

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZI ONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

POLYADIC STOCHASTIC COWS

Stefano Schivo

May 2008

Technical Report # DISI-08-035

.

Polyadic Stochastic COWS∗

Stefano Schivo

1 Introduction
Our objective is to extend the process algebra presented in [2, 3] by introducing
stochastic delays in the language. We will start by presenting a modified version of
the semantics of which will allow us to ease the subsequent stochastic extension.
In order to better explain the changes made to the basic version of the language, we
start by presenting the semantics for a monadic (as opposed to polyadic) version of
, and then move on to our version of the polyadic case. Finally we will present the
stochastic extension of polyadic .

2 Monadic
The syntax of monadic is as follows:

s ::= u!w | g | s | s | {|s|} | kill(k) | [d]s | S(n1, . . . , n j)
g ::= 0 | p?w. s | g + g

We present in Tables 1 and 2 the operational semantics of monadic . We will
briefly comment on the semantics and the new auxiliary functions.

As the final objective of this work is the introduction of a stochastic process algebra,
we need to constrain the models to produce finitely branching transition systems. This
is done so that we will be able to use standard techniques to deal with the Markov
processes resulting from the stochastic models. In order to obtain a finitely branching
transition system, we use service identifiers instead of service replication and assume
that each of these identifiers is guarded in a valid starting process. Another assumption
concerns naming and states that no homonymy exists between both bound (i.e. under
the scope of a delimiter) and free entities. This last condition is supposed to hold in the
starting process and kept valid through the use of functions s dec and l dec in rule serid.
These functions are directly drawn from [4] and decorate bound names respectively in
the transition label and in the residual service by adding to each entity a finite number
of zeroes as superscript.

In addition to the metavariable conventions defined in the original version, we will
use a, b to range over x, y, z, (x), (y), (z),m, n (i.e. possibly bound input entities) and h, i
∗This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

1

to range over m, n, (m), (n) (i.e. possibly bound output names). Furthermore, we define
the (possibly empty) delimiter as

t ::= n | ε

The writing of the form [t]s in the residual process of rule com will be intended as s
alone if t = ε, and as [n]s if t = n.

The label for communication is of the form p bσ′c a h and has the following
meaning:

• p is the endpoint on which the communication is happening (to improve read-
ability, we merge partner and operation identifiers on a single entity name);

• σ′ is the possible substitution to be applied when the appropriate delimiter is
encountered (see definition ofM below);

• a is the (possibly bound) variable or name in the request action involved in the
communication;

• h is the (possibly bound) name coming from the invoke action involved in the
communication.

Notice that the fact that names or variables a and h are bound influences only the
application of rules delcl and delsub, being transparent to all other semantics rules.

As the new semantics is not based on a congruence relation, we need to deal with
scope modifications via opening and closing of delimitators. In order to address this
issue, we introduce a modified version of the matching functionM, which now handles
all possible combinations of bound input/output values. Moreover, as in monadic
all communicated objects only consist of one-element tuples, the matching function
used in communications becomes as follows:

M (n, n) = (∅, ∅, ε) M (x, n) = ({n/x}, ∅, ε)

M ((x), n) = (∅, {n/x}, ε) M (x, (n)) = ({(n)/x}, ∅, ε)

M ((x), (n)) = (∅, {n/x}, n)

Notice that the return value ofM is a triple (σ′, σ, t) composed by:

• σ′: the substitution to be carried out as soon as the corresponding delimiter is
encountered

• σ: the substitution to be carried out directly on the residual process of the com-
munication

• t: the name to be restricted in the residual process

A brief explanation of each case tackled by the functionM is given below:

• M (n, n): no substitution is needed, as input and output names coincide;

2

(k
ill

)
−

ki
ll(

k)
†
k
−→

0
(r

eq
)

−

p?
w
.s

p?
w
−−
→

s
(in

v)
−

p!
n

p!
n
−−
→

0

(p
ro

t)
s

α −→
s′

{|s
|}

α −→
{|s
′ |}

(c
ho

ic
e)

g 1
α −→

s

g 1
+

g 2
α −→

s

(o
pe

n)
s

α −→
s′

u
∈

d(
α

)

[u
]s
o
p

(α
,u

)
−−
−−
−→

s′

(c
om

)
s 1

p?
a
−−
→

s 1
′

s 2
p!

h
−−
→

s 2
′
M

(a
,h

)
=

(σ
′ ,
σ
,t

)
¬

(s
1
|

s 2
)
↓
|σ
′
|+
|σ
|

p,
h

s 1
|

s 2
p
bσ
′
c

a
h

−−
−−
−−
→

[t
](

s 1
′ σ
|

s 2
′)

Ta
bl

e
1:

Se
m

an
tic

s
fo

rm
on

ad
ic

(P
ar

t1
).

