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ABSTRACT This paper presents a hierarchical framework with novel analytical and neural physics-driven
models, to enable the online planning and tracking of minimum-time maneuvers, for a vehicle with partially-
unknown parameters. We introduce a lateral speed prediction model for high-level motion planning with
economic nonlinear model predictive control (E-NMPC). A low-level steering controller is developed with a
novel feedforward-feedback physics-driven artificial neural network (NN). A longitudinal dynamic model is
identified to tune a low-level speed-tracking controller. The high- and low-level control models are identified
with an automatic three-step scheme, combining open-loop and closed-loop maneuvers to model the maxi-
mum acceleration G-G-v performance constraint for E-NMPC, and to capture the effect of the longitudinal
acceleration on the lateral dynamics. The proposed framework is used in a simulation environment, for the
online closed-loop control of a highly detailed sedan vehicle simulator, whose parameters are partially-
unknown. Two different circuits are adopted to validate the approach, and a robustness analysis is performed
by varying the vehicle mass and the load distribution. A minimum-time optimal control problem is solved
offline and used for a comparison with the closed-loop results. A video demonstrating both the automatic
three-step identification scheme and the motion planning and control results is available at the following
link: https://www.youtube.com/watch?v=xQ_T96IjGP8.

INDEX TERMS Autonomous racing, model learning, model predictive control (MPC), motion planning,
neural networks, trajectory optimization.

I. INTRODUCTION
The development of online minimum-time motion planning
and control techniques for autonomous vehicles is a com-
plex and partly unsolved problem [1]. Simulations have been
setup [2], [3], [4], [5], [6] to validate the algorithms in con-
trolled environments, before the (often risky and expensive)
experimental testing [7], [8], [9], [10], [11], [12]. The plan-
ning and control tasks become evenmore involved whenmost
of the vehicle parameters are not known. This scenario is
quite common in real-world applications: many vehicle para-
meters (e.g. vehicle mass, tire and suspension characteristics,
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center ofmass position)may vary in operation and throughout
the lifespan of a vehicle, and their measurement (offline
or online) is often unaffordable. Identifying the numerous
parameters that define the tires, suspensions, powertrain,
braking, steering, and aerodynamics can be costly and time-
consuming, as is evident from the extensive research on
tire characterization by Pacejka [13]. Our approach is to
identify and learn analytical and neural physics-based mod-
els, to be applied for online minimum-time motion planning
and control. We apply our framework to drive a vehi-
cle simulator (VS), whose parameters are almost entirely
unknown in advance. In comparison with deep neural net-
work approaches, the physical structure of the proposed mod-
els to be identified increases the overall interpretability and
generalization capability of the framework, it enables the use
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of fewer learnable parameters and decreases the size of the
training sets.

A literature review is offered in the following subsection,
after which the main contribution of this paper is presented.

A. RELATED WORK
Among the motion planning techniques for autonomous vehi-
cles proposed in the literature [1], [14], optimal control (OC)-
based approaches have emerged as one of the most suitable
for the class of minimum-time planning problems. Nonlinear
model predictive control (NMPC) [15] is a popular imple-
mentation of optimal control, that uses a receding-horizon
approach. Two main variants of NMPC can be distinguished:
tracking NMPC and economic NMPC (E-NMPC) [16]. The
former aims at steering the plant1 towards a target setpoint
or trajectory, while the latter optimizes directly an economic
performance indicator, without relying on a reference tra-
jectory to be tracked. Minimum-time NMPC for trajectory
optimization can be seen as a form of E-NMPC, in which the
economic cost is the travel time.

To implement online minimum-time E-NMPC or tracking
NMPC, it is often necessary to trade off the accuracy and
nonlinearity of the vehicle model.

In the context of online minimum-time vehicle motion
planning and/or tracking, many authors used tracking NMPC,
and few adopted E-NMPC. High-level tracking NMPC was
used for example in [5], [9], and [12], to track online a
pre-computed race-line. E-NMPC planners were employed
in [2], [6], [7], and [17], yet with very simplified vehicle
models. Low-level controllers were developed to track the
high-level state trajectories, e.g. using NMPC with more
complex vehicle models [5], [9], [18], neural networks [2],
[19], proportional-integral-derivative (PID) controllers [20]
or other methods.

A point-mass model was adopted in [5] to compute a
terminal velocity constraint for a low-level NMPC controller,
to track a pre-computed minimum curvature path. A single-
track vehicle model was used in [9] to compute offline a
minimum time trajectory, which they tracked online with a
Formula SAE car. Using simple kinematic models for the
yaw rate dynamics, point-mass models were constrained with
G-G-v diagrams2 in [6], [8], [21], [22], and [23]. A Tube-
MPC formulation was adopted in [8] and [24] for motion
planning, with a simple linear point-mass model, and applied
in the Indy Autonomous Challenge. The longitudinal load
transfer was modeled in [23] to improve a G-G diagram.3

The impact of model fidelity for minimum-time trajectory
optimization was analyzed in [25].

1The term plant is used with its meaning in control theory (i.e., the
combination of actuators and process).

2The G-G-v diagram is a 3D graphical representation of the performance
envelope of a vehicle, where the x, y, and z axes correspond to the maximum
vehicle’s longitudinal acceleration, lateral acceleration, and longitudinal
velocity.

3The G-G diagram is a 2D graphical representation of the performance
envelope of a vehicle, where the x and y axes correspond to the maximum
vehicle’s longitudinal and lateral accelerations.

Some researchers used machine learning tools to aug-
ment NMPC tracking controllers. The authors in [11] and
[26] proposed an online improvement of a nominal vehi-
cle model for NMPC using Gaussian processes. The cost
function and convex safe sets for a model predictive control
(MPC) problem were iteratively learned in [10], to minimize
the travel time. In [4] and [27], neural prediction models of
the vehicle lateral dynamics were used for NMPC tracking
problems.

While the works cited above used a direct OC approach for
both tracking and economic NMPC, our previous studies [2],
[7] employed an indirect OC technique for online minimum-
time E-NMPC. Interested readers can find a comparison of
direct and indirect methods for (offline) minimum-time OC
in [28]. In [7], we used a simplified vehicle model to control
a 1:8 remote control (RC) car near the handling limits, along
a circuit, modeling the nonlinear handling diagram and a G-
G-v constraint. Recently, in [2] we presented a hierarchical
framework for online minimum-time motion planning and
control of a black-box vehicle model. An offline learning
phase enabled the identification of the high- and low-level
models. However, the lateral speed was not modeled in
the high-level E-NMPC, which may decrease the feasibil-
ity of the planned trajectory and lead to trajectory tracking
errors [25].

Some authors recently used robust control approaches to
deal with model uncertainties, for motion planning [8], [24],
trajectory tracking [29] and low-level stabilization [30].

Other authors used artificial neural networks, hereafter
named simply neural networks (NNs), as low-level con-
trollers of the longitudinal or lateral vehicle dynamics.
A survey of deep learning control methods for autonomous
vehicles can be found in [1] and [31]. A comparison of a basic
feedforward and a convolutional NN was presented in [32],
to compute the steering angle and the driving torques for path
tracking at constant speed. A stochastic policy was learned
in [33] to imitate the human behavior near the handling limits.
In [2], we used a recurrent NN as a steering controller for a
black-box vehicle model, to track minimum-time maneuvers.
A two-layer feedforward NN was adopted in [34] for path
tracking, in combination with a feedback controller.

Recently, some authors started developing neural net-
works with a structure inspired by the physical laws. In [19]
and [35], neural models were devised with an architec-
ture based on the vehicle dynamic laws, respectively in
pure longitudinal and lateral conditions. In comparison
with general-purpose NNs, the networks with a physics-
based structure resulted in a better interpretability and
improved performance, for the same amount of learnable
parameters.

To the best of the authors’ knowledge, the cited litera-
ture papers have limitations in at least one of the following
aspects:

1) NNs with a physics-driven structure have never been
developed to control the combined longitudinal-lateral
vehicle dynamics, near the handling limits.
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2) Many papers on time-optimal motion planning and
control assume prior knowledge or identification of
vehicle and tire parameters.

3) The authors performing online minimum-time tra-
jectory optimization with E-NMPC on medium-long
planning horizons, like [2], [6], and [7], used very sim-
ple vehicle models, that poorly predict the transient tra-
jectory curvature of a more complex vehicle simulator
or real car.

B. PAPER CONTRIBUTION AND STRUCTURE
In this paper, we present an artificial agent to automatically
identify the dynamics, plan and execute online time-optimal
maneuvers with a partially-unknown vehicle simulator, using
white-box physics-driven controllers arranged in a hierarchi-
cal structure.

The contributions of this paper are threefold:

1) We present a kineto-dynamical vehicle model for high-
level time-optimal motion planning with E-NMPC.
Such a model extends the one described in [2]: we add
a novel lateral speed prediction model, and a general-
ized formulation of the maximum performance G-G-v
diagram.

2) A low-level neural feedforward steering controller is
devised with an original physically explainable struc-
ture, inspired by the nonlinear laws of vehicle dynam-
ics. In comparison with a general-purpose recurrent
NN, the physical structure of our network enables the
use of fewer learnable parameters, and it provides an
increased generalization capability. Our feedforward
neural network is complemented with a feedback steer-
ing controller, to further improve the modeling of the
steering dynamics, while compensating for model and
environment uncertainties.

3) A three-step automatic identification and learning pro-
cedure is developed, combining open- and closed-loop
maneuvers to (a) identify/learn the high- and low-level
control models, (b) parameterize the optimal G-G-v
constraint for the E-NMPC formulation, and (c) capture
the complex dependency of the lateral dynamics on the
longitudinal acceleration.

The physics-driven architecture of the high- and low-level
models results in an interpretable white-box planning and
control framework. In comparison with deep learning, the
proposed approach is less prone to overfitting, providing
accurate control actions even when tested on racetracks never
seen during training. Moreover, our artificial agent shows
a good robustness to changes in the vehicle mass and load
distribution. The physics-driven approach results in models
and controllers with a low computational complexity, which
makes it possible to run the agent on standard embedded
computers, without the support of a GPU.

The proposed three-step automatic identification scheme
is inspired by the way in which human race drivers progres-
sively learn the vehicle dynamic limits, and how to reach

them. After a first round of predefined open-loop maneuvers,
two sessions of laps are performed on a given circuit (closed-
loop maneuvers), to incrementally improve the ability of the
artificial agent to drive a vehicle faster and faster. In a similar
way, human professional drivers usually perform rounds of
laps, in which they progressively improve their knowledge
about a car, until they can drive it near its limits. Note that
we use the generic term identification, even if our approach
includes a mix of parameter identification, neural network
training and iterative learning.

