
PhD Dissertation
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Risk-based vulnerability management
Exploiting the economic nature of the attacker to build sound

and measurable vulnerability mitigation strategies

Luca Allodi

Advisor:

Prof. Fabio Massacci

Università degli Studi di Trento

April 2014

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Black-Box Security Testing of

Browser-Based Security Protocols

Avinash Sudhodanan

Advisor:

Alessandro Armando, Full Professor, Università degli Studi di Genova

Co-Advisors:

Roberto Carbone, Researcher, Fondazione Bruno Kessler, Italy

Luca Compagna, Product Security Researcher, SAP Labs, France

April 2017

Abstract

Millions of computer users worldwide use the Internet every day for

consuming web-based services (e.g., for purchasing products from online

stores, for storing sensitive files in cloud-based file storage web sites,

etc.). Browser-based security protocols (i.e. security protocols that run

over the Hypertext Transfer Protocol and are executable by commercial

web-browsers) are used to ensure the security of these services. Multiple

parties are often involved in these protocols. For instance, a browser-based

security protocol for Single Sign-On (SSO in short) typically consists of

a user (controlling a web browser), a Service Provider web site and an

Identity Provider (who authenticates the user). Similarly, a browser-based

security protocol for Cashier-as-a-Service (CaaS) scenario consists of a user,

a Service Provider web site (e.g., an online store) and a Payment Service

Provider (who authorizes payments).

The design and implementation of browser-based security protocols are

usually so complex that several vulnerabilities are often present even af-

ter intensive inspection. This is witnessed, for example, by vulnerabili-

ties found in various browser-based security protocols such as SAML SSO

v2.0, OAuth Core 1.0, etc. even years after their publication, implemen-

tation, and deployment. Although techniques such as formal verification

and white-box testing can be used to perform security analysis of browser-

based security protocols, currently they have limitations: the necessity of

having formal models that can cope with the complexity of web browsers

(e.g., cookies, client-side scripting, etc.), the poor support offered for cer-

tain programming languages by white-box testing tools, to name a few.

What remains is black-box security testing. However, currently available

black-box security testing techniques for browser-based security protocols

are either scenario-specific (i.e. they are specific for SSO or CaaS, not both)

or do not support very well the detection of vulnerabilities enabling replay

attacks (commonly referred to as logical vulnerabilities) and Cross-Site

Request Forgery (CSRF in short).

The goal of this thesis is to overcome the drawbacks of the black-box

security testing techniques mentioned above. At first this thesis presents

an attack pattern-based black-box testing technique for detecting vulner-

abilities enabling replay attacks and social login CSRF in multi-party web

applications (i.e. web applications utilizing browser-based security proto-

cols involving multiple parties). These attack patterns are inspired by the

similarities in the attack strategies of previously-discovered attacks against

browser-based security protocols. Second, we present manual and semi-

automatic black-box security testing strategies for detecting 7 different

types of CSRF attacks, targeting the authentication and identity manage-

ment functionalities of web sites. We also provide proof-of-concept im-

plementations of our ideas. These implementations are based on OWASP

ZAP (a prominent, free and open-source penetration testing tool).

This thesis being in the context of an industrial doctorate, we had the

opportunity to analyse the use-cases provided by our industrial partner,

SAP, to further improve our approach. In addition, to access the effective-

ness of the techniques we propose, we applied them against the browser-

based security protocols of many prominent web sites and discovered nearly

340 serious security vulnerabilities affecting more than 200 web sites, in-

cluding the web sites of prominent vendors such as Microsoft, eBay, etc.

4

Acknowledgements

The research presented in this thesis is a joint effort. First, I would like

to express my sincere gratitude to my three supervisors: Prof. Alessandro

Armando, Dr. Roberto Carbone and Dr. Luca Compagna (it has been a

pleasure working with all of you). Next I would like to thank (i) Nicolas

Dolgin for his contributions towards Blast and CSRF experiments, (ii)

Adrien Hubner for transforming my Python code for Blast to a proper

object-oriented form and (iii) Umberto Morelli for his assistance in testing

Alexa top web sites (and also for being a great friend).

Special thanks to Laura Segalla, Sylvine Eusebi, Manuela Bacca, Silvia

Tomassi, Adriana Betti, Dr. Francesca Belton, Dr. Andrea Stenico and

other administrative staff members for helping me overcome the bureau-

cratic nightmares of visa, nulla osta, permesso di soggiorno, lodging, travel,

health insurance and medical appointments.

The generous funding from Marie Sklodowska-Curie Actions program,

Poste Italiane and University of Trento was indeed helpful in covering the

expenses associated to my PhD.

The high-quality facilities offered by Fondazione Bruno Kessler and SAP

Labs France deserves special mention (thanks to all those comfortable office

spaces, high-end PCs, nutritious food, technical support, etc.).

Finally, I would like to thank my family for loving me unconditionally,

my friends for making my life more joyful and my yoga teachers for ensuring

my physical and mental well being.

5

Contents

1 Introduction 1

1.1 Context . 1

1.2 The Problem . 2

1.3 Proposed Solutions . 4

1.3.1 Attack Patterns for Black-Box Security Testing of

Multi-Party Web Applications 4

1.3.2 Large-scale Analysis & Detection of Authentication

Cross-Site Request Forgeries 5

1.4 Overview of our contributions 6

1.5 Structure of the thesis . 7

2 Attack Patterns for Black-Box Security Testing of Multi-

Party Web Applications 9

2.1 Introduction . 9

2.2 Background . 14

2.2.1 Attacks . 18

2.2.2 Threat Models . 20

2.3 From Attacks to Attack Patterns 21

2.4 Approach . 29

2.4.1 Creating, reviewing, and improving Attack Patterns 30

2.4.2 Security Testing Framework 31

2.5 Implementation . 33

i

2.5.1 Inference . 36

2.5.2 Attack Pattern Engine 38

2.6 Illustrative Example . 42

2.7 Evaluation . 46

2.7.1 Target MPWAs . 46

2.7.2 Results . 46

2.7.3 Manual Findings 50

2.7.4 Disclosures . 52

2.8 Related Work . 53

2.8.1 Attack pattern-based Black-Box Techniques 53

2.8.2 Other Black-Box Techniques 54

2.8.3 Other Techniques 55

2.9 Limitations and future directions 56

3 Large-Scale Analysis & Detection of Authentication Cross-

Site Request Forgeries 59

3.1 Introduction . 59

3.2 Background . 64

3.2.1 CSRF Attacks . 64

3.2.2 Defending against CSRF Attacks 66

3.3 Authentication CSRF Attacks (Auth-CSRF) 69

3.3.1 Impacts of Auth-CSRF Attacks 69

3.3.2 Selection of Auth-CSRF Attacks and Associated

Processes . 71

3.3.3 Preventing Auth-CSRF: Challenges 79

3.4 Manually Testing for Auth-CSRF Attacks 80

3.5 Experiments (Manual) . 87

3.6 Selected Case Studies . 98

3.6.1 A Very Prominent Adult Website 98

ii

3.6.2 A Prominent Government Website for Tax Filing . 99

3.6.3 Web sites of Google and Microsoft 99

3.6.4 twoo.com . 100

3.6.5 ebay.com . 101

3.7 (Semi-)Automatic Testing for Auth-CSRF 101

3.7.1 CSRF-checker Concept 102

3.7.2 Implementation . 103

3.7.3 Additional experiments with CSRF-checker 103

3.8 Ethics & Responsible Disclosure 104

3.9 Related Work . 106

3.10 Limitations . 107

4 Migration to Industry 109

4.1 Importance of our contributions 109

4.2 Blast and Industry . 111

4.3 Auth-CSRF and Industry 116

5 Conclusion 119

Bibliography 121

iii

List of Tables

2.1 Attacks against security-critical Multi Party Web Applications 20

2.2 Known Attacks Strategies against MPWAs 22

2.3 Attack Patterns . 25

2.4 Syntactic and Semantic Labels 28

2.5 Data Flow and Location Labels 29

2.6 Core Components of Our Testing Engine 35

2.7 User Actions and Flags of Stripe Checkout 44

2.8 Excerpt of Inference on Stripe Checkout 44

2.9 Attack Pattern Application on Stripe Checkout 45

2.10 Attacks discovered . 51

3.1 Excerpt of our Findings 62

3.2 Auth-CSRF attacks causing Victim to be Authenticated as

Attacker . 72

3.3 Auth-CSRF attacks causing Attacker to be Authenticated

as Victim . 73

3.4 Alterations . 86

3.5 Testing Strategy Information 86

v

List of Figures

2.1 SAML-based SSO . 14

2.2 PayPal Payments Standard CaaS 15

2.3 Email notification and acknowledgment 15

2.4 Approach . 29

2.5 Testing Engine Architecture 33

2.6 Testing Engine Flow . 36

2.7 HTTP trace with empty labels (an excerpt) 37

2.8 Stripe checkout protocol 43

3.1 Commonly-found Auth-CSRF-vulnerable processes 61

3.2 Testing strategies . 85

3.3 Result overview . 89

3.4 Result comparison . 89

3.5 Incidence of pre-auth. vulnerabilities 91

3.6 Incidence of post-auth. vulnerabilities 92

3.7 Incidence of HSTS . 98

4.1 Testing Engine Architecture 111

4.2 Blast UI for creating a new test 113

4.3 Payment via 2checkout . 114

4.4 Recording of User Actions via BlastRec 114

4.5 A Sample Attack Report 115

vii

Chapter 1

Introduction

The research presented in this thesis has been carried out in the context

of the SECENTIS Project [26], under the topic “Automatic Analysis of

Browser-Based Security Protocols”. The SECENTIS Project is a European

Industrial Doctorate Program on Security and Trust of Next Generation

Enterprise Information Systems. The industrial partner of the SECENTIS

Project is SAP Labs France. The SECENTIS Project is financed by the Eu-

ropean Union grant 317387, under FP7-PEOPLE-2012-ITN. In this thesis,

we propose new approaches for black-box security testing of browser-based

security protocols. In particular we focus on black-box security testing

techniques for detecting logical vulnerabilities and vulnerability enabling

Cross-Site Request Forgery attacks. We focus not only on the theoretical

aspects of these techniques but also evaluate their practical applicability

on industrial use-cases such as the ones provided by SAP.

1.1 Context

Browser-Based Security Protocols: Security protocols are communi-

cation protocols that aim to achieve some security goals through the use of

cryptographic primitives. Browser-based security protocols are protocols

that run over the Hypertext Transfer Protocol [53] (HTTP in short) and

1

1.2. The Problem Chapter 1

are executable by commercial web-browsers. By supporting the develop-

ment of zero-footprinting applications (i.e. applications that do not re-

quire special-purpose clients), browser-based protocols greatly simplify the

deployment and usage of applications based on the Software-as-a-Service

(SaaS in short) paradigm. For this reason they are subject to a growing

attention by industry. Browser-based security protocols ensure that the

right people (or applications) access the right resources, thereby greatly

simplifying the design and implementation of complex, on-line applica-

tions. A number of browser-based security protocols have been developed

and standardized. For instance, the SAML SSO v2.0 Web-Browser Profile

[61] is a standard, inter-operable, protocol for Single Sign-On (SSO) which

is now supported by all major software vendors (e.g., Google, SAP, etc.).

Similarly, PayPal Express Checkout is a proprietary protocol developed by

PayPal for Cashier-as-a-Service (CaaS) scenario (i.e. payment via a trusted

third-party).

1.2 The Problem

The design and analysis of browser-based security protocols is usually so

complex that severe vulnerabilities are often present even after intensive

inspection. This is witnessed, for example, by vulnerabilities found in

various SSO protocols, such as SAML SSO v2.0 [45], OAuth Core 1.0 [67],

even years after their publication, implementation, and deployment. While

some model checking techniques exist for the automatic security analysis of

security protocols (see, e.g., [47, 46]) and can be used to analyse browser-

based security protocols, a significant amount of manual intervention is

necessary to cope with the complexity of browsers (cookies, reliance on

SSL/TLS channels, client-side scripting, to name a few). This hinders the

adoption of these techniques in the software development life-cycle.

2

Chapter 1 1.2. The Problem

Another available option is that of white-box security testing techniques

that can detect security vulnerabilities by analysing the source code of web

applications (e.g., [91, 71]). However, there are several challenges in apply-

ing these techniques to test browser-based security protocols. For instance,

the currently-available white-box security testing techniques for browser-

based security protocols are only applicable to the CaaS scenario (e.g.,

the approach mentioned in [91]). Additionally, the unavailability of source

code and the presence of multiple parties supporting different programming

languages in browser-based security protocols makes it difficult to apply

white-box security testing techniques.

The remaining option is represented by black-box security testing tech-

niques. They analyse the HTTP traffic of web applications for detecting

security vulnerabilities (e.g., [65, 82, 94]). Due to their application-agnostic

nature, they are widely-preferred at the software development industry.

However, quite similar to white-box techniques, the currently available

black-box techniques for security testing browser-based security protocols

are either scenario-specific (e.g., the approach mentioned in [94] is appli-

cable only to SSO scenario and the approach proposed in [82] has been

applied only to CaaS scenario) or it has been shown (e.g., in [81, 52]) that

they do not support very well the detection of vulnerabilities causing replay

attacks (also known as logical vulnerabilities [81]) and Cross-Site Request

Forgery [98] (CSRF in short).

The above-mentioned limitations of the available security testing tech-

niques clearly highlights the need for a general-purpose, application-

agnostic, security testing technique for browser-based security protocols

that can detect vulnerabilities that are not very well supported by cur-

rently available security testing tools (e.g., logical vulnerabilities, CSRF,

etc.).

3

1.3. Proposed Solutions Chapter 1

1.3 Proposed Solutions

The application-agnostic nature of black-box security testing techniques

when combined with the fact that they are widely-preferred at the soft-

ware industry, makes them an ideal candidate for conducting research on

extending them. In fact this is what we did. We mainly focussed on

proposing black-box security testing techniques for browser-based security

protocols. In particular, first we propose a black-box security testing tech-

nique based on attack patterns for generating attack test cases against

browser-based security protocol implementations. A summary of this ap-

proach is provided in Section 1.3.1. Additionally, we propose manual and

semi-automatic black-box security testing techniques for detecting vulner-

abilities enabling CSRF in the authentication and identity management

functionalities of web sites. Section 1.3.2 provides a summary of these

techniques.

1.3.1 Attack Patterns for Black-Box Security Testing of Multi-

Party Web Applications

We present an automatic technique based on attack patterns for black-

box security testing of Multi-Party Web Applications (MPWAs in short).

MPWAs are web applications implementing browser-based security pro-

tocols involving multiple parties. Examples of MPWA scenarios include

web applications implementing SSO, CaaS, etc. Our approach stems from

the observation that attacks against popular MPWAs share a number of

similarities, even if the underlying protocols and services are different. We

primarily target six different replay attacks and a social login Cross-Site Re-

quest Forgery (CSRF) attack. Firstly, we propose a methodology in which

security experts can create attack patterns from known attacks. Secondly,

we present a security testing framework that leverages attack patterns to

4

Chapter 1 1.3. Proposed Solutions

automatically generate test cases that can be used to automate the security

testing of MPWAs. We implemented our ideas (as a proof-of-concept tool

named Blast) on top of OWASP ZAP (a popular, open-source penetration

testing tool), created 7 attack patterns that correspond to 13 prominent at-

tacks from the literature and discovered 21 previously unknown vulnerabil-

ities in prominent MPWAs (e.g., twitter.com, developer.linkedin.com,

pinterest.com), including MPWAs that do not belong to SSO and CaaS

families. Finally, we extended Blast to meet the security testing needs at

SAP.

1.3.2 Large-scale Analysis & Detection of Authentication Cross-

Site Request Forgeries

During our experiments on MPWAs (see Section 1.3.1 above), our social

login CSRF attack pattern discovered CSRF vulnerabilities in the login

processes of top web sites. This inspired us to conduct further research

on CSRF attacks affecting the authentication and identity management

functionalities of web sites (what we refer to as Authentication CSRF at-

tacks). We started by collecting several Auth-CSRF attacks reported in

the literature, then analyzed their underlying strategies and identified 7

security testing strategies that can help a manual tester uncover vulner-

abilities enabling Auth-CSRF. In order to check the effectiveness of our

testing strategies and to estimate the incidence of Auth-CSRF, we con-

ducted an experimental analysis considering 300 web sites belonging to 3

different rank ranges of the Alexa global top 1500. The results of our exper-

iments are alarming: out of the 300 web sites we considered, 133 qualified

for conducting our experiments and 90 of these suffered from at least one

vulnerability enabling Auth-CSRF (i.e. 68%). We further generalized our

testing strategies, enhanced them with the knowledge we acquired during

our experiments and implemented them as an extension (namely CSRF-

5

twitter.com
developer.linkedin.com
pinterest.com

1.4. Overview of our contributions Chapter 1

checker) to the open-source penetration testing tool OWASP ZAP. With

the help of CSRF-checker, we tested 132 additional web sites (again from

the Alexa global top 1500) and discovered that 95 of them were vulnera-

ble to Auth-CSRF (i.e. 72%). Our findings include serious vulnerabilities

among the web sites of Microsoft, Google, eBay, etc. Finally, we responsi-

bly disclosed our findings to the affected vendors and helped them fix the

issues we discovered. We even received monetary rewards for our findings

(e.g., we received a $1500 cash award from Microsoft).

1.4 Overview of our contributions

The important contributions of this thesis are listed below:

• We propose a novel approach for black-box security testing multi-party

web applications that implements browser-based security protocols.

• We propose manual and semi-automatic black-box security testing

techniques for detecting vulnerabilities causing CSRF attacks in the

authentication and identity management functionalities of web sites.

These techniques are a good addition to the widely-used web applica-

tion security testing guides (e.g., the one provided by OWASP [33]).

• We provide proof-of-concept implementations of the automatic and

semi-automatic back-box security testing techniques we propose. Our

implementations are based on OWASP ZAP (a popular, free and open-

source penetration testing tool). This helps in the swift adoption of

the techniques we propose by the security testing community.

• To measure the effectiveness of our approaches, we applied them to

test the security of prominent web sites of the Internet and discovered

nearly 340 serious security vulnerabilities affecting more than 200 web

6

Chapter 1 1.5. Structure of the thesis

sites, including the web sites of prominent vendors such as Microsoft,

eBay, Linkedin, Stripe, Pinterest, etc.

• We responsibly disclosed our findings to the affected vendors and

helped them fix the issues. For instance, we received a $1500 mon-

etary award from Microsoft for discovering a CSRF attack in their

browser-based security protocol underlying prominent online services

such as skype.com, outlook.com, etc.

• We extend our proof-of-concept implementations based on the needs

of our industrial partner, SAP and currently SAP is continuing to

invest resources for further developing our prototypes.

1.5 Structure of the thesis

The remainder of this manuscript is organized as follows. In Chapter 2, we

present our approach for black-box security testing MPWAs. In Chapter

3, we present our study on large-scale analysis and black-box detecting of

vulnerabilities causing Authentication CSRF. In Chapter 4 we present the

impacts of our research at the software industry, mainly focusing on SAP

(the industrial partner of the research associated to this thesis). Finally,

in Chapter 5 we conclude with some final remarks.

7

skype.com
outlook.com

1.5. Structure of the thesis Chapter 1

8

Chapter 2

Attack Patterns for Black-Box

Security Testing of Multi-Party Web

Applications

This chapter presents an approach we developed (and presented at [89, 90])

for black-box security testing browser-based security protocol implementa-

tions. In particular, we focus on browser-based security protocols involving

multiple parties.

2.1 Introduction

An increasing number of business critical, online web applications leverage

trusted third parties in conjunction with web-based security protocols to

meet their security needs. For instance, many online applications rely on

authentication assertions issued by identity providers to authenticate users

using a variety of web-based single sign-on (SSO) protocols (e.g., SAML

SSO v2.0, OpenID Connect). Similarly, online shopping applications use

online payment services and Cashier-as-a-Service (CaaS) protocols (e.g.,

Express Checkout [21] and PayPal Payment Standard [22]) to obtain proof-

of-payment before delivering the purchased items. We refer to this broad

9

2.1. Introduction Chapter 2

class of protocols as security-critical Multi-Party Web Applications (MP-

WAs). Three entities take part in the protocols: the User (through a web

browser B), the web application (playing the role of Service Provider, SP),

and a trusted third party (TTP).

The design and implementation of the protocols used by security-critical

MPWAs are notoriously error-prone. Several vulnerabilities have been re-

ported in the last few years. For instance, the incorrect handling of the

OAuth 2.0 access token by a vulnerable SP can be exploited by an attacker

hosting another SP [96]. If the victim User logs into the attacker’s SP,

the attacker obtains an access token (issued by TTP) from the victim and

can replay it in the vulnerable SP to login as the victim. A similar attack

was previously discovered in the SAML-based implementation deployed by

Google [45] (here the SAML authentication assertion is replayed instead of

the OAuth 2.0 access token). Similar attacks have also been detected in

CaaS-enabled scenarios [91, 82]. For instance, a vulnerability in osCom-

merce v2.3.1 that allowed an attacker to shop for free has been reported

in [82]: the attacker controls a SP and obtains an account identifier from

PayPal for paying herself; later on, she replays this value in a subsequent

session with a vulnerable SP where she purchases a product by paying her-

self. Recently, a token fixation attack in PayPal Express Checkout flow was

discovered [36] which is very similar to the session fixation attack in OAuth

1.0 [16]. The problem is exacerbated by the large number of deployments.

As a matter of fact, over 20% of the top twenty-thousand Alexa top US

websites have a vulnerable implementation of the Facebook SSO [101].

The aforementioned attacks have been discovered through a variety of

domain-specific techniques with different levels of complexity, ranging from

formal verification [45], white-box analysis [91], black-box testing [82], to

manual testing [36]. In this chapter, we explain how we pursue a differ-

ent approach and propose an automatic black-box testing technique for

10

Chapter 2 2.1. Introduction

security-critical MPWAs. Our approach is based on an observation and

a conjecture. The observation is that, regardless of their purpose, the

security protocols at the core of MPWAs share a number of features:

1. By interacting with SP (and/or TTP), User authenticates and/or

authorizes some actions,

2. TTP (SP, resp.) generates a security token,

3. the security token is dispatched to SP (TTP, resp.) through the web

browser, and

4. SP (TTP, resp.) checks the security token and completes the protocol

by taking some security-critical decisions.

The conjecture is that the attacks found in the literature (and possibly

many more still to be discovered) are instances of a limited number attack

patterns. We conducted a detailed study of attacks discovered in MPWAs

of real-world complexity and analyzed their similarities. This led us to

identify a small number of application-independent attack patterns that

concisely describe the actions performed by attackers while performing

these attacks.

To assess the generality and the effectiveness of our approach, we have

developed a security testing framework based on OWASP ZAP1, a popu-

lar open-source penetration testing tool, and run it against a number of

prominent MPWA implementations. Our tool has been able to identify:

• two previously unknown attacks against websites integrating

Linkedin’s Javascript API-based SSO that causes an access token re-

play attack and a persistent XSS attack;

• a previously unknown redirection URI fixation attack against the im-

plementation of the OAuth 2.0 protocol in PayPal’s “Log in with

1www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

11

www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

2.1. Introduction Chapter 2

PayPal” SSO solution which allows a network attacker to steal the

authorization code of the victim and replay it to login as the victim

in any SP website using the same SSO solution;

• a previously unknown attack in the payment checkout solution offered

by Stripe (integrated in over 17,000 websites [31]); the attack allows

an attacker to impersonate a SP to obtain a token from the victim

User which is subsequently used to shop at the impersonated SP ’s

online shop using the victim’s credit card; and

• seven previously unknown vulnerabilities in a number of websites (e.g.,

developer.linkedin.com, pinterest.com, websta.me) leveraging

the SSO solutions offered by Linkedin, Facebook, and Instagram.

Besides the SSO and the CaaS scenarios, we investigated a popular MPWA

scenario, namely the Verificaton via Email (VvE), which is often used

by websites to send security-sensitive information to users via email. By

testing the security of Alexa global top 500 websites2 we found that a

number of prominent websites such as twitter.com, open.sap.com are

vulnerable to login CSRF attacks. The following are the main contributions

of this chapter:

1. We show that the attack strategies behind thirteen prominent MPWA

attacks can be represented using seven attack patterns, and these at-

tack patterns are general enough to discover similar attacks in MPWAs

implementing different protocols and in different MPWA scenarios.

For instance, an attack pattern inspired by various SSO attacks from

the literature was able to automatically discover a new attack in the

CaaS scenario.

2. The idea that prior attacks proposed on SSO and CaaS share common-

alities is not new [97, 60]. However, ours is the first black-box security
2http://www.alexa.com/topsites

12

developer.linkedin.com
pinterest.com
websta.me
twitter.com
open.sap.com

Chapter 2 2.1. Introduction

testing approach that has experimental evidence of applicability in

both SSO and CaaS domains.

3. Prior work on security analysis of MPWAs is focused only on SSO and

CaaS scenarios. We evaluate the MPWA scenario in which websites

send security-sensitive information to users via email and show that

eight out of the top Alexa global 500 websites are vulnerable to login

CSRF attacks.

4. We have developed a fully functional prototype of our approach on

OWASP ZAP, a widely-used open-source penetration testing tool.

The tool is available online (upon request) at the companion web-

site.3

5. We have been able to identify 11 previously unknown vulnerabilities

in security-critical MPWAs leveraging the SSO and CaaS protocols of

Linkedin, Facebook, Instagram, PayPal, and Stripe.

