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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Shared parameters do not exist for
normalization in wastewater-based
epidemiology.

• Normalization performed with popula-
tion size based on hydrochemical
parameters.

• Normalization is not so relevant in
urban areas with negligible fluctuating
people.

• Population based on NH4-N is effective
for normalization of data in touristic
areas.

• The monitoring of ammonium appears
routinely and easy for decision-making
in WBE.
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A B S T R A C T

In wastewater-based epidemiology, normalization of experimental data is a crucial aspect, as emerged in the
recent surveillance of COVID-19. Normalization facilitates the comparison between different areas or periods,
and it helps in evaluating the differences due to the fluctuation of the population due to seasonal employment or
tourism. Analysis of biomarkers in wastewater (i.e. drugs, beverage and food compounds, microorganisms such
as PMMoV or crAssphage, etc.) is complex to perform, and it is not routinely monitored. This study compares the
results of alternative normalization approaches applied to SARS-CoV-2 loads in wastewater using population size
calculated with conventional hydraulic and/or chemical parameters (i.e. total suspended solids, chemical oxygen
demand, nitrogen forms, etc.) commonly used in the routine monitoring of water quality. A total of 12 waste-
water treatment plants were monitored, and 1068 samples of influent wastewater were collected in urban areas
and in highly touristic areas (summer and/or winter). The results indicated that both census and population
estimated with ammonium are effective and reliable parameters with which to normalize SARS-CoV-2 loads in
wastewater from urban sewersheds with negligible fluctuating populations. However, this study reveals that, in
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the case of tourist locations, the population calculated using NH4-N loads can provide a better normalization of
the specific viral load per inhabitant.

1. Introduction

Wastewater-based epidemiology (WBE) has proven to be a valuable
means with which to acquire epidemiological information and under-
stand the circulation of pathogens and viruses (i.e. SARS-CoV-2 in recent
years) spatially and temporally in the population [1-7]. Put briefly, the
main advantages of the WBE applied for epidemic surveillance are the
following: (i) coverage of a large population, because the results
represent the entire sewershed; (ii) low cost, because the results are
based on only a few wastewater analyses; (iii) quasi real-time analysis,
because 24-h sample collection and analysis can be completed in less
than 48 h; (iv) capacity to include presymptomatic and asymptomatic
individuals. For example, WBE applied to COVID-19 surveillance made
it possible to avoid underestimation of the actual circulation of the virus,
as happened in the case of clinical testing in the post-vaccination
periods.

In May 2023, more than three years after the outbreak of the COVID-
19 pandemic, the WHO recommended the end of the state of emergency
for COVID-19; but the risk of new emerging variants that may cause new
waves of cases and deaths and the potential threat of other pandemics
still remains. The experience acquired during the COVID-19 pandemic
has produced tools and technologies with which to be better prepared
for pandemics and recognize them sooner. The European Commission
has recommended the surveillance of SARS-CoV-2 and its variants in
wastewater [8] and the indications can be used to be prepared also in the
future. This guidance on how to monitor, analyze and interpret waste-
water data includes the need to normalize viral load results.

Normalization is one of the most crucial aspects of WBE, useful to
compare prevalence in different areas and periods [9-12]. The purpose
of normalizing SARS-CoV-2 concentrations is to account for changes in
the amount of wastewater due to periods of precipitation and differences
in the size of the population over time due to commuting, tourism, or
other factors. The US CDC’s guidelines recommend normalizing
SARS-CoV-2 loads by using population size [13]. Keshaviah et al. [14]
surveyed wastewater monitoring programs in 43 high- and low-income
countries, and highlighted that many researchers are evaluating
different approaches to normalization and standardization.

For population normalization in WBE, the effective size of the pop-
ulation served by the sewerage – called “de facto” population – must be
used [15]. Instead, census data – called “de jure” population – do not
furnish the adequate resolution required to understand ongoing popu-
lation dynamics, because they do not include fluctuations in commuters,
tourists,

or other demographic changes [15,16].
Certain endogenous or exogenous human biomarkers that occur

diluted in wastewater, such as pharmaceuticals, personal care products,
human metabolites or compounds in common beverages and food
(among others acesulfame, creatinine, cholesterol, caffeine, nicotine,
cortisol and many others) can be used for “de facto” population size
estimation in WBE [16-18,12,19]. Biomarkers specifically proposed for
normalization of SARS-CoV-2 data in wastewater are pepper mild mottle
virus (PMMoV), cross-assembly phage (crAssphage), Bacteroides rRNA,
and 18 S rRNA [20].

Monitoring biomarkers requires analytical chemistry skills, complex
and expensive instrumentation, time-consuming procedures, and
sometimes − 80 ◦C sample storage, which is not always available in
WWTPs laboratories. Furthermore, the level of biomarkers depends on
population habits and on stability and sorption to particulate matter,
factors that contribute to generating severe uncertainties [16,10,12].
Normalization using PMMoV does not improve the correlation between
SARS-CoV-2 RNA in wastewater and clinical cases [21]. Moreover, some

authors [20,22] have reported that normalization of SARS-CoV-2 load in
wastewater using crAssphage, PMMoV and Bacteroides rRNA can
deteriorate the correlation with the number of daily cases in comparison
with the correlation before normalization.