This paper is organized as follows. Section II presents
the characteristics of the vehicle simulator to be controlled.
Section III outlines the planning and control framework,
from the high-level E-NMPC formulation (III-A) to the low-
level steering and longitudinal controllers (III-B and III-D).
Section IV describes the methods devised to identify and
learn the high- and low-level control models. Section V
compares the novel physics-driven neural steering controllers
with traditional recurrent neural networks. Section VI ana-
lyzes the main results, while Section VII is dedicated to our
conclusions and directions of future work.

II. VEHICLE SIMULATOR TO BE CONTROLLED
A. STRUCTURE OF THE VEHICLE SIMULATOR
In this section, we provide some insights into the vehicle sim-
ulator, whose dynamics need to be identified and controlled
with minimum-time maneuvers.

The behavior of a vehicle near its handling limits is affected
by factors that can be neglected in normal driving conditions.
For example, tires work in the nonlinear region of the force-
slip characteristics, the chassis motion (roll, pitch, heave)
influences the vehicle dynamics and the aerodynamic effects,
and the suspensions compliance has a non negligible effect.
The model simulating the vehicle physics for minimum-time
applications must be able to accurately describe the vehicle
behavior close to the limits.

We implemented a vehicle simulator (VS) with a high-
fidelity 14-degree-of-freedom multibody structure. The tire
forces and moments are expressed with a Magic Formula
6.2 formulation [13]; the VS can be driven on three-
dimensional roads [36]; and sophisticated powertrain and
steering models are used. The VS model equations are
symbolically manipulated to obtain an efficient formulation,
enabling real-time hardware-in-the-loop (HIL) and driver-in-
the-loop (DIL) simulations.

The VS is integrated into the driving simulation framework
developed by AnteMotion Srl4 (Fig. 1). The reader is referred
to [37, Sections V-VI] for further implementation details
about the VS.

We model a front-wheel-drive (FWD) sedan car, with a
single electric motor and an open mechanical differential.
Kinematic and compliance maps model the vehicle suspen-
sions. Table 1 shows the main parameters of the VS.

4AnteMotion Srl website: https://antemotion.com.
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FIGURE 1. Vehicle driving simulator in the Autonomous Driving
Laboratory of the University of Trento (Italy). The simulator implements
the presented VS model in a real-time hardware.

TABLE 1. Main parameters of the vehicle simulator.

The presented control framework drives the VS with the
following inputs: a signal p ∈ [−1, 1] for the pedals position
(throttle for p > 0, brake for p < 0), and the steering wheel
angle δD.
For the purposes of this work, the internal structure of the

vehicle simulator is considered to be partially unknown. The
adverb partially stems from the assumption that only few
vehicle parameters are available, namely the outer shape of
the car and the set A = {m, hG, Iw,L1,L2} (see Table 1).
However, we wish to underline that these known quantities
are solely used to ease the tuning of a speed-tracking PID
controller (Section III-D), by means of an identified model-
based design. If the parameters in A were not known, the
speed-tracking controller could still be tuned with a model-
free approach (e.g. iterative learning [38] or reinforcement
learning [39]), or using the simplified longitudinal model that
we proposed in [2]. Moreover, we will show that our control
framework is robust to variations of the parameters in A.

B. VEHICLE BEHAVIOR NEAR THE LIMITS
The vehicle simulator does not have an anti-lock braking
system (ABS), nor a traction control (TC). This section moti-
vates the difficulty of driving a vehicle without such control
systems. We intentionally disable the ABS and the TC, since

FIGURE 2. Combined steering-braking maneuver, performed at an initial
speed vx = 95 km/h and with a steering wheel angle δD = 65◦. The
longitudinal slip for the inner front tire κ12 approaches -1 (wheel lock)
when the vehicle brakes and steers simultaneously. A sharp decrease of
yaw rate � happens during wheel lock, which corresponds to a strong
reduction of the steering capabilities of the vehicle.

our aim is to develop an autonomous driver able to avoid the
wheel lock and wheel spin conditions, which would harm the
lateral controllability of the vehicle, and therefore result in
a deterioration of performance. As depicted in Fig. 2, some
wheels may lock during combined steering-braking maneu-
vers. Fig. 2 shows that the yaw rate (�) dynamics changes
considerably when the longitudinal slip κ12 of the inner
front tire approaches -1 (wheel lock). The kinematic yaw
rate �kin = δavx/L, frequently used by kinematic motion
planners, is also shown for a comparison, with {δa, vx ,L}
being the steering angle at the front wheels, the forward speed
and the wheelbase. The actual yaw rate � is a lot smaller
than �kin, indicating that the vehicle cannot even negotiate
a corner during wheel lock, and that the longitudinal accel-
eration ax drastically changes the steering characteristics.
Similarly, the driving wheels may spin if the vehicle steers
and accelerates, due to the absence of a TC.

The previous example shows a pitfall of purely kinematic
motion planners, which may yield infeasible reference trajec-
tories for the low-level tracking controllers.

We devise an automatic identification scheme
(Section IV) to ensure certain vehicle controllability require-
ments and avoid the wheel lock and spin conditions.
We remark that maneuvers with excessive wheel longitudinal
slip are usually not time-optimal, due to the reduction of
lateral controllability of the vehicle.

III. CONTROL FRAMEWORK
Fig. 3 depicts the overall hierarchical motion planning
and control framework, whose pseudo-code is given in
Algorithm 1. Let us denote with x̂k the vector of states of the
vehicle simulator at the time step k . Using the current state x̂k
and the road geometry, the high-level E-NMPC motion plan-
ner performs the receding-horizon trajectory optimization
every f −1MP = 80 ms (line 6 in Algorithm 1). The longitudinal

VOLUME 11, 2023 46347



M. Piccinini et al.: Physics-Driven Artificial Agent

FIGURE 3. Hierarchical framework for motion planning and control.

Algorithm 1Motion Planning and Control Framework
1: Input: x̂0, road_geom
2: tstep ← 1/fVS
3: k ← 0
4: for t = 0 : tstep : tend do
5: if (1/t) mod fMP = 0 then
6: [ay, vx , ax , �]k,...,k+q ← E-NMPC(x̂k , road_geom)
7: end if
8: if (1/t) mod fLC = 0 then
9: pk ← PID-AW(vxk , v̂xk )

10: end if
11: if (1/t) mod fSC = 0 then
12: δffk ← NN([ay, vx , ax ]k,...,k+q)
13: δfbk ← PI(�k , �̂k )
14: δDk ← δffk + δfbk
15: end if
16: if (1/t) mod fVS = 0 then
17: x̂k+1 ← Vehicle_Simulator(pk , δDk )
18: end if
19: k ← k + 1
20: end for

controller computes the requested (throttle/brake) pedal pk
every f −1LC = 1 ms, using the target E-NMPC speed vxk and
the real vehicle speed v̂xk (line 9). The feedforward neural
steering controller calculates the steering angle δffk every
f −1SC = 1 ms, using windows of future E-NMPC predictions
of lateral acceleration ay, longitudinal speed vx and longitu-
dinal acceleration ax (line 12). The target yaw rate �k and
the actual value �̂k are the inputs of the feedback steering
controller, computing δfbk (line 13). The requested steering
wheel angle δDk = δffk + δfbk (line 14) is fed to the vehicle
simulator. The vehicle simulator runs every f −1VS = 1 ms,
taking as input the requested pedal pk and steering wheel
angle δDk , and returning the vector of states x̂k+1 at the next
time step (line 17).

A. HIGH-LEVEL MOTION PLANNER (E-NMPC)
1) DYNAMIC MODEL FOR E-NMPC
We extend the kineto-dynamical vehicle model presented
in [2] for minimum-time E-NMPC, introducing the lateral

velocity (vy) dynamics:
v̇x(t) = ax(t) (1a)

τax ȧx(t)+ ax(t) = ax0(t) (1b)

τ�(vx(t))�̇(t)+�(t) = �0s (t) ·�maxs (vx(t)) (1c)

τvy (vx(t))v̇y(t)+ vy(t) = Fvy (ay(t), vx(t), ax(t)) (1d)

The longitudinal acceleration ax is given by the time
derivative of the forward speed vx (1a). ax has a first order
dynamic evolution (1b) with respect to the longitudinal con-
trol ax0, and τax is the corresponding time constant.
�0s ∈ [−1, 1] is a scaled yaw rate control, and the weight-

ing function �maxs (vx(t)) is computed as:
vxPW (vx) = pPart(vx − vxth )+ vxth (2a)

�maxs (vx(t)) =
ayM (vx(t))
vxPW (vx(t))

(2b)

where ayM (vx) is a polynomial function of vx , providing the
maximum lateral acceleration (Section III-A2). vxPW (vx) is a
smooth piecewise linear function, yielding vx for vx ≥ vxth ,
and vxth for vx < vxth (thus avoiding a division by zero in (2b)
if vx = 0). pPart(·) in (2a) is a smooth function computing
the positive part of its argument, defined in Appendix B. The
first order model (1c) regulates the yaw rate� dynamics, with
the time constant τ�(vx) being a polynomial function of vx
(Section IV-A3.a).

a: NOVEL LATERAL SPEED PREDICTION MODEL
The major novelty in (1a) with respect to [2] is the prediction
model (1d) for the lateral speed vy. An accurate model for
vy is beneficial to correctly predict the transient trajectory
curvature ρ = (β̇ + �)/vG, with β = atan(vy/vx) being the

chassis side slip angle and vG =
√
v2x + v2y .

To design (1d), we first consider the pure lateral dynamics,
while the effect of ax is modeled in a second stage.
When ax ≈ 0 and in almost steady-state conditions, the

behavior of vy can be expressed as a function of the lateral
acceleration ay = �vx and vx . Using the vehicle simulator
(Section II), a sequence of low-frequency sine steering tests
is performed at different values of speed, reaching the largest
feasible lateral accelerations (more details about such maneu-
vers are given in Section IV-A3). The resulting quantities
{ay, vx , vy} are plotted in Fig. 4(a), to show what we call
nonlinear lateral velocity diagram (LVD). The LVDdescribes
the almost steady-state behavior of vy, as a function of ay and
vx . We design an approximation model vy = Hvy (ay, vx) for
the LVD using polynomials:

fayi (vx) =
∑4

j=0 fvxji v
j
x , i ∈ {1, 3, 5} (3a)

vy = Hvy (ay, vx) = fay1 (vx) · ay + fay3 (vx) · a
3
y

+fay5 (vx) · a
5
y

(3b)

The dependency of Hvy (ay, vx) on ay is expressed as a 5th

order polynomial (3b), with only odd powers due to the dia-
gram symmetry. The functions fayi (vx) in (3b), i ∈ {1, 3, 5},
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are in turn polynomial functions of vx (3a), with fvxji being the
tunable coefficients of the polynomial, j ∈ {0, 1, . . . , 4}. The
degrees of the polynomials in Hvy (·) and fayi (·) are optimized
with experiments. The number of tunable parameters in the
Hvy (·) function is 3 · 5 = 15.

