
 75

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Damu Ding; Marco Savi; Gianni Antichi; Domenico Siracusa, An Incrementally-

Deployable P4-Enabled Architecture for Network-Wide Heavy-Hitter

Detection, IEEE Transactions on Network and Service Management, Volume:

17, Issue: 1, March 2020, pp. 75-82, DOI: 10.1109/TNSM.2020.2968979

The final published version is available online at:

https://ieeexplore.ieee.org/document/8967165

When citing, please refer to the published version.

https://doi.org/10.1109/TNSM.2020.2968979

 75

An Incrementally-Deployable P4-Enabled

Architecture for Network-Wide

Heavy-Hitter Detection
Damu Ding , Student Member, IEEE, Marco Savi , Gianni Antichi , and Domenico Siracusa

Abstract—The advent of Software-Defined Networking with

OpenFlow first, and subsequently the emergence of pro-
grammable data planes, has boosted lots of research around many

networking aspects: monitoring, security, traffic engineering. In
the context of monitoring, most of the proposed solutions show

the benefits of data plane programmability by simplifying the
network complexity with a one big-switch abstraction. Only few

papers look at network-wide solutions, but consider the network
only composed by programmable devices. In this paper, we argue

that the primary challenge for a successful adoption of those solu-
tions is the deployment problem: how to compose and monitor a

network consisting of both legacy and programmable switches?
We propose an approach for incrementally deploy programmable

devices in an ISP network with the goal of monitoring as many
distinct network flows as possible. While assessing the benefits of

our solution, we realized that proposed network-wide monitor-

ing algorithms might not be optimized for a partial deployment
scenario. We then also developed and implemented in P4 a

novel strategy capable of detecting network-wide heavy flows:
results show that it can achieve better accuracy than state-of-

the-art solutions while relying on less information from the data
plane and leading to only marginal additional packet processing

time.

Index Terms—Network monitoring, programmable data plane,

incremental deployment, heavy-hitter detection.

I. INTRODUCTI ON

ETWORK monitoring is of primary importance: it

is the main enabler of various network management

tasks, ranging from accounting [2], traffic engineering [3],

anomaly detection [4], Distributed Denial-of-Service (DDoS)

Manuscript received May 10, 2019; revised November 6, 2019 and January

13, 2020; accepted January 18, 2020. Date of publication January 23, 2020;

date of current version March 11, 2020. The research leading to these results

has received funding from the European Commission within the H2020 R&I

program, Grant Agreement No. 856726 (GN4-3 project), and from the U.K.’s
Engineering and Physical Sciences Research Council (EPSRC) under the

EARL project (EP/P025374/1). A prelim inary version of this paper appeared in

[1], p resented at the IEEE Conference on Network Softwarization (NetSoft),

Paris, France, in 2019. The associate editor coordinating the review of this

article and approving it for publication was Q. Li. (Corresponding author:
Damu Ding.)

Damu Ding is with the Center for Information and Communication

Technology, Fondazione Bruno Kessler, 38123 Trento, Italy, and also with the

Department of Electrical, Electronic and Information Engineering, University

of Bologna, 40126 Bologna, Italy (e-mail: ding@fbk.eu).

Marco Savi and Domenico Siracusa are with Center for Information and
Communication Technology, Fondazione Bruno Kessler, 38123 Trento, Italy.

Gianni Antichi is with the School of Electronic Engineering and Computer

Science, Queen Mary University of London, London E1 4NS, U.K. Digital

Object Identifier 10.1109/TNSM.2020.2968979

N

mailto:ding@fbk.eu
https://orcid.org/0000-0001-9692-7756
https://orcid.org/0000-0002-8193-0597
https://orcid.org/0000-0002-6063-4975
https://orcid.org/0000-0002-5640-6507

 75

detection [5], Super-spreader detection [6], and scans
detection [7]. With the advent of Software-Defined

Networking (SDN), the significance of network monitoring

has been certainly boosted. This is because, SDN, with the

idea of a (logically) centralized control, allows an easy

coupling of network management operations with the

observed network status. As a result, SDN has been seen as

the answer to many of the limitations of legacy network

infrastructures [8], [9]. However, such a noble intent has

been limited by its current predominant realisation, the
OpenFlow (OF) protocol. Indeed, current OpenFlow APIs

are ill-suited and cannot provide accurate data-plane

measurements: the main mechanism exposes the per-port

and per-flow counters available in the switches [10]. An

application running on top of the controller can periodically

poll each counter using the standard OF APIs and then react

accordingly, instantiating the appropriate rule changes. As a

consequence, OF suffers from two important limitations: (i)
the controller needs to know in advance which flows have

to be monitored in the data plane and (ii) as the data

plane exposes just simple counters, the controller needs to do

all the processing to determine the network state. This also

implies that OF-enabled devices are only able to collect raw

flow statistics to be sent to a monitoring collector, causing

significant communication overhead for monitoring purposes.

This limitation is well-know for legacy devices as well (e.g.,

SNMP- and NetFlow-supported equipment) [11].
Lately, the advent of the so-called programmable switches

(e.g., P4-enabled switches [12]) has introduced the possibil-

ity to program data plane with advanced functionality and

enabled the possibility to implement more refined moni-

toring solutions directly in the switch hardware. Such an

innovative technology has attracted a growing number of

researchers and practitioners that in turn have proposed

many different solutions to enhance SDN capabilities in the
context of network monitoring [13], [14], [15], [16], [17].

As a result, the prospect of realizing fine-grained network-

wide monitoring, by analyzing the exposed information

from all the switches in a network, has attracted a lot of

interest [15], [18], [19]. For instance, memory-efficient data

structures, such as sketches [20], [21], have been proven

to be implementable in programmable switches to reduce

redundant monitoring information. However, in practice, a

one-shot replacement of all the existing legacy devices with
programmable switches is not a feasible solution due to oper-

ational and budget burdens. Clearly, this limits the benefits in

76 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 1, MARCH 2020

terms of network flow monitoring performance, since a partial

deployment leads to a reduced flow visibility.
This paper proposes a novel approach for an incremen-

tal deployment of programmable switches in Internet Service

Provider (ISP) networks. To optimize network-wide moni-

toring practices, it is important to have visibility over the

largest number of distinct flows. To this end, we exploit the

HyperLogLog algorithm [22] that is generally used for the

count-distinct problem, approximating the number of distinct

elements in a multi-set. While assessing the benefits of our

solution, we shortly realized that state-of-the-art network-wide
monitoring algorithms might not perform optimally in a partial

deployment scenario. We therefore propose a new algorithm

that is capable of detecting network-wide heavy flows (i.e.,

heavy hitters) using as input only partial information from

the data plane. We evaluate our incremental deployment strat-

egy alongside the proposed heavy-hitter detection algorithm

in simulation. We also implemented our heavy-hitter detection

strategy in P4 [12] and tested it in an emulated environment.

By comparing our incremental deployment solution with state-
of-the-art proposals, results show that we can achieve a better

monitoring accuracy using less switches. Moreover, our heavy-

hitter detection strategy outperforms existing ones in terms of

F1 score while relying on less information from the data plane,

while leading to only slightly higher packet processing times

in executing the programmable switch pipeline.
The main contributions of the paper are as follows:

• We tackle the problem of partial deployment of pro-

grammable networks in the context of network mon-

itoring. We propose a new strategy that allows to
incrementally deploy new programmable switches and

simultaneously maximize the network monitoring oper-

ation.
• We propose a new strategy for network-wide heavy-

hitter detection which is robust to partial deployments.

We implemented a prototype of such a strategy in P4
language [12] and tested it.

The remainder of the paper is organized as follows. In

Section II we explain the best practices for an effective par-
tial deployment of programmable switches, while Section III

presents the algorithmic background. Section IV describes our

incremental deployment algorithm, and Section V presents our

network-wide heavy-hitter detection strategy and its imple-

mentation in P4 language. Section VI and Section VII report

our evaluation results and comparison with the state of the art.

Finally, Section VIII recalls the related work and Section IX

concludes this paper.

II. HINTS FOR IMPROVED MONITORING PERFORMANCE
WITH LIMITED FLOW VI SI BI LI TY

When only a limited number of programmable switches can

be deployed in an ISP network, the network operator must

ensure that they are deployed in such a way it is made the best

use of them in terms of monitoring performance, measured as

we will explain later by F1 score. Fig. 1 shows the results of a

simple test: we simulated an ISP topology of 100 nodes [23]
with real traffic, and we evaluated the F1 score of an existing

threshold-based network-wide heavy-hitter detection strategy,

Fig. 1. F1 score of Harrison’s heavy-hitter detection strategy with single

programmable-switch deployment.

