periodograms,
as shown by the mean Power Spectral Density evaluated between 0.1 and 0.4 mHz (Fig-
ure 5.8b). As the run was 44 hours long, the ASD is the result of averaging 6 stretches
(relative error of 20%).
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a)

b)

Figure 5.7: September measurement data. Fig.a: values of the DC (on the left) and drift (on the
right) of differential acceleration as a function of flight index and obtained in the calibration phase of
the analysis. Fig.b: flights and kick force time-series. It is possible to note the inversion in the flight
orientation with respect to the previous measurements, as shown by Figure 5.1.
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a) b)

c)

Figure 5.8: September measurement results. Fig.a: time-series of ∆g filtered, decimated and with gaps
before (blue) and after (red) the corrections. Here we show the time-series obtained after the subtraction
of the DC and time-drift contributions. Fig.b: mean spectral density between 0.1 and 0.4 mHz of ∆g
not corrected (blue), ∆g corrected just for the centrifugal force (green) and ∆g corrected also for the
tangential acceleration (red). Fig.c: ASD of ∆g corrected.

5.1.5 December run, DOY353-358: URLA free-fall in High Resolution
with offset force

The measurement performed in December is the longest free-fall run implemented so
far (18-23 December). Similarly to the September run, a constant out of loop force of
+11.2 pN was applied on TM1 along x to compensate the static differential acceleration.
In addition, it was agreed to perform the experiment with the High Resolution mode
always activated. Indeed, the continuous switch between HR andWRmode characteristic
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of the free-fall experiment, could have compromised the Front End Electronic (FEE),
which had revealed some issues in the days preceding this free-fall run.
In nominal High Resolution mode the maximum x force allowed on TM2 is 2.2 nN [17],
while the estimated DC differential acceleration during those days was about 10 pN.
Therefore, in order to guarantee stability of the system, it was required to widen the
impulse duration, according to Equation 3.2. In particular, maintaining the experimental
time constant (350.2 s), the minimum kick duration needed in nominal HR mode can be
calculated from the following condition:

Fkick =
FDC
χ

< Fmax,x ⇒ Timp > 3.5 s (5.3)

where we recall that χ = Tkick/Tflight. In view of this calculation, the kick phase was
enlarged to 5 s. As a consequence, the flight duration was reduced to 345.2 s.

Impact of kick duration widening on data analysis. In order to investigate the possi-
ble effect of the widening kicks on the data analysis, we tested different kick lengths on
free-fall data. In practice, we inserted larger gaps in the differential acceleration time-
series evaluated in June, as the kick duration were larger than 1 s (as in Figure 5.9, on
the left). The resulting ASDs, shown in Figure 5.9 on the right, does not reveal evident
effects.

Figure 5.9: Test of increasing kick durations on data analysis. On the left: ∆g time-series of June
run (DOY 162) with an artificially increased kick-time simulated by excluding the length of the gaps
in analysis procedure and thus with more samples set to zero (ngap). On the right: the corresponding
ASDs.

Going back to the December experiment, the measurement started in Nominal authority.



5.1 Free-fall measurement results 115

After about three hours the control along degrees of freedom except x2, which is actuated
just during the kick phase, switched to URLA authority and it was maintained over the
measurement. Figure 5.10 shows the experiment dynamics over the run.

a)

b)

Figure 5.10: December measurement. Fig.a: values of DC differential acceleration, obtained by fitting
each flight (on the left) compared with o12 time-series (on the right). A glitch is visible in the first part
of the measurement. A blow-up of the crossing-zero phase is visible in Fig.b, where the flights data series
is compared with the kick force one.

It is possible to observe that the amplitude of flights (o12 time-series, Figure 5.10a, on the
right) decreases gradually in the first part of the measurement, where the DC acceleration
has positive sign (Figure 5.10a, on the left). Then they cross zero during the third day of
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measurement, as the out of the loop force nulls the DC imbalance between the TMs. After
that, the flight concavity changes and the amplitude increases again. The corresponding
profile of the kick force is visible in Figure 5.10b, where in this specific case, the impulse
duration is equal to 5 s. Following the analysis procedure, we evaluate ∆g by fitting
just the flights of the first part of the measurement, otherwise the averaged values of the
coefficients would be affected by the data around the zero-crossing phase. Then we apply
the BH-low pass technique maintaining the configuration described in section 4.1, setting
the same number of samples to zero despite the widened impulse duration. Finally we
correct ∆g for the effects described above (for parameter values see Table 3.3).
Finally, a big glitch and one long period of non-stationarity were observed during the first
day of measurement. Because of the statistical significance of this measurement, these
events were both subtracted from ∆g by following a fitting procedure and the resulting
time-series is shown in Figure 5.11a, which depicts the resulting ∆g after the subtraction
of the DC and time-drift contributions. The useful stretch lasted thus ∼ 5.5 days. The
ASD of ∆g corrected for all effects described above, is then extracted (Figure 5.11c). It
is the result of 22 averaged periodograms with a corresponding relative error of 11%.

