
Inverse Problems

A multi-resolution technique based on shape
optimization for the reconstruction of
homogeneous dielectric objects
To cite this article: M Benedetti et al 2009 Inverse Problems 25 015009

 

View the article online for updates and enhancements.

You may also like
Advanced electromagnetic modeling of
large-scale high-temperature
superconductor systems based on H and
T-A formulations
Edgar Berrospe-Juarez, Frederic Trillaud,
Víctor M R Zermeño et al.

-

Multi-resolution iterative inversion of real
inhomogeneous targets
M Donelli, D Franceschini, A Massa et al.

-

Iterative multi-scale method for estimation
of hysteresis losses and current density in
large-scale HTS systems
Edgar Berrospe-Juarez, Víctor M R
Zermeño, Frederic Trillaud et al.

-

This content was downloaded from IP address 193.205.210.77 on 10/11/2023 at 16:32

https://doi.org/10.1088/0266-5611/25/1/015009
/article/10.1088/1361-6668/abde87
/article/10.1088/1361-6668/abde87
/article/10.1088/1361-6668/abde87
/article/10.1088/1361-6668/abde87
/article/10.1088/1361-6668/abde87
/article/10.1088/1361-6668/abde87
/article/10.1088/1361-6668/abde87
/article/10.1088/1361-6668/abde87
/article/10.1088/0266-5611/21/6/S05
/article/10.1088/0266-5611/21/6/S05
/article/10.1088/1361-6668/aad224
/article/10.1088/1361-6668/aad224
/article/10.1088/1361-6668/aad224


IOP PUBLISHING INVERSE PROBLEMS

Inverse Problems 25 (2009) 015009 (26pp) doi:10.1088/0266-5611/25/1/015009

A multi-resolution technique based on shape
optimization for the reconstruction of homogeneous
dielectric objects

M Benedetti1,2, D Lesselier2, M Lambert2 and A Massa1

1 Department of Information Engineering and Computer Science, ELEDIA Research Group,
University of Trento, Via Sommarive 14, 38050 Trento, Italy
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Abstract

In the framework of inverse scattering techniques, this paper presents the
integration of a multi-resolution technique and the level-set method for
qualitative microwave imaging. On the one hand, in order to effectively exploit
the limited amount of information collectable from scattering measurements,
the iterative multi-scaling approach (IMSA) is employed for enabling a detailed
reconstruction only where needed without increasing the number of unknowns.
On the other hand, the a priori information on the homogeneity of the unknown
object is exploited by adopting a shape-based optimization and representing the
support of the scatterer via a level-set function. Reliability and effectiveness
of the proposed strategy are also assessed by processing both synthetic and
experimental scattering data for simple and complex geometries.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The non-invasive reconstruction of the position and shape of unknown targets is a topic
of great interest in many applications, such as non-destructive evaluation and testing
(NDE/NDT) for industrial monitoring and sub-surface sensing [1]. In this framework, many
methodologies have been proposed based on x-rays [2], ultrasonics [3] and eddy currents
[4]. Furthermore, microwave imaging has been recognized as a suitable methodology since
[1, 5]: (a) electromagnetic fields at microwave frequencies can penetrate non-ideal conductor
materials; (b) the field scattered by the target is representative of its inner structure and not
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only of its boundary; (c) microwaves show a high sensibility to the water content of the
structure under test; (d) microwave sensors can be employed without mechanical contacts
with the specimen. In addition, compared to x-ray and magnetic resonance, microwave-based
approaches minimize (or avoid) collateral effects in the specimen under test. Therefore, they
can be safely employed in biomedical imaging.

A further advance in microwave non-invasive inspection is represented by inverse
scattering approaches aimed at reconstructing a complete image of the region under test.
Unfortunately, the underlying mathematical model is characterized by several drawbacks
preventing their massive employment in NDE/NDT applications. In particular, inverse
scattering problems are intrinsically ill-posed [6] as well as nonlinear [7].

Since the ill-posedness is strongly related to the amount of collectable information and
usually the number of independent data is lower than the dimension of the solution space,
multi-view/multi-illumination systems are generally adopted. However, it is well known
that the collectable information is an upper-bounded quantity [8–10]. Consequently, it is
necessary to effectively exploit the overall information contained in the scattered field samples
for achieving a satisfactory reconstruction.

Toward this end, multi-resolution strategies have been recently proposed. The idea
is that of using an enhanced spatial resolution only in those regions where the unknown
scatterers are found to be located. Accordingly, Miller et al [11] proposed a statistically-based
method for determining the optimal resolution level, while Baussard et al [12] developed a
strategy based on spline pyramids for sub-surface imaging problems. As for an example
concerned with qualitative microwave imaging, Li et al [13] implemented a multi-scale
technique based on the linear sampling method (LSM) to effectively reconstruct the contour
of the scatterers. Unlike [11–13], the iterative multi-scale approach (IMSA) developed by
Caorsi et al [14] performs a multi-step, multi-resolution inversion process in which the ratio
between unknowns and data is kept suitably low and constant at each step of the inversion
procedure, thus reducing the risk of occurrence of local minima [9] in the arising optimization
problem.