Fig. 2. Number of distinct flows crossing each switch.

proposed by Harrison et al. [19] (see Section VI for more

details on simulation settings and evaluated metrics) when only

one legacy switch/router1 is replaced with a programmable

switch. The graph shows all the 100 possible deployments.

What we can see is that the F1 score (i) is in all cases low but
(ii) substantially varies depending on the placement position

of the programmable switch. Consideration (i) comes from

the fact that by replacing only one switch the flow visibility is

very low, since only heavy hitters crossing such switch can be

detected, while (ii) proves that how we deploy programmable

switches in the network is a fundamental aspect to ensure good

monitoring performance with limited flow visibility.

Our intuition is that, when deploying a single programmable

switch, an effective strategy is to replace the one crossed by the
highest number of distinct flows. This is because the highest

the number of monitored flows is, the highest (on average) the

chance of monitoring some heavy hitters is. This consideration

holds also for any other flow-based network-wide monitoring

algorithm (e.g., heavy changes detection [14], network traffic

entropy estimation [13], etc.), whose analysis is however out

of the scope of this paper. Fig. 2 shows the number of distinct

flows crossing each one of the switches in the given time
interval. Two observations can be made: (i) if a switch crossed

by a few number of distinct flows is replaced, it is highly

probable that it cannot detect any heavy hitters (i.e., F1 score

is often zero); (ii) a (weak) correlation between F1 score and

number of monitored distinct flows indeed exists. For example,

replacing the switch with ID 44 leads to the highest F1 score,

and the same switch is one of the switches crossed by the

highest number of distinct flows. However, the network-wide

heavy-hitter detection strategy proposed in [19] has not been
explicitly designed to best exploit the available information

on switches’ monitored distinct flows, unlike our proposed

1In the remainder of this paper, we will use the generic term legacy device to

generically refer to legacy switches or routers. In fact, programmable switches

can support both Layer-2 and Layer-3 functionalities.

DING et al.: INCREMENTALLY-DEPLOYABLE P4-ENABLED ARCHITECTURE FOR NETWORK-WIDE HEAVY-HITTER DETECTION 77

√

strategy (see Section V), so correlation between F1 score and

number of distinct flows is small.
The same considerations can be made when more than one

programmable switches have to be deployed in the network. In

this case, it must be ensured that the subset of programmable

switches to be deployed monitors the highest number of

distinct flows overall (i.e., neglecting duplications): this guar-

antees satisfactory performance in the execution of monitoring

tasks such as heavy-hitter detection. The considerations and

intuitions discussed in this section have thus guided us in

the design of our algorithm for incremental deployment of
programmable switches, shown in Section IV.

III. BACKGROUND

In this section, we present the background for our incre-

mental deployment algorithm and network-wide heavy-hitter

detection strategy. Our algorithms rely on different data

streaming concepts and methods.

A. Estimated Count of Distinct Flows

An efficient and effective method to count a number of dis-

tinct items from a set is HyperLogLog [22]. In our specific

case, given a packet stream S = {a1, a 2 , . . . , am }, where each
packet is characterized by a specific (srcIP,dstIP) pair

(generically called flow key), it returns an estimation of car-
dinality of flows, i.e., how many (srcIP,dstIP) distinct
pairs exist in the stream.2 In this paper, we use nˆ ← Hll (S)
as notation to indicate input and output of the HyperLogLog

algorithm: Hll indicates the algorithm, S the input packet
stream and nˆ the cardinality of flows (i.e., number of dis-

tinct flows). The relative error of HyperLogLog is only 1.04 ,
m

where m is the size of HyperLogLog register. Apart from its
high accuracy, HyperLogLog is also very fast since the query

time complexity is O(1). Moreover, calculating the union (or

merge) of two or more HyperLogLog data structures (also

called sketches) is also very efficient, and can be used to count

the number of distinct flows in the union of two (or more) data
streams, e.g., Sa and Sb . In our notation, this can be written
as nˆunion ← Hll (Sa ∪ Sb), where nˆunion is the number of
distinct flows of the packet streams union Sa ∪ Sb .

B. Estimation of Flow Packet Count for Heavy-Hitter

Detection

Estimating the number of packets for a specific flow is fun-
damental for a proper detection of heavy hitters. Different

algorithms exist to perform such an estimation: we choose

to use Count-Min Sketch [21], which relies on a probabilis-

tic data structure (i.e., sketch) based on pairwise-independent

hash functions. Count-Min Sketch envisions two types of oper-

ations: Update and Query. Update operation is responsible for

continuously updating the sketch with information on incom-

ing packets in the switch, whereas Query operation is used to

retrieve the estimated number of incoming packets for a spe-
cific flow. To formalize the problem, we consider a stream

2Note that in this paper, without any loss of generality, we consider

source/destination pairs as flow identifiers. However, other definit ions could

also be adopted (e.g., 5-tuple).

of packets S = {a1 , a 2 , . . . , am }. The Count-Min Sketch

algorithm returns an estimator of packet count fˆx of flow
x ∼ (srcIPx ,dstIPx) satisfying the following condition:

Pr [|fˆx − fx | > ε|S|] ≤ δ, where ε (0 ≤ ε ≤ 1) is the relative
biased value and δ (0 ≤ δ ≤ 1) is the error probability. In
Count-Min Sketch, the space complexity is O(ε−1log2(δ−1)),
and per-update time is O(log2(δ−1)) [24]. Additionally, the

estimation of packet count satisfies fx ≤ fˆx ≤ fx +ε|S|, where
fx is the real packet count value. The accuracy of Count-Min

Sketch depends on ε and δ, which can be tuned by respec-

tively defining (i) the output size Ns of each hash function
and (ii) the number Nh of hash functions of the data structure.
In previous definitions, a heavy hitter is a flow whose packet

count overcomes a threshold ϑ|S| (0 < ϑ < 1). If a Count-

Min Sketch is adopted, the probability to erroneously detect a
heavy hitter due to packet miscount is defined in the following

way: Pr [∃x|f̂ x ≥ (ϑ + ε)|S|] ≤ δ. If Nh is large enough, error
probability δ is negligible.

IV. AN ALGORITHM FOR INCREMENTAL DEPLOYMENT OF

PROGRAMMABLE SWI TCHES

In this section we propose a novel algorithm for the incre-

mental upgrade of a legacy infrastructure with programmable

switches, which aims at ensuring good network monitoring

performance, as discussed in Section II.

A. Problem Definition

Our problem of incremental deployment of programmable

switches can be formalized in the following way.
Given:

• An ISP network topology of a legacy network infrastruc-
ture G = (N , L), where N is the set of legacy devices

and L the set of interconnection links;

• A long-term estimation of the transmitted packets in

the network between different sources and destinations
(i.e., traffic matrix T), including their routing paths and

possible re-routing paths in case of failures. From this
information it is possible to retrieve the estimated packet

stream Ti for each switch i ∈ N . Note that, unlike
in intra data-center scenarios, traffic distribution in ISP

networks is much less dynamic, being routes prevalence

and persistence increasing over time [25]. For this rea-

son, it is possible to estimate a reasonable traffic matrix

T using historical data;

• A number P ≤ |N | of legacy devices to be replaced with
programmable switches;

Replace a subset of P (such that P = |P|) of legacy devices

with programmable switches with the goal of monitoring the
highest number of distinct flows in the network and in an

incremental way. This means that it must be assured that any

subset of programmable switches Z (with |Z| ≤ P) that have
been already deployed in the network as intermediate step,

monitors the highest number of distinct flows as well.

B. Incremental Deployment Algorithm

As we mentioned above, HyperLogLog has good

performance on estimating the distinct flows from an

78 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 1, MARCH 2020

Algorithm 1: Incremental Deployment Algorithm
Input: Long-term traffic statistics T , Network topology

G, Number of legacy devices P to be replaced

Output: Set of legacy devices P to be replaced

1 max ← 0, P ← {}, nˆ ← 0;

2 n̂ p re ← 0, Tpre ← {}, key ← empty;

3 for Each legacy device i ∈N carrying traffic Ti do

4 nˆ ← Hll (Ti);
5 if nˆ > max then

6 max ← nˆ

7 key ← i

8 P.add (key)
9 if P > 1 then

10 n̂ p re ← max
11 Tpre ← Tkey

12 while P.size() ≤ P do

13 for Each switch i ∈N \ P carrying traffic Ti do

14 nˆ ← Hll (Tpre ∪ Ti)
15 if nˆ > max then

16 max ← nˆ

17 key ← i

18 P.add (key)
19 n̂ p re ← max

20 Tpre ← Tpre ∪ Tkey

21 return P

union of packet streams, so we use it to estimate the number

of distinct flows passing through a set of legacy devices [26].

