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Summary

Summary

o We generalize the inclusion and the edge dislocation problems, starting from the
solutions given by Eshelby [1-3] and Willis [4], that are limited to the case of linear
compressible elasticity.

o The solutions are extended to the general case of infinite, homogeneously prestressed
and incompressible 2-D elasticity (L.P. Argani, D. Bigoni, and G. Mishuris (2013).
“Dislocations and inclusions in prestressed metals”. In: Proc. Roy. Soc. A 469 [5]).

@ A new infinite-body Green’s function set is derived for incremental, incompressible,
non-linear elastic materials subject to prestress, extending the solutions given in
literature (L.P. Argani, D. Bigoni, D. Capuanti, and N.V. Movchan (2014). “Cones of
localized shear strain in incompressible elasticity with prestress: Green’s function and
integral representations”. Submitted).

o Two examples of a circular inclusion and of an edge dislocation dipole have been
implemented in order to understand the role of prestress.

@ An example of a force dipole in an infinite axisymmetric material shows the formation
of conical localization of deformation.
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Material defects

Material defects: preliminaries

Edge dislocations. Screw dislocation

,L/'v
e ’ [ g

Disclinations

Figure 2: Sketch of the lattice distortion induced
Figure 1: Dislocation classification. by a dislocation dipole.

o A dislocation is a crystallographic defect within a crystal structure, whose presence
influences the response of materials.

o Dislocation classification and their influence on the elastic fields have been
investigated for the first time by Vito Volterra [6] (figure 1).
@ Plastic deformations can be explained in terms of the theory of dislocations.

o In materials science discrete models are adopted, while in continuum mechanics,
dislocations are seen as discontinuities.
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Material defects

Material defects: experimental observations and effects of prestress

lime glass.

(a) Soda

Figure 4: Shatter cones beneath

meteorite impact craters. (b) Polycarbonate cylindrical
specimen.

Figure 3: Photoelasticity
discloses the stress field around
an edge dislocation in isotropic (a)
and orthotropic (a) materials. Figure 5: Conical fracture
produced by a spherical indenter.

o The effect of prestress consists in an induced anisotropy, which has a strong effect on
the stress field near inclusions, dislocations, and concentrated forces.
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Constitutive framework

Constitutive framework

@ Incompressible non-linear elastic material deformed under plane strain condition.
o Constitutive equations (Biot [7]) and incompressibility constraint

ki = Kiwore + pdij,  Kijg =Kuij, vk =0. (1)

o Dimensionless prestress and anisotropy parameters (Bigoni [8])

Mo p_o1+o2 o 01— 02
E=—, n=t-=—-=, K= — = ——— .

2
W W 2p 2p 2p

o 1 and s are, respectively, the incremental shear moduli parallel to, and inclined at
45° to, the principal stress axes.
@ Analysis restricted to the elliptic regime

p>0, K2<1, 26>1-—+1-k2. ?3)
@ Introduction of the Jo-deformation theory of plasticity (Hutchinson & Neale [9])

Nk

Kk = tanh(2¢), 57?, g=logA>0, N e (0,1). (4)
5

Luca Prakash Argani ( A, Trento) Dislocations and Green’s functions in prestressed solids 07/04/2014



Preliminaries and initial assumptions

The incremental displacement field
The inclusion problem Alternativ uti

The incremental mean stress field

Example - The circular inclusion

The inclusion problem: preliminaries

o Inclusion of arbitrary shape included in an infinite

region (volume Dy, surface ODy,).

Prescribed uniform incremental displacement gradient
UI.P. that can be thought as an inelastic (e.g. plastic or OD:
thermal) deformation. {

@ The inclusion is constrained by the surrounding matrix e e e

material, so that an elastic deformation oF. is . . .
1 Figure 6: Infinite medium

produced. containing an inclusion.

o The ‘total’ incremental displacement gradient v; ; within the inclusion can be obtained

through the additive rule
vij =05+ 0. (5)

o Although the material is incompressible, vf need not satisfy the incompressibility

constraint, so that, since viE does (namely Z’;E,k = 0), it follows that vy j = v,':k.