We proceed by extending the LVD to model the effect of
the longitudinal acceleration ax . Equation (3b) is augmented
with additional terms, that multiply the functions fayi (vx), i ∈
{1, 3, 5}, to consider the contribution of ax :

vy = Fvy (ay, vx , ax) = fay1 (vx) · (1+ b1ax + b2a
2
x) · ay

+ fay3 (vx) · (1+ b3ax + b4a
2
x) · a

3
y

+ fay5 (vx) · (1+ b5ax + b6a
2
x) · a

5
y

(4)

with {b1, b2, . . . , b6} being tunable parameters. Second-order
polynomials of the type 1 + biax + bi+1a2x , i ∈ {1, 3, 5},
were found to be a good compromise between accuracy and
computational complexity, to model the effect of ax .
We design the function Fvy (·) in (4) as an extension of

Hvy (·) in (3b), so that Fvy (ay, vx , ax = 0) = Hvy (ay, vx): the
new terms of Fvy (·) depending on ax do not change the shape
of the pure lateral LVD for ax = 0.
Note that the model (4) could be equivalently rewritten

with a neural network formalism, for example using the idea
of polynomial neural networks recently proposed in [40].

The total number of tunable parameters in the augmented
function Fvy (·) is 3 · (5+ 2) = 21.
The nonlinear function Fvy (ay, vx , ax) is integrated in

the E-NMPC model (1d). The function Fvy (·) captures
the quasi steady-state behavior of vy, while its transient
evolution is modeled with the first-order dynamics (1d),
with the time constant τvy (vx) being a polynomial function
of vx .

The identification of the functions {Hvy (·), τvy (·),Fvy (·)}
is explained in Sections IV-A3 and IV-C. Fig. 4(b) plots
the approximation of the lateral velocity diagram, using the
identified model (1d).

The impact of the novel lateral speed model on the
trajectory tracking performance will be discussed in
Section VI-B.
The proposed formulation (1c,1d) of the yaw rate and lat-

eral velocity dynamics is numerically efficient for E-NMPC,
and it differs from the classical single-track model [41]: it
accurately captures the nonlinear transient dynamics without
requiring complex (and expensive to measure) tire and sus-
pension parameters, and at the same time without resorting to
generic deep neural networks. Conversely, the authors using
single-track models for MPC, like [9], need to simplify the
lateral tire forces and slip formulation to preserve the real-
time feasibility, while requiring the previous knowledge or
measurement of the tire parameters. Other authors, like [5],
[6], and [23] adopted point-mass models for online MPC,
but they did not model the yaw rate and the lateral speed
dynamics.

Our model is kineto-dynamical, in the sense that it
combines the kinematic equation (1a) with the equa-
tions (1c,1d), which implicitly model vehicle dynamic
characteristics. Specifically, the shape of the lateral veloc-
ity diagram, modeled by Fvy (·) in (1d), depends on the
dynamics of a certain vehicle. Similarly, the functions
τ�(·) and τvy (·) in (1c,1d) capture the transient evolu-
tion of � and vy, which in turn depends on the vehicle
dynamics.

b: CURVILINEAR COORDINATES
The curvilinear coordinates {ζ, n, ξ} describe the vehicle pose
with respect to the road center-line [42], [43]:

ζ̇ (t) = vζ (t) =
vx(t) cos(ξ (t))− vy(t) sin(ξ (t))

1− n(t)κr (ζ (t))
(5a)

ṅ(t) = vx(t) sin(ξ (t))+ vy(t) cos(ξ (t)) (5b)

ξ̇ (t) = �(t)+

− κr (ζ (t))
(vx(t) cos(ξ (t))− vy(t) sin(ξ (t))

1− n(t)κr (ζ (t))

) (5c)

As depicted in Fig. 5, ζ is the curvilinear abscissa of the
road middle-line, n is the lateral displacement of the vehicle
center with respect to the middle-line, and the relative yaw
angle is ξ = ψ − θ , with ψ being the vehicle yaw angle and
θ being the path heading angle. In (5a), κr (ζ ) is the local path
curvature.

2) E-NMPC PROBLEM
The E-NMPC is formulated as a minimum-time optimal con-
trol problem:

min u ∈ U
( Nx∑
j=1

I j
(
xj(ζi)− x0j

)2
+ Fj

(
xj(ζf )− xfj

)2)
+

∫ ζf

ζi

wT
vζ (ζ )

dζ (6a)

s.t


dx(ζ )
dζ
=
f (x(ζ ),u(ζ ))

vζ (ζ )
(6b)

b(x(ζi),u(ζi)) = 0 (6c)

c(x(ζ ),u(ζ )) ≥ 0 (6d)

Since the final travel time T is unknown, the independent
variable of the problem is chosen to be the path curvilinear
abscissa ζ , rather than time t . ζ ranges in the fixed and known
interval [ζi, ζf ] [43].

The integral term in (6a) is used to minimize the
travel time, with the weight wT . The dynamical con-
straint f in (6a) consists of the vehicle model equations
(1a) and (5a). The model has Nx = 6 states, collected
in x = {vx , ax , �, vy, n, ξ}, while the controls u are
{ax0, �0s}.

Soft initial conditions are set for the states {ax , n}, using
the terms in (6a) multiplying the vector of weights I . Strict
initial conditions are instead set for the states {vx , �, vy, ξ},
with the equality constraints (6a).
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FIGURE 4. (a) Lateral velocity diagram (LVD) for the vehicle simulator, and (b) approximation of the diagram using the
model (1d).

The inequality constraints in (6a) are the following:

n(ζ )−
W
2
≥ −MR(ζ ), n(ζ )+

W
2
≤ ML(ζ ) (7a)

ax0min ≤ ax0(ζ ) ≤ ax0max , −1 ≤ �0s (ζ ) ≤ 1 (7b)
pSgn

(
ax(ζ )− axof

)
· S

(
ax(ζ ), ay(ζ ), vx(ζ ), axM

)
+

− nSgn
(
ax(ζ )−axof

)
·S

(
ax(ζ ), ay(ζ ), vx(ζ ), axm

)
≤1

(7c)[absReg(ay(ζ )+ ayc )
ayb

]nb
(7d)

+

[absReg(ax(ζ )+ axc )
axb

]nb
≥ 1 (7e)[absReg(ay(ζ )− ayc )

ayb

]nb
(7f)

+

[absReg(ax(ζ )+ axc )
axb

]nb
≥ 1 (7g)

The road margins constraints are imposed in (7a), with
W being the vehicle track width, and {MR(ζ ),ML(ζ )} being
the distances from the circuit center line to the right and left
boundaries.

A G-G-v diagram is defined with (7c,7e,7g), to constrain
the accelerations {ax , ay}, as a function of vx . (7c) has
the superelliptic formulation of [2]: {pSgn(·), nSgn(·)} are
smooth functions – defined in Appendix B – enabling the
use of superellipses with different shapes, for the combined
acceleration and braking performance. The S(·) function in
(7c) represents a speed-dependent superellipse:

S(ax , ay, vx , axs ) =
(absReg(ay)

ayM (vx)

)ng
+

(absReg(ax − axof (vx))
axs (vx)

)ng
(8)

In (7c) and (8), the functions {axM (·), axm (·), ayM (·), axof (·)} –
defined as polynomials in vx – and the exponent ng are fitted
to best model the G-G-v diagram, obtained experimentally.
The smooth absolute value function absReg(·) is defined in
Appendix B. We introduce the additional superelliptic con-
straints (7e,7g) for a better modeling of the combined braking

FIGURE 5. Curvilinear coordinates {ζ, n, ξ} and velocity components
{vx , vy } in the chassis reference frame.

performance, which is conceptually similar to [23] and [44].
In (7e,7g), the only tunable parameter is the exponent
nb, while the parameters {axc , ayc , axb , ayb} are determined
with relations depending on the functions {axm (vx), ayM (vx)}
in (7c,8).

An example of G-G-v constraint defined using (7c,7e,7g)
is shown in Fig. 6. The G-G-v diagram implicitly contains the
saturation effects due to tires, suspensions, aerodynamics and
powertrain.

The automatic identification procedure of Section IV-B1
adapts the parameters of (7c,7e,7g) to the identified vehicle
performance, and it determines if the additional constraints
(7e,7g) need to be activated or not, depending on the identi-
fied characteristics of the vehicle to be controlled.
{ax0min , ax0max} in (7b) are control bounds, derived

from (7c).
The E-NMPC problems are solved online, with a long

prediction horizon of 300 m (corresponding to more than
6.8 s). A finer discretization is performed for the first 5 m
of the horizon, whose total number of mesh points is 346.

As in [2], an offline OC problem – named MLT (for
minimum lap time) – is setup with the same structure and
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FIGURE 6. Example of G-G-v constraint. The colored superellipses
(functions of vx ) are the base constraint (7c), while the two dash-dotted
black curves are the additional constraints (7e,7g). The achievable
accelerations are in the orange shaded volume.

vehicle model developed for E-NMPC. Using the MLT solu-
tion, a terminal cost is set for E-NMPC in (6a), with the
term multiplying the vector of weights F. Such terminal cost
imposes soft final conditions for the states x, which improves
the NMPC stability [15], [16]. We underline that the use of
the terminal cost does not imply tracking the MLT solution:
in Section VI we will show that the prediction horizon is
long enough to let the E-NMPC replan different time-optimal
trajectories, to comply with the current initial conditions of
the vehicle. Exploiting the MLT to formulate a terminal cost
is only a means to help stabilizing the NMPC solutions, and
it is a widely used technique (in the form of soft equal-
ity or inequality constraints) in the literature of MPC and
autonomous racing [2], [5], [9], [23].

3) E-NMPC SOLVER
The solver Pins [45], [46], [47] is adopted to solve the online
E-NMPC and offline MLT problems. Pins uses the Pontrya-
gin minimum principle to derive a two-point boundary value
problem (TP-BVP) and implement the indirect OC approach.
The inequality constraints are handled with penalty and bar-
rier functions, which are included in the cost functional of the
OC problem. The solution of the TP-BVP yields the optimal
states and co-states, while the optimal controls are obtained
with a minimization problem.

For a given OC problem, Pins derives symbolically the
necessary equations, and it automatically generates a C++
code, which is then used to compute a numerical solution.

We used Pins for online minimum-time E-NMPC
in [2] and [7].

B. LOW-LEVEL FEEDFORWARD STEERING
CONTROLLER (NN)
In this section, we illustrate an original physics-driven neural
network controller (NNc) of the steering wheel angle. Such a
neural network is physics-driven, meaning that its structure is
designed by exploiting the nonlinear laws of vehicle dynam-
ics. We will show that the physically explainable formulation

FIGURE 7. Schematic of the inputs and output of the neural steering
controller. Inputs: future predicted values of lateral acceleration ay,
longitudinal speed vx, longitudinal acceleration ax, and past steering
angles {δffk−r

, . . . , δffk−1
}. Output: feedforward steering angle δffk

.

allows the use of fewer trainable parameters, and it improves
the accuracy and generalization potential. We get inspiration
from the inverse neural models in [19], but the network struc-
ture is here specialized to model the coupled longitudinal-
lateral nonlinear dynamics.