The pseudo code of our proposed algorithm is shown in

Algorithm 1. To place the first programmable switch, we
compute the estimated number of distinct flows nˆ carried by

each of the i ∈ N legacy devices using the HyperLogLog
algorithm. The input of HyperLogLog, for each device

i ∈ N , is Ti . For the replacement with a programmable
switch, the algorithm selects the legacy device crossed by

the highest number (max) of distinct flows (Lines 4-7).

Such legacy device is added to P. Once the first legacy
device has been replaced, the principle to replace any other

legacy device consists in progressively finding the one that,

if replaced, allows to overall monitor the highest number of

distinct flows in the network. The choice must be carefully

taken, since different devices may be crossed by the same

flows, and thus some flow information can be duplicated.

To do so, we exploit the union property of HyperLogLog

(Line 14), recalled in Section III. As shown in Lines 10-21,

the algorithm estimates the number of monitored distinct

flows n̂ p re coming from the union of packet streams (i) of all

the previously-upgraded programmable switches (Tpre) and

(ii) of any legacy device i ∈N \ P still in the network (Ti).
Then, the algorithm selects for replacement (and thus addition

to set P) the legacy device i leading to the largest number
of monitored distinct flows overall (max). This operation

is iterated until a number P = |P| of legacy switches has

been replaced. Once the set P has been defined, the network

Fig. 3. Interaction between controller and programmable switches for

network-wide heavy-hitter detection in a partial deployment scenario.

operator can proceed with the physical replacement of the

legacy devices with programmable switches, while ensuring

interoperability in a hybrid environment [9]. Note that our

incremental deployment algorithm focuses on the replacement

of switches instead of new additions to the network. In fact,

adding new switches may imply changes to routing and flow

statistics alteration, making our algorithm ineffective.

V. A NETWORK-WIDE HEAVY-HITTER DETECTI ON

STRATEGY ROBUST TO PARTIAL DEPLOYMENT

In this section we propose a novel network-wide heavy-

hitter detection strategy. While taking inspiration from an

existing approach [19], it differs from the state of the art by

introducing the concept of local and global sample lists, which
make it robust to partial deployments aiming at maximizing

the network flow visibility.

Figure 3 shows the interaction between switches and a

centralized controller for network-wide heavy-hitter detection,

in the case of partial deployment of programmable switches

(i.e., when only some switches can perform monitoring oper-

ations in the data plane). Time is divided in intervals, and

in every time interval each programmable switch dynamically
stores in a sample list only those flows whose packet count

is larger than a dynamic sampling threshold. At the end of

each time interval, if any programmable switch stores in its

sample list one or more flows with packet count larger than a

dynamic local threshold, it reports a true flag to the centralized

controller. The flows whose packet count overcomes the local

threshold are called potential heavy hitters. The controller, if

at least one true-flag report is received, then polls all the pro-

grammable switches in the network to gather the {flow key,
packet count} pairs of all the flows stored in their sample lists.

This information is used to estimate the whole network vol-

ume, i.e., the number of all the unique packets transmitted in

the network in the given time interval. Finally, the controller

computes the so-called global threshold leveraging the esti-

mated network volume and gets all the network-wide heavy

hitters, i.e., the flows from sample lists whose packet count

is larger than the global threshold. Finally, all the flow and
packet statistics are reset and a new time interval is started.

In the following subsections, we formalize the problem of

network-wide heavy-hitter detection and describe in detail the

DING et al.: INCREMENTALLY-DEPLOYABLE P4-ENABLED ARCHITECTURE FOR NETWORK-WIDE HEAVY-HITTER DETECTION 79

K

K

K

K

Fig. 4. Scheme of the proposed network-wide heavy-hitter detection strategy.

Algorithm 2: Network-Wide Heavy-Hitter Detection

Algorithm - Programmable Switch i ∈P (Data Plane)

Input: Flow stream S , Local minimum min,
Heavy-hitters identification fraction θH , Local
ratio W , Sampling rate K , Count-Min Sketch

size Nh × Ns , Time interval Tint

Output: flag (true if potential heavy hitters are
identified in Tint , false otherwise)

1 ε ← 1/Ns

2 Function StoreFlowsInSampleList:

3

algorithms running both in the programmable switches and in 4

the controller to implement the proposed high-level strategy. 5
6

A. Problem Definition 7

We formulate the network-wide heavy-hitter detection 8

|Si |← 0
flag ← false

while currentTime ∈ Tint do
for Each packet belonging to flow

x ∼ (srcIPx , dstIPx) received do

|Si |← |Si | + 1
if fˆx ≥ min and fˆx ≥

(W θH +ε)|Si |
then

problem as follows.

Given:
9 SampleListi (x) ← fˆx

• A heavy-hitter identification fraction θH (0 < θH < 1);

• A time interval Tint ;
• The set of unique packets S transmitted in the network;

10 Function PotentialHHsDetection:

11 if currentTime = End time of Tint

then

Identify the set of flows which are network-wide heavy hit- 12

ters (HH), i.e., carry in the time interval Tint a number of 13

for Each flow x in SampleListi do

if fˆx <
(W θH +ε)|Si |

then

packets larger than the global threshold θH |S|tot , where |S|tot

is the network volume (i.e., number of transmitted packets).

B. Algorithm in Programmable Switches (Data Plane)

As shown in Fig. 4, when a packet comes into a pro-

grammable switch i, a packet counter named |Si | is updated
to count all the incoming packets. A Count-Min Sketch data

structure, which is used to store the estimated packet counts

for all the flows, is updated to include the information from

the current packet, and then it is queried to retrieve the esti-

mated packet count fˆx for the flow x ∼ (srcIPx ,dstIPx)

such packet belongs to. This information is used to understand

whether the packet belongs to a flow that must be inserted in

the sample list.
The flow x is inserted in the sample list if fˆx≥

14 SampleListi .remove(x)

15 if SampleList (x) ≥ (W θH + ε)|Si | then

16 flag ← true

17 return flag

We thus introduce a parameter min operating in conjunction

with the sampling threshold: only if packet count of the con-

sidered flow is larger than both min and sampling threshold
(W θH +ε)|Si | , the flow is inserted in the sample list. This is

described in Lines 6-11 of Algorithm 2.

At the end of the time interval Tint , |Si | counts all the
incoming packets in the considered time frame. Thus, as shown

(W θH +ε)|Si |
, where

(W θH +ε)|Si | is the sampling threshold. in Lines 13-14, the algorithm removes from the sample list all
K

The parameters W (W ≥
K

1) and K (K ≥ 1) affect the size of those flows with packet count lower than
(W θH +ε)|Si | , where

the sample list: the larger W and the smaller K are, the smaller

the sample list size is, thereby consuming less memory in the

switch. However, as we will report in the next subsection,

this would reduce the accuracy on the estimation of the over-

all network volume and on the identification of heavy hitters.

Therefore, K (called sampling rate) should be carefully set in

each programmable switch to store only flows carrying a sig-

nificant number of packets. ε is instead the biased value caused

by Count-Min Sketch (see Section III): we sum ε = 1/Ns to

W θH in order to compensate such bias. The sample list is

thus used to dynamically store the packet counts for the most

frequent flows crossing the switch.
Since at the beginning of each time interval Tint the sam-

pling threshold is low, being |Si | a small value (that can even
be < 1), flows with small packet counts would be stored in

the sample list.

|Si | is the final stored value. This means that the algorithm
keeps in the sample list only those flows which have packet

counts larger than the final sampling threshold, while discard-

ing the flows with packet counts greater than the temporary

threshold dynamically computed and updated within the time

interval. Note that the sample list stores at most K

(W θH +ε)
flows, and thus its memory occupation increases as K increase
or W decrease, as already discussed.

