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Abstract: Many “Industry 4.0” applications rely on data-driven methodologies such as Machine
Learning and Deep Learning to enable automatic tasks and implement smart factories. Among these
applications, the automatic quality control of manufacturing materials is of utmost importance to
achieve precision and standardization in production. In this regard, most of the related literature
focused on combining Deep Learning with Nondestructive Testing techniques, such as Infrared
Thermography, requiring dedicated settings to detect and classify defects in composite materials.
Instead, the research described in this paper aims at understanding whether deep neural networks and
transfer learning can be applied to plain images to classify surface defects in carbon look components
made with Carbon Fiber Reinforced Polymers used in the automotive sector. To this end, we collected
a database of images from a real case study, with 400 images to test binary classification (defect
vs. no defect) and 1500 for the multiclass classification (components with no defect vs. recoverable
vs. non-recoverable). We developed and tested ten deep neural networks as classifiers, comparing
ten different pre-trained CNNs as feature extractors. Specifically, we evaluated VGG16, VGG19,
ResNet50 version 2, ResNet101 version 2, ResNet152 version 2, Inception version 3, MobileNet version
2 , NASNetMobile, DenseNet121, and Xception, all pre-trainined with ImageNet, combined with
fully connected layers to act as classifiers. The best classifier, i.e., the network based on DenseNet121,
achieved a 97% accuracy in classifying components with no defects, recoverable components, and
non-recoverable components, demonstrating the viability of the proposed methodology to classify
surface defects from images taken with a smartphone in varying conditions, without the need for
dedicated settings. The collected images and the source code of the experiments are available in
two public, open-access repositories, making the presented research fully reproducible.

Keywords: quality control; carbon fiber reinforced polymers; CFRP; deep learning; transfer learning;
Industry 4.0

1. Introduction

In the fourth industrial revolution, commonly known as “Industry 4.0”, data-driven
methodologies such as Machine Learning (ML) and Deep Learning (DL) are recognized es-
sential for the implementation of production systems capable of self-organizing, predicting
(and correcting) their own faults, and adapting to variable human needs [1,2]. ML and DL
are enabling several Industry 4.0 applications, such as predictive maintenance [3], anomaly
detection [4], aided design [5], and many others [6].

A prominent example of an Industry 4.0 application is the automatic control of the
quality of products and their components [7]. Indeed, defect detection technology is capable
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of working in the long run with high precision, with obvious advantages over manual
quality control [8]. In addition to the quality control of the final product, as in plastic
injection molding [9,10], the detection of defects in the materials used in manufacturing is
considered pivotal in many application domains, from the reliability of aircrafts to the effi-
cacy of sanitary systems [11]. In this regard, the available literature focuses on integrating
traditional Nondestructive Testing (NDT) techniques, such as Infrared Thermography [12],
with ML and DL methodologies, in order to detect structural and inner defects that might
compromise the integrity of the composite materials.

Instead, this paper studies the use of deep Convolutional Neural Networks (CNNs) to
classify surface defects in composite materials and specifically Carbon Fiber Reinforced
Polymers (CFRP) for the automotive sector, using plain images of real defective parts, with-
out integrating any NDT techniques. Given the difficulty of obtaining analytic models to
automatically detect defects of CFRP-covered components, due to their complex structure,
and the challenge of standardizing characterization and measuring of such defects [13],
neural networks can help in addressing the challenge by being used in the quality control
of such components [14]. The images used in the experiments presented in this paper come
from the production of CFRP of “HP Composites Spa”, a company located in Ascoli Piceno,
Italy, and specialized in providing carbon fiber reinforced components. Specifically, in “HP
Composites Spa”, the quality control of carbon look components covered with CFRP is
performed with the naked eye by specialized staff to check for surface defects such as weft
discontinuities and porosities that might endanger the aesthetics of the components. Hence,
we want to understand if deep CNNs are suitable to automate or integrate the quality con-
trol by automatically processing plain images of carbon fiber reinforced components. As we
are interested in the appearance of carbon look components rather than the structural per-
formance (which has been extensively covered in the literature, such as in pultrusion [15]),
in this study, we aim at understanding whether a transfer learning approach is adequate to
classify the surface defects from smartphone pictures of the components. Therefore, we
do not apply any NDT techniques requiring dedicated settings, usually implemented to
detect structural or inner defects of components made of composite materials [16–19]. In
this regard, transfer learning is suitable as it implies the use of models already trained on a
large dataset to execute a different classification task, i.e., in a different feature space [20].

The research work performed on the “HP Composites Spa” case study and described
in this paper adds the following contributions to the state of the art of surface defect
detection in composite materials:

• A new database composed of plain images of CFRP-covered components for the auto-
motive sector is introduced. The database is intended to train and benchmark tech-
niques to classify defective and non-defective parts, as well as for multi-class classifica-
tion into non-defective, recoverable, and non-recoverable components, using the pic-
tures only, without thermography or any other NDT techniques. The database includes
400 images (200 per class) intended for the binary classification task and 1500 images
(500 per class) for the multi-class classification. All the images are 224 × 224 pixels
(96 ppi) in a JPEG format. The database is publicly released in an open-access
GitHub repository (the image database is publicly available at: https://github.com/
airtlab/surface-defect-classification-in-carbon-look-components-dataset, accessed on
10 July 2023).

• A systematic comparison of ten models for the classification of surface defects is pro-
vided. The models are deep neural networks based on ten pre-trained Convolutional
Neural Networks (CNNs), implemented to process the samples end to end, testing
the effectiveness of transfer learning and fine tuning in the classification of the surface
defects of carbon look components. Specifically, the tested pre-trained CNNs are
VGG16 and VGG19 [21], ResNet50 version 2, ResNet101 version 2, and ResNet152
version 2 [22], Inception version 3 [23], MobileNet version 2 [24], NASNetMobile [25],
DenseNet121 [26], and Xception [27]. The CNNs are combined with fully connected
layers, trained from scratch on the proposed dataset. The source code of the compari-
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son is publicly available in a GitHub repository (the source code of the experiments
is publicly available at: https://github.com/airtlab/surface-defect-classification-in-
carbon-look-components-using-deep-neural-networks, accessed on 10 July 2023).

• A real application of Industry 4.0 is demonstrated, proposing the use of DL to automate
the control of surface defects of carbon look components.

The main innovation introduced by the proposed approach is the possibility of avoid-
ing the dedicated settings to detect and classify surface defects as those required by the
ML and DL techniques available in the related literature. In this regard, the significance of
the proposed image database with respect to the literature relies in its use to train and test
techniques to detect surface defects on plain images, without the use of NDT techniques. In
addition, as it is based on CNNs that exploit transfer learning, the proposed approach has
the potential to be integrated in handheld devices to run the classification with the trained
models. In this way, the assessment of the aesthetics of the carbon look components would
be automated and standardized, without requiring complex skills. Furthermore, to the best
of our knowledge, this is the first work in surface defect classification for composite mate-
rials to publicly release the data and the source code of the tests, providing reproducible
results. To this end, it is worth noting that while the weights of the pre-trained networks
are available and linked in the source code repository, we do not provide the weights
of the fine-tuned models. In fact, our experiments are based on a stratified shuffle-split
cross-validation strategy, where the networks are fine-tuned ten different times on diverse
data, averaging the results got on the test sets. However, we do provide the code to run the
cross-validation, making our experiments fully reproducible.