Structure of the chapter. In Section 2.2, we introduce some background

information about MPWAs and details about various attacks from the

literature. The idea of creating attack patterns from concrete attacks is

explained in Section 2.3. In Section 2.4 we show how the attack patterns

we defined can be used to carry out black-box testing of MPWAs. In

Section 2.5, we provide some details about our prototype implementation.

An illustrative example demonstrating the usage of our security testing

approach is shown in Figure 2.6. We discuss the experimental evaluation

in Section 2.7. In Section 2.8 we discuss the related work and in Section 2.9

we discuss the limitations and future work of the research presented in this

chapter.

3https://sites.google.com/site/mpwaprobe/

13

https://sites.google.com/site/mpwaprobe/

2.2. Background Chapter 2

Figure 2.1: SAML-based SSO

2.2 Background

Figures 2.1, 2.2 and 2.3 provides pictorial representations of example MP-

WAs leveraging SSO, CaaS, and Verification via Email (VvE) protocols.

They all feature (i) a user U, operating a browser B, who wants to consume

a service from a service provider SP and (ii) a service provider SP that

relies on a trusted-third-party TTP to deliver its services. TLS (and valid

certificates at TTP and SP) are used to securely exchange messages.

Figure 2.1 shows the SAML 2.0 SSO protocol [61], where SP relies on

TTP (the Identity Provider, IdP for short) to authenticate a user U before

granting the user access to one of its resources. The protocol starts (steps

1-2) with U asking SP for a resource located at URI SP. SP in turn redi-

rects B to IdP with the authentication request AuthRequest (step 3). The

RelayState field carries URI SP . IdP then challenges B to provide valid

14

Chapter 2 2.2. Background

Figure 2.2: PayPal Payments Standard CaaS

Figure 2.3: Email notification and acknowledgment

15

2.2. Background Chapter 2

credentials that are entered by U (steps 4-6). If the authentication suc-

ceeds, IdP issues a digitally signed authentication assertion (AuthAssert)

and instructs the user to sent it (along with the RelayState) to the SP

(step 7). SP checks the assertion and delivers the requested resource

(step 8).

A severe man-in-the-middle attack against the SAML-based SSO for

Google Apps was reported [45]. The attack, due to a deviation from the

standard whereby AuthAssert did not include the identity of SP (for which

the assertion was created), allowed a malicious agent hosting a SP (say

SPM) to reuse AuthAssert to access the resource of the victim U (say

UV) stored at Google, the target SP (say SPT). More in detail, after a

session S1 of the protocol involving UV and SPM, in which SPM receives

the AuthAssert from UV, the malicious agent starts another session S2

playing the role UM and mischievously reuses the assertion obtained in S1

in S2 to trick Google (SPT) into believing he is UV.

Figure 2.2 illustrates a typical MPWA running the PayPal Payments

Standard CaaS protocol [22] where TTP authorizes U to purchase a prod-

uct P at SP. Here, TTP is a Payment Service Provider (PSP) played by

PayPal. SP is identified by PayPal through a merchant account identifier

(PayeeId). U places an order for purchasing P (steps 1-5). SP sends the

PayeeId, the cost of the product (Cost) and a return URI (ReturnURI)

to TTP by redirecting B (step 6). By interacting with PSP, U authorizes

the payment of the amount to SP (steps 7-9). The transaction identifier

(TransactionId) is generated by PSP and passed to SP by redirecting B to

ReturnURI (step 10). The TransactionId is then submitted by SP to TTP

to get the details of the transaction (steps 11-12). Upon successful verifi-

cation of the transaction details, SP sends U the status of the purchase

order (step 13).

A serious vulnerability in the integration of the PayPal Payments Stan-

16

Chapter 2 2.2. Background

dard protocol in osCommerce v2.3.1 and AbanteCart v1.0.4 that allowed

a malicious party to shop for free was discovered in [82]. The attack is as

follows: from a session S1 of the protocol involving the PSP and the ma-

licious party controlling both a user (UM) and a SP (SPM), the malicious

party obtains a payee (merchant) identifier. Later, in the checkout proto-

col session S2 between UM and the target SP (SPT), the malicious agent

replays the value of PayeeId obtained in the other session and manages to

place an order for a product in SPT by paying herself (instead of SPT).

While MPWAs for SSO and CaaS scenarios received a considerable at-

tention (see, e.g., [60, 87, 91, 95, 94, 97, 82]), there are several other security

critical MPWAs that are in need of close scrutiny. For instance, websites

often send security-sensitive URIs to their users via email for verification

purposes. This scenario occurs very frequently for account registration:

an account activation link is sent via email to the user who is asked to

access her email and click on the link contained in the email message. An

illustration of this scenario is provided in Figure 2.3. Here, TTP is a mail-

box provider MP that guarantees SP that a user U is in control of a given

email address (Email). During registration, U provides Email to SP (steps

1-5). SP sends the account activation URI (ActLink) via email to U, when

U visits her inbox at MP he gets access to ActLink (steps 6-12) and by

clicking it, the status of the account activation is loaded in U ’s browser

(steps 13-15). This scenario is not just limited to account activation as

the same process is followed by many SPs to verify the authenticity of

security-critical operations such as password reset. For generality, we refer

to this scenario as Verification via Email (in short, VvE). Persona, a SSO

solution by Mozilla [14] was (currently no longer active) based on the VvE

scenario.

Quite surprisingly, prominent SPs (e.g., twitter.com) do not properly

perceive and/or manage the risk associated to the security-sensitive URIs

17

twitter.com

2.2. Background Chapter 2

sent via email to their users. It turns out that some of these URIs give

direct access to sensitive services skipping any authentication step. For

instance, when a user has not signed into twitter for more than 10 days,

twitter.com sends emails to the user about the tweets the user missed

and this email contains security-sensitive URIs that directly authenticates

the user without asking for credentials. Such a URL can be used by an

attacker to silently authenticate a victim to an attacker controlled twitter

account. This attack is widely known as login CSRF.

2.2.1 Attacks

Table 2.1 presents ten prominent attacks that were discovered in literature

on SSO- and CaaS-based MPWAs. It includes the two attacks mentioned

above (excluding login CSRF in twitter.com), corresponding to #1 for

SAML SSO, and #3 for PayPal Payments Standard. We do not consider

here XSS and XML rewriting attacks (see Section 2.8 for details). Here-

after, we briefly describe the other attacks.

#2 The attacker hosts SPM to obtain the AccessToken issued by

the TTP Facebook for authenticating UV in SPM. The very same

AccessToken is replayed against SPT to authenticate as UV.

#4 The attacker completes a transaction T1 at SPT, and the order id

(OrderId), issued by the TTP PayPal for completing this transaction, is

reused by the attacker to complete another transaction T2 at SPM without

payment.

#5 The attacker completes a transaction T1 at SPT and the payment

Token issued by the TTP PayPal for completing this transaction is reused

by the attacker to complete another transaction T2 at SPM without pay-

18

twitter.com
twitter.com

Chapter 2 2.2. Background

ment. In [82], the interaction with PayPal was completely skipped during

T2. Here, we focus on the replay attack strategy used.

#6 The attacker spoofs the AppId of SPT in the session between UV and

SPM to obtain AccessToken of UV. The very same AccessToken is then

replayed by the attacker in a session between SPT and UM to authenticate

as UV at SPT. In [94], a logic flaw in flash was applied to capture the

AccessToken. Here, we focus on the replay attack strategy used.

#7 Initially, the attacker obtains an authentication assertion

(AuthAssert) from the session between UM and SPT. Then the at-

tacker forces victim’s browser to submit AuthAssert to SPT to silently

authenticate UV as UM at SPT.

#8 The attacker obtains the value of AuthCode during the session be-

tween UM and SPT. The attacker forces UV’s browser to submit this value

to SPT to silently authenticate UV as UM at SPT.

#9 The attacker replaces the value of RedirectURI to a malicious URI

(MaliciousURI) in the session between UV and SPM. TTP sends

AuthCode of UV to MaliciousURI and the attacker obtains it. The

AuthCode is then replayed in the session between UM and SPT to authen-

ticate as UV at SPT.

#10 The attacker replaces the value of RedirectURI to a malicious

URI (MaliciousURI) in the session between UV and SPM. TTP sends

AccessToken of UV to MaliciousURI and the attacker obtains it. The

AccessToken is then replayed in the session between UM and SPT to au-

thenticate as UV at SPT.

19

2.2. Background Chapter 2

Table 2.1: Attacks against security-critical Multi Party Web Applications

Vulnerable MPWA Description of the Attack Attacker’s Goal

1 SPs implementing Google’s SAML

SSO [45, §4]

Replay UV’s AuthAssert for SPM in SPT Authenticate

as UV at SPT

2 SPs implementing OAuth 2.0 implicit

flow-based Facebook SSO [96, §5.2.1]

Replay UV’s AccessToken for SPM in SPT Authenticate

as UV at SPT

3 PayPal Payments Standard imple-

mentation in SPs using osCommerce

v2.3.1 or AbanteCart v1.0.4 [82,

§IV.A.1]

Replay PayeeId of SPM during transaction T at SPT Complete T at

SPT

4 SPs implementing CaaS solutions

of 2Checkout, Chrono-Pay, PSiGate

and Luottokunta (v1.2) [91, §V.A]

Replay OrderId of transaction T1 at SPT during trans-

action T2 at SPT

Complete T2

at SPT

5 PayPal Express Checkout implemen-

tation in SPs using OpenCart 1.5.3.1

or TomatoCart 1.1.7 [82, §IV.A.2]

Replay Token of transaction T1 at SPT during trans-

action T2 at SPT

Complete T2

at SPT

6 SPs implementing OAuth 2.0 implicit

flow-based Facebook SSO [94, §4.2]

Replay AppId of SPT in the session between UV and

SPM to obtain AccessToken of UV which is then re-

played to SPT.

Authenticate

as UV at SPT

7 developer.mozilla.com (SP) imple-

menting BrowserID [49, §6.2]

Make UV browser send request to SPT with UM’s

AuthAssert

Authenticate

as UM at SPT

8 CitySearch.com (SP) using Facebook

SSO (OAuth 2.0 Auth. Code Flow)

[50, §V.C]

Make UV browser send request to SPT with UM’s

AuthCode

Authenticate

as UM at SPT

9 Github (TTP) implementing OAuth

2.0 Authorization Code flow-based

SSO [1, Bug 2]

Replace the value of RedirectURI to MaliciousURI

in the session between UV and SPM to obtain

AuthCode of UV and replay this AuthCode in the ses-

sion between UM and SPT

Authenticate

as UV at SPT

10 SPs implementing Facebook SSO [2] Replace the value of RedirectURI to MaliciousURI

in the session between UV and SPM to obtain

AccessToken of UV and replay this AccessToken in

the session between UM and SPT

Authenticate

as UV at SPT

2.2.2 Threat Models

The attacks shown in Table 2.1 can be discovered by considering the Web

Attacker threat model introduced in [44] and outlined hereafter according

to our context:

Web Attacker. He/She can control a SP (referred to as the SPM) that

20

Chapter 2 2.3. From Attacks to Attack Patterns

is integrated with a TTP. The SPM can subvert the protocol flow (e.g., by

changing the order and value of the HTTP requests/responses generated

from her SP, including redirection to arbitrary domains). The web attacker

can also operate a browser and communicate with other SPs and TTPs.

Notice also that none of the attacks discussed requires the threat scenario

in which the TTP can be played by the attacker [77]. We do not consider

this threat scenario. However, we will show in Sections 2.4.1 and 2.5.2

that we also had to deal with the network attacker and the browser history

attacker threat models.

2.3 From Attacks to Attack Patterns

A close inspection of the attacks in Table 2.1 reveals that:

1. they leverage a small number of nominal sessions of the MPWA under

test, namely those played by UV, UM, SPT, and SPM, which we con-

cisely represent by (UV,SPT), (UM,SPT), (UV,SPM), (UM,SPM).4

2. they amount to combining sessions obtained by tampering with the

messages exchanged in one nominal session or by replacing some mes-

sage from one nominal session into another.

By session we mean any sequence of HTTP requests and responses corre-

sponding to an execution of the MPWA under test. Our goal is to identify

recipes, called attack patterns, that specify how nominal sessions can be

tampered with and combined to find attacks on MPWAs. We start by

identifying and comparing attack strategies for the attacks in Table 2.1

and then we abstract them into general, i.e. application-independent, at-

tack patterns.

Attack strategies are built on top of the following three operations:
4For the sake of simplicity we leave B and the TTP implicit since we identify the browser with the

user. The TTP, according to the threat model considered, is assumed to be trustworthy.

21

2.3. From Attacks to Attack Patterns Chapter 2

• REPLAY x FROM S1 IN S2: indicating that the value of the HTTP

element x extracted while executing session S1 is replayed into session

S2;

• REPLACE x WITH v IN R: denoting that the HTTP element x (e.g.,

SID) is replaced with the value v (e.g., abcd1234) while executing the

sequence of HTTP requests R; and

• REQUEST-OF x FROM R: indicating the extraction of the HTTP re-

quest transporting the HTTP element x while executing the sequence

of HTTP requests R.

Table 2.2: Known Attacks Strategies against MPWAs

Id Attack Strategy

1 REPLAY AuthAssert FROM (UV,SPM) IN (UM,SPT)

2 REPLAY AccessToken FROM (UV,SPM) IN (UM,SPT)

3 REPLAY PayeeId FROM (UM,SPM) IN (UM,SPT)

4 REPLAY OrderId FROM (UM,SPT) IN (UM,SPT)

5 REPLAY Token FROM (UM,SPT) IN (UM,SPT)

6 REPLAY AccessToken FROM S IN (UM,SPT)

where S = REPLAY AppId FROM (UM,SPT) IN (UV,SPM)

7 REPLACE x WITH REQUEST-OF AuthAssert FROM (UM,SPT) IN [UV SEND x]

8 REPLACE x WITH REQUEST-OF AuthCode FROM (UM,SPT) IN [UV SEND x]

9 REPLAY AuthCode FROM S IN (UM,SPT)

where S = REPLACE RedirectURI WITH MaliciousURI IN (UV,SPT)

10 REPLAY AccessToken FROM S IN (UM,SPT)

where S = REPLACE RedirectURI WITH MaliciousURI IN (UV,SPT)

For the sake of simplicity, we present in the overall chapter the replay of

a single element, but our attack patterns actually support simultaneous re-

play of combinations of elements. By abusing the notation, we use (U, SP)

22

Chapter 2 2.3. From Attacks to Attack Patterns

in place of R to indicate the sequence of HTTP requests underlying the

session (U, SP).

The attack strategies corresponding to the attacks described in Table 2.1

are given in Table 2.2.

In attack strategy #1 (and #2), the attacker runs a session with the

victim user UV playing the role of the service provider SPM and replays

AuthAssert (AccessToken, resp.) into a new session with a target service

provider SPT. The attacker tries thus to impersonate the victim (UV) at

SPT.

Attack strategy #3 is analogous to the previous ones, the difference

being that the user role in the first session is played by the malicious user

and the replayed element is PayeeId. Here the goal of the attacker is to

use credits generated by TTP, in the first session, for SPM on SPT.

Attack strategy #4 (and #5) differs from the previous ones in that the

User and the SP roles are played by UM and SPT respectively in both

sessions. In doing so, the attacker aims to “gain” something from SPT by

re-using the Token (OrderId, resp.) obtained in a previous session with

the same SPT.

Attack strategy #6 is the composition of two basic replay attack strate-

gies. The element AppId, obtained by running a session between the vic-

tim user UV and the malicious service provider SPM, is replayed to get

the AccessToken which is then in turn replayed by the attacker UM to

authenticate as UV at SPT. Thus, the result should be the same obtained

by completing a session between UV and SPT.

In attack strategy #7 (and #8), the HTTP request (cf. REQUEST-OF

keyword) transporting UM’s AuthAssert (AuthCode, resp.) for SPT is

replaced on a sequence comprising a single HTTP request in which UV

sends a HTTP request to SPT (denoted as [UV SEND req]). This single

HTTP request is the representation of the cross-site request sent by the

23

2.3. From Attacks to Attack Patterns Chapter 2

attacker’s web page loaded at the UV’s web browser. If the attack is

successful, then the result should be the same obtained by completing a

session between UM and SPT.

In attack strategy #9 (and #10), the attacker includes a malicious URI

(MaliciousURI) in the session between UV and SPT. In doing so, the

credential AuthCode (AccessToken, resp.) is received by the attacker. By

replaying this intercepted AuthCode (AccessToken, resp.) in the session

between UM and SPT, the attacker aims to authenticate as UV in SPT.

Thus, the result should be the same obtained by completing a session

between UV and SPT.

We have distilled the attack strategies in Table 2.2 into a small set of

general, i.e. application-independent, attack patterns which are summa-

rized in Table 2.3. To illustrate, consider the attack pattern RA1. This

pattern has been obtained from attack strategy #1 (#2) in Table 2.2 by

abstracting the element to replay, i.e. AuthAssert (AccessToken, resp.)

into a parameter x.

The generation of all other attack patterns go along the same lines.

For the creation of the attack pattern LCSRF we were clearly inspired

by attacks #7 and #8. It turns out that this attack pattern is a bit

more general than what it was created for. In fact, it can uncover general

CSRF based on POST requests. An example of this will be discussed in

Section 2.6 (see Table 2.9).

A key step in the execution of an attack pattern is the selection of

the elements to be replaced or replayed. For instance, when executing

RA1 against a given MPWA, the parameter x can be instantiated with

any element occurring in the HTTP trace resulting from the execution

of (UV,SPM). Trying them all is clearly not acceptable. To tackle the

problem, we inspect the sessions and enrich the elements occurring in the

HTTP trace with syntactic, semantic, location and flow labels whose mean-

24

Chapter 2 2.3. From Attacks to Attack Patterns

T
ab

le
2.

3:
A

tt
ac

k
P

at
te

rn
s

N
a
m

e
A

tt
a
ck

S
tr

at
eg

y
P

re
co

n
d

it
io

n
P

os
tc

on
d

it
io

n

R
A

1
R

E
P

L
A

Y
x

F
R

O
M

(U
V
,S

P
M

)
IN

(U
M
,S

P
T

)
(T

T
P
-S
P
∈
x
.fl

ow
a
n
d

(S
U
|U

U
)
∈
x
.l

ab
el

s)
F

(U
V
,S

P
T

)

R
A

2
R

E
P

L
A

Y
x

F
R

O
M

(U
M
,S

P
M

)
IN

(U
M
,S

P
T

)
(S

P
-T

T
P
∈
x
.fl

ow
a
n
d

(S
U
|A

U
)
∈
x
.l

ab
el

s)
F

(U
M
,S

P
T

)

R
A

3
R

E
P

L
A

Y
x

F
R

O
M

(U
M
,S

P
T

)
IN

(U
M
,S

P
T

)
(T

T
P
-S
P
∈
x
.fl

ow
a
n
d
S
U
∈
x
.l

ab
el

s)
F

(U
M
,S

P
T

)

R
A

4
R

E
P

L
A

Y
y

F
R

O
M

S
IN

(U
M
,S

P
T

)
w

h
er

e
(S
P
-T

T
P
∈
x
.fl

ow
a
n
d

(S
U
|A

U
)
∈
x
.l

ab
el

s
a
n
d

F
(U

V
,S

P
T

)

S
=

R
E

P
L

A
Y
x

F
R

O
M

(U
M
,S

P
T

)
IN

(U
V
,S

P
M

)
T
T
P
-S
P
∈
y
.fl

ow
a
n
d

(S
U
|U

U
)
∈
y
.l

ab
el

s)

R
A

5
R

E
P

L
A

Y
x

F
R

O
M

(U
V
,S

P
T

)
IN

(U
M
,S

P
T

)
(T

T
P
-S
P
∈
x
.fl

ow
a
n
d

(S
U
|U

U
)
∈
x
.l

ab
el

s
a
n
d

F
(U

V
,S

P
T

)

x
.l

o
ca

ti
on

=
r
e
q
u
e
st

U
R
L

)

L
C

S
R

F
R

E
P

L
A

C
E
re
q

W
IT

H
R

E
Q

U
E

S
T

-O
F
y

(T
T
P
-S
P
∈
y
.fl

ow
a
n
d

(S
U
|U

U
)
∈
y
.l

ab
el

s)
F

(U
M
,S

P
T

)

F
R

O
M

(U
M
,S

P
T

)
IN

[U
M

S
E

N
D

re
q]

R
ed

U
R

I
R

E
P

L
A

Y
y

F
R

O
M

S
IN

(U
M
,S

P
T

)
(S
P
-T

T
P
∈
x
.fl

ow
a
n
d
R
U
R
I
∈
x
.l

ab
el

s)
a
n
d

F
(U

M
,S

P
T

)

w
h

er
e
S

=
R

E
P

L
A

C
E
x

W
IT

H
x
′

IN
(U

V
,S

P
T

)
T
T
P
-S
P
∈
y
.fl

ow
a
n
d

(S
U
|U

U
)
∈
y
.l

ab
el

s)

L
eg

en
d

:
T

h
e

n
o
ta

ti
o
n

(x
|y

)
∈
S

is
u

se
d

to
ab

b
re

v
ia

te
(x
∈
S

O
R
y
∈
S

).

25

2.3. From Attacks to Attack Patterns Chapter 2

ing is summarized in Tables 2.4 and 2.5. The preconditions in Table 2.3

determine how these elements are selected for each pattern.

For instance, since RA1 is a replay attack that tries to replay an ele-

ment from (UV,SPM) to (UM,SPT), it is reasonable to replay only those

elements that flow from TTP to SP, i.e. data flow label TTP-SP. Indeed,

these are the ones that are likely to comprise specific values that TTP

issues for UV. In addition, it would make little sense to replay elements

whose values do not change over different traces. This is why that pattern

selects only elements in the trace that are tagged either as session unique

(SU) or user unique (UU) (the users are different among the sessions where

the replay takes place). The precondition of RA2 is analogous to that of

RA1, but since RA2 replays an element from (UM,SPM) to (UM,SPT),

then that element must flow from SP to TTP. Similar reasoning holds for

other attack patterns. Notice that for RedURI pattern (which is inspired

by attacks #9 and #10 of Table 2.1), we consider only the URLs that

are chosen by the SPT, but can be changed by the users (see definition of

RURI label in Table 2.4). We discuss how we implemented the core logic

of this attack pattern— i.e. replacing a URL (shown as x in row 6, column

2 of Table 2.3) to its malicious form (shown as x’ in row 6, column 2 of

Table 2.3)— in Section 2.5.

The attack pattern replace these URLs (generalized as x in Table 2.3)

with its malicious form (shown as x’ in row 6, column 2 of Table 2.3).

We achieve this by replacing https URLS into http so that a web attacker

residing in the same network as the victim user and can read all the un-

encrypted messages (hereinafter referred to as the network attacker) can

read the

In Table 2.3, we have also introduced a new attack pattern named RA5

which is inspired by the “credential leak in browser history” threat model

which is mentioned in the OAuth 2.0 threat model and security consider-

26

Chapter 2 2.3. From Attacks to Attack Patterns

ations document [42]. According to this threat model, UM and UV share

the same browser. In the attack strategy, UM replays (to SPT) the HTTP

elements that are issued by the TTP to SPT for UV. Notice that in the

preconditions it is mentioned that the security critical parameters which

are used in this attack strategy must be located in the request URL. The

request URLs of a browsing session are likely to be stored in the browser

history. Last, but not least, attack patterns need a way to automatically de-

termine whether the attack strategy they executed was successful to detect

any attack. The postconditions included in Table 2.3 serve this purpose.

The idea is that each one of the four nominal sessions is associated with

a Flag (an oracle) that defines what determines the successful completion

of it. For instance, a string “Welcome Victim” could be the Flag for the

nominal session (UV,SPT) of a MPWA implementing a SSO solution (as-

suming that “Victim” is the name provided by UV at SPT). The concept

of Flag will be further clarified in the next section. The postcondition is

just an oracle program that checks whether a certain Flag is captured or

not while executing the strategy. It corresponds to checking whether the

goal of performing an attack (see column 3 of Table 2.1) has been met

or not. A value of the form F (U, SP) in the column Postcondition (of

Table 2.3) stands for this program checking for the Flag associated with

(U, SP).

It must be noticed that the definition of post-

condition depends on the specific MPWA under test.

27

2.3. From Attacks to Attack Patterns Chapter 2

Table 2.4: Syntactic and Semantic Labels

Type Label Short Description Example

Syntactic† URL a Uniform Resource Locator redirect_uri=http://google.com

BLOB an alphanumeric string with (optional) spe-

cial characters

code=vrDK7rE4

WORD a string comprised only of alphabetic char-

acters

response_type=token

EMAIL an email address usrname=jdoe@example.com

EMPTY an empty value state=

NUMBER a number id=5

BOOL a boolean value new=true

UNKNOWN none of the other syntactic labels match

this string

#target.

Semantic‡ SU SU stands for Session Unique, meaning the

element is assigned different values in dif-

ferent sessions

AuthAssert of Figure 2.1

UU UU stands for User Unique, meaning the

element is assigned the same value in the

sessions of the same user

username and password of a user

AU AU stands for App Unique, meaning the

element is assigned the same value in the

sessions of a single SP

MerchantId of Figure 2.2

MAND MAND stands for Mandatory, meaning the

element must occur in the HTTP Traffic for

the protocol to complete successfully

AuthAssert of Figure 2.1

RURI RURI stands for Redirect URI, meaning the

element must be MAND, it must be a URL

that is passed as a parameter in a request

uri and it is later found in the Location

header of a redirection response

ReturnURI of Figure 2.2

Data flow∗ SP-TTP it means that the corresponding element

has been received from SP and then sent

to TTP

MerchantId of Figure 2.2

TTP-SP it means that the corresponding element

has been received from TTP and then sent

to SP

AuthAssert of Figure 2.1

† Syntactic labels provide type information. Most of the syntactic labels presented here are borrowed from [94, 82]
‡ Semantic labels provide information on the role played by the element within the MPWA. While the SU and UU labels

are borrowed from [94], the AU and RURI labels are new. The MAND label generalizes the SEC label introduced in [94],

where it was used to indicate a secret specific to the current session and necessary for the success of the authentication,

while here MAND is not just secret and SU.