5.1.6 Comparison among free-fall results

The set of free-fall measurement we have is various: it presents differences in duration,
static differential acceleration level, flight amplitude, authority level and implementa-
tion mode. All the free-fall results, in terms of ASD at low frequency, are collected
in Figure 5.12. To compare them, we calculated the averaged ASD coefficients in the
[0.1, 0.4] mHz and [0.4, 0.8] mHz frequency bands for each case. Table 5.3 reports the
resulting values. The errors are assigned based on the scatter between the averaged win-
dows. The error bars of the first short free-fall measurement performed in June are not
statistically significant, with respect to the other runs, as the PSD is the result of aver-
aging only 3 windows. However, we can conclude that the measurements performed in
June, July, September and December are consistent within 1σ in this frequency band, as
it is shown in Figure 5.13. The figure reports also the averaged values in the [0.4, 0.8] mHz
frequency band, where, however, a full agreement is not achieved. Finally, we can observe
that the “bump” visible at frequencies below 0.3 mHz, whose origin is still unknown, is
not stationary and it is not evident in all the free-fall spectra.
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a) b)

c)

Figure 5.11: December measurement results. Fig.a: time-series of ∆g filtered, decimated and with
gaps, after having subtracted the DC and time-drift contributions. The blue curve indicates the whole
resulting ∆g after the subtraction of glitches but before the correction for the centrifugal force and the
tangential acceleration. The corrected data series is shown in red. Fig.b: mean noise power density
from 0.1 to 0.4 mHz as a function of time of ∆g not corrected (blue), corrected just for the centrifugal
force (green) and corrected also for the tangential acceleration (red). Fig.c: ASD of ∆g marked in red
in Fig.a.
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Figure 5.12: Comparison among free-fall measurements at frequencies between 0.1 and 1 mHz.

Measurement Nwin
√
S̄∆g error

√
S̄∆g error

(fm s−2)/
√
Hz (fm s−2)/

√
Hz

[0.1, 0.4]mHz [0.4, 0.8]mHz

June 3 8.44 1.36 5.08 0.46

July 5 6.76 0.81 5.37 0.42

August 11 8.66 0.97 6.27 0.20

September 6 7.22 0.38 3.46 0.38

December 22 7.19 0.65 4.41 0.27

Table 5.3: Averaged ASD values of free-fall measurements in frequency range [0.1, 0.4] mHz.
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Figure 5.13: Square root of the averaged Power Spectral Density of ∆g in the 0.1-0.4 mHz and
0.4-0.8 mHz frequency band as a function of time from launch.

5.2 Comparison with the standard science mode results

In this section we compare the results obtained during a noise-only run, where the con-
tinuous force applied along x on TM2 is subtracted to evaluate ∆g and those of the
free-fall experiment, where the differential acceleration noise is estimated in absence of
actuation along x. For this purpose, we consider the free-fall measurement performed in
December, as it is the longest run we have. In fact, this experiment was implemented
following criteria based on results of the previous experiments. Indeed, the latter are
limited in time duration, show unexpected spikes in the spectrum or are affected by the
time-stamping correction.
The noise-only run chosen for the comparison occurred just after the free-fall experiment,
as it started on December 26 and ended on January 2. As in the preceding free-fall mea-
surement, some glitches were found in this data stretch. They were all subtracted by
fitting [54]. The corresponding ASD is the result of averaging 31 windows (relative error
of 9%). The final comparison is shown in Figure 5.14. The expected actuation noise
in URLA noise-only and free-fall measurements, evaluated by following the approach
described in chapter 2, is included in the figure. As it is shown, the two measurements
are in agreement at low frequency. This is confirmed by the averaged values between 0.1
and 0.4 mHz of the respective ASDs which are reported in table 5.4.
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Figure 5.14: Comparison between December free-fall and noise-only results. The corresponding actu-
ation noise predictions are marked in magenta and cyan respectively.