The rest of the paper is organized as follows. Section 2 presents a literature review
about the use of deep learning for the detection of defects in composite materials, comparing
our methodology to some related research works. Section 3 describes the database built for
the experiments and the methodology followed to detect surface defects in the CFRP for
the automotive sector. Section 4 presents the experimental evaluation of the surface defect
detection applied to the CFRP used in HP Composites Spa, discussing the results. Finally,
Section 5 draws the conclusions of this research.

2. Related Works

Nondestructive Testing (NDT) includes a multitude of techniques for the evaluation
of materials and components without causing damage [28]. Therefore, even the properties
of composite materials are evaluated with different NDT techniques, such as Infrared
Thermography, Ultrasonic Testing, Radiographic Testing, and many others [29].

Following the effectiveness demonstrated in many application fields, such as image
processing, object detection, speech recognition, and pattern recognition in general [30],
DL is being integrated with NDT techniques, especially for the detection of defects that
might jeopardize the reliability of composite materials. To this end, therefore, we present
the works which are the state of the art of the integration of DL and NDT techniques,
and, as such, achieved the best performance. For example, Liu et al. [17,31] proposed to
use DL to improve the existing Infrared Thermography techniques. Specifically, they use
Generative Adversarial Networks (GAN) as an image augmentation approach to enhance
thermographic images in order to detect defects via Principal Component Analysis (PCA).
They tested their methodology on specimens fabricated with intentionally formed defects.
Differently, Bang et al. [16] suggested to use DL to directly detect defects by using Faster
Region-based Convolutional Neural Network (Faster RCNN) on thermographic images.
Specifically, they trained and validated an Inception V2 CNN [32] on 2802 thermographic
images, obtained via data augmentation from 467 original images downloaded from the
Internet. Then, they obtained a 75% average precision on 320 images of two composite
specimens (carbon fiber fabric and randomly oriented glass fiber) with artificial defects. A
similar study was conducted by Fang et al. [18] who used Mask-RCNN, an extension of
Faster CNN, on a dataset composed of 500 images of two different materials, plexiglass
and CFRP. They achieved an 86.2% average accuracy in detecting defects. Wei et al. [19]
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developed a U-Net [33] variant to segment damages on around 8000 thermographic images,
achieving the best F1 score of 92.74% in detecting the simulated defects on Carbon Fiber Re-
inforced Polymers (CFRP). Marani et al. [34] applied a CNN on seven videos (with various
lengths) generated by Step Heating/Long Pulse Thermography on Glass Fiber Reinforced
Polymers (GFRP). They achieved an average accuracy of 84.6% in classifying four defect
classes. Of course, Infrared Thermography is not the only NDT technique combined with
DL. For example, Meng et al. [35] applied DL on ultrasonic signals, developing a CNN
to classify defects on CFRP laminates. Their CNN-based classifier performed ultrasonic
pattern recognition on 1000 samples produced on purpose (5000 were used for training) and
was able to classify 10 defect classes with a 98% recognition rate. Gong et al. [36] applied a
CNN to X-ray images to detect slag inclusions in aeronautics composite materials. However,
due to the lack of defective components to include in the dataset, they trained their CNN
on different data (using X-ray images of welded components) and then applied the trained
model to the detection of slag inclusion defects in aeronautics composite materials. They
achieved a 96.8% accuracy on 260 testing samples.

Despite the use of different techniques to detect defects in diverse materials, the
described related works share some common traits:

• They apply DL on top of NDT techniques, such as Infrared Thermography, to detect
structural and inner defects inside the composite materials.

• Most of the described works [16,17,31,35] record accuracy metrics in the detection of
defect on specimens with artificial damages, produced on purpose.

• They do not publicly release the data and the source code of the experiments performed
to collect the accuracy metrics.

The methodology proposed in this paper differs from the described works on these
points. Specifically, we identify components that might compromise the aesthetics of the
carbon fiber reinforced fabric by directly applying deep neural networks on images, without
using any specific NDT technique. In fact, the suggested methodology circumvents the
necessity for specific configurations needed by the NDT techniques. This characteristic
distinguishes it from described related works. Combining DL with NDT techniques
requires tailored settings to identify and categorize defects in CFRP components. These
specialized configurations can be resource-intensive, requiring precise tuning of parameters
and advanced expertise to set up properly. Our proposed approach simplifies this process,
enhancing the accessibility and applicability of automated quality assessment in CFRP
manufacturing. Therefore, in our work, we focus on surface defects in composite materials,
following the results achieved, in general, in surface defect detection in other materials. In
fact, DL achieved outstanding results in defect recognition [37] and has been successfully
applied to the detection of surface defects in different materials, for example, on metal [38],
steel [39,40], fabric [41,42], and wood [43,44]. Moreover, we evaluated our models on
images of real defective parts instead of introducing artificial defects. With respect to the
works that use artificial defects to test their methodologies, in our work, we use images
of real defects, trying to cope with the level of complexity and randomness that artificial
defects might fail to replicate. They can vary greatly in shape, size, location, and context,
unlike synthetic defects, which are usually standardized and less representative of the true
range of possible flaws. By training and evaluating our models on real defective parts, we
address the capacity to accurately recognize and classify an array of real-world defects,
enhancing the robustness and practical utility of the classification models.

The proposed image database also reflects the listed differences with the related works.
It contains real-world images of defective and non-defective components, with no synthetic
data; in addition, it is composed of plain images only, i.e., it does not include images
collected with thermal cameras or in other dedicated settings typical of NDT techniques.
Moreover, we released the images included in the proposed database and the source code
of experiments in two public open-access GitHub repositories, making our experiments
fully reproducible.
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3. Materials and Methods

The goal of this research is to understand whether we can classify surface defects in
components made of composite materials (specifically those covered with CFRP) using deep
neural networks on plain images without applying any NDT techniques with dedicated
settings. In fact, the aesthetics of carbon look components are essential in the automotive
sector, to the point that, in “HP Composites Spa”, the quality of such components is
manually checked with the naked eye by specialized operators.

With the aim of investigating whether deep neural networks can be successfully
applied to images of surface defects taken with a smartphone, we built a database of
plain images of carbon look components intended to benchmark classifiers of such surface
defects. The database was split into two datasets to test both binary classification (“defect”
vs. “no defect”) and multi-class classification, distinguishing between defect types. To
perform such classifications, we proposed an end-to-end classifier architecture using deep
neural networks and transfer learning, comparing ten different pre-trained CNNs as feature
extractors. To this end, Sections 3.1 and 3.2 describe the proposed database of images and
deep neural network architecture.

3.1. Proposed Image Database

To evaluate the proposed end-to-end classifiers of surface defects, we built a database
of plain images of the carbon look components produced in “HP Composite Spa”. The
images are 224 × 224 pixels (96 ppi) in the JPEG format. The images were originally taken
at 3968 × 2976 pixels, then cropped at the center and resized at 224 × 224 to cope with
the input size of the pre-trained CNNs used in this study. Moreover, the images depict
components with carbon covered flat surfaces or with a slight curvature. The database is
split into two datasets:

• One dataset is binary, including two classes. A total of 200 images are labeled as “no
defect” (Figure 1a), as they are with no defects or present limited recoverable porosities;
200 images are labeled as “defect” (Figure 1b), as they include weft discontinuities.
This set of images is intended for binary classification, to test the performance of
models that sort the components into defective or non-defective.