28

redirect_uri=http://google.com
code=vrDK7rE4
response_type=
usrname=jdoe@example.com
state=
id=5
new=true
#target

Chapter 2 2.4. Approach

Table 2.5: Data Flow and Location Labels

Type Label Short Description Example

Data flow∗ SP-TTP it means that the corresponding element

has been received from SP and then sent

to TTP

MerchantId of Figure 2.2

TTP-SP it means that the corresponding element

has been received from TTP and then sent

to SP

AuthAssert of Figure 2.1

Location† request.uri this label is given for elements that are

present in the URL of HTTP requests

the element code=aXyz of the URL

https://sp.com?code=aXyz

request.Header it means that the corresponding element is

a header in a HTTP request

X-CSRF-Token: ejkX

request.body meaning the element is present in the body

of a HTTP request

Email of Step 5 of Figure 2.3

response.header it means that the corresponding element is

present in the header of a HTTP response

Location: www.sp.com?code=XyZi

response.body this label is given to elements present in the

body of a HTTP response

the element token: ‘‘XcJ" of

{uid: ‘‘23e", token: ‘‘XcJ"}

∗ Flow labels represent the data flow properties of an element in the HTTP traffic. Currently we have two flow labels:

TTP-SP and SP-TTP. Label TTP-SP (SP-TTP, resp.) means that the corresponding element has been received from

TTP (SP, resp.) and then sent to SP (TTP, resp.).
† Location labels denotes the location in the HTTP Message where the element has been found. The labels that we use

are requestURI, requestHeader, requestBody, responseHeader and responseBody indicating the location of the

element as request URI, request header, request body, response header and response body respectively.

2.4 Approach

Figure 2.4: Approach

Figure 2.4 outlines the two processes underlying our approach. In the first

one, executable attack patterns are created, reviewed, and improved by

29

code=aXyz
https://sp.com?code=aXyz
X-CSRF-Token:
ejkX
Location:
www.sp.com?code=XyZi

2.4. Approach Chapter 2

security experts (see Section 2.4.1). The second process enables testers to

identify security issues in their MPWAs. In a nutshell, the testers (e.g., de-

velopers of a MPWA) take advantage of the security knowledge embedded

within the executable attack patterns. We will see that what is requested

to testers is not much more of what they have to do anyhow in order to

test the business logic of their MPWAs. See Section 2.4.2 for details.

2.4.1 Creating, reviewing, and improving Attack Patterns

Working on our attack patterns require web application security knowledge

and implementation skills. Security experts, in particular those who per-

form penetration testing of web applications, clearly have both. Security

experts can thus read and understand attack patterns like those sketched

in Table 2.3. Improving an attack pattern, by changing few things here

and there to e.g., make it a bit more general, is also a straightforward

follow-up step. Creation of attack patterns asks for some more effort and,

more importantly, for inspiration. As discussed in Section 2.3, with the

only exception of RA5, all attack patterns in Table 2.3 have been inspired

by attacks reported in literature. The discovery of a previously unknown

attack not yet covered by our catalog of attack patterns is, of course, an-

other source of inspiration. In general, security experts can craft attack

patterns capturing novel attack strategies to explore new types of attacks.

This is the case for attack pattern RA5, which we developed to explore the

“credential leak in browser history” threat model (e.g., see [42, §4.4.2.2]).

This threat model, referred to as the browser history attacker, is important

because browsers can be shared (e.g., public libraries, internet cafes). To

the best of our knowledge, we are the first to include this threat model in

a black-box security testing approach.

A browser history attacker shares the same browser with other Users.

It is assumed that the user does not always clear her browser history, but

30

Chapter 2 2.4. Approach

she properly signs out from her login sessions. The attack pattern RA5

leverages this threat model by replaying all the elements issued by the TTP

that the attacker can collect from the browser history of the victim. As we

will see in Section 2.7, by using this threat model, we have been able to

detect two attacks that could not be discovered automatically using other

state-of-the-art black-box security testing techniques.

2.4.2 Security Testing Framework

The different phases of our security testing framework are described below.

Additionally, an illustrative example is provided in Section 2.6.

(P1) Configuration. The tester configures the testing environment so

to be able to collect traces for the four nominal sessions: S1 = (UV,SPT),

S2 = (UM,SPT), S3 = (UV,SPM), and S4 = (UM,SPM). To this end, the

tester creates two user accounts, UV and UM, in her service provider SPT

and in a reference implementation SPM (the purpose of SPM is to represent

the SP controlled by the malicious party). Notice that, this step does not

require a strong security background and normally does not add-up any

additional cost for the tester that wants to functionally test her MPWA.

All major TTPs provide reference implementations—e.g., [10, 9, 15, 7]—

to foster adoption of their solutions. In case a working official reference

implementation is not available, another SP (running the same protocol)

can be used.

(P2) Recording. In order to enable the testing engine to automati-

cally collect the necessary HTTP traffic, the tester records the user actions

(UAs for short) corresponding to sessions S1 to S4. This amount to col-

lecting the actions UV and UM perform on the browser B while running

the protocol with SPT and SPM. Additionally, for each sequence of UAs,

the tester must also identify a Flag, i.e. a regular expression representing

a pattern in the HTTP traffic which can be used to determine the suc-

31

2.4. Approach Chapter 2

cessful execution of the user actions. Flags must be different between each

other so to be able to ensure which session was completed without any

ambiguity. Standard web browser automation technologies such as Sele-

nium WebDriver [28] and Zest [35] can be used for recording UAs. Such

technology could be extended to allow the tester to define Flags by simply

clicking on the web page elements (e.g., the payment confirmation form)

that identify the completion of the user actions. Off-the-shelf market tools

already implement this kind of feature to determine the completion of the

login operation.

(P3) Inference. The inference module automatically executes the

nominal sessions recorded in the previous phase and tags the elements

in the resulting HTTP traffic with the labels in Tables 2.4 and 2.5. We

do not exclude that in the future more information (e.g., inference of the

observable workflow of the MPWA [82]) could be necessary to target more

complex attacks. While we borrow the idea of inferring the syntactic and

semantic properties from [94] and [82], we introduce the concept of infer-

ring flow labels to make our approach more automatic (compared to [94])

and efficient (less no. of test cases for detecting the same attack mentioned

in [82]).

The inference results of sessions S1 to S4 are stored in a data structure

named labeled HTTP trace.

(P4) Application of Attack Patterns. Labeled HTTP traces (out-

put of inference) are used to determine which attack patterns shall be ap-

plied and corresponding attack test cases are executed against the MPWA.

(P5) Reporting. Attacks (if any) are reported back to the tester and

the tester evaluates them.

32

Chapter 2 2.5. Implementation

2.5 Implementation

We implemented our approach on top of OWASP ZAP (ZAP, in short).

In this way, the two core phases of our testing engine (cf. P3 and P4

in previous section) are fully automated and take advantage of ZAP to

perform common operations such as execution of UAs, manipulating HTTP

traffic using proxy rule, regular expression matching over HTTP traffic, etc.

Figure 2.5 outlines the high-level architecture of our testing engine.5

Figure 2.5: Testing Engine Architecture

5The “R” with the small arrow in Figure 2.5 is a short notation of the request-response channel pair

that clarifies who are the requester and the responder of a generic service.

33

2.5. Implementation Chapter 2

An overview of the purpose of each component (developed by us and

presented in Figure 2.5), along with their implementation details are shown

in Table 2.6. Hereinafter we discuss them in detail. The Tester records

the UAs and Flags via BlastRec (our extension of the Selenium IDE fire-

fox plugin [27]) for running a test. The recorded UAs must be stored as

Python Web Driver scripts [29]. Our tool also support UAs written as

Zest scripts [35]. The recorded UAs and Flags are provided to the testing

engine via a HTML-5 graphical user interface (namely Blast UI). This in-

terface is available in the localhost of the computer in which the testing

engine is installed and the tester can visit this interface via a web browser.

The Testing Engine employs OWASP ZAP to probe the MPWA. In par-

ticular, the Testing Engine invokes the API exposed by ZAP to perform

the following operations:

• (Execute user actions and collect HTTP traces.) UAs, ex-

pressed as Zest script, can be executed via the Selenium WebDriver

module in ZAP and the corresponding HTTP traffic can be collected

from ZAP.

• (Proxy rule setting.) Proxy rules can be specified, as Zest scripts,

to mutate HTTP requests and response passing through the built-in

proxy of ZAP.

• (Evaluate Flag.) Execute regular expression-based pattern match-

ing within the HTTP traffic so to, e.g., evaluate whether the Flag is

present in the HTTP traffic.

Hereafter, we detail the two core phases (P3 and P4) of our Testing

Engine that follow the flow depicted in Figure 2.6. Each step is tagged by

a number to simplify the presentation of the flow.

34

localhost

Chapter 2 2.5. Implementation

Table 2.6: Core Components of Our Testing Engine

Component Short Description Implementation

BlastRec Our extension of Firefox Selenium IDE plug-

in [27] that enables a tester to record the UAs

and Flags necessary for running a test (see

P1 of Section 2.4.2 for details). The recorded

UAs are stored as Python Web Driver scripts.

Javascript, CSS,

Mozilla’s XML UI

Language [40]

Blast UI HTML5-based Graphical User Interface

(GUI) that simplifies the interaction between

the tester and Blast. Through this GUI the

tester can (i) launch a new test campaign by

providing the necessary UAs and Flags, (ii)

check the progress of a running test, (iii) have

a dashboard-style overview of completed tests

(for instance, view the results of inference

and application of attack patterns phases),

(iv) re-run a particular attack test case of an

attack pattern (e.g., for attack verification),

(v) re-run a particular phase (e.g., running

only the application of attack patterns phase

after patching the MPWA under test for an

attack discovered in a previous test campaign

with Blast).

SAPUI5 [37]

Blast REST API Mediates the communication between Blast

UI and the back-end of Blast which mainly

consists of the inference and attack pattern

engine.

Python 2.7

Inference Engine Executes UAs to collect HTTP traffic from

OWASP ZAP for inferring the properties (de-

fined in Tables 2.4 and 2.5) of HTTP elements

Python 2.7

Attack Pattern Engine Executes the attack strategies shown in Table

2.3 by manipulating the HTTP traffic by set-

ting proxy rules in OWASP ZAP via ZAP’s

REST API.

Python 2.7

35

2.5. Implementation Chapter 2

Figure 2.6: Testing Engine Flow

2.5.1 Inference

With reference to the steps of Figure 2.6, the following activities are per-

formed by the inference module after the tester inputs (step 1) the four

〈UAs,Flag〉 corresponding to sessions S1, S2, S3, and S4 in (P2).

Trace collection (steps 2-3) The input UAs are executed and corresponding

HTTP traces are collected. The Flags are used to verify whether the

collected traces are complete. We represent the collected HTTP traces

as HT (S1), HT (S2), HT (S3), and HT (S4). The traces are stored as an

array of 〈request, response, elements〉 triplets. Each triplet comprises the

36

Chapter 2 2.5. Implementation

HTTP request sent via ZAP to the MPWA, the corresponding HTTP

response, and details about the HTTP elements exchanged. An excerpt

of a trace related to our illustrative example (Figure 2.8) is depicted in

Figure 2.7 in JSON format. For simplicity, we present only one entry

of the trace array and only one HTTP element. We assume the reader

is familiar with standard format of the HTTP protocol. Here we focus

on the HTTP elements. For each of them we store the name (“name”),

the value (“value”), its location in the request/response (“source”, e.g.,

source:"request.body" indicates that the element occurs in the request

body of the HTTP request), the associated request URL (“url”), its data

flow patterns, syntactic and semantic labels that are initially empty and

will be inferred in the next activities. For instance, the element illustrated

in Figure 2.7 is the Token shown in step 10 of Figure 2.8.

Figure 2.7: HTTP trace with empty labels (an excerpt)

37

2.5. Implementation Chapter 2

Syntactic and Semantic Labeling (steps 4-10) The collected HTTP traces

are inspected to infer the syntactic and semantic properties of each HTTP

element, reported in Table 2.4. While syntactic labeling is carried out by

matching the HTTP elements against simple regular expressions, semantic

labeling may require (e.g., for MAND) active testing of the MPWA. For

instance, to check whether an element e occurring in HT (UM,SPT) is to

be given the label MAND, the inference module generates a proxy rule that

removes e from the HTTP requests (step 6). By activating this proxy rule

(step 7), the inference module re-executes the UA corresponding to the

session (UM,SPT) and checks whether the corresponding Flag is present

in the resulting trace (steps 8-9). For instance, the element Token (see

Figure 2.7) is assigned the syntactic labels BLOB and the semantic labels

SU and MAND.

Data Flow Labeling (step 11) After syntactic and semantic labeling, the

data flow properties of each MAND element in the trace are analyzed to

identify the data flows (either TTP-SP or SP-TTP). In order to identify

the protocol patterns, it is necessary to distinguish TTP and SP from the

HTTP trace. We do this by identifying the common domains present in

the HTTP trace of the two different SPs (SPT and SPM) implementing

the same protocol and classifying the messages from/to these domains as

the messages from/to TTP.

The output of the inference phase is the labeled HTTP traces of sessions

S1 to S4 (represented as LHT (S1), LHT (S2), LHT (S3), and LHT (S4)).

2.5.2 Attack Pattern Engine

For the simplicity of explanation, we represent our attack patterns in the

same way as the attack graph notation introduced in [83]. Each attack

pattern has a Name, the underlying Threat model, Inputs used, the Goal

38

Chapter 2 2.5. Implementation

Listing 2.1: Attack Pattern for RA1

1Name: RA1

2Threat Model: Web Attacker

3Inputs: UAs(UV,SPM) , LHT(UV,SPM) ,

4UAs(UM,SPT) , Flag (UV,SPT)

5Preconditions: At least one element x in LHT(UV,SPM)

6is such that (TTP-SP ∈ x.flow and (SU|UU) ∈x.labels)

7Actions:

8For each x such that preconditions hold

9e = e x t r a c t (x ,UAs(UV,SPM))

10HTTP logs = rep lay (x , e ,UAs(UM,SPT))

11Check Postconditions;

12Postconditions:Check Flag (UV,SPT) in HTTP logs

13Report (e ,UAs(UM,SPT) , Flag (UV,SPT))

the attacker (who follows the attack strategy defined in the pattern) aims

to achieve, Preconditions, Actions and Postconditions. The Inputs

to the attack pattern range over the LHTs (labeled HTTP traces generated

by the inference module), UAs of the nominal sessions, and the correspond-

ing Flags. The Goal, Preconditions, Actions and Postconditions are

built on top of the Inputs. The pattern is applicable if and only if its

Preconditions hold (steps 12-14 of Figure 2.6). As soon as the pattern

Preconditions hold, the Actions are executed (steps 15-17 of Figure 2.6).

The Actions contain the logic for generating proxy rules that mimics the

attack strategy. The generated proxy rules are loaded in ZAP and UAs are

executed. The execution of UAs generates HTTP requests and responses.

The proxy rules manipulates the matching requests and responses. As

last step of the Actions execution, the Postconditions are checked. If

they hold (step 18 of Figure 2.6), an attack report is generated with the

configuration that caused the attack (step 19 of Figure 2.6).

Example on Attack Pattern for RA1. To illustrate, let us consider the

39

2.5. Implementation Chapter 2

Listing 2.2: Extract function

1value e x t r a c t (id x , uas UAs){
2rb = g e n e r a t e b r e a k r u l e (x)

3load rule ZAP (rb)

4HTTP logs = execute ZAP (UAs)

5e = e x t r a c t v a l u e (x , HTTP logs)

6c l ea r ru l e s ZAP

7re turn e}

Replay Attack pattern RA1 reported in Table 2.3. In Listing 2.1, we show

the pseudo-code describing it.

The Threat model considered is the web attacker. To evaluate the ap-

plicability of the pattern, the output of the inference phase is sufficient

(LHT (UV,SPM)): the attack pattern is executed in case at least one

element x has the proper data flow and semantic label (lines 6-7). For

each selected element x (line 9), the function extract(x, UAs(UV,SPM)) (line

10) executes UAs(UV,SPM), returning the value e associated with x. This

value e is then used by the function replay(x, e, UAs(UM,SPT)) (line 11) to

replay the value of e while executing UAs(UM,SPT), and generating the cor-

responding HTTP traffic logs (HTTP logs). This logs are finally used in the

Postconditions to check whether Flag(UV,SPT) occurs. To clarify how

the attack pattern engine leverages the API exposed by ZAP to interact

with the built-in proxy, the pseudo-codes corresponding to the extract and

replay functions are reported in Listing 2.2 and Listing 2.3, respectively.

In Listing 2.2, at first, the function generate break rule(x) is invoked. Given

an element x, it returns a proxy rule rb which sets a break point to the

execution of the user actions in ZAP, when an occurrence of x is detected.

The proxy rule includes regular expressions for uniquely identifying an ele-

ments in the HTTP traffic. Then, the ZAP API call load rule ZAP(rule) loads

40

Chapter 2 2.5. Implementation

Listing 2.3: Replay function

1HTTP logs rep lay (id x , va lue e , uas UAs){
2r r = g e n e r a t e r e p l a y r u l e (x , e)

3load rule ZAP (r r)

4HTTP logs = execute ZAP (UAs)

5re turn HTTP logs}

rb in ZAP. The ZAP API call execute ZAP(UAs) executes the UAs in ZAP and

returns the generated HTTP logs. The HTTP logs are taken as input by the

function extract value(x, HTTP logs) extracting from them the value e, associ-

ated to x. In Listing 2.3, the function generate replay rule (x, e) returns the

proxy rule rr used to detect and replace the value of the element x with e.

Then, the ZAP API call load rule ZAP(rule) loads rr in ZAP. The ZAP API

call execute ZAP(UAs) executes the UAs in ZAP and returns the generated

HTTP logs.

Notice that, besides the functions mentioned above, in order to help

the security expert in defining new attack patterns, we provide several

functions.6

The implementation of other attacks patterns (see Table 2.3) follows

similar line of reasoning as RA1. However, implementing the core idea

behind the RedURI attack pattern—i.e. converting a URL to its malicious

form so that an attacker can steal the sensitive information contained in the

HTTP requests send to the malicious URL— is challenging. For handing

this case, we considered the network attacker threat model presented in

[44]. In this threat model, the attacker has all the capabilities of a web

attacker. Additionally, the attacker can read: (i) the contents of all un-

encrypted HTTP requests originating from the victim’s web browser (due

6The full list of functions that can be used in the definition of attack patterns is available at https:

//sites.google.com/site/mpwaprobe.

41

https://sites.google.com/site/mpwaprobe
https://sites.google.com/site/mpwaprobe

2.6. Illustrative Example Chapter 2

to the fact that the attacker and victim resides in the same network), (ii)

the contents of encrypted HTTP requests that are directed to the web sites

(including SPs) that are controlled by the attacker.

2.6 Illustrative Example

In this section we explain how the different phases of our security testing

framework concretely apply on the following illustrative example: The

developer Diana has implemented the Stripe checkout solution in her web

application. She is required to ensure that (r1) the new feature works as

it should and (r2) it does not harm the security of her web application.

Diana feels confident for (r1) as the Stripe API is documented and there

are several demo implementations available in the Internet that she can

use as references. However, she does not for (r2) as she does not have a

strong security background.

Let us see how our approach empowers people like Diana (referred to as

the tester) to do a systematic usage of the body of knowledge collected by

security experts.

The Stripe checkout protocol is illustrated in Figure 2.8. It is slightly dif-

ferent than the PayPal Payments Standard presented in Figure 2.2. Here-

after how the Stripe protocol works. In steps 1-5, the user U visits SP—an

e-shopping application—at URI SP and initiates the checkout of a prod-

uct item I—the item is identified by I ID. Upon receiving the checkout

request, SP returns a payment form embedded with a unique identifier

(DataKey) issued by Stripe to SP (step 6). The user provides credit card

details (Credentials) to Stripe and DataKey is sent in this request (steps

7-8). After verifying the validity of Credentials, Stripe returns a token

(Token) which is specific to the SP (steps 9-10). Upon presenting Token

and Secret (a secret credential possessed by each SP integrating the Stripe

42

Chapter 2 2.6. Illustrative Example

checkout solution) and Amt (cost of I), SP withdraws Amt from the user’s

credit card (steps 11-12). Finally, the status of the transaction is sent to

the user (step 13).

Figure 2.8: Stripe checkout protocol

(P1) Configuration. Diana uses the SP she implemented as SPT and

the official reference implementations provided by Stripe [30] as SPM. For

each of them, she creates the two user accounts UV and UM.

(P2) Recording. Table 2.7 summarizes the UAs and Flags collected by

Diana during the recording phase. Note that the UAs are obtained from

steps 1, 4, and 7 of Figure 2.8, while the Flag is derived from step 13 in

Figure 2.8 (I1-I4 indicate four different items).

43

2.6. Illustrative Example Chapter 2

Table 2.7: User Actions and Flags of Stripe Checkout

No. Session UAs Flag

S1 (UV,SPT) 1. Visit URI SPT

2. Click Checkout

3. Enter credentials UV

“bought I1”

S2 (UM,SPT) 1. Visit URI SPT

2. Click Checkout

3. Enter credentials UM

“bought I2”

S3 (UV,SPM) 1. Visit URI SPM

2. Click Checkout

3. Enter credentials UV

“Enjoy I3”

S4 (UM,SPM) 1. Visit URI SPM

2. Click Checkout

3. Enter credentials UM

“Enjoy I4”

Table 2.8: Excerpt of Inference on Stripe Checkout

Element Data Flow SynLabel SemLabel

DataKey SP-TTP BLOB MAND, AU

Token TTP-SP BLOB MAND, SU

(P3) Inference. An excerpt of the inference results of the protocol

underlying Diana’s implementation of the Stripe checkout protocol is

shown in Table 2.8.

(P4) Application of Attack Patterns. The result of applying each

attack pattern of Table 2.3 on this example is reported in Table 2.9.

44

Chapter 2 2.6. Illustrative Example

Table 2.9: Attack Pattern Application on Stripe Checkout

RA1 REPLAY Token FROM (UV,SPM) IN (UM,SPT). This attack pattern reports no

attacks. When the attack test-case reaches step 10 of Figure 2.8, UV’s Token which

was actually issued for SPM is replayed by UM against SPT. The TTP Stripe

identifies a mismatch between the owner of Secret and the SP for which Token was

issued and returns an error status at step 12.

RA2 REPLAY DataKey FROM (UM,SPM) IN (UM,SPT). No attacks reported. Similar

reasons as the previous one: the attacker replays DataKey belonging to SPM in the

checkout session at SPT. Hence the Token returned by TTP cannot be used by

SPT to receive a success status at step 12.

RA3 REPLAY Token FROM (UM,SPT) IN (UM,SPT). No attack reported. In Stripe

checkout, the validity of a Token expires once it is used. Reuse of Token returns an

error.

RA4 REPLAY DataKey FROM (UM,SPT) IN S where S = REPLAY Token FROM

(UV,SPM) IN (UM,SPT). This attack pattern reports an attack as there is no

protection mechanism in the Stripe checkout solution that prevents spoofing of the

DataKey by another SP. Initially, the attack test case replays the DataKey from

(UM,SPT) into (UV,SPM). When the Token obtained in this session by SPM is

replayed into session (UM,SPT), Stripe does not identify any mismatch and returns

a success status at step 12. This allows the attacker UM to impersonate UV and to

purchase a product at SPT.

RA5 This attack strategy is not applicable to Stripe as there are no elements with data

flow TTP-SP that also have RequestURL as location (basically none of those

elements would be present in the browser history).

LCSRF REPLACE req WITH REQUEST-OF Token FROM (UM,SPT) IN [UV SEND req].

This pattern detects an attack. The test case generated sends a HTTP POST request

corresponding to step 10 with an unused Token. This request alone is enough to

complete the protocol and to uncover a CSRF. In our experiment, this was discovered

on the demo implementation of Stripe. Indeed it is not unusual that this kind of

protections are missing in the demo systems. We do not know whether any productive

MPWAs suffer from this. Determining this would require specific testing users on

the productive system and the buying of real products.

RedURI This pattern is not applicable as there are no URIs that have data flow TTP-SP

and semantic property RURI.

45

2.7. Evaluation Chapter 2

(P5) Reporting. The RA4 and LCSRF attacks are reported to Diana.

Execution details of attack patterns are logged and can be inspected.

2.7 Evaluation

To test the effectiveness of our approach, we ran our prototype implemen-

tation against a large number of real-world MPWAs. In Section 2.7.1, we

explain the criteria based on which we selected our target MPWAs. Next,

in Sections 2.7.2 and 2.7.3, we explain the attacks we discovered (both

automatically and with manual support) and finally, in Section 2.7.4, we

provide some information on how we (responsibly) disclosed our findings

to the affected vendors.