On the other hand, the lack of information affecting the inverse problem has been addressed
through the exploitation of the a priori knowledge (when available) on the scenario under
test by means of an effective representation of the unknowns. As far as many NDE/NDT
applications are concerned, the unknown defect is characterized by known electromagnetic
properties (i.e., dielectric permittivity and conductivity) and it lies within a known host region.
Under these assumptions, the imaging problem reduces to a shape optimization problem aimed
at the search of location and boundary contours of the defect. Parametric techniques aimed
at representing the unknown object in terms of descriptive parameters of reference shapes
[15, 16] and more sophisticated approaches such as evolutionary-controlled spline curves
[17, 18], shape gradients [19–21] or level sets [22–30] have then been proposed. As far as
level-set-based methods are concerned, the homogeneous object is defined as the zero level of a
continuous function and, unlike pixel-based or parametric-based strategies, such a description
enables one to represent complex shapes in a simple way.

In order to exploit both the available a priori knowledge on the scenario under test (e.g., the
homogeneity of the scatterer) and the information content from the scattering measurements,
this paper proposes the integration of the iterative multi-scaling strategy (IMSA) [14] and the
level-set (LS) representation [23].

The paper is structured as follows. The integration between IMSA and LS is detailed
in section 2 dealing with a two-dimensional geometry. In section 3, numerical testing and
experimental validation are presented, a comparison with the standard LS implementation
being made. Finally, some conclusions are drawn (section 4).
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2. Mathematical formulation

Let us consider a cylindrical homogeneous non-magnetic object with relative permittivity εC

and conductivity σC that occupies a region ϒ belonging to an investigation domain DI . Such
a scatterer is probed by a set of V transverse-magnetic (TM) plane waves, with an electric field
directed along the axis of the cylindrical geometry, namely ζ v(r) = ζ v(r)ẑ (v = 1, . . . , V ),
r = (x, y). The scattered field, ξv(r) = ξv(r)ẑ, is collected at M(v), v = 1, . . . , V ,
measurement points rm distributed in the observation domain DO .

In order to electromagnetically describe the investigation domain DI , let us define the
contrast function τ(r) given by

τ(r) =
{
τC r ∈ ϒ

0 otherwise,
(1)

where τC = (εC −1)− j σC

2πf ε0
, f being the frequency of operation (the time dependence ej2πf t

being implied).
The scattering problem is described by the well-known Lippmann–Schwinger integral

equations

ξv(rm) =
(

2π

λ

)2 ∫
DI

τ (r ′)Ev(r ′)G2D(rm, r ′) dr ′, rm ∈ DO (2)

ζ v(r) = Ev(r) −
(

2π

λ

)2 ∫
DI

τ (r ′)Ev(r ′)G2D(r, r ′) dr ′, r ∈ DI (3)

where λ is the background wavelength, Ev is the total electric field, and G2D(r, r ′) =
− j

4H
(2)
0

(
2π
λ

‖r − r ′‖) is the free-space two-dimensional Green’s function, H
(2)
0 being the

second-kind, zeroth-order Hankel function.
In order to retrieve the unknown position and shape of the target ϒ by step-by-step

enhancing the spatial resolution only in that region, called region-of-interest (RoI), R ∈ DI ,
where the scatterer is located [14], the following iterative procedure of Smax steps is carried
out.

With reference to figure 1(a) and to the block diagram displayed in figure 2, at the first
step (s = 1, s being the step number) a trial shape ϒs = ϒ1, belonging to DI , is chosen and
the region of interest Rs [Rs=1 = DI ] is partitioned into NIMSA equal square sub-domains,
where NIMSA depends on the degrees of freedom of the problem at hand and it is computed
according to the guidelines suggested in [9].

In addition, the level-set function φs is initialized by means of a signed distance function
defined as follows [23, 25]:

φs(r) =
{−minb=1,...,Bs

‖r − rb‖ if τ(r) = τC

minb=1,...,Bs
‖r − rb‖ if τ(r) = 0

(4)

where rb = (xb, yb) is the bth border-cell (b = 1, . . . , Bs) of ϒs=1.
Then, at each step s of the process (s = 1, . . . , Smax), the following optimization procedure

is repeated (figure 2):

• Problem unknown representation. The contrast function is represented in terms of the
level-set function as follows:

τ̃ks
(r) =

s∑
i=1

NIMSA∑
ni=1

τki
B
(
rni

)
r ∈ DI , (5)

3
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(a)

(b)

(c)

Actual Scatterer

Υ1

(xcs=1, ycs=1)

rns=1

rns=1

Rs=2

φkopts=1

φks=1

s = 1, k = 1

s = 1, k = kopt

s = 2, k = 1

DI

DI

DI

Ls=1

rns=2

φks=2

Figure 1. Graphical representation of the IMSA-LS zooming procedure. (a) First step (k = 1):
the investigation domain is discretized in N sub-domains and a coarse solution is looked for.
(b) First step (k = kopt): the region of interest that contains the first estimate of the object is
defined. (c) Second step (k = 1): an enhanced resolution level is used only inside the region of
interest.