In order to improve the population size estimation, a combination of
multiple biomarkers has been proposed in the algorithm developed by
Daughton [15], in the Bayesian model of O’Brien et al. [18], in the
multi-parameter based approach of Hou et al. [10] or in the model
proposed by Zheng et al. [23] who used an analytic hierarchy process
and weighted factors.

Hydraulic (flow rate of influent wastewater) and chemical parame-
ters such as Total Suspended Solids (TSS), Chemical Oxygen Demand
(COD), forms of nitrogen and phosphorus are commonly used in the
routine monitoring of water quality, and they have been widely used to
estimate the so-called “population equivalent” (henceforth ‘PE’) [19,24,
23]. These parameters can be used to calculate the population size with
several advantages: (i) they are discharged by 100 % of the population;
(ii) their analysis is standardized with official methods; (iii) there are no
additional costs because they are already monitored in WWTPs for the
quantification of removal efficiency and compliance with regulations;
(iv) some parameters can be measured in real time with online probes;
(v) they do not need mathematical models for the routine calculation of
population size; (vi) they take less time, are less expensive, and are more
affordable [25].

However, hydrochemical parameters are not only human-related,
and they can be influenced by sources other than human metabolisms,
i.e. industrial discharges, stormwater or agricultural runoff which can
add further loads in the sewer network [10,15]. Compared with the
other hydrochemical parameters, ammonium nitrogen (NH4-N) is an
anthropogenic biomarker that derives primarily from urine excretion
and has been proposed for PE calculation in wastewater epidemiology
[26,16,27,28]. Furthermore, the daily urinary excretion of NH4-N varies
only slightly among individuals.

Greenwald et al. [20] observed that the non-normalized SARS-CoV-2
RNA signal had a significantly positive correlation with clinical testing
data, whereas normalization with various biomarkers had limited
benefit for improving the correlation. Markt et al. [29] observed that the
emergence of virus variants (e.g., B.1.1.7) might change the viral
wastewater signal, probably due to different shedding patterns, which
suggests the relevance of including viral variants when analyzing the
correlation of the SARS-CoV-2 signal in wastewater and the incidences.
Wade et al. [30] and Wilder et al., [31] emphasized that more work is
needed to evaluate the most accurate biomarker for normalization in
WBE. Furthermore, the impact of a chosen normalization method on the
goodness of the relationship with active clinical cases has yet to be fully
explored [32].

The research reported in this paper compared the results of alter-
native normalization approaches applied to SARS-CoV-2 loads in
wastewater using the population size calculated with conventional
hydrochemical parameters only. 12 WWTPs were monitored: 3 urban
plants and 9 tourist plants characterized by an important presence of
fluctuating inhabitants not known a priori. Time profiles of SARS-CoV-2
RNA in wastewater were acquired over a long period (1 year with a
frequency of 3 samples/week) and then normalized and statistically
compared with the active case of COVID-19 to evaluate the strength of
the relationship. In particular, normalization was performed using
population size calculated with a selected set of “ubiquitous” parameters
(flow rate, TSS, COD, ammonium) routinely monitored and available in
WWTPs.

This paper explores the following open issues [32]: (i) how
normalization using an estimated de facto population compares to the
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use of census data; (ii) how normalization works with variable popula-
tion dynamics; (iii) how normalized viral loads correlate when clinical
cases decrease; (iv) the need for further research with larger datasets
generated over a long period of time. The aim is to support the devel-
opment of a more comprehensive understanding of the impact of
normalization approaches in WBE applications.

2. Materials and methods

2.1. Wastewater treatment plants and sewersheds

The monitoring of SARS-CoV-2 in raw wastewater was carried out in
12 municipal WWTPs in the Province of Trento (Italy) which differed in
population size and sewershed type: (i) urban areas in 3 plants, (ii) areas
with a high tourist numbers in 9 plants (Table 1; the WWTPs are indi-
cated with the numbers 1–12). The tourist period coincided with the
summer in all the plants, while the ski districts (5 plants) also had
tourism in the winter period (Table 1). TheWWTPs sewersheds included
one or more municipalities or parts of municipalities (Table 1). All the
WWTPs considered in this study were connected to almost completely
separate sewerage systems with a separate stormwater drainage system.

The census population ranged from 800 to 86,000 inhabitants
(henceforth ‘inh.’). The census population of eachWWTPwas calculated
by adding up the entire municipalities or parts served by the plant as
described in Cutrupi et al. [33]. It is very important to consider the
entire extent of the sewage netwrk and the entire population connected
to a WWTP in order to calculate the correct incidence rate of COVID-19
in the community [34].

To be noted is that the total population served by WWTP may be
higher than the census data due to fluctuation in tourist numbers.
Furthermore, additional inflows enter WWTPs and have to be treated,
such as industrial wastewater, stormwater, or hauled wastewater. For
these reasons, WWTPs are designed to deal with a load much greater
than that produced by the mere census population (Table 1). In detail,
the design capacity is usually expressed in terms of Population Equiva-
lent (PE), where 1 PE is defined as the entity that would contribute an
amount of 60 gBOD5/d (BOD5 = Biochemical Oxygen Demand after 5
days of incubation). The design capacity of the 12 WWTPs ranged from
16,000 to 120,000 PE. The values of PE ranged from 1.4 (WWTP7) to 40
times (WWTP9; M. Campiglio is an extremely flourishing tourist area)
higher than the census population.