2.7.1 Target MPWAs

We selected SSO, CaaS and VvE (see Figure 2.3) scenarios as the targets of

our experiments. For the SSO scenario, we adopted the Google dork strat-

egy mentioned in [12] to identify SPs integrating SSO solutions offered by

Linkedin, Instagram, PayPal and Facebook. Additionally, we prioritized

the Google dorks results using the Alexa rank of SPs. For the CaaS sce-

nario, we targeted open-source e-commerce solutions and publicly available

demo SPs integrating 2Checkout and Stripe checkout solutions. For the

VvE scenario, we selected the websites belonging to the Alexa Global Top

500 category.7

2.7.2 Results

We have been able to identify several previously-unknown vulnerabilities

and they are reported in Table 2.10. We have promptly notified our findings

7www.alexa.com/topsites

46

www.alexa.com/topsites

Chapter 2 2.7. Evaluation

to the flawed SPs and TTPs and most of them acknowledged our reports

and patched their solutions accordingly. Additional information regarding

the disclosures is given in Section 2.7.4. Screencasts of the attacks and

the details about our interactions with the vendors are available at the

companion website. Some SPs have not patched the vulnerabilities yet,

and thus in Table 2.10 we have anonymized their names.

We cluster the attacks into four classes (see last column of Table 2.10)

according to their similarities with respect to known attacks. This allows

us to show the capability of our approach to not only detect attacks that

are already known in literature, but also to find similar attacks in MPWAs

implementing different protocols and in different MPWA scenarios.

New kind of attack (N)

The RA5 pattern that leverages the browser history attacker threat model

discovered an attack in the integration of the Linkedin JS API SSO solution

at developer.linkedin.com (#a2). The presence of the non-expiring user

id of the victim in the browser history allows an attacker to hijack the

victim’s account. Another SP website that appears in the Alexa top 10

e-commerce website category8 is also vulnerable to the same attack (#a1).

Attacks to different scenarios (NS)

A known kind of attack has been applied to a different MPWA scenario.

By applying the RA4 attack pattern, we were able to detect a previously

unknown attack in the CaaS scenario (#a3 of Table 2.10). It must be noted

that RA4 is inspired by an attack in SSO scenario (see #6 of Table 2.1),

and our protocol-independent approach allowed us to detect it in CaaS

scenario. In particular, we identified the attack in the payment checkout

solution offered by Stripe: the attack allows an attacker to impersonate a

8www.alexa.com/topsites/category/Top/Business/E-Commerce

47

developer.linkedin.com

2.7. Evaluation Chapter 2

SP by replaying its publicly available API key (DataKey in Figure 2.8) to

obtain a payment token (Token in Figure 2.8) from the victim user which

is subsequently used to shop at the impersonated SP ’s online shop using

the victim’s credit card. As reported in Table 2.10, this attack is applicable

to all SPs implementing the Stripe checkout solution [30]. Similarly, using

our login CSRF attack pattern (inspired by attacks in SSO), we tested the

VvE scenario and discovered the following (#a4):

• login CSRF attack in the account registration process of twitter.

com, open.sap.com and six other SPs (all having Alexa Global rank

less than 500). One of the vulnerable SP is a popular video-sharing

website. The account activation link (ActLink of Figure 2.3) issued

by this website not only activated the account, but also authenticated

the user without asking for credentials. An attacker can create a

fake account that looks similar to the victim’s actual account and

authenticate the victim to the fake account (this can be done when

victim visits attacker’s website). As mentioned in [51], this enables

the attacker to keep track of the videos searched by the victim and

use this information to embarrass the victim.

Additionally, we found another similar attack vector in twitter.com for

mounting the same attack. The following is the detail:

• twitter.com sends an email to a user if he/she has not signed into

twitter for more than 10 days. The URLs included in this email di-

rectly authenticates the user without asking for credentials. This is a

perfect launchpad for performing login CSRF attacks. The authors of

[50] had discovered a standard form-based login CSRF attack against

twitter.com and demonstrated how a login CSRF attack in twit-

ter.com becomes a login CSRF vulnerability on all of its client web-

sites.

48

twitter.com
twitter.com
open.sap.com
twitter.com
twitter.com
twitter.com

Chapter 2 2.7. Evaluation

Attacks to different protocols (NP)

A known kind of attack is applied to different protocols or implementations

of the same scenario (SSO, CaaS, or VvE). Using the RA1 attack pattern

which is inspired by the attacks against Google’s SAML SSO (cf. #1 of

Table 2.1) and Facebook’s OAuth SSO (cf. #2 of Table 2.1), we discovered

a similar issue in the integration of the Linkedin JS API SSO solution

at INstant [10] (#a6) and another SP (#a5) which has an Alexa US

Rank9 less than 55,000. The vulnerable SPs authenticated the users based

on their email address registered at Linkedin and not based on their SP -

specific user id.

We discovered login CSRF attacks in two SPs (#a8, both having Alexa

Global Rank less than 1000) integrating the Instagram SSO solution and

another SP (#a9 of Table 2.10, with Alexa Australia rank10 less than

4200) integrating the Linkedin OAuth 2.0 SSO. The attack pattern that

discovered these attacks is inspired by login CSRF attacks against SPs

integrating the Browser Id SSO and Facebook SSO solutions (see #7 and

#8 of Table 2.1).

Our attack pattern that tampers the redirect URI (inspired by #9 of

Table 2.1) reported that in Pinterest’s implementation of the Facebook

SSO, it is possible to leak the OAuth 2.0 authorization code of the victim

to the network attacker by changing the protocol of the redirect URI from

“https” to “http” (#a10 of Table 2.10). This attack was possible due to

the presence of a Pinterest authentication server that is not SSL protected.

The same vulnerability was found in all SPs implementing the “Login with

PayPal” SSO solution [8] (#a11 of Table 2.10). However, in this case it

was due to incorrect validation of the redirect URI by the IdP PayPal.

9http://www.alexa.com/topsites/countries/US
10http://www.alexa.com/topsites/countries/AU

49

2.7. Evaluation Chapter 2

Attacks to new SPs (NA)

A known kind of attack on a specific protocol is applied to new SPs (still

using the same protocol offered by the same TTP). This shows how our

technique can cover the kinds of attacks that were reported in literature.

For instance, in [91], the authors mention that a logical vulnerability in the

2Checkout integration in osCommerce v2.3 enables an attacker to reuse the

payment status values of the paid order to bypass payment for future orders

(cf. #4 of Table 2.1). We tested the 2Checkout integration in the latest

version of OpenCart (v2.1.0.1) and noticed that our RA3 attack pattern

discovered a similar attack (#a12 of Table 2.10).

2.7.3 Manual Findings

In [94], the authors were able to manually discover exploit opportunities

in SSO integrations by analyzing the inference results of the HTTP traffic.

Since our inference module is an extension of [94], we were also able to

manually identify two attacks. We created one single attack pattern that

generalizes the XSS attack strategy reported in [48, §4]. While writing the

preconditions and the attacker strategy was straightforward, the postcon-

dition was more challenging. Indeed establishing whether a XSS payload

is successfully executed is a well-known issue in the automatic security

testing community. In our preliminary experiments, we just relied on the

tester to inspect the results of the pattern and to determine whether the

XSS payload was successfully executed. By doing so, we uncovered a XSS

vulnerability in the INstant website [10] integrating the Linkedin JS API

SSO. Additionally, we manually analyzed the data flow between SP and

TTP in SPs integrating Linkedin REST API SSO to identify tainted data

elements. We replaced the value of tainted elements with XSS payloads

and identified another XSS vulnerability in a SP that has Alexa Global

50

Chapter 2 2.7. Evaluation

T
ab

le
2.

10
:

A
tt

ac
k
s

d
is

co
ve

re
d

#
A

tt
a
ck

P
a
tt

e
rn

S
P

T
T

P
(&

p
ro

to
co

l)
E

le
m

e
n
t(

s)
C

la
ss

a1
R

A
5

A
le

x
aE

co
m

m
er

ce
-1

0
L

in
ke

d
in

J
S

A
P

I
S
S
O

U
I
d
,
E
m
a
il

N
a2

R
A

5
d
ev

el
op

er
.l
in

ke
d
in

.c
om

L
in

ke
d
in

J
S

A
P

I
S
S
O

M
em

be
rI
d
,
A
T
ok

en

a3
R

A
4

A
ll

S
P

s
S
tr

ip
e

C
h
ec

ko
u
t

D
a
ta
K
ey

,
T
ok

en

N
S

a4
L

C
S
R

F
tw

it
te

r.
co

m
,

op
en

.s
ap

.c
om

,
G

m
ai

l
A
ct
L
in
k

ot
h
er

6
S
P

s
in

A
le

x
a

G
lo

b
al

T
op

50
0

a5
R

A
1

A
le

x
aU

S
-5

50
00

L
in

ke
d
in

J
S

A
P

I
S
S
O

E
m
a
il

N
P

a6
R

A
1

IN
st

an
t

L
in

ke
d
in

J
S

A
P

I
S
S
O

A
cc
es
sT

ok
en

a7
X

S
S

IN
st

an
t

L
in

ke
d
in

J
S

A
P

I
S
S
O

F
n
a
m
e,

L
N
a
m
e

a8
L

C
S
R

F
A

le
x
aG

lo
b
al

-1
00

0a
,

A
le

x
aG

lo
b
al

-1
00

0b
L

og
In

W
it

h
In

st
ag

ra
m

C
od
e

a9
L

C
S
R

F
A

le
x
aA

u
-4

20
0

L
in

ke
d
in

O
A

u
th

2.
0

S
S
O

C
od
e

a1
0

R
ed

U
R

I
p
in

te
re

st
.c

om
F

ac
eb

o
ok

S
S
O

A
u
th

.C
o
d
e

F
lo

w

R
ed
U
ri

a1
1

R
ed

U
R

I
A

ll
S

P
s

P
ay

P
al

L
og

In
R
ed
U
ri

a1
2

R
A

3
O

p
en

C
ar

t
v
2.

1.
0.

1
2C

h
ec

ko
u
t

O
rd
er

n
u
m
be
r,

K
ey

N
A

a1
3

X
S
S

A
le

x
aG

lo
b
al

-3
00

L
in

ke
d
in

R
E

S
T

A
P

I
S
S
O

A
bo
u
tM

e

51

2.7. Evaluation Chapter 2

rank less than 300 (#a13).

2.7.4 Disclosures

Pinterest acknowledged our report about the redirect uri fixation attack

and recently they updated their Facebook SSO implementation. The redi-

rect uri fixation attack against all SPs integrating the PayPal SSO was due

to the deviation from the OAuth 2.0 standard by PayPal. Even though

PayPal acknowledged our report, we did not win the bug bounty as another

security researcher simultaneously reported the attack. However, none of

the details regarding this attack was publicly available and we have the

screencast of the attack in our website to support our claim. The attack

against online shopping websites integrating Stripe checkout was appreci-

ated by Stripe and they rewarded us for our findings. Linkedin updated the

Linkedin Developers website after receiving our report about the attack by

the browser history attacker. OpenSAP acknowledged our report about the

login CSRF attack in the account registration process of open.sap.com and

fixed the issue. We reported the XSS attacks we discovered against the SPs

integrating the Linkedin SSO to the corresponding vendors. Linkedin was

partially responsible for this attack as it was possible to create a Linkedin

account and provide XSS payload as the value of user information fields

(e.g., first name, last name). However, it was the responsibility of SPs

to properly filter and encode the user information received from Linkedin.

After notifying Linkedin about the issue, we noticed that they enforce re-

strictions in the usage of HTML characters in input fields. Login CSRF is

out of scope for Twitter’s vulnerability rewards program [38]. Hence, we

did not win a bounty for our report. However, in Section V.F of [50], it is

mentioned that the authors discovered a standard form-based login CSRF

in the login form of twitter.com (which was already known) and the au-

thors explain how this causes a login CSRF in SPs integrating Twitter’s

52

open.sap.com
twitter.com

Chapter 2 2.8. Related Work

SSO solution. Further details about the disclosures are available at our

website.

2.8 Related Work

2.8.1 Attack pattern-based Black-Box Techniques

One of the prominent works in this domain is by Pellegrino et al. [82]

who proposed the idea of black-box detection of logical vulnerabilities in

e-shopping applications. The proposed approach creates an abstract model

of the web application from the HTTP traffic, identifies the applicability

of predefined behavioral patterns and generate test cases misusing these

patterns. The generated test cases are mainly based on the attacks against

Cashier-as-a-Service based web stores discovered by Wang et al. [95]. We

follow a different complementary approach by neglecting the application

model and directly focusing on replay attacks (among others). We reckon

that, in principle, there could be control-flow attacks that [82] could detect

and we may not (even if there is no experimental evidence for this). How-

ever, it is interesting to note that the strategy behind all the exploitable at-

tacks discovered by [82] falls under the category of replay attacks (precisely

those covered by our RA2 and RA3 attack patterns). We experimentally

verified this by running our tool against the e-commerce web applications

containing exploitable vulnerabilities and reported in [82]. We also verified

that our attack on Stripe checkout protocol would require not-so-obvious

extensions of [82]: consider malicious SP as we do and generate online

test-cases to deal with short-lived/one-time tokens.

Somorovsky et al. [87] conducted an in-depth analysis of 14 different

SAML frameworks and developed a framework for testing the security of

SAML implementations. The testing framework automatically generated

various SAML attack patterns by permuting the positions of the original

53

2.8. Related Work Chapter 2

and malicious elements in a SAML assertion. Currently our tool does

not support XML-based attacks (e.g., XML signature wrapping attack,

XSW in short). Adding this support to our tool requires the following:

our inference module should be able to automatically identify base64 and

URL encoded XML, have attack patterns that correctly decode the XML,

apply the attack strategy (e.g., XSW) and correctly encode the XML,

etc. However, currently there are tools such as SAMLRaider [55] and WS-

Attacker [78] that can be easily configured to perform these attacks. Hence

we did not invest much in this direction.

Bozic et al. [58] proposed attack pattern-based combinatorial testing for

detecting XSS vulnerabilities in web applications. In order to increase the

coverage of our attack patterns, we applied the concept of combinatorial

testing, as mentioned in Section 2.3.

2.8.2 Other Black-Box Techniques

Wang et al. [94] identified many vulnerabilities in the integration of web

SSO systems. The proposed technique analyzes the HTTP traffic going

through the browser, infers syntax and semantics of the traffic parameters,

checks the applicability of three different attack strategies and provides

an overview to assist a security expert in manually identifying concrete

attacks. In our approach, we adopted their inference concept, further en-

hanced it with data flow patterns and automated the process of attack

discovery.

Prithvi et al. [56] proposes a black-box technique for exposing vulnera-

bilities in the server-side logic of web applications by identifying various pa-

rameter tampering opportunities and by generating test cases correspond-

ing to the identified opportunity. However, this technique required manual

effort to convert these exploit opportunities to actual ones.

54

Chapter 2 2.8. Related Work

Zhou et al. [101] proposed SSOScan, a tool for automatically testing SP

websites that implements Facebook SSO. SSOScan probes the SP website

for detecting the presence of 5 vulnerabilities that are specific to Face-

book SSO. SSOScan is useful in conducting large-scale security testing of

SPs implementing the same SSO solution. Even though our input collec-

tion module requires more manual effort compared to that of SSOScan,

the concept of application agnostic attack patterns extends the generality

of our approach by enabling the testing framework to detect attacks in

multiple scenarios (SSO, CaaS, etc.).

None of the above mentioned black-box techniques provides experimen-

tal evidence of the applicability of the approach in multiple MPWA sce-

narios (CaaS, SSO, etc.) as we do.

2.8.3 Other Techniques

Bai et al. proposed AUTHSCAN [49] for automatically extracting formal

specifications from the implementations of authentication protocols and

verify it using a model checker to identify vulnerabilities. AUTHSCAN

uses sophisticated techniques such as analyzing the available client-side

code in order to increase the correctness of the automatically extracted

formal model. However, the authors mention that due to the issue of false

positives, manual effort was required for checking inconsistencies between

the actual implementation and the extracted formal model. This requires

the tester to be knowledgeable on formal specification. Our approach does

not have such a strong requirement and its applicability is not limited to

authentication protocols.

WebSpi [50] is a library for modeling web applications using a variant

of the applied pi-calculus. These formal models were verified using the

ProVerif tool to discover a variety of attacks in the integration of OAuth-

55

2.9. Limitations and future directions Chapter 2

based Single Sign-On solutions. The authors of [50] also proposed the idea

of automatically obtaining the formal specification of applications written

in a subset of PHP and JavaScript. This work also emphasized the im-

portance of considering CSRF and open redirectors while evaluating the

security of web-based security protocols.

Sun et al. [60] proposed to detect logical vulnerabilities in e-commerce

applications through static analysis of the available program code. Even

though the level of automation in [60] is higher than our approach, we

were able to detect similar attacks without requiring the source-code of

the application.

Recently, there have been some efforts [97, 60] to prevent the exploita-

tion of logical vulnerabilities in the integrations of CaaS and SSO APIs.

However, these techniques requires changes to be made in the way appli-

cations are deployed. Our approach does not have this requirement as we

are focusing on detecting the attacks rather than preventing them.

2.9 Limitations and future directions

Coverage is a general issue of the black-box security testing tools. Though

each of our attack pattern can state precisely what it is testing, our ap-

proach is not an exception in this respect. Additionally, it can only detect

known types of attacks because our attack patterns are inspired by known

attacks. Creative security experts could craft attack patterns capturing

novel attack strategies to explore new types of attacks. Two cases can be

foreseen here. The new attack patterns (new recipes) can be built (cooked)

on top of the available preconditions, actions, and postconditions (ingredi-

ents). In this case it should be pretty straightforward for security experts

to cook this new recipe. If new ingredients are necessary, extensions are

needed. These can range from adding a simple operation on top of OWASP

56

Chapter 2 2.9. Limitations and future directions

ZAP up to extending the inference module with e.g., control-flow related

inferences and similar. Another research direction could focus on inte-

grating fuzzing capabilities within some of our attack patterns. A clear

drawback is that this extension will likely make the entire approach sub-

ject to false positives. A more challenging research direction could focus

on automated generation of attack patterns. Though this may look as a

Holy Grail quest, there may be reasonable paths to explore. For instance,

when considering replay attacks and the patterns we created for them, it

is clear that the attack search space we are covering is far from being com-

plete. How many sessions and which sessions should be considered in the

replay attack strategy as well as which goal that strategy should target

remain open questions. However, attack patterns could be automatically

generated to explore this combinatorial search space.

A few attacks reported in the MPWA literature are not covered by our

attack patterns. In fact, Table 2.1 does present neither XML rewriting

attacks [87] nor XSS attacks, e.g., [48, §4]. For XSS we did not invest

too much in that direction as there are already specialized techniques in

literature that are both protocol- and domain-agnostic. As explained in

2.8, by adding XML support, new attack patterns can be created to target

also XML rewriting attacks as in [87]. This can be a straightforward ex-

tension of our approach and prototype especially considering that OWASP

ZAP supports Jython [34]. Basically, all Java libraries can be run within

OWASP ZAP so that Java functions performing transformations on the

HTTP traffic (e.g., base64 encoding/decoding, XML parsing) can be used

in the attack patterns.

Our approach can also be extended to handle postMessage [5]: frames

would be considered as protocol entities and their interactions as com-

munication events. While there are no conceptual issues to perform this

extension, there is technical obstacle as, at the moment, OWASP ZAP

57

2.9. Limitations and future directions Chapter 2

provides only partial support to intercept postMessages.

Another interesting future direction is to extend our approach to identify

attacks enabling replay attacks in mobile applications. Although mobile

applications communicate with their back-end using the HTTP protocol,

extending our approach to the mobile app scenario would require extensions

such as the consideration of inter-app communication channels such as the

Android Intent.

Additionally, the approach presented in this chapter is not fully auto-

mated because it requires the tester to provide the initial configurations.

The quality of these configurations has a direct impact on the results. For

instance if the Flags are not chosen properly, our system may report false

positives.

Still, as shown, the approach is effective and we plan to further refine it

to overcome these kinds of issues.

58

Chapter 3

Large-Scale Analysis & Detection of

Authentication Cross-Site Request

Forgeries

In Section 2.7 of the previous chapter, we showed that out attack pat-

tern for Login CSRF was able to detect Login CSRF attacks against many

prominent web sites implementing the VvE scenario. This made us curious

to conduct a large-scale analysis of the web for measuring the pervasiveness

of web sites not protecting their authentication and identity management

functionalities from CSRF. After all, browser-based security protocols un-

derlies the processes associated to these functionalities. Additionally, it

was shown in [52] that state-of-the-art black-box security testing tools (for

web applications) have low detection rate for vulnerabilities causing CSRF.

This motivated us to do further research on black-box security testing for

CSRF. Hereinafter, we present this research.

3.1 Introduction

Cross-Site Request Forgery (CSRF) is one of the top threats to web ap-

plications and has been continuously ranked in the OWASP Top Ten [19].

59

3.1. Introduction Chapter 3

In a CSRF attack, the attacker makes a victim’s web browser silently send

a forged HTTP request to a vulnerable web site and cause an undesired

state-changing action. The term victim refers to an honest user of the

vulnerable web site.

CSRF attacks can be classified as post- and pre-authentication CSRF

attacks, depending on whether the undesired state-changing action requires

the victim to have an already-established authenticated session or not, re-

spectively. Post-authentication CSRF is known at least since 2001 [41] and

has received a lot of attention from the web community. For instance, the

OWASP Testing Guide [80] devotes an entire section to this vulnerability

(cf. Testing for CSRF in [80]). On the contrary, pre-authentication CSRF

is not mentioned in the OWASP Testing Guide although severe exploits

have been reported in the literature, including:

• the execution of malicious JavaScript code at the victim’s web

browser [51],

• the association of the victim’s financial details (or Google Search His-

tory) with the attacker’s PayPal account (or Google account, respec-

tively) [51], and

• the tracking of the videos watched by the victim by the attacker [90,

66].

In this chapter, we focus on state-changing CSRF attacks that affect

web sites’ authentication and identity management functionalities. If car-

ried out successfully, these attacks can enable an attacker to (i) authen-

ticate as the victim on the vulnerable web site for post-authentication

actions or (ii) authenticate the victim into an attacker-controlled account

on the vulnerable web site for pre-authentication actions. We refer to

them collectively as Authentication CSRF (Auth-CSRF for short). We

will refer to pre-authentication Auth-CSRF attacks as preAuth-CSRF and

60

Chapter 3 3.1. Introduction

Figure 3.1: Commonly-found Auth-CSRF-vulnerable processes

post-authentication Auth-CSRF attacks as postAuth-CSRF.

We begin by analyzing the Auth-CSRF attacks reported in literature, we

have been able to (i) identify 7 commonly-found processes whose vulnerable

implementation causes Auth-CSRF attacks (an overview of them is shown

in Figure 3.1), (ii) rationally reconstruct 7 process-based testing strate-

gies that can be followed by testers to uncover Auth-CSRF vulnerabilities

and also included in widely-used web application testing guides (to spread

awareness of Auth-CSRF attacks), (iii) generalize the 7 process-based test-

ing strategies into 2 (one pre and one postAuth-CSRF testing strategy)

with the prospect of automating them and thereby reducing the man-

ual effort required in applying them. Additionally, we review the (semi-)

automatic CSRF-prevention mechanisms proposed in the literature (see,

e.g., [62, 75, 64]), establishing that only a subset of the Auth-CSRF attack

vectors can be blocked by them.

To estimate the incidence of Auth-CSRF in online web applications

and evaluate the effectiveness of our process-based testing strategies, we

run an experimental analysis considering 300 Alexa global top web sites

(see www.alexa.com/topsites) belonging to 3 different rank ranges of the

Alexa top 1500. The results of our experimental analysis are alarming:

out of the 300 web sites we considered, 133 qualified for conducting our

experiments (many web sites were skipped because of language barriers,

duplicates, etc., see Section 3.5 for details) and 90 of these suffered from at

least one vulnerability enabling Auth-CSRF (i.e. around 68% of the tested

61

www.alexa.com/topsites

3.1. Introduction Chapter 3

Table 3.1: Excerpt of our Findings

Type Vulnerable Web Sites Impact

p
re

A
u

th
-C

S
R

F

e-Government web site for tax filing Victim can be tricked to reveal his/her private financial information

Search engines (Google, Bing) Web Search history of the victim can be accessed by the attacker

Video-sharing (YouTube) History of the videos searched & watched by the victim is accessible to the

attacker

p
o
st

A
u

th
-C

S
R

F

Online Dating (Twoo) Attacker can compromise the victim’s Twoo account and access the vic-

tim’s chat history, know the victim’s dating preferences, sexual orientation,

etc.

Online shopping (eBay) Attacker can access victim’s eBay account and shop using the financial

information associated to that account.

Smartphone company’s web site Attacker can compromise the victim’s account at the phone company’s web

site and access the victim’s phone data remotely, including SMS, contacts

list, gallery items, location info, etc.

web sites are vulnerable). In total, we discovered 150 vulnerabilities in this

phase and some of our most-severe findings are mentioned in Table 3.1.

Motivated by the challenges we encountered while conducting our ex-

periments (e.g., identifying the relevant HTTP requests to test for Auth-

CSRF, altering the requests based on stored v/s reflected CSRF criteria,

etc.), we developed CSRF-checker, a proof-of-concept testing tool based on

OWASP ZAP [20] that assists a tester to (semi-)automatically detect vul-

nerabilities causing Auth-CSRF attacks. Using CSRF-checker, we assessed

132 additional web sites (from the Alexa global top 1500) and identified

95 vulnerable ones that are susceptible to Auth-CSRF attacks. In these

experiments, CSRF-checker helped in uncovering 168 vulnerabilities.

All the experiments reported in this paper have been conducted in a

responsible and non intrusive way (explained in Section 3.8). We reported

our findings to the affected vendors and some of them already acknowledged

our findings (their identities are disclosed in the paper). For instance, Mi-

crosoft and Twoo (a prominent dating web site) paid us $1500 and $500 bug

bounties respectively. Similarly, eBay fixed an Auth-CSRF based account

62

Chapter 3 3.1. Introduction

hijack vulnerability (on eBay.com) we reported. Additionally, LiveJournal

and a prominent smartphone company offered non-monetary rewards (e.g.,

free subscriptions, gift cards, etc.) for our findings related to Auth-CSRF

in their web sites.

