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Abstract—The advent of Software-Defined Networking with 

OpenFlow first, and subsequently the emergence of pro- 
grammable data planes, has boosted lots of research around many 

networking aspects: monitoring, security, traffic engineering. In 
the context of monitoring, most of the proposed solutions show 

the benefits of data plane programmability by simplifying the 
network complexity with a one big-switch abstraction. Only few 

papers look at network-wide solutions, but consider the network 
only composed by programmable devices. In this paper, we argue 

that the primary challenge for a successful adoption of those solu- 
tions is the deployment problem: how to compose and monitor a 

network consisting of both legacy and programmable switches? 
We propose an approach for incrementally deploy programmable 

devices in an ISP network with the goal of monitoring as many 
distinct network flows as possible. While assessing the benefits of 

our solution, we realized that proposed network-wide monitor- 

ing algorithms might not be optimized for a partial deployment 
scenario. We then also developed and implemented in P4 a 

novel strategy capable of detecting network-wide heavy flows: 
results show that it can achieve better accuracy than state-of- 

the-art solutions while relying on less information from the data 
plane and leading to only marginal additional packet processing 

time. 

Index Terms—Network monitoring, programmable data plane, 

incremental deployment, heavy-hitter detection. 

 

 

I.  INTRODUCTI ON 

ETWORK monitoring is of primary importance: it 

is the main enabler of various network management 

tasks, ranging from accounting [2], traffic engineering [3], 

anomaly detection [4], Distributed Denial-of-Service (DDoS) 
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detection [5], Super-spreader detection [6], and scans 
detection [7]. With the advent of Software-Defined 

Networking (SDN), the significance of network monitoring 

has been certainly boosted. This is because, SDN, with the 

idea of a (logically) centralized control, allows an easy 

coupling of network management operations with the 

observed network status. As a result, SDN has been seen as 

the answer to many of the limitations of legacy network 

infrastructures [8], [9]. However, such a noble intent has 

been limited by its current predominant realisation, the 
OpenFlow (OF) protocol. Indeed, current OpenFlow APIs 

are ill-suited and cannot provide accurate data-plane 

measurements: the main mechanism exposes the per-port 

and per-flow counters available in the switches [10]. An 

application running on top of the controller can periodically 

poll each counter using the standard OF APIs and then react 

accordingly, instantiating the appropriate rule changes. As a 

consequence, OF suffers from two important limitations: (i) 
the controller needs to know in advance which flows have 

to be monitored in the data plane and (ii) as the data 

plane exposes just simple counters, the controller needs to do 

all the processing to determine the network state. This also 

implies that OF-enabled devices are only able to collect raw 

flow statistics to be sent to a monitoring collector, causing 

significant communication overhead for monitoring purposes. 

This limitation is well-know for legacy devices as well (e.g., 

SNMP- and NetFlow-supported equipment) [11]. 
Lately, the advent of the so-called programmable switches 

(e.g., P4-enabled switches [12]) has introduced the possibil- 

ity to program data plane with advanced functionality and 

enabled the possibility to implement more refined moni- 

toring solutions directly in the switch hardware. Such an 

innovative technology has attracted a growing number of 

researchers and practitioners that in turn have proposed 

many different solutions to enhance SDN capabilities in the 
context of network monitoring [13], [14], [15], [16], [17]. 

As a result, the prospect of realizing fine-grained network- 

wide monitoring, by analyzing the exposed information 

from all the switches in a network, has attracted a lot of 

interest [15], [18], [19]. For instance, memory-efficient data 

structures, such as sketches [20], [21], have been proven 

to be implementable in programmable switches to reduce 

redundant monitoring information. However, in practice, a 

one-shot replacement of all the existing legacy devices with 
programmable switches is not a feasible solution due to oper- 

ational and budget burdens. Clearly, this limits the benefits in  
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terms of network flow monitoring performance, since a partial 

deployment leads to a reduced flow visibility. 
This paper proposes a novel approach for an incremen- 

tal deployment of programmable switches in Internet Service 

Provider (ISP) networks. To optimize network-wide moni- 

toring practices, it is important to have visibility over the 

largest number of distinct flows. To this end, we exploit the 

HyperLogLog algorithm [22] that is generally used for the 

count-distinct problem, approximating the number of distinct 

elements in a multi-set. While assessing the benefits of our 

solution, we shortly realized that state-of-the-art network-wide 
monitoring algorithms might not perform optimally in a partial 

deployment scenario. We therefore propose a new algorithm 

that is capable of detecting network-wide heavy flows (i.e., 

heavy hitters) using as input only partial information from 

the data plane. We evaluate our incremental deployment strat- 

egy alongside the proposed heavy-hitter detection algorithm 

in simulation. We also implemented our heavy-hitter detection 

strategy in P4 [12] and tested it in an emulated environment. 

By comparing our incremental deployment solution with state- 
of-the-art proposals, results show that we can achieve a better 

monitoring accuracy using less switches. Moreover, our heavy- 

hitter detection strategy outperforms existing ones in terms of 

F1 score while relying on less information from the data plane, 

while leading to only slightly higher packet processing times 

in executing the programmable switch pipeline. 
The main contributions of the paper are as follows: 

• We tackle the problem of partial deployment of pro- 

grammable networks in the context of network mon- 

itoring. We propose a new strategy that allows to 
incrementally deploy new programmable switches and 

simultaneously maximize the network monitoring oper- 

ation. 
• We propose a new strategy for network-wide heavy- 

hitter detection which is robust to partial deployments. 

We implemented a prototype of such a strategy in P4 
language [12] and tested it. 

The remainder of the paper is organized as follows. In 

Section II we explain the best practices for an effective par- 
tial deployment of programmable switches, while Section III 

presents the algorithmic background. Section IV describes our 

incremental deployment algorithm, and Section V presents our 

network-wide heavy-hitter detection strategy and its imple- 

mentation in P4 language. Section VI and Section VII report 

our evaluation results and comparison with the state of the art. 

Finally, Section VIII recalls the related work and Section IX 

concludes this paper. 

 

II.  HINTS FOR IMPROVED MONITORING PERFORMANCE  
WITH LIMITED FLOW VI SI BI LI TY 

When only a limited number of programmable switches can 

be deployed in an ISP network, the network operator must 

ensure that they are deployed in such a way it is made the best 

use of them in terms of monitoring performance, measured as 

we will explain later by F1 score. Fig. 1 shows the results of a 

simple test: we simulated an ISP topology of 100 nodes [23] 
with real traffic, and we evaluated the F1 score of an existing 

threshold-based network-wide heavy-hitter detection strategy, 

 

 

Fig. 1. F1 score of Harrison’s heavy-hitter detection strategy with single  

programmable-switch deployment. 

 

 

Fig. 2.  Number of distinct flows crossing each switch. 

 

 

proposed by Harrison et al. [19] (see Section VI for more 

details on simulation settings and evaluated metrics) when only 

one legacy switch/router1 is replaced with a programmable 

switch. The graph shows all the 100 possible deployments. 

What we can see is that the F1 score (i) is in all cases low but 
(ii) substantially varies depending on the placement position 

of the programmable switch. Consideration (i) comes from 

the fact that by replacing only one switch the flow visibility is 

very low, since only heavy hitters crossing such switch can be 

detected, while (ii) proves that how we deploy programmable 

switches in the network is a fundamental aspect to ensure good 

monitoring performance with limited flow visibility. 