3

(p
ar

co
nf

)
s 1

p
bσ
c

a
h

−−
−−
−−
→

s 1
′
¬

s 2
↓

#(
a,

h)
p,

h

s 1
|

s 2
p
bσ
c

a
h

−−
−−
−−
→

s 1
′
|

s 2

(p
ar

pa
ss

)
s 1

α −→
s 1
′

α
,

p
bσ
c

a
h

α
,
†
k

s 1
|

s 2
α −→

s 1
′
|

s 2

(p
ar

ki
ll)

s 1
†
k
−→

s 1
′

s 1
|

s 2
†
k
−→

s 1
′
|
ha

lt(
s 2

)
(d

el
pa

ss
)

s
α −→

s′
d
<

d(
α

)
s↓

ki
ll
⇒

(α
=
†

or
α

=
†

k)

[d
]s

α −→
[d

]s
′

(d
el

cl
)

s
p
b{

(n
)/

x}
c

x
n

−−
−−
−−
−−
−→

s′

[x
]s

p
b∅
c

x
n

−−
−−
−−
→

[n
]s
′ {

n /x
}

(d
el

su
b
)

s
p
b{

n/
x}
c

x
n

−−
−−
−−
−−
→

s′

[x
]s

p
b∅
c

x
n

−−
−−
−−
→

s′
{n
/x
}

(d
el

ki
ll)

s
†
k
−→

s′

[k
]s
† −→

[k
]s
′

(s
er

id
)

s{
m

1,
..
.,

m
j /n

1,
..
.,

n
j}

α −→
s′

S
(n

1,
..
.,

n
j)

=
s

S
(m

1,
..
.,

m
j)

l
de

c(
α

)

−−
−→

s
de

c(
α
,s
′)

Ta
bl

e
2:

Se
m

an
tic

s
fo

rm
on

ad
ic

(P
ar

t2
).

4

• M (x, n): a substitution will be performed when the delimiter for variable x will
be encountered (rule delsub), so that the value of x will be substituted on its entire
scope;

• M ((x), n): input variable x is bound (i.e. its delimiter has already been encoun-
tered, and thus the scope of x is contained into the scope of n), so the substitution
{n/x} is performed directly on the residual process and no delimiter needs to be
added;

• M (x, (n)): output name n is bound (its scope is contained in the scope of x), so
the substitution needs to be performed when the delimiter for x is found, and that
delimiter will be substituted by a delimiter for n (rule delcl), effectively closing
the scope of n;

• M ((x), (n)): both delimiters have already been encountered, so the substitution
has to be performed directly on the residual process and the scope of n needs to
be closed at the same time (so a delimiter for n is added to the residual process).

Cases in which the input name is bound (M ((n), n) andM ((n), (n))) are not considered
as they are not possible, while cases of the formM (n,m) with n , m are not defined
as no match subsists.

We rely on the application of rule open (which in turn rests on function op defined
in Table 3) for the opening of scopes. Notice that this rule allows us to take into account
also the case in which the scope of the variable contains the scope of the name, which
in turn contains both communicating processes. For example, consider the following
process:

s = [x] ([n] (p?x. 0 | p!n) | q!x)

Notice that the basic monadic semantics proposed in [4] does not allow to correctly

infer the transition s
p b∅c x n
−−−−−−→ [n] (0 | 0 | q!n), while the one from Tables 1, 2 does.

This is because the opening of the scope of a name involved in a communication when
the communication rule has already been applied was not envisaged in [4].

op(p!n,m) =

{
p!(n) if n = m
p!n if n , m

op(p?x, y) =

{
p?(x) if x = y
p?x if x , y

op(p b{n/x}c x n,m) =

{
p b{(n)/x}c x (n) if n = m
p b{n/x}c x n if n , m

Table 3: Definition of function op.