The errors are evaluated as in section 5.1.6. We can conclude that, within 1σ, the two
spectra are statistically equivalent in this frequency band.

Measurement Nwin mean value error

(fm s−2)/
√
Hz

Noise-only 31 7.66 0.70

Free-fall 22 7.19 0.65

Table 5.4: Averaged ASD values in frequency range [0.1, 0.4] mHz for the the free-fall and noise-only
experiments performed in December.

This comparison confirms what was expected: the switching off of the actuation along x
reduces noise very little in URLA authority configuration, as the actuation noise in both
free-fall and noise-only measurements, is dominated by the continuous control along φ.
Another important observation we can deduce from this result regards the actuator cali-
bration: the similarity of the results also is important for showing that the low frequency
noise around 0.1 mHz is not caused by some inaccuracy in the x actuation subtraction,
as the free-fall mode completely removes x actuation. We can confirm that noise from
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possible errors in the x actuator calibration is below our detection threshold.
Finally we can make a comparison between the free-fall measurement implemented in
Nominal authority and a standard noise performed in the same configuration and in the
same period. Figure 5.15 shows the ASD of the two measurements compared with pre-
dictions for that period of time. We can observe the agreement with the expected noise
profile at low frequency and confirm that, while removing x actuation does not impact
the noise in URLA, there is a clear reduction in noise between the nominal-authority
continuous x actuation data and the free-fall mode with nominal φ authorities.

Figure 5.15: Comparison between the free-fall measurement implemented in Nominal authority in June
and the standard measurement performed in May 2016. Each ASD is compared with the corresponding
prediction for that period of time.
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The free-fall experiment campaign is composed of six measurements which has been
performed with different conditions during the course of operations, related to the state
of the satellite at that time. In all cases, the controller has revealed to be stable and also
adaptable to variations to the standard free-fall mode implemented on LPF. Because of
some limitations, due to the short duration or time-stamping issues, we refer to the last
measurement for the final results. It is the longest we have and, in addition, it was imple-
mented by applying some “expedients” to avoid possible issues observed in the previous
runs. Despite the differences among the various free-fall measurements, an agreement
has been found at low frequency. The comparison of the reference free-fall results with
the continuous control performance in the lowest authority configuration, confirms the
actuation noise model predictions. Moreover, the nominal free-fall contributes to reduc-
ing the low-frequency noise effectively, with respect to the standard noise run performed
in the same authority, as expected. The next chapter aims to discuss the free-fall results
with respect to LISA and space-based gravity gradiometers.



Chapter 6

Application and perspectives

This chapter is intended to give a general view of the possible applications that a free-fall
experiment such that performed on LISA Pathfinder, could offer. In particular, we will
discuss the results of this experiment with respect to LISA, that is the space-based grav-
itational wave observatory of which LISA Pathfinder is the experimental demonstrator.
It will be followed by a quantitative discussion aimed at investigating the implementation
configuration necessary to perform the free-fall experiment in a Low Earth Orbit, such
as that of the GOCE space mission.

6.1 Implications for LISA

As described in chapter 1, the two TMs at the end of the interferometric link of LISA will
be released free along the sensitive x axis. Thus, the continuous control will be limited
to the remaining translational degrees of freedom and the rotational ones.
The new LISA requirements, based on the LPF performance, are included in Figure 6.1
together with the data comparison shown in section 5.2. The dashed black line cor-
responds to the LISA requirements in terms of differential acceleration (the original
single-TM acceleration requirement is multiplied by a factor

√
2). The figure includes, as

in Figure 5.14, the actuation noise projection for noise-only and free-fall measurements
in URLA authority (cyan and magenta curves respectively).
As already discussed, the actuation noise is not the dominant contribution to the low-
frequency noise in the lowest authority configuration. In any case, the actuation enters in
the LISA noise budget. Therefore, the LPF performance provides an upper limit for the
LISA sensitivity, assuming the same φ DC gravity imbalance of LPF (∼ 1.2 nrad s−2),
especially in a free-fall configuration where the actuation along x is turned off as will be
in LISA.

123
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Figure 6.1: LISA requirement compared with the LPF measurements during the standard science mode
(red curve) and the free-fall mode (blue curve). The cyan and magenta curves marked the actuation
noise projection for URLA standard and free-fall measurement respectively.