Our intuition is that, when deploying a single programmable 

switch, an effective strategy is to replace the one crossed by the 
highest number of distinct flows. This is because the highest 

the number of monitored flows is, the highest (on average) the 

chance of monitoring some heavy hitters is. This consideration 

holds also for any other flow-based network-wide monitoring 

algorithm (e.g., heavy changes detection [14], network traffic 

entropy estimation [13], etc.), whose analysis is however out 

of the scope of this paper. Fig. 2 shows the number of distinct 

flows crossing each one of the switches in the given time 
interval. Two observations can be made: (i) if a switch crossed 

by a few number of distinct flows is replaced, it is highly 

probable that it cannot detect any heavy hitters (i.e., F1 score 

is often zero); (ii) a (weak) correlation between F1 score and 

number of monitored distinct flows indeed exists. For example, 

replacing the switch with ID 44 leads to the highest F1 score, 

and the same switch is one of the switches crossed by the 

highest number of distinct flows. However, the network-wide 

heavy-hitter detection strategy proposed in [19] has not been 
explicitly designed to best exploit the available information 

on switches’ monitored distinct flows, unlike our proposed 

 
1In the remainder of this paper, we will use the generic  term legacy device to  

generically refer to legacy switches or routers. In fact, programmable switches 

can support both Layer-2 and Layer-3 functionalities. 
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strategy (see Section V), so correlation between F1 score and 

number of distinct flows is small. 
The same considerations can be made when more than one 

programmable switches have to be deployed in the network. In 

this case, it must be ensured that the subset of programmable 

switches to be deployed monitors the highest number of 

distinct flows overall (i.e., neglecting duplications): this guar- 

antees satisfactory performance in the execution of monitoring 

tasks such as heavy-hitter detection. The considerations and 

intuitions discussed in this section have thus guided us in 

the design of our algorithm for incremental deployment of 
programmable switches, shown in Section IV. 

 
III.  BACKGROUND 

In this section, we present the background for our incre- 

mental deployment algorithm and network-wide heavy-hitter 

detection strategy. Our algorithms rely on different data 

streaming concepts and methods. 

 
A. Estimated Count of Distinct Flows 

An efficient and effective method to count a number of dis- 

tinct items from a set is HyperLogLog [22]. In our specific 

case, given a packet stream S = {a1, a 2 , . . . ,  am }, where each 
packet is characterized by a specific (srcIP,dstIP) pair 

(generically called flow key), it returns an estimation of car- 
dinality of flows, i.e., how many (srcIP,dstIP) distinct 
pairs exist in the stream.2 In this paper, we use nˆ ← Hll (S ) 
as notation to indicate input and output of the HyperLogLog 

algorithm: Hll indicates the algorithm, S the input packet 
stream and nˆ the cardinality of flows (i.e., number of dis- 

tinct flows). The relative error of HyperLogLog is only 1.04 , 
m 

where m is the size of HyperLogLog register. Apart from its 
high accuracy, HyperLogLog is also very fast since the query 

time complexity is O(1). Moreover, calculating the union (or 

merge) of two or more HyperLogLog data structures (also 

called sketches) is also very efficient, and can be used to count 

the number of distinct flows in the union of two (or more) data 
streams, e.g., Sa and Sb . In our notation, this can be written 
as nˆunion ← Hll (Sa ∪ Sb ), where nˆunion is the number of 
distinct flows of the packet streams union Sa ∪ Sb . 

 

B. Estimation of Flow Packet Count for Heavy-Hitter 

Detection 

Estimating the number of packets for a specific flow is fun- 
damental for a proper detection of heavy hitters. Different 

algorithms exist to perform such an estimation: we choose 

to use Count-Min Sketch [21], which relies on a probabilis- 

tic data structure (i.e., sketch) based on pairwise-independent 

hash functions. Count-Min Sketch envisions two types of oper- 

ations: Update and Query. Update operation is responsible for 

continuously updating the sketch with information on incom- 

ing packets in the switch, whereas Query operation is used to 

retrieve the estimated number of incoming packets for a spe- 
cific flow. To formalize the problem, we consider a stream 

2Note that in this paper, without any loss of generality, we consider  

source/destination pairs as flow identifiers. However, other definit ions could  

also be adopted (e.g., 5-tuple). 

of packets S = {a1 , a 2 , . . . ,  am }. The Count-Min Sketch 

algorithm returns an estimator of packet count fˆx of flow 
x ∼ (srcIPx ,dstIPx ) satisfying the following condition: 

Pr [|fˆx − fx | > ε|S|] ≤ δ, where ε (0 ≤ ε ≤ 1) is the relative 
biased value and δ (0 ≤ δ ≤ 1) is the error probability. In 
Count-Min Sketch, the space complexity is O(ε−1log2(δ−1)), 
and per-update time is O(log2(δ−1)) [24]. Additionally, the 

estimation of packet count satisfies fx ≤ fˆx ≤ fx +ε|S|, where 
fx is the real packet count value. The accuracy of Count-Min 

Sketch depends on ε and δ, which can be tuned by respec- 

tively defining (i) the output size Ns of each hash function 
and (ii) the number Nh of hash functions of the data structure. 
In previous definitions, a heavy hitter is a flow whose packet 

count overcomes a threshold ϑ|S| (0 <  ϑ < 1). If a Count- 

Min Sketch is adopted, the probability to erroneously detect a 
heavy hitter due to packet miscount is defined in the following 

way: Pr [∃x|f̂ x ≥ (ϑ + ε)|S|] ≤ δ. If Nh is large enough, error 
probability δ is negligible. 

 
IV.  AN ALGORITHM FOR INCREMENTAL DEPLOYMENT OF 

PROGRAMMABLE SWI TCHES 

In this section we propose a novel algorithm for the incre- 

mental upgrade of a legacy infrastructure with programmable 

switches, which aims at ensuring good network monitoring 

performance, as discussed in Section II. 

 

A. Problem Definition 

Our problem of incremental deployment of programmable 

switches can be formalized in the following way. 
Given: 

• An ISP network topology of a legacy network infrastruc- 
ture G = (N , L), where N is the set of legacy devices 

and L the set of interconnection links; 

• A long-term estimation of the transmitted packets in 

the network between different sources and destinations 
(i.e., traffic matrix T), including their routing paths and 

possible re-routing paths in case of failures. From this 
information it is possible to retrieve the estimated packet 

stream Ti for each switch i ∈ N . Note that, unlike 
in intra data-center scenarios, traffic distribution in ISP 

networks is much less dynamic, being routes prevalence 

and persistence increasing over time [25]. For this rea- 

son, it is possible to estimate a reasonable traffic matrix 

T using historical data; 

• A number P ≤ |N | of legacy devices to be replaced with 
programmable switches; 

Replace a subset of P (such that P = |P|) of legacy devices 

with programmable switches with the goal of monitoring the 
highest number of distinct flows in the network and in an 

incremental way. This means that it must be assured that any 

subset of programmable switches Z (with |Z| ≤ P ) that have 
been already deployed in the network as intermediate step, 

monitors the highest number of distinct flows as well. 