5

To make notation shorter, we add an “utility” function for counting the number of
substitutions needed for the match of two tuples, defined as follows:

#(a, h) =

{
|σ′ |+ |σ | ifM (a, h) = (σ′, σ, t)
∞ otherwise

In order to correctly check that the matching components in a communication are
the best possible, we make use of the same predicate as the one introduced in [3], with
the appropriate changes to adapt it to our context:

−

p?n. s↓1
p,n

s↓c
p,n d , p

[d]s↓c
p,n

s↓c
p,n

{|s|} ↓c
p,n

g1 ↓
c
p,n ∨ g2 ↓

c
p,n

(g1 + g2)↓c
p,n

s1 ↓
c
p,n ∨ s2 ↓

c
p,n

(s1 | s2)↓c
p,n

s{m1, . . . ,m j/n1, . . . , n j}↓
c
p,n S(n1, . . . , n j) = s

S(m1, . . . ,m j)↓c
p,n

The predicate s ↓c
p,n can thus be read as “service s can perform a request action on

endpoint p, matching with h through (strictly) less than c substitutions”. As a shortcut,
and in order to simplify the definition, we establish that s↓c

p,n⇔ s↓c
p,(n).

Predicate ↓kill is defined the same way as the one defined in [3].
Function d is defined the same way as in [3] and consistently extended so to include

our additions in naming conventions.

6

3 Polyadic
The next step is to introduce polyadic communications into the base language.

The grammar of the language has to be modified in order to deal with tuples of
values. The syntax of polyadic becomes as follows:

s ::= u!w̃ | g | s | s | {|s|} | kill(k) | [d]s | S(n1, . . . , n j)
g ::= 0 | p?w̃. s | g + g

We indicate tuples by the same metavariables used in the monadic context, to which
we add a characterising sign: e.g., a tuple of input entities will be called w̃. A tuple
made up by a single element can be written as the element itself: i.e., if w̃ = 〈x〉, then
x can be used instead of w̃.

In order to correctly define the matching function M in the polyadic context, we
need to introduce proper operators for the joining of substitution functions and tuples.

Definition 1 Given the two substitution functions σ1 and σ2, the disjoint union of the
functions, written σ1]σ2, is the union of σ1 and σ2 when they have disjoint domains.

Definition 2 Given the two tuples t̃1 = 〈t1,1, t1,2, . . . , t1,i〉 and t̃2 = 〈t2,1, t2,2, . . . , t2, j〉,
the concatenation of the two tuples, written t̃1 :: t̃2, is the tuple obtained by juxtaposing
the two original tuples: 〈t1,1, t1,2, . . . , t1,i, t2,1, t2,2, . . . , t2, j〉.

The substitution of entities in tuples is defined the trivial way and written as w̃{n/x}.
The matching function is defined as shown in Table 4 by adding a rule which will

allow to deal with tuples of entities. In order to deal with the multiple substitutions
generated by function M we extend also function op through an auxiliary function
named ops as shown in Table 5.

M (n, n) = (∅, ∅, ε) M (x, n) = ({n/x}, ∅, ε)

M ((x), n) = (∅, {n/x}, ε) M (x, (n)) = ({(n)/x}, ∅, ε)

M ((x), (n)) = (∅, {n/x}, n)

M (a1, h1) = (σ1
′, σ1, t̃1) M

(
ã2, h̃2

)
= (σ2

′, σ2, t̃2)

M
(
〈a1〉 :: ã2, 〈h1〉 :: h̃2

)
= (σ1

′] σ2
′, σ1] σ2, t̃1 :: t̃2)

Table 4: Definition of the matching functionM.

As can be seen in Table 4, the complete definition of functionM produces a tuple
t̃ of names to be bound in the residual process in com rule. This implies that definition
of metavariable t̃ is now as follows:

t̃ ::= ñ | ε

7

op(p!h̃, n) = p!h̃′ where h̃′ = h̃{(n)/n}
op(p?ã, x) = p?ã′ where ã′ = ã{(x)/x}

op(p bσc ã h̃, n) = p bops(σ, n)c ã h̃′ where h̃′ = h̃{(n)/n}

ops(∅, n) = ∅

ops({n/x}] σ,m) =

{
{(n)/x}] ops(σ,m) if n = m
{n/x}] ops(σ,m) if n , m

Table 5: Complete definition of functions op and ops.