The contribution of the research presented in this chapter is many-fold:

• we provide a comprehensive analysis of Auth-CSRF attacks taking

into account both pre-authentication and post-authentication pro-

cesses (to the best of our knowledge, something like this has not been

done yet);

• we provide precise security testing strategies for Auth-CSRF; intro-

ducing these strategies within, e.g., the OWASP Testing Guide may

help increase awareness and ultimately improve CSRF protection in

web sites;

• we present a proof-of-concept prototype that supports the (semi-)

automatic discovery of Auth-CSRF;

• we report on a large-scale experimental analysis for Auth-CSRF we

conducted on popular websites from the Alexa global top 1500; this

provides experimental evidence to our statements;

• combining the results of all our experiments shows that there are 318

exploitable Auth-CSRF vulnerabilities affecting 185 web sites from the

Alexa global top 1500 (among the 265 web sites we tested), i.e. around

70% of the web sites we tested were vulnerable to Auth-CSRF; we also

report on our responsible disclosure experience.

Structure of the chapter. In Section 3.2, we introduce some background

information about CSRF attacks and defenses. We continue in Section 3.3

discussing Auth-CSRF over key processes of a web application. Section 3.4

defines precise security testing strategies to detect Auth-CSRF attacks.

We discuss our first experimental evaluation of Alexa top web sites in

63

eBay.com

3.2. Background Chapter 3

Section 3.5, and some relevant case studies in Section 3.6. In Section 3.7

we present our prototype for assisting users toward testing for Auth-CSRF.

Our ethics and responsible disclosure experience is reported in Section 3.8.

In Section 3.10 and Section 3.9 we discuss some limitations of our work

and a comparison with the related work.

3.2 Background

This section provides background knowledge of different types of CSRF

attacks and the widely-used defenses to prevent them.

3.2.1 CSRF Attacks

In a CSRF attack, an attacker makes a victim user’s web browser send a

forged HTTP request to an honest web site and cause an undesired state-

changing action at the web site. The seriousness of a CSRF attack depends

on the consequences of the state-changing action that was initiated by the

attacker. For instance, in [98], it was shown that while being logged in

on prominent web sites like nytimes.com (an online newspaper web site),

INGdirect.com (a famous banking web site), etc., if a victim user loads an

attacker-controlled web page in his/her web browser, the attacker can send

forged HTTP requests to these web sites and (1) steal the victim’s personal

email address stored at nytimes, (2) transfer money from the victim’s ING

bank account to the attacker’s account, etc.

From 2001 (first reporting of CSRF [41]) to 2008, it was widely-

considered that only the state-changing actions that can be caused by

authenticated users need to be protected from CSRF attacks. This is

mainly due to the assumption that only authenticated users can execute

actions having high-impacts (e.g., transferring money from one account to

another). However, in 2008, Login CSRF attack was introduced [51]. In

64

nytimes.com
INGdirect.com

Chapter 3 3.2. Background

a Login CSRF attack, an attacker makes a victim’s browser send a HTTP

request to the authentication end point of a web site (e.g., action URL of

the login form) with the attacker’s username & password for the web site

and thereby authenticating the victim into the web site as the attacker.

By doing so, the attacker can keep track of the actions performed by the

victim on the vulnerable web site until the end of the session, enabling the

attacker to steal sensitive information. The authors demonstrated this by

showing that the Google search history (or bank account details) of another

user can be stolen by mounting a Login CSRF attack on Google (or PayPal

respectively). The authors even demonstrated the possibility of executing

malicious JavaScript code at the victim’s web browser by exploiting a Lo-

gin CSRF in iGoogle. Recently, several variants of Login CSRF attack

have also been reported in the Single Sign-On (SSO) domain [44, 50].

Pre- and Post-authentication CSRF Attacks: It is interesting to note

that the victims of Login CSRF attacks (and its variants [44, 50]) are not

authenticated users (unlike previously-reported CSRF attacks). Based on

these findings, we divide CSRF attacks into two categories: CSRF attacks

that do not require the victim to have an authenticated session with the

vulnerable web site (hereafter what we refer to as pre-authentication CSRF

attacks) and the type of CSRF attacks that require the victim to have an

authenticated session (hereafter referred to as post-authentication CSRF

attacks). We will show in Section 3.2.2 that this distinction is important

when it comes to protecting web sites from CSRF attacks.

Reflected and Stored CSRF Attacks: Depending on the way in which

the attacker makes the victim send the forged HTTP request, CSRF at-

tacks can be classified into reflected CSRF attacks and stored CSRF at-

tacks [59, 85]. While in reflected CSRF attacks, the attacker uses a

medium other than the vulnerable web site—for instance a malicious web

site controlled by the attacker—to make the victim’s browser send the

65

3.2. Background Chapter 3

state-changing HTTP request, in stored CSRF attacks, the attacker can

either directly use the vulnerable web site or a web site running in a related

domain [57] to make the victim’s browser send the state-changing HTTP

request. As we will show in Section 3.2.2, this distinction is important in

understanding the drawbacks of CSRF defenses.

3.2.2 Defending against CSRF Attacks

There are three main defense methods for protecting web sites from CSRF

attacks, namely secret validation token, HTTP Referer/Origin header

validation, and custom HTTP header validation. Hereafter, we briefly

describe them (interested readers can refer to [51] for more details), also

reporting some (semi-)automatic CSRF protection mechanisms that lever-

age these defenses.

Secret Validation Token: This method helps a web site to maintain

session integrity by validating a secret token. Whenever a user starts a

session with a web site, the web site generates (1) a unique identifier for

the session (what we refer to as session identifier) and (2) a non-guessable

secret token that is cryptographically bound to the session identifier. The

session identifier is stored on the web browser associated to the session (e.g.,

using the Set-Cookie HTTP header) and the secret token is embedded in

all HTTP responses to the web browser. Whenever the user executes an

important operation that will cause a state-changing action at the web

site, a HTTP request is sent to the web site containing both the session

identifier and the secret token. Upon receiving the request, the web site

checks whether the secret token and the session identifier maintain the

expected cryptographic relationship. Only if this condition is satisfied the

state-changing operation will be executed. Even though this is an effective

defense, we will show in Section 3.5 that many web sites implement this

defense incorrectly and thereby enable CSRF attacks.

66

Chapter 3 3.2. Background

Referer/Origin Header Validation: In this method, whenever a web

site receives an HTTP request associated to a state-changing action, the

web site checks whether the request originated from a trusted domain.

This can be done by checking the value of either the Referer header or the

Origin header present in the HTTP request. The Referer header carries

the value of the URL of the web page that caused the request. The Origin

header contains only the scheme, host, and port of the URL of the web

page that caused the request. If the value in the Referer/Origin header

does not belong to that of a trusted domain, the request is dropped. We

will show in Section 3.3 that there are certain special scenarios (e.g., URL-

based account activation) where the web site will have to execute state-

changing actions upon receiving HTTP requests from unknown domains

and erroneous logic of the implementation of these scenarios can cause

CSRF attacks. Additionally, certain browser-based vulnerabilities can also

enable an attacker to spoof the Referer/Origin headers (e.g., [68] explains

a PDF reader-based vulnerability enabling CSRF). We do not consider

browser-based vulnerabilities in this paper.

Custom HTTP Header Validation: A web site adopting this defense

must implement all state-changing actions via XMLHttpRequests [39]. In

this way, the web site can add custom HTTP headers to all state-changing

HTTP requests and validate these headers to ensure that the request has

not been forged. In [51], it is suggested to validate the presence of the

X-Requested-By header (a header present in all XMLHttpRequests) to en-

sure that the request originated from a trusted domain. The logic behind

this idea is that an attacker’s web page loaded at a victim’s web browser will

not be able to send XMLHttpRequests with the X-Requested-By header

to another web site (which is not under the control of the attacker) unless

the web site suffers from Cross-Site Scripting vulnerabilities (commonly

referred to as XSS), or if the web site defines erroneous cross-domain poli-

67

3.2. Background Chapter 3

cies [73], or if the victim uses a vulnerable web browser (beyond the scope

of this paper, see [68] for details). In [51] it is also suggested to drop all

state-changing requests that do not contain the X-Requested-By header.

However, we will show in Section 3.5 that many web sites implementing

their login actions via XMLHttpRequest do not reject the request even if

it does not contain the X-Requested-By header. This allows an attacker

to send forged login requests.

(Semi-)automatic CSRF Protection Mechanisms: Manually imple-

menting the above mentioned CSRF defenses is not only tedious, but also

error prone. Even though there are web site development frameworks like

ASP.NET that supports swift adoption of CSRF defenses, it was pointed

out in [76, §2.1.2] and [62, §3.1.1] that these frameworks have many ex-

ceptions (e.g., no protection for SSO [76, §2.1.2]). Another interesting

option available for web site developers and users to avoid CSRF attacks

is to make use of (semi-)automatic CSRF protection mechanisms (e.g.,

[69, 72, 62, 79]).

These mechanisms are implemented either at the client-side (e.g., as a

browser plugin) or at the server-side of a web site. They can be broadly seen

as having two parts. First they use certain heuristics to identify suspicious

requests (e.g., [69] considers all cross-domain requests as suspicious) and

then they perform certain operations on the suspicious HTTP requests

(e.g., [69] removes authentication credentials from the header of suspicious

requests). We will show in Section 3.3.3 that many CSRF attacks cannot

be prevented by these mechanisms.

In the following section we explain the subclass of CSRF attacks we

focus in this chapter.

68

Chapter 3 3.3. Authentication CSRF Attacks (Auth-CSRF)

3.3 Authentication CSRF Attacks (Auth-CSRF)

As shown in the previous section, CSRF attacks can affect any sensitive

process of a web site, and their impact can have different levels of severity

depending on the process considered, and a number of defenses can be put

in place to defend against CSRF. It is thus difficult to evaluate whether all

the sensitive processes of a web site are protected from CSRF.

For our purposes, we identified a significant subclass of CSRF attacks

that affects the authentication and identity management processes of web

sites. We refer to them as Authentication CSRF attacks (or Auth-CSRF in

short). In Auth-CSRF attacks, the attacker exploits a CSRF vulnerability

on a web site to cause either the (1) victim to be authenticated as the

attacker on the target web site or (2) attacker to be authenticated as the

victim on the target web site.

The reason why we considered this subclass is manifold. Auth-CSRF

attacks are pervasive (as shown by recent studies [86, 76]) and affect both

pre- and post-authentication processes of web sites (cf. Figure 3.1). In

addition, verifying the success of the application of an Auth-CSRF attack

strategy on a web site can be done easily by checking whether (i) the victim

has been authenticated as the attacker or (ii) the attacker can authenticate

as the victim. Last but not least, given that Auth-CSRF attacks affects

authentication, the impact of Auth-CSRF attacks can be even more serious

than other kinds of CSRF attacks. In the following section we explain this

in more detail.

3.3.1 Impacts of Auth-CSRF Attacks

CSRF attacks causing the victim to be authenticated as attacker are often

underestimated. This is mainly due to the fact that it is not clear how an

attacker can exploit this scenario. Some of the possible exploitations that

69

3.3. Authentication CSRF Attacks (Auth-CSRF) Chapter 3

are reported in the literature are as follows.

• In [51] it was shown that by logging the victim into the attacker’s

Google (or PayPal) account, an attacker can steal the Google search

history (or bank account details respectively) of the victim, execute

arbitrary JavaScript code on the victim’s browser, etc. Interestingly,

another researcher [66] showed that by exploiting this vulnerability an

attacker can host a malicious flash file and steal the search history of

the victim’s actual YouTube account.

• In [90] it was shown that an attacker can authenticate the victim to

the attacker’s account on a famous video-sharing web site and thereby

track the videos watched by the victim.

• It was shown in [76] that by logging the victim into the attacker’s

Facebook account, an attacker can associate his/her Facebook account

to the victim’s StackExchange account. This enables the attacker to

sign into the victim’s StackExchange account via the “log in with

Facebook” option on StackExchange.

CSRF attacks causing the attacker to be authenticated as the victim are

obviously serious. They allow an attacker to have complete access to the

victim’s account on a web site. An attacker can purchase items using the

victim’s credit card if the vulnerable web site is an online shop where victim

has associated his/her credit card. Similarly, the attacker can access the

victim’s confidential files if the vulnerable web site is an online file-sharing

web site.

We will present additional impacts of Auth-CSRF attacks from our ex-

perimental analysis in Section 3.6.

70

Chapter 3 3.3. Authentication CSRF Attacks (Auth-CSRF)

3.3.2 Selection of Auth-CSRF Attacks and Associated Pro-

cesses

Before defining of security testing strategies for Auth-CSRF, we started

with a scrutiny of several Auth-CSRF attacks reported in the literature

and the selection of the processes affecting authentication. Table 3.2 shows

the Auth-CSRF attacks that cause the victim to be authenticated as the

attacker and Table 3.3 shows the attacks that cause the attacker to be

authenticated as the victim. The process whose vulnerable implementation

caused the attack is shown in the last column of Tables 3.2 and 3.3. An

overview of all the processes considered in Tables 3.2 and 3.3 is illustrated

in Figure 3.1. Hereafter, we describe each process (labeled as P1 to P7)

and the associated attacks.

Form-based Registration (P1): In many web sites, users can create

accounts by providing the necessary information (such as username, de-

sired password, etc.) in a registration form. We refer to this process as

form-based registration.

Attack #1: The attack was discovered in www.localize.io (Localize).

The web site’s Sign Up form was not protected from CSRF attacks and

the web site directly authenticates a user upon submitting the registration

form with valid data. When the victim visits the attacker’s web site, a

forged HTTP request corresponding to the submission of the registration

form is sent from the victim’s web browser. Being a reflected CSRF at-

tack (see Section 3.2 for details), the origin of the forged attack request

(shown as Atk Req—meaning Attack Request—in Table 3.2) will be a URL

associated to the attacker’s web site (shown as AtkWS—abbreviation of

Attacker’s Web Site—in column 4, row #1 of Table 3.2) and the HTTP

request containing the username, password and other registration infor-

mation chosen by the attacker, similar to that of the victim (represented

71

www.localize.io

3.3. Authentication CSRF Attacks (Auth-CSRF) Chapter 3
T

ab
le

3.2:
A

u
th

-C
S
R

F
attack

s
cau

sin
g

V
ictim

to
b

e
A

u
th

en
ticated

as
A

ttacker

#
R

e
fe

re
n
ce

R
e
fe

re
r/

O
rig

in
C

re
d
e
n
tia

ls
in

A
tk

R
e
q

V
u
ln

e
ra

b
le

P
ro

ce
ss

B
e
n
ig
n

R
e
q

A
tk

R
e
q

1
L

o
calize.io’s

S
ign

u
p

form
[43]

V
u
ln

W
S

A
tk

W
S

B
o
d
y
[u

n
am

e
A

,
pass

A
,

in
fo

A
]

F
orm

-b
ased

R
egistration

2
op

en
S
A

P
’s

accou
n
t

activation

U
R

L
[90,§IV

.B
.2]

T
ru

stW
S

A
tk

W
S

U
R

L
[act

token
A

]
U

R
L

-b
ased

A
c-

cou
n
t

A
ctivation

3
T

w
itter’s

[50,
§IV

.E
]

an
d

G
o
ogle’s

[51,§3]
L

ogin
F

orm

V
u
ln

W
S

A
tk

W
S

B
o
d
y
[em

ailA
,

pass
A

]

F
orm

-b
ased

L
ogin

4
F

aceb
o
ok

’s
L

ogin
F

orm
[51,§4.2]

V
u
ln

W
S

[
]

B
o
d
y
[em

ailA
,

pass
A

]

5
F

aceb
o
ok

’s
L

ogin
F

orm
[76,§2.2.1]

V
u
ln

W
S

A
W

P
V

u
ln

W
S

B
o
d
y
[em

ailA
,

pass
A

]

6
T

w
o

w
eb

sites
im

p
lem

en
tin

g

M
ozilla’s

B
row

serID
[49,§6.2]

T
ru

stW
S

A
tk

W
S

B
o
d
y
[au

th
assertA

]

S
S
O

L
ogin

7
M

an
y

w
eb

sites
im

p
lem

en
tin

g
O

p
en

ID
[51,§6.1]

B
o
d
y
[token

A
]

8
S
tan

ford
’s

W
eb

A
u
th

im
p
lem

en
ta-

tion
[44,§IV

.E
]

U
R

L
[id

token
A

]

9
M

an
y

w
eb

sites
im

p
lem

en
tin

g

O
A

u
th

p
roto

col
[90,
§V

I.B
.3],

[50,

§V
.C

],
[92,§4.4],

[86,§3.1]

U
R

L
[code

A
]

L
egen

d
:

(1)
V

u
ln

W
S
:

V
u
ln

erab
le

W
eb

S
ite,

(2)
A

tk
W

S
:

A
ttacker’s

W
eb

S
ite,

(3)
T

ru
stW

S
:

T
ru

sted
W

eb
S
ite

(e.g.,

an
Id

P
),

(4)
A

W
P

V
u
ln

W
S
:

A
ttacker-con

fi
gu

rab
le

W
eb

P
age

on
th

e
V

u
ln

erab
le

W
eb

S
ite,

(5)
[

]:
em

p
ty

R
e
f
e
r
e
r

H
ead

er

72

Chapter 3 3.3. Authentication CSRF Attacks (Auth-CSRF)

T
ab

le
3.

3:
A

u
th

-C
S
R

F
at

ta
ck

s
ca

u
si

n
g

A
tt

ac
ke

r
to

b
e

A
u
th

en
ti

ca
te

d
as

V
ic

ti
m

#
R

e
fe

re
n

ce
R

e
fe

re
r/

O
ri

g
in

C
re

d
e
n
ti

a
ls

in
A

tk
R

e
q

V
u
ln

e
ra

b
le

P
ro

ce
ss

B
e
n
ig
n

R
e
q

A
tk

R
e
q

10
W

eb
si

te
im

p
le

m
en

ti
n
g

O
A

u
th

-

b
as

ed
ac

co
u
n
t

as
so

ci
at

io
n

fe
at

u
re

[8
4,

13
],
[9

6,
§5

.2
.1

(A
6)

]

T
ru

st
W

S
A

tk
W

S
B

o
d
y
[c

od
e A

],
H

d
r[

co
ok

ie
V

]
S
S
O

-b
as

ed

A
cc

ou
n
t

A
ss

o
ci

-

at
io

n

11
P

ri
m

ar
y

E
m

ai
l

ch
an

ge
in

M
et

aF
il
te

r[
98

,
§3

.3
]

V
u
ln

W
S

A
tk

W
S

B
o
d
y
[e

m
ai

l A
],

H
d
r[

co
ok

ie
V

]
P

ri
m

ar
y

E
m

ai
l

C
h
an

ge

12
W

eb
si

te
s

h
av

in
g

P
as

sw
or

d
ch

an
ge

fo
rm

s
w

it
h
ou

t
C

S
R

F
p
ro

te
ct

io
n

[3
]

V
u
ln

W
S

A
tk

W
S

B
o
d
y
[n

ew
pa

ss
A

],
H

d
r[

co
ok

ie
V

]
P

as
sw

or
d

C
h
an

ge

L
eg

en
d
:

(1
)

T
ru

st
W

S
:

T
ru

st
ed

W
eb

S
it

e
(e

.g
.,

an
Id

P
),

(2
)

A
tk

W
S
:

A
tt

ac
ke

r’
s

W
eb

S
it

e,
(3

)
V

u
ln

W
S
:

V
u
ln

er
ab

le
W

eb
S
it

e

73

3.3. Authentication CSRF Attacks (Auth-CSRF) Chapter 3

as unameA, passA and infoA in column 5, row #1 of Table 3.2). A be-

nign version of this forged request (shown as Benign Req—meaning Benign

Request—in Table 3.2) is supposed to originate from the vulnerable web

site (shown as VulnWS—abbreviation of Vulnerable Web Site—in column

3, row #1 of Table 3.2) which in this case is Localize. Upon receiving the

request, the victim is authenticated as attacker on Localize.

URL-based Account Activation (P2): On many web sites, whenever

a user creates an account, the web site sends a URL containing a secret

activation token to the email address provided by the user during regis-

tration. The user is then instructed to click on the link. This procedure

helps the web site to verify whether the user is actually the owner of the

provided email address. When the user passes this verification, the newly-

created account is fully activated. We refer to this process as URL-based

account activation and to the URL with the secret activation token as the

activation link.

Attack #2: This attack was found in open.sap.com (openSAP in short).

When the user clicks on the account activation link sent by openSAP, the

web site not only activates the account but also authenticates the user.

The attacker can create an account on openSAP that looks (visually) sim-

ilar to the victim’s actual openSAP account (in openSAP this can be done

by keeping the firstname and lastname of the victim’s openSAP account

as the firstname and lastname of the spoofed account). After creating the

account, the attacker receives an activation link containing the secret acti-

vation token (act tokenA). The attacker embeds this link on the attacker’s

web site. When the victim visits the attacker’s web site, the attacker

makes the victim’s browser sends a forged HTTP request corresponding

to clicking the activation link containing (act tokenA) and the victim is

authenticated as the attacker on openSAP.

Form-based Login (P3): In many web sites, the user can authenticate

74

open.sap.com

Chapter 3 3.3. Authentication CSRF Attacks (Auth-CSRF)

by providing a user identifier—in most cases this is the email address—

and a password on a login form provided by the web site. We refer to this

process as form-based login.

Attack #3: This attack is known as Login CSRF attack and the attack

was discovered in twitter.com (Twitter) and google.com (Google) due

to the absence of CSRF protection in the login forms. The description of

the attack is as follows. The attacker creates an account on Google (or

Twitter) with the attacker’s email address (emailA) and password (passA).

The newly created account looks (visually) similar to the victim’s actual

Google (or Twitter) account (for instance, a Google or Twitter account

created with the same first name and last name as that of the victim’s ac-

tual account). When the victim visits the attacker’s web site, the attacker

makes the victim send a forged HTTP request corresponding to the sub-

mission of the login form on Google (or Twitter) with emailA and passA.

Upon receiving the request, the victim is authenticated as the attacker on

google.com (or twitter.com).

Attack #4: This attack was found in facebook.com (Facebook). Facebook

protects its login form from CSRF attacks by checking the Referer header

of the login requests (to understand whether the request originated from

a web page associated to Facebook). However, if the Referer header is

missing in the request, Facebook allows the request. This allows an at-

tacker to perform an attack similar to attack #3 of Table 3.2 but with the

difference that, while sending the forged login request with the attacker’s

login credentials, the attacker abuses a browser trick to send the request

without the Referer header (see [69, §3.1], [51, §4.2.1]) and thereby au-

thenticating the victim as the attacker on Facebook.

Attack #5: This attack was also discovered in facebook.com. The attack

is similar to attack number #4 of Table 3.2. The description is as follows.

The attacker creates a Facebook canvas app running on a domain with pre-

75

twitter.com
google.com
google.com
twitter.com
facebook.com
facebook.com

3.3. Authentication CSRF Attacks (Auth-CSRF) Chapter 3

fix apps.facebook.com. The app is configured in such a way that when

the victim visits the web page associated to the app, a POST request is

send to the attacker’s web site (running on say attacker.com). Upon re-

ceiving the POST request, attacker.com sends a 307 redirection response

to the login end point of facebook.com with the attacker’s Facebook cre-

dentials and thereby authenticating the victim as the attacker on Face-

book. The attack succeeds because facebook.com accepts login requests

with Referer header values belonging to the subdomains of facebook.com

and the 307 redirection response maintains the Referer header of the

source request (i.e. the POST request from apps.facebook.com) in the

subsequent request. The web page configured by the attacker and run-

ning on apps.facebook.com is represented as AWPVulnWS—meaning the

Attacker-configurable Web Page on the Vulnerable Web Site—in column

4, row #5 of Table 3.2.

SSO Login (P4): Many web sites depend on trusted third-party web sites

for authentication. An example is SSO where a Service Provider (SP) web

site (e.g., pinterest.com) depends on an Identity Provider (IdP) web site

(e.g., facebook.com) for authenticating a user. When a user initiates SSO

on a SP web site, the SP redirects the user’s browser to the SSO authen-

tication end point of the IdP. At this point the user is required to provide

his/her login credentials to the IdP. If the provided credentials are correct,

IdP redirects the user back to the SP web site with authentication data

that will help the SP to uniquely identify the user and thereby authenticate

him/her. We refer to this process as SSO login.

Attack #6: This attack was discovered in two web sites integrating

Mozilla’s BrowserID SSO protocol. When the victim visits the attacker’s

web site, the attacker forges a HTTP request to the SSO authentication

end point of the vulnerable web site (which is acting as the SP) with the

attacker’s authentication assertion (represented as auth assertA in column

76

apps.facebook.com
attacker.com
attacker.com
facebook.com
facebook.com
facebook.com
apps.facebook.com
apps.facebook.com
pinterest.com
facebook.com

Chapter 3 3.3. Authentication CSRF Attacks (Auth-CSRF)

5, row #6 of Table 3.2) issued by the IdP in the body. The SP validates

the submitted auth assertA and authenticates the victim as the attacker.

Attack #7: Similar to attack #6 but with the difference that the under-

lying SSO protocol is OpenID and the authentication data sent by the

attacker to the vulnerable SP (via the victim’s browser) is the OpenID

token of the attacker (represented as tokenA in column 5, row #7 of Table

3.2).