• The second dataset is multi-class, including three classes, i.e., “no defect”, with recov-
erable defects, and with non-recoverable defects. The dataset contains 1500 images,
500 per class. The “no defect” class (Figure 2a) includes images of components with-
out any surface defect. The recoverable defect class (Figure 2b) includes images of
components with limited porosities and the infiltration of external materials (such as
aluminum). Such defects can be treated and corrected. Finally, the non-recoverable
defect class (Figure 2c) includes images of components with weft discontinuites, severe
porosities, and resin accumulations. In “HP Composite Spa”, these components are
discarded, as their appearance cannot be recovered. With such dataset, we test the
capability of the proposed models to classify multiple defect classes.

Specifically, the recoverable defects are:

• Isolated porosities, i.e., isolated holes in the surface of the material that only damage
the aesthetic performance, but not the structural tightness (an example is provided in
Figure 2b).

• Infiltration of foreign objects (aluminum or polyethylene) on the material surface that
can be removed.

Instead, the non-recoverable defects are:

• Severe porosities, i.e., where the holes in the surface of the material are not isolated
and cover most of the surface (an example is provided in Figure 2c).

• Weft discontinuities, i.e., all the cases in which the characteristic texture of the interwo-
ven carbon fiber bundles is altered, generally caused by a wrong overlapping of the
materials or poor fiber adhesion to the mold (an example is provided in Figure 1b).
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• Accumulations of resin caused by the imperfect calibration of the spaces between the
two fiber molds and the silicone mandrel interposed between them.

The images are real-world examples of all the surface defects that “HP Composites
Spa”, the company that provided the images, need to classify.

(a) (b)

Figure 1. Negative (a) and positive (b) samples from the binary dataset. The negative sample includes
no defect. Instead, the positive sample has a weft discontinuity at the center and porosities in the
carbon fiber reinforced fabric covering the component.

(a) (b) (c)

Figure 2. Negative (a), recoverable defect (b), and non-recoverable defect (c) class samples from the
multi-class dataset. The negative samples has no defects. The recoverable defect sample includes spare
porosities. The non-recoverable defect sample includes severe porosities and weft discontinuities.

The images were manually labeled according to the recommendations of the domain
experts, i.e., the HP Composite staff, in particular to distinguish between recoverable
and non-recoverable defects. The images were taken from different angles and distances,
without standard lighting. In this way, we emulated the conditions that an operator, in
charge of controlling the appearance of the components, would face using a handheld
device for the quality control, without dedicated settings as in NDT. Thus, we investigated
the capability of the proposed models of working under varying conditions in order
to assess the viability of our approach based on plain images taken in a non-standard,
non-fixed environment.

We trained and tested the models proposed in this paper on both datasets, in their
original form. Moreover, we ran the classification tests on an augmented version of the
datasets. In fact, despite the fact that 400 images and 1500 images are available to test the
classification with two classes and three classes, respectively, deep neural networks usually
require a higher number of training images to reduce the classification error. To face such
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issue, data augmentation has been proven useful to cope with the scarcity of image data
and overfitting problems [45]. To this end, in our experiments, we augmented the datasets
by flipping the original images on both axes. Thus, we built an augmented binary dataset
composed of 1200 images (600 per class): 400 are the original images, 400 are the same
images, but flipped on the horizontal axis, and 400 are flipped on the vertical axis. Similarly,
we built an augmented multi-class dataset composed of 4500 images (1500 per class). We
applied flipping (i.e., a 180◦ rotation on both axis) without using other augmentation
techniques (such as rotation and scaling) to check the capability of the proposed model
to converge to a proper training with a relatively small set of data for fine-tuning. In
addition, adding other augmentation techniques to the collected dataset could have caused
overfitting in the models, as it would have increased the replication of the same data.

3.2. Proposed Classification Model

Figure 3 shows the architecture of the end-to-end models proposed in this paper. To
classify the plain images of carbon look components, we compared ten models based on ten
deep CNNs pre-trained on the Imagenet database [46] used as a feature extractor, combined
with a classifier based on fully connected dense layers. In fact, we applied a transfer
learning methodology, i.e., the use of models already trained on a large dataset to execute
a different classification task. In addition to dealing with the scarcity of training data,
transfer learning can achieve better generalization than a dedicated training from scratch
and prevent overfitting [47,48]. In this regard, transfer learning based on the pre-training on
ImageNet has been recognized as particularly effective for general-purpose classifiers [49].
While the database proposed in this paper is too small to train the CNNs from scratch,
training from scratch on images of surface defects of carbon look components would
be feasible, at the risk of introducing overfitting. Therefore, we compared ten different
pre-trained CNNs, namely VGG16, VGG19, ResNet50V2, ResNet101V2, ResNet152V2,
InceptionV3, MobileNetV2, NASNetMobile, DenseNet121, and Xception. We removed
from the pre-trained CNNs the fully connected layers, averaging the output of the last
convolutional layers with Global Averaging Pooling. The obtained feature vector was used
as the input for fully connected dense layers composed of neurons with the Rectified Linear
Unit (ReLU) activation function. The final classification was performed by a dense layer
using the Softmax activation function, composed of two neurons for the classification on
the binary dataset, and three neurons for the multi-class dataset.

Carbon look component 
image

Feature Extraction
(CNN pretrained on Imagenet + Global Average Pooling)

Image
Classification

Classifier
(ReLU + Sofmax Dense Layers)

Pretrained 
CNN

Global Average
Pooling

Defect/No defect (binary) 
Recov./Non-recov./No defect (multiclass)

Figure 3. The architecture proposed to classify the plain images of carbon look components. The
input is processed by a CNN pre-trained on the Imagenet database. The CNN, without its final fully
connected layers, is combined with a Global Average Pooling layer and used to extract features. Then,
fully connected layers are added and trained from scratch on the dataset. The final classification is
performed by the last dense layer, with the Softmax activation function. Different combinations of
fully connected layers (and hyperparameters) have been tested to improve the final classification (see
Tables 1 and 2).

We trained each model in an end-to-end fashion on the proposed datasets, fine-tuning
the pre-trained CNNs and training the fully connected layers from scratch. Specifically,
we looked for the best hyperparameters in terms of classification accuracy on the binary
dataset and the multi-class dataset. We tuned the following parameters:

• The number of the CNN final layers to be fine-tuned on the proposed dataset, testing
8, 4, and 0. This means that, during the end-to-end training of the model, the weights
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were freezed for the starting layers of the pre-trained CNNs, while for the last 8 (or 4
or none) layers, the weights were modified with the backpropagation.

• The optimizer to perform the error backpropagation, testing the Stochastic Gradient
Descent (SGD) with a 0.9 momentum and Adam. For both, we compared different
learning rates, i.e., 0.001 and 0.0001.

• The use of Batch Normalization for regularization between the Global Average Pooling
and the first dense layer.

• The number of fully connected layers to be added to the pre-trained CNNs to per-
form the final classification. Specifically, we tested a single dense layer composed of
512 ReLU neurons followed by a final layer with Softmax activation, and two dense
layers composed of 256 and 128 ReLU layers, followed by the Softmax layer.