 
B. Incremental Deployment Algorithm 

As we mentioned above, HyperLogLog has good 

performance on estimating the distinct flows from an 
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Algorithm 1: Incremental Deployment Algorithm 
Input: Long-term traffic statistics T , Network topology 

G, Number of legacy devices P to be replaced 

Output: Set of legacy devices P to be replaced 

1 max ← 0, P ← {}, nˆ ← 0; 

2 n̂ p re  ← 0, Tpre ← {}, key ← empty; 

3 for Each legacy device i ∈N carrying traffic Ti do 

4 nˆ ← Hll (Ti ); 
5 if nˆ > max then 

6 max ← nˆ 

7 key ← i 

8 P.add (key ) 
9 if P > 1 then 

10 n̂ p re ← max 
11 Tpre ← Tkey 

12 while P.size() ≤ P do 

13 for Each switch i ∈N \ P carrying traffic Ti do 

14 nˆ ← Hll (Tpre ∪ Ti ) 
15 if nˆ > max then 

16 max ← nˆ 

17 key ← i 

18 P.add (key ) 
19 n̂ p re ← max 

20 Tpre ← Tpre ∪ Tkey 

21 return P 
 

 

 

union of packet streams, so we use it to estimate the number 

of distinct flows passing through a set of legacy devices [26]. 

The pseudo code of our proposed algorithm is shown in 

Algorithm 1. To place the first programmable switch, we 
compute the estimated number of distinct flows nˆ carried by 

each of the i ∈  N legacy devices using the HyperLogLog 
algorithm. The input of HyperLogLog, for each device 

i ∈ N , is Ti . For the replacement with a programmable 
switch, the algorithm selects the legacy device crossed by 

the highest number (max) of distinct flows (Lines 4-7). 

Such legacy device is added to P. Once the first legacy 
device has been replaced, the principle to replace any other 

legacy device consists in progressively finding the one that, 

if replaced, allows to overall monitor the highest number of 

distinct flows in the network. The choice must be carefully 

taken, since different devices may be crossed by the same 

flows, and thus some flow information can be duplicated. 

To do so, we exploit the union property of HyperLogLog 

(Line 14), recalled in Section III. As shown in Lines 10-21, 

the algorithm estimates the number of monitored distinct 

flows n̂ p re  coming from the union of packet streams (i) of all 

the previously-upgraded programmable switches (Tpre ) and 

(ii) of any legacy device i ∈N \ P still in the network (Ti ). 
Then, the algorithm selects for replacement (and thus addition 

to set P) the legacy device i leading to the largest number 
of monitored distinct flows overall (max). This operation 

is iterated until a number P = |P| of legacy switches has 

been replaced. Once the set P has been defined, the network 

 

Fig. 3. Interaction between controller and programmable switches for  

network-wide heavy-hitter detection in a partial deployment scenario. 

 

operator can proceed with the physical replacement of the 

legacy devices with programmable switches, while ensuring 

interoperability in a hybrid environment [9]. Note that our 

incremental deployment algorithm focuses on the replacement 

of switches instead of new additions to the network. In fact, 

adding new switches may imply changes to routing and flow 

statistics alteration, making our algorithm ineffective. 

 
V.  A NETWORK-WIDE HEAVY-HITTER DETECTI ON 

STRATEGY ROBUST TO PARTIAL DEPLOYMENT 

In this section we propose a novel network-wide heavy- 

hitter detection strategy. While taking inspiration from an 

existing approach [19], it differs from the state of the art by 

introducing the concept of local and global sample lists, which 
make it robust to partial deployments aiming at maximizing 

the network flow visibility. 

Figure 3 shows the interaction between switches and a 

centralized controller for network-wide heavy-hitter detection, 

in the case of partial deployment of programmable switches 

(i.e., when only some switches can perform monitoring oper- 

ations in the data plane). Time is divided in intervals, and 

in every time interval each programmable switch dynamically 
stores in a sample list only those flows whose packet count 

is larger than a dynamic sampling threshold. At the end of 

each time interval, if any programmable switch stores in its 

sample list one or more flows with packet count larger than a 

dynamic local threshold, it reports a true flag to the centralized 

controller. The flows whose packet count overcomes the local 

threshold are called potential heavy hitters. The controller, if 

at least one true-flag report is received, then polls all the pro- 

grammable switches in the network to gather the {flow key, 
packet count} pairs of all the flows stored in their sample lists. 

This information is used to estimate the whole network vol- 

ume, i.e., the number of all the unique packets transmitted in 

the network in the given time interval. Finally, the controller 

computes the so-called global threshold leveraging the esti- 

mated network volume and gets all the network-wide heavy 

hitters, i.e., the flows from sample lists whose packet count 

is larger than the global threshold. Finally, all the flow and 
packet statistics are reset and a new time interval is started. 

In the following subsections, we formalize the problem of 

network-wide heavy-hitter detection and describe in detail the 
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Fig. 4. Scheme of the proposed network-wide heavy-hitter detection strategy. 

Algorithm 2: Network-Wide Heavy-Hitter Detection 

Algorithm - Programmable Switch i ∈P (Data Plane) 

Input: Flow stream S , Local minimum min, 
Heavy-hitters identification fraction θH , Local 
ratio W , Sampling rate K , Count-Min Sketch 

size Nh × Ns , Time interval Tint 

Output: flag (true if potential heavy hitters are 
identified in Tint , false otherwise) 

1 ε ← 1/Ns 

2 Function StoreFlowsInSampleList: 

3 

algorithms running both in the programmable switches and in 4 

the controller to implement the proposed high-level strategy. 5 
6 

A. Problem Definition 7 

We formulate the network-wide heavy-hitter detection 8 

|Si |←  0 
flag ← false 

while currentTime ∈ Tint do 
for Each packet belonging to flow 

x ∼ (srcIPx , dstIPx ) received do 

|Si |←  |Si | + 1  
if fˆx ≥ min and fˆx ≥ 

(W θH +ε)|Si | 
then 

problem as follows. 

Given: 
9 SampleListi (x ) ← fˆx 

• A heavy-hitter identification fraction θH (0 < θH < 1); 

• A time interval Tint ; 
• The set of unique packets S transmitted in the network; 

10 Function PotentialHHsDetection: 

11 if currentTime = End time of Tint 

 
then 

Identify the set of flows which are network-wide heavy hit-  12 

ters (HH), i.e., carry in the time interval Tint a number of  13 

for Each flow x in SampleListi do 

if fˆx < 
(W θH +ε)|Si | 

then
 

packets larger than the global threshold θH |S|tot , where |S|tot 

is the network volume (i.e., number of transmitted packets). 

 
B. Algorithm in Programmable Switches (Data Plane) 

As shown in Fig. 4, when a packet comes into a pro- 

grammable switch i, a packet counter named |Si | is updated 
to count all the incoming packets. A Count-Min Sketch data 

structure, which is used to store the estimated packet counts 

for all the flows, is updated to include the information from 

the current packet, and then it is queried to retrieve the esti- 

mated packet count fˆx for the flow x ∼ (srcIPx ,dstIPx ) 

such packet belongs to. This information is used to understand 

whether the packet belongs to a flow that must be inserted in 

the sample list. 
The flow x is inserted in the sample list if fˆx≥ 

14 SampleListi .remove(x ) 

15 if SampleList (x ) ≥ (W θH + ε)|Si | then 

16  flag ← true 

17 return flag 
 

 

 
We thus introduce a parameter min operating in conjunction 

with the sampling threshold: only if packet count of the con- 

sidered flow is larger than both min and sampling threshold 
(W θH +ε)|Si  | , the flow is inserted in the sample list. This is 

described in Lines 6-11 of Algorithm 2. 