It is interesting to extract the ASD of the two measurements considered here at frequen-
cies below 0.1 mHz. The result, shown in Figure 6.2, reveals an excess of noise also at
very low frequency, up to 35 fm s−2 Hz−1/2 at 50 µHz. In this case, the ASD is evaluated
using 80000-s BH windows with 50% overlap.
In section 2.5 we predicted the low frequency noise in the case where both the TMs
were kicked along both x and φ and found a reduction of roughly 20 (fm s−2)2/Hz at
0.1 mHz. In this configuration, the noise source on ∆g associated with the x-φ actuation
is completely eliminated. Therefore, in the possibility that we were able to explain or
reduce the unmodeled low frequency noise excess, this removes an effective noise source
at low-frequency from the LISA noise budget. To have an idea of the φ-dynamic range in
this configuration, let consider the same φ-DC gravity balance of ∼ 1 nrad s−2 for both
TMs (net commanded torque per unit mass effectively applied on LPF) and maintain a
∼ 0.3% duty cycle. It is straightforward to demonstrate that, in these conditions, the
flight amplitude along φ would be roughy 15µrad.
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Figure 6.2: LISA requirement compared with the LPF measurements during the standard science mode
(red curve) and the free-fall mode (blue curve) below 0.1 mHz and compared with the ones depicted in
Figure 6.1 (the corresponding dashed curves).

6.2 Implications for space-based gravity gradiometers

Space-based gravity gradiometers aim to measure tidal accelerations from the Earth,
Sun and other solar system bodies, from inertial effects, and other applied forces. As
anticipated in section 1.5, the scientific objective in geodesy is the measurement of spatial
derivatives of the gravity vector. The most frequently used and intuitive component is
the gravity gradient measured along the vertical axis, ∂gz/∂z, which represents the rate
of change of vertical gravity (gz) with height (z). It can be deduced by differencing the
value of gravity at two points separated by a small vertical distance, L, and dividing it
by this distance (see Figure 6.3).
As already discussed, at low orbit the gravity difference experienced by two proof masses
is six orders of magnitude higher that that felt by the LPF’s TMs orbiting in L1 (from
order of nm s−2, by requirement, and order 10 pm s−2 measured in L1, to µms−2 in a low
orbit). At this level the needed control to compensate the static force might introduce a
severe actuation noise. Thus, in the possibility that we move LPF to a LEO orbit, the
performance in terms of sensitivity would be compromised. In this context a free-falling
accelerometer might effectively solve the problem on actuation noise. In the following we
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will try to derive the conditions for implementing a free-fall control mode in a low orbit,
as that of a classical space-based gravity gradiometer such as GOCE.
In a simple formulation, the vertical gravity gradient felt at the Earth surface by the two
test-masses of LPF for instance, is approximately:

∂gz
∂z
∼ 2GM

R3
(6.1)

where G = 6.67 · 10−11m3 kg−1 s−2 is the gravitational constant, M is the Earth’s mass
(5.972 · 1024 kg) and R its radius (6.37 · 106 m). Thus, the gravity gradient experienced
by GOCE is ∂gz/∂z ∼ 3 · 10−6 s−2 = 3 · 103 E.

Figure 6.3: Two test masses separated by a distance L at the Earth’s surface experience a vertical
gravity gradient, ∂gz/∂z ≈ (gz2 − gz1)/L.

Assuming to release the TM such that the free-fall period allows a maximum relative
displacement of h = 100 nm and setting up the experiment with a 10% duty cycle, we can
easily estimate the time interval that the TM would fly in this configuration. According
to the Newtoninan mechanics it will be:

Tflight = 2

√
2h

∂gz/∂z · L
(6.2)
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where L is the separation between the TMs on LPF (0.376 m). If we substitute the
values above, we obtain that the TM will fly for just 0.8 s. As a consequence, the kick
duration will be a factor 10 smaller, 0.08 s, as we take χ = 10%. With these numbers
the force that must be applied in such a configuration is given by the known formula:

Fkick =
m∂gz/∂z · L

χ
(6.3)

where m is the mass of a LPF test-mass (1.928 kg). The resulting kick force is equal
to 2 · 10−5 N, a factor 104 higher than the corresponding nominal required LPF science
mode force authority. This converts to a factor 100 in the voltage to be applied during
the impulse. Considering that the LPF controller requires ∼ 444 V to keep the TM
back with a 100 nm flight amplitude and 10% duty cycle, this would increase the needed
voltage to 44 kV. In this case, we would need to modify the electronics, as the maximum
voltage allowed in Wide Range mode on LPF is 130 V, whereas in High Resolution mode
the maximum amplitudes are in the range of 10 V [17].
We can conclude that a free-fall experiment similar to that performed on LPF, could
be implemented even in a Low Earth Orbit, with some variations to the Front End
Electronics used on LPF.