where the index ks indicates the kth iteration at the sth step
[
ks = 1, . . . , k

opt
s

]
, B

(
rni

)
is a

rectangular basis function whose support is the nth sub-domain at the ith resolution level
[ni = 1, . . . , NIMSA, i = 1, . . . , s], and the coefficient τki

is given by

τki
=

{
τC if �ki

(
rni

)
� 0

0 otherwise
(6)

letting

�ki

(
rni

) =
{

φki

(
rni

)
if i = s

φk
opt
i

(
rni

)
if (i < s) and

(
rni

∈ Ri

) (7)

with i = 1, . . . , s as in (5).
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Field Distribution Updating

Determine

Cost Function Evaluation

Level Set Update

Problem Unknown Representation

FALSE

TRUE

TRUE

Stop

Initialization

FALSE
IMSA

Stopping Criterion

Stopping Criteria
LS

Compute Ev
ki

rni

rni
∈ DI

xcs,y
c
s,Ls

Determine ξvks rmv
and compute Θ {φks}

rmv
∈ DO

Compute φks from φks−1

τks (r) = s
i=1

NIMSA

ni=1 τkiB rni

rni
∈ DI

s-th resolution level

ks = ks + 1

Υsopt

Υs = Υ1

ks = 0

s = s + 1

γxc,γyc,γL

γτ , γΘ, γth, K
max

Figure 2. Block diagram description of the IMSA-LS zooming procedure.

• Field distribution updating. Once τ̃ks
(r) has been estimated, the electric field Ev

ks
(r) is

numerically computed according to a point-matching version of the Method of Moments
(MoM) [31] as

5
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Ẽv
ki

(
rni

) =
NIMSA∑
pi=1

ζ v
(
rpi

)
[1 − τ̃ki

(
rpi

)
G2D

(
rni

, rpi

)
]−1, rni

, rpi
∈ DI

ni = 1, . . . , NIMSA.

(8)

• Cost function evaluation. Starting from the total electric field distribution (8), the
reconstructed scattered field ξ̃ v

ks
(rm) at the mth measurement point, m = 1, . . . ,M(v), is

updated by solving the following equation:

ξ̃ v
ks
(rm) =

s∑
i=1

NIMSA∑
ni=1

τ̃ki

(
rni

)
Ẽv

ki

(
rni

)
G2D

(
rm, rni

)
(9)

and the fit between measured and reconstructed data is evaluated by the multi-resolution
cost function 
 defined as



{
φks

} =
∑V

v=1

∑M(v)
m=1

∣∣̃ξv
ks
(rm) − ξv

ks
(rm)

∣∣2∑V
v=1

∑M(v)
m=1

∣∣ξv
ks
(rm)

∣∣2 . (10)

• Minimization stopping. The iterative process stops
(
i.e., kopt

s = ks and τ̃
opt
s = τ̃ks

)
when:

(a) a set of conditions on the stability of the reconstruction holds true or (b) when the
maximum number of iterations is reached [ks = Kmax] or (c) when the value of the cost
function is smaller than a fixed threshold γth. As far as the stability of the reconstruction
is concerned (condition (a)), the first corresponding stopping criterion is satisfied when,
for a fixed number of iterations, Kτ , the maximum number of pixels which vary their
value is smaller than a user-defined threshold γτ according to the relationship

maxj=1,...,Kτ

⎧⎨⎩
NIMSA∑
ns=1

∣∣̃τks

(
rns

) − τ̃ks−j

(
rns

)∣∣
τC

⎫⎬⎭ < γτ · NIMSA. (11)

The second criterion, about the stability of the reconstruction, is satisfied when the cost
function becomes stationary within a window of K
 iterations as follows:

1

K


K
∑
j=1



{
φks

} − 

{
φks−j

}



{
φks

} < γ
. (12)

K
 being a fixed number of iterations and γ
 being user-defined thresholds. When the
iterative process stops, the solution τ̃

opt
s at the sth step is selected as that represented by

the ‘best’ level-set function φ
opt
s defined as

φopt
s = arg

[
minh=1,...,k

opt
s

(
{φh})
]
. (13)

• Iteration update. The iteration index is updated [ks → ks + 1].

• Level-set update. The level set is updated according to the following Hamilton–Jacobi
relationship:

φks

(
rns

) = φks−1
(
rns

) − �tsVks−1
(
rns

)
H

{
φks−1

(
rns

)}
, (14)

where H{·} is the Hamiltonian operator [32, 33] given as

6
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H2{φks

(
rns

)} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max2

{
Dx−

ks
; 0

}
+ min2

{
Dx+

ks
; 0

}
+ max2

{
Dy−

ks
; 0

}
+ min2

{
Dy+

ks
; 0

}
if Vk(s)

(
rn(s)

)
� 0

min2
{
Dx−

ks
; 0

}
+ max2

{
Dx+

ks
; 0

}
+ min2

{
Dy−

ks
; 0

}
+ max2

{
Dy+

ks
; 0

}
otherwise

(15)

and

Dx±
ks

= ±φks

(
xns±1, yns

) ∓ φks

(
xns

, yns

)
ls

,

Dy±
ks

= ±φks

(
xns

, yns±1
) ∓ φks

(
xns

, yns

)
ls

.