To test the impact of the hyperparameters on the classification performance, we used
the same evaluation protocol described in Section 4.1, based on a stratified shuffle split
cross-validation repeated ten times. For all the models, we used the same batch size, i.e.,
32 images, and the same number of training epochs, i.e., 100, applying an early stopping
strategy after 5 epochs without lowering the validation loss to avoid the overfitting.

To this end, Table 1 lists the configurations of hyperparameters which offered the
best results in terms of classification accuracy among those tested on the binary dataset,
including the fully connected layers used for classification and trained from scratch on
the proposed dataset. In most of the models, the last 8 layers of the pre-trained CNNs
were fine-tuned. Instead, the model based on MobileNetV2 offered its best results by
freezing the weights of all the layers in the pre-trained CNN, training only the dense layers
added for the final classification. With NASNetMobile and Xception, only the last 4 layers
were fine-tuned. The models based on VGG16, VGG19, and InceptionV3 offered the best
classification accuracy using the SGD optimizer for training. Instead, the other seven
models obtained the best performance with Adam. The Batch Normalization did not add
any improvement on the classification accuracy. Finally, the models based on MobileNetV2,
NASNetMobile, and Xception offered the best results using two consecutive dense layers
with 256 and 128 ReLU neurons. The other seven models obtained the best metrics with
the dense layer composed of 512 ReLU neurons.

Table 1. The hyperparameters and the final layers of each model which obtained the best results on
the binary augmented dataset.

Fine-Tuning Optimizer Learning
Rate

Batch
Normalization

Dense
512 Units

Dense
256 Units

Dense
128 Units

VGG16 Last 8 SGD 0.0001 - X - -

VGG19 Last 8 SGD 0.001 - X - -

ResNet50V2 Last 8 Adam 0.0001 - X - -

ResNet101V2 Last 8 Adam 0.001 - X - -

ResNet152V2 Last 8 Adam 0.0001 - X - -

InceptionV3 Last 8 SGD 0.001 - X - -

MobileNetV2 0 Adam 0.001 - - X X

NASNet Last 4 Adam 0.0001 - - X X

DenseNet121 Last 8 Adam 0.0001 - X - -

Xception Last 4 Adam 0.0001 - - X X

Table 2 includes the combinations of hyperparameters with the best results in terms of
classification accuracy on the multi-class dataset. All the models achieved the top accuracy
by fine-tuning the last 8 layers of the pre-trained CNNs and using a single dense layer with
512 ReLu neurons. The Batch Normalization improved the results for the models based
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on VGG16 and VGG19. These two models and the one based on MobileNetV2 used the
SGD optmizer for the training, whereas the other seven models obtained the best metrics
with Adam.

Table 2. The hyperparameters and the final layers of each model which obtained the best results on
multi-class augmented dataset.

Fine-Tuning Optimizer Learning
Rate

Batch
Normalization

Dense
512 Units

Dense
256 Units

Dense
128 Units

VGG16 Last 8 SGD 0.001 X X - -

VGG19 Last 8 SGD 0.001 X X - -

ResNet50V2 Last 8 Adam 0.001 - X - -

ResNet101V2 Last 8 Adam 0.001 - X - -

ResNet152V2 Last 8 Adam 0.0001 - X - -

InceptionV3 Last 8 Adam 0.0001 - X - -

MobileNetV2 Last 8 SGD 0.0001 - X - -

NASNet Last 8 Adam 0.0001 - X - -

DenseNet121 Last 8 Adam 0.0001 - X - -

Xception Last 8 Adam 0.0001 - X - -

4. Experimental Evaluation

We compared the ten proposed end-to-end deep neural networks on the collected
image database, evaluating accuracy metrics for the binary and the multi-class classification.
In this section, we report the details about the results achieved by the best configuration (i.e.,
the set of hyperpameters, among those tested, which achieved the best accuracy) of each
classifier, as explained in Section 3.2. We aim at understanding whether the pre-trained
CNN-based networks can be used to detect and classify the surface defects of carbon
look components, in the HP Composite case study and in general. Indeed, in addition to
the creation of a baseline of metrics on the collected images, a comparison of classifiers
might be relevant to other case studies about surface defect detection and classification in
composite materials.

Therefore, in the following subsections, we describe the experimental setup as well as
the metrics (Section 4.1) evaluated to compare the classifiers. Moreover, we present and
discuss the results of the evaluation (Section 4.2). Finally, we analyze the limitations of our
experimental evaluation (Section 4.3).

4.1. Evaluation Protocol and Metrics

We tested the proposed end-to-end deep neural networks on the binary and multi-
class datasets, using both the original version and the augmented one, by applying a
stratified shuffle split cross-validation scheme. In this regard, we repeated a randomized
80-20 split ten times, using the 80% of the data as the training set, and the 20% as the test
set, preserving the percentage of samples from each class, in each split. A total of 12.5% of
the training images, i.e., 10% of the whole dataset, was used as validation data in each split.
To implement a fair comparison, the splits were the same for all the tested models. In this
way, we tested the generalization capability of our models, making sure that they did not
overfit on a specific data split. Table 3 includes the number of training, validation, and test
images for each split of the described cross-validation scheme.
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Table 3. Number of training, validation, and test images for each dataset in each randomized split of
the stratified shuffle split cross-validation scheme.

Dataset Total Training Validation Test

Original Binary 400 280 40 80

Augmented Binary 1200 840 120 240

Original Multi-class 1500 1050 150 300

Augmented Multi-class 4500 3150 450 900

As highlighted in the Section 1, a Jupyter notebook with the described experiments
is available in a public GitHub repository in order to guarantee the reproducibility of the
tests. The experiments ran on a virtual machine in a cloud environment, equipped with an
8-core Intel Xeon CPU E5-2623 v4 (2.60 GHz) (Intel Corporation, Santa Clara, CA, USA),
30 GB of RAM, and a Nvidia Quadro M4000 GPU (Nvidia Corporation, Santa Clara, CA,
USA), using Keras 2.6.0, TensorFlow 2.6.0, and scikit-learn 1.0.2.

We compared the proposed end-to-end networks by measuring the average testing
accuracy over the ten splits of the cross-validation scheme. Therefore, in each iteration, we
computed the ratio between the samples which are correctly classified and the total number
of samples in the test set. Moreover, we aggregated the results in each split to compute:

• The precision for each class, i.e., the ratio between the number of samples correctly
classified as belonging to a class and the total number of samples labeled as that class
in the test set.

• The recall for each class, i.e., the ratio between the number of samples correctly
classified as belonging to a class and the total number of samples available for that
class in the test set.

Precision and recall can be formulated in terms of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) according to the following equations:

precision =
TP

TP + FP
, (1)

recall =
TP

TP + FN
. (2)

In the binary classification, to compute the precision and recall of a class, the samples
of that class are considered positive, whereas the samples of the other class are considered
negative. In the multi-class classification, precision and recall for a C class generalize to the
following equations:

precisionC =
TC

TC + FC
, (3)

recallC =
TC

TC + F
�C

, (4)

where TC is the number of samples correctly classified as C, FC represents the number of
samples labeled as C but actually belonging to a different class, and F

�C
is the number of

samples actually belonging to C but labeled with a different class.
Finally, we report the Receiver Operating Characteristic (ROC) curve and the Area

Under the Curve (AUC) for the best model on both dataset to provide a complete picture
of the diagnostic capabilities of the end-to-end networks. Considering the “no defect” as
the negative class and the “defect” as the positive class, the ROC curve shows the true
positive rate (TPR, i.e., the recall of the “defect” class) against the false positive rate (FPR,
i.e., 1 minus the recall of the “no defect” class) when the classification threshold varies,
for all the splits of the cross-validation. In the multi-class classification, the ROC curve
is computed micro-averaging the ROC curves obtained for each label by binarizing the
output (i.e., by considering one label as positive and all the other as negative).
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4.2. Results and Discussion

In this subsection, we analyze the metrics obtained by the proposed neural networks
on the collected image database, discussing the results on the binary classification task (“no
defect” vs. “defect”) and the multi-class classification task (“no defect” vs. “recoverable de-
fect” vs. “non-recoverable defect”). We also report on the impact of the data augmentation
on the accuracy of the proposed neural networks.