Fig. 7 provides a conceptual input/output schematic of the
neural controller: NNc calculates the steering wheel angle δffk
for the current time step k , combining as input a window of
steering angles that it computed in the past {δffk−r , . . . , δffk−1},
and windows of future E-NMPC predictions for the lateral
and longitudinal accelerations {ay, ax} and the longitudinal
speed vx .
The neural controller NNc is a discrete-time system –

whose sampling time is named TsNN – and it learns an inverse
dynamic model of the type:

δffk = FN (ayk , vxk , axk )+
[
δffk−r , . . . , δffk−1

] A1
...

Ar


(9)

The neural functional FN is devised to learn the nonlin-
ear vehicle dynamics, as will be described in the following
subsections. The vectors ayk , vxk and axk contain the present
and future E-NMPC predictions, with the subscript k ∈ N
being the current time step, and xk = x(kTsNN) indicating the
quantity x at time t = kTsNN :

ayk =
[
ayk , . . . , ayk+q

]
(10a)

vxk =
[
vxk , . . . , vxk+q

]
(10b)

axk =
[
axk , . . . , axk+q

]
(10c)

In the training phase, the availability of the future behavior
is exploited in FN to learn part of the dynamic response of
the system, and the delays between the steering angle and
the lateral vehicle motion. The structure of FN is inspired
by the theory of neuro-fuzzy local models [48], [49], and we
design the local models by leveraging the prior knowledge
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of the vehicle dynamic laws. We used a conceptually simi-
lar approach in [19], [50], and [51]. The learnable weights
{A1, . . . ,Ar } in (9) are used to implement an auto-regressive
linear layer, which models the effect of the past steering
values {δffk−r , . . . , δffk−1} on the currently computed δffk .
NNc is designed in two incremental variants. The first

variant, named NNcbase, models only the pure lateral non-
linear dynamics. The second variant, called NNcext, extends
NNcbase by learning the effect of the longitudinal acceleration
ax on the lateral dynamics. The two networks are trained
sequentially, as described in Sections IV-A4 and IV-C1.

1) PURE LATERAL DYNAMICS
This section illustrates the neural controller NNcbase of the
pure lateral nonlinear dynamics.

The overall structure of NNcbase is depicted in Fig. 8(a),
and can be written as:

δffk = fst

( nv∑
j=1

(
Ḡ(ayk , vxk )⊙ φ̄j(vxk )

)  Fj1
...

Fjq+1

)

+
[
δffk−r , . . . , δffk−1

] A1
...

Ar

 (11)

where⊙ denotes the element-wise product between two vec-
tors. The output of NNcbase is the steering wheel angle δffk ,
while the inputs are the vectors {ayk , vxk}, given in (10a,10b)
and containing the future predictions for {ay, vx}, and a win-
dow of past steering angles {δffk−r , . . . , δffk−1} computed by
NNcbase.

We now provide a brief overview of the functional blocks
in (11) and Fig. 8(a), which will then be described in detail.
NNcbase learns most of the steady-state behavior by

processing the inputs {ayk , vxk} with the vector function
Ḡ(ayk , vxk ), which combines local approximations of the
handling diagram. Ḡ(ayk , vxk ) is a vector of q + 1 steering
angle future predictions. The fully connected layers Fj in
Fig. 8(a), j ∈ {1, . . . , nv}, learn linear combinations of the
Ḡ(ayk , vxk ) vector entries, modeling the transient dynam-
ics and improving the steady-state estimates provided by
Ḡ(ayk , vxk ). To learn the change of the transient lateral
dynamics in different ranges of vx , we use a number nv of
fully connected layers Fj, j ∈ {1, . . . , nv}. The inputs of each
fully connected layer Fj are selectively activated in predefined
regions of vx , by means of the activation functions φ̄j(vxk ) in
(11). Each of the Fj layers, j ∈ {1, . . . , nv}, has a single neuron
and q+ 1 weights, which are named {Fj1 , . . . ,Fjq+1} in (11).
The function fst in (11) is a static steering map, identified in a
preliminary phase, relating the steering wheel angle with the
average angle at the front wheels. The weights {A1, . . . ,Ar }

of the auto-regressive layer A finally contribute to model
part of the transient and steady-state behavior, by learning
a linear combination of the previously computed steering
angles {δffk−r , . . . , δffk−1}.

The details of the NNcbase formulation (11) are now illus-
trated. Let us first present how NNcbase learns most of the
steady-state lateral behavior, while the transient dynamics is
introduced later.

We start by recalling the handling diagram (HD) [2], [52],
which is a description of the steady-state nonlinear
under/oversteering characteristic of the vehicle:

δ − ρL = δ −
ay
v2x
L = Kus(ay, vx) (12)

The HD measures the mismatch between the real steering
angle δ (average angle at the front wheels) and the kinematic
steering angle ρL, with ρ = ay/v2x and L being respec-
tively the trajectory curvature and the vehicle wheelbase.
Kus(·) is a (nonlinear) understeering gradient function, pro-
viding the shape of the HD. Fig. 9 shows the HD for the
vehicle simulator of this paper, obtained with a sequence
of low-frequency sine steering tests, at different values of
speed (such maneuvers are described with more detail in
Section IV-A3).
The Kus(·) function in (12) describes the shape of the HD,

and it depends, in general, on ay and vx [2]. Neglecting for
the moment the dependency on vx , the function Kus(·) can be
locally linearized around a value of |ay| = ay0i , so that the
steering angle δ is locally given by:

δ = ḡi(ay, vx) =
ay
v2x
L + k1isign(ay)

+ k2i
(
ay − ay0i sign(ay)

)
(13)

To approximate the nonlinear HD, a number ny of local
models ḡi(·) can be created, with the structure of (13). The
centers ay0i of the local models, i ∈ {1, 2, . . . , ny}, are
computed to equally partition the range of |ay| values in the
training set. The learnable parameters {k1i , k2i} define the
local linearization. The sign(·) functions in (13) are intro-
duced to model a symmetric steering behavior,5 for positive
and negative ay.
The output of each ḡi(·) local model is multiplied by an

activation function φ̄i(|ay|), which activates ḡi(·) in the vicin-
ity of its linearization point ay0i .

As shown in Fig. 10(a), the functions φ̄i(|ay|) are piecewise
linear in |ay|, they are equal to 1 only for |ay| = ay0i , and
they partition the unity, i.e.,

∑ny
i=1 φ̄i(|ay|) = 1. As described

in Section IV-A4, we use ny = 6 local models, to learn the
lateral inverse dynamics in different regions of |ay|.
The outputs of all the products ḡi(ay, vx) · φ̄i(|ay|), i ∈
{1, . . . , ny}, are finally summed, to obtain an approximation
of the handling diagram over the entire range of ay:

δ = Ḡ(ay, vx) =
ny∑
i=1

ḡi(ay, vx)φ̄i(|ay|) (14)

5If the vehicle behaved differently for ay > 0 and ay < 0, the sign(·)
functions could be removed, and extra local models could be defined for
ay < 0.
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FIGURE 8. Neural controller of the steering wheel angle: (a) basic implementation to model the pure lateral inverse dynamics (NNcbase); (b) extended
version to consider the coupling of the longitudinal-lateral dynamics (NNcext); (c) expanded view of the Ḡ(ayk , vxk ) threading layer of NNcbase;
(d) expanded view of the G(ayk , vxk , axk ) threading layer of NNcext. The parameters and numbers in green indicate the size of the propagated signals.

FIGURE 9. (a) Nonlinear handling diagram for the vehicle simulator, and (b) local model approximation of the diagram
using (14).

The resulting HD approximation (14) is plotted in
Fig. 9(b). Note that other local models can be created in
different ranges of vx , to approximate even better the shape
of the HD. However, such additional local models were not
found to improve significantly the overall model accuracy,
and they are therefore not included in the formulation.

Equation (14) provides the steering angle (at the front
wheels) in almost steady-state conditions, for given values of
ay and vx .
We now discuss the integration of (14) inside the neural

controller NNcbase (11). Since NNcbase receives as input the
vectors {ayk , vxk} of future predictions, the first step is to

extend the local models ḡi(ay, vx) in (13) and the function
Ḡ(ay, vx) in (14) with their corresponding vector versions
ḡi(ayk , vxk ) and Ḡ(ayk , vxk ):

ḡi(ayk , vxk ) =ayk ⊙ (vxk )
⊙−2L + k1isign(ayk )

+ k2i
(
ayk − ay0i sign(ayk )

) (15a)

Ḡ(ayk , vxk ) =
ny∑
i=1

(
ḡi(ayk , vxk )⊙ φ̄i(|ayk |)

)
(15b)

Note that, being a and b two generic vectors, we use the
notation a⊙b to indicate an element-wise product between a
and b, while a⊙x raises each element of a to the power x.
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FIGURE 10. Shape of the activation functions: (a) φ̄i (|ay |), i ∈ {1, . . . , ny },
(b) φ̄j (vx ), j ∈ {1, . . . , nv }, and c) φ̄l (ax ), l ∈ {1, . . . , nx }.

The term ayk ⊙ (vxk )⊙−2 in (15a) is therefore the vector
representation of ay

v2x
in (12).

The activation functions φ̄i(|ayk |) in (15b) are the vector
versions of the scalar φ̄i(|ay|) in (14). The input of φ̄i(·) is the
vector |ayk | =

[
|ayk |, . . . , |ayk+q |

]
of E-NMPC predictions

for the lateral acceleration:

φ̄i(|ayk |) =
[
φ̄i(|ayk |), . . . , φ̄i(|ayk+q |)

]
(16)

with i ∈ {1, 2, . . . , ny}. The same scalar function φ̄i(·) is used
for each element of the φ̄i(·) vector in (16).
An element-wise product is performed in (15b) between

the output vector of each local model ḡi(·) and the corre-
sponding activation vector function φ̄i(|ayk |), which activates
the entries of ḡi(·) in the neighborhood of the linearization
point ay0i . The resulting vector function Ḡ(·) in (15b) is the
sum of all the locally-activated models. Ḡ(·) is used as a
threading layer in the neural network NNcbase of Fig. 8(a),
and an expanded view of Ḡ(·) is depicted in Fig. 8(c).

Since Ḡ(·) is simply the vector version of Ḡ(·) in (14), the
output of Ḡ(ayk , vxk ) is a vector of steering angle predictions
in almost steady-state conditions, for the given vectors ayk
and vxk .