The WWTPs treat wastewater discharged from several municipalities
or parts of municipalities, so it is not easy to calculate the number of
tourists for separate parts of the municipalities day per day. Moreover,
many tourists only travel for 1 day or stay in private holiday homes.
However, to give a rough idea, the recorded number of overnight stays
in the entire Province of Trento was 9.2 million in summer 2021 and 6
million in winter 2021/22.

2.2. Period of monitoring

The wastewater monitoring period covered an entire year from the
beginning of May 2021 to the end of April 2022. In particular, waste-
waters enteringWWTP1–2-3 were sampled continuously throughout the
year. WWTP4–5-6–7 serving locations near lakes were monitored only
in the summer period (June 2021-September 2021). WWTP8–9-10–11-
12, characterized by mountain tourism (Alps), were sampled in the
period June 2021-September 2021 (summer) and December 2021-April
2022 (winter + spring for skiing). Periods without tourism were not
monitored because the areas were less likely to become COVID-19
hotspots.

2.3. Wastewater sampling and frequency

Overall, 1068 samples were collected from the WWTPs (Table 1),
with an average of: (i) 152 samples in urban plants; (ii) 51 samples in
plants with summer tourism only; (iii) 81 samples in plants with summer
and winter tourism.

Raw wastewater was sampled at the WWTP inlet after sieving and
degritting. Refrigerated (4 ◦C) autosamplers were used to collect 96
equal volume aliquots per day to form 24-hour composite samples.
Then, the samples were collected in 250 mL bottles, without providing
the acidification often applied to preserve their integrity for chemical
analyses because the same samples were used for viral load quantifica-
tion. The bottles were then transported to the laboratory and stored at
4 ◦C for a maximum of one week before analysis. For each composite
sample, the influent daily flowrate (expressed in m3/d) was measured
onsite and recorded.

During the monitoring period, the sampling frequency was three
times a week for all the WWTPs: two weekdays and one weekend.
Consecutive sampling days were avoided. Samples were always
collected with the same periodicity, so that they included both dry and
wet weather. Sampling three times per week was considered optimal to
perform accurate calculation of the 7-day moving average of SARS-CoV-
2 concentrations and thus obtain good understanding of the COVID-19
trends according to literature [33,34].

2.4. Physico-chemical characterization of raw wastewater

The following physico-chemical parameters were analyzed in the
influent wastewater in all the WWTPs using the American Public Health
Association (APHA) standard procedures [35]: TSS (2540D using
filtration and heating at 104 ± 1º C), COD (dichromate technique),
Ammonium (NH4-N, using Nessler method). Average concentrations and
standard deviations measured during the monitoring period are sum-
marized in Supplementary Material 1.

Table 1
List of the 12WWTPs included in the study with their design capacity and characteristics of the sewersheds served. Key: S= tourism in summer; W= tourism in winter.

WWTP Characteristics of the sewersheds served No. of wastewater samples analysed

Acronym Name Design capacity (PE) Type of area No. municipalities served Census population (inh.)

WWTP1 TrentoNorth 120,000 Urban 6 86,000 156
WWTP2 TrentoSouth 110,000 Urban 1 47,000 157
WWTP3 Rovereto 96,000 Urban 9 55,000 142
WWTP4 Levico 100,000 Tourist (S) 14 36,000 48
WWTP5 Riva Arena 50,000 Tourist (S) 3 16,300 54
WWTP6 Riva S.N. 16,000 Tourist (S) 1 7,800 52
WWTP7 Arco 25,700 Tourist (S) 3 17800 52
WWTP8 Mezzana 30,000 Tourist (S,W) 5 4800 82
WWTP9 M.Campiglio 32,000 Tourist (S,W) 2 800 81
WWTP10 Tesero 50,000 Tourist (S,W) 5 10,300 81
WWTP11 P. Fassa 40,000 Tourist (S,W) 2 4100 80
WWTP12 Imer 30,000 Tourist (S,W) 2 6,000 83
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2.5. Identification and quantification of SARS-CoV-2 in wastewater by
RT-qPCR

The analysis of SARS-CoV-2 in wastewater was based on PEG pre-
cipitation combined with centrifugation, in compliance with the pro-
tocols of the Italian national program (SARI project) for wastewater
surveillance [36]. The procedure is now briefly summarized:

1) Inactivation at 56 ◦C for 30 min and cooling at room temperature.
2) Addition of murine norovirus as process control.
3) Removal of solids by centrifugation at 4500g; addition of 4 g of

PEG8000 and 0.9 g of NaCl to 40 mL of supernatant and mixing at a
cold temperature for 15 min. Then a second centrifugation at
12,000g for 2 h was applied and the pellet was resuspended with 2
mL of lysis buffer containing guanidine thiocyanate (bioMerieux) for
the extraction of nucleic acids for 20 min. Magnetic silica beads (50
μL) and a semi-automatic extraction platform (eGeneUp, bio-
Merieux) were used, obtaining a final volume of 100 μL. Samples
were then cleansed of matrix inhibitors with the commercial One-
Step PCR Inhibitor Removal Kit (Zymo Research, CA, USA).