with the same “reading rules” as before.
The function for counting the number of substitutions in a match is extended to the

polyadic setting as follows:

#(ã, h̃) =

{
|σ′ |+ |σ | ifM

(
ã, h̃

)
= (σ′, σ, t̃)

∞ otherwise

The introduction of tuples implies that the predicate · ↓c
p,h̃

has to be updated as
follows:

#(w̃, h̃) < c

p?w̃. s↓c
p,h̃

s↓c
p,h̃ d , p

[d]s↓c
p,h̃

s↓c
p,h̃

{|s|} ↓c
p,h̃

g1 ↓
c
p,h̃ ∨ g2 ↓

c
p,h̃

(g1 + g2)↓c
p,h̃

s1 ↓
c
p,h̃ ∨ s2 ↓

c
p,h̃

(s1 | s2)↓c
p,h̃

s{m1, . . . ,m j/n1, . . . , n j}↓
c
p,h̃ S(n1, . . . , n j) = s

S(m1, . . . ,m j)↓c
p,h̃

We show the semantics for polyadic in Tables 6 and 7.

8

(k
ill

)
−

ki
ll(

k)
†
k
−→

0
(r

eq
)

−

p?
w̃
.s

p?
w̃
−−
→

s
(in

v)
−

p!
ñ

p!
ñ
−−
→

0

(p
ro

t)
s

α −→
s′

{|s
|}

α −→
{|s
′ |}

(c
ho

ic
e)

g 1
α −→

s

g 1
+

g 2
α −→

s

(o
pe

n)
s

α −→
s′

u
∈

d(
α

)

[u
]s
o
p

(α
,u

)
−−
−−
−→

s′

(c
om

)
s 1

p?
ã
−−
→

s 1
′

s 2
p!

h̃
−−
→

s 2
′
M

(ã,
h̃) =

(σ
′ ,
σ
,t̃

)
¬

(s
1
|

s 2
)
↓
|σ
′
|+
|σ
|

p,
h̃

s 1
|

s 2
p
bσ
′
c

ã
h̃

−−
−−
−−
→

[t̃
](

s 1
′ σ
|

s 2
′)

Ta
bl

e
6:

Se
m

an
tic

s
fo

rp
ol

ya
di

c

(P
ar

t1
).

9

(p
ar

co
nf

)
s 1

p
bσ
c

ã
h̃

−−
−−
−−
→

s 1
′
¬

s 2
↓

#(
ã,

h̃)
p,

h̃

s 1
|

s 2
p
bσ
c

ã
h̃

−−
−−
−−
→

s 1
′
|

s 2

(p
ar

pa
ss

)
s 1

α −→
s 1
′

α
,

p
bσ
c

ã
h̃

α
,
†
k

s 1
|

s 2
α −→

s 1
′
|

s 2

(p
ar

ki
ll)

s 1
†
k
−→

s 1
′

s 1
|

s 2
†
k
−→

s 1
′
|
ha

lt(
s 2

)
(d

el
pa

ss
)

s
α −→

s′
d
<

d(
α

)
s↓

ki
ll
⇒

(α
=
†

or
α

=
†

k)

[d
]s

α −→
[d

]s
′

(d
el

cl
)

s
p
bσ

⊎ {(n
)/

x}
c

ã
h̃

−−
−−
−−
−−
−−
−−
→

s′

[x
]s

p
bσ
c

ã
h̃

−−
−−
−−
→

[n
]s
′ {

n /x
}

(d
el

su
b
)

s
p
bσ

⊎ {n/
x}
c

ã
h̃

−−
−−
−−
−−
−−
−→

s′

[x
]s

p
bσ
c

ã
h̃

−−
−−
−−
→

s′
{n
/x
}

(d
el

ki
ll)

s
†
k
−→

s′

[k
]s
† −→

[k
]s
′

(s
er

id
)

s{
m

1,
..
.,

m
j /n

1,
..
.,

n
j}

α −→
s′

S
(n

1,
..
.,

n
j)

=
s

S
(m

1,
..
.,

m
j)

l
de

c(
α

)

−−
−→

s
de

c(
α
,s
′)

Ta
bl

e
7:

Se
m

an
tic

s
fo

rp
ol

ya
di

c

(P
ar

t2
).