Finally, the algorithm evaluates whether potential heavy
hitters cross the switch. They are the flows whose packet

counts are greater than the switch local threshold, set as

(W θH + ε)|Si |. A true flag is sent to the controller if at least
one potential heavy hitter is detected, otherwise no information

is sent (Lines 15-17). Note that local threshold and sam-

pling threshold are similar: with respect to sampling threshold,

local threshold just misses in its definition K, which has been

80 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 1, MARCH 2020

K

Algorithm 3: Network-Wide Heavy-Hitter Detection
Algorithm - Centralized Controller (Control Plane)

Input: Heavy-hitter identification fraction θH , Time
interval Tint , Sample lists SampleListi from all

programmable switches i ∈P
Output: Set of network-wide heavy hitters HH in Tint

1 Function RetrieveDistinctFlowsPacketCounts:

2 for Each switch i ∈P do

3 for Each flow x in SampleListi do

4 if flow x is in GlobalSampleList then

5 if

SampleListi (x) < GlobalSampleList (x)
then

6 GlobalSampleList (x) ←

SampleListi (x)

7 else

8 GlobalSampleList (x) ← SampleListi (x)

9 Function EstimateVolume:

10 |S|tot ← 0
11 for Each flow x in GlobalSampleList do

12 |S|tot ← |S |tot + GlobalSampleList (x)

13 Function GetNetworkWideHH:

14 for Each flow x in GlobalSampleList do

15 if GlobalSampleList (x) ≥ θH |S|tot then

16 HH .add (x)

17 return HH

introduced to set the size of the sample list. The primary role of

W is instead to set the proportion (or ratio) between the local
threshold (W θH + ε)|Si | and the global threshold θH |S|tot ,

being Si a local (and smaller) value than |S|tot .

C. Algorithm in Centralized Controller (Control Plane)

At the end of the time interval Tint , once the controller

receives from programmable switches any report including a

true flag, it polls all of them to obtain their sample lists. Note

that different sample lists can include the estimated packet

count for the same flows: this happens if a flow crosses

multiple programmable switches. To avoid an overestimation

of |S|tot , Algorithm 3 makes sure that (i) only the minimum-
estimated packet count is kept, i.e., the one less overestimated

by Count-Min Sketch, and (ii) it is stored in a list (i.e.,
GlobalSampleList) including all distinct flows from sample

lists (Lines 2-8). The algorithm then sums up the packet

counts for all the identified distinct flows and estimates the

whole network volume |S|tot (Lines 9-12). If packet counts
of flows belonging to GlobalSampleList (which surely includes

the potential heavy hitters) are larger than the global thresh-

old θH |S|tot , we consider them as network-wide heavy hitters
HH (Lines 13-17). At last, the controller triggers the reset of

counters in all programmable switches.

D. Implementation in P4 Language

1) Programmable Switches (Data Plane): We have imple-

mented our prototype of algorithm in P4, leveraging the P4

behavioral model [27] to describe the behavior of P4 switches

(e.g., parsers, tables, actions, ingress and egress in the P4

pipeline). The source code is available at [28]. In P4-enabled
switches, registers are stateful memories whose values can be

read and written [29]. We first allocate a one-sized register

Si to count the overall number of packets in the given time

interval Tint . When each packet arrives at the switch, the value

in this register is incremented by one.

Moreover, we allocated several one-dimensional registers
for Count-Min Sketch implementation. We chose xxhash [30]

to implement the needed pairwise-independent hash functions

by varying the seed of each hash function, which is associated
to a different register. In our case, the seed is set to be the same

value as the index of each register. In the Count-Min Sketch
Update operation, each register relies on its corresponding
hash function, which takes as input x ∼ (srcIP,dstIP),
to obtain as output the index of the register cell whose value

must be incremented by one.

To perform the Query operation on the Count-Min Sketch,

we set a count-min variable to the queried value obtained from

the first register, which is associated to the first hash function.
Consequently, the queried value for the remaining registers is

compared with count-min. If the queried value for a regis-

ter is smaller than current count-min value, then count-min is
updated accordingly. Its final value is thus the packet count

estimation count -min = fˆx for the queried flow x.
One of the drawbacks of P4 language is that it does

not allow variable-sized lists, as sample list is. We thus

used three same-sized registers, named samplelist_src, sam-
plelist_dst and samplelist_count to implement the sample list

and to store srcIP, dstIP and packet count of flows, respec-

tively. Information on flow keys (srcIP,dstIP) associated

to significant packet counts is stored in these registers. Since

P4 language does not support for loops to find the flows with
smallest packet count in the sample list to be replaced, the

hash function CRC32 is used to decide whether to replace
list’s entries.

When the stored count-min value is larger than both the pre-

set minimum value min and sampling threshold
(W θH +ε)|Si |

(where the value of Si is read from register Si), the algo-

rithm hashes the flow key (srcIP,dstIP) using CRC32

hash function and checks whether the sample list register cells
indexed by the output value of CRC32 are empty or not. If they
are empty, srcIP, dstIP and packet count are added to sam-
ple list registers in the same indexed position. Otherwise, the

switch compares the current estimated packet count fˆx with

stored packet count fˆy (from the generic stored flow y) in

samplelist_count. If the current packet count fˆx is larger than

existing packet count fˆy , the algorithm replaces srcIP, dstIP
and packet count to new values from flow x. Additionally, if

packet count f̂ x is larger than current largest value max stored

in the register count_max, max is replaced by fˆx .
Using the P4 behavioral model, ingress_global_timestamp

allows to record the timestamp when the switch

starts processing the incoming packet. Hence, when

DING et al.: INCREMENTALLY-DEPLOYABLE P4-ENABLED ARCHITECTURE FOR NETWORK-WIDE HEAVY-HITTER DETECTION 81

TABLE I

SIMULATION PARAMETERS

ingress_global_timestamp is larger than current time interval

Tint end time, and max in the register count_max is larger
than current local threshold (W θH + E)|Si |, the switch clones

the current packet and embeds a customized one-field header

including the field Flag with binary value 1. This cloned

packet is sent to the controller to report that a potential

(and local) heavy hitter exists, while the original packet is

forwarded to the expected destination.

2) Centralized Controller (Control Plane): We imple-

mented a preliminary version of the centralized controller in

Python. The controller can read the registers in the switches
by using the simple_switch_CLI offered by the P4 behavioral

model. If the controller receives packets from P4 switches

at the end of time interval Tint , it gathers the registers
samplelist_src, samplelist_dst and samplelist_count from P4
switches and merges them into a global sample list. Finally,
according to the heavy-hitter global threshold θH |S|tot , the

TABLE II

COUNT-MIN SKETCH SIZE AND ITS MEMORY OCCUPATION

that each counter in Count-Min Sketch occupies 4 Bytes, the

memory to be allocated for the sketch in each switch can be

quantified as 10000 · 40 · 4B = 1.6MB. Since the total memory
of a real programmable switch chip (i.e., Barefoot Tofino [34])

is few tens of MB [35], it may be a reasonable size for a real

large-scale ISP network scenario. However, in the following

we will give a sensitivity analysis of monitoring performance

with respect to Ns and Nh , analyzing what happens if more

stringent memory requirements arise in the switch. Moreover,

we chose W = 3 and K = 10 after a rigorous sensitivity

analysis since, as will be shown later, these values lead, for

the considered network topology, to the best trade-off between

communication overhead, occupied memory and F1 score (i.e.,

they allow to overcome state-of-the-art performance for all the

considered metrics).

3) Metrics: We set recall R and precision Pr as key metrics

to evaluate our network-wide heavy-hitter detection strategy.

They are defined in the following way:

Countdetected /true

controller is able to detect network-wide heavy hitters. Finally,

the controller resets all registers in P4 switches and starts a
R = HeavyHitters

Countdetected /true + Countundetected /true
(1)

HeavyHitters HeavyHitters
new round of heavy-hitter detection.

VI. SIMULATION RESULTS

Countdetected /true

Pr = HeavyHitters

Countdetected /true + Countdetected /false

(2)

HeavyHitters HeavyHitters

Based on open source implementations of

HyperLogLog [26] and Count-Min Sketch [31], we

implemented our incremental deployment algorithm and

we simulated both our and Harrison’s [19] network-wide

heavy-hitter detection strategies in Python. In the following

the simulation settings are reported.

A. Simulation Settings and Evaluation Metrics

1) Traces and Network Topology: We divided 50 seconds

2018-passive CAIDA flow trace [32] into 10 time intervals.

The programmable switches send reports to the controller

when they detect potential heavy hitters at the end of any
of those time intervals: in each time interval are transmitted

around 2.3 million packets. As testing topology, we adopted a

100-nodes ISP backbone network [23]: adjacency matrix and

plotted topology are available in [28]. A 32-bit cyclic redun-
dancy check (CRC) [33] function was used to randomly assign

each packet (characterized by a specific (srcIP,dstIP)

pair) to a source/destination node couple in the network, and

each packet is routed on the shortest path.

2) Tuning Parameters: Unless otherwise specified, we
set the simulation parameters as reported in Table I. For

HyperLogLog, we considered m = 212 because it leads to
small-enough relative errors for our purposes (see Section III).