Chapter 7

Conclusions

Before the effective implementation on LPF, the free-fall experiment constituted an au-
thentic challenge on more than one front. From the execution side, this mode could have
overloaded the electronics in periods where the FEE was showing issues, because of the
continuous switching between different operational ranges. As a consequence, the first
run of this experiment occurred only three months after the beginning of LTP opera-
tions. Despite the initial uncertainties, this mode was successfully implemented more
than once as the system always revealed stability and robustness, as shown in this thesis.
Moreover, in addition to “standard” free-fall runs, we have a long free-fall measurement
implemented with the High Resolution mode always activated and with longer impulses.
From this side, we can thus conclude that this experiment has exceeded the expectations.
The other challenge regards the data analysis reduction: the presence of kicks in accel-
eration data posed the problem of finding the “best” data analysis approach to remove
them by limiting the unavoidable bias that this operation could have caused.
The technique we applied to extract the free-fall spectrum has revealed to be quite solid,
as it allows for a numerical calculation of the spectral bias introduced by the analysis
procedure itself and for which the spectrum is (a posteriori) corrected. However, the
accuracy of this estimation is limited by the numerical accuracy of the fitting process.
In addition, this procedure requires some assumptions on the PSD shape behind the
data. In any case the bias, which has been found to be model dependent, appears to
be related with the “gap-ratio”, that is the configuration chosen to set the kicks to zero.
This is reasonable if we think that we have less information for the spectral estimate
and therefore the spectrum will be inevitably biased. Moreover, the low-pass filtering
applied to data has allowed for a reduction of the spectral leakage that could be observed
at low frequencies. To conclude, the calibration performed on noise-only data confirms
that most of the spectral bias is caused by the presence of gaps.
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The free-fall experiments executed so far, show complexities and differences with each
other, in particular in time duration, relative acceleration level and flight amplitude.
These differences arise from the physical conditions related to the state of the satellite
at that time. Some measurements are affected by a time-stamping effect related to the
synchronization of two clocks on board the satellite, which occurs over the mission and
causes glitches in free-fall data. Indeed, this adjustment effect is more evident during
the free-fall experiment with respect to a standard noise measurement as it impacts data
when TM acceleration increases (∼ nm s−2 in free-fall against ∼ 10 pm s−2 in standard
measurement). To correct the data, the original time grid must be reproduced and ac-
cording to it, the data must be adjusted by hand, since the time slip is not periodic.
Moreover, some data are affected by the systematic error found in the determination of
the actual commanded torques and forces which must be still fixed. We are investigating
how to solve this issue. Finally, the results of the correction for the inertial tangential
force are different from run to run, especially in the last measurement. The physical
significance of this effect is still under study, since it could be explained with a cross-
coupling effect induced by the φ control on the relative residual acceleration evaluated
along the sensitive axis.
Nevertheless, an agreement among the measurements has been achieved in the low fre-
quency part of the spectrum, with averaged square-root of power spectral density below
10 fm s−2/