Luca Prakash Argani , i tions and Green’s functions in pre: ed solids 07/04/2014



Preliminaries and initial assumptions

The L displacement field
The inclusion problem Alte v itio

The incremental mean stre: ld

Example - The circular inclusion

The inclusion problem: initial assumptions

@ The elastic part of the incremental deformation produces
the incremental nominal stress 4 ¥

bj = Kijorx — Kiop g + P 85 — pF oy - (6) /‘

Yoy
e pand i)P are incremental mean stresses, the latter being

a homogeneous incremental mean stress, defined inside y n ‘
the inclusion and associated to the deformation o". L /
o Neglecting body forces, equilibrium equations for the Figure 7: Unit force f
incremental nominal stress in an infinite body applied to a point y of
containing a concentrated unit force become an infinite medium
containing an inclusion.
- _
t‘,‘j,i(x - y) + 5g]'(s(x - y) =0. (7)

o d(x —y) is the Dirac delta.
° t‘lg] is the Green'’s function for incremental nominal stress, in other words, the

ij-component of the nominal stress at x produced by a unit point force applied in the
g-direction at a point y.
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The inclusion problem

The incremental mean stress field
Example - The circular inclusion

The incremental displacement field: the integration domain

@ The singularity at point y is enclosed by a disk Cc centred
in y, with radius ¢ and surface 9Ce.

o Closed and simply connected domain D, outside both the
inclusion and the disk C¢:

Dout = [:]R" { Dy, UCe } 5 (86)
ODgut = 0Dy U OCe U ODeyt s (Sb)

n = 2,3 for 2-D or 3-D case respectively.

o Betti identity on the region Dg: Figure 8: Integration

domain for an infinite body

/ [#fj’i(x B y)v,'(x) . ii]-7i(x)v}g(x . y)] dve=0.| (9) containing an inclusion.

out

The comma denotes differentiation with respect to x, the same variable for which integration
is performed, and fo(x — ) is the Green'’s function for incremental displacements.
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Preliminaries and initial assumptions
The incremental displacement field
Al ive sol

The inclusion problem

[ [ = 9500~ b (= )] mdse =0, (10

@ Since ZJ§ ~ logr (Bigoni & Capuani [10]):

lim iij(x)zf.g(x —y)n;dSx =0, (11a)
e—0Jac, ]

lim B (x — y)v;(x)n; dSx = v (y) - (11b)
e—0 aC, ]

@ Assuming that the incremental stress and displacement fields induced by the inclusion
decay at infinity, where the outer boundary is moved, and for ¢ — 0, we have

) = [ [ =900 ~ by o e =) m e, (12

in

where now 7; is the outward unit normal to the inclusion surface ODj,.
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The inclusion problem
The incremental mean stress field
Example - The circular inclusion

The incremental displacement field

o Since ]ZIP is uniform, the integral equation for the incremental displacements outside
the inclusion produced by the uniform inelastic field ZJ]Pk is:

/ qulv, k )v]g(x —y)n; dSx + / px— vk k(x) dVy. (13)

where p8(x — y) is the Green’s incremental in-plane mean stress [10].

8 (x—
o If we introduce a potential Pf(x — ) such that pS(x —y) = w

equation can be rewritten only in terms of a boundary integral as

, the above

w) = [ (Bl (v =) + Ple = o] mase. 0a)

in

o Within the 2-D framework, we can obtain a family of potentials Pf(x — ) in the form

PS(x —y) = /pgx— Ydx;,  Ri(@) = 6né + (1—-a)s,  (15)

where the index 7 is not summed, i,j = 1,2 and & € [0,1].
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Preliminaries

The inclusion problem Alternative solution:
The incremental ess
Example - The circular inclusion

The incremental displacement field: alternative solutions

@ Divergence theorem, incremental equilibrium and the major symmetry of K in the form
Ko, (0)0 (x —y) = =5 (x = y)oj (x), (16)

lead to an integral equation for the incremental displacements outside the inclusion
produced by the uniform inelastic field v;jk, fully equivalent to (13)

w) = [ [Ff )+ - ps] F@mdse. | 17)

in

o Green's incremental tractions along the surface of unit normal #;:
Fa-p=Ba-vm, — ww= [ dE-pdeds. 09

o Expressions for the components of T]g are given both in singular and reqularized forms
by Bigoni et al. [11].
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The inclusion problem ns
The incremental mean stress field
Example - The circular inclusion