We then chose Tint and θH as per [13] and a Count-Min

Sketch with size Nh = 40 × Ns = 10000. Considering

In our evaluations, we consider F1 score (F1) as compact

metric taking into consideration both precision and recall, and

measuring the accuracy of our strategy. It is defined as:

F 1 =
2 · Pr · R

(3)

Pr + R

Additionally, we consider each {flow key, packet count}

pair as unit to evaluate both consumed communication over-

head (when sent) and overall occupied memory (when stored

in programmable switches). We consider as unit also flags

sent by programmable switches to controller for local heavy-
hitter notification.3 All the reported results are the average

value obtained in the considered 10 time intervals. We did

not include the Count-Min Sketch size in the evaluated occu-

pied memory, since it is constant: Table II gives an insight on

Count-Min Sketch memory occupation for some sketch sizes,

including Nh = 40 × Ns = 10000.

B. Evaluation of the Incremental Deployment Algorithm

We compare our Incremental deployment algorithm, where

programmable switches are used for the detection of network-

wide heavy hitters, with four existing algorithms: Highest vol-

ume, Highest closeness, Highest betweenness and Random

3In real scenarios, each flag can be encoded by one bit, while {f low key,
packet count} pairs require few bytes to be encoded. However, we consider

both of them as a single unit for the purpose of easier quantification.

82 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 1, MARCH 2020

Fig. 5. Performance evaluation of our incremental deployment against some

existing algorithms in the detection of network-wide heavy hitters.

locations. The Highest volume algorithm exploits long-term

flow statistics to replace first the switches overall crossed

by the largest number of packets. In the Highest closeness

algorithm, the switches are ordered according to decreasing

closeness, and in a partial deployment of P programmable

switches only the top P switches in the list are replaced [36].

The Highest betweenness algorithm behaves in the same

way, but betweenness of nodes [37] is evaluated instead

of closeness. Both of these algorithms only depend on
the network topology, and their underlying assumption is

that nodes with highest centrality should be replaced first.

Finally, the Random locations algorithm replaces P randomly-

selected nodes: we average results over five randomized

instances.

As shown in Fig. 5, which reports F1 score as a func-

tion of the number of deployed programmable switches, our

Incremental deployment algorithm allows network operators to
deploy a less number of programmable switches while ensur-

ing the same F1 score of the other algorithms. It especially

works well when a small number of programmable switches

is deployed (i.e., for less than 50 switches), while it has com-

parable performance as the other algorithms when more than

half programmable switches are deployed. This means that our

strategy of first replacing switches that monitor the highest

number of distinct flows effectively improves flow visibility

when it is inherently limited, also with respect to a strategy
defined on the same long-term flow statistics (i.e., Highest

volume algorithm). In fact, this latter strategy misses to con-

sider that switches could carry many packets belonging to a

multitude of small flows, and network-wide heavy hitters may

remain undetected.

C. Evaluation of the Network-Wide Heavy-Hitter Detection

Strategy in an Incremental Deployment Scenario

We compare the performance of our proposed network-wide

heavy-hitter detection strategy, named NWHHD+ for the sake

of brevity, with the state-of-the-art strategy (called SOTA in the

remainder of the section) proposed by Harrison et al. [19].

In order to fairly compare these two strategies, we set the

global threshold for SOTA to Tg = dθH |S|tot , where d is
the average path length for the flows in all the time intervals,

θH is fraction for heavy-hitter identification, and |S|tot is the

whole network volume. Smoothing parameter is α = 0.8 as
per [19].

Figure 6(a) shows that NWHHD+, when deploying pro-
grammable switches using our incremental deployment algo-

rithm, always leads to higher F1 score than SOTA, especially

when the number of programmable switches in the network is

small. This means that NWHHD+ better exploits partial flow

information provided by the programmable switches to detect

the network-wide heavy hitters.

Figure 6(b) shows instead a comparison on the average-

generated communication overhead. It clearly shows that

NWHHD+ has a comparable communication overhead as

SOTA, and NWHHD+ leads to less communication overhead

than SOTA as the number of programmable switches increases.

In NWHHD+, if at least one local heavy hitter is identified in

a given time interval (as always happens in our simulations), at

the end of it the controller polls all the programmable switches
to estimate the global network volume. Such an approach may

cause high communication overhead, but by properly tuning W

(as shown later) the local threshold can be increased, signif-

icantly reducing communication exchanges between switches

and controller. Conversely, the SOTA strategy coarsely esti-

mates the overall network volume at the controller and polls

the programmable switches only if the estimated value is above

the defined global threshold.
Figure 6(c) shows the average occupied memory by the two

strategies. NWHHD+ outperforms SOTA, always occupying

much less memory. This happens because NWHHD+ only
stores (i) the sample list (and not all the {flow key, packet

count} pairs, as SOTA does) and (ii) one local threshold for

all the flows in each programmable switch (while SOTA stores

per-flow local thresholds).

Note that unlike SOTA, as can be noticed from all the

graphs of this section, NWHHD+ leads to very similar com-

munication overhead and memory occupation results. In fact,

communication overhead units in NWHHD+ are equal to

{flow key, packet count} pair units stored in the switches sam-

ple lists, since such lists from all programmable switches are
sent to the controller at the end of any time interval in which at

least a local heavy hitter has been detected, plus the number

of flags reported by programmable switches to controller to

notify the existence of local heavy hitters. This means that the

unit difference between communication overhead and memory

occupation is at most the number of deployed programmable

switches, and this small value cannot be noticed on the

graphs.
Additionally, Fig. 7 recalls the simple test described in

Section II. What we report in the figure is F1 score for all

the possible 100 deployments for the programmable switch

when NWHHD+ is adopted. Compared to Fig. 1, we can

see that the F1 score is generally higher in NWHHD+ (as

already discussed), and that in most of the cases the peaks in
F1 score correspond to IDs of switches that are crossed by a

high number of distinct flows (see Fig. 2). This means that

NWHHD+ better exploits the distinct flows information than

SOTA. This can be even further proven by computing the nor-

malized cross-correlation in τ = 0 [38] between the number

DING et al.: INCREMENTALLY-DEPLOYABLE P4-ENABLED ARCHITECTURE FOR NETWORK-WIDE HEAVY-HITTER DETECTION 83

K

Fig. 6. Performance comparison of NWHHD+ with a state-of-the-art strategy [19].

Fig. 7. F1 score of NWHHD+ with single-programmable-switch

deployment.

of distinct flows and F1 score, which is 13.11 for NWHHD+
and 6.57 for SOTA.

In order to show how the performance of NWHHD+ is

sensitive to different tuning parameters, we ran simulations by

varying the following parameters one at a time, while fixing

the others to the values specified in Table I.

1) Sensitivity to Sampling Rate K: Figure 8 shows the sen-

sitivity analysis of NWHHD+ performance on sampling rate

K. As shown in Figure 8(a), when K increases, F1 score

increases as well, especially from K = 10 to K = 100.

Figure 8(b) shows that also communication overhead signifi-

cantly increases as K increases, as well as occupied memory

(Figure 8(c)). The reason is that an increase of K leads to a

smaller sampling threshold and thus to a bigger sample list to

be stored and sent to the controller. In summary, choosing a

larger K leads to a performance improvement on heavy-hitter

detection, but implies an extra consumption of memory and

communication resources. In our case, K = 10 is a good trade-

off choice since it leads to comparable F1 score than choosing

larger K while using much less memory and generating much
less communication overhead.

2) Sensitivity to Local Ratio W: Figure 9 shows the sen-

sitivity analysis of NWHHD+ performance on local ratio W.

As shown in Figure 9(a), F1 score decreases as W increases,

and the difference of F1 score is substantial between W = 5

and W = 20. Figure 9(b) and Figure 9(c) show that both

communication overhead and occupied memory also signif-

icantly decrease when W increases. This happens because,

opposite to K, an increase of W leads to a decrease in the sam-
ple list size, which means that less {flow key, packet count}

pairs are reported to the controller when the switches are

polled (i.e., less communication overhead) and less memory

is also occupied. As side effect, the detection accuracy is also

affected (i.e., lower F1 score). Thus, a smaller W enhances

the performance on heavy-hitter detection, but more memory

and communication overhead are required. According to the

shown results, W = 3 leads to a good trade-off among F1

score, communication overhead and memory occupation.
3) Sensitivity to Count-Min Sketch Hash Function Output

Size Ns: Figure 10 shows the sensitivity analysis of

NWHHD+ performance on hash function output size Ns of
Count-Min Sketch. For better understanding, we report the
memory occupation of various Count-Min Sketches in Table II.
The blue cells recall the sketch size adopted in this paper,
unless otherwise specified. As shown in Figure 10(a), if the

output size is too small (i.e., Ns = 100), Count-Min Sketch
highly overestimates flows packet count and this causes very

poor F1 score. By increasing the value of Ns , F1 score sig-

nificantly increases until around Ns = 2000. However, after

this value (i.e., for Ns = 10000) F1 score slightly decreases.