4) Amplification was carried out by a real-time one-step qPCR reaction
(Applied Biosystems™ 7500, ThermoFisher Scientific). The assay
described in [37] was applied for the detection of a target gene of the
virus, the orf1b (nsp14) with the mixture AgPath-ID One-Step
RT-PCR (Life Technologies), primer 2297-CoV-2-F, primer
2298-CoV-2-R and probe 2299-CoV-2-P. The thermal cycling con-
ditions were: reverse transcription for 30 min at 50 ◦C, inactivation
for 5 min at 95 ◦C, and 45 cycles of 15 s at 95 ◦C and 30 s at 60 ◦C. All
qPCR analyses were processed in duplicate.

5) Calculation of SARS-CoV-2 concentration, expressed in Genomic
Units per Liter (GU/L), using a calibration curve produced with a
dsDNA standard provided by the National Institute of Health (Italy).

Detection of SARS-CoV-2 can be performed down to concentrations
of 102-103 GU/L. The assay limit of detection (ALOD) was calculated
according to Cutrupi et al. [38]. Briefly, three different genomic con-
centrations were used (1, 2 and 4 GU/μL) and 24 replicate samples were
run for each concentration. The concentration of SARS-CoV-2 identifi-
able with 95 % probability (ALOD95) resulted 0.92 GU/μL [38].

The analyses were carried out in the same laboratory, so that no
inter-laboratory comparative assays were performed. However the lab-
oratory used passed a national proficiency test in 2021.

The lab analyses of WWTP1–2-3, which are plants included in the
national surveillance in accordance with the European Recommenda-
tion [8], were completed within 48 h after sampling. In the other plants,
analyses were completed within 3–4 d after sampling.

2.6. Calculation of daily SARS-CoV-2 load in influent wastewater

The daily viral load (expresses as GU/d) was calculated using the
influent flow rate (Qin expressed in m3/d) and the concentration of RNA
copies (GU/L) in the wastewater:

Viral Load = Qin x RNA copies/L x 1000

Normalized viral load (expressed as GU inh-1 d-1) was calculated by
dividing by the population size, as follows (inter alia, [13]):

Normalized Viral Load = (Qin x RNA copies/L x 1000)/Population =

Viral Load/Population

The population size can assume different values depending on the
method used for its calculation, as indicated in Section 2.7.

2.7. Calculation of population equivalent

Use of hydraulic data – The population size using only hydraulic data

(PEhydr) was quantified according to this expression:

PEhydr = (Qin x 1000)/D

where D (expresses as L inh-1 d-1) is the average daily domestic waste-
water production per capita. It is typically 80 % of the drinking water
supplied by the network.

Use of physico-chemical parameters – The Population Equivalent (PE)
was calculated taking into account the daily per capita excretion of a
specific physico-chemical parameter. In detail, PECOD was calculated
with the following expression [39]:

PECOD = (Qin x COD x 1000)/FCOD

where COD is the concentration in the influent wastewater (expressed in
mg/L), Qin is measured in the same sampling day, FCOD is the daily per
capita excretion of COD, which was here assumed equal to the typical
value of 110 gCOD capita-1 d-1 [39].

Analogously, similar expressions considering TSS and NH4-N con-
centrations can be used to calculate PETSS and PENH4, respectively, as
follows:

PETSS = (Qin x TSS x 1000)/FTSS

PENH4 = (Qin x NH4-N x 1000)/FNH4

The coefficient FTSS is typically 90 gTSS capita-1 d-1 [39].
The coefficient FNH4 was assumed equal to 9 gNH4-N capita-1 d-1. In

the literature, various values have been proposed: 8.1 ± 0.37 gNH4-N
capita-1 d-1 [16], 5.78–7.57 gNH4-N capita-1 d-1 [40], 6.4 gNH4-N cap-
ita-1 d-1 [41], 6 gNH4-N capita-1 d-1 [28], 9.4 ± 1.1 gNH4-N capita-1 d-1

[42], 6.5–10.7 gNH4-N capita-1 d-1 [43].
Use of a multi-parametric model – The Population Equivalent was

calculated with a simple mathematical model (PEmod) modified from the
one proposed by Zheng et al. [23] and by Hou et al. [10]. A combination
of hydraulic and physico-chemical parameters was considered. Each
parameter was then weighted using a respective W factor:

PEmod =Whydr x PEhydr+WTSS x PETSS +WCOD x PECOD +WNH4 x PENH4

where the weights were assumed equal to 0.1, 0.2, 0.3, 0.4 for Whydr,
WTSS, WCOD and WNH4, respectively (weights derived from our experi-
ence of the significance given to these parameters in routine
management).

2.8. Epidemiological data

The publicly available data on “daily new cases” [44] in the mu-
nicipalities belonging to the WWTP sewersheds were used. Then the
“current active cases” were calculated according to Cutrupi et al. [33],
taking into account the number of daily cases, deaths and recovered
patients. In particular, current active cases account directly for the
duration of the infection, because the virus remains in the stool during
the entire period of positivity or even longer, and is therefore related to
the SARS-CoV-2 load in wastewater.