The incremental mean stress field

@ Incremental equilibrium equations:
pj = —Kiuopi - (19)
@ Incremental displacement field (13), (19), and the rate equilibrium equations yield

op(y)
Oyi

in

= /(9D Kjklmvf;’l(x)ij]fi(x_y)nj dsx _/ Ksirg ; ,TS (x—y)v,z,m (x) de ) (20)
and with the other expression (17)

p(y)
6%‘

= / [K]’klmi’{(ij (x—y)— Ksirg s (2 — y)vri,m‘;lm] '051 (¥)mdSx.  (21)

in

o Definition of a function F(x — y) as

Fx—y) =22 {[1 =Bk +20) — 26| ol y(x =) k(A +RFn(x =9}, (22
such that [10, Appendix B

Ksirg ; R (x - y) = F,i(x - y) . (23)
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The inclusion problem
The incremental mean stress field
Example - The circular inclusion

The incremental mean stress field

@ Integral equation for the incremental mean stress outside the inclusion, produced by
the uniform inelastic field vlpk using (13):

ply) = — /a ; KV, ()pF (x — y)n; dSy + /D F(x — y)vh, (%) dVy, | (24)

or, using (17),

p) == [ [Kndyx =) = Fle = o] oh@mdse. | (@25)

in

where n; is the outward unit normal to the inclusion surface dDy,.

o Incremental nominal stress rate field

ki(y) = Kijaork(y) + p(y)5; - (26)
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Preliminaries and initia
The incremental displac
Alternativ itio
The incremental m
Example - The circular inclusion

The inclusion problem
n stress field

Example - The circular inclusion

Figure 10: Level sets of |vg(y)| around a circular inclusion. Left:
isotropic material without prestress. Right: prestressed J>-material
(N = 0.363, € = 0.610, shear bands inclination at ellipticity loss:

+27.37°).

Figure 9:  Circular inclusion
subject to an inelastic purely
volumetric dilatational Eulerian
incremental strain v,»Fj/ = ;.

@ Using the first formulation, (13) and (24):

27 27
= — k— 2 i 27a
oy (4) uﬂﬂ/o [—(k+ mymes + (k — mynas] de+5a/0 #Fdo, (272)
27 1 2
p) = —ba [ 1=+ mymp! + (k= ymi?]de
70 (@27b)

27
228 u2/ {10~ 0 (k+26) — 2630} 1y — k(1 + K2y, } 6.
0

o These equations can be rewritten through the second formulation, (17) and (25).
07/04/2014
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The edge dislocation dipole
Example

The dislocation problem

The edge dislocation dipole

@ Thin (thickness h) rectangular inclusion subject to
the incremental simple shear displacement field

o = x"hﬂbi, beg = 0, (28)

where 7y is the unit vector orthogonal and by is a
vector parallel to the long edges of the rectangle.

Inserting equation (28) into the second formulation
for the inclusion problem and taking the limit & — 0,
we obtain the integral equations for a straight edge
dislocation in a prestressed material:

Figure 11:  Edge dislocation dipole of
finite length a and inclined at a

ve(y) = /L by (Kl (2 — y) dle, | (292)  constant angle 1

) = = [ b ) x = y) .| (290)
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The edge dislocation dipole

The dislocation problem [Erampe

Example: level sets of |vo(y)| in an infinite incompressible material

Ty
By = £27.37°
1

(a) Reference system. (b) Null prestress. (c) Shear band inclina- (d) v =0
tion at ellipticity loss.

(e) ¥ = /6. )y =m/4 (9) o = /3. (h) o == /2.
Figure 12: (b) Classic solution. (d)-(h) Prestressed Jo-material (N = 0.363, € = 0.610).
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Constitutive framework and governing equations

Implementation technique

Example: force dipole in an infinite axisymmetric prestressed material
Three-dimensional Green's functions

3-D Green’s functions: governing equations

@ The general solutions for the inclusion and dislocation problems can be applied to 2-D
or 3-D cases: we need the 3-D Green’s function for infinite, anisotropic,
incompressible, and homogeneously prestressed elasticity.

o Green's stress, equilibrium equations, and incompressibility constraints are

i =

Ky + 385, B +056(0) =0, v =0. (30)

leading to: Kijklvﬁk,’ + pg] +9j,0(x) = 0.

o Exploiting plane wave expansion of functions §(x), zfg(x) p8(x), and introducing the
acoustic tensor Aﬂ(w) = w;Kjjwg, in the transformed domain we have

Ap(@) (&) (@ %) + @ (%) (w %) + 88 (- x) = 0. (31)