The entries of the vectors ayk and vxk in (10a,10b) range
from the k−th present time step to the (k + q)−th future
step. As a consequence, the vector Ḡ(ayk , vxk ) has in turn
q + 1 elements, pertaining to the present and future pre-
dictions. The fully connected layers Fj in Fig. 8(a), with
j ∈ {1, . . . , nv}, are used to learn linear combinations of the
q+1 predictions computed by Ḡ(·), thus modeling part of the
transient lateral dynamics.6 To consider the dependency of
the lateral dynamics on the forward speed vx , we use a number
nv of fully connected layers {F1, . . . ,Fnv}, which learn the
transient dynamics in predefined ranges of vx . The activation
vector functions φ̄j(vxk ) are used in (11) to create nv local
models of the transient dynamics, by selectively activating
the inputs of each fully connected layer in predefined ranges
of vx . The vector functions φ̄j(vxk ) are given in (17), and
their scalar versions φ̄j(vx), j ∈ {1, . . . , nv}, are plotted in
Fig. 10(b). As described in Section IV-A4, in this work we
use nv = 4 local models to capture the lateral dynamics in
different ranges of vx .

φ̄j(vxk ) =
[
φ̄j(vxk ), . . . , φ̄j(vxk+q )

]
(17)

As shown in Fig. 8(a), the scalar outputs of all the Fj layers
are summed, j ∈ {1, . . . , nv}, yielding a first prediction of
the steering angle δk at the front wheels, for the current time
step k . Since the purpose of NNcbase is to compute a steering
angle δffk to be applied at the steering wheel, the static map
fst(·) between δk and δffk – identified with preliminary static
tests7 – is applied to δk .
An auto-regressive linear layer, named A in Fig. 8(a),

learns the effect of the past steering values {δffk−r , . . . , δffk−1}
on the currently computed δffk , thus contributing to model
the steering dynamics. The block z−1 is used in Fig. 8(a) to
indicate that a one-step delayed version of the network output
is recursively fed back to the input. The weights of the auto-
regressive A layer are called {A1, . . . ,Ar } in (11). The output
of the auto-regressive branch is named δarxk , and it is summed
to the estimate fst(δk ) produced by the combination of the
local models. The overall output of the NNcbase neural model
is therefore δffk = fst(δk )+ δarxk .

We provide more details about the training of the network
NNcbase in Section IV-A4.

2) COMBINED LONGITUDINAL-LATERAL DYNAMICS
In this section, we extend the NNcbase neural controller to
consider the effect of the longitudinal acceleration ax on the
inverse lateral dynamics. The extended model, named NNcext

6In a preliminary design phase, we even tried to incorporate some past
history of the quantities ay and vx in the vectors ayk and vxk . However, the
network accuracy improvement derived from the past history resulted to be
negligible, which is why ayk and vxk contain only the present and future
predictions.

7Naming {δ11, δ12} the steering angles at the front right and front left
wheels, δ can be approximated with the average angle (δ11 + δ12)/2 at
the front wheels. δ11 and δ12 are assumed to be measurable, but only in a
preliminary identification phase.
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and depicted in Fig. 8(b), is designed as:

δffk = fst

( nv∑
j=1

nx∑
l=1

(
G(ayk , vxk , axk )⊙ φjl(vxk , axk )

)

·

 Fjl1
...

Fjlq+1

)
+

[
δffk−r , . . . , δffk−1

] A1
...

Ar

 (18)

The differences between NNcext and NNcbase are three-
fold. First, NNcext uses the additional input vector axk , given
in (10c) and containing the future predicted values of ax .
Second, the vector function Ḡ(ayk , vxk ) of NNcbase is
extended with the new G(ayk , vxk , axk ), which has a physics-
driven formulation to model the contribution of ax . Third,
a higher number of local models and fully connected layers
is used to learn the transient dynamics, in predefined ranges
of vx and ax .

Let us start the illustration of (18) from the vector function
G(·), whose expanded structure is depicted in Fig. 8(d):

G(ayk , vxk , axk ) =
ny∑
i=1

nx∑
l=1

gil(ayk , vxk , axk )

⊙ φil(|ayk |, axk ) (19)

The function G(·) is conceived as an extension of Ḡ(·) in
(15b). The new G(·) combines the local models gil(·), each
of which is activated in the vicinity of a point {|ay|, ax} =
{ay0i , ax0l }, by means of the activation vector functions
φil(|ayk |, axk ):

φil(|ayk |, axk ) = φ̄i(|ayk |)⊙ φ̄l(axk ) (20)

with i ∈ {1, . . . , ny} and l ∈ {1, . . . , nx}. The functions
φ̄i(|ayk |), whose number is ny = 6, are the same used for
NNcbase in (15b), while we adopt nx = 4 functions φ̄l(axk ) to
subdivide the operating range of ax . The scalar versions of the
activation functions, namely φ̄i(|ay|) and φ̄l(ax), are plotted in
Fig. 10(a) and 10(c). The total number of local models inG(·)
is ny · nx .

The models gil(ayk , vxk , axk ) in (19), i ∈ {1, . . . , ny} and
l ∈ {1, . . . , nx}, are an augmented version of the ḡi(ayk , vxk )
in (15a), which were devised as local models of the handling
diagram for the pure lateral dynamics. The derivation of the
newmodels gil(·) is instead inspired by a local approximation
of a nonlinear double-track vehicle model, around a generic
quasi steady-state condition, in which {ay, ax} = {ay0i , ax0l }.
We illustrate the technical details about the gil(·) local model
derivation in Appendix A. The augmented model gil(·) con-
tains additional terms, to learn the coupled longitudinal-
lateral dynamics, and it is here written in scalar form, starting
from (48) in Appendix A:

gil(ay, vx , ax)

=
ay
v2x
L + ky1i sign(ay)+ ky2i

(
ay − ay0i sign(ay)

)
+ ky3ikx1l

×

(
ay − (ay0i + ky4i )sign(ay)

)(
kx2l + ax − ax0l

)

×

[
1+ ky5i

(
ay − ay0i sign(ay)

)
+ kx3l

× (ax − ax0l )+ kx4l (ax − ax0l )
2

+ ky6ikx5l

(
ay − ay0i sign(ay)

)
(ax − ax0l )

]
(21)

The function gil(ayk , vxk , axk ) is the vector version of (21),
here not written for brevity. Each of the gil(·) local models,
i ∈ {1, . . . , ny} and l ∈ {1, . . . , nx}, has 6 + 5 = 11 learn-
able parameters, namely the set {ky1i , . . . , ky6i , kx1l , . . . , kx5l }.
As stated in Appendix A, the subscripts y and x are used
in the parameters ky− and kx− to symbolically separate the
6 terms related to the lateral dynamics {ky1i , . . . , ky6i } from
the 5 terms of the longitudinal dynamics {kx1l , . . . , kx5l }.
Such a symbolic separation decreases the number of learnable
parameters in the G(·) function, which equals to 6ny + 5 nx
instead of (6 + 5)nynx , without a significant decrease in the
accuracy. Like in the case of the basic local model (13),
we use the sign functions in (21) to model a symmetric lateral
behavior, for positive and negative ay.
By combining the local models gil(·), the function G(·)

in (19) computes a vector of present and future steering
angle predictions. Following the idea already used for the
NNcbase network, the fully connected layers {F11, . . . ,Fnvnx }
in Fig. 8(b) are adopted to learn linear combinations of
the G(ayk , vxk , axk ) vector elements. The use of the fully
connected layers allows the network to model the transient
dynamics, and it improves the (quasi) steady-state estimates
returned by G(·). The network uses a number nv · nx of
fully connected layers {F11, . . . ,Fnvnx }, to learn the change
of the lateral dynamics in nv and nx predefined regions of
respectively vx and ax .

Like in the case of NNcbase, each fully connected layer
Fjl has one neuron and q + 1 weights, which are named
{Fjl1 , . . . ,Fjlq+1} in (18), with j ∈ {1, . . . , nv} and l ∈
{1, . . . , nx}. The inputs of the fully connected layers are
locally activated by the vector functions φjl(vxk , axk ) in (18),
which partition the domain of vx and ax :

φjl(vxk , axk ) = φ̄j(vxk )⊙ φ̄l(axk ) (22)

The shapes of the scalar activation functions φ̄j(vx) and
φ̄l(ax) are shown in Fig. 10.
Referring to Fig. 8(b), the rest of the NNcext network does

not differ from NNcbase: the outputs of the {F11, . . . ,Fnvnx }
layers are summed, yielding the steering angle estimate δk .
The static steering map fst(·) is then applied to δk , and the
result fst(δk ) is summed to the output δarxk of the auto-
regressive layer A.

More details about the training and parameterization of the
network NNcext are given in Section IV-C1.
We remark that the neural models NNcbase and NNcext

enable the incremental learning of the pure and combined
nonlinear lateral dynamics. If no data were available in the
nonlinear handling regions, the networks could still be used to
learn the linear steering behavior. Additionally, the physics-
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driven structure prevents the network from yielding fancy
outputs, in situations for which it was not trained.

C. LOW-LEVEL FEEDBACK STEERING CONTROLLER (PI)
The neural steering controller previously presented in
Section III-B operates in feedforward, i.e., it uses the
E-NMPC target trajectories to compute the control action
δffk . However, model mismatches and external disturbances
(e.g. local friction small changes) may still result in unde-
sirable trajectory tracking errors. A PI feedback steering
controller is developed to compensate the yaw rate tracking
error �ek = �k − �̂k , with {�k , �̂k} being the target and
the real yaw rate values for the time step k . As shown in
Fig. 3, the steering feedback correction δfbk is added to the δffk
computed by the feedforward controller. The overall steering
wheel angle is δDk = δffk + δfbk . Section IV-B2 discusses the
PI tuning method, by means of iterative learning.

D. LOW-LEVEL LONGITUDINAL CONTROLLER (PID-AW)
1) CONTROLLER DESIGN
This section deals with the design of the low-level longitu-
dinal speed-tracking controller, whose purpose is to compute
the throttle and brake pedal signals to track the high-level E-
NMPC speed trajectories.

The longitudinal controller is implemented with a PID
logic, which is designed with a model-based approach.
We develop a longitudinal dynamicmodel, and we identify its
parameters with a set of maneuvers. The longitudinal model
is then linearized using a list of steady-state speed values,
around which local PID controllers are designed, with target
specifications for the closed-loop system. The PID gains are
then linearly interpolated as a function of the vehicle speed
(gain scheduling). The pedal control saturation is handled
with the back-calculation anti-windup (AW) method.