4.2.1. Results on the Binary Classification Task

Table 4 includes the class precision and recall obtained by the end-to-end networks
based on different pre-trained CNNs on the original binary dataset. The metrics are
averaged across the ten splits of the stratified shuffle split cross-validation scheme. With
140 training images per class, the end-to-end networks struggle to converge to a good
classification result for both classes, given that precision and recall are below 90% for all the
models. In fact, the results vary across different data splits, with ResNet101V2 obtaining
the highest standard deviation in the recall of the “no defect” class (17.64%). For example,
in one of the splits, the network based on ResNet101V2 wrongly classifies 24 “no defect”
samples out of 40 as containing defects, achieving a recall of 35%, whereas all the 40 “defect”
samples are correctly classified, with a 100% recall. This means that, on such data split, the
network tends to label most of the samples as defective. On the contrary, in a different data
split, the ResNet101V2-based model correctly classifies 39 out of 40 “no defect” samples
(recall 97.5%), but wrongly labels 30 out of 40 “defect” samples (recall 25%), tending to
label the samples as “no defect”. The best classifier is the network based on Xception,
achieving the highest recall (87.64%) for the “no defect” class, and the highest precision
(87%) and recall (89.75%) for the “defect” class. Xception also obtains the second-best
precision (89.57%) for the “no defect” class, with the lowest standard deviation (2.69%).
This means that the Xception-based model is capable of correctly classifying around 90% of
the testing samples, independently from the label. The second-best model is the one based
on DenseNet121, obtaining scores which are two percentage points below those of Xception.
The other models achieve lower precision and recall, with higher standard deviation.

Table 4. Average class precision and recall, with standard deviation, on the original binary dataset.
The metrics are computed over the 10 splits of the stratified shuffle split cross-validation scheme. The
best values are highlighted in bold.

No Defect Defect
Precision Recall Precision Recall

VGG16 85.26 ± 4.08% 79.00 ± 9.23% 81.03 ± 6.48% 86.00 ± 5.15%
VGG19 85.01 ± 6.89% 81.25 ± 8.16% 82.71 ± 6.58% 84.50 ± 9.60%

ResNet50V2 87.68 ± 5.60% 77.75 ± 7.37% 80.26 ± 5.84% 89.00 ± 4.77%
ResNet101V2 89.89± 12.43% 60.00 ± 17.64% 71.18 ± 8.56% 88.25 ± 21.51%
ResNet152V2 82.36 ± 4.79% 78.25 ± 6.23% 79.54 ± 4.13% 82.75 ± 6.37%
InceptionV3 83.86 ± 5.87% 73.25 ± 10.31% 76.80 ± 6.94% 85.50 ± 6.60%

MobileNetV2 83.83 ± 4.85% 75.75 ± 5.13% 77.96 ± 3.26% 85.00 ± 5.81%
NASNet 84.97 ± 5.64% 76.25 ± 7.00% 78.62 ± 5.32% 86.25 ± 5.94%

DenseNet121 87.22 ± 4.62% 85.25 ± 3.61% 85.60 ± 3.04% 87.25 ± 5.41%
Xception 89.57 ± 2.69% 87.64± 4.70% 87.00± 5.68% 89.75± 3.05%

Therefore, the results on the original binary dataset do not support the idea of classify-
ing plain images of carbon look components into two classes, i.e., with defect and with no
defect, at least when few training samples are available. With 140 training images per class,
transfer learning is not effective for such binary classification task.

However, a significant improvement in the collected metrics occurs with data augmen-
tation. To this end, Table 5 lists the average values of class precision and recall computed
on the augmented binary dataset. For example, the recall of the “no defect” class increases
from 60% ± 17.6% to 94 ± 3.1% for the model based on ResNet101V2. In general, all the
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networks are much more stable, with standard deviations significantly lower than those
obtained on the original dataset.

Table 5. Average class precision and recall, with standard deviation, on the augmented binary dataset.
The metrics are computed over the 10 splits of the stratified shuffle split cross-validation scheme. The
best values are highlighted in bold.

No-Defect Defect
Precision Recall Precision Recall

VGG16 93.71 ± 2.10% 93.00 ± 3.01% 93.10 ± 2.82% 93.75 ± 2.12%
VGG19 94.45 ± 3.69% 93.42 ± 3.34% 93.58 ± 2.97% 94.33 ± 4.15%

ResNet50V2 94.92 ± 3.40% 94.75 ± 2.91% 94.86 ± 2.56% 94.75 ± 3.93%
ResNet101V2 92.58 ± 3.14% 94.00 ± 3.09% 94.00 ± 2.87% 92.33 ± 3.45%
ResNet152V2 92.43 ± 2.08% 91.67 ± 2.86% 91.82 ± 2.43% 92.42 ± 2.37%
InceptionV3 94.44 ± 4.12% 91.33 ± 3.21% 91.62 ± 3.01% 94.50 ± 4.38%

MobileNetV2 96.88± 1.17% 95.42 ± 1.50% 95.50 ± 1.43% 96.92± 1.18%
NASNet 94.36 ± 2.42% 92.33 ± 2.20% 92.53 ± 1.98% 94.42 ± 2.58%

DenseNet121 96.82 ± 2.43% 97.33± 1.66% 97.33± 1.63% 96.75 ± 2.59%
Xception 96.63 ± 1.37% 97.17 ± 1.55% 97.18 ± 1.50% 96.58 ± 1.46%

The impact of data augmentation is evident in Figure 4, which reports the average accu-
racy (and its standard deviation) of each model across the ten splits of the cross-validation, in
the original and in the augmented binary datasets. The best model for the binary classification
task on the augmented dataset is the one based on DenseNet121, achieving a 97.04% (±1.7)
average accuracy, increasing by 11% its performance obtained on the original dataset. Xcep-
tion scores a similar average accuracy (96.88%) but with a lower standard deviation (0.86%).
MobileNetV2 also obtains a 96.17% accuracy (±1.05%). The model based on ResNet101V2
is the one with the biggest improvement from the original dataset to the augmented one,
improving from a 74.12% (±6.4%) average accuracy to 93.17% (±2.09%). In addition, the
impact of data augmentation is highlighted by the ROC curve reported in Figure 5a for the
original dataset and in Figure 5b for the augmented dataset, for the DenseNet121-based model.
In the augmented dataset, the curve shows a lower variance, i.e., a greater stability of the
classifier across the ten splits of the stratified shuffle split cross-validation. The average AUC
is also greater (99.25 ± 0.56%) than that of the original dataset (94.08 ± 2.42%).