The reason of this behavior is that Ns = 2000 leads to
a slight overestimation of packet count for flows stored in
sample lists that does not badly affect heavy-hitter detection.
Conversely, such slight overestimation compensates missing
packet counts of small flows that are not stored in those lists,

leading to an estimated whole network volume Stot very close
to the real value. This effect makes the controller able to iden-
tify network-wide heavy hitters with a more accurate global
threshold, thus leading to high F1 score.

Figures 10(b) and 10(c) show that the overestimated packet
count due to too small output size also causes very large-

sized and badly-estimated sample lists and consequently leads
to high and unnecessary occupied memory and communica-

tion overhead. While increasing Ns , communication overhead

and memory occupation decrease until a minimum is reached

at around Ns = 2000 then, for larger Ns , they marginally

increase. This slight increase is due to the value ε = 1/Ns

used in Algorithm 2 for bias compensation in sampling and

local thresholds (see Section V-B). The effectiveness of intro-
ducing ε in our strategy is shown in Figure 12: considering

ε in the computation of sampling and local thresholds not
only increases F1 score, but also decreases communication

overhead and memory occupation. On the other hand, con-

sidering ε = 1/Ns also means that Ns directly affects the
value of sampling threshold

(W θH +ε)|Si | and local threshold

(W θH +ε)|Si |. If the output size Ns is larger, ε is smaller: this

84 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 1, MARCH 2020

Fig. 8. Sensitivity analysis of sampling rate K in NWHHD+ (W = 3).

Fig. 9. Sensitivity analysis of local ratio W in NWHHD+ (K = 10).

Fig. 10. Sensitivity analysis of hash function output size Ns in NWHHD+ (W = 3 and K = 10).

leads to smaller sampling and local thresholds. A smaller sam-
pling threshold generates a larger sample list to be stored and

sent to the controller (i.e., higher communication overhead and

occupied memory). Conversely, having a smaller Ns leads to

less communication overhead and occupied memory, and this
explains why lower Ns (but not too small, where overestima-

tion dominates) generates lower communication overhead and

requires less memory than sketches with larger output size.

4) Sensitivity to Number of Count-Min Sketch Hash
Functions Nh : Figure 11 shows the sensitivity analysis of

NWHHD+ performance on number of hash functions Nh

of Count-Min Sketch. As shown in Figure 11(a), F1 score
increases as the number of hash functions Nh increases.

Nevertheless, when Nh is large enough to correctly estimat-

ing flow packet counts, further increasing it does not improve
heavy-hitter detection performance anymore. Figures 11(b)
and 11(c) show that communication overhead and memory

occupation decrease as the number of hash function Nh

increases. Especially, if Nh is too small, wrongly-estimated

flow packet counts lead to high communication overhead
and memory consumption. Finally, note that sketch sizes

of 10 × 2000 and 40 × 2000 both lead to better results

than sketch size of 40 × 10000. This happens because,
as shown previously, a too large Ns has bad impact on
NWHHD+ performance: results thus show that NWHDD+
is more sensitive to variations to Ns than to Nh .

D. Insights on Network-Wide Heavy-Hitter Detection in a
Full Deployment Scenario

We report an evaluation of NWHHD+ strategy against

SOTA also in a full deployment scenario, i.e., when all legacy

devices have been replaced with programmable switches. As

done previously for a partial deployment scenario, Tables III

DING et al.: INCREMENTALLY-DEPLOYABLE P4-ENABLED ARCHITECTURE FOR NETWORK-WIDE HEAVY-HITTER DETECTION 85

Fig. 11. Sensitivity analysis of number of hash functions Nh in NWHHD+ (W = 3 and K = 10).

Fig. 12. Impact of E in NWHHD+ (W = 3 and K = 10).

TABLE III

SENSITIVITY TO W IN THE CASE OF FULL DEPLOYMENT (K = 10)

TABLE IV

SENSITIVITY TO K IN THE CASE OF FULL DEPLOYMENT (W = 3)

and IV show the sensitivity of NWHHD+ to W and K, and a
performance comparison with SOTA. Table III shows that with

W = 20 NWHHD+ and SOTA have comparable F1 score, but

NWHHD+ leads to a significant reduction of both memory

occupation and communication overhead. Similar results can

be obtained by properly tuning K (Table IV). Also in this

case, with K = 2, NWHHD+ and SOTA have similar F1

score, but NWHHD+ considerably reduces communication

overhead and memory occupation. To summarize, these results

show that NWHHD+ is a good strategy also for network-wide

heavy-hitter detection in a full deployment scenario.

VII. EVALUATION IN EMULATED P4 ENVI RONMENT

Based on an open source P4 implementation of Count-

Min Sketch [39], we implemented both our network-wide

heavy-hitter detection (i.e., NWHHD+) and Harrison’s

(i.e., SOTA) strategies in P4 language and tested them. In the
following, we report some details on the emulated network

environment.

A. Environment Settings and Evaluation Metrics

1) Emulated Network Environment: We chose Mininet [40]

as our emulated network environment for the deployment of P4

switches implementing the network-wide heavy-hitter strate-

gies. The P4 code is compiled by p4c compiler [41] into a
JSON file that describes the behavior of P4 switch (i.e., parser,

tables and actions in the P4 pipeline). Then, the JSON file

is loaded by any P4 switch created according to the behav-

ioral model [27]. Finally, a topology in Mininet is created

connecting such behavior-defined P4 switches. The adopted

topology is composed by three interconnected switches, and

there is a host connected to each switch. All the packets are

forwarded from source host to destination host on the short-

est path. We did not consider a larger topology for scalability
reasons, since all the P4 switches are emulated on a virtual

machine deployed by OpenStack on our testbed with dedi-

cated access to 4 × 2.7GHz CPU cores and to 4GB of RAM.
However, given the nature of the performed tests, as we will

show later, this does not represent a limitation. The controller

is implemented in Python as we explained in Section V-D2.

2) Tuning Parameters: We used the same settings as our
simulations in Python shown in Table I, unless otherwise spec-

ified. Additionally, we set the size of register Si to 1 and all

the remaining registers but Count-Min Sketch (e.g., sample

list) to 100. Count-Min Sketch registers size is set to Ns .

86 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 1, MARCH 2020

Fig. 13. Cumulative distribution function of packet processing time for NWHDD+ (10000 packets).

3) Metrics: We evaluate NWHHD+ performance in terms

of packet processing time. We believe that packet process-

ing time is an important metric to evaluate, since it discloses

whether the algorithm implemented in the P4 pipeline per-

forms well or not and whether it can be used for line-rate
transmissions. We used Wireshark to capture the time when

each packet arrives at an input interface of a P4 switch and

the time when it is forwarded by an output interface of the

same switch. The packet processing time is defined as the dif-

ference between such times and estimates the time spent by

the packet in the P4 switch pipeline. We also implemented

a simple forwarding strategy, where no heavy-hitter detection

(neither SOTA nor NWHHD+) is performed and the packet

is just forwarded to the right output interface.

As additional metric, we also evaluate the controller

response time. This metric represents the time overhead gen-

erated in the interaction between data plane and control plane
for the identification of heavy hitters.To measure such response

time, we captured the following timestamps at the controller:

(i) the timestamp related to the first true-flag packet that arrives

at the controller, meaning that at least one potential heavy-

hitter exists in the network and (ii) the timestamp when any

network-wide heavy hitter has been detected (if it exists). The

response time is then defined as the difference between the

latter and the former timestamps.

B. Evaluation of Packet Processing Time

Figure 13 reports the cumulative distribution function of

packet processing time measured for 10000 generated pack-

ets. As shown in Figure 13(a), both NWHHD+ and SOTA

strategies lead to more packet processing time than simple

forwarding, since more operations need to be performed on

the packet. However, 50% of the packets can be processed

within 1500 μs in the switch when the Count-Min Sketch

size is set to Nh × Ns = 10 × 2000. Since our strategy has
more read and write actions in the additional registers (e.g.,

sample list) than SOTA, SOTA leads to slightly lower pro-
cessing times. Increasing the output size Ns (up to a certain

threshold) and the number of hash functions Nh can improve

F1 score for heavy-hitter detection as shown in Figures 10
and 11, but this also has some impact on packet process-
ing time in P4 switches. Figure 13(b) shows how Ns affects
packet processing time: it slightly increases as Ns increases

significantly. This happens because a higher Ns requires a

TABLE V

AVERAGE CONTROLLER RESPONSE TIME

hash function performing more lookups to obtain the output
value. Figure 13(c) shows instead the impact of Nh : results

clearly show that increasing the number of hash functions Nh

has a more impacting effect on packet processing time than
increasing the output size of hash functions Ns .