COVID-19 cases were then scaled to 100,000 inhabitants, according
to the protocols often used by health authorities to notify prevalence or
incidence and based on the following expression:

Prevalence = Current active cases × 100,000 / Population

where the population is generally based on the census. Put briefly,
prevalence is defined as the proportion of a population that has the
disease at one time point. It therefore includes both new and existing
cases [45]. The calculation of the prevalence of confirmed COVID-19
cases considers the population at risk (usually the census population)
as the denominator.

P. Foladori et al.
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2.9. Statistics

Descriptive statistics, boxplot representations, scatter plots, linear
correlation analysis, t-tests, were applied to the datasets of physico-
chemical parameters in wastewater, SARS-CoV-2 loads and COVID-19
current active cases. The Unequal Variance (independent) T-test was
used with different amounts of data in the series and different variances
of the dataset; a level of probability of 5 % (p = 0.05) was assumed as a
criterion for acceptance. Linear correlation, expressed as Pearson’s
correlation coefficient (r, between 1 and − 1) was used to evaluate the
similarity between 2 series, and in particular between current active
cases datasets and normalized/not normalized SARS-CoV-2 loads in
wastewater. In our WWTPs, the datasets were quite long, so that a
normal distribution of the data can be assumed. All statistical compu-
tations were performed using Microsoft Office Excel.

3. Results and discussion

3.1. Not-normalized profiles of SARS-CoV-2 RNA loads in wastewater
and current active cases of COVID-19

Time profiles of daily SARS-CoV-2 loads in the influent wastewater of
the urban WWTP1–2-3 are shown in Fig. 1: data were calculated using
the procedure described in Section 2.6, expressed as GU/d and not-
normalized. For better visualization and interpretation of the trends in
Fig. 1, the 7-day moving average of SARS-CoV-2 loads is indicated in
order to smooth the daily fluctuations (inter alia, [33,46]). Visually, the
profiles of SARS-CoV-2 loads in Fig. 1, even if not yet normalized, well
mirror the dynamic of the current active cases.

During the monitoring period (May 2021-April 2022), the epidemic
situation evolved rapidly due to the emergence of new variants and
waves of SARS-CoV-2. In particular, the Omicron wave that occurred
over two months, from the end of December 2021 to February 2022,
recorded the highest peaks of viral loads and active cases of COVID-19
(Fig. 1), thus providing better conditions in which to test normaliza-
tion and correlations between the two datasets, as detailed in Section
3.3. To be noted is that the number of active cases depends on the
coverage of clinical testing [47] and fewer active cases are expected
when fewer tests are performed. Conversely, in the more recent period,
due to the increase in the percentage of people vaccinated and the
reduction of symptoms that make people less likely to get tested, it is
more difficult to compare the datasets correctly due to the widening gap
between confirmed cases and wastewater data. Moreover, the virus
variants may have an important role [29,48] and the calculation of the

variant-specific reproduction number deduced from changes in virus
load in wastewater was proposed as a surrogate for the effective
reproduction number [48].

The profile of SARS-CoV-2 loads in wastewater may exhibit a lag
phase shortly before the peak of current active cases, because viral loads
are able to anticipate the increase in the epidemic signal. The duration of
the lag phase in published studies ranges from 2 to 28 days before
Omicron and around 6 days during the Omicron wave [33,49]. How-
ever, this value depends on various factors such as incubation time and
shedding duration, type of variant, demographic characteristics, hy-
draulic retention in the sewage network, solid deposits in the network,
etc. In the research presented in this study, the correlation analyses were
applied without considering the lag phase between the two datasets
because there was not yet a single shared value able to represent the
entire 1-year monitoring period.

3.2. Comparison of different calculations of population size for
normalization

The hydrochemical parameters flow rate TSS, COD and ammonium
nitrogen in the influent wastewater, routinely measured in WWTPs, and
a multi-parametric model were used to calculate different values of PE
according to the procedure set out in Section 2.7. The statistical box
plots of PE in WWTP1–2-3 shown in Fig. 2 include PE fluctuations
during the entire year. The PE values are also compared with the census
inhabitants and the design capacity of the WWTPs (horizontal lines in
Fig. 2).

A feature shared by the three WWTPs is the wide variability of PETSS
and PECOD as indicated by the large interquartile ranges (IQR) (Fig. 2).
Another feature shared by plants is the lower median and average value
of PETSS compared to other markers (Fig. 2); the PETSS box plots indicate
that 50 % or more of the data always underestimate the census value. To
be noted is that a meaningful estimate of PE should be close to or higher
than the census value, but not much lower, because the potential pres-
ence of additional flows and loads – such as industrial discharges,
commuters, etc. – increase PE. In a particular case, the estimated PEmay
be significantly lower than the census value: when the sewer network is
associated with combined sewer overflows (CSO) spills during heavy
rainfall, spills due to blockages, transport delay due to pump failures, or
other operational problems that can cause losses in wastewater reaching
the WWTP. In the area considered by the present study, WWTP1–2-3
were connected to separate sewerages and CSOs were absent or negli-
gible during the year.

The estimate of PEhydr (Fig. 2) provided median and average values

Fig. 1. Time profiles of not-normalized SARS-CoV-2 loads in influent wastewater of WWTP1–2-3 during the 1-year monitoring and current active cases of COVID-19.