2) LONGITUDINAL DYNAMIC MODEL
In this section, we outline the longitudinal dynamic model
that we use to design the speed-tracking controller. Most
of the parameters of the presented dynamic model can be
identified, as described in Section IV-A1. However, to ease
the identification process, we assume the prior knowledge of
the parameters in the set A = {m, hG, Iw,L1,L2} (Table 1).
As already discussed in Section II-A, the term partially-
unknown vehicle is used only because we assume to know the
parameter setA. The quantities inA are used only to perform
a model-based design of the speed-tracking PID controller.
However, in Section VI-C2 we will show that our framework
is robust to variations of the parameters in A.
We extend the longitudinal dynamic model of [2], includ-

ing the wheel rotational dynamics:


mv̇x = 2(Fx1 + Fx2 )− c0 − cvvx − cav

2
x (23a)

τãx
˙̃ax + ãx = v̇x (23b)

Iwi ω̇i = −Fxirwi + Twi (p, ωi), i ∈ {1, 2} (23c)

The states of the model are {vx , ãx , ω1, ω2}, while the
control is the pedal p ∈ [−1, 1] (p > 0 for throttle,
p < 0 for brake). In (23a), m is the vehicle mass, {Fx1 ,Fx2}
are the longitudinal forces for a single front and rear tire,
while {c0, cv, ca} are friction and drag parameters. Equation
(23b) provides an estimate of the longitudinal acceleration ãx ,
which is a delayed version of v̇x (with a small time constant
τãx ). As shown next, the estimate ãx is useful to compute the
vertical loads Fzi and the longitudinal load transfer in (25a).
Equation (23c) describes the wheel rotational dynamics, with
{ω1, ω2} being the angular rates of the front and rear wheels.
In this section, the subscript i ∈ {1, 2} is used to refer to
the front and rear wheels, respectively. {Iwi , rwi ,Twi (·)}, i ∈
{1, 2}, are the wheel rotational inertia, the rolling radius, and
the wheel torque functions.

A simplified Pacejka model is adopted for the tire
forces:

Fxi = Dxi sin
(
Cxatan

(
Bxiκi

))
, i ∈ {1, 2} (24)

where: 

Fzi =
1
2

(
mg

Lī
L
+ CDiv

2
x + (−1)imãx

hG
L

)
(25a)

dfzi =
Fzi
Fz0i
− 1 (25b)

Dxi = Fzi
(
pDx1 + pDx2dfzi

)
, Cx = pCx1 (25c)

Kxki = Fzi
(
pKx1 + pKx2dfzi

)
(25d)

Bxi =
Kxki
CxDxi

=
pKx1 + pKx2dfzi

pCx1
(
pDx1 + pDx2dfzi

) (25e)

κi =
ωirwi − vx
vdeni (vx , ωi)

(25f)

with i ∈ {1, 2} indicating the front and rear axles; ī = 1
if i = 2, and ī = 2 if i = 1. Fzi are the vertical tire
loads, while {g, hG,CDi ,Fz0i} are respectively the gravita-
tional acceleration, the center of mass (CoM) height from
ground, the aerodynamic downforce coefficients and the
static vertical loads. The parameters in the set tire_par =
{pDx1 , pDx2 , pCx1 , pKx1 , pKx2} are assumed to be equal for the
front and rear tires. vdeni (vx , ωi) in the expression of κi con-
tains a smooth low-speed correction.

The vehicle simulator to be controlled (Section II) is FWD.
The driving front wheel torque Twd1 is computed as a function
of the pedal p and ω1, using (26b). The dependency of the
powertrain torque curve on {p, ω1} is modeled with the poly-
nomial relations in (26a,26b) (we use polynomials of order
Pq=Pm=4). The wheel braking torques {Twb1 ,Twb2} for the
front and rear wheels are calculated with (26c), as a function
of p and {ω1, ω2}. The maximum braking torques are named
{fb1 , fb2}, while {pPart(·), nPart(·)} are smooth differentiable
functions (defined in Appendix B), extracting the positive
and negative part of their arguments. The total wheel torques
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{Tw1 ,Tw2} are given by (26d,26e).

fmi (p) =
∑Pq

q=0 fmiqp
q, i ∈ {0, 1, . . . ,Pm} (26a)

Twd1 (p, ω1) = pPart(p) ·
( ∑Pm

i=0 fmi (p) · ω
i
1

)
(26b)

Twbi (p, ωi) = −nPart(p) · fbi , i ∈ {1, 2} (26c)

Tw1 (p, ω1) = Twd1 (p, ω1)+ Twb1 (p, ω1) (26d)

Tw2 (p, ω2) = Twb2 (p, ω2) (26e)

The identification of the model parameters (see Table 2 for
the complete list) is described in Section IV-A1.

IV. AUTOMATIC IDENTIFICATION/LEARNING OF THE
MODELS FOR CONTROL
In this section, we outline the identification/learning of the
high- and low-level models presented in Section III.
A three-round automatic identification scheme is devel-

oped, as depicted in Fig. 11. We define our approach as an
asynchronous closed-loop identification, in which the accu-
racy of the control models and the estimate of the maximum
performance improve from the first to the third identification
rounds. We remark that the proposed scheme is fully auto-
matic, i.e., it does not require manual tuning.

The reader can find a video demonstration of the auto-
matic three-round identification scheme at the following link:
https://www.youtube.com/watch?v=xQ_T96IjGP8.

Note that the generic term identification is used for the
entire framework, even if our approach contains a mix of
parameter identification, neural network training and iterative
learning.

In the first round, open-loop maneuvers are devised to
identify the longitudinal and the pure lateral nonlinear
dynamics, and to build an initial estimate of the maximum
performance. In the second round, the artificial agent uses
the first-round controllers to drive the vehicle in closed-loop
along a given circuit. The results are employed to improve
the first-round estimate of the achievable performance, and
to tune the steering feedback controller. Finally, in the third
round, the artificial agent drives the vehicle with the second-
round controllers, collecting new data to learn the effect of
the longitudinal acceleration on the lateral dynamics.

Our three-round automatic identification scheme is
inspired by the way used by human professional drivers
to incrementally learn how to reach the vehicle dynamic
limits. Starting from a preliminary knowledge of the vehi-
cle dynamic behavior (corresponding to our round n◦1),
professional drivers typically perform sessions of laps to
progressively improve their ability to drive the vehicle faster
and faster (rounds n◦2 and n◦3).

A. FIRST IDENTIFICATION ROUND
The first identification round consists of the following open-
loop maneuvers:

(f1) Identification of the top speed and the steering maps.
(f2) Identification of the longitudinal model and tuning the

longitudinal controller (III-D and IV-A1).

TABLE 2. Identification of the longitudinal dynamic model.

TABLE 3. Evaluation of the high- and low-level models with test sets.

(f3) Identification of the maximum lateral performance
(IV-A2).

(f4) Estimation and fitting of the G-G-v diagram (7c), using
the pure longitudinal, lateral and combined open-loop
tests which we described in [2].

(f5) Fit the functions {τ�(vx),Hvy (ay, vx), τvy (vx)} of the
yaw rate and lateral speed prediction models for
E-NMPC (III-A1), using sine steering tests (IV-A3.a).

(f6) Train the feedforward neural steering controller
NNcbase (III-B1 and IV-A4).

1) IDENTIFICATION OF THE LONGITUDINAL DYNAMICS
In this section, we briefly describe the identification pro-
cess for the longitudinal dynamic model of Section III-D.
We remark that such a model is employed only to design the
low-level speed-tracking controller.

The parameters of the longitudinal model are identified by
minimizing the prediction error of (23a), with the maneuvers
in Table 2. Table 2 provides the values of pedal p, initial and
final speed {vx0 , vxF} for each test.

The model validation is shown in Fig. 12. Table 3 reports
the root mean squared (RMS) value for ṽx = v̂x − vx , with
{vx , v̂x} being the predicted and the real speed signals. Note
that the longitudinal dynamic model is employed only to
ease the tuning of the longitudinal controller, hence a model
mismatch may have a moderate impact on the final speed
tracking performance.

2) IDENTIFICATION OF THE MAXIMUM LATERAL
PERFORMANCE
Before proceeding with the identification of the pure and
combined lateral dynamics, it is useful to know the maximum
steering angles that can be applied to the vehicle, to maximize
the performance without exceeding the stability limits.
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FIGURE 11. Three-step identification scheme. The same colors are used as in Fig. 3, to classify the
identification steps: blue for the high-level E-NMPC, purple for the low-level steering controllers, and
orange for the low-level longitudinal controller.

FIGURE 12. Validation of the longitudinal dynamic model.

Following [2], the maximum lateral performance is iden-
tified with constant-speed ramp steer tests, by recording the
steering angle values above which no significant increase in
the lateral acceleration ay is obtained.
The ramp steer maneuvers are repeated with a list of NR

(constant) speed values, ranging up to the maximum speed
vmax. The vx-dependent steering angle limits are defined as
the ones producing lateral accelerations ay(vx) = (1 − 9) ·
ayt (vx), with ayt (vx) being the maximum achievable ay value,
for a given vx . A safety margin 9 = 0.06 is kept in order to
enable possible local violations of the learned performance
constraints (G-G-v diagram (7c)-(7g)), which may occur to
compensate a model mismatch during closed-loop control.

A dataset, hereafter named T , is created to store the NR
speed values and the corresponding steering angle limits.

3) IDENTIFICATION OF THE DYNAMIC MODEL FOR E-NMPC
This section deals with the identification of the dynamic
model for E-NMPC, presented in Section III-A1. We focus
the description on the yaw rate and lateral speed prediction
models (1c)-(1d).

a: YAW RATE PREDICTION MODEL
The identification of the yaw rate prediction model (1c) for
E-NMPC is performed following the method that we
proposed in [2].

Constant-speed sine steer tests are carried out with the
vehicle simulator, using a low steering frequency, and choos-
ing the steer amplitudes and speed values from the identified
dataset T (Section IV-A2). Such sine steer tests represent
almost steady-state conditions, and the handling diagram
(HD) resulting from the maneuvers is shown in Fig. 9. The
HD ismodeledwith the nonlinear functionKus(ay, vx) in (12),
which we here define as a (bilinear) spline that interpolates
the HD points.

In the yaw rate dynamic model (1c) for E-NMPC,
we design the function τ�(vx) as a second order polynomial8

in vx . To optimize the parameters of the function τ�(vx),
we need to execute the same sine steer tests with the vehicle
simulator and then with (1c). In the identification phase, the
latter NMPC model (1c) is reformulated as:

τ�(vx) · �̇+� = �ss (27)

In (27), �ss represents a steady-state yaw rate request. For
the sine steer maneuvers, �ss can be approximated using
the HD equation (12) and the Kus(·) spline, substituting the
steady-state relation ρ = �ss/vx :

δ −
�ss

vx
L = Kus(ay, vx) −→ �ss = vx

(
δ − Kus(ay, vx)

)
L

(28)

The function τ�(vx) is fitted by minimizing the prediction
error of (27)-(28), using the same sine steering tests described
before. We remark that (28) is used only in the identification
phase, to fit τ�(vx), but (28) is not part of the E-NMPCmodel.

The double lane changemaneuvers of Fig. 13 are employed
to validate the E-NMPC yaw rate model. Table 3 reports the
RMS value for �̃ = �̂ − �, where {�, �̂} are the predicted
and the real yaw rate signals.

8Polynomials with higher order do not improve significantly the model
accuracy.
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FIGURE 13. Validation of the yaw rate (�) and lateral speed (vy )
prediction models for E-NMPC, with double lane change maneuvers.

b: LATERAL SPEED PREDICTION MODEL
The identification of the lateral speed prediction model (1d)
for E-NMPC is performed in two steps:

1) Fitting the nonlinear map Hvy (·) in (3a), with the same
set of constant-speed sine steering tests adopted for the
yaw rate prediction model. Fig. 4 depicts the resulting
ay − vx − vy lateral velocity diagram.