√
Hz for frequencies between 0.1 and 0.4 mHz. In addition, the five spectra

obtained by performing the experiment in the lowest actuation authority, show a low-
frequency noise excess relative to the Brownian noise level below 0.5 mHz, as in the
standard noise measurement, and in some cases, a sort of “bump”, whose origin is still
unknown, is visible below 0.3 mHz.
An important confirmation of the results obtained by applying the adopted Blackmann-
Harris low-pass approach to analyze free-fall data, could be achieved by comparing them
with the final findings produced by the other data analysis techniques, namely the win-
dowing and the Constrained-Gaussian gap patching.
As regards the noise arising from actuation, the dedicated campaign carried out in LPF
has allowed for a characterization of the actuation noise in different authority configura-
tions. The model developed for this source of noise in in agreement with the experiments
executed in this phase of science operations. Moreover, actuation noise projections have
been extracted for different actuation authority schemes, included that typical of the
free-fall experiment. In this context, the implementation of an intermittent control on
LPF subtracts an evident contribution to the total low-frequency noise measured in a
standard run performed in Nominal authority, as expected by the actuation noise model.
This is not the case of the lowest authority configuration. We observe indeed that, as pre-
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dicted, the free-fall mode executed in URLA is in agreement with the standard science
measurement implemented in the same actuation authority, in terms of low-frequency
performance. This result derives from the fact that actuation is already dominated by
φ-control in URLA standard measurement and removing x-actuation does not reduce
much noise at low frequency. In particular, the last free-fall measurement performed so
far is statistically equivalent, in the [0.1, 0.4] mHz frequency band and within 1σ, with the
noise-only measurement executed just after. In addition, this result demonstrates and
confirms that actuation noise does not dominate the low frequency spectrum in URLA,
contrary to the Nominal case. However, the performance achieved with the free-fall ex-
periment in the lowest authority control, is very significant as it confirms the accuracy
of the actuator calibration, within the precision of its measurement, and, at the same
time, it does not reveal a residual error in force subtraction. In other words, noise from
possible errors in the x actuator calibration is below our detection threshold. Moreover,
we can state that the observed noise excess at low frequencies is not due to actuation.
It is necessary to remark, finally, that this result is related to the low control levels ef-
fectively applied in flight, thanks to the unexpected low gravity imbalance measured on
the spacecraft.
Last, but by no means least, the sensitivity achieved with a free-falling accelerometer
has important implications for LISA, where there will be no actuation along x. The
performance of this experiment, like that of the standard noise measurement, provides
an upper limit on the specifications of LISA, in presence of the same φ static gravity bal-
ance (∼ 1 nrad s−2). In addition, it would be interesting to implement on LPF a free-fall
experiment with intermittent control on both x and φ degrees of freedom for both the
TMs. In this configuration, the expected low frequency noise reduction would be roughly
of 20% in power at 0.1 mHz and actuation noise associated with the x-φ control would
be completely eliminated, with important implications for LISA.
Finally, the standard free-fall experiment could be effectively executed on a current grav-
ity gradiometer satellite at low orbit. The advantage of an intermittent control consists in
the subtraction of the dominant and limiting source of noise deriving from the continuous
actuation applied along the sensitive translational degrees of freedom.





Appendix:

LTPDA routine of the
Blackmann-Harris low-pass
technique

In this appendix we report a simplified version of the routine implemented in LTPDA
to apply the Blackmann-Harris low-pass technique to free-fall data, which includes, in
particular, the low-pass filtering and downsampling procedure.
First, we set the number of decimated samples per experimental time as an integer factor
of the initial data sampled at 10 Hz, as described in section 4.1:

n_tot = (T_flight+T_imp)*fs_old/103 = 34.

As a result, the sampling time after the decimation is 10.3 s (fs_new, see line 11 in the
code below). Then, the length of the filter is defined so that we have a finite number of
BH-windows per flight, after having defined a margin for the flight length:

T_win = T_flight-2*margin-(n_keep-1)*T_samp.

The low pass filtering and the decimation apply in a single Matlab c© loop control block
(see lines 30-37): the filter is slid over the ∆g time-series with a rate equal to the
new sampling time. Next, the kicks data are set to zero by means of ad hoc square wave
analysis-object, such that the final filtered flight samples do not mix in the kicks. Finally,
the spectrum is extracted and normalized by the filter transfer function as reported in
lines 81-88. The routine implemented to apply the final correction to the spectrum,
namely the correction for the spectral bias, is not included in the code.
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1 % INITIAL SETTINGS: sampling time and Blackmann−Harr i s f i l t e r l ength

3 T_fl ight = 349 . 2 ;
T_imp = 1 ;

5 n_tot = 34 ;
n_keep = 25 ;

7 margin = 2 ;
fs_old = 10 ;

9

T_samp = ( T_fl ight+T_imp) /n_tot ;
11 fs_new = 1/T_samp ;

T_win = T_flight−2∗margin−(n_keep−1)∗T_samp ;
13

15 % LOAD THE DATA

17 Delta_g_10Hz = pipe . loadParameterFromStep ( ’ Delta_g_free_fa l l ’ , . . .
’Delta_g_10Hz ’ ) ;

19 F_kick_10Hz = pipe . loadParameterFromStep ( ’ Preproces s ’ , . . .
LTPDATelemetry .DFACS_CMD_F_KICK_x2) ;

21

23 % DECIMATION AND LOW PASS FILTERING DATA WITH BH WINDOW FILTER

25 n_samples = (Delta_g_10Hz . len−(T_win−T_samp) ∗ f s_old ) /(T_samp∗ f s_old ) ;