P. Foladori et al.
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slightly higher but close to the respective census values. This is sur-
prising because the PEhydr estimate can be influenced by the presence of
non-domestic waters (e.g. stormwater, infiltration of extraneous water
along the network or industrial discharges) which may cause large un-
certainties and a strong overestimation of PEhydr compared to the census
value. In this study, thanks to the separate sewer networks, the PEhydr
refers mostly to the average daily domestic wastewater production per
capita (D expressed in L inh-1 d-1; Section 2.7). This value depends on the
region, and it may vary widely from 100 to 250 L inh-1 d-1; in some cases
it can be acquired from the local authorities. For example in the
Netherlands, this value can be considered very stable at 120 L inh-1 d-1

[50].
Population size estimated using NH4-N (Fig. 2) provided median and

average PENH4 values in agreement with PEhydr and close to the
respective census values. Furthermore, PENH4 and PEhydr exhibited the
lowest IQR in all plants. This indicates that the magnitude of PE fluc-
tuations is small when using NH4-N with respect to COD or TSS. This
difference is due to the fact that suspended solids and particulate organic
matter in wastewater are affected by deposition and resuspension during

dry or wet periods along the sewer network and their transport depends
on the slope of the pipes and the flow rate. Conversely, soluble forms
such as ammonium are markedly less affected by these factors. There-
fore, the use of an anthropogenic marker, such as NH4-N, can be
extremely useful [16] also thanks to its simple analysis and the potential
of being measured with affordable online probes.

Population size estimates with the multi-parametric model (PEmod)
did not yield a significant advantage over PEhydr and PENH4: the IQR of
the PEmod box plot is higher, indicating results less reliable and consis-
tent than those obtained from ammonium and flow rate.

Fig. 2 shows the design capacity of the WWTPs for comparison; it is a
constant value, generally larger than the “de facto” population because
the design takes into account future urban developments and intraday
peaks of hydraulic and pollutants loads. Therefore, this parameter is
considered not important for normalization here and consequently not
used further.

Detailed comparison between PE estimated in WWTP1–2-3 with the
various markers is presented in Table 2 with the main statistical results
and p-values obtained from t-test. In particular, to evaluate the

Fig. 2. Box plots of PE in WWTP1–2-3 calculated with different methods and compared with the census inhabitants and the design capacity (horizontal lines). Key:
the horizontal bars in the boxes represent the median, the bottom and top of the box represent 1st and 3rd quartiles, the whiskers represent 10th and 90th percentiles.
Symbols “£ ” indicate the average values. Outliers are plotted as individual points.

Table 2
Statistical parameters of PE calculated with the various markers in WWTP1–2-3 and matrix of p-values obtained via t-test describing the significance of difference
between PE series. Key: Asterisk and grey shading indicate p > 0.05.

P. Foladori et al.



Journal of Hazardous Materials 478 (2024) 135352

7

similarity between two PE series calculated with two different markers,
a p-value > 0.05 indicates not intrinsic differences and the average PE
series appear similar, while a p-value < 0.05 indicates that the two av-
erages are statistically different.

In WWTP1 (Table 2), the census value was 86,000 inh. and the
closest estimates were the average PECOD (84,000 inh.) and average
PEmod (80,000 inh.). However, the median of both PECOD and PEmod
(80,000 and 74,000 inh., respectively) was lower than the census in-
habitants. As previously mentioned, when the average and the median
are lower than the census data, the estimates are considered to be of
little significance. A good similarity was also established between
average PEhydr and average PENH4 (p < 0.05), but in this case the pop-
ulation size was estimated at 100,000 inh., significantly higher than the
census value.

Considering WWTP2 (Table 2), the averages of PEhydr, PETSS, PENH4
and PEmod showed no significant differences (p > 0.05) and assumed
values in the range 61,000–70,000 inh., which overestimated the census
inhabitants (47,000 inh.) by 30–49 %. The parameter COD differs
because it provides the highest median and average values of PECOD
(75,000 and 83,000 inh.). This result indicates that WWTP2may receive
additional sources of organic pollutants (e.g. industrial wastewater) able
to increase COD loads in influent wastewater.

The PE results in WWTP3 (Table 2) were similar to those calculated
in WWTP2. In detail, there were no statistical differences among the
averages of PEhydr, PETSS, PENH4 and PEmod (all in the range
56,000–63,000 inh.), which closely aligned with the census of 55,000
inh, and the overestimation was less than 15 %. Conversely, COD gave
the highest average PE of 74,000 inh., which exceeded the census value
by 34 %.

In conclusion, PEhydr and PENH4 yielded average values close to or
slightly higher than the respective census values in all the WWTPs.
Therefore both appear suitable for normalization. However, PEhydr is
significant for separate sewer networks (as in this study), while in
combined sewers it is strongly affected by non-domestic sources.
Consequently, the use of this parameter for normalization cannot be
generalized. Finally, the PEmod, introduced to reduce the PE variations
generated by a single hydrochemical marker, did not give a significant
improvement in the results.

3.3. Correlations between normalized SARS-CoV-2 loads and current
active cases

The relationship between normalized SARS-CoV-2 loads in waste-
water (with different normalization parameters) and the prevalence of
active cases was evaluated with the linear statistical model using the
Pearson’s correlation coefficient r to estimate the strength of the cor-
relation. The objective was to highlight one or more normalization
methods that can provide the best match between normalized viral loads
and COVID-19 prevalence. This aspect needs further research because
the impact of alternative normalization methods on the relationship
between normalized viral loads and current active cases has yet to be
fully understood [32]. In this context, although the methods applied are
not new, the monitoring of WWTPs characterized by a widely variable
population, as those chosen in this work, offer original and innovative
comparisons that can be useful for a shared approach to normalization.