10

4 Polyadic Stochastic

4.1 Syntax
Following the common approach in stochastic extensions [1, 5, 4], we add a stochastic
delay to each basic action of the language. These delays are identified with exponen-
tially distributed random variables, the rates of which are included in the syntax of
basic actions:

s ::= (u!w̃, γ) | g | s | s | {|s|} | (kill(k), λ) | [d]s | S(n1, . . . , n j)
g ::= 0 | (p?w̃, δ). s | g + g

4.2 Semantics for Polyadic Stochastic
The semantics for Polyadic Stochastic is shown in Tables 13 and 14. We will now
comment on the most relevant novelties with respect to the non-stochastic version of
the language.

The stochastic execution step of a closed service is

s
ϑ(α)
−−−−→

ρ
s′

with either α = † or α = p b∅c ã h̃ and where

• ρ is the “basic” rate of the action (i.e. not the apparent one. In the case of
a communication, it is a couple of two values, one for each of the interacting
components’ rate),

• ϑ is inspired by the same approach in [4] and used in rules choice0 and choice1
in order to distinguish between cases which would otherwise result identical1.

The rate of such transition is calculated as follows:

rate

(
s

ϑ(α)
−−−−→

ρ
s′
)

=

{
(see (1)) if α = p b∅c ã h̃
ρ if α = †

4.3 Calculating the rate of a communication
In [2] the communication between two processes is presented as an asynchronous
(as invoke actions are independent processes), asymmetric (since a request is adapted to
its corresponding invoke through the matching functionM) event. Following this same
approach, we assume that request actions are dependent from invoke actions: i.e., the
choice of the “transmitting” invoke action determines the set of possible “receiving”
request actions. This happens because the set of request actions matching with the

1As an example, consider the process (p!n, δ) | (p?n, γ). 0 + (p?n, γ). 0. We would have two identical
transitions departing from this process, and both leading to the same residue 0 | 0. Would there not be a way
to distinguish between these two transitions, the generation of the CTMC would become troublesome.

11

smallest number of substitutions is different from one invoke action to another. This is
best shown in a simple example. Consider the service

S = [X,Y]((p!〈1, 2〉, δ1)︸ ︷︷ ︸
A

| (p!〈1, 3〉, δ2)︸ ︷︷ ︸
B

| (p?〈1,X〉, γ1). 0︸ ︷︷ ︸
C

| (p?〈Y , 3〉, γ2). 0︸ ︷︷ ︸
D

)

The matching paradigm states that the only possible communications are the following:

• A - C (matching 1 with 1 and substituting X by 2)

• B - C (matching 1 with 1 and substituting X by 3)

• B - D (substituting Y by 1 and matching 3 with 3)

Note that, as each of the two communications B - C and B - D makes one substitution,
they are equally viable from the non-stochastic point of view. We can see from the
example that the choice of the invoke action also determines the set of possible com-
munications: when choosing to make a communication involving process A, there is
only one possible communication (A - C), while when choosing process B the possible
communications are two (B - C and B - D).

The rate of a communication event is obtained multiplying the apparent rate2 of the
communication by the probability to choose the two participants among all possible
competitors for the same communication. Adopting a classical way of approximating
exponential rates [1], we take the apparent rate of a communication to be the minimum
between the apparent rates of the participating processes (i.e., the communication pro-
ceeds at the speed of the “slowest” of the participants). So, the ideal formula for the
rate of a communication between processes A and B has the following form:

rate (communication) = P(A ∩ B) · min (rate (A) , rate (B))

where P(A ∩ B) is the probability to have both processes A and B involved in the
communication.

As we consider request actions to be dependent from invoke actions, the probability
to choose a pair invoke-request has to be computed via the conditional probability
formula:

P(A ∩ B) = P(B) · P(A | B)

In our case, this means that the probability to have a match between request A =

(p?w̃, γ) and invoke B = (p!ũ, δ) is given by the product of the probability to have cho-
sen B among all possible invoke actions on endpoint p and the probability to choose
A among the request actions made available by the choice of B. In the example above,
the probability to choose communication between B and C is calculated as follows:

P(B ∩C) = P(B) · P(C | B)
= δ2

δ1+δ2
·

γ1
γ1+γ2

2We use the term apparent rates because they are the rates at which respective actions would be seen
happening by an external observer (i.e. an observer who cannot distinguish between individual actions).