At the end of the time interval Tint , |Si | counts all the 
incoming packets in the considered time frame. Thus, as shown 

(W θH +ε)|Si | 
, where 

(W θH +ε)|Si | is the sampling threshold. in Lines 13-14, the algorithm removes from the sample list all 
K 

The parameters W (W ≥ 
K 

1) and K (K ≥ 1) affect the size of those flows with packet count lower than 
(W θH +ε)|Si | , where 

the sample list: the larger W and the smaller K are, the smaller 

the sample list size is, thereby consuming less memory in the 

switch. However, as we will report in the next subsection, 

this would reduce the accuracy on the estimation of the over- 

all network volume and on the identification of heavy hitters. 

Therefore, K (called sampling rate) should be carefully set in 

each programmable switch to store only flows carrying a sig- 

nificant number of packets. ε is instead the biased value caused 

by Count-Min Sketch (see Section III): we sum ε = 1/Ns to 

W θH in order to compensate such bias. The sample list is 

thus used to dynamically store the packet counts for the most 

frequent flows crossing the switch. 
Since at the beginning of each time interval Tint the sam- 

pling threshold is low, being |Si | a small value (that can even 
be < 1), flows with small packet counts would be stored in 

the sample list. 

|Si | is the final stored value. This means that the algorithm 
keeps in the sample list only those flows which have packet 

counts larger than the final sampling threshold, while discard- 

ing the flows with packet counts greater than the temporary 

threshold dynamically computed and updated within the time 

interval. Note that the sample list stores at most   K  
 

(W θH +ε) 
flows, and thus its memory occupation increases as K increase 
or W decrease, as already discussed. 

Finally, the algorithm evaluates whether potential heavy 
hitters cross the switch. They are the flows whose packet 

counts are greater than the switch local threshold, set as 

(W θH + ε)|Si |. A true flag is sent to the controller if at least 
one potential heavy hitter is detected, otherwise no information 

is sent (Lines 15-17). Note that local threshold and sam- 

pling threshold are similar: with respect to sampling threshold, 

local threshold just misses in its definition K, which has been 
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Algorithm  3: Network-Wide Heavy-Hitter Detection 
Algorithm - Centralized Controller (Control Plane) 

 
 

Input: Heavy-hitter identification fraction θH , Time 
interval Tint , Sample lists SampleListi from all 

programmable switches i ∈P  
Output: Set of network-wide heavy hitters HH in Tint 

1 Function RetrieveDistinctFlowsPacketCounts: 

2 for Each switch i ∈P do 

3 for Each flow x in SampleListi do 

4 if flow x is in GlobalSampleList then 

5 if 

SampleListi (x ) < GlobalSampleList (x ) 
then 

6 GlobalSampleList (x ) ← 

SampleListi (x ) 

7 else 

8  GlobalSampleList (x ) ← SampleListi (x ) 

 
9 Function EstimateVolume: 

10 |S|tot ← 0 
11 for Each flow x in GlobalSampleList do 

12  |S|tot ← |S |tot + GlobalSampleList (x ) 

13 Function GetNetworkWideHH: 

14 for Each flow x in GlobalSampleList do 

15 if GlobalSampleList (x ) ≥ θH |S|tot then 

16 HH .add (x ) 

17 return HH 
 

 

 

introduced to set the size of the sample list. The primary role of 

W is instead to set the proportion (or ratio) between the local 
threshold (W θH + ε)|Si | and the global threshold θH |S|tot , 

being Si a local (and smaller) value than |S|tot . 

 

 
C.  Algorithm in Centralized Controller (Control Plane) 

At the end of the time interval Tint , once the controller 

receives from programmable switches any report including a 

true flag, it polls all of them to obtain their sample lists. Note 

that different sample lists can include the estimated packet 

count for the same flows: this happens if a flow crosses 

multiple programmable switches. To avoid an overestimation 

of |S|tot , Algorithm 3 makes sure that (i) only the minimum- 
estimated packet count is kept, i.e., the one less overestimated 

by Count-Min Sketch, and (ii) it is stored in a list (i.e., 
GlobalSampleList) including all distinct flows from sample 

lists (Lines 2-8). The algorithm then sums up the packet 

counts for all the identified distinct flows and estimates the 

whole network volume |S|tot (Lines 9-12). If packet counts 
of flows belonging to GlobalSampleList (which surely includes 

the potential heavy hitters) are larger than the global thresh- 

old θH |S|tot , we consider them as network-wide heavy hitters 
HH (Lines 13-17). At last, the controller triggers the reset of 

counters in all programmable switches. 

D.  Implementation in P4 Language 

1) Programmable Switches (Data Plane): We have imple- 

mented our prototype of algorithm in P4, leveraging the P4 

behavioral model [27] to describe the behavior of P4 switches 

(e.g., parsers, tables, actions, ingress and egress in the P4 

pipeline). The source code is available at [28]. In P4-enabled 
switches, registers are stateful memories whose values can be 

read and written [29]. We first allocate a one-sized register 

Si to count the overall number of packets in the given time 

interval Tint . When each packet arrives at the switch, the value 

in this register is incremented by one. 

Moreover, we allocated several one-dimensional registers 
for Count-Min Sketch implementation. We chose xxhash [30] 

to implement the needed pairwise-independent hash functions 

by varying the seed of each hash function, which is associated 
to a different register. In our case, the seed is set to be the same 

value as the index of each register. In the Count-Min Sketch 
Update operation, each register relies on its corresponding 
hash function, which takes as input x ∼ (srcIP,dstIP), 
to obtain as output the index of the register cell whose value 

must be incremented by one. 

To perform the Query operation on the Count-Min Sketch, 

we set a count-min variable to the queried value obtained from 

the first register, which is associated to the first hash function. 
Consequently, the queried value for the remaining registers is 

compared with count-min. If the queried value for a regis- 

ter is smaller than current count-min value, then count-min is 
updated accordingly. Its final value is thus the packet count 

estimation count -min = fˆx for the queried flow x. 
One of the drawbacks of P4 language is that it does 

not allow variable-sized lists, as sample list is. We thus 

used three same-sized registers, named samplelist_src, sam- 
plelist_dst and samplelist_count to implement the sample list 

and to store srcIP, dstIP and packet count of flows, respec- 

tively. Information on flow keys (srcIP,dstIP) associated 

to significant packet counts is stored in these registers. Since 

P4 language does not support for loops to find the flows with 
smallest packet count in the sample list to be replaced, the 

hash function CRC32 is used to decide whether to replace 
list’s entries. 