These evaluations confirm that the size of Count-Min
Sketches implemented in the data plane must be carefully

defined. In fact, an increase in Nh improves monitoring

performance (see Figure 11) but requires larger packet process-

ing time. Moreover, by also referring to Figure 10, correctly

dimensioning Ns is of paramount importance to avoid both

large packet processing time and F1 score reduction. Finally,
note also that packet processing times shown in this section

(i.e., in the order of few ms) include the time needed to cross

several virtualized layers in the single-node emulated envi-

ronment. In real carrier-grade hardware (e.g., Barefoot Tofino,
with throughput in the order of 6.5 Tb/s or more [34]), packet

processing time is expected to be several orders of magnitude

lower (i.e., in the order of ns or few μs).

C. Evaluation of the Controller Response Time

For each different time interval size, we measured the

response time in 10 intervals and computed the average

response time. Table V shows the average response time.

It is around 1.5 s and slightly increases while increasing

Tint , since more data needs to be processed for longer time

intervals. These results mean that network-wide heavy hitters

are detected in average 1.5s after that the controller receives

the first flag from any switch identifying a potential heavy

hitters. Note that this time depends on the computational

capacity of the controller, so we expect it to be even smaller

while adopting carrier-grade hardware for the controller in real

deployments. Moreover, we do not include in the evaluated

response time the retrieval time of the flag messages from the

programmable switches, which strongly depends on where the

controller is placed and is at most in the order of few tens of

ms [42] (i.e., negligible with respect to the controller response

time).

DING et al.: INCREMENTALLY-DEPLOYABLE P4-ENABLED ARCHITECTURE FOR NETWORK-WIDE HEAVY-HITTER DETECTION 87

VIII. RELATED WORK

A. Partial Deployment of SDN Solutions in ISP Networks

The appearance of SDN simplifies the network manage-

ment and enhances the flexibility of the network. However,

currently it is not feasible to upgrade all legacy switches to

SDN switches due to the limitation of budgets and operational

burdens, so the current trend for network operators is to deploy
a limited number of SDN switches and make the network best

work in a hybrid environment. A good strategy for partial SDN

deployment is thus needed to cost-effectively bring benefits

to ISPs. Unfortunately, obtaining the best partial deployment

of SDN switches is a NP-hard problem [43]. In literature,

most of the works focus on the problem of partial deploy-

ment of OpenFlow switches [10] in legacy infrastructures,

and either Integer Linear Programming (ILP) [44] or incre-

mental deployment heuristic algorithms [43], [45], [46], [47]
have been adopted to solve such problem, focusing on inter-

operability and routing issues in a hybrid environment while

achieving the best load balancing or maximizing the through-

put. Incremental deployment heuristic strategies are a good

approach to solve the problem of partial deployment, since

they aim at iteratively replacing legacy equipment by ensuring

local optimal performance. However, the previous work neither

takes into account the problem of incremental deployment of
programmable switches in a legacy infrastructure to improve

network monitoring performance nor proposes a solution for

topological placement of programmable switches: with our

paper, we try to fill this gap. Moreover, our solution is inter-

operable with other techniques: the raw data gathered from

legacy devices could be used with filtered data collected from

programmable switches for an improved network monitoring.

B. Network-Wide Heavy-Hitter Detection in Programmable
Data Planes

In the last years, many strategies have been proposed

to monitor heavy hitters directly in the data plane

by exploiting the flexibility of programmable switches.

Some among them are OpenSketch [48], UnivMon [13],

Elastic Skecth [15], FlowRadar [14], SketchVisor [16],

NitroSketch [49], SketchLearn [50] and HashPipe [17].

However, they only focused on heavy-hitter detection at a

single SDN switch, but this is not enough for heavy-hitter

detection in large networks, since some heavy hitters may

be undetected or wrongly detected by relying on limited
information at a single location.

Thus, the concept of network-wide heavy hitter has been

introduced in literature [51], [52], [53]. A network-wide

heavy hitter uses distributed information, which can be

made available by programmable switches, to accurately and

effectively monitor heavy hitters from a global perspective.

Harrison et al. [19] and Ben-Basat et al. [18] have proposed

two different strategies to monitor network-wide heavy hit-

ters. In Harrison’s strategy [19], at the end of each time
interval, if any heavy hitter has been detected through a local

threshold-based mechanism in P4-enabled switches, the con-

troller polls the programmable switches and uses a different

(global) threshold-based mechanism to decide whether local

heavy hitters are network-wide heavy hitters or not. However,

in their strategy, packets belonging to the same flow are
counted multiple times by different switches, and this dupli-

cated information is not discarded by the controller while

estimating network-wide heavy hitters: for this reason, it is

very difficult to correctly set the global threshold. Basat’s

work [18] provides a solid method for network-wide heavy-

hitter detection by using a data streaming model, but the

introduced communication overhead and occupied memory

are significant. Another key limitation is that the hash func-

tions needed by their strategy do not exist in practice. Our
network-wide heavy-hitter detection strategy is similar to the

one proposed by Harrison et al., but we define new and

more intuitive local and global thresholds and we exploit

information on distinct flows to prevent duplicate counting

of packets, thus reducing the communication overhead and

occupied memory in programmable switches and improving

monitoring performance.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a new greedy algorithm for

an effective incremental deployment of SDN programmable

switches in legacy infrastructures that aims at monitoring as

many distinct network flows as possible. This algorithm best

supports monitoring tasks such as heavy-hitter detection when

only a limited number of legacy devices can be replaced with

programmable switches. We also proposed a novel network-

wide heavy-hitter detection strategy which works well in
conjunction with our incremental deployment approach. This

strategy has been implemented in P4 language and tested in

an emulated environment. Both the incremental deployment

algorithm and the network-wide heavy-hitter detection strategy

were proven to outperform existing approaches. By adopting

our incremental deployment algorithm, network operators can

ensure very good monitoring performance by replacing less

than half of the legacy devices in the network. Moreover, our

network-wide heavy-hitter detection strategy outperforms an
existing approach both when only a limited number of pro-

grammable switches is deployed and when the network is

entirely upgraded, since it allows network operators to strike a

balance between heavy-hitter detection accuracy, communica-

tion overhead and occupied memory. As marginal side effect,

our strategy has been shown to lead to slightly more packet

processing time in the execution of the P4 pipeline than the

considered state-of-the-art approach.
As future work, we intend to validate our network-wide

heavy-hitter detection strategy in a testbed composed of three

programmable P4 switches, and thus test it in a real envi-

ronment. Furthermore, we also plan to extend our strategy to

execute a wider range of network-wide monitoring tasks, such

as heavy change detection or entropy estimation.

REFERENCES

[1] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “Incremental deployment
of programmable switches for network-wide heavy-hitter detection,” in

Proc. IEEE Conf. Netw. Softw. (NetSoft), 2019, pp. 160–168.

88 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 1, MARCH 2020

[2] N. G. Duffield, C. Lund, and M. Thorup, “Charging from sampled

network usage,” in Proc. ACM Internet Meas. Workshop (IMW), 2001,

pp. 245–256.

[3] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,

and F. True, “Deriving traffic demands for operational IP networks:

Methodology and experience,” IEEE/ACM Trans. Netw., vol. 9, no. 3,

pp. 265–279, Jun. 2001.

[4] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic

feature distributions,” in Proc. ACM SIGCOMM Comput. Commun. Rev.,
vol. 35, 2005, pp. 217–228.

[5] C. Wang, T. T. N. Miu, X. Luo, and J. Wang, “SkyShield: A sketch-

based defense system against application layer DDoS attacks,” IEEE

Trans. Inf. Forensics Security, vol. 13, no. 3, pp. 559–573, Mar. 2018.

[6] Y. Liu, W. Chen, and Y. Guan, “Identifying high-cardinality hosts

from network-wide traffic measurements,” IEEE Trans. Depend. Secure

Comput., vol. 13, no. 5, pp. 547–558, Sep./Oct. 2016.