Attack #8: Similar to attacks #6 and #7 but with the difference that the

underlying SSO protocol is WebAuth, the authentication data sent by the

attacker to the vulnerable SP web site (via the victim’s browser) is the

WebAuth id token of the attacker (represented as id tokenA in column 5,

row #8 of Table 3.2) and id tokenA is located in the URL of the forged

request.

Attack #9: Similar to attack #8 but with the difference that the under-

lying SSO protocol is OAuth 2.0 and the authentication data sent by the

attacker to the vulnerable SP web site (via the victim’s browser) is the

OAuth 2.0 authorization code of the attacker (codeA).

SSO-based Account Association (P5): In many web sites, the user has

the possibility to authenticate both via form-based login and SSO login.

This is achieved by allowing users who do form-based login to later asso-

ciate their SSO account. The association is done by executing a protocol

that has a flow similar to that of the SSO Login flow. The description is as

follows. The user must authenticate to the trusted web site (i.e. the IdP)

and the IdP makes the user’s browser send certain authentication data of

the user to the SP web site at which the user wants to do account asso-

ciation. We refer to this process as SSO-based Account Association. Note

that SSO-based account association can be executed only while the user is

logged in on the SP web site.

Attack #10: This attack was found in web sites implementing SSO-based

77

3.3. Authentication CSRF Attacks (Auth-CSRF) Chapter 3

account association via the OAuth 2.0 protocol and lacking CSRF protec-

tion. When the victim visits the attacker’s web site while being logged

in on the vulnerable SP web site, the attacker forges a HTTP request to

the account association end point of the vulnerable SP web site with the

attacker’s authorization code (issued by the IdP) for account association

(represented as codeA). Since the victim is logged in on the vulnerable SP

web site, the authenticated session identifier of the victim on the vulner-

able SP web site (represented as cookieV) is also present in the header of

the forged request. Upon receiving the forged request, the vulnerable web

site associates the attacker’s IdP account with the victim’s form-based lo-

gin account. This enables the attacker to login (via SSO) to the victim’s

account (on the vulnerable web site) using the attacker’s IdP credentials.

Primary Email Change & Password Change (P6, P7): In many

web sites, users perform form-based login by providing the email address

and password associated to the user’s account. Some web sites allows the

user to set new values for the email and password associated to the user’s

account. We call these processes as primary email change and password

change. The user must be authenticated on the web site while executing

these processes. Note that these processes are different from the “forgot

email/password” processes in web sites that do not require the user to be

logged in.

Attack #11: An attack was discovered in metafilter.com (MetaFilter)

in which the form for primary email change was not protected from CSRF

attacks. When the victim visits the attacker’s web site while logged in on

the vulnerable web site, the attacker forges a HTTP request to the vul-

nerable web site that will change the primary email address associated to

the victim’s account. In particular, the new value of the primary email

address will be the attacker’s email address (represented as emailA). This

allows the attacker to obtain a fresh password for the victim’s account (via

78

metafilter.com

Chapter 3 3.3. Authentication CSRF Attacks (Auth-CSRF)

the “forgot password” feature) and have access to the victim’s account on

MetaFilter. Note that the authenticated session identifier of the victim for

the vulnerable web site (represented as cookieV) is automatically sent by

the victim’s browser along with the forged request.

Attack #12: Same as #11 but the forged request changes the victim’s

account’s password at the vulnerable web site to a value chosen by the

attacker (represented as new passA). This enables the attacker to login to

the victim’s account (provided that the attacker knows the username of

the victim’s account).

3.3.3 Preventing Auth-CSRF: Challenges

The following is our comparison of the defenses proposed for preventing

CSRF attacks (explained in Section 3.2.2) and the Auth-CSRF attacks

shown in Tables 3.2 and 3.3. The secret validation token method if carefully

implemented can defeat all attacks (#1 to #12). However, it was shown in

[86, 92, 84] that many developers do not implement this defense to protect

their SSO Login and SSO-based Account association processes and thus

leaving these web sites vulnerable to attacks #9 and #10. This raises

the question of whether this trend of developers not implementing CSRF

defenses is also applicable to other processes.

The Referer/Origin header validation method is suitable for prevent-

ing standard reflected Auth-CSRF attack vectors. However, the ambi-

guity in handling scenarios like empty or related-domain [57] values for

Referer/Origin leaves web sites vulnerable to attacks like #4 and #5.

Additionally, the Referer/Origin header validation method is not suit-

able for protecting processes such as URL-based account activation mainly

due to the unpredictable nature of the Referer/Origin (the value of the

Referer/Origin is chosen by the third-party mailbox provider). Lastly,

browser-based vulnerabilities enabling Referer/Origin header spoofing

79

3.4. Manually Testing for Auth-CSRF Attacks Chapter 3

(see [68]) is also a threat to this defense.

As we explained in Section 3.2, the custom header validation approach

can be considered to be an effective CSRF defense only in the absence

of XSS vulnerabilities, erroneous cross-domain policies and browser-based

vulnerabilities. Past studies (e.g., [19, 73]) show that at least the first two

issues are hard to avoid.

In [76], it was shown that the default CSRF protection offered by web

site development frameworks like ASP.NET cannot prevent attacks like

#9, #10, etc.

When it comes to (semi-)automatic defenses, it was shown (e.g., in

[62, 64]) that while many of the proposed techniques [63, 70, 85, 69] break

normal cross-domain behavior such as SSO Login, others (e.g., [98]) suffer

from drawbacks of either being too permissive or restrictive. We noticed

that some of them [62, 75, 64] cannot detect attacks like #2. Similarly,

stored CSRF is not supported by [72].

As shown above, existing defenses for Auth-CSRF are either insufficient

or prone to implementation errors. Hence, there is a strong need for good

security testing strategies that can detect vulnerabilities causing Auth-

CSRF. Although there exist many web vulnerability scanners, it has been

shown (e.g., [52]) that they have low detection rate for CSRF in general.

It is in this context that we propose manual and (semi-)automatic testing

strategies for Auth-CSRF.

3.4 Manually Testing for Auth-CSRF Attacks

By carefully analyzing the attacks we discussed in Section 3.3, we have

been able to distill testing strategies for processes P1 to P7 explained in

Section 3.3.2. A tester can manually apply these testing strategies to detect

vulnerabilities causing Auth-CSRF on any Web site Under Test (WUT).

80

Chapter 3 3.4. Manually Testing for Auth-CSRF Attacks

Prerequisites. We assume that the tester is in control of a web browser

and, using a proxy (e.g., OWASP ZAP [20]), is capable of intercepting

and modifying HTTP traffic between the browser and WUT. Moreover,

the tester owns credentials associated with two separate accounts (having

unique usernames and passwords) on the WUT. We will refer to these ac-

counts as AttAcc and VictAcc as they represent the accounts of an attacker

and of a victim on the WUT. The tester should also have a social account

enabling SSO login to the WUT (if this option is available on the WUT).

We will refer to this account as AttAccSoc (as it represents the social ac-

count of the attacker). The last step of each test strategy is a check of the

success criteria. A positive answer to this check is an indication that the

corresponding process on the WUT is vulnerable. Hereinafter we define

each testing strategy.

The general idea is to first run the selected process as the attacker.

This allows us to intercept a HTTP request, that can be used as a ref-

erence to forge the one to test for Auth-CSRF attacks. After some ex-

periments, we noticed that the following fields of the intercepted HTTP

request must be kept unchanged: HTTP method, URL, Content-Type

and Content-Length headers, and the request body. It is then necessary

to alter the Referer/Origin header according to the different scenarios

(see Table 3.4).

Let us first consider the strategies for detecting preAuth-CSRF attacks:

TS1: Test Strategy for Form-based Registration

(1) Visit the registration page of WUT

(2) Submit registration details (including login-credentials) for AttAcc

(3) Intercept the HTTP request containing the registration details

(4) Copy the HTTP method, URL, Content-Type, Content-Length and

body of the intercepted request

(5) Clear browser cookies and reset the intercepting proxy

81

3.4. Manually Testing for Auth-CSRF Attacks Chapter 3

(6) Visit WUT

(7) Send a new HTTP request with a forged Referer (based on A1, A2

and A3 of Table 3.4), the same HTTP method, URL, Content-Type,

Content-Length and body as those in the intercepted request

(8) Check: Is it logged in as AttAcc?

TS2: Test Strategy for URL-based Account Activation

(1) Register an account AttAcc on WUT

(2) Receive account-activation URL at the email-address used for registra-

tion

(3) Clear browser cookies

(4) Visit WUT

(5) Visit account activation URL

(6) Check: Is it logged in as AttAcc?

TS3: Test Strategy for Form-based Login

(1) Visit the login page of WUT

(2) Submit login-credentials for AttAcc

(3) Intercept the HTTP request containing the login-credentials

(4) Copy the HTTP method, URL, Content-Type, Content-Length and

body of the intercepted request

(5) Clear browser cookies and reset the intercepting proxy

(6) Visit WUT

(7) Send a new HTTP request with a forged Referer (based on A1, A2

and A3 of Table 3.4), the same HTTP method, URL, Content-Type,

Content-Length and body as that of the intercepted request

(8) Check: Is it logged in as AttAcc?

82

Chapter 3 3.4. Manually Testing for Auth-CSRF Attacks

TS4: Test Strategy for SSO Login

(1) SSO login to AttAcc account on WUT via AttAccSoc

(2) Intercept the HTTP request containing the authentication token of

AttAccSoc

(3) Copy the HTTP method, URL, Content-Type, Content-Length and

body of the intercepted request

(4) Clear browser cookies and reset the intercepting proxy

(5) Visit WUT

(6) Send a new HTTP request with a forged Referer (based on A1, A2

and A3 of Table 3.4), the same HTTP method, URL, Content-Type,

Content-Length and body as that of the intercepted request

(7) Check: Is it logged in as AttAcc?

Let us now consider the strategies for detecting postAuth-CSRF attacks:

TS5: Test Strategy for SSO-based Account Association

(1) Login to AttAcc on WUT

(2) Visit SSO-based account association page on WUT

(3) Run SSO account association process using AttAccSoc

(4) Intercept the HTTP request containing the authentication token

(5) Copy the HTTP method, URL, Content-Type, Content-Length and

body of the intercepted request

(6) Clear browser cookies and reset the intercepting proxy

(7) Login to VictAcc on WUT

(8) Send a new HTTP request with a forged Referer (based on A4, A5

and A6 of Table 3.4), the same HTTP method, URL, Content-Type,

Content-Length and body as that of the intercepted request

(9) Clear browser cookies and reset the intercepting proxy

(10) Check: Is it possible to perform a SSO Login to VictAcc with the

credentials used in (3)?

83

3.4. Manually Testing for Auth-CSRF Attacks Chapter 3

TS6 & TS7: Test Strategy for Email/Password-change

(1) Login to AttAcc on WUT

(2) Visit the page for Email/Password-change of WUT

(3) Submit a new Email/Password as AttAcc

(4) Intercept the HTTP request containing the new Email/Password

(5) Copy the HTTP method, URL, Content-Type, Content-Length and

body of the intercepted request

(6) Clear browser and reset the intercepting proxy

(7) Login to VictAcc on WUT

(8) Send a new HTTP request with a forged Referer (based on A4, A5

and A6 of Table 3.4), the same HTTP method, URL, Content-Type,

Content-Length and body as that of the intercepted request

(9) Clear browser cookies and reset the intercepting proxy

(10) Check: Is it possible to access VictAcc on WUT with new Email/-

Password?

We have been able to generalize all seven testing strategies mentioned

above down to two, namely preAuthTS (a common testing strategy for the

pre-authentication processes P1 to P4) and postAuthTS (a common testing

strategy for the post-authentication processes P5 to P7). We reported them

in Figures 3.2a and 3.2b, respectively.

We call Candidate HTTP Request (CandidateReq) a HTTP request that

is generated by the browser while executing any of the processes P1 to P7.

A CandidateReq always contains a security token (or credential) either as a

query parameter in the request URL or as a parameter in the request body.

Hence, CandidateReq is an ideal candidate for mounting an Auth-CSRF

attack.

Strategy preAuthTS consists in running a pre-authentication process

84

Chapter 3 3.4. Manually Testing for Auth-CSRF Attacks

Listing (3.1) Attack Pattern for RA1

1 Run P as AttAcc

2 I n t e r c e p t CandidateReq

3 Clear c o o k i e s

4 V i s i t WUT

5 Alter CandidateReq

6 Send CandidateReq

7 Check Success Criteria

(a) preAuthTS

Listing (3.2) Attack Pattern for RA1

1 Login to AttAcc at WUT

2 Run P as AttAcc

3 I n t e r c e p t CandidateReq

4 Clear c o o k i e s

5 Login to VictAcc at WUT

6 Alter CandidateReq

7 Send CandidateReq

8 Check Success Criteria

(b) postAuthTS

Figure 3.2: Testing strategies

P as AttAcc, intercepting the CandidateReq issued by the browser and

corrupting the CSRF prevention mechanisms occurring in the header by

applying the changes given in Table 3.4. In particular, A1 is used to perform

attacks like #3 of Table 3.2 where the forged HTTP request is sent from

an attacker’s web site (which is simulated by changing the Referer/Origin

header in the request to attacker.com). Similarly, A2 is used to perform

attacks like #5 of Table 3.2 where the forged request originated from a web

page on the vulnerable web site. This is done by changing the Referer

85

attacker.com

3.4. Manually Testing for Auth-CSRF Attacks Chapter 3

Table 3.4: Alterations

Referer/Origin CSRF Type Covered

A1 attacker.com Reflected preAuth-CSRF

A2 WUT Stored preAuth-CSRF

A3 Empty preAuth-CSRF with empty Referer

A4 attacker.com Reflected postAuth-CSRF

A5 WUT Stored postAuth-CSRF

A6 Empty postAuth-CSRF with empty Referer

Table 3.5: Testing Strategy Information

P CandidateReq Success Criteria

P1 Body/URL[regpass]

Authenticated

as attacker

p
re

A
u

th
T

S
P2 URL[acttoken]

P3 Body/URL[loginpass]

P4 Body/URL[ssotoken]

P5 Body/URL[ssotoken] Account Associated

p
os

tA
u

th
T

S

P6 Body/URL[newemail] Email Changed

P7 Body/URL[newpass] Password Changed

header to a non-existing URL in the domain of the WUT. This URL will

represent the web page in the WUT that is configurable by the attacker

(e.g., similar to the feature offered by apps.facebook.com explained in

Section 3.3). A3 is to consider attacks like #4 of Table 3.2 where the

attacker manages to send the forged HTTP request without a Referer

header. Once forged, the corrupted CandidateReq is submitted and finally

the success criteria is checked. The form of CandidateReq and the success

criteria for each process are given in Table 3.5.

Strategy postAuthTS consists in logging-in with AttAcc credentials,

86

apps.facebook.com

Chapter 3 3.5. Experiments (Manual)

running a post-authentication process P and intercepting the CandidateReq

issued by the browser, logging-in using VictAcc credentials, replaying a

variant of CandidateReq obtained by corrupting the CSRF prevention

mechanisms as in the previous case, and finally checking the success crite-

ria.

In the following section we explain our experiments of applying the

testing strategies TS1 to TS7 to the Alexa top web sites, focusing only on

reflected Auth-CSRF attacks (as the attack surface for mounting stored

CSRF attacks is relatively low), i.e. applying only A1 and A4 of Table 3.4.

3.5 Experiments (Manual)

Selection. For this initial experimental analysis we focused on a corpus

of 300 popular web sites drawn from the following three ranges of Alexa

global top 1500 ranking:

(R1) 1-100 as the top 100 in Alexa Top 500 category,

(R2) 501-600 as the top 100 in Alexa Top 501 to 1000 category, and

(R3) 1001-1100 as the top 100 in Alexa Top 1001 to 1500 category.

This selection allowed us to target the most popular web sites—cf. range

(R1)—expected to have good security measures in place and to compare

them with relevant set-ranges lower in the ranking—cf. ranges (R2) and

(R3)—by a fixed offset (in our case, 400 web sites lower). The idea was

to evaluate whether a lower Alexa rank meant a higher chance of CSRF

vulnerabilities. We will show in Section 3.7.3 that we also conducted ex-

periments on other rank ranges but with more automation.

Result Overview. Figure 3.3 shows an overview of the results. Among

the 300 web sites in this corpus, we could successfully test 133 and 90

87

3.5. Experiments (Manual) Chapter 3

have been found vulnerable and exploitable to at least one of the testing

strategies discussed in Section 3.4 and focusing only on reflected Auth-

CSRF, i.e. applying only A1 and A4 of Table 3.4. The remaining web

sites have been skipped because of language barriers (90), lack of account

creation feature (17), domain duplicates such as between google.com and

google.co.in (31), high requirements such as payment for account cre-

ation (17), etc. The tested web sites are well distributed over the three

selected Alexa ranges: 45 web sites for (R1), 48 for (R2) and 40 for (R3).

Our results indicate that overall around 68% of the tested web sites are

vulnerable to the attacks similar to the ones mentioned in Tables 3.2 and

3.3 . This percentage starts at a lower 53% for range (R1) and goes up to

75% for (R2) and (R3), indicating that there is indeed some difference be-

tween the most popular web sites—i.e. web sites in (R1)—and the others.

However there is no significant difference in the aggregated results between

(R2) and (R3).

Though the severity of each attack strongly depends on the vulnerable

web site, these numbers are in general quite alarming.

Pre- Versus Post-authentication CSRF. The figures become even

more interesting when comparing the incidence of pre-authentication ver-

sus post-authentication attacks, see Figure 3.4. Overall 66% of the tested

web sites are vulnerable to and exploitable through pre-authentication

CSRF and only 19% to post-authentication CSRF. These percentages start

slightly lower with (R1): 53% for pre-authentication and 6% for post-

authentication, followed by a slight increase for (R2) and (R3): 69% for

pre-authentication and around 25% for post-authentication attacks. These

results indicate that there is a significant difference between pre- and post-

authentication CSRF incidence and seem to confirm our hypothesis that

pre-authentication CSRF has not received much attention from the web

community.

88

google.com
google.co.in

Chapter 3 3.5. Experiments (Manual)

Figure 3.3: Result overview

Figure 3.4: Result comparison

89

3.5. Experiments (Manual) Chapter 3

Results Per Testing Strategy. As already mentioned we applied all the

security testing strategies TS1 to TS7 of Section 3.4 against our corpus of

web sites (focusing mainly on reflected Auth-CSRF attacks). Each security

testing strategy aims to probe whether a web site is subject to a specific

Auth-CSRF attack. Figures 3.5 and 3.6 present the incidence of each one of

these pre-authentication and post-authentication attacks, both in general

and over the three individual Alexa ranges that we considered.

URL-based Account Activation. Over our corpus of 133 testable web sites,

71 send an email with an account activation link after registration. After

applying our TS2 testing strategy, we found that around 37% of these web

sites are vulnerable to this form of pre-authentication CSRF, indicating

that the occurrence of this attack is significant. For all these web sites

an attacker can trick an unaware victim into signing onto an account that

seems familiar, but was created and is actually owned by the attacker

(cf. attack number #2 of Section 3.3). We performed this check for all the

vulnerable web sites, ascertaining that each vulnerability was exploitable.

The incidence is lower (15%) for the most popular web sites (R1) and is

higher for the other two ranges: 48% for (R2) and 50% for (R3). The small

difference between (R2) and (R3) is not statistically significant given the

sample size.

Form-based Login. We performed TS3—i.e. Login CSRF attack—against

the majority of the testable web sites as most of them feature a form-based

login (124 of the 133, the remaining 9 web sites only feature SSO Login

to authenticate users). Login CSRF affects 55% of the tested web sites

overall, making it the most prevalent vulnerability among all the Auth-

CSRF attacks we tested. As usual we checked that an attacker could have

indeed authenticated the victim into the attacker’s account in each vulner-

able web site, proving the flaw was actually exploitable. Once more the

incidence of this vulnerability starts at a lower 35% for the Alexa top 100

90

Chapter 3 3.5. Experiments (Manual)

Figure 3.5: Incidence of pre-auth. vulnerabilities

91

3.5. Experiments (Manual) Chapter 3

Figure 3.6: Incidence of post-auth. vulnerabilities

92

Chapter 3 3.5. Experiments (Manual)

(R1) and increases to 62% and 65% respectively within (R2) and (R3) (no

statistically significant difference between (R2) and (R3)). As explained in

Section 3.2.2, for the custom header validation CSRF defense, in [51], it is

suggested to implement the login request (i.e. the HTTP request generated

upon submitting the login form) as a XMLHttpRequest for preventing a

malicious web site from forging login requests for mounting Login CSRF

attack. However, among the web sites we tested, 19 of them implement the

login request via XMLHttpRequest but do not complain even if the request

is sent as a standard, cross-origin HTTP request (non-XMLHttpRequest)

which is allowed by the web browser. This makes these 19 web sites vul-

nerable to Login CSRF attacks.

SSO Login. Over our corpus of 133 testable web sites, 70 implement the

SSO login feature. The overall incidence of a successful attack is about

51%. However, the incidence distribution over the three selected ranges

seems to violate the classical trend. In particular the incidence of 60%

in (R1) is not lower than in (R2) and (R3). The reason (interestingly

enough) being the following. We observe that in (R1) there are 10 well-

known service provider web sites owned by big corporations and which

use proprietary SSO protocols. Namely: google.co.in, youtube.com and

blogger.com owned by Google and associated to accounts.google.com;

live.com, msn.com, bing.com, office.com and microsoft.com owned

by Microsoft and associated to login.live.com; and two other web sites

from the same vendor. These SSO protocols were designed to have a single

authentication method across several services of the same company. They

are not used by third parties and were much more susceptible to CSRF: all

these “internal” service providers are vulnerable and Auth-CSRF attacks

causing the victim to be authenticated as the attacker can be mounted

(explained later in Section 3.6.3). It is interesting to observe that both

Google and Microsoft use a different SSO protocol “internally” from the

93

google.co.in
youtube.com
blogger.com
accounts.google.com
live.com
msn.com
bing.com
office.com
microsoft.com
login.live.com

3.5. Experiments (Manual) Chapter 3

one provided to third-party service providers. For instance, Google pro-

vides an OAuth-based protocol for external service providers, while it uses

a custom one for its own services. These cases were only encountered in

(R1) since smaller-caliber companies encountered in (R2) and (R3) did not

feature several services and therefore did not have a proprietary SSO pro-

tocol. By focusing on the usual third-party SSO protocols, the trend goes

back to the standard one (20% incidence in (R1) versus 42% and 54% for

(R2) and (R3)).

In [86, §4.2], the authors mention that 77 out of the 302 web sites imple-

menting OAuth 2.0-based SSO (from the Alexa top 10,000) are vulnerable

to Auth-CSRF. The absence of the state the parameter—a parameter used

for implementing the secret validation token-based CSRF defense (see Sec-

tion 3.2.2)—was the criterion used to classify a web site as vulnerable. We

found this metric to be an unreliable approach to the issue: among the 29

web sites we tested that use an OAuth 2.0-based SSO login protocol, 20 of

them use the state parameter and would have been considered safe by the

approach mentioned in [86], but when we performed our test, 8 of those

20 were found to be vulnerable (due to improper validation of the state

parameter by the service provider). It seems that the state parameter’s

presence does not imply whether a service provider validates it to prevent

Auth-CSRF.

And when considering the OAuth 2.0-based web sites we tested that did

not use the state parameter, only 4 of the 9 web sites were actually vul-

nerable to a CSRF attack. In these instances, the state parameter was

replaced by a local dialogue between a child and parent window for CSRF

protection.

In the end, our results imply a 40% false negative rate for their metric, and

a 44% false positive rate, making it quite unreliable. If we were to combine

our values (4/9 web sites that don’t use the state parameter are vulnerable

94

Chapter 3 3.5. Experiments (Manual)

and 8/20 web sites that use it are vulnerable) with their findings (77/302

domains not using the state parameter) we can estimate a successful attack

on 124 of the 302 web sites, giving us a 41% which exceeds their prediction

(25%).

SSO-based Account Association. A few web sites (27/133) offer the pos-

sibility to link the user’s form-based login account to an existing social

account and thereby enabling SSO-based authentication. Forcing an asso-

ciation to an attacker’s social account through CSRF allows the attacker

to then login to and hijack the user’s account. We found out that about

22% of the tested web sites (6/27) are vulnerable to this attack. Given the

rarity of this functionality, it is hard to extract reliable proportions from

our tests. However, we will show in Section 3.7.3 (Experiment 2) that after

considering 52 additional web sites implementing the SSO-based account

association process, we find that 17 of them are vulnerable (i.e. 33%).

Email Change. Most of the tested web sites, precisely 103 over 133,

feature a post-authentication action for email change (or similar e.g.,

phone number change). Auth-CSRF attacks were successful in only 14%

of these web sites, indicating a less important incidence for this. However

the severity of these attacks is obviously high, given that an attacker can

trick a user to change the email (or e.g., phone number) and then trigger a

password reset to take control over the victim’s account. As for most of the

previous tests, the incidence starts lower at 6% for range (R1) and slightly

increases to 16% for (R2) and to 19% for (R3). It is worth noticing that

19 web sites, outside the ones we tested, do not allow for a modification

of the account’s main email, i.e. by construction they do not feature the

email change action and are therefore safe. Several web sites (precisely

37) featuring email change make use of an additional security mechanism:

asking the user for their current account password and sending it with the

95

3.5. Experiments (Manual) Chapter 3

email-change request. Since we aimed to use email change as an action

representative for the overall category of post-authentication actions,

we conducted additional experiments to be sure that this protection,

which is specific to account settings, was not interfering with our general

results. In this respect, we selected 25 web sites among those that had

a password-based protection against email change. On these 25 web

sites, we tested for CSRF against other post-authentication actions (e.g.,

add to cart, forum post, etc.). Only 3 web sites over 25 were detected

vulnerable to the additional test for CSRF and they are all in range

(R3). All together, this had a small impact (few percentage points) on

the post-authentication CSRF results presented in Figures 3.4 and 3.6.