12

while the probability to choose communication between A and C is basically the prob-
ability to choose A (as C becomes the only request action available for the communi-
cation):

P(A ∩C) = P(A) · P(C | A)
= δ1

δ1+δ2
· 1

Finally, we set a way to compute the apparent rates of invoke and request actions
involved in a communication.

The apparent rate of an invoke action taking part in a communication internal to
service s is given by the sum of the rates of all invoke actions in s able to perform a
communication on the same endpoint on which the communication happens. Function
inv (defined in Table 8) is used for this aim.

Definition 3 Request action (p′?w̃, γ) is activated by invoke action (p!ũ, δ) if the com-
munication between the two actions is possible.

So, in a specific service s, an unguarded request action (p′?w̃, γ) is activated by invoke
action (p!ũ, δ) if p = p′ and #(w̃, ũ) is minimal w.r.t. any other unguarded request action
(p′?w̃′, γ′) in s for whichM (w̃′, ũ) is defined.

Definition 4 The best-matching set for invoke action (p!ũ, δ) in service s is a set of un-
guarded request actions on endpoint p, all matching with tuple ũ through the minimal
number of substitutions among all request actions in s activated by invoke (p!ũ, δ).

The apparent rate of a request action (p?w̃, γ) involved in a communication inside
service s is calculated as follows:

• consider a set B of best-matching sets, each relative to a different unguarded
invoke action in s on channel p, and such that (p?w̃, γ) is contained in all sets in
B;

• for each set N ∈ B, sum up the rates of all actions contained in N;

• multiply each of such sums by the probability to select the corresponding acti-
vating invoke action (i.e. the rate of such invoke action divided by inv(s, p));

• sum all results obtained this way to obtain the apparent rate of (p?w̃, γ) in s.

Now consider communication B - C from the example above. The apparent rate
of request action C depends from two best-matching groups: {C} and {C,D}, activated
respectively by A and B. The apparent rate of C results therefore as follows:

rate (C) =
δ1

δ1 + δ2︸ ︷︷ ︸
P(A)

·γ1 +
δ2

δ1 + δ2︸ ︷︷ ︸
P(B)

·(γ1 + γ2)

where we have highlighted the probabilities to select the activating invoke actions for
each best-matching group to which action C belongs.

13

The rate of communication B - C results therefore as follows:

rate (B −C) =
δ2

δ1 + δ2
·

γ1

γ1 + γ2
· min

(
δ1 + δ2,

δ1

δ1 + δ2
· γ1 +

δ2

δ1 + δ2
· (γ1 + γ2)

)
We can finally state the formula for the calculation of the rate of a communication

action on endpoint p between request process expecting to receive tuple ã and invoke
process sending tuple h̃ in service s:

rate

(
s

ϑ(p b∅c ã h̃)
−−−−−−−−−→

[γ,δ]
s′
)

=
δ

inv(s, p)
·

γ

req(s, p, h̃, #(ã, h̃))
·min (inv(s, p), aR(bms(s), p, ã, s)) (1)

where functions inv, req, bms, sumRates and aR are defined in Tables 8, 9, 10, 11
and 12.

inv(s, p) = inv′(s, s, p)

inv′(s, (kill(k), λ), p) = inv′(s, (p′?w̃, γ). s′, p) = inv′(s, 0, p) = 0

inv′(s, (p′!ṽ, δ), p) =

{
δ if p = p′ and sumRates(s, ṽ, p) , (0,∞)
0 otherwise

inv′(s, s1 | s2, p) = inv′(s, s1, p) + inv′(s, s2, p)

inv′(s, g1 + g2, p) = inv′(s, g1, p) + inv′(s, g2, p)

inv′(s, [d]s′, p) = inv′(s, s′, p)

inv′(s, {|s′|} , p) = inv′(s, s′, p)

inv′(s,S(m1, . . . ,m j), p) = inv′(s, s′{m1, . . . ,m j/n1, . . . , n j}, p)
if S(n1, . . . , n j) = s′

Table 8: Definition of function inv for the computation of apparent rate of an invoke
action. The apparent rate sums up to 0 if there are no request actions available for
communication with the given invoke action.