When the stored count-min value is larger than both the pre- 

set minimum value min and sampling threshold 
(W θH +ε)|Si | 

(where the value of Si is read from register Si), the algo- 

rithm hashes the flow key (srcIP,dstIP) using CRC32 

hash function and checks whether the sample list register cells 
indexed by the output value of CRC32 are empty or not. If they 
are empty, srcIP, dstIP and packet count are added to sam- 
ple list registers in the same indexed position. Otherwise, the 

switch compares the current estimated packet count fˆx with 

stored packet count fˆy (from the generic stored flow y) in 

samplelist_count. If the current packet count fˆx is larger than 

existing packet count fˆy , the algorithm replaces srcIP, dstIP 
and packet count to new values from flow x. Additionally, if 

packet count f̂ x is larger than current largest value max stored 

in the register count_max, max is replaced by fˆx . 
Using the P4 behavioral model, ingress_global_timestamp 

allows to record the timestamp when the switch 

starts  processing  the  incoming  packet.  Hence,  when 



 

 

   

DING et al.: INCREMENTALLY-DEPLOYABLE P4-ENABLED ARCHITECTURE FOR NETWORK-WIDE HEAVY-HITTER DETECTION 81 

 

TABLE I 

SIMULATION PARAMETERS 

 
  

 

 
 

  

  

  

   

  

   

 

 

 

ingress_global_timestamp is larger than current time interval 

Tint end time, and max in the register count_max is larger 
than current local threshold (W θH + E)|Si |, the switch clones 

the current packet and embeds a customized one-field header 

including the field Flag with binary value 1. This cloned 

packet is sent to the controller to report that a potential 

(and local) heavy hitter exists, while the original packet is 

forwarded to the expected destination. 

2) Centralized Controller (Control Plane): We imple- 

mented a preliminary version of the centralized controller in 

Python. The controller can read the registers in the switches 
by using the simple_switch_CLI offered by the P4 behavioral 

model. If the controller receives packets from P4 switches 

at the end of time interval Tint , it gathers the registers 
samplelist_src, samplelist_dst and samplelist_count from P4 
switches and merges them into a global sample list. Finally, 
according to the heavy-hitter global threshold θH |S|tot , the 
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COUNT-MIN SKETCH SIZE AND ITS MEMORY OCCUPATION 

 
       

      

       

      

 
 

 

that each counter in Count-Min Sketch occupies 4 Bytes, the 

memory to be allocated for the sketch in each switch can be 

quantified as 10000 · 40 · 4B = 1.6MB. Since the total memory 
of a real programmable switch chip (i.e., Barefoot Tofino [34]) 

is few tens of MB [35], it may be a reasonable size for a real 

large-scale ISP network scenario. However, in the following 

we will give a sensitivity analysis of monitoring performance 

with respect to Ns and Nh , analyzing what happens if more 

stringent memory requirements arise in the switch. Moreover, 

we chose W = 3 and K = 10 after a rigorous sensitivity 

analysis since, as will be shown later, these values lead, for 

the considered network topology, to the best trade-off between 

communication overhead, occupied memory and F1 score (i.e., 

they allow to overcome state-of-the-art performance for all the 

considered metrics). 

3) Metrics: We set recall R and precision Pr as key metrics 

to evaluate our network-wide heavy-hitter detection strategy. 

They are defined in the following way: 

Countdetected /true 

controller is able to detect network-wide heavy hitters. Finally, 

the controller resets all registers in P4 switches and starts a 
R =  HeavyHitters  

Countdetected /true + Countundetected /true 
(1) 

HeavyHitters HeavyHitters 
new round of heavy-hitter detection. 

 
VI.  SIMULATION RESULTS 

Countdetected /true 

Pr = HeavyHitters  

Countdetected /true + Countdetected /false 

 
(2) 

HeavyHitters HeavyHitters 

Based on open source implementations of 

HyperLogLog [26] and Count-Min Sketch [31], we 

implemented our incremental deployment algorithm and 

we simulated both our and Harrison’s [19] network-wide 

heavy-hitter detection strategies in Python. In the following 

the simulation settings are reported. 

 
A. Simulation Settings and Evaluation Metrics 

1) Traces and Network Topology: We divided 50 seconds 

2018-passive CAIDA flow trace [32] into 10 time intervals. 

The programmable switches send reports to the controller 

when they detect potential heavy hitters at the end of any 
of those time intervals: in each time interval are transmitted 

around 2.3 million packets. As testing topology, we adopted a 

100-nodes ISP backbone network [23]: adjacency matrix and 

plotted topology are available in [28]. A 32-bit cyclic redun- 
dancy check (CRC) [33] function was used to randomly assign 

each packet (characterized by a specific (srcIP,dstIP) 

pair) to a source/destination node couple in the network, and 

each packet is routed on the shortest path. 

2) Tuning Parameters: Unless otherwise specified, we 
set the simulation parameters as reported in Table I. For 

HyperLogLog, we considered m = 212 because it leads to 
small-enough relative errors for our purposes (see Section III). 

We then chose Tint and θH as per [13] and a Count-Min 

Sketch with size Nh = 40 × Ns = 10000. Considering 

In our evaluations, we consider F1 score (F1) as compact 

metric taking into consideration both precision and recall, and 

measuring the accuracy of our strategy. It is defined as: 

F 1 = 
2 · Pr · R 

(3)
 

Pr + R 

Additionally, we consider each {flow key, packet count} 

pair as unit to evaluate both consumed communication over- 

head (when sent) and overall occupied memory (when stored 

in programmable switches). We consider as unit also flags 

sent by programmable switches to controller for local heavy- 
hitter notification.3 All the reported results are the average 

value obtained in the considered 10 time intervals. We did 

not include the Count-Min Sketch size in the evaluated occu- 

pied memory, since it is constant: Table II gives an insight on 

Count-Min Sketch memory occupation for some sketch sizes, 

including Nh = 40 × Ns = 10000. 

B. Evaluation of the Incremental Deployment Algorithm 

We compare our Incremental deployment algorithm, where 

programmable switches are used for the detection of network- 

wide heavy hitters, with four existing algorithms: Highest vol- 

ume, Highest closeness, Highest betweenness and Random 

3In real scenarios, each flag can be encoded by one bit, while {f low key,  
packet count} pairs require few bytes to be encoded. However, we consider  

both of them as a single unit for the purpose of easier quantification. 
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Fig. 5. Performance evaluation of our incremental deployment against some 

existing algorithms in the detection of network-wide heavy hitters. 

 

 

locations. The Highest volume algorithm exploits long-term 

flow statistics to replace first the switches overall crossed 

by the largest number of packets. In the Highest closeness 

algorithm, the switches are ordered according to decreasing 

closeness, and in a partial deployment of P programmable 

switches only the top P switches in the list are replaced [36]. 

The Highest betweenness algorithm behaves in the same 

way, but betweenness of nodes [37] is evaluated instead 

of closeness. Both of these algorithms only depend on 
the network topology, and their underlying assumption is 

that nodes with highest centrality should be replaced first. 

Finally, the Random locations algorithm replaces P randomly- 

selected nodes: we average results over five randomized 

instances. 

As shown in Fig. 5, which reports F1 score as a func- 

tion of the number of deployed programmable switches, our 

Incremental deployment algorithm allows network operators to 
deploy a less number of programmable switches while ensur- 

ing the same F1 score of the other algorithms. It especially 

works well when a small number of programmable switches 

is deployed (i.e., for less than 50 switches), while it has com- 

parable performance as the other algorithms when more than 

half programmable switches are deployed. This means that our 

strategy of first replacing switches that monitor the highest 

number of distinct flows effectively improves flow visibility 

when it is inherently limited, also with respect to a strategy 
defined on the same long-term flow statistics (i.e., Highest 

volume algorithm). In fact, this latter strategy misses to con- 

sider that switches could carry many packets belonging to a 

multitude of small flows, and network-wide heavy hitters may 

remain undetected. 