Additionally, while performing the Auth-CSRF test for email-change, we

also ran some tests on the password-change feature. In web application

security testing guidelines such as the one provided by OWASP [80], it is

explicitly mentioned to protect the password-change feature from CSRF

attacks. We ran the password-change test on around 2/3 of the web

sites within (R2) and (R3), those having more chances to be vulnerable

and only 2 web sites were found to be vulnerable. Perhaps we can infer

that since there is an explicit mention of this attack in security testing

guidelines, there is a higher awareness from developers and therefore only

a few web sites remain vulnerable. Though it is difficult to draw conclusive

arguments from this extra experiment, it seems to speak in favor of that

inference.

Form-based Registration. We expected CSRF against registration-form to

have an evolution very similar to the one for Form-based Login but with

a higher protection on registration to prevent mass-registration of fake

accounts (e.g., by using captchas). To evaluate this hypothesis, we selected

a small set of 18 web sites evenly spread across all three ranges and applied

96

Chapter 3 3.5. Experiments (Manual)

the TS1 testing strategy explained in Section 3.4 on the registration form.

As expected, there was a lower occurrence of registration CSRF (39% with

7 vulnerable web sites) and with one web site as exception, every other web

site having a registration form vulnerable to Auth-CSRF also had a login

form vulnerable to Auth-CSRF. Additionally, the attack on the registration

form is harder to exploit than login-form CSRF: a freshly created account

upon submission of the registration details is less likely to be confused

with the victim’s actual account. However, this is not the case for login-

form CSRF as the attacker can first create a convincing forged account to

ensure extended usage by the victim before being discovered. Given these

information, we considered it unnecessary to perform a registration-form

CSRF test on all the web sites having the registration process.

Aware of the issues reported about HTTP Strict Transport Security

(HSTS for short) and their potential impact on CSRF, we decided to aug-

ment our experimental analysis with an extra test to evaluate whether or

not the web site has a proper protection in this respect.

HSTS-enabled Session Management. It has been shown (e.g., [99, 54])

that it is difficult for web sites lacking proper HSTS protection and using

secret token validation approach based on cookies for CSRF defense to

prevent a network attacker from mounting CSRF attacks. We tested for

the presence of the HSTS header with includesubdomains option (if the web

site under test has sub-domains) against all the 133 testable web sites. The

incidence of this issue is extremely high (see Figure 3.7): 75% of the tested

web sites are susceptible to this attack. Percentages are a bit better for

Alexa top 100 web sites, but still quite frightening (>50%). It seems this

security-header is widely ignored, possibly due to the high requirements

for a successful exploit compared to the relatively low payoff (i.e. victim

can be authenticated as the attacker). However, as shown in [99, §5.1.1],

depending on the web site, the impact can be serious.

97

3.6. Selected Case Studies Chapter 3

Figure 3.7: Incidence of HSTS

During our experiments, we encountered several vulnerabilities with in-

teresting characteristics. In the following section, we explain a subset of

these cases.

3.6 Selected Case Studies

3.6.1 A Very Prominent Adult Website

This vulnerable adult website has an account system that logs a watched-

video history. The logged-in state is barely noticeable, so a victim would

have trouble identifying the account in which he/she is logged in, especially

if the attack is targeted and the attacker uses a believable username for

the fake account. After a successful attack (Auth-CSRF using account

activation URL), the victim will be logged in as the attacker and all content

consumed by the victim will be logged in the attacker’s account. The

attacker can steal the victim’s watch-history and given the nature of such

a website, this theft could lead to a breach of privacy or even blackmail.

98

Chapter 3 3.6. Selected Case Studies

3.6.2 A Prominent Government Website for Tax Filing

We found a vulnerable government web site where citizens must provide

sensitive personal data such as annual income, expenditure, etc. Since it is

a government web site, many citizens who may not be aware of web-based

attacks might use it to store their personal information. An attacker can

perform a targeted attack by performing login form-based Auth-CSRF and

waiting for the victim to store his/her personal details on the attacker’s

account.

3.6.3 Web sites of Google and Microsoft

We noticed that when a user visits google.com from a non-US location

(e.g., France), there is a redirection to google.x where x is the place-holder

for the country code (e.g., google.fr for France). Additionally, when the

user logs in on google.x, the following happens. There is a redirection to

the URL accounts.google.x with an authentication token having name

sidt as one of the query parameter. This token is used for authenticating

the user on google.x. There is no CSRF protection for this authentication

request. An attacker can perform the following targeted attack against a

user residing in Italy: (i) the attacker visits google.it, performs authenti-

cation and intercepts the request to accounts.google.it containing sidt,

(ii) the attacker makes the victim visit the URL associated to the inter-

cepted request (e.g., by tempting the victim to click on a hyperlink of the

URL). (iii) when the victim clicks on the link, the victim is authenticated

as the attacker on google.it and this enables the attacker to steal the

victim’s Google search history. This attack is more stealthy than the Lo-

gin CSRF in Google mentioned in [51] because in our attack, when the

victim clicks on the URL sent by the attacker, a blank page will be loaded

on the victim’s browser. In the meantime, the victim has been silently

99

google.com
google.x
google.fr
google.x
accounts.google.x
google.x
google.it
accounts.google.it
google.it

3.6. Selected Case Studies Chapter 3

authenticated as the attacker. Interestingly, if the victim is logged into all

Google services (e.g., google.it, gmail.com, youtube.com, etc.) while

clicking the link sent by the attacker, the victim will first be logged out

of google.it (not other services) and then be logged into google.it as

the attacker. We noticed that a similar attack is possible on YouTube as

there is also a request to accounts.youtube.com with the sidt parameter

having the same purpose as explained above.

Similar problems emerged on Microsoft services such as bing.com and

skype.com (the authentication parameter for Microsoft services is ANON).

The exploit on skype.com is particularly interesting because an attacker

can trick the victim into associating the victim’s credit card on the at-

tacker’s Skype account, allowing the attacker to recharge his/her Skype

account using the victim’s credit card.

3.6.4 twoo.com

The web site twoo.com (Twoo in short) is a dating web site with over

13 million monthly active users. This web site allows users to associate

their social accounts. We found that an attacker can silently associate the

attacker’s Facebook account to the victim’s Twoo account. This enables

an attacker to authenticate to Twoo as the victim. The following are

the steps to perform the attack: (i) the attacker needs to initiate the

process of associating his/her Twoo account with the his/her Facebook

account, (ii) intercept the HTTP POST request sent to the URL https:

//www.twoo.com/facebook/couple with the Facebook access token of the

attacker in the POST body, (iii) make the victim’s web browser send the

intercepted POST request while the victim is logged in on Twoo (this can

be done by making the victim visit an attacker-controlled web page that

automatically sends the intercepted POST request). This attack can be

serious because many Twoo users store their dating preferences, sexual

100

google.it
gmail.com
youtube.com
google.it
google.it
accounts.youtube.com
bing.com
skype.com
skype.com
twoo.com
https://www.twoo.com/facebook/couple
https://www.twoo.com/facebook/couple

Chapter 3 3.7. (Semi-)Automatic Testing for Auth-CSRF

orientation, credit card details, etc. in their Twoo account.

3.6.5 ebay.com

During our experiments we noticed that when a user requests for primary

email change, eBay asks for password confirmation and other security mea-

sures such as a captcha. However, the HTTP request containing the new

email address neither has CSRF protection, not has any details regarding

the user who wants to change the email. This enables the attacker to make

the victim’s browser send the HTTP request to eBay with an email ad-

dress that is under the control of the attacker. When this happens, eBay

sends a confirmation link to the attacker’s email address. The attacker

can also send the HTTP request associated to clicking on the confirmation

link from the victim’s web browser (by embedding the link as the src of an

image in a web page controlled by the attacker and loaded on the victim’s

web browser). When this happens, the primary email associated to the

victim’s eBay account changes and this enables the attacker to log into

victim’s eBay account and make purchases using the victim’s credit card

details stored on eBay.

Additional Details. More information on our communications with ven-

dors and some screencasts for the case-study attacks are available at the

companion web site [32] of this chapter.

3.7 (Semi-)Automatic Testing for Auth-CSRF

In Section 3.5 we showed the results of applying each (manual) testing

strategy (see Section 3.4) on top web sites. During our experiments we no-

ticed that manually performing certain steps in the testing strategies can be

cumbersome and error-prone. For instance, to test a SSO Login process,

the tester must intercept the HTTP request carrying the authentication

101

3.7. (Semi-)Automatic Testing for Auth-CSRF Chapter 3

token (Step 2 of TS4). As shown in Section 3.6, in the SSO login imple-

mentation of Google and Microsoft, it is difficult to infer from the name of

the parameters (i.e. sidt and ANON) whether they carry authentication

tokens. Since there are several parameters syntactically resembling an au-

thentication token, it takes a considerable amount of time for the tester to

manually spot the relevant request to intercept. Even if the tester man-

ages to correctly spot the request containing the authentication token, the

tester must perform the subsequent steps (i.e. modifying the intercepted

request based on reflected/stored criteria shown in Table 3.4 and resending

the request) faster before the token expires. All these requirements points

to the necessity of having an automated means to perform the challeng-

ing steps (of the testing strategies) faster. It is in this context that we

introduce CSRF-checker, a tool that assists the tester in detecting vul-

nerabilities causing Auth-CSRF. In Section 3.7.1 we explain the concept

behind CSRF-checker. In Section 3.7.2 we briefly explain the implemen-

tation details of CSRF-checker. Section 3.7.3 presents the outcome of our

experiments on Alexa top 1500 web sites with CSRF-checker.

3.7.1 CSRF-checker Concept

The tool implements the strategies reported in Figures 3.2a and 3.2b. The

tool detects potential CandidateReqs (the HTTP request containing a se-

curity token or credential) by asking simple questions to the tester. For

instance, in the case of SSO Login and Account Association processes, the

tool asks the tester to provide the URL of the IdP and to give an input

just before authenticating into the IdP. Upon receiving the input from the

user, the tool considers all subsequent requests from the IdP’s domain to

other domains which contain alphanumeric strings either as the value of

a URL parameter, or as the value of a parameter in the request body as

CandidateReq . The same principle is also applicable to URL-based ac-

102

Chapter 3 3.7. (Semi-)Automatic Testing for Auth-CSRF

count activation. The tester needs to provide the URL of the mailbox

provider and notify the tool just before clicking the activation link. For

Form-based Login, Form-based registration and Email/Password-change,

to identify the CandidateReq , the tool requires the tester to provide the

URL of the WUT and the credentials used, i.e. username and password for

registration/login and new email/password for email/password change.

3.7.2 Implementation

CSRF-checker is implemented in Python 2.7.12 and uses the API of the

widely-used, open-source, penetration testing tool OWASP ZAP [20] to

perform standard proxy engine operations such as collecting HTTP traffic

to identify the CandidateReq, setting proxy rules to alter the HTTP traffic

(according to Table 3.4), etc. The source code, installation guide and

tutorial for the tool’s proof-of-concept implementation can be obtained

(upon request) from the chapter’s companion web site [32].

3.7.3 Additional experiments with CSRF-checker

Experiment 1. The goal of this experiment was to measure the effective-

ness of CSRF-checker in finding vulnerabilities causing Auth-CSRF. In this

regard, we checked whether CSRF-checker was able to rediscover 124 vul-

nerabilities (present in processes P3-P6 explained in Section 3.3.2) that we

found during our manual experiments (explained in Section 3.5). The end

result was that CSRF-checker was able to re-discover 88 of them (i.e. 71%).

For the remaining 36 vulnerabilities, the following is what happened: (i)

in 23 of them the vulnerability was absent during the retest as the vendor

fixed the issue (the HTTP traffic of the old and the new experiments clearly

indicated the presence of a fix), (ii) in 5 of them CSRF-checker crashed

during the test (hence no result was obtained), (iii) in 7 of them the vul-

103

3.8. Ethics & Responsible Disclosure Chapter 3

nerability was absent and there were no obvious indications of a fix and (iv)

in 1 case, the vendor fixed the issue but the old vulnerable end-point was

still active and hence it was still possible to mount the attack (notice that

we would not have known about the existence of this vulnerable end-point

if we had not performed the manual experiments explained in Section 3.5).

Experiment 2. The goal of this experiment was to estimate the incidence

of Auth-CSRF in the remaining 12 ranges (of 100 web sites) of the Alexa

top 1500 that we did not consider for our manual experiments (e.g., 101-

200, 601-700, 1401-1500, etc.). To this end, we selected 132 web sites (11

web sites chosen from each of the 12 different ranges) and tested them using

CSRF-checker. For this selection, priority was given to web sites having the

SSO-based login and account association processes (as the number of web

sites having these processes were relatively low in our manual experiments).

In the end, CSRF-checker discovered 168 vulnerabilities in 95 of the total

132 tested web sites (i.e. 72%). The percentage of vulnerable web sites for

each process is as follows: URL-based account activation 37% (37/100),

Form-based Login 58% (75/129), SSO Login 28% (31/111), SSO-based

Account Association 33% (17/52), Email-change 11% (8/71). This is more

or less in-line with the results we obtained during our manual experiments.

3.8 Ethics & Responsible Disclosure

We ensured that our tests did not cause any harm to the web sites we tested.

For instance, we neither injected any code in the HTTP requests nor tried

to have unauthorized access to user accounts that are not under our control.

All tests were performed using the test accounts we created on the web

sites. Our tests can be seen as replaying values from one session in another.

This kind of test can cause financial loss to the web site if we had tested

processes such as online shopping. For instance, previous studies (e.g.,

104

Chapter 3 3.8. Ethics & Responsible Disclosure

[95, 82]) have shown that it is possible to shop for free from real web sites by

replaying payment tokens from one session in another. Since we considered

only authentication and identity management processes and replayed only

credentials and authentication tokens (belonging to the user accounts we

created), our test cases are different from that of [95, 82]. Additionally,

when we conducted further tests with CSRF-checker, we made sure that

CSRF-checker did not send too many HTTP requests in too short time

interval and cause (possible) denial of service attack.

We contacted the vendors of all the vulnerable web sites through the

contact information available on the corresponding web sites. A recent

study [88] has shown that this procedure is hard to automate in an ef-

fective way. On web sites having well-defined communication channels to

report security vulnerabilities (precisely 39 web sites, including Google,

Mircosoft, Twoo, eBay, etc.), we filed vulnerability reports. For others,

we contacted them through the information available on their web sites

for general enquiry. We received mostly positive responses for our reports.

For instance, Microsoft and Twoo patched the vulnerabilities quickly and

paid us bug bounties of $1500 and $500, respectively. LiveJournal and a

prominent smartphone company offered us non-monetary rewards for our

findings. Google and another prominent company specialized in Internet-

related services acknowledged our report. We were denied a bounty because

they were already aware of the issue. However, no information regarding

these vulnerabilities is publicly available. eBay appreciated our report and

fixed the issue immediately. For all other vendors, we are either waiting

for the acknowledgements or working closely with them to fix the issues.

This is mainly due to the fact that the experiments concluded recently and

it has not been long since we reported our findings to the affected ven-

dors. We will update the details at the companion web site of the research

presented in this chapter [32].

105

3.9. Related Work Chapter 3

3.9 Related Work

In [86] the authors developed a crawler that automatically found 302 web

sites implementing OAuth 2.0-based SSO and found out that 77 of them

were missing CSRF protection parameters. In order to avoid the challenges

in automatically executing the SSO login, the crawler was designed to

check whether the parameter for CSRF protection was present in the SSO

initialization URL. As explained in Section 3.5, we identified that their

approach is susceptible to a number of false positives and false negatives.

In [92], the authors conducted a security evaluation of 96 popular web

sites implementing the Facebook SSO Login. The authors also encountered

the challenge of automatically executing the Facebook SSO Login and sim-

ilarly preferred a mostly-manually approach (as we did for the experiments

mentioned in Section 3.5). This helped them avoid the false positives and

false negatives that affected [86]. However, CSRF-checker can provide the

same level of accuracy as [92] but with more automation.

In [93] the authors conducted a passive security analysis of 22,000 Eu-

ropean web sites. The criteria used to determine if a web site is vulnerable

to CSRF is by checking whether the web site has a form that has a long,

pseudo-random, hidden element that cannot be guessed or brute-forced by

an attacker. Although it is a good criteria for a large-scale evaluation, we

noticed that more than 22% of the web sites in our sample do not require a

pseudo-random login form element for CSRF protection as they implement

login requests via XMLHttpRequest [39] (in the absence of vulnerabilities

like XSS, an attacker cannot forge a cross-site XMLHttpRequest). Hence

we infer false positives in the approach used in [93].

Past studies [98, 73, 74] have shown that many web sites have an insecure

cross-domain policy enabling an attacker to mount CSRF attacks. Since

a large-scale evaluation has already been done in this respect, we did not

106

Chapter 3 3.10. Limitations

focus on this specific vulnerability.

It has been shown in [99] and [54] that many web sites either lacks

or incorrectly implements HSTS protection. During our experiments we

also checked whether web sites are correctly implementing HSTS and our

results are shown in Figure 3.7.

3.10 Limitations

One main drawback of our approach is that most of the experimental anal-

ysis is done manually. In [100] the authors faced challenges similar to

ours (i.e. creating an account was necessary to check for vulnerabilities) in

conducting large-scale experiments and also followed a manual approach.

However, in a later study [101], the very same authors managed to com-

pletely automate the execution of Login via Facebook SSO. Since our goal

was not to focus on specific protocols, we did not have other choice but to

depend on manual means. To mitigate this issue we implemented CSRF-

checker, allowing testers to reduce as much as possible the manual effort

in conducting the tests, even if, given the generality of our approach, the

automation cannot be as advanced as that in [101].

Another drawback of our study is that although we identified a lot of

serious vulnerabilities in real web sites—due to the lack of good responsible

disclosure plans—we had to manually contact hundreds of affected vendors.

Very recently, there has been a study [88] that checked the feasibility of au-

tomating the process of vulnerability disclosure. But the conclusion of [88]

is that there are no reliable vulnerability notification channels available for

researchers who conduct large-scale experiments.

Lastly, we do not propose any novel techniques to tackle Auth-CSRF

attacks. Indeed, we believe that currently available techniques—like the

secret token validation method—can be sufficient to prevent Auth-CSRF

107

3.10. Limitations Chapter 3

attacks, and promising new techniques (such as same-site cookies [23]) are

emerging. Still, more awareness of some CSRF attacks is necessary and we

provide a tool supporting the testing phase of web sites.

108

Chapter 4

Migration to Industry

The research presented in Chapters 2 and 3 shows that browser-based

security protocols underlying the critical processes of many prominent web

applications contain security vulnerabilities. We also presented techniques

for detecting these vulnerabilities. Given that this thesis is in the context

of an industrial doctorate, it was important for us to evaluate how well

these techniques fit the security testing needs of modern industries. In

this chapter, we will discuss our experience in this regard. In particular,

we will be focusing on the impacts of our research at SAP, the industrial

partner of the research presented in this thesis, and other industries in

general.

Structure of the chapter. In Section 4.1, we will review the main

contributions of Chapters 2 and 3 and explain why they are important for

SAP. In Sections 4.2 and 4.3 we will explain the impacts of the research

presented in Chapters 2 and 3 at the industry.

4.1 Importance of our contributions

One of the contributions of Chapter 2 is Blast, the tool we developed for

black-box security testing browser-based security protocol implementations

109

4.1. Importance of our contributions Chapter 4

(see Section 2.5 for details). The problem that Blast addresses is the ab-

sence of general-purpose, application-agnostic techniques for discovering

security vulnerabilities present in browser-based security protocol imple-

mentations. The types of vulnerabilities that Blast can detect (e.g., logical

vulnerabilities [82]) are not very well supported by currently available free

and commercial web application penetration testing tools. This problem

is indeed very relevant for SAP (and other industries), because browser-

based security protocols underlies the MPWA-based solutions offered by

SAP to their customers. For instance, the SAP HANA Cloud Platform

[24] supports SSO (see [6] for details) and we showed in Section 2.7 that

vulnerabilities in SSO implementations can have serious consequences such

as user account getting compromised, sensitive personal information theft,

etc. SAP also offers an e-commerce solution, namely SAP Hybris [25].

As we showed in Section 2.7, logical vulnerabilities in the implementation

of payment checkout protocols at e-commerce solutions can enable for in-

stance attackers to shop for free. This can cause financial loss to SAP

customers and severely affect the reputation of SAP.

In Chapter 3, we presented security testing strategies (both manual and

semi-automatic) that can help testers uncover Auth-CSRF vulnerabilities.

The Auth-CSRF testing strategies we presented for pre-authentication pro-

cesses can be of particular interest to the security validation team of SAP

as widely-used CSRF testing guides (e.g., [33]) mainly focus on post-

authentication actions. As we showed in Section 3.6, Auth-CSRF vul-

nerabilities in pre-authentication processes can cause sensitive information

leakage. Vulnerabilities having such impacts can have serious consequences

on SAP customers as SAP is a manufacturer of business software.

110

Chapter 4 4.2. Blast and Industry

Figure 4.1: Testing Engine Architecture

4.2 Blast and Industry

Although Blast was very well received by the scientific community (e.g.,

Blast was selected to be presented at multiple prestigious venues [90, 89]),

we had to introduce new features in Blast to make it industry-ready. For

instance, it was difficult for us in the beginning to promote the usage

of Blast within SAP.1 This was mainly due to the following challenges

(labelled C1, C2 and C3) in the usage of the first version of Blast: (C1) the

1Blast was first presented to the developers of SAP when it was selected to be presented at the 2016

SAP’s annual Developer Kick-Off Meeting that happened at Karlsruhe, Germany and Silicon Valley,

USA.

111

4.2. Blast and Industry Chapter 4

installation and interaction with Blast was not so simple (mainly because

Blast was a command line-based tool in its first version), (C2) it was

necessary to provide user actions in Zest language [35] (a relatively new

and experimental scripting language) and (C3) the summary of the tests

performed by Blast on a MPWA was provided to the tester in a very

sophisticated way (in a large JSON file). After having interacted with

various developers and security validation teams belonging various business

units at SAP (mainly by running pilots), we have been able to find solutions

to some of these challenges. In Figure 4.1, we have highlighted (in dotted

lines) the components that were absent in the first version of Blast. The

major differences between the first version and the latest version are the

following:

• The latest version of Blast comes with a graphical user interface (what

we refer to as Blast UI) that simplifies the interaction between the

tester and Blast. This when combined with Docker and Monsoon

Readymade-based installation (see [4, 11]) of Blast helped in solving

C1. Figure 4.2 shows the HTML5 web interface through which the

tester is prompted to provide the user actions for starting a new test.

Blast UI communicated with the back-end of Blast via a REST API

(shown as Blast REST API in Figure 4.1).

• The recording of the user actions can now be done automatically us-

ing BlastRec, our extension of the Selenium Firefox add-on [27]. This

feature was introduced to solve C2. For instance, Figure 4.3 shows the

tester performing certain actions in his/her web browser and Figure

4.4 shows the BlastRec-enabled Selenium Firefox add-on [27] auto-

matically recording these actions.

• In the latest version of Blast, the tester is provided with a dashboard-

style overview of the important phases of a test. For instance, Figure

112

Chapter 4 4.2. Blast and Industry

4.5 shows a sample attack report indicating the presence of an RA3

attack (indicated in red color). Further details are also available to

the tester such as the the complete list of elements that were replayed

while applying each attack strategy. Notice that in the attack report

show in Figure 4.5, the tool is reporting an RA3 attack (see 2.3 for

details) that was found when the elements key and order number were

replayed.

Figure 4.2: Blast UI for creating a new test

113

4.2. Blast and Industry Chapter 4

Figure 4.3: Payment via 2checkout

Figure 4.4: Recording of User Actions via BlastRec

114

Chapter 4 4.2. Blast and Industry

Figure 4.5: A Sample Attack Report

Our efforts to make Blast an important security testing tool at SAP was

very well appreciated and supported by the management. For instance,

1. SAP filed a US patent application for the idea behind Blast (Patent

Id: 14/885,001). This shows that SAP is interested in protecting the

intellectual idea behind Blast.

2. SAP agreed to allocate three (paid) working students (Adrien Hubner,

Nicolas Dolgin and Mathieu Molinengo) to help in the development

of Blast.

3. Blast was selected to be presented at the 2016 and 2017 SAP DKOM

(SAP’s annual Developer Kick-Off Meeting that happened at Karl-

sruhe, Germany and Silicon Valley, USA).

4. multiple business units at SAP (e.g., SAP Hybris security team) and

partners of SAP (e.g., open.sap.com from Hasso Plattner Institute)

agreed to use Blast for security testing their browser-based security

protocol implementations. The outcomes were well received and con-

sidered valuable to increase even further the security of their prod-

115

open.sap.com

4.3. Auth-CSRF and Industry Chapter 4

ucts. For instance, the developers of open.sap.com acknowledged us

at their web site (see here open.sap.com/pages/about).

5. SAP is continuing on its own, piloting the usage of Blast.

Interestingly, the popularity of Blast was not just within SAP. For instance,

the members of the security testing team of Huawei Technologies Co. Ltd.,

read our paper on Blast [90] and requested us to test their web site that

integrated multiple browser-based security protocols. All these activities

are still ongoing.