�ts is the time-step chosen as �ts = �t1
ls
l1

with �t1 to be set heuristically according to the
literature [23], ls being the cell side at the sth resolution level. Vks

is the velocity function
computed following the guidelines suggested in [23] by solving the adjoint problem of
(8) in order to determine the adjoint field Fv

ks
. Accordingly,

Vks

(
rns

) = −Re

{∑V
v=1 τCEv

ks

(
rns

)
Fv

ks

(
rns

)∑V
v=1

∑M(v)
m=1

∣∣ξv
ks

(
rm

)∣∣2

}
, ns = 1, . . . , NIMSA (16)

where Re stands for the real part.

When the sth minimization process terminates, the contrast function is updated
[̃
τ

opt
s (r) =

τ̃ks−1(r), r ∈ DI (5)
]

as well as the RoI [Rs → Rs−1]. To do so, the following operations are
carried out:

• Computation of the barycenter of the RoI. The center of Rs of coordinates
(̃
xc

s , ỹ
c
s

)
is

determined by computing the center of mass of the reconstructed shapes as follows [14]
(figure 1(b)):

x̃c
s =

∫
DI

xτ̃
opt
s (r)B(r) dx dy∫

DI
τ̃

opt
s (r)B(r) dx dy

(17)

ỹc
s =

∫
DI

yτ̃
opt
s (r)B(r) dx dy∫

DI
τ̃

opt
s (r)B(r) dx dy

; (18)

• Estimation of the Size of the RoI. The side Ls of Rs is computed by evaluating the maximum

of the distance δc(r) =
√(

x − x̃c
s

)2
+

(
y − ỹc

s

)2
in order to enclose the scatterer, namely

L̃s = maxr

{
2 × τ̃

opt
s (r)

τC

δc(r)

}
. (19)

Once the RoI has been identified, the level of resolution is enhanced [ks → ks−1] only in
this region by discretizing Rs into NIMSA sub-domains (figure 1(c)) and by repeating the
minimization process until the synthetic zoom becomes stationary (s = sopt), i.e.,{ |Qs−1 − Qs |

|Qs−1| × 100

}
< γQ, Q = x̃c, ỹc, L̃ (20)

γQ being a threshold set as in [14], or until a maximum number of steps (sopt = Smax) is
reached.

At the end of the multi-step process (s = sopt), the problem solution is obtained as
τ̃ opt

(
rni

) = τ̃
opt
s

(
rni

)
, ni = 1, . . . , NIMSA, i = 1, . . . , sopt.

7
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3. Numerical validation

In order to assess the effectiveness of the IMSA-LS approach, a selected set of representative
results concerned with both synthetic and experimental data is presented herein. The
performances achieved are evaluated by means of the following error figures:

• Localization error δ

δ|p =
√(̃

xc
s |p − xc|p

)2 − (̃
yc

s |p − yc|p
)2

λ
× 100, (21)

where rc|p = (xc|p, yc|p) is the center of the pth true scatterer, p = 1, . . . , P , P being
the number of objects. The average localization error 〈δ〉 is defined as

〈δ〉 = 1

P

P∑
p=1

δ|p . (22)

• Area estimation error �

� =
⎡⎣ I∑

i=1

1

NIMSA

NIMSA∑
ni=1

Nni

⎤⎦ × 100 (23)

where Nni
is equal to 1 if τ̃ opt

(
rni

) = τ
(
rni

)
and 0 otherwise.

As far as the numerical experiments are concerned, the reconstructions have been performed by
blurring the scattering data with an additive Gaussian noise characterized by a signal-to-noise
ratio (SNR)

SNR = 10 log

∑V
v=1

∑M(v)
m=1 |ξv(rm)|2∑V

v=1

∑M(v)
m=1 |μv,m|2

(24)

μv,m being a complex Gaussian random variable with zero mean value.

3.1. Synthetic data—circular cylinder

3.1.1. Preliminary validation. In the first experiment, a lossless circular off-centered scatterer
of known permittivity εC = 1.8 and radius ρ = λ/4 is located in a square investigation
domain of side LD = λ [23]. V = 10 TM plane waves are impinging from the directions
θv = 2π(v − 1)/V, v = 1, . . . , V , and the scattering measurements are collected at M = 10
receivers uniformly distributed on a circle of radius ρO = λ.

As far as the initialization of the IMSA-LS algorithm is concerned, the initial trial object
ϒ1 is a disk with radius λ/4 and centered in DI . The initial value of the time step is set
to �t1 = 10−2 as in [23]. The RoI is discretized in NIMSA = 15 × 15 sub-domains at
each step of the iterative multi-resolution process. Concerning the stopping criteria, the
following configuration of parameters has been selected according to a preliminary calibration
dealing with simple known scatterers and noiseless data: Smax = 4 (maximum number of
steps), γ x̃c = γ ỹc = 0.01 and γ L̃ = 0.05 (multi-step process thresholds), Kmax = 500
(maximum number of optimization iterations), γ
 = 0.2 and γτ = 0.02 (optimization
thresholds), K
 = Kτ = 0.15Kmax (stability counters), and γth = 10−5 (threshold on the cost
function).