 

C.  Evaluation of the Network-Wide Heavy-Hitter Detection 

Strategy in an Incremental Deployment Scenario 

We compare the performance of our proposed network-wide 

heavy-hitter detection strategy, named NWHHD+ for the sake 

of brevity, with the state-of-the-art strategy (called SOTA in the 

remainder of the section) proposed by Harrison et al. [19]. 

In order to fairly compare these two strategies, we set the 

global threshold for SOTA to Tg = dθH |S|tot , where d is 
the average path length for the flows in all the time intervals, 

θH is fraction for heavy-hitter identification, and |S|tot is the 

whole network volume. Smoothing parameter is α = 0.8 as 
per [19]. 

Figure 6(a) shows that NWHHD+, when deploying pro- 
grammable switches using our incremental deployment algo- 

rithm, always leads to higher F1 score than SOTA, especially 

when the number of programmable switches in the network is 

small. This means that NWHHD+ better exploits partial flow 

information provided by the programmable switches to detect 

the network-wide heavy hitters. 

Figure 6(b) shows instead a comparison on the average- 

generated communication overhead. It clearly shows that 

NWHHD+ has a comparable communication overhead as 

SOTA, and NWHHD+ leads to less communication overhead 

than SOTA as the number of programmable switches increases. 

In NWHHD+, if at least one local heavy hitter is identified in 

a given time interval (as always happens in our simulations), at 

the end of it the controller polls all the programmable switches 
to estimate the global network volume. Such an approach may 

cause high communication overhead, but by properly tuning W 

(as shown later) the local threshold can be increased, signif- 

icantly reducing communication exchanges between switches 

and controller. Conversely, the SOTA strategy coarsely esti- 

mates the overall network volume at the controller and polls 

the programmable switches only if the estimated value is above 

the defined global threshold. 
Figure 6(c) shows the average occupied memory by the two 

strategies. NWHHD+ outperforms SOTA, always occupying 

much less memory. This happens because NWHHD+ only 
stores (i) the sample list (and not all the {flow key, packet 

count} pairs, as SOTA does) and (ii) one local threshold for 

all the flows in each programmable switch (while SOTA stores 

per-flow local thresholds). 

Note that unlike SOTA, as can be noticed from all the 

graphs of this section, NWHHD+ leads to very similar com- 

munication overhead and memory occupation results. In fact, 

communication overhead units in NWHHD+ are equal to 

{flow key, packet count} pair units stored in the switches sam- 

ple lists, since such lists from all programmable switches are 
sent to the controller at the end of any time interval in which at 

least a local heavy hitter has been detected, plus the number 

of flags reported by programmable switches to controller to 

notify the existence of local heavy hitters. This means that the 

unit difference between communication overhead and memory 

occupation is at most the number of deployed programmable 

switches, and this small value cannot be noticed on the 

graphs. 
Additionally, Fig. 7 recalls the simple test described in 

Section II. What we report in the figure is F1 score for all 

the possible 100 deployments for the programmable switch 

when NWHHD+ is adopted. Compared to Fig. 1, we can 

see that the F1 score is generally higher in NWHHD+ (as 

already discussed), and that in most of the cases the peaks in 
F1 score correspond to IDs of switches that are crossed by a 

high number of distinct flows (see Fig. 2). This means that 

NWHHD+ better exploits the distinct flows information than 

SOTA. This can be even further proven by computing the nor- 

malized cross-correlation in τ = 0 [38] between the number 
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Fig. 6.  Performance comparison of NWHHD+ with a state-of-the-art strategy [19]. 

 
 

 

Fig. 7. F1 score of NWHHD+ with single-programmable-switch  

deployment. 

 

 

of distinct flows and F1 score, which is 13.11 for NWHHD+ 
and 6.57 for SOTA. 

In order to show how the performance of NWHHD+ is 

sensitive to different tuning parameters, we ran simulations by 

varying the following parameters one at a time, while fixing 

the others to the values specified in Table I. 

1) Sensitivity to Sampling Rate K: Figure 8 shows the sen- 

sitivity analysis of NWHHD+ performance on sampling rate 

K. As shown in Figure 8(a), when K increases, F1 score 

increases as well, especially from K = 10 to K = 100. 

Figure 8(b) shows that also communication overhead signifi- 

cantly increases as K increases, as well as occupied memory 

(Figure 8(c)). The reason is that an increase of K leads to a 

smaller sampling threshold and thus to a bigger sample list to 

be stored and sent to the controller. In summary, choosing a 

larger K leads to a performance improvement on heavy-hitter 

detection, but implies an extra consumption of memory and 

communication resources. In our case, K = 10 is a good trade- 

off choice since it leads to comparable F1 score than choosing 

larger K while using much less memory and generating much 
less communication overhead. 

2) Sensitivity to Local Ratio W: Figure 9 shows the sen- 

sitivity analysis of NWHHD+ performance on local ratio W. 

As shown in Figure 9(a), F1 score decreases as W increases, 

and the difference of F1 score is substantial between W = 5 

and W = 20. Figure 9(b) and Figure 9(c) show that both 

communication overhead and occupied memory also signif- 

icantly decrease when W increases. This happens because, 

opposite to K, an increase of W leads to a decrease in the sam- 
ple list size, which means that less {flow key, packet count} 

pairs are reported to the controller when the switches are 

polled (i.e., less communication overhead) and less memory 

is also occupied. As side effect, the detection accuracy is also 

affected (i.e., lower F1 score). Thus, a smaller W enhances 

the performance on heavy-hitter detection, but more memory 

and communication overhead are required. According to the 

shown results, W = 3 leads to a good trade-off among F1 

score, communication overhead and memory occupation. 
3) Sensitivity to Count-Min Sketch Hash Function Output 

Size Ns: Figure 10 shows the sensitivity analysis of 

NWHHD+ performance on hash function output size Ns of 
Count-Min Sketch. For better understanding, we report the 
memory occupation of various Count-Min Sketches in Table II. 
The blue cells recall the sketch size adopted in this paper, 
unless otherwise specified. As shown in Figure 10(a), if the 

output size is too small (i.e., Ns = 100), Count-Min Sketch 
highly overestimates flows packet count and this causes very 

poor F1 score. By increasing the value of Ns , F1 score sig- 

nificantly increases until around Ns = 2000. However, after 

this value (i.e., for Ns = 10000) F1 score slightly decreases. 

The reason of this behavior is that Ns = 2000 leads to 
a slight overestimation of packet count for flows stored in 
sample lists that does not badly affect heavy-hitter detection. 
Conversely, such slight overestimation compensates missing 
packet counts of small flows that are not stored in those lists, 

leading to an estimated whole network volume Stot very close 
to the real value. This effect makes the controller able to iden- 
tify network-wide heavy hitters with a more accurate global 
threshold, thus leading to high F1 score. 

Figures 10(b) and 10(c) show that the overestimated packet 
count due to too small output size also causes very large- 

sized and badly-estimated sample lists and consequently leads 
to high and unnecessary occupied memory and communica- 

tion overhead. While increasing Ns , communication overhead 

and memory occupation decrease until a minimum is reached 

at around Ns = 2000 then, for larger Ns , they marginally 

increase. This slight increase is due to the value ε = 1/Ns 

used in Algorithm 2 for bias compensation in sampling and 

local thresholds (see Section V-B). The effectiveness of intro- 
ducing ε in our strategy is shown in Figure 12: considering 

ε in the computation of sampling and local thresholds not 
only increases F1 score, but also decreases communication 

overhead and memory occupation. On the other hand, con- 

sidering ε = 1/Ns also means that Ns directly affects the 
value of sampling threshold 

(W θH +ε)|Si | and local threshold 

(W θH +ε)|Si |. If the output size Ns is larger, ε is smaller: this 
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Fig. 8.  Sensitivity analysis of sampling rate K in NWHHD+ (W = 3). 