VGG16 VGG19 ResNet50V2 ResNet101V2 ResNet152V2 InceptionV3 MobileNetV2 NASNet DenseNet121 Xception0
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Figure 4. Comparison of the average accuracy (%), with standard deviation, on the original binary
dataset (blue) and the augmented one (yellow).

Therefore, the results achieved on the augmented dataset allow concluding that the
classification of plain images into containing defects or not is feasible from smartphone
images. The results are promising, as the best models (DenseNet121, Xception) achieve
around 97% accuracy across all the splits of the cross-validation scheme.
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Figure 5. ROC curve for each split of the stratified shuffle split cross-validation scheme for the
DenseNet121-based model, on the original binary dataset (a) and the augmented one (b).

4.2.2. Results on the Multi-Class Classification

The results on the multi-class classification exhibit a trend similar to those of the binary
classification: the classification accuracy improves when using the augmented dataset
instead of the original one. To this end, Table 6 shows the average class precision and
recall on the original multi-class dataset, computed across the ten splits of the stratified
shuffle split cross-validation scheme. All the ResNet-based models cannot converge to a
proper classification on all the classes, interpreting as “recoverable” or “non-recoverable”
images with no defect. Their classification capability strongly depends on the way data
are randomly split. For example, ResNet50V2 exhibits a 21.20% standard deviation on
the 61.60% recall for the “no defect” class. On the original dataset, the models which
seem to converge to the classification of samples are those based on VGG16, VGG19, and
DenseNet121 with the precision and recall between 86% and 93% for each class. Instead, all
the other models obtain lower metrics.

Table 6. Average class precision and recall, with standard deviation, on the multi-class original dataset.
The metrics are computed over the 10 splits of the stratified shuffle split cross-validation scheme. The
best values are highlighted in bold.

No Defect Recoverable Non-Recoverable
Precision Recall Precision Recall Precision Recall

VGG16 88.05 ± 2.52% 90.80± 2.96% 89.93± 4.36% 91.10± 3.11% 93.00± 3.12% 88.50 ± 4.50%
VGG19 88.89± 3.39% 89.40 ± 4.50% 89.70 ± 3.76% 89.40 ± 3.80% 91.95 ± 3.78% 91.30 ± 2.57%

ResNet50V2 82.61 ± 5.45% 61.60 ± 21.20% 76.31 ± 7.41% 79.70 ± 9.58% 76.09 ± 12.47% 88.50 ± 2.69%
ResNet101V2 79.19 ± 3.94% 74.80 ± 11.04% 80.93 ± 6.92% 77.80 ± 5.36% 81.38 ± 5.39% 87.60 ± 5.68%
ResNet152V2 74.03 ± 4.89% 72.60 ± 12.03% 83.20 ± 7.15% 69.90 ± 6.49% 72.96 ± 9.34% 84.00 ± 6.13%
InceptionV3 82.21 ± 3.83% 79.60 ± 2.73% 83.27 ± 1.90% 83.60 ± 4.76% 86.21 ± 2.72% 88.20 ± 2.44%

MobileNetV2 78.01 ± 3.18% 88.60 ± 3.01% 85.14 ± 3.03% 83.00 ± 3.19% 91.00 ± 2.78% 80.60 ± 5.10%
NASNet 78.76 ± 3.02% 77.50 ± 3.61% 84.52 ± 2.99% 83.70 ± 3.16% 83.04 ± 2.52% 84.70 ± 3.55%

DenseNet121 86.02 ± 2.85% 87.10 ± 3.48% 89.90 ± 3.02% 88.40 ± 2.80% 91.37 ± 3.53% 91.40± 2.94%
Xception 83.92 ± 3.95% 87.10 ± 3.70% 87.57 ± 2.41% 87.30 ± 3.72% 90.46 ± 3.79% 86.90 ± 2.88%

The classification capability of the proposed models significantly improves when using
the augmented dataset, as shown in Table 7. The models based on DenseNet121, VGG16,
and VGG19 obtain more than 95% of precision and recall for all the classes. In general, all
the models display better performance than the original dataset.
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Table 7. Average class precision and recall, with standard deviation, on the multi-class augmented
dataset. The metrics are computed over the 10 splits of the stratified shuffle split cross-validation
scheme. The best values are highlighted in bold.

No Defect Recoverable Non-Recoverable
Precision Recall Precision Recall Precision Recall

VGG16 95.54 ± 1.36% 97.93± 0.94% 97.96± 1.00% 96.77± 1.21% 96.80 ± 1.11% 95.50 ± 1.39%
VGG19 95.29 ± 1.51% 97.13 ± 1.14% 97.17 ± 0.88% 95.93 ± 1.39% 96.61 ± 0.88% 95.93 ± 1.67%

ResNet50V2 89.20 ± 3.61% 85.93 ± 6.42% 88.28 ± 5.15% 90.97 ± 2.48% 90.23 ± 4.49% 89.87 ± 6.23%
ResNet101V2 87.27 ± 3.72% 85.80 ± 9.26% 91.78 ± 4.46% 87.97 ± 3.84% 87.81 ± 4.97% 91.97 ± 3.63%
ResNet152V2 89.37 ± 3.36% 86.93 ± 4.78% 89.07 ± 2.96% 90.47 ± 2.81% 89.84 ± 4.84% 90.17 ± 4.32%
InceptionV3 93.51 ± 1.77% 95.13 ± 1.28% 95.78 ± 0.61% 94.60 ± 1.55% 94.96 ± 1.44% 94.43 ± 1.41%

MobileNetV2 91.05 ± 0.79% 94.63 ± 1.26% 95.45 ± 1.31% 92.70 ± 1.33% 94.21 ± 1.78% 93.17 ± 1.34%
NASNet 90.97 ± 1.20% 92.47 ± 2.14% 93.38 ± 1.57% 91.20 ± 0.56% 92.71 ± 1.33% 93.27 ± 1.21%

DenseNet121 95.85± 1.38% 97.20 ± 0.78% 97.81 ± 0.91% 96.30 ± 1.22% 97.31± 0.96% 97.40± 1.10%
Xception 94.08 ± 1.72% 96.77 ± 0.88% 97.32 ± 1.24% 95.83 ± 1.54% 96.33 ± 1.24% 94.97 ± 1.57%

The good performance with the augmented dataset, in comparison with the original
one, is evident in Figure 6, which reports the average accuracy across the ten splits of the
cross-validation scheme. The best model in the multi-class classification is the one based
on DenseNet121, which has the best average accuracy, 96.97%, and the lowest standard
deviation, 0.59%. The models based on VGG16 and VGG19 are very close, with 96.73 (±0.64)
and 96.33% (±0.85) respectively. The model based on Xception, which was the second
best in the binary classification, also exhibits a promising accuracy, scoring 95.86% (±0.74).
Hence, in addition to very good accuracy, the low standard deviation highlights that
these models are independent from the data splits of the cross-validation, demonstrating
their generalization capability. The good impact of data augmentation on the classifiers
is depicted in Figure 7, which includes the ROC curves across the cross-validation splits
of the model based on DenseNet121 on the multi-class dataset. The diagnostic capability
of the classifier clearly increases in the augmented dataset, with the curves tending to the
upper left corner of the diagram independently from a specific data split.
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Figure 6. Comparison of the average accuracy (%), with standard deviation, on the original multi-
class dataset (blue) and the augmented one (yellow).