27 BH_win = blackmanharr i s ( f l o o r (T_win∗ f s_old ) ) ;
BH_win = BH_win / sum(BH_win) ;

29

% apply i nd i v i dua l f i l t e r s and take one sample every 103 (= f s ∗T_samp)
31 Delta_g_vals = Delta_g_10Hz . y ;

t0 = 1 ;
33 f o r j j =1:( f l o o r ( n_samples )−1)

Delta_g_vals_f i l t ( j j ) = . . .
35 sum(BH_win.∗Delta_g_vals ( t0 : ( t0+(T_win∗ f s_old )−1) ) ) ;

t0 = t0+( fs_old ∗T_samp) ;
37 end

39 Delta_g_filt_ao = ao ( p l i s t ( ’ yva l s ’ , Delta_g_vals_fi l t , . . .
’name ’ , ’ De l ta_g_f i l t e red ’ , . . .

41 ’ type ’ , ’ t sdata ’ , . . .
’ yun i t s ’ ,Delta_g_10Hz . unit s , . . .

43 ’ f s ’ , new_fs , . . .
’ t o f f s e t ’ , DeltaG . t o f f s e t + T_win/2 , . . .

45 ’ t0 ’ , Delta_g_10Hz . t0 ) ) ;
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47

% SET THE KICK SAMPLES TO ZERO
49

% de f i n e the square wave
51 t_f f = [ ] ;

tm0 = Delta_g_filt_ao . x (1 ) ;
53 tm= tm0 ;

s h i f t = 1 ;
55

f o r j j = 1 : l en ( Delta_g_filt_ao )
57 t_f f = [ t_f f ; tm ] ;

tm = tm0 + T_samp∗ j j ;
59 end

61 ind = [ 1 : l ength ( t_f f ) ] ’ ;
sq_wave = round ( n_tot ∗ ( ( ind−s h i f t ) /n_tot − f l o o r ( ( ind−s h i f t ) /n_tot ) ) ) . . .

63 < n_keep ;

65 sq_wave_ao = ao ( p l i s t ( ’ xva l s ’ , t_ff , ’ yva l s ’ , sq_wave ) ) ;

67 % multply Delta_g by the square wave
Delta_g_fi lt_gaps = Delta_g_filt_ao .∗ keep_ao ;

69

71 % CALCULATE THE PSD AND NORMALIZE IT FOR THE FILTER TRANSFER FUNCTION

73 % se t the psd p l i s t to have the minimum frequency at 0 .1mHz
psdpl = p l i s t ( ’ win ’ , ’BH92 ’ , . . .

75 ’ o lap ’ , 50 , . . .
’ n f f t ’ , round ( Delta_g_fi lt_gaps . f s .∗4/1 e−4) ) ;

77

PSD_Delta_g_gaps = psd ( Delta_g_filt_gaps , psdpl ) ;
79

% ca l c u l a t e the BH window t r a n s f e r func t i on
81 a = [ . 3 5 8 7 5 ; −0.48829; 0 . 14128 ; −0.01168] ;

x = T_win . ∗ ( PSD_Delta_g_gaps . x ) ;
83 f a c t o r = ( a (1 ) + a (2) ∗( x . ^ 2 . / ( x .^2 − 1) ) + a (3) ∗( x . ^ 2 . / ( x .^2 − 4) ) + . . .

a (4 ) ∗( x .^2 . / (x .^2 − 9) ) ) / a (1 ) ;
85 tr_func = f a c t o r .∗ s i n c (x ) ;

87 PSD_Delta_g_gaps_norm = PSD_Delta_g_gaps . / ( abs ( t rans f_fnc ) .^2) ;

89 % END
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Considerazioni finali

“Lo studio e la ricerca della verità e della bellezza rappresentano una sfera di attività
in cui è permesso di rimanere bambini per tutta la vita.” A. Einstein

Nelle ultime fasi di stesura della tesi, ho iniziato a chiedermi quale messaggio potesse
trasmettere questo lavoro, al di là dei risultati. La risposta è arrivata non appena ho
deciso a chi l’avrei dedicato. Giacomo, Filippo, Lorenzo e Cecilia, parte della nuova
generazione della mia famiglia, sono i piccoli doni che, uno dopo l’altro, hanno arricchito
le giornate dei miei cugini e cugine, ma non solo.