 

 

 

Fig. 9.  Sensitivity analysis of local ratio W in NWHHD+ (K = 10). 

 

 

 

Fig. 10. Sensitivity analysis of hash function output size Ns in NWHHD+ (W = 3 and K = 10). 

 

 

leads to smaller sampling and local thresholds. A smaller sam- 
pling threshold generates a larger sample list to be stored and 

sent to the controller (i.e., higher communication overhead and 

occupied memory). Conversely, having a smaller Ns leads to 

less communication overhead and occupied memory, and this 
explains why lower Ns (but not too small, where overestima- 

tion dominates) generates lower communication overhead and 

requires less memory than sketches with larger output size. 

4) Sensitivity to Number of Count-Min Sketch Hash 
Functions Nh : Figure 11 shows the sensitivity analysis of 

NWHHD+ performance on number of hash functions Nh 

of Count-Min Sketch. As shown in Figure 11(a), F1 score 
increases as the number of hash functions Nh increases. 

Nevertheless, when Nh is large enough to correctly estimat- 

ing flow packet counts, further increasing it does not improve 
heavy-hitter detection performance anymore. Figures 11(b) 
and 11(c) show that communication overhead and memory 

occupation decrease as the number of hash function Nh 

increases. Especially, if Nh is too small, wrongly-estimated 

flow packet counts lead to high communication overhead 
and memory consumption. Finally, note that sketch sizes 

of 10 × 2000 and 40 × 2000 both lead to better results 

than sketch size of 40 × 10000. This happens because, 
as shown previously, a too large Ns has bad impact on 
NWHHD+ performance: results thus show that NWHDD+ 
is more sensitive to variations to Ns than to Nh . 

 

D.  Insights on Network-Wide Heavy-Hitter Detection in a 
Full Deployment Scenario 

We report an evaluation of NWHHD+ strategy against 

SOTA also in a full deployment scenario, i.e., when all legacy 

devices have been replaced with programmable switches. As 

done previously for a partial deployment scenario, Tables III 
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Fig. 11.  Sensitivity analysis of number of hash functions Nh in NWHHD+ (W = 3 and K = 10). 

 

 

 

Fig. 12.  Impact of E in NWHHD+ (W = 3 and K = 10). 
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TABLE IV 

SENSITIVITY TO K IN THE CASE OF FULL DEPLOYMENT (W = 3) 

 
 

 
 

 

 
       

 
 

 
 

 
 

 
 

 
 

 

      

 

 

and IV show the sensitivity of NWHHD+ to W and K, and a 
performance comparison with SOTA. Table III shows that with 

W = 20 NWHHD+ and SOTA have comparable F1 score, but 

NWHHD+ leads to a significant reduction of both memory 

occupation and communication overhead. Similar results can 

be obtained by properly tuning K (Table IV). Also in this 

case, with K = 2, NWHHD+ and SOTA have similar F1 

score, but NWHHD+ considerably reduces communication 

overhead and memory occupation. To summarize, these results 

show that NWHHD+ is a good strategy also for network-wide 

heavy-hitter detection in a full deployment scenario. 

 
VII.  EVALUATION IN EMULATED P4 ENVI RONMENT  

Based on an open source P4 implementation of Count- 

Min Sketch [39], we implemented both our network-wide 

heavy-hitter detection (i.e., NWHHD+) and Harrison’s 

(i.e., SOTA) strategies in P4 language and tested them. In the 
following, we report some details on the emulated network 

environment. 

 
A. Environment Settings and Evaluation Metrics 

1) Emulated Network Environment: We chose Mininet [40] 

as our emulated network environment for the deployment of P4 

switches implementing the network-wide heavy-hitter strate- 

gies. The P4 code is compiled by p4c compiler [41] into a 
JSON file that describes the behavior of P4 switch (i.e., parser, 

tables and actions in the P4 pipeline). Then, the JSON file 

is loaded by any P4 switch created according to the behav- 

ioral model [27]. Finally, a topology in Mininet is created 

connecting such behavior-defined P4 switches. The adopted 

topology is composed by three interconnected switches, and 

there is a host connected to each switch. All the packets are 

forwarded from source host to destination host on the short- 

est path. We did not consider a larger topology for scalability 
reasons, since all the P4 switches are emulated on a virtual 

machine deployed by OpenStack on our testbed with dedi- 

cated access to 4 × 2.7GHz CPU cores and to 4GB of RAM. 
However, given the nature of the performed tests, as we will 

show later, this does not represent a limitation. The controller 

is implemented in Python as we explained in Section V-D2. 

2) Tuning Parameters: We used the same settings as our 
simulations in Python shown in Table I, unless otherwise spec- 

ified. Additionally, we set the size of register Si to 1 and all 

the remaining registers but Count-Min Sketch (e.g., sample 

list) to 100. Count-Min Sketch registers size is set to Ns . 
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Fig. 13.  Cumulative distribution function of packet processing time for NWHDD+ (10000 packets). 

 

3) Metrics: We evaluate NWHHD+ performance in terms 

of packet processing time. We believe that packet process- 

ing time is an important metric to evaluate, since it discloses 

whether the algorithm implemented in the P4 pipeline per- 

forms well or not and whether it can be used for line-rate 
transmissions. We used Wireshark to capture the time when 

each packet arrives at an input interface of a P4 switch and 

the time when it is forwarded by an output interface of the 

same switch. The packet processing time is defined as the dif- 

ference between such times and estimates the time spent by 

the packet in the P4 switch pipeline. We also implemented 

a simple forwarding strategy, where no heavy-hitter detection 

(neither SOTA nor NWHHD+) is performed and the packet 

is just forwarded to the right output interface. 

As additional metric, we also evaluate the controller 

response time. This metric represents the time overhead gen- 

erated in the interaction between data plane and control plane 
for the identification of heavy hitters.To measure such response 

time, we captured the following timestamps at the controller: 

(i) the timestamp related to the first true-flag packet that arrives 

at the controller, meaning that at least one potential heavy- 

hitter exists in the network and (ii) the timestamp when any 

network-wide heavy hitter has been detected (if it exists). The 

response time is then defined as the difference between the 

latter and the former timestamps. 

 
B. Evaluation of Packet Processing Time 

Figure 13 reports the cumulative distribution function of 

packet processing time measured for 10000 generated pack- 

ets. As shown in Figure 13(a), both NWHHD+ and SOTA 

strategies lead to more packet processing time than simple 

forwarding, since more operations need to be performed on 

the packet. However, 50% of the packets can be processed 

within 1500 μs in the switch when the Count-Min Sketch 

size is set to Nh × Ns = 10 × 2000. Since our strategy has 
more read and write actions in the additional registers (e.g., 

sample list) than SOTA, SOTA leads to slightly lower pro- 
cessing times. Increasing the output size Ns (up to a certain 

threshold) and the number of hash functions Nh can improve 

F1 score for heavy-hitter detection as shown in Figures 10 
and 11, but this also has some impact on packet process- 
ing time in P4 switches. Figure 13(b) shows how Ns affects 
packet processing time: it slightly increases as Ns increases 

significantly. This happens because a higher Ns requires a 

TABLE V 

AVERAGE CONTROLLER RESPONSE TIME 

 
     

     

 
 

 

 

hash function performing more lookups to obtain the output 
value. Figure 13(c) shows instead the impact of Nh : results 

clearly show that increasing the number of hash functions Nh 

has a more impacting effect on packet processing time than 
increasing the output size of hash functions Ns . 