The Pearson’s r in WWTP1–2-3 is shown in Table 3; the results
highlight the always positive correlation between the current active
cases and the viral loads not normalized as well as normalized by census,
PEhydr, PETSS, PECOD, PENH4 and PEmod.

The not-normalized dataset has high Pearson’s correlation co-
efficients (Table 3), but there is a strong limitation in the use of viral
loads without normalization (expressed as GU/d) because results can
show higher prevalence in large urban areas than in small areas. In other
words, normalization is needed to conduct comparison between
different sewersheds and different communities and understand the
spread of the epidemic.

Normalized viral loads to census correlated with active cases (Pear-
son’s r = 0.81–0.84) exactly equal to the not-normalized viral loads
(Table 3); in fact, on dividing the viral loads by a constant value (census)
the variability of the dataset does not change, so that the correlation
coefficients after normalization remain the same. In other words, the
normalization with the “simple” census information provides useful
normalized data but the correlation is comparable to the not-normalized
dataset. This observation is in agreement with the results of Isaksson
et al. [32] which indicated that the relationship between normalized
viral loads and positive cases was relatively insensitive to whether
census population or population size estimates were used. These authors
suggested that the normalization to census inhabitants can be sufficient
to detect temporal changes of SARS-CoV-2 viral loads during environ-
mental surveillance [32]. To be noted is that normalization to census
may not be representative in the case of tourist locations as highlighted
in Section 3.4 relating to plants from WWTP4 to WWTP12.

Normalization with PETSS and PECOD resulted in a decrease of cor-
relation coefficients (r < 0.8) in some plants. Theoretically, PETSS is
expected to be a good parameter for normalization, because higher
SARS-CoV-2 concentrations would be associated with higher TSS con-
centration in wastewater due to attachment of viral particles to solids [9,
51]. Instead, here, the viral loads normalized to PETSS had the lowest
Pearson’s correlation coefficients in all theWWTPs. As said previously in
Section 3.2, PETSS and PECOD showed the largest IQR in the box plots
(Fig. 2) for various reasons, including the high fluctuations of particulate
matter and solids along the sewer network. An inappropriate marker
used for normalization and high variability may deteriorate the corre-
lation with active cases compared to the correlation before normaliza-
tion, according to the observations of other authors [20,22].

Considering the hydrochemical parameters, only normalization of
SARS-CoV-2 loads with PEhydr and PENH4 strongly correlated with active
cases in all threeWWTPs, always providing Pearson’s r > 0.80 (Table 3).
However, normalization to PEhydr is not appropriate in the presence of
combined sewerage. Conversely, PENH4-based calculation appears
effective and reliable to normalize SARS-CoV-2 loads in wastewater,
providing a good correlation with COVID-19 positive cases. Finally,
normalization to PEmod adds no significant advantage with respect to
PENH4, while introducing an unnecessary complication.

These observations are in agreement with the findings of Amoah
et al. [9], who used an Adaptive Neuro-Fuzzy Inference Systemmodel to
demonstrate that the major physico-chemical parameter potentially
having an association with the concentration of SARS-CoV-2 in waste-
water is ammonium and, to a lesser extent, pH and TSS. In fact,
ammonium in wastewater derives mainly from human urine and is
therefore associated with the shedding of viral particles by infected in-
dividuals in their faeces. The use of NH4-N as a reliable parameter for
normalization of SARS-CoV-2 loads in WBE applications has also been
proposed by Rauch et al. [27] and Arabzadeh et al. [26]. These studies
once again confirm our conclusion that ammonium is a good parameter
in the normalization of the viral load.

Table 3
Pearson’s correlation coefficients (r) of normalized as well as not-normalized
SARS-CoV-2 loads against current active cases in WWTP1–2-3. Key: grey
shading indicates high correlation coefficients.

Normalization metric of SARS-CoV-2 loads WWTP1 WWTP2 WWTP3

Not-normalized 0.84 0.83 0.81
Normalized to census 0.84 0.83 0.81
Normalized to PEhydr 0.83 0.81 0.81
Normalized to PETSS 0.72 0.68 0.57
Normalized to PECOD 0.81 0.76 0.69
Normalized to PENH4 0.85 0.81 0.81
Normalized to PEmod 0.84 0.82 0.76
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3.4. Normalisation of SARS-CoV-2 loads in tourist locations using
ammonium

The normalization of viral loads with PENH4 becomes very important
when the population fluctuates strongly with respect to the census value,
as in the case of tourist locations characterized by high seasonal or
weekly variations. The SARS-CoV-2 loads in the influent wastewater of
the 12 WWTPs included in the monitoring (3 urban plants + 9 tourist
locations) are compared in Fig. 3, showing the loads after normalization
with census (Fig. 3A) and with PENH4 (Fig. 3B).