14

req((kill(k), λ), p, h̃, c) = req((p′!ṽ, δ), p, h̃, c) = req(0, p, h̃, c) = 0

req((p′?w̃, γ). s, p, h̃, c) =

{
γ if p = p′ and c = #(w̃, h̃)
0 otherwise

req(s1 | s2, p, h̃, c) = req(s1, p, h̃, c) + req(s2, p, h̃, c)

req(g1 + g2, p, h̃, c) = req(g1, p, h̃, c) + req(g2, p, h̃, c)

req([d]s, p, h̃, c) = req(s, p, h̃, c)

req({|s|} , p, h̃, c) = req(s, p, h̃, c)

req(S(m1, . . . ,m j), p, h̃, c) = req(s{m1, . . . ,m j/n1, . . . , n j}, p, h̃, c) if S(n1, . . . , n j) = s

Table 9: Definition of function req used in equation (1).

bms(s) = bms′(s, s)

bms′((p!ũ, δ), s) = {(sumRates(s, ũ, p), (p!ũ, δ))}

bms′((p?w̃, γ). s′, s) = bms′((kill(k), λ), s) = ∅

bms′(g1 + g2, s) = bms′(0, s) = ∅

bms′(s1 | s2, s) = bms′(s1, s) ∪ bms′(s2, s)

bms′([d]s′, s) = bms′(s′, s)

bms′({|s′|} , s) = bms′(s′, s)

Table 10: Definition of function bms for the generation of all best-matching sets for
each invoke action in given service s. The sum of all rates of each best-matching set is
calculated “on the fly” and is coupled with its corresponding activating invoke action.

15

sumRates((p′?w̃, γ). s, ũ, p) =

{
(γ, #(w̃, ũ)) if p = p′

(0,∞) otherwise

sumRates((p′!ũ′, δ), ũ, p) = sumRates((kill(k), λ), ũ, p) = sumRates(0, ũ, p) = (0,∞)

sumRates([d]s, ũ, p) = sumRates(s, ũ, p)

sumRates({|s|} , ũ, p) = sumRates(s, ũ, p)

sumRates(s1, ũ, p) = (γ1, c1) sumRates(s2, ũ, p) = (γ2, c2)

sumRates(s1 | s2, ũ, p) = (γ3, c3)
(∗)

sumRates(g1, ũ, p) = (γ1, c1) sumRates(g2, ũ, p) = (γ2, c2)

sumRates(g1 + g2, ũ, p) = (γ3, c3)
(∗)

(*) where c3 = min (c1, c2) and γ3 =

γ1 if c1 < c2
γ2 if c2 < c1
γ1 + γ2 if c1 = c2

Table 11: Definition of function sumRates for the calculation of the sum of rates in
best-matching sets.

aR(∅, p′, ã, s) = 0

aR({((γ, c), (p!ũ, δ))} ∪ M, p′, ã, s) =

{
aR(M, p′, ã, s) + γ · δ

inv(s,p) if C
aR(M, p′, ã, s) otherwise

where C = (p = p′ and #(ã, ũ) = c)

Table 12: Definition of function aR for the calculation of the apparent rate of a request
action involved in a communication in given service s. Condition C is used in order to
check wether request action under consideration belongs to a best-matching set.

16

(k
ill

)
−

(k
ill

(k
),
λ

)
(†

k)
−−
−−
→ λ

0
(r

eq
)

−

(p
?w̃
,γ

).
s

(p
?w̃

)
−−
−−
−→
γ

s
(in

v)
−

(p
!ñ
,δ

)
(p

!ñ
)

−−
−−
→

δ
0

(p
ro

t)
s

ϑ
(α

)
−−
−−
→
ρ

s′

{|s
|}

ϑ
(α

)
−−
−−
→
ρ
{|s
′ |}

(c
ho

ic
e 0

)
g 1

ϑ
(α

)
−−
−−
→
ρ

s

g 1
+

g 2
+

0ϑ
(α

)
−−
−−
−−
→

ρ
s

(c
ho

ic
e 1

)
g 2

ϑ
(α

)
−−
−−
→
ρ

s

g 1
+

g 2
+

1ϑ
(α

)
−−
−−
−−
→

ρ
s

(o
pe

n)
s

ϑ
(α

)
−−
−−
→
ρ

s′
u
∈

d(
α

)

[u
]s

ϑ
(o
p

(α
,u

))
−−
−−
−−
−−
→

ρ
s′

(c
om

)
s 1

ϑ
1(

p?
ã)