Figure 3 shows samples of reconstructions with the IMSA-LS. At the first step
(figure 3(a), s = 1), the scatterer is correctly located, but its shape is only roughly estimated.
Thanks to the multi-resolution representation, the qualitative imaging of the scatterer is

8
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x

y λ

λ
0.25

0.25

0.50

0.50

x

y λ

λ
0.25

0.25

0.50

0.50

R
(2)

1 τ (x, y) 0 1 τ (x, y) 0

(a) (b)

(c) (d)

x

y λ

λ
0.25

0.25

0.50

0.50

x

y λ

λ
0.25

0.25

0.50

0.50

1 τ (x, y) 0 1 τ (x, y) 0

Figure 3. Numerical data. Circular cylinder (εC = 1.8, LD = λ, noiseless case). Reconstructions
with IMSA-LS at (a) s = 1 and (b) s = sopt = 2, (c) Bare-LS. Optimal inversion (d).

Table 1. Numerical Data. Circular cylinder (εC = 1.8, noiseless case). Error figures.

IMSA-LS Bare-LS

s = 1 s = 2

δ 6.58 × 10−6 2.19 × 10−6 5.21 × 10−1

� 2.36 0.48 0.64

improved in the next step (figure 3(b), s = sopt = 2) as confirmed by the error indexes
in table 1. For comparison purposes, the profile retrieved by the single-resolution method [23]
(indicated in the following as Bare-LS), when DI has been discretized in NBare = 31 × 31
equal sub-domains, is shown (figure 3(c)). In general, the discretization of the Bare-LS has
been chosen in order to achieve in the whole investigation domain a reconstruction with the
same level of spatial resolution obtained by the IMSA-LS in the RoI at s = sopt.

Although the final reconstructions (figures 3(b), (c)) achieved by the two approaches
are similar and quite close to the true scatterer sampled at the spatial resolution of Bare-LS
(figure 3(d)) and IMSA-LS (figure 3(b)), the IMSA-LS more faithfully retrieves the symmetry
of the actual object, even though the reconstruction error appears to be larger than that of the

9
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10
-4

10
-3

10
-2

10
-1

10
0

 0  50  100  150  200

Θ

Iteration, k

s=1 s=2

IMSA (Θopt)

IMSA (Θ)

BARE

Figure 4. Numerical data. Circular cylinder (εC = 1.8, LD = λ, noiseless case). Behavior of the
cost function.

Bare-LS (figure 4). During the iterative procedure, the cost function 
opt = 

{
φ

opt
s

}
is initially

characterized by a monotonically decreasing behavior. Then, 
opt	IMSA becomes stationary
until the stopping criterion defined by relationships (11) and (12) is satisfied (figure 4, s = 1).
Then, after the update of the field distribution inducing the error spike when s = sopt = 2 and
ks = 1,
opt	IMSA settles to a value of 6.28 × 10−4 which is of the order of the Bare-LS error
(
opt	Bare = 1.42 × 10−4). Such a slight difference between 
opt	IMSA and 
opt	Bare depends
on the different discretization (i.e., the basis functions B(rn(i=2)), n(i) = 1, . . . , NIMSA are
not the same as those of Bare-LS), but it does not affect the reconstruction in terms of both
localization and area estimation, since δ	IMSA-LS < δ	Bare-LS and �	IMSA-LS < �	Bare-LS

(table 1).

Figure 4 also shows that the multi-step multi-resolution strategy is characterized by a
lower computational burden because of the smaller number of iterations for reaching the
convergence (figure 4, ktot	IMSA = 125 versus ktot	Bare = 177, ktot being the total number
of iterations defined as ktot = ∑sopt

s=1 k
opt
s for the IMSA-LS), and especially to the reduced

number of floating-point operations. As a matter of fact, since the complexity of the LS-based
algorithms is of the order of O(2 × η3), η = NIMSA, NBare (i.e., the solution of two direct
problems is necessary for computing an estimate of the scattered field and for updating the
velocity vector), the computational cost of the IMSA-LS at each iteration is two orders in
magnitude smaller than that of the Bare-LS.

3.1.2. Noisy data. As for the stability of the proposed approach, figure 5 shows the
reconstructions with the IMSA-LS (figures 5(a), (c), (e)) compared to those of the Bare-
LS (figures 5(b), (d), (f)) with different levels of additive noise on the scattered data (SNR =
20 dB (top); SNR = 10 dB (middle); SNR = 5 dB (bottom)). As expected, when the SNR
decreases, the performances worsen. However, as outlined by the behavior of the error
figures in table 2, blurred data and/or noisy conditions affect more evidently the Bare
implementation than the multi-resolution approach. For completeness, the behavior of

opt	IMSA versus the iteration index is reported in figure 6 for different levels of SNR. As it
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Figure 5. Circular cylinder (εC = 1.8, LD = λ, noisy case). Reconstructions with IMSA-LS (left
column) and Bare-LS (right column) for different values of SNR (SNR = 20 dB (top), SNR =
10 dB (middle), SNR = 5 dB (bottom)).

can be noticed, the value of the error at the end of the iterative procedure decreases as the SNR
increases.