These evaluations confirm that the size of Count-Min 
Sketches implemented in the data plane must be carefully 

defined. In fact, an increase in Nh improves monitoring 

performance (see Figure 11) but requires larger packet process- 

ing time. Moreover, by also referring to Figure 10, correctly 

dimensioning Ns is of paramount importance to avoid both 

large packet processing time and F1 score reduction. Finally, 
note also that packet processing times shown in this section 

(i.e., in the order of few ms) include the time needed to cross 

several virtualized layers in the single-node emulated envi- 

ronment. In real carrier-grade hardware (e.g., Barefoot Tofino, 
with throughput in the order of 6.5 Tb/s or more [34]), packet 

processing time is expected to be several orders of magnitude 

lower (i.e., in the order of ns or few μs). 

 
C.  Evaluation of the Controller Response Time 

For each different time interval size, we measured the 

response time in 10 intervals and computed the average 

response time. Table V shows the average response time. 

It is around 1.5 s and slightly increases while increasing 

Tint , since more data needs to be processed for longer time 

intervals. These results mean that network-wide heavy hitters 

are detected in average 1.5s after that the controller receives 

the first flag from any switch identifying a potential heavy 

hitters. Note that this time depends on the computational 

capacity of the controller, so we expect it to be even smaller 

while adopting carrier-grade hardware for the controller in real 

deployments. Moreover, we do not include in the evaluated 

response time the retrieval time of the flag messages from the 

programmable switches, which strongly depends on where the 

controller is placed and is at most in the order of few tens of 

ms [42] (i.e., negligible with respect to the controller response 

time). 
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VIII.  RELATED WORK 

A. Partial Deployment of SDN Solutions in ISP Networks 

The appearance of SDN simplifies the network manage- 

ment and enhances the flexibility of the network. However, 

currently it is not feasible to upgrade all legacy switches to 

SDN switches due to the limitation of budgets and operational 

burdens, so the current trend for network operators is to deploy 
a limited number of SDN switches and make the network best 

work in a hybrid environment. A good strategy for partial SDN 

deployment is thus needed to cost-effectively bring benefits 

to ISPs. Unfortunately, obtaining the best partial deployment 

of SDN switches is a NP-hard problem [43]. In literature, 

most of the works focus on the problem of partial deploy- 

ment of OpenFlow switches [10] in legacy infrastructures, 

and either Integer Linear Programming (ILP) [44] or incre- 

mental deployment heuristic algorithms [43], [45], [46], [47] 
have been adopted to solve such problem, focusing on inter- 

operability and routing issues in a hybrid environment while 

achieving the best load balancing or maximizing the through- 

put. Incremental deployment heuristic strategies are a good 

approach to solve the problem of partial deployment, since 

they aim at iteratively replacing legacy equipment by ensuring 

local optimal performance. However, the previous work neither 

takes into account the problem of incremental deployment of 
programmable switches in a legacy infrastructure to improve 

network monitoring performance nor proposes a solution for 

topological placement of programmable switches: with our 

paper, we try to fill this gap. Moreover, our solution is inter- 

operable with other techniques: the raw data gathered from 

legacy devices could be used with filtered data collected from 

programmable switches for an improved network monitoring. 

 

B. Network-Wide Heavy-Hitter Detection in Programmable 
Data Planes 

In the last years, many strategies have been proposed 

to monitor heavy hitters directly in the data plane 

by exploiting the flexibility of programmable switches. 

Some among them are OpenSketch [48], UnivMon [13], 

Elastic Skecth [15], FlowRadar [14], SketchVisor [16], 

NitroSketch [49], SketchLearn [50] and HashPipe [17]. 

However, they only focused on heavy-hitter detection at a 

single SDN switch, but this is not enough for heavy-hitter 

detection in large networks, since some heavy hitters may 

be undetected or wrongly detected by relying on limited 
information at a single location. 

Thus, the concept of network-wide heavy hitter has been 

introduced in literature [51], [52], [53]. A network-wide 

heavy hitter uses distributed information, which can be 

made available by programmable switches, to accurately and 

effectively monitor heavy hitters from a global perspective. 

Harrison et al. [19] and Ben-Basat et al. [18] have proposed 

two different strategies to monitor network-wide heavy hit- 

ters. In Harrison’s strategy [19], at the end of each time 
interval, if any heavy hitter has been detected through a local 

threshold-based mechanism in P4-enabled switches, the con- 

troller polls the programmable switches and uses a different 

(global) threshold-based mechanism to decide whether local 

heavy hitters are network-wide heavy hitters or not. However, 

in their strategy, packets belonging to the same flow are 
counted multiple times by different switches, and this dupli- 

cated information is not discarded by the controller while 

estimating network-wide heavy hitters: for this reason, it is 

very difficult to correctly set the global threshold. Basat’s 

work [18] provides a solid method for network-wide heavy- 

hitter detection by using a data streaming model, but the 

introduced communication overhead and occupied memory 

are significant. Another key limitation is that the hash func- 

tions needed by their strategy do not exist in practice. Our 
network-wide heavy-hitter detection strategy is similar to the 

one proposed by Harrison et al., but we define new and 

more intuitive local and global thresholds and we exploit 

information on distinct flows to prevent duplicate counting 

of packets, thus reducing the communication overhead and 

occupied memory in programmable switches and improving 

monitoring performance. 
 

 
IX.  CONCLUSION AND FUTURE WORK 

In this paper, we presented a new greedy algorithm for 

an effective incremental deployment of SDN programmable 

switches in legacy infrastructures that aims at monitoring as 

many distinct network flows as possible. This algorithm best 

supports monitoring tasks such as heavy-hitter detection when 

only a limited number of legacy devices can be replaced with 

programmable switches. We also proposed a novel network- 

wide heavy-hitter detection strategy which works well in 
conjunction with our incremental deployment approach. This 

strategy has been implemented in P4 language and tested in 

an emulated environment. Both the incremental deployment 

algorithm and the network-wide heavy-hitter detection strategy 

were proven to outperform existing approaches. By adopting 

our incremental deployment algorithm, network operators can 

ensure very good monitoring performance by replacing less 

than half of the legacy devices in the network. Moreover, our 

network-wide heavy-hitter detection strategy outperforms an 
existing approach both when only a limited number of pro- 

grammable switches is deployed and when the network is 

entirely upgraded, since it allows network operators to strike a 

balance between heavy-hitter detection accuracy, communica- 

tion overhead and occupied memory. As marginal side effect, 

our strategy has been shown to lead to slightly more packet 

processing time in the execution of the P4 pipeline than the 

considered state-of-the-art approach. 
As future work, we intend to validate our network-wide 

heavy-hitter detection strategy in a testbed composed of three 

programmable P4 switches, and thus test it in a real envi- 

ronment. Furthermore, we also plan to extend our strategy to 

execute a wider range of network-wide monitoring tasks, such 

as heavy change detection or entropy estimation. 
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