−−
−−
−−
→

ρ
1

s 1
′

s 2
ϑ

2(
p!

h̃)
−−
−−
−−
→

ρ
2

s 2
′
M

(ã,
h̃) =

(σ
′ ,
σ
,t̃

)
¬

(s
1
|

s 2
)
↓
|σ
′
|+
|σ
|

p,
h̃

s 1
|

s 2
(ϑ

1,
ϑ

2)
(p
bσ
′
c

ã
h̃)

−−
−−
−−
−−
−−
−−
−−
→

[ρ
1,
ρ

2]
[t̃

](
s 1
′ σ
|

s 2
′)

Ta
bl

e
13

:S
em

an
tic

s
fo

rP
ol

ya
di

c
St

oc
ha

st
ic

(P
ar

t1
).

17

(p
ar

co
nf

)
s 1

ϑ
(p
bσ
c

ã
h̃)

−−
−−
−−
−−
−→

ρ
s 1
′
¬

s 2
↓

#(
ã,

h̃)
p,

h̃

s 1
|

s 2
ϑ

(p
bσ
c

ã
h̃)

−−
−−
−−
−−
−→

ρ
s 1
′
|

s 2

(p
ar

pa
ss

)
s 1

ϑ
(α

)
−−
−−
→
ρ

s 1
′

α
,

p
bσ
c

ã
h̃

α
,
†
k

s 1
|

s 2
ϑ

(α
)

−−
−−
→
ρ

s 1
′
|

s 2

(p
ar

ki
ll)

s 1
ϑ

(†
k)

−−
−−
−→
ρ

s 1
′

s 1
|

s 2
ϑ

(†
k)

−−
−−
−→
ρ

s 1
′
|
ha

lt(
s 2

)
(d

el
pa

ss
)

s
ϑ

(α
)

−−
−−
→
ρ

s′
d
<

d(
α

)
s↓

ki
ll
⇒

(α
=
†

or
α

=
†

k)

[d
]s

ϑ
(α

)
−−
−−
→
ρ

[d
]s
′

(d
el

cl
)

s
ϑ

(p
bσ

⊎ {(n
)/

x}
c

ã
h̃)

−−
−−
−−
−−
−−
−−
−−
−→

ρ
s′

[x
]s

ϑ
(p
bσ
c

ã
h̃)

−−
−−
−−
−−
−→

ρ
[n

]s
′ {

n /x
}

(d
el

su
b
)

s
ϑ

(p
bσ

⊎ {n/
x}
c

ã
h̃)

−−
−−
−−
−−
−−
−−
−−
→

ρ
s′

[x
]s

ϑ
(p
bσ
c

ã
h̃)

−−
−−
−−
−−
−→

ρ
s′
{n
/x
}

(d
el

ki
ll)

s
ϑ

(†
k)

−−
−−
−→
ρ

s′

[k
]s

ϑ
(†

)
−−
−−
→
ρ

[k
]s
′

(s
er

id
)

s{
m

1,
..
.,

m
j /n

1,
..
.,

n
j}

ϑ
(α

)
−−
−−
→
ρ

s′
S

(n
1,
..
.,

n
j)

=
s

S
(m

1,
..
.,

m
j)

ϑ
(l

de
c(
α

))
−−
−−
−−
→

ρ
s

de
c(
α
,s
′)

Ta
bl

e
14

:S
em

an
tic

s
fo

rP
ol

ya
di

c
St

oc
ha

st
ic

(P
ar

t2
).

18

References
[1] Jane Hillston. A compositional approach to performance modelling. Cambridge

University Press, New York, NY, USA, 1996. ISBN 0-521-57189-8.

[2] A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Ser-
vices. In R. De Nicola, editor, Proc. of 16th European Symposium on Programming
(ESOP’07), Lecture Notes in Computer Science. Springer.

[3] A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL. In Proc.
10th international conference on Coordination Models and Languages (COORDI-
NATION’08), Lecture Notes in Computer Science. Springer.

[4] Davide Prandi and Paola Quaglia. Stochastic COWS. In Proc. 5th International
Conference on Service Oriented Computing, ICSOC ’07, volume 4749 of LNCS,
2007.

[5] Corrado Priami. Stochastic pi-calculus. Comput. J., 38(7):578–589, 1995.

19

	COWS
	Polyadic Stochastic COWS v6