In the second experiment, the same circular scatterer, but centered at a different position
within a larger investigation square of side LD = 2λ (ρO = 2λ), has been reconstructed.
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Figure 6. Numerical data. Circular cylinder (εC = 1.8, LD = λ). Behavior of the cost function
versus the noise level.

Table 2. Numerical data. Circular cylinder (εC = 1.8, noisy case). Values of the error indexes for
different values of SNR.

SNR = 20 dB SNR = 10 dB SNR = 5 dB

IMSA-LS Bare-LS IMSA-LS Bare-LS IMSA-LS Bare-LS

δ 5.91 × 10−1 2.72 2.28 2.45 6.78 × 10−1 1.63
� 0.98 1.28 1.07 1.80 1.50 2.07

According to [9], M = 20; v = 1, . . . , V receivers and V = 20 views are considered and DI

is discretized in NIMSA = 13 × 13 pixels.
Figure 7(a) shows the reconstruction obtained at the convergence (sopt = 3) by IMSA-LS

when SNR = 5 dB. The result reached by the Bare-LS (NBARE = 47 × 47) is reported
in figure 7(b) as well. As it can be noticed, the multi-resolution inversion is characterized
by a better estimation of the object center and shape as confirmed by the values of δ and
� (δ	IMSA-LS = 0.59 versus δ	Bare-LS = 2.72 and �	IMSA-LS = 0.48 versus �	Bare-LS =
0.64). As for the computational load, the same conclusions from previous experiments hold
true.

3.2. Synthetic data—rectangular scatterer

The second test case deals with a more complex scattering configuration. A rectangular
off-centered scatterer (L = 0.27λ and W = 0.13λ) characterized by a dielectric permittivity
εC = 1.8 is located within an investigation domain of LD = 3λ as indicated by the red dashed
line in figure 8. In such a case, the imaging setup is made up of V = 30 sources and M =
30 measurement points for each view v [9]. DI is partitioned into NIMSA = 19 × 19 sub-
domains (while NBare = 33 × 33) and �t1 is set to 0.06.
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Figure 7. Numerical data. Circular cylinder (εC = 1.8, LD = 2λ, SNR = 5 dB). Reconstructions
with (a) IMSA-LS and (b) Bare-LS.

3.2.1. Validation of the stopping criteria. Before discussing the reconstruction capabilities,
let us show a result concerned with the behavior of the proposed approach when varying the
user-defined thresholds (γ
, γτ , γx̃c , γỹc , γL̃) of the stopping criteria. Figure 8 displays the
reconstructions achieved by using the sets of parameters given in table 3 (�1, figure 8(a); �2,
figure 8(b); �3, figure 8(c); �4, figure 8(d)) while the behaviors of the cost function are depicted
in figure 9. As it can be noticed, the total number of iterations ktot increases as the values of
the thresholds γ
 and γτ decrease. However, in spite of a larger ktot, using lower threshold
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Figure 8. Numerical data. Rectangular cylinder (εC = 1.8, LD = 3λ, noiseless case).
Reconstructions with IMSA-LS for the different settings of table 3 ((a) �1, (b) �2, (c) �3,
(d) �4).

Table 3. Numerical data. Rectangular cylinder (εC = 1.8, LD = 3λ, noiseless case). Different
settings for the parameters of the stopping criteria.

Set of parameters γ
 γτ γx̃c , γỹc γL̃

�1 0.5 0.05 0.01 0.05
�2 0.2 0.02 0.01 0.05
�3 0.2 0.02 0.1 0.5
�4 0.02 0.002 0.01 0.05

values does not provide better results, as shown by the comparison between settings �2 and
�4 (figures 8(b)–(d), and figure 9). The sets of parameters characterized by γ
 = 0.2 and
γτ = 0.02 provide a good trade-off between the arising computational burden and the quality
of the reconstructions. As far as the stopping criterion of the multi-resolution procedure is
concerned, figure 9 also shows two different behaviors of the cost function when using �2 and
�3 (letting γ
 = 0.2 and γτ = 0.02). In particular, the proposed approach stops at sopt = 3,
instead of sopt = 4, when increasing by a degree of magnitude the values of γx̃c , γỹc and γL̃.
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Figure 9. Numerical data. Rectangular cylinder (εC = 1.8, LD = 3λ, noiseless case). Behavior
of the cost function of IMSA-LS for the different settings of table 3.

Table 4. Numerical data. Rectangular cylinder (εC = 1.8, LD = 3λ, noisy case). Computational
indexes for different values of SNR.