2) Fitting the polynomial function τvy (vx) by minimizing
the prediction error of (1d),9 using the same maneuvers
of point 1. The model is validated using the double lane
change maneuvers of Fig. 13.

4) TRAINING THE FEEDFORWARD STEERING
CONTROLLER NNcbase
This section discusses the parameterization and the training
method for the neural steering controller NNcbase, presented
in Section III-B1.
The neural network NNcbase is a discrete-time dynamical

system, whose sampling time is TsNN = 0.05 s. The input
vectors ayk and vxk contain q + 1 = 15 samples, covering
of (q + 1)TsNN = 0.75 s of future E-NMPC predictions.
The auto-regressive branch in the network linearly combines
r = 15 past steering angle values computed by NNcbase,
thus keeping track of rTsNN = 0.75 s of past history. The
number of local models to learn the inverse lateral dynamics
in predefined ranges of |ay| and vx is respectively ny = 6 and
nv = 4. The best values for the parameters {ny, nv} are
selected with a grid-search approach, and the best model is
the one that maximizes the Akaike’s information criterion
(AIC, Section V) [48], to trade-off accuracy against number
of parameters.

The centers ay0i and vx0j of the piecewise linear activation
functions φ̄i(|ay|) and φ̄j(vx), with i ∈ {1, . . . , ny} and j ∈
{1, . . . , nv}, are chosen to evenly subdivide the ranges of |ay|
and vx values measured in the training dataset (Fig. 10).
Training Method and Dataset: The neural model NNcbase

is trained using supervised learning, where the objective is

9To identify τvy (vx ), the function Fvy (·) is replaced with Hvy (·) in (1d).

to minimize the mean square error (MSE) between the pre-
dicted steering wheel angles δff and the actual values δ̂ff,
obtained during training maneuvers. To generate the training,
validation and test datasets, open-loop sinusoidal steering
maneuvers are performed at constant speed values. The oper-
ating range is divided into a list of equally spaced vehicle
speed values, and the sinusoidal steering tests are repeated for
each speed value. The amplitudes of the steering sinusoids
are determined based on the previously identified steering
limits (Section IV-A2), which correspond to the maximum
achievable lateral accelerations and are dependent on the
vehicle speed. The datasets used for training, validation and
testing contain respectively 10, 3 and 2 sinusoidal steering
maneuvers, carried out at different values of speed, steering
frequencies and steering amplitudes. The attached video pro-
vides a brief overview of this process.

The number of learnable parameters for the NNcbase model
is 2ny + (q+ 1)ny + r = 87.
The neural networks are trained in Tensorflow, using the

Keras API and the Nadam optimization method [53].

B. SECOND IDENTIFICATION ROUND
As outlined in Section IV-A, the first identification round
consists of only open-loop maneuvers, aimed at obtain-
ing a preliminary estimate of the maximum performance,
and at identifying/learning the pure longitudinal and lateral
dynamics.

However, the first-round estimate of the G-G-v diagram
(point (f4) in Section IV-A) for the E-NMPCproblemmay not
ensure the closed-loop controllability of the vehicle, since the
peak acceleration values recorded with open-loop tests may
be feasible only for a short time, and wheel lock may occur
(see Section II-B). In the second round, the artificial agent
controls the vehicle in closed-loop, along a given circuit,
using the first-round control models. The closed-loop results
are used for the following operations:
(s1) Maximize the G-G-v constraint for E-NMPC: using as

initial condition the first-round G-G-v diagram with
a down-scaled longitudinal performance, iteratively
enlarge the achievable acceleration envelope, as long
as the following closed-loop requirements (c1)-(c3) are
satisfied.
(c1) Wheel lock/spin conditions are avoided: the tire

longitudinal slips must not exceed given thresh-
olds, above which the vehicle performance would
degrade (the vehicle has no ABS and no traction
control, see II-B).

(c2) The difference between the target E-NMPC lateral
acceleration ay and the actual value ây is always
below a certain threshold, to ensure a limited
model mismatch.10

10In the second identification round, the vehicle is controlled with the
NNcbase neural network, which does not model the effect of ax on the
steering dynamics. Hence, |ay − ây| may reach high values if |ax | is large,
leading to mismatches between the real and the predicted trajectories. Such
an issue is attenuated in the third identification round, in which the NNcext
controller is used.
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(c3) The difference between the lateral coordinate nMLT
of theMLT solution (Section III-A2) and the actual
value n is always limited.11

(s2) Tune the feedback steer controller (III-C) using itera-
tive learning (IV-B2).

1) MAXIMIZING THE G-G-V CONSTRAINT
As outlined in the previous paragraph, the second identi-
fication round begins by creating a new estimate of the
G-G-v constraint for E-NMPC, aimed at ensuring certain
closed-loop requirements while maximizing the vehicle per-
formance.

We devise an automatic iterative procedure, that uses as ini-
tial guess a down-scaled version of the first-round G-G-v dia-
gram, and iteratively enlarges it while ensuring the require-
ments (c1)-(c3). The initial guess is built by reducing the
longitudinal accelerations of the first-round G-G-v diagram:
the vx-dependent functions {axM (vx), axm (vx)}, modeling the
longitudinal performance in the G-G-v diagram (7c) and
fitted in the first round, are here multiplied by the factors
{η1, η2} ∈ (0, 1], whose initial value is 0.4.

Algorithm 2 is a simplified pseudo-code for the G-G-v
scaling scheme: the vehicle is controlled in closed-loop, and
the scaling factors {η1, η2} of the longitudinal performance
are iteratively increased if the (c1)-(c3) criteria are met
for an entire lap (lines 6-12). Moreover, the algorithm can
selectively limit the combined steering-braking accelerations
(without degrading the pure braking performance), by acti-
vating the G-G12 constraints (7e)-(7g) and optimizing their
exponent nb13 (lines 15-16). The reduction of the combined
braking performance increases with nb. However, to limit the
non-convexity of the resulting G-G-v constraint, an upper
bound for nb is used during the identification. The resulting
second-round G-G-v diagram is shown in Fig. 6.

2) TUNING THE FEEDBACK STEERING CONTROLLER
This section explains the tuning method for the PI feedback
steering controller, described in Section III-C. Since the vehi-
cle to be controlled is partially-unknown, the PI controller
gains are optimizedwith amodel-free technique. The iterative
learning tuning (ILT) method of [38] is preferred to other
model-free approaches (e.g. [54], [55]), since it requires no
assumptions about the plant model, and it can handle generic
cost functions. Each learning iteration consists of the closed-
loop control of the vehicle simulator for one lap, along a
circuit, to collect new data and update the PI parameters.14

Using ILT, the PI gains k = [kP, kI ] for the i+ 1-th iteration

11If |nMLT − n| is large (mainly due to model mismatches), the lap time
increases and a very sub-optimal solution may be found. Note, however, that
our E-NMPC problem is not formulated to track the MLT solution, but rather
to plan minimum-time trajectories on a long horizon (300 m).

12The term G-G is used instead of G-G-v to emphasize that the constraints
(7e)-(7g) do not depend on the vehicle speed vx .

13In the constraints (7e)-(7g), only nb is optimized. The other parameters
{axc , ayc , axb , ayb } are instead computed as functions of {η2axm , ayM }.

14During the ILT, the full control scheme of Fig. 3 is used, and only the
gains of the steering feedback controller are updated.

Algorithm 2Maximizing the G-G-v Constraint
1: Input: initial guess for η1, η2, nb
2: Output: η1opt , η2opt , nbopt
3: η1sel , η2sel , nbsel , η1opt , η2opt , nbopt ← ∅
4: while true do
5: if (η1opt ̸= ∅ and η2opt ̸= ∅) then break end if
6: if (c1) and (c2) and (c3) satisfied then
7: if η1opt = ∅ then
8: η1← increase_acceleration(η1)
9: end if
10: if η2opt = ∅ then
11: [η2, nb]← increase_braking(η2, nb)
12: end if
13: η1sel ← η1, η2sel ← η2, nbsel ← nb
14: else
15: if (c1) or (c2) or (c3) violated while braking then
16: [η2, nb]← reduce_braking(η2, nb)
17: else
18: η1← reduce_acceleration(η1)
19: end if
20: end if
21: if η1 = η1sel then η1opt ← η1 end if
22: if η2 = η2sel and nb = nbsel then
23: η2opt ← η2, nbopt ← nb
24: end if
25: end while

are computed as:

ki+1 = ki − γ i · Ji(ki) (29)

In (29), the cost function Ji(ki) is a weighted sum of the lap
time and the RMS values of the yaw rate tracking error�e, the
control action δfb, and its variations 1δfb. In order to ensure
the decrease of the cost function, the relation |1− dJ (ki)

dk γ i| <

1 must hold [38]. The gradient dJ (ki)
dk is estimated with the

secant method in [56], using the results of the current and
previous iterations. The magnitude of the learning gains γ i is

computed as |λ dJ (ki)
dk
−1
|, with λ ∈ (0, 1) being fixed scaling

factors. The signs for the two components of γ i are selected
with additional sub-iterations, to evaluate the best descent
direction (M2 search method in [38]). If no sign combination
for γ i reduces the cost, the step size |γ i| is decreased with
a linesearch approach. The ILT terminates when certain exit
conditions are met.

C. THIRD IDENTIFICATION ROUND
In the third identification round, the second-round models
are employed for the closed-loop vehicle control, along the
same circuit used in the second round. The collected data are
used to model the effect of ax on the lateral dynamics, in the
following way:
(t1) Identify the dependency of the vy dynamics on ax ,

by fitting the parameters {b1, b2, . . . , b6} of Fvy (·) in
(4), minimizing the prediction error of (1d). The RMS
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TABLE 4. Identification results for the G-G-v constraint maximization,
during the second and third identification rounds.

of ṽy = v̂y − vy for the validation set is listed in
Table 3, where {vy, v̂y} are the predicted and the real
lateral velocity signals.

(t2) Train the feedforward steering controller NNcext (see
III-B2 and the dedicated subsection IV-C1 for details).

(t3) Refine the G-G-v diagram and the feedback steering
controller, with the methods in IV-B1 and IV-B2.

Additional identification rounds would not result in a per-
formance improvement, meaning that the parameters of the
NNcext network and of the feedback steering controller have
already been optimized to model the inverse lateral dynamics,
and that a further expansion of the G-G-v diagramwould lead
to a violation of the (c1)-(c3) conditions.

Table 4 reports the results of the G-G-v identification
scheme. A quantitative analysis of the vehicle performance
in the last two identification rounds is offered in Section VI
(Table 6).