These results allow concluding that classifying surface defects of carbon look com-
ponents from plain images is definitely possible and transfer learning can be applied;
different deep neural networks based on pre-trained CNNs are able to classify 900 images
into recoverable, non-recoverable or those with no surface defects. The simplicity of the
proposed models and the good accuracy achieved on images taken from different points of
view, with varying lighting, suggest that handheld devices could be used in practice, in
addition to the naked-eye quality control of carbon look components currently performed
in the company that provided the data for our experiments. In this way, a member of staff
could spot the defect and use the proposed methodology to classify it in a standardized
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fashion. In fact, such architectures can be deployed in mobile devices or in the cloud and
used to process smartphone pictures during quality control.
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Figure 7. ROC curve for each split of the stratified shuffle split cross-validation scheme for the
DenseNet121-based model, on the multi-class dataset (a) and the augmented one (b).

4.3. Limitations

The results are promising both in terms of binary classification (“defect” vs. “no
defect”) and multi-class classification (“recoverable” vs. “non-recoverable” vs. “no defect”),
but present some limitations. The proposed datasets include 400 images for the binary
classification task and 1500 images for the multi-class classification task. Data augmentation
solves the scarcity of training images and is, in general, recognized useful to limit overfitting.
However, testing with more original images of diverse components would allow drawing
more general conclusions. This limitation can be addressed by collecting even more real-
world images to expand the dataset and furtherly limit overfitting. Nevertheless, to the
best of our knowledge, the database released with this paper is the first publicly available
set of plain images of surface defects in carbon look components.

Furthermore, the collected dataset contains real-world images, with realistic noise (all
the images were acquired with a smartphone) and include all the defects relevant to the
company that has been our case study. In this regard, our study focused on surface defects.
Indeed, other applications might include different type of defects (including structural
ones) and more noise. Therefore, to obtain more general results and detect different type of
defects, the dataset should be expanded and a different training run. Moreover, the image
resolution (224 × 224 pixels) and the collection of images in a real-world scenario, with a
smartphone without standardizing the point of view, show the capability of our classifiers
in low-quality conditions. However, to obtaion more general results about the robustness of
the proposed models with even lower quality images, the dataset can be further expanded
by adding artificial blur and noise to the images.

Finally, the results suggest that the proposed classifiers could be added to the naked-
eye quality control of carbon look components currently performed in the company that was
our case study. However, before proceeding to production, a study dedicated to verifying
computation times and the image processing on handheld devices might be necessary in
order to draw definitive conclusions in this regard. Furthermore, we obtained the presented
results by testing different combinations of hyperparameters of the proposed models. Those
based on DenseNet121 and Xception for the binary dataset, and DenseNet121 and VGG16
for the multi-class dataset, showed the best generalization capability. A more detailed
investigation about the best hyperparameters specifically dedicated to such models might
be worth conducting to find the optimal combination.
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5. Conclusions

In this paper, we presented a comparison of ten end-to-end neural networks based
on pre-trained CNNs, developed to classify surface defects in carbon look components
(covered with CFRP) in a transfer learning fashion. We compared the proposed networks
on a database of images from a real case study, with pictures of carbon look components
for the automotive sector taken with a smartphone, under varying lighting conditions
and from different points of view. In this way, we studied the use of the classification of
plain images as a tool to automate or integrate a task currently performed by specialized
operators with the naked eye. Our approach differs from other methodologies available
in the literature as it does not use NDT techniques requiring dedicated settings, such as
Infrared thermography.

The results are promising: the best model, the one based on DenseNet121, is capa-
ble of distinguishing between 900 images of components with recoverable defects, non-
recoverable defects and those without any defect with a 97% accuracy. The other three
models, those based on VGG16, VGG19, and Xception, exhibit a similar accuracy. Although
the generality of such accuracy should be interpreted with caution due to the reasons
explained in Section 4.3, the proposed end-to-end deep neural networks are adequate to
classify surface defects in the carbon look components produced in “HP Composite Spa”.
The simplicity of the proposed methodology, based on end-to-end deep neural networks,
and the classification accuracy with images taken from different points of view, with vary-
ing lighting conditions, make the quality control of carbon look components feasible. Given
the possibility of porting CNNs into mobile devices [50,51], our approach can be integrated
into handheld devices by deploying the classifier locally or in the cloud. Nevertheless, as
highlighted in Section 4.3, a study dedicated to verifying computation times and the image
processing on handheld devices might be necessary in order to draw definitive conclusions
in this regard.

The source code of the experiments, including the ten end-to-end networks, and
the database of images collected for the tests are publicly available in dedicated open-
access repositories. The database of images can be useful to benchmark other classification
techniques. The source code of our experiments makes the research presented in this paper
fully reproducible.

Author Contributions: Conceptualization, A.S. and V.C.; methodology, A.S., V.C. and P.S.; software,
A.S. and P.S.; validation, S.T., N.F. and P.C.; data curation, A.S.; writing—original draft preparation,
P.S.; writing—review and editing, S.T., N.F., P.C., A.B. and A.F.D.; supervision, A.B. and A.F.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study is publicly available at https://github.
com/airtlab/surface-defect-classification-in-carbon-look-components-dataset (accessed on 10 July
2023). The source code of the experiments performed on such dataset is publicly available
at https://github.com/airtlab/surface-defect-classification-in-carbon-look-components-using-deep-
neural-networks (accessed on 10 July 2023).

Acknowledgments: The authors thank HP Composites Spa for providing the data used in this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [CrossRef]
2. Lee, J.; Davari, H.; Singh, J.; Pandhare, V. Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manuf.

Lett. 2018, 18, 20–23. [CrossRef]
3. Zenisek, J.; Holzinger, F.; Affenzeller, M. Machine learning based concept drift detection for predictive maintenance. Comput. Ind.

Eng. 2019, 137, 106031. [CrossRef]

https://github.com/airtlab/surface-defect-classification-in-carbon-look-components-dataset
https://github.com/airtlab/surface-defect-classification-in-carbon-look-components-dataset
https://github.com/airtlab/surface-defect-classification-in-carbon-look-components-using-deep-neural-networks
https://github.com/airtlab/surface-defect-classification-in-carbon-look-components-using-deep-neural-networks
http://doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.1016/j.mfglet.2018.09.002
http://dx.doi.org/10.1016/j.cie.2019.106031


Sensors 2023, 23, 7607 17 of 18

4. Zhou, X.; Hu, Y.; Liang, W.; Ma, J.; Jin, Q. Variational LSTM Enhanced Anomaly Detection for Industrial Big Data. IEEE Trans.
Ind. Inform. 2021, 17, 3469–3477. [CrossRef]

5. Gao, Z.; Dong, G.; Tang, Y.; Zhao, Y.F. Machine learning aided design of conformal cooling channels for injection molding. J.
Intell. Manuf. 2021, 34, 1183–1201. [CrossRef]

6. Cadavid, J.P.U.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production planning and control: A
state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 2020, 31, 1531–1558. [CrossRef]

7. Peres, R.S.; Barata, J.; Leitao, P.; Garcia, G. Multistage Quality Control Using Machine Learning in the Automotive Industry. IEEE
Access 2019, 7, 79908–79916. [CrossRef]

8. Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive
Survey and Current Challenges. Materials 2020, 13, 5755. [CrossRef]