SNR = 20 dB SNR = 10 dB SNR = 5 dB

IMSA-LS Bare-LS IMSA-LS Bare-LS IMSA-LS Bare-LS

ktot 1089 41 393 53 410 28
N 361 1089 361 1089 361 1089
fpos 1.02 × 1011 1.02 × 1011 3.70 × 1010 1.37 × 1011 3.86 × 1010 7.23 × 1010

Although with a heavier computational burden, the choice γx̃c = γỹc = 0.01 and γL̃ = 0.05
results more effective (see figure 8(b) versus figure 8(c)).

3.2.2. Noisy data. Figures 10–12 and table 4 show the results from the comparative
study carried out in correspondence with different values of signal-to-noise ratio (SNR =
20 dB, figures 10(a) versus (b); SNR = 10 dB, figures 10(c) versus (d); SNR = 5 dB,
figures 10(e) versus (f)). They further confirm the reliability and efficiency of the multi-
resolution strategy in terms of qualitative reconstruction errors (figure 11), especially when
the noise level grows. In particular, the Bare implementation does not yield either the position
or the shape of the rectangular scatterer when SNR = 5 dB, whereas the IMSA-LS properly
retrieves both the barycenter and the contour of the target. As for the computational cost,
it should be noticed that although the IMSA-LS requires a greater number of iterations for
reaching the convergence (figure 12, table 4), the total amount of complex floating-point
operations, fpos = O(2 × η3) × ktot, usually results smaller (table 4).
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Figure 10. Numerical data. Rectangular cylinder (εC = 1.8, LD = 3λ, noisy case).
Reconstructions with IMSA-LS (left column) and Bare-LS (right column) for different values
of SNR (SNR = 20 dB (top), SNR = 10 dB (middle), SNR = 5 dB (bottom)).

3.3. Numerical data—hollow cylinder

The third test case is concerned with the inversion of the data scattered by a higher permittivity
(εC = 2.5) off-centered cylindrical ring, letting LD = 3λ. The external radius of the ring is
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Figure 11. Numerical data. Rectangular cylinder (εC = 1.8, LD = 3λ, noisy case). Values of the
error figures versus SNR.

ρext = 2
3λ, and the internal one is ρint = λ

3 . By assuming the same arrangement of emitters
and receivers as in section 3.2, the investigation domain is discretized with NIMSA = 19 × 19
and NBare = 35 × 35 square cells for the IMSA-LS and the Bare-LS, respectively. Moreover,
�t1 is initialized to 0.003.

As it can be observed from figure 13, where the profiles when SNR = 20 dB
(figures 13(a), (b)) and SNR = 10 dB (figures 13(c), (d)) reconstructed by means of the
IMSA-LS (figures 13(a), (c)) and the Bare-LS (figures 13(b), (d)) are shown, the integrated
strategy usually overcomes the standard one both in locating the object and in estimating
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Figure 12. Numerical data. Rectangular cylinder (εC = 1.8, LD = 3λ, noisy case). Behavior
of the cost function versus the iteration index when (a) SNR = 20 dB, (b) SNR = 10 dB and (c)
SNR = 5 dB.
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Figure 13. Numerical data. Hollow cylinder (εC = 2.5, LD = 3λ, noisy case). Reconstructions
with IMSA-LS (left column) and Bare-LS (right column) for different values of SNR (SNR =
20 dB (top), SNR = 10 dB (bottom)).

the shape. In particular, when SNR = 20 dB, the distribution in figure 13(a) is a faithful
estimate of the scatterer under test (δ	IMSA-LS = 1.25 and �	IMSA-LS = 3.13). In contrast,
the reconstruction with the Bare-LS is very poor (δ	Bare-LS = 65.2 and �	Bare-LS = 34.39).
Certainly, a smaller SNR value impairs the inversion as shown in figure 13(c) (compared
to figure 13(a)). However, in this case, the IMSA-LS is able to properly locate the object
(δ	IMSA-LS = 1.7 versus δ	Bare-LS = 65.9) giving rough but useful indications about its shape
(�	IMSA-LS = 7.6 versus �	Bare-LS = 34.55).

3.4. Synthetic data—multiple scatterers

The last synthetic test case is aimed at illustrating the behavior of the IMSA-LS when
dealing with P = 3 scatterers (εC = 2.0) distanced from one another. The test geometry is
characterized by an elliptic off-centered cylinder, a circular off-centered scatterer, and a square
off-centered object located in a square investigation domain characterized by LD = 3λ. By
adopting the same arrangement of emitters and receivers as in section 3.3, the investigation
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Figure 14. Numerical data. Multiple scatterers (εC = 2.0, LD = 3λ, noisy case). Reconstructions
with IMSA-LS (left column) and Bare-LS (right column) for different values of SNR (SNR =
20 dB (top), SNR = 10 dB (middle), SNR = 5 dB (bottom)).

domain is discretized with NIMSA = 23×23 and NBare = 31×31 square cells for the IMSA-LS
and the Bare-LS, respectively. Moreover, �t1 is set to 0.03.
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Figure 15. Multiple scatterers (εC = 2.0, LD = 3λ, noisy case). Values of the error figures versus
SNR.