Questi quattro dolci, teneri, germogli di vita, hanno tracciato il mio percorso di dot-
torato, venendo alla luce fin dai primi mesi della mia esperienza a Trento. Essi infatti sono
nati nel corso delle varie fasi legate alla missione, come l’ultimo periodo di preparazione
a LISA Pathfinder, ad un anno dal lancio, o quella in cui l’esperimento di free-fall è stato
effettuato in volo per la prima volta. Il fiocco rosa, infine, è apparso proprio nel periodo
in cui è stata annunciata la prima osservazione diretta di onde gravitazionali.

Sono convinta che il dono innato di meravigliarsi, che contraddistingue i bambini,
debba essere una delle prerogative di chi fa scienza. Riscoprire lo stupore delle piccole
grandi conquiste e accorgersene, è un ingrediente fondamentale che alimenta la passione
nella ricerca. E non solo: dai bambini si impara a mettersi alla prova, osservare ogni det-
taglio, porsi domande, rischiare, sperimentare, lottare per quello che si desidera, sognare.
Tutti aspetti distintivi di chi fa della ricerca la propria vita. Incredibile.

Credo che un progetto ambizioso come LISA, che sta prendendo sempre più forma,
e quindi la stessa missione che ne è il precursore, non sarebbe stato possibile da con-
cepire senza una buona, massiccia dose di sogno. A quei tempi, un certo scetticismo avrà
accumunato molti scienziati e ingegneri. A tal proposito mi vengono alla mente alcune
considerazioni di persone incontrate nel corso dei miei studi, le quali consideravano LISA
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un progetto troppo ardito anche solo da immaginare, quindi irrealizzabile. Eppure molti
hanno deciso di credere in questo osservatorio di radiazione gravitazionale dallo spazio,
come nell’analogo terrestre, che a distanza di oltre trent’anni dalla sua realizzazione, ha
permesso di confermare con un’osservazione diretta, l’esistenza delle onde gravitazionali.
Qualcuno si è ritirato dalla sfida posta da LISA prima di assistere ai dati, già sorpren-
denti, che LISA Pathfinder inviava a terra nei primi giorni di operazioni; qualcun altro,
purtroppo, se n’è andato prima del tempo. Anche a loro vorrei dedicare questa tesi.

Penso che soltanto le persone coinvolte da tempo nel progetto LISA Pathfinder, in
particolare quelle che diversi anni fa hanno dato inizio alle prime misure di test in lab-
oratorio, possano davvero provare quel senso di incredula soddisfazione che nasce da
un tale successo. Far parte di un progetto così ambizioso è stato ed è un’opportunità
grande, un’esperienza che non avrei pensato di poter vivere e in particolare condividere
con persone che, non solo a Trento, mi hanno trasmesso grande competenza, volontà di
confrontarsi, passione.

Grazie allora a tutto il gruppo di Trento, partendo dal nostro instancabile timoniere,
Stefano, anche per quella inaspettata telefonata che mi ha raggiunta tre anni fa. La mia
riconoscenza va poi alla guida esperta di Bill, la cui sensibilità e il tempo dedicatomi
sono stati davvero preziosi. Un grazie speciale e meritato va a Giuliana, instancabile
compagna di lavoro e non solo. E alle mie due “colleghe” di dottorato, Mary e Giovi,
con cui ho condiviso tanto in questa mia esperienza trentina. È bello far parte di un
trio come il nostro. Ringrazio con affetto la mia preziosa amica Anna, che nonostante le
distanze riesce a farsi sentire sempre vicina.

Grazie alla mia famiglia, perchè è la mia famiglia, con i propri limiti e le proprie
ricchezze. Grazie per la comprensione e il supporto, per i valori trasmessi e che porto
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trattenevo a casa solo per un paio di giorni.

Per finire, un grazie particolare a Luis, per la sua vicinanza nonostante le distanze, la
sua comprensione, l’instancabile fiducia nei miei confronti, l’infinita pazienza e ascolto,
per la convinzione che ad ogni problema esiste sempre almeno una soluzione. Grazie per
farmi riscoprire il valore delle piccole cose e avere lo sguardo sereno verso il futuro, quello
sguardo spensierato che contraddistingue gli insegnanti più sorprendenti, i bambini.
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