@ A manipulation of the incompressibility constraint in the transformed domain yields

‘;?/‘_fk(@i)’(ww)dw:o, — w@) @ =0 (32
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Constitutive framework and governing equations

Implementation technique

Example: force dipole in an infinite axisymmetric prestressed material
Three-dimensional Green's functions

The new infinite-body 3-D Green’s function set for anisotropic,
incompressible, and homogeneously prestressed elasticity

@ Within the elliptic regime A € Inv so that we can multiply (31) by A~ and make a
projection on w

WAk (@) 1wy (%) (@ - %) + wiApg(w) 16" (w - x) = 0. (33)

" ’
o Integration and anti-transform of (%) and (%) yield the Green’s function set for
the 3-D incompressible, anisotropic, prestressed material:

o A,;l(w)ijtAtgl(w) .
R T e e Rt
NN Wi (@)
P = 8n2r2 /|w\=1 w,Afsl(w)ws(s (- er) duw. (34b)
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1ing equations

Example: force dipole in an infinite axisymmetric prestressed material

Three-dimensional Green’s functions

Implementation technique

o Introduction of an initial { e1, ey, e3 } and a local
{ @1,8,e;3 } reference system

o Integral forms with appropriate description of w:

/\w\:l[ ]dW=/02ﬁ/oTr[ ]sindedo

(35)

o Treatment of the incremental displacement field:

27
/|w|=1[ }5(w-x)dw:/0 [ 1do  (36)

@ Treatment of the incremental mean stress field:

[ s weedo= [T ["s(aion)

o9

27
2/0 /0 *8(‘*‘(%9))Md¢d9=

Meridian of the
unit sphere
€3

"\ Unit circle

(equator)

61

Figure 13: Reference system used for the
implementation of the 3-D Green’s function
set.

(cos ¢)singpdepdl =

/2,, i CIG0) N P,
0

0¢ ' =
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Constitutive framework and ¢ 1ing equations
Implementation ts que
xample: force dipole in an infinite axisymmetric prestressed material
Three-dimensional Green's functions

Implementation technique: final formulation

o Green’s function for the incremental displacement and mean stress fields:

QgaQ 2
G = - = /0 Vs (0,7/2) do (38)
. _ an 2 af)a (97 ¢)
) = oy [ el L (39

o Green’s function for the gradient of the incremental displacement field:

_ anQkBQl'y /271- abaﬁv(ev d)) 4o (40)
0

871'21’2 8(15 ‘45:77/2

@ Rotation tensor Q, defining the representation change between the initial reference
system { e1, ey, e3 } to the local reference system { &1, 8,3 }:

X X1X3 X1 x% + x%

—rXy X2X3 X2 x% + x%

- /22 4 x2
17720 9 —(2+23) x5y /x4 x3
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Constitutive framework and governing equations
Implementation technique
Example: force dipole in an infinite axisymmetric prestressed material

Three-dimensional Green’s functions

Example: force dipole in an axisymmetric infinite prestressed material

=as,

(a) Soda-lime glass.

Figure 14: Level sets of |vg(y)] for a force dipole acting on the (b) Shatter cones.

symmetry axis of an infinite, incompressible, and prestressed
Jo-material (N = 0.4, A\, = 0.337). Figure 15:  Conical failure.

,o =Kl 1)

@ Shear moduli within the Jo-flow theory (ee = |In )\,
3
KAl K_ovi1 )

KN N-1 K N—1 N—1
= —=¢ s = —(N+1)e s = - 5 Inx,, W=
B = e w = Jee SRSt 2 NF1ce
@ Shear cones formation is promoted when approaching the elliptic boundary
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Conclusions and future developments

Conclusions and future developments

@ The 2-D inclusion and dislocation problems and the 3-D
concentrated force problem have been solved for the case of infinite,
anisotropic, homogeneously prestressed and incompressible elastic
material.

o By means of the analytical solution for concentrated force, the edge
dislocation problem has been numerically solved to investigate the
shear band formation, showing that dislocation activity is strongly
promoted near the elliptic border.

@ Solution for the force dipole shows the formation of failure cones.

@ More accurate photoelastic experiments may be performed in order
to reconstruct the (deviatoric) stress field from the analysis of the
photoelastic fringes.

@ The obtained solutions pave the way to investigate the case of 3-D
inclusions and dislocations in prestressed materials.
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Thank You for Your attention!
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