4.3 Auth-CSRF and Industry

After discovering that 181 Alexa top web sites were vulnerable to pre-

authentication CSRF attacks (having serious privacy impacts), and given

that widely-used CSRF testing guides followed by industries (e.g., the one

provided by OWASP [33]) do not mention about this issue, we decided to

spread awareness. In this regard, we made a presentation on CSRF at the

2017 SAP DKOM (Karlsruhe, Germany). This presentation was mainly

targeting SAP developers and we focused on the importance of protecting

both pre- and post-authentication processes from CSRF. We also discussed

possible mitigations and the security testing strategies explained in Sec-

tions 3.4 and 3.7. Although in the beginning our audience were skeptical

about pre-authentication CSRF attacks, the important findings of our ex-

perimental analysis (explained in Section 3.6) convinced them.

To spread awareness on Auth-CSRF outside SAP, we submitted a pro-

posal for a talk (on Auth-CSRF) at the upcoming 2017 OWASP AppSec

Europe [17]. Additionally, we contacted Matteo Meucci and Andrew

Muller, the project leaders of the OWASP Testing Guide Project [18] to

discuss the possibility of extending the definition of CSRF used by OWASP

116

open.sap.com
open.sap.com/pages/about

Chapter 4 4.3. Auth-CSRF and Industry

(see [3]) to include pre-authentication CSRF. This could possibly lead to

the inclusion of our pre-authentication CSRF testing strategies (explained

in Section 3.4) at the OWASP Testing Guide [80]. However, these discus-

sions are still ongoing.

Ultimately, the research presented in this thesis has led to the discovery

of serious vulnerabilities affecting the products developed by prominent

vendors (e.g., Microsoft, Google, Linkedin, etc.) and consumed by millions

of users. We also responsibly disclosed these vulnerabilities to the affected

vendors and helped them fix the issues. So, overall the impact of our

research at the industry is fairly good.

117

4.3. Auth-CSRF and Industry Chapter 4

118

Chapter 5

Conclusion

In this thesis we presented different techniques for detecting vulnerabilities

in the design and implementation of browser-based security protocols. In

particular, in Chapter 2, we presented an approach for black-box security

testing of MPWAs. The core of our approach is the concept of application-

agnostic attack patterns. These attack patterns are inspired by the sim-

ilarities in the attack strategies of previously-discovered attacks against

MPWAs. The implementation of our approach is based on OWASP ZAP,

a widely-used open-source legacy penetration testing tool. By using our ap-

proach, we have been able to (i) identify serious security drawbacks in the

browser-based security protocols underlying the SSO and CaaS solutions

offered by Linkedin, PayPal and Stripe, (ii) identify previously-unknown

vulnerabilities in a number of websites leveraging the SSO solutions offered

by Facebook and Instagram and (iii) automatically generate test cases that

reproduce previously-known attacks against vulnerable integration of the

2Checkout service.

The findings of our study on CSRF presented in Chapter 3 indicate

that developers often fail to protect sensitive processes from CSRF at-

tacks and that the default CSRF protection offered by web frameworks

and automatic/semi-automatic CSRF prevention mechanisms cannot pro-

119

Chapter 5

tect web sites from many CSRF attacks. This shows the importance of

security testing web sites for CSRF attacks. Although it is difficult to

target all CSRF attacks, we focused on an important subclass of CSRF,

namely Auth-CSRF. We showed that manual and semi-automatic security

testing strategies (presented in Sections 3.4 and 3.7) can assist web devel-

opers in testing web site for Auth-CSRF. We showed experimental evidence

in this regard by testing Alexa top 1500 web sites and discovering serious

security vulnerabilities enabling Auth-CSRF. We responsibly disclosed all

our findings to the affected vendors.

Last but not the least, it is worth noting that the outcomes of the

research presented in this thesis helped in improving the security of the

browser-based security protocol implementations of SAP and other com-

panies in general (e.g., Microsoft, Linkedin, etc.). There is ample exper-

imental evidence on the effectiveness of our approaches and hence they

can be extended further in the future (e.g., the approach behind Blast can

be extended to the mobile application scenario, CSRF-checker can be fur-

ther extended to automatically detect vulnerabilities enabling Auth-CSRF

etc.).

120

Bibliography

[1] Account hijacking by leaking authorization code. http://www.

oauthsecurity.com/.

[2] Covert Redirect. http://oauth.net/advisories/

2014-1-covert-redirect/.

[3] Cross-Site Request Forgery (CSRF). https://www.owasp.org/

index.php/Cross-Site_Request_Forgery_(CSRF).

[4] Docker (software). https://en.wikipedia.org/wiki/Docker_

(software).

[5] HTML5 Web Messaging. http://www.w3.org/TR/webmessaging/

#posting-messages.

[6] Identity and Access Management. https://help.hana.ondemand.

com/help/frameset.htm?e6b196abbb5710148c8ec6a698441b1e.

html.

[7] Instagram API Console. https://apigee.com/console/instagram.

[8] Integrate Log In with PayPal. https://developer.paypal.com/

docs/integration/direct/identity/log-in-with-paypal/.

[9] Log In with PayPal demo site. https://lipp.ebaystratus.com/

loginwithpaypal-live/.

121

http://www.oauthsecurity.com/
http://www.oauthsecurity.com/
http://oauth.net/advisories/2014-1-covert-redirect/
http://oauth.net/advisories/2014-1-covert-redirect/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Docker_(software)
http://www.w3.org/TR/webmessaging/#posting-messages
http://www.w3.org/TR/webmessaging/#posting-messages
https://help.hana.ondemand.com/help/frameset.htm?e6b196abbb5710148c8ec6a698441b1e.html
https://help.hana.ondemand.com/help/frameset.htm?e6b196abbb5710148c8ec6a698441b1e.html
https://help.hana.ondemand.com/help/frameset.htm?e6b196abbb5710148c8ec6a698441b1e.html
https://apigee.com/console/instagram
https://developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/
https://lipp.ebaystratus.com/loginwithpaypal-live/
https://lipp.ebaystratus.com/loginwithpaypal-live/

Bibliography Chapter 5

[10] LogIn to experience INstant. http://instant.linkedinlabs.com/.

[11] Monsoon Readymade. https://monsoon.mo.sap.corp/.

[12] The most common oauth2 vulnerability. http://homakov.

blogspot.it/2012/07/saferweb-most-common-oauth2.html.

[13] The most common oauth2 vulnerability. http://homakov.

blogspot.it/2012/07/saferweb-most-common-oauth2.html.

[14] Mozilla Identity Team. Persona. https://login.persona.org/.

[15] OAuth 2.0 Playground. https://developers.google.com/

oauthplayground/.

[16] OAuth Security Advisory: 2009.1. http://oauth.net/advisories/

2009-1/.

[17] OWASP AppSec Europe 2017 Belfast - 8th-12th of May. https:

//2017.appsec.eu/.

[18] OWASP Testing Project. https://www.owasp.org/index.php/

OWASP_Testing_Project.

[19] Owasp Top Ten 2013 Project. https://www.owasp.org/index.

php/Category:OWASP_Top_Ten_2013_Project.

[20] OWASP Zed Attack Proxy Project. https://www.owasp.org/

index.php/ZAP.

[21] PayPal Express Checkout. https://www.paypal.com/webapps/

mpp/referral/paypal-express-checkout.

[22] PayPal Payments Standard. https://www.paypal.com/webapps/

mpp/paypal-payments-standard.

122

http://instant.linkedinlabs.com/
https://monsoon.mo.sap.corp/
http://homakov.blogspot.it/2012/07/saferweb-most-common-oauth2.html
http://homakov.blogspot.it/2012/07/saferweb-most-common-oauth2.html
http://homakov.blogspot.it/2012/07/saferweb-most-common-oauth2.html
http://homakov.blogspot.it/2012/07/saferweb-most-common-oauth2.html
https://login.persona.org/
https://developers.google.com/oauthplayground/
https://developers.google.com/oauthplayground/
http://oauth.net/advisories/2009-1/
http://oauth.net/advisories/2009-1/
https://2017.appsec.eu/
https://2017.appsec.eu/
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2013_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2013_Project
https://www.owasp.org/index.php/ZAP
https://www.owasp.org/index.php/ZAP
https://www.paypal.com/webapps/mpp/referral/paypal-express-checkout
https://www.paypal.com/webapps/mpp/referral/paypal-express-checkout
https://www.paypal.com/webapps/mpp/paypal-payments-standard
https://www.paypal.com/webapps/mpp/paypal-payments-standard

Chapter 5 Bibliography

[23] Same-site Cookies draft-west-first-party-cookies-07. https://tools.

ietf.org/html/draft-west-first-party-cookies-07.

[24] Sap hana cloud platform. https://hcp.sap.com/index.html.

[25] SAP Hybris. https://www.hybris.com/en/.

[26] SECENTIS: A European Industrial Doctorate on Security and Trust

of Next Generation Enterprise Information Systems. http://www.

secentis.eu/home.

[27] Selenium IDE. https://addons.mozilla.org/en-US/firefox/

addon/selenium-ide/.

[28] Selenium WebDriver. http://docs.seleniumhq.org/projects/

webdriver/.

[29] Selenium with Python. http://selenium-python.readthedocs.

io/index.html.

[30] Stripe Checkout. https://stripe.com/docs/checkout.

[31] Stripe Wiki. http://en.wikipedia.org/wiki/Stripe_

%28company%29.

[32] Supporting materials. https://sites.google.com/site/

authcsrf/.

[33] Testing for CSRF (OTG-SESS-005). https://www.owasp.org/

index.php/Testing_for_CSRF_(OTG-SESS-005).

[34] The Jython Project. http://www.jython.org/.

[35] The ZAP Zest Add-on. https://code.google.com/p/

zap-extensions/wiki/AddOn_Zest.

123

https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://hcp.sap.com/index.html
https://www.hybris.com/en/
http://www.secentis.eu/home
http://www.secentis.eu/home
https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/
https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/
http://docs.seleniumhq.org/projects/webdriver/
http://docs.seleniumhq.org/projects/webdriver/
http://selenium-python.readthedocs.io/index.html
http://selenium-python.readthedocs.io/index.html
https://stripe.com/docs/checkout
http://en.wikipedia.org/wiki/Stripe_%28company%29
http://en.wikipedia.org/wiki/Stripe_%28company%29
https://sites.google.com/site/authcsrf/
https://sites.google.com/site/authcsrf/
https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
http://www.jython.org/
https://code.google.com/p/zap-extensions/wiki/AddOn_Zest
https://code.google.com/p/zap-extensions/wiki/AddOn_Zest

Bibliography Chapter 5

[36] Token Fixation in PayPal. http://homakov.blogspot.it/2014/

01/token-fixation-in-paypal.html.

[37] UI Development Toolkit for HTML5. https://sapui5.hana.

ondemand.com.

[38] Vulnerability Reawards Program Rules. https://hackerone.com/

twitter.

[39] XMLHttpRequest. https://developer.mozilla.org/en-US/

docs/Web/API/XMLHttpRequest.

[40] XUL. https://developer.mozilla.org/en-US/docs/Mozilla/

Tech/XUL.

[41] Mail from peter watkins about csrf. http://www.tux.org/~peterw/

csrf.txt, 2001.

[42] OAuth 2.0 Threat Model and Security Considerations. https://

tools.ietf.org/html/rfc6819#section-4.4.2.2, January 2013.

[43] Sign-up Form CSRF. https://hackerone.com/reports/7865,

2014.

[44] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell,

and Dawn Song. Towards a formal foundation of web security. CSF

’10, pages 290–304, Washington, DC, USA, 2010. IEEE Computer

Society.

[45] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and L. Tobarra.

Formal Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking

the SAML-based Single Sign-On for Google Apps. In V. Shmatikov,

editor, Proc. ACM FMSE, pages 1–10. ACM Press, 2008.

124

http://homakov.blogspot.it/2014/01/token-fixation-in-paypal.html
http://homakov.blogspot.it/2014/01/token-fixation-in-paypal.html
https://sapui5.hana.ondemand.com
https://sapui5.hana.ondemand.com
https://hackerone.com/twitter
https://hackerone.com/twitter
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL
http://www.tux.org/~peterw/csrf.txt
http://www.tux.org/~peterw/csrf.txt
https://tools.ietf.org/html/rfc6819#section-4.4.2.2
https://tools.ietf.org/html/rfc6819#section-4.4.2.2
https://hackerone.com/reports/7865

Chapter 5 Bibliography

[46] Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Bar-

letta, Alberto Calvi, Alessandro Cappai, Roberto Carbone, Yannick

Chevalier, Luca Compagna, Jorge Cuéllar, et al. The avantssar plat-

form for the automated validation of trust and security of service-

oriented architectures. In International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems, pages 267–

282. Springer, 2012.

[47] Alessandro Armando, David Basin, Yohan Boichut, Yannick Cheva-

lier, Luca Compagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-

Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, et al. The

avispa tool for the automated validation of internet security pro-

tocols and applications. In International Conference on Computer

Aided Verification, pages 281–285. Springer, 2005.

[48] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge

Cuéllar, Giancarlo Pellegrino, and Alessandro Sorniotti. From multi-

ple credentials to browser-based single sign-on: Are we more secure?

volume 354 of IFIP Advances in Information and Communication

Technology, pages 68–79. Springer, 2011.

[49] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venka-

traman, Prateek Saxena, Jun Sun, Yang Liu, and Jin Song Dong.

Authscan: Automatic extraction of web authentication protocols

from implementations. In Proceedings of the 20th NDSS’13, San

Diego, CA, USA, 2013.

[50] C. Bansal, K. Bhargavan, and S. Maffeis. Discovering concrete at-

tacks on website authorization by formal analysis. In CSF, 2012

IEEE 25th, pages 247–262, June 2012.

125

Bibliography Chapter 5

[51] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses

for cross-site request forgery. In Proceedings of the 15th ACM, CCS

’08, pages 75–88, New York, NY, USA, 2008. ACM.

[52] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of

the art: Automated black-box web application vulnerability testing.

In Security and Privacy (SP), 2010 IEEE Symposium on, pages 332–

345. IEEE, 2010.

[53] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. Ietf rfc 1945

hypertext transfer protocol (http/1.0), 2008.

[54] Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric Fournet,

Alfredo Pironti, and Pierre Yves Strub. Triple handshakes and cookie

cutters: Breaking and fixing authentication over tls. In Security and

Privacy (SP), 2014 IEEE Symposium on, pages 98–113. IEEE, 2014.

[55] Roland Bischofberger and Emanuel Duss. Saml2 burp plugin. Man-

agement, 1:6, 2015.

[56] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bo-

browicz, and V. N. Venkatakrishnan. Notamper: Automatic blackbox

detection of parameter tampering opportunities in web applications.

In Proceedings of the 17th ACM Conference on Computer and Com-

munications Security, CCS ’10, pages 607–618, New York, NY, USA,

2010. ACM.

[57] Andrew Bortz, Adam Barth, and Alexei Czeskis. Origin cookies:

Session integrity for web applications. Web 2.0 Security and Privacy

(W2SP), 2011.

[58] Josip Bozic, Dimitris E. Simos, and Franz Wotawa. Attack pattern-

based combinatorial testing. In Proceedings of the 9th International

126

Chapter 5 Bibliography

Workshop on Automation of Software Test, AST 2014, pages 1–7,

New York, NY, USA, 2014. ACM.

[59] Jesse Burns. Cross site request forgery. An introduction to a common

web application weakness, Information Security Partners, 2005.

[60] Eric Chen, Shuo Chen, Shaz Qadeer, and Rui Wang. Securing mul-

tiparty online services via certification of symbolic transactions. In

Proceedings of the IEEE Symposium on Security and Privacy (Oak-

land). IEEE Institute of Electrical and Electronics Engineers, May

2015.

[61] OASIS Consortium. SAML V2.0 Technical Overview. http://wiki.

oasis-open.org/security/Saml2TechOverview, March 2008.

[62] Alexei Czeskis, Alexander Moshchuk, Tadayoshi Kohno, and Helen J

Wang. Lightweight server support for browser-based csrf protection.

In Proceedings of the 22nd international conference on World Wide

Web, pages 273–284. International World Wide Web Conferences

Steering Committee, 2013.

[63] Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens,

and Wouter Joosen. Csfire: Transparent client-side mitigation of

malicious cross-domain requests. In Engineering Secure Software and

Systems, pages 18–34. Springer, 2010.

[64] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank

Piessens. Automatic and precise client-side protection against csrf

attacks. In Computer Security–ESORICS 2011, pages 100–116.

Springer, 2011.

[65] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny cant

pentest: An analysis of black-box web vulnerability scanners. In

127

http://wiki.oasis-open.org/security/Saml2TechOverview
http://wiki.oasis-open.org/security/Saml2TechOverview

Bibliography Chapter 5

International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 111–131. Springer, 2010.

[66] Jeremiah Grossman. I used to know what you watched, on youtube,

2008.

[67] E Hammer-Lahav. Oauth security advisory: 2009.1, 2009.

[68] Alex Infuhr. Pdf - mess with the web. In OWASP AppSec EU, 2015.

[69] Martin Johns and Justus Winter. Requestrodeo: Client side protec-

tion against session riding. In Proceedings of the OWASP Europe

2006 Conference, 2006.

[70] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing

cross site request forgery attacks. In Securecomm and Workshops,

2006, pages 1–10. IEEE, 2006.

[71] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A

static analysis tool for detecting web application vulnerabilities. In

Security and Privacy, 2006 IEEE Symposium on, pages 6–pp. IEEE,

2006.

[72] Florian Kerschbaum. Simple cross-site attack prevention. In Se-

cureComm 2007, pages 464–472. IEEE, 2007.

[73] Sebastian Lekies, Martin Johns, and Walter Tighzert. The state of

the cross-domain nation. In Proceedings of the 5th Workshop on Web,

volume 2, 2011.

[74] Sebastian Lekies, Nick Nikiforakis, Walter Tighzert, Frank Piessens,

and Martin Johns. Demacro: defense against malicious cross-domain

requests. In Research in Attacks, Intrusions, and Defenses. Springer,

2012.

128

Chapter 5 Bibliography

[75] Sebastian Lekies, Walter Tighzert, and Martin Johns. Towards state-

less, client-side driven cross-site request forgery protection for web

applications. In Sicherheit, pages 111–121, 2012.

[76] Rich Lundeen. The deputies are still confused. In Blackhat EU, 2013.

[77] Christian Mainka, Vladislav Mladenov, and Jörg Schwenk. Do not

trust me: Using malicious idps for analyzing and attacking single

sign-on. CoRR, abs/1412.1623, 2014.

[78] Christian Mainka, Juraj Somorovsky, and Jörg Schwenk. Penetration

testing tool for web services security. In Services (SERVICES), 2012

IEEE Eighth World Congress on, pages 163–170. IEEE, 2012.

[79] Ziqing Mao, Ninghui Li, and Ian Molloy. Defeating cross-site request

forgery attacks with browser-enforced authenticity protection. In Fi-

nancial Cryptography and Data Security, pages 238–255. Springer,

2009.

[80] Matteo Meucci and Andrew Muller. The owasp testing guide 4.0,

2014.

[81] Giancarlo Pellegrino. Detection of logic flaws in multi-party business

applications via security testing. PhD thesis, Thesis, 11 2013.

[82] Giancarlo Pellegrino and Davide Balzarotti. Toward black-box de-

tection of logic flaws in web applications. In NDSS Symposium 2014.

Internet Society, 2014.

[83] Cynthia Phillips and Laura Painton Swiler. A graph-based system for

network-vulnerability analysis. In Proceedings of the 1998 Workshop

on New Security Paradigms, NSPW ’98, pages 71–79, New York, NY,

USA, 1998. ACM.

129

Bibliography Chapter 5

[84] Stephen Sclafani. Csrf vulnerability in oauth 2.0 client

implementations. http://stephensclafani.com/2011/04/06/

oauth-2-0-csrf-vulnerability/.

[85] Hossain Shahriar and Mohammad Zulkernine. Client-side detection

of cross-site request forgery attacks. In IEEE 21st International Sym-

posium ISSRE, 2010, pages 358–367. IEEE, 2010.

[86] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor, and

Kevin Butler. More guidelines than rules: Csrf vulnerabilities from

noncompliant oauth 2.0 implementations. In Magnus Almgren, Vin-

cenzo Gulisano, and Federico Maggi, editors, DIMVA 2015, Milan,

Italy, July 9-10, 2015, Proceedings, pages 239–260, Cham, 2015.

Springer International Publishing.

[87] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kamp-

mann, and Meiko Jensen. On breaking saml: Be whoever you want

to be. In Presented as part of the 21st USENIX Security Sympo-

sium (USENIX Security 12), pages 397–412, Bellevue, WA, 2012.

USENIX.

[88] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns,

and Michael Backes. Hey, you have a problem: On the feasibility of

large-scale web vulnerability notification. In 25th USENIX Security

Symposium (USENIX Security 16), pages 1015–1032, Austin, TX,

2016. USENIX Association.

[89] Avinash Sudhodanan, Alessandro Armando, Roberto Carbone, and

Luca Compagna. Attack patterns for black-box detection of logical

vulnerabilities in multi-party web applications. In OWASP AppSec

Europe, 2016.

130

http://stephensclafani.com/2011/04/06/oauth-2-0-csrf-vulnerability/
http://stephensclafani.com/2011/04/06/oauth-2-0-csrf-vulnerability/

Chapter 5 Bibliography

[90] Avinash Sudhodanan, Alessandro Armando, Roberto Carbone, and

Luca Compagna. Attack patterns for black-box security testing of

multi-party web applications. In 23nd Annual Network and Dis-

tributed System Security Symposium, NDSS 2016, San Diego, Cal-

ifornia, USA, February 21-24, 2016, 2016.

[91] Fangqi Sun, Liang Xu, and Zhendong Su. Detecting logic vulnera-

bilities in e-commerce applications. In NDSS 2014, California, USA,

February 23-26, 2013, 2014.

[92] San-Tsai Sun and Konstantin Beznosov. The devil is in the (imple-

mentation) details: An empirical analysis of oauth sso systems. CCS

’12, pages 378–390, New York, NY, USA, 2012. ACM.

[93] Tom Van Goethem, Ping Chen, Nick Nikiforakis, Lieven Desmet, and

Wouter Joosen. Large-scale security analysis of the web: Challenges

and findings. In International Conference on Trust and Trustworthy

Computing, pages 110–126. Springer, 2014.

[94] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your ac-

counts through facebook and google: A traffic-guided security study

of commercially deployed single-sign-on web services. In Proceedings

of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages

365–379, Washington, DC, USA, 2012. IEEE Computer Society.

[95] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. How to

shop for free online – security analysis of cashier-as-a-service based

web stores. In Proceedings of the 2011 IEEE Symposium on Security

and Privacy, SP ’11, pages 465–480, Washington, DC, USA, 2011.

IEEE Computer Society.

[96] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and

Yuri Gurevich. Explicating sdks: Uncovering assumptions underlying

131

Bibliography Chapter 5

secure authentication and authorization. In Proceedings of the 22Nd

USENIX Conference on Security, SEC’13, pages 399–414, Berkeley,

CA, USA, 2013. USENIX Association.

[97] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo Chen. Inte-

guard: Toward automatic protection of third-party web service in-

tegrations. In Network & Distributed System Security Symposium

(NDSS), February 2013.

[98] William Zeller and Edward W Felten. Cross-site request forgeries:

Exploitation and prevention, princeton (2008).

[99] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen,

Tao Wan, and Nicholas Weaver. Cookies lack integrity: Real-world

implications. In 24th USENIX Security Symposium (USENIX Secu-

rity 15), pages 707–721, Washington, D.C., August 2015. USENIX

Association.

[100] Yuchen Zhou and David Evans. Why aren’t http-only cookies more

widely deployed. Proceedings of 4th Web, 2, 2010.

[101] Yuchen Zhou and David Evans. Ssoscan: Automated testing of web

applications for single sign-on vulnerabilities. In Proceedings of the

23rd USENIX Conference on Security Symposium, SEC’14, pages

495–510, CA, USA, 2014. USENIX Association.

132

	Introduction
	Context
	The Problem
	Proposed Solutions
	Attack Patterns for Black-Box Security Testing of Multi-Party Web Applications
	Large-scale Analysis & Detection of Authentication Cross-Site Request Forgeries

	Overview of our contributions
	Structure of the thesis

	Attack Patterns for Black-Box Security Testing of Multi-Party Web Applications
	Introduction
	Background
	Attacks
	Threat Models

	From Attacks to Attack Patterns
	Approach
	Creating, reviewing, and improving Attack Patterns
	Security Testing Framework

	Implementation
	Inference
	Attack Pattern Engine

	Illustrative Example
	Evaluation
	Target MPWAs
	Results
	Manual Findings
	Disclosures

	Related Work
	Attack pattern-based Black-Box Techniques
	Other Black-Box Techniques
	Other Techniques

	Limitations and future directions

	Large-Scale Analysis & Detection of Authentication Cross-Site Request Forgeries
	Introduction
	Background
	CSRF Attacks
	Defending against CSRF Attacks

	Authentication CSRF Attacks (Auth-CSRF)
	Impacts of Auth-CSRF Attacks
	Selection of Auth-CSRF Attacks and Associated Processes
	Preventing Auth-CSRF: Challenges

	Manually Testing for Auth-CSRF Attacks
	Experiments (Manual)
	Selected Case Studies
	A Very Prominent Adult Website
	A Prominent Government Website for Tax Filing
	Web sites of Google and Microsoft
	twoo.com
	ebay.com

	(Semi-)Automatic Testing for Auth-CSRF
	CSRF-checker Concept
	Implementation
	Additional experiments with CSRF-checker

	Ethics & Responsible Disclosure
	Related Work
	Limitations

	Migration to Industry
	Importance of our contributions
	Blast and Industry
	Auth-CSRF and Industry

	Conclusion
	Bibliography