[7] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New

streaming algorithms for fast detection of superspreaders,” in Proc.
Netw. Distrib. Syst. Security Symp. (NDSS), 2005. [Online]. Available:

https://www.ndss-symposium.org/ndss2005/

[8] S. Jain et al., “B4: Experience with a globally-deployed software

defined WAN,” in Proc. ACM Special Interest Group Data Commun.

(SIGCOMM), 2013, pp. 3–14.

[9] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control

over distributed routing,” in Proc. ACM Special Interest Group Data

Commun. (SIGCOMM), 2015, pp. 43–56.

[1 0] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM Comput. Commun. Rev., vo l. 38, no. 2, pp. 69–74,

2008.

[1 1] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetmon:

Network monitoring in OpenFlow software-defined networks,” in Proc.

IEEE Netw. Oper. Manag. Symp. (NOMS), 2014, pp. 1–8.

[1 2] P. Bosshart et al., “P4: Programming protocol-independent packet

processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,

pp. 87–95, 2014.

[1 3] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,

“One sketch to rule them all: Rethinking network flow monitoring

with UnivMon,” in Proc. ACM Special Interest Group Data Commun.

(SIGCOMM), 2016, pp. 101–114.

[1 4] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow for

data centers,” in Proc. USENIX Symp. Netw. Syst. Design Implement.

(NSDI), 2016, pp. 311–324.

[1 5] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-

surements,” in Proc. ACM Special Interest Group Data Commun.

(SIGCOMM), 2018, pp. 561–575.

[1 6] Q. Huang et al., “SketchVisor: Robust network measurement for soft-
ware packet processing,” in Proc. ACM Special Interest Group Data

Commun. (SIGCOMM), 2017, pp. 113–126.

[1 7] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and

J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.

ACM Symp. SDN Res. (SOSR), 2017, pp. 164–176.

[1 8] R. Ben-Basat, G. Einziger, S. L. Feib ish, J. Moraney, and D. Raz,

“Network-wide routing-oblivious heavy hitters,” in Proc. IEEE/ACM

Symp. Architect. Netw. Commun. Syst. (ANCS), 2018, pp. 66–73.

[1 9] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy
hitter detection with commodity switches,” in Proc. ACM Symp. SDN

Res. (SOSR), 2018, pp. 1–7.

[2 0] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “HeavyGuardian:

Separate and guard hot items in data streams,” in Proc. 24th ACM

SIGKDD Int. Conf. Knowl. Disc. Data Min., 2018, pp. 2584–2593.

[2 1] C. Cormode and S. Muthukrishnan, “An improved data stream summary:

The count-min sketch and its applications” J. Algorithms, vol. 55, no. 1,

pp. 58–75, 2005.

[2 2] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog: The

analysis of a near-optimal cardinality estimation algorithm,” in Proc.
Discr. Math. Theor. Comput. Sci., 2007, pp. 137–156.

[2 3] R. Hartert et al., “A declarative and expressive approach to control for-

warding paths in carrier-grade networks,” ACM SIGCOMM Comput.

Commun. Rev., vol. 45, no. 4, pp. 15–28, 2015.

[2 4] G. Cormode and S. Muthukrishnan, “An improved data stream summary:

The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,

pp. 58–75, 2005.

[2 5] M. Chowdhury, R. Agarwal, V. Sekar, and I. Stoica, “A longitudinal and

cross-dataset study of Internet latency and path stability,” Dept. EECS,
Univ. California, Berkeley, CA, USA, Rep. UCB/EECS-2014-172,

2014.

[2 6] Python Implementation of HyperLogLog . Accessed: May 5, 2019.

[Online]. Available: https://github.com/ekzhu/datasketch

[2 7] P4behavioral Model. Accessed: May 5, 2019. [Online]. Available:

https://github.com/p4lang/behavioral-model

[2 8] P4implementation of NWHHD+. Accessed: May 5, 2019. [Online].

Available: https://github.com/DINGDAMU/Network-wide-heavy-hitter-
detection

[2 9] P4register Definition. Accessed: May 5, 2019. [Online]. Available:

https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf

[3 0] Y. Collet. xxHash—Extremely Fast Hash Algorithm. Accessed:

May 5, 2019. [Online]. Available: https://github.com/Cyan4973/xxHash

[3 1] Python Implementation of Count-Min Sketch. Accessed: May 5, 2019.

[Online]. Available: https://github.com/rafacarrascosa/countminsketch

[3 2] CAIDA UCSD Anonymized Internet Traces Dataset. Accessed:

May 5, 2019. [Online]. Available: http://www.caida.org/data/passive/
passive_dataset.xml

[3 3] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic

redundancy-check codes with 24 and 32 parity bits,” IEEE Trans.

Commun., vol. 41, no. 6, pp. 883–892, Jun. 1993.

[3 4] Barefoot Tofino. Accessed: May 5, 2019. [Online]. Available:

https://www.barefootnetworks.com/products/brief-tofino/

[3 5] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-

network computation is a dumb idea whose time has come,” in Proc.

ACM Workshop Hot Topics Netw. (HotNets), 2017, pp. 150–156.

[3 6] K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of closeness centrality for

large-scale social networks,” in Proc. Int. Workshop Front. Algorithmics,
2008, pp. 186–195.

[3 7] M. E. Newman, “Scientific collaboration networks. II. Shortest paths,

weighted networks, and centrality,” Phys. Rev. E, Stat. Phys. Plasmas

Fluids Relat. Interdiscip. Top., vol. 64, no. 1, 2001, Art. no. 016132.

[3 8] D. Sundararajan, “Convolution and correlation,” in Wiley

Discretewavelet Transform. Singapore: Wiley, 2015, pp. 21–36.

[3 9] P4implementation of Count-Min Sketch. Accessed: May 5, 2019.

[Online]. Available: https://github.com/open-nfpsw/M-Sketch/tree/

master/count_min_Vanilla_P4

[4 0] Mininet. Accessed: May 5, 2019. [Online]. Available: http://mininet.org/

[4 1] P4c. Accessed: May 5, 2019. [Online]. Available: https://github.com/
p4lang/p4c

[4 2] A. K. Singh and S. Srivastava, “A survey and classification of controller

placement problem in SDN,” Int. J. Netw. Manag., vol. 28, no. 3, 2018,

Art. no. e2018.

[4 3] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental deploy-

ment of SDN in hybrid enterprise and ISP networks,” in Proc. ACM

Symp. SDN Res. (SOSR), 2016, p. 1.

[4 4] M. Markovitch and S. Schmid, “Shear: A highly available and flexible
network architecture marrying distributed and logically centralized con-

trol planes,” in Proc. IEEE Int. Conf. Netw. Protocols (ICNP), 2015,

pp. 78–89.

[4 5] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,

“Incremental deployment and throughput maximization routing for a

hybrid SDN,” IEEE/ACM Trans. Netw., vol. 25, no. 3, pp. 1861–1875,

Jun. 2017.

[4 6] M. Huang and W. Liang, “Incremental SDN-enabled switch deployment

for hybrid software-defined networks,” in Proc. IEEE Comput. Commun.
Netw. (ICCCN), 2017, pp. 1–6.

[4 7] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,

“Panopticon: Reaping the benefits of incremental SDN deployment in

enterprise networks,” in Proc. Proc. USENIX Annu. Tech. Conf., 2014,

pp. 333–345.

[4 8] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with

OpenSketch,” in Proc. USENIX Symp. Netw. Syst. Design Implement.

(NSDI), 2013, pp. 29–42.

[4 9] Z. Liu et al., “NitroSketch: Robust and general sketch-based monitor-

ing in software switches,” in Proc. ACM Special Interest Group Data

Commun., 2019, pp. 334–350.

[5 0] Q. Huang, P. P. C. Lee, and Y. Bao, “SketchLearn: Relieving user bur-
dens in approximate measurement with automated statistical inference,”

in Proc. Conf. ACM Special Interest Group Data Commun., 2018,

pp. 576–590.

[5 1] G. Cormode and M. N. Garofalakis, “Sketching st reams through the net:

Distributed approximate query tracking,” in Proc. Int. Conf. Very Large

Data Bases, 2005, pp. 13–24.

[5 2] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, “Finding

(recently) frequent items in d istributed data streams,” in Proc. IEEE Int.
Conf. Data Eng. (ICDE), 2005, pp. 767–778.

[5 3] K. Yi and Q. Zhang, “Optimal tracking of distributed heavy hitters and

quantiles,” Algorithmica, vol. 65, no. 1, pp. 206–223, 2013.

http://www.ndss-symposium.org/ndss2005/
http://www.caida.org/data/passive/
http://www.barefootnetworks.com/products/brief-tofino/
http://mininet.org/