9. Obregon, J.; Hong, J.; Jung, J.Y. Rule-based explanations based on ensemble machine learning for detecting sink mark defects in
the injection moulding process. J. Manuf. Syst. 2021, 60, 392–405. [CrossRef]

10. Polenta, A.; Tomassini, S.; Falcionelli, N.; Contardo, P.; Dragoni, A.F.; Sernani, P. A Comparison of Machine Learning Techniques
for the Quality Classification of Molded Products. Information 2022, 13, 272. [CrossRef]

11. Nash, W.; Drummond, T.; Birbilis, N. A review of deep learning in the study of materials degradation. npj Mater. Degrad. 2018,
2, 37. [CrossRef]

12. Jorge Aldave, I.; Venegas Bosom, P.; Vega González, L.; López de Santiago, I.; Vollheim, B.; Krausz, L.; Georges, M. Review of
thermal imaging systems in composite defect detection. Infrared Phys. Technol. 2013, 61, 167–175. [CrossRef]

13. Poór, D.I.; Geier, N.; Pereszlai, C.; Xu, J. A critical review of the drilling of CFRP composites: Burr formation, characterisation and
challenges. Compos. Part B Eng. 2021, 223, 109155. [CrossRef]

14. Amor, N.; Noman, M.T.; Petru, M. Classification of Textile Polymer Composites: Recent Trends and Challenges. Polymers 2021,
13, 2592. [CrossRef]

15. Vedernikov, A.; Tucci, F.; Carlone, P.; Gusev, S.; Konev, S.; Firsov, D.; Akhatov, I.; Safonov, A. Effects of pulling speed on structural
performance of L-shaped pultruded profiles. Compos. Struct. 2021, 255, 112967. [CrossRef]

16. Bang, H.T.; Park, S.; Jeon, H. Defect identification in composite materials via thermography and deep learning techniques.
Compos. Struct. 2020, 246, 112405. [CrossRef]

17. Liu, K.; Li, Y.; Yang, J.; Liu, Y.; Yao, Y. Generative Principal Component Thermography for Enhanced Defect Detection and
Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 8261–8269. [CrossRef]

18. Fang, Q.; Ibarra-Castanedo, C.; Maldague, X. Automatic Defects Segmentation and Identification by Deep Learning Algorithm with
Pulsed Thermography: Synthetic and Experimental Data. Big Data Cogn. Comput. 2021, 5, 9. [CrossRef]

19. Wei, Z.; Fernandes, H.; Herrmann, H.G.; Tarpani, J.R.; Osman, A. A Deep Learning Method for the Impact Damage Segmentation of
Curve-Shaped CFRP Specimens Inspected by Infrared Thermography. Sensors 2021, 21, 395. [CrossRef]

20. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
21. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
22. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the Computer Vision—ECCV

2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: Cham, Switzerland , 2016; pp. 630–645.
[CrossRef]

23. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2818–2826. [CrossRef]

24. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23
June 2018; pp. 4510–4520. [CrossRef]

25. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 8697–8710. [CrossRef]

26. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

27. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [CrossRef]

28. Bray, D.E.; McBride, D. Nondestructive Testing Techniques; NASA STI/Recon Technical Report A; Wiley: Hoboken, NJ,
USA, 1992; Volume 93, p. 17573 .

29. Gholizadeh, S. A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 2016, 1, 50–57.
[CrossRef]

30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. Liu, K.; Ma, Z.; Liu, Y.; Yang, J.; Yao, Y. Enhanced Defect Detection in Carbon Fiber Reinforced Polymer Composites via Generative

Kernel Principal Component Thermography. Polymers 2021, 13, 825. [CrossRef]

http://dx.doi.org/10.1109/TII.2020.3022432
http://dx.doi.org/10.1007/s10845-021-01841-9
http://dx.doi.org/10.1007/s10845-019-01531-7
http://dx.doi.org/10.1109/ACCESS.2019.2923405
http://dx.doi.org/10.3390/ma13245755
http://dx.doi.org/10.1016/j.jmsy.2021.07.001
http://dx.doi.org/10.3390/info13060272
http://dx.doi.org/10.1038/s41529-018-0058-x
http://dx.doi.org/10.1016/j.infrared.2013.07.009
http://dx.doi.org/10.1016/j.compositesb.2021.109155
http://dx.doi.org/10.3390/polym13162592
http://dx.doi.org/10.1016/j.compstruct.2020.112967
http://dx.doi.org/10.1016/j.compstruct.2020.112405
http://dx.doi.org/10.1109/TIM.2020.2992873
http://dx.doi.org/10.3390/bdcc5010009
http://dx.doi.org/10.3390/s21020395
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1007/978-3-319-46493-0_38
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/CVPR.2018.00907
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1016/j.prostr.2016.02.008
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.3390/polym13050825


Sensors 2023, 23, 7607 18 of 18

32. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:abs/1502.03167.

33. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab,
N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [CrossRef]

34. Marani, R.; Palumbo, D.; Galietti, U.; D’Orazio, T. Deep learning for defect characterization in composite laminates inspected by
step-heating thermography. Opt. Lasers Eng. 2021, 145, 106679. [CrossRef]

35. Meng, M.; Chua, Y.J.; Wouterson, E.; Ong, C.P.K. Ultrasonic signal classification and imaging system for composite materials via
deep convolutional neural networks. Neurocomputing 2017, 257, 128–135. [CrossRef]

36. Gong, Y.; Shao, H.; Luo, J.; Li, Z. A deep transfer learning model for inclusion defect detection of aeronautics composite materials.
Compos. Struct. 2020, 252, 112681. [CrossRef]

37. Gao, Y.; Li, X.; Wang, X.V.; Wang, L.; Gao, L. A Review on Recent Advances in Vision-based Defect Recognition towards Industrial
Intelligence. J. Manuf. Syst. 2022, 62, 753–766. [CrossRef]

38. Yun, J.P.; Shin, W.C.; Koo, G.; Kim, M.S.; Lee, C.; Lee, S.J. Automated defect inspection system for metal surfaces based on deep
learning and data augmentation. J. Manuf. Syst. 2020, 55, 317–324. [CrossRef]

39. Chen, W.; Gao, Y.; Gao, L.; Li, X. A New Ensemble Approach based on Deep Convolutional Neural Networks for Steel Surface
Defect classification. Procedia CIRP 2018, 72, 1069–1072. [CrossRef]

40. Boikov, A.; Payor, V.; Savelev, R.; Kolesnikov, A. Synthetic Data Generation for Steel Defect Detection and Classification Using
Deep Learning. Symmetry 2021, 13, 1176. [CrossRef]

41. Liu, J.; Wang, C.; Su, H.; Du, B.; Tao, D. Multistage GAN for Fabric Defect Detection. IEEE Trans. Image Process. 2020, 29, 3388–3400.
[CrossRef] [PubMed]

42. Zhu, Z.; Han, G.; Jia, G.; Shu, L. Modified DenseNet for Automatic Fabric Defect Detection with Edge Computing for Minimizing
Latency. IEEE Internet Things J. 2020, 7, 9623–9636. [CrossRef]

43. Gao, Y.; Gao, L.; Li, X.; Wang, X.V. A Multilevel Information Fusion-Based Deep Learning Method for Vision-Based Defect
Recognition. IEEE Trans. Instrum. Meas. 2020, 69, 3980–3991. [CrossRef]
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