Figures 14 and 15 show the results from the comparative study carried out in
correspondence with different values of signal-to-noise ratio. As shown by the reconstructions
(figure 14) and as expected, the multi-resolution approach provides more accurate results and
appears to be more reliable than the Bare-LS especially with low SNR. This conclusion is
further confirmed by the behavior of the reconstruction errors (figure 15), for which the IMSA-
LS achieves a lower localization error as well as a lower area error than those of Bare-LS,
especially for SNR = 5 dB. On the other hand, both algorithms provide good estimates of the
scatterer under test when inverting data affected by low noise (SNR = 20 dB, figures 14(a)
versus (b); figures 15(a) and (b)).

21



Inverse Problems 25 (2009) 015009 M Benedetti et al

x

y λ

λ
0.25

0.25

0.50

0.50

x

y λ

λ
0.25

0.25

0.50

0.50

3 τ (x, y) 0 3 τ (x, y) 0

(a) (b)

(c) (d)

x

y λ

λ
0.5

0.5

1.0

1.0

x

y λ

λ
0.5

0.5

1.0

1.0

3 τ (x, y) 0 3 τ (x, y) 0

Figure 16. Experimental data (Dataset ‘Marseille’ [34]). Circular cylinder (‘dielTM dec8f.exp’).
Reconstructions with IMSA-LS (left column) and Bare-LS (right column) at different frequencies
f (f = 1 GHz (a) and (b); f = 2 GHz (c) and (d) f = 3 GHz (e) and (f); f = 4 GHz (g) and (h)).

Table 5. Experimental data (Dataset ‘Marseille’ [34]). Circular cylinder (‘dielTM dec8f.exp’).
Computational indexes.

IMSA-LS Bare-LS IMSA-LS Bare-LS

f = 1 GHz f = 2 GHz
ktot 506 69 532 200
fpos 4.88 × 109 1.22 × 1011 5.14 × 109 3.55 × 1011

f = 3 GHz f = 4 GHz
ktot 678 198 621 200
fpos 6.55 × 109 3.51 × 1011 5.99 × 109 3.55 × 1011

3.5. Laboratory-controlled data

In order to further assess the effectiveness of the IMSA-LS also in dealing with experimental
data, the multiple-frequency angular-diversity bi-static benchmark provided by Institut Fresnel
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Figure 16. (Continued.)

in Marseille (France) has been considered. With reference to the experimental setup described
in [34], the dataset ‘dielTM dec8f.exp’ has been processed. The field samples (M = 49,
V = 36) are related to an off-centered homogeneous circular cylinder ρ = 15 mm in diameter,
characterized by a nominal value of the object function equal to τ(r) = 2.0 ± 0.3, and located
at xc = 0.0, yc = −30 mm within an investigation domain assumed in the following of square
geometry and extension 20 × 20 cm2. By setting εC = 3.0, the reconstructions achieved are
shown in figure 16 (left column) compared to those from the standard LS (right column) at
F = 4 different operation frequencies. Whatever the frequency, the unknown scatterer is
accurately localized and both algorithms yield, at convergence, structures that occupy a large
subset of the true object. Such a similarity of performances, usually verified in synthetic
experiments when the value of SNR is greater than 20 dB, seems to confirm the hypothesis of
a low-noise environment as already evidenced in [35].

Finally, also in dealing with experimental datasets, the IMSA-LS proves its efficiency
since the overall amount of complex floating point operations still remains two orders in
magnitude lower than that of the Bare-LS (table 5, figure 17).
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Figure 17. Experimental data (Dataset ‘Marseille’ [34]). Circular cylinder (‘dielTM dec8f.exp’).
Behavior of the cost function versus the number of iterations when (a) f = 1 GHz, (b) f =
2 GHz, (c) f = 3 GHZ and (d) f = 4 GHz.

4. Conclusions

In this paper, a multi-resolution approach for qualitative imaging purposes based on shape
optimization has been presented. The proposed approach integrates the multi-scale strategy
and the level-set representation of the problem unknowns in order to profitably exploit the
amount of information collectable from the scattering experiments as well as the available
a priori information on the scatterer under test.

The main key features of such a technique can be summarized as follows:

• innovative multi-level representation of the problem unknowns in the shape-deformation-
based reconstruction technique;

• effective exploitation of the scattering data through the iterative multi-step strategy;
• limitation of the risk of being trapped in false solutions thanks to the reduced ratio between

data and unknowns;
• useful exploitation of the a priori information (i.e., object homogeneity) about the scenario

under test;
• enhanced spatial resolution limited to the region of interest.

From the validation concerned with different scenarios and both synthetic and experimental
data, the following conclusions can be drawn:
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• the IMSA-LS usually proved more effective than the single-resolution implementation,
especially when dealing with corrupted data scattered from simple as well as complex
geometries characterized by one or several objects;

• the integrated strategy appeared less computationally expensive than the standard
approach in reaching a reconstruction with the same level of spatial resolution within
the support of the object.
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