The census population, indicated in Table 1, was extremely different
among the 12 WWTPs: WWTP9 was characterized by the lowest census
value of 800 inh., while WWTP1 registered the highest value of 86000
inh. Instead, the estimated PENH4 increased significantly in all the
WWTPs, ranging from 9000 ± 5300 inh. in WWTP11 to 99,200
± 32,200 inh. in WWTP1, indicating the presence of a certain number of
people (not known, but only estimated from influent wastewater) in
addition to the census. For example, in WWTP9 the census value was
about 800 inh., while the average PENH4 was 13,700 ± 10,500 inh. This
marked increase in population size affected the normalization of viral
loads: in WWTP9, the average SARS-CoV-2 load normalized to census
was 1.2 ± 2.9 × 109 GU inh-1 d-1 (higher than the scale on the vertical
axis in Fig. 3A), while the normalization to NH4-N led to 3.5 ± 6.5 × 107

GU PE-1 d-1 (Fig. 3B). Statistical analysis of this couple of values indi-
cated a significant difference between the two normalization methods
(p-value > 0.05). This example highlights that normalization to census
can cause a significant overestimation of SARS-CoV-2 loads, even by
orders of magnitude, especially in locations with a large number of
fluctuating people and tourists.

Observing the plants WWTP8–9-10–11-12 in Fig. 3B, which are those
with summer and winter tourism, the average viral loads with PENH4
normalization (indicated with symbols “£” in the boxplots) are com-
parable and concordant with the average values in the urbanWWTP1–2-
3 belonging to same province. This could be interpreted as a meaningful
normalization. Another observation derives from WWTP4–5-6–7 in
Fig. 3B: these plants show significantly lower viral loads after PENH4
normalization. This result is reasonable because the tourism only
occurred in summer (June-August 2021) when the spread of the virus
was low, with the absence of detectable SARS-CoV-2 genetic material in
some samples, and the climatic conditions less favorable for virus
transmission (open spaces, closed schools, etc.).

All these results demonstrate that, in the context of this study, the use

of PENH4 was a reasonable choice for normalization in tourist plants in
order to follow the large seasonal fluctuations of population, while also
ensuring the advantages of a simple, practical, cheap and repeatable
parameter. In non-touristic plants, on the other hand, normalization
with PENH4 does not substantially change the overall patterns and trends
of viral loads normalized to census. Indeed, the statistical analysis
applied to compare the data of WWTP1–2-3 in Fig. 3A and B did not
show any significant difference between the two normalization methods
(using census and PENH4; p-value < 0.05).

4. Conclusions

None of the normalizations approaches substantially improved the
strength of the correlation between COVID-19 active cases and
normalized SARS-CoV-2 loads in wastewater. In fact, correlations with
the non-normalized data showed Pearson’s r-values equal to those with
normalized data. However, normalization facilitates comparisons
among different WWTPs in order to understand the circulation of the
virus in different areas and periods. Both census and estimated popu-
lation size by ammonium are effective and reliable parameters to
normalize SARS-CoV-2 loads in wastewater from urban sewersheds with
negligible population fluctuations.

However, this study reveals that in the case of tourist locations, since
NH4-N is an anthropogenic indicator, sensitive to population size fluc-
tuations, PENH4 can provide a better normalization of the specific viral
load per inhabitant. This shows the benefit of including the simple
monitoring of ammonium, without the need for other costly physico-
chemical parameters, in wastewater surveillance for WBE and deci-
sion-making.

Environmental Implication

Our research, focused on the WBE of SARS-CoV-2, belongs to the
fields of environmental engineering and sciences. It respects the crite-
rion of "environmental relevance" because SARS-CoV-2 is an environ-
mental contaminant with hazardous effects on environment and
humans. SARS-CoV-2 contaminates water and receiving bodies, reach-
ing many surfaces and food products and remain infective for weeks/
months. The study was conducted under environmentally relevant
conditions since wastewater monitoring was performed during 12
months of pandemic and virus loads in wastewater were measured. The
study has environmental relevance because aimed at early warning

Fig. 3. Box plots of SARS-CoV-2 loads in urban and tourist WWTPs: (A) normalization of loads (expressed as GU inh-1 d-1) to the census; (B) normalization of loads
(expressed as GU PE-1 d-1) to PENH4. Key: the horizontal bars in the boxes represent the median, the bottom and top of the box represent 1st and 3rd quartiles, the
whiskers represent 10th and 90th percentiles. Symbols “£ ” indicate the average values.
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purposes, considering that virus contamination is an emerging envi-
ronmental issue worldwide.
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the use of alternative normalization approaches on SARS-CoV-2 concentrations in
wastewater: experiences from two catchments in Northern Sweden. Environments
9, 39. https://doi.org/10.3390/environments9030039.

[33] Cutrupi, F., Cadonna, M., Manara, S., Postinghel, M., La Rosa, G., Suffredini, E.,
Foladori, P., 2022. The wave of the SARS-CoV-2 Omicron variant resulted in a
rapid spike and decline as highlighted by municipal wastewater surveillance.
Environ Technol Innov 28, 102667. https://doi.org/10.1016/j.eti.2022.102667.

[34] Cluzel, N., Courbariaux, M., Wang, S., Moulin, L., Wurtzer, S., Bertrand, I.,
Laurent, K., Monfort, P., Gantzer, C., Guyader, S.L., Boni, M., Mouchel, J.-M.,
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