1) TRAINING THE FEEDFORWARD STEERING
CONTROLLER NNcext
This section describes the parameterization and train-
ing of the neural steering controller NNcext, outlined in
Section III-B2.
NNcext extends the structure of NNcbase, and it shares with

NNcbase the same sampling time TsNN = 0.05 s, the number
of samples in the input vectors q + 1 = 15 and in the auto-
regressive branch r = 15, the number of local models ny = 6
to model the inverse lateral dynamics in predefined ranges
of |ay|.

Inside NNcext, the function G(·) in (19) has additional
nx = 4 local models to learn the dynamics in selected
regions of ax , and the total number of local models in G(·) is
nynx = 24. As stated in Section III-B2, a symbolic distinction
is performed for the parameters of the local models gil(·) in
(21), i ∈ {1, . . . , ny} and l ∈ {1, . . . , nx}, so that the total
number of learnable parameters in G(·) is 6ny + 5 nx .
As shown in Fig. 10(c), the centers {ax01 , ax02 } of the acti-

vation functions {φ̄1(ax), φ̄2(ax)} equally partition the range
of measured negative ax values, ax03 is placed in ax = 0,
while ax04 equals the maximum recorded ax .
The same activation functions φ̄l(ax), l ∈ {1, . . . , nx}, are

used, together with the functions φ̄j(vx), j ∈ {1, . . . , nv},
to create a number nxnv of local fully connected layers Fjl ,
through which the transient lateral dynamics is learned.
Training Method and Dataset: The neural model NNcext

is trained using the same supervised learning method and
algorithm as NNcbase (Section IV-A4). During the third

identification round, the second-round controllers (including
NNcbase) are employed to drive the vehicle in closed-loop,
on the same circuit as in the second round. The data col-
lected in the third round are used to train NNcext, as visually
described in the attached video. Specifically, telemetry data
from 6 laps are stored: 4 for training, 1 for validation, and
1 for testing. To introduce some variability into the dataset,
more aggressive or conservative trajectories are planned by
the E-NMPC motion planner, via down-scaling the G-G-v
constraint or increasing τax in (1b).

SinceNNcext extends the structure of the previously trained
NNcbase, the optimized parameters of NNcbase are used as
initial guesses15 for the training of NNcext.

The NNcext network has 6ny + 5 nx + (q + 1)nvnx + r =
311 learnable parameters.

The RMS of the prediction error δ̃ff = δ̂ff − δff on the test
set is reported in Table 3.

V. PHYSICS-DRIVEN NEURAL CONTROLLERS VERSUS
GENERIC RECURRENT NETWORKS
The novel physics-driven networks NNcbase and NNcext
are benchmarked against a generic recurrent NN, named
gRNN. Similarly to NNcext, gRNN computes the steering
wheel angle δffk using the windows of future predictions for
{ay, vx , ax}. The structure of gRNN is the cascade of a basic
recurrent layer (with 30 internal states and a tanh activation
function) and a fully connected layer (with one neuron and
a linear activation function). The total number of learnable
parameters for gRNN is 1051.

The two networks are compared using the RMS of the
prediction error δ̃ff = δ̂ff − δff and the Akaike’s information
criterion (AIC) [48], which is defined as:

AIC = Nt · log
(
MSEt (δ̃ff)

)
+ 2 np (30)

where Nt is the number of samples in the test set, MSEt (δ̃ff)
is the mean squared error in testing, and np is the number
of learnable parameters of the model. When using the AIC
to compare different models, the one with the highest |AIC|
(absolute value) represents the best trade-off between accu-
racy and complexity (number of parameters).

A. COMPARING NNcbase WITH A GENERIC
RECURRENT NETWORK
The physics-driven network NNcbase is here compared with
the benchmark generic recurrent NN (gRNN) previously
described. The same training set and hyperparameters are
used to compare the two neural networks. Since NNcbase
is designed to model the pure lateral inverse dynamics, the
training and test datasets consist of a sequence of constant-
speed sine steering maneuvers, each of which is carried out
with a different speed and sine steering amplitude (Section
IV-A4). The performance metrics on the test set (never used

15Specifically, we use the trained parameters of the Ḡ(·) function and
fully connected Fj layers, j ∈ {1, . . . , ny}, of NNcbase as initial guesses for
NNcext.
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TABLE 5. Benchmarking the novel physics-driven models NNcbase and
NNcext against a generic recurrent network (gRNN), on different test
datasets. The proposed NNcbase and NNcext have fewer parameters than
the benchmark gRNN, and they have a better generalization capacity
when tested on new data. They yield a lower RMS value of the steering
angle prediction error, and a higher |AIC| score, indicating a better
trade-off between model complexity and accuracy.

during training) are listed in Table 5. The results on a portion
of the test set are depicted in Fig. 14 (left column plots).
Despite the higher number of parameters (1051 vs 87),

the benchmark gRNN has a lower accuracy with respect to
NNcbase, which results in a lower |AIC|.

B. COMPARING NNcext WITH A GENERIC
RECURRENT NETWORK
In a second phase, gRNN is used as a benchmark for NNcext,
which models the combined inverse lateral dynamics. The
two networks are trained with the same hyperparameters, on a
dataset collected by autonomously driving the vehicle sim-
ulator along the Valencia circuit (Spain), using the NNcbase
steering controller (Section IV-C1). The test set is generated
in the same way, but, in comparison with the training set, the
high-level E-NMPC is forced to plan more conservative or
aggressive maneuvers (by changing the scaling factors of the
G-G-v constraint).

Referring to Table 5, the physics-driven NNcext network
yields a lower RMS error with respect to the benchmark
gRNN. The |AIC| value is higher for NNcext, due to the lower
RMS error and the lower amount of learnable parameters
(311 vs 1051). Fig. 14 (right column) shows the results on
a portion of the test set.

The general-purpose internal structure of the benchmark
gRNN leads to reduced modeling and generalization capabil-
ity, necessitating larger training sets for reliable predictions
on new test data. In contrast, the internal structures of NNcbase
and NNcext draw inspiration from vehicle dynamics theory,
enabling the use of fewer physically interpretable parameters
and enhancing learning potential.

VI. SIMULATION RESULTS
In this section, we show the results obtained by the artificial
agent, to control the vehicle simulator of Section II on two
different circuits.

A video demonstration of the automatic identification
scheme and the motion planning and control results is avail-
able at: https://www.youtube.com/watch?v=xQ_T96IjGP8.

FIGURE 14. Benchmarking the novel neural models NNcbase and NNcext
against a generic recurrent network (gRNN), to calculate the steering
wheel angle δff. The plots show portions of the test datasets for the pure
lateral dynamics (ax ≈ 0, left column) and for the combined lateral
dynamics (ax ̸= 0, right column). The NNcbase and NNcext exhibit a better
generalization capacity than the benchmark gRNN, when tested on new
data.

The second and third identification rounds
(Sections IV-B and IV-C) are carried out on the Valencia
circuit (Spain). Fig. 15, 16 and 17 show the online planning
and control results, at the end of the third round. The offline
MLT problem solution, computed with the same parameters
and dynamic model used for E-NMPC (Section III-A2),
is used as a benchmark for the comparison.

Fig. 15(b) and 16(a) show a close matching between the
planned (orange) and executed (blue) profiles of forward and
lateral speed {vx , vy}, yaw rate �, longitudinal and lateral
accelerations {ax , ay}, proving the effectiveness of the low-
level longitudinal and steering controllers.

The small differences between the planned and real lateral
speed vy indicate that the lateral speed prediction model for
E-NMPC (Section IV-A3.b) is accurate enough, even in the
presence of longitudinal accelerations. An accurate high-level
prediction and low-level tracking of �, vy, and vx are ben-
eficial for a close tracking of the desired vehicle trajectory,
planned online with E-NMPC.

Leveraging the very long prediction horizon
(Section III-A2), the E-NMPC state trajectories and vehicle
path (Fig. 15) are close to the MLT solution (which is
calculated on the entire lap). However, we underline that
the E-NMPC problems are not formulated to track the MLT
reference: as will be discussed in Sections VI-A and VI-C2,
the online minimum-time E-NMPC solutions can locally
differ from the MLT, since the E-NMPC can replan the time-
optimal trajectory given the current initial states. The zoomed
views n.2-3 of Fig. 15(a) focus on turn 8: in comparison with
the MLT solution, the artificial agent plans and executes a
wider trajectory in the entry phase (zoom-2), to then perform
a sort of late-apex maneuver [57] in the corner exit phase
(zoom-3). More details about the importance of replanning
will be given in Section VI-A.

Fig. 17 shows the steering wheel angle δD, which is the
sum of the feedforward angle δff computed by the neural
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FIGURE 15. Results on the Valencia circuit: (a) comparison of the trajectories executed by the artificial agent (‘‘real’’, colored solid line) and computed
by the offline OC problem (‘‘MLT’’, green dashed line). A color map is used to highlight the difference n − nMLT, with n and nMLT being the lateral
coordinates of the executed trajectory and the MLT solution. (b) Comparison of the planned (orange), executed (blue) and benchmark (‘‘MLT’’, green
dashed) linear velocities {vx , vy }, yaw rate � and lateral coordinates n.

FIGURE 16. (a) Longitudinal and lateral accelerations, and (b) G-G-v
diagram, Valencia circuit.

steering controller NNcext, and the feedback quantity δfb.
A large fraction of δD is provided by the feedforward angle δff,
meaning that NNcext learns a sufficiently accurate model of
the combined inverse lateral dynamics. The feedback steering

FIGURE 17. Steering wheel angle δD computed by the artificial agent on
the Valencia circuit. A large fraction of δD is provided by NNcext, which
returns the feedforward angle δff, while the feedback steering controller
injects some quicker corrections δfb.

controller injects some quicker corrections, and compensates
part of the local inaccuracies of NNcext. Moreover, the feed-
back steering correction also helps compensating for unmod-
eled disturbances or changes in the vehicle dynamics, e.g. due
to the variation of some vehicle parameters (Section VI-C2).

As depicted in Fig. 16(b), the vehicle is driven up to
the limits of the identified G-G-v constraint, exploiting the
maximum identified pure and combined longitudinal-lateral
accelerations.

Table 6 compares the lap times obtained by the artificial
agent and by the offline MLT problem. At the end of the
third identification round, the artificial agent achieves a lap
time TMPC = 141.363 s, driving the vehicle simulator in

VOLUME 11, 2023 46363



M. Piccinini et al.: Physics-Driven Artificial Agent

TABLE 6. Results obtained by the artificial agent, at the end of the
identification rounds n.2 and n.3. After training and testing the
framework on the Valencia circuit, the agent robustness is evaluated on a
new racetrack.

closed-loop. The MLT problem sets a slightly lower lap time
TMLT = 141.139 s. The gap TMPC − TMLT = 224 ms is
mainly due to tracking errors of the low-level steering and
longitudinal controllers, which force the E-NMPC to replan
new minimum-time trajectories, locally different from the
MLT (Fig. 15(a)).

We may also argue that, since the MLT problem does not
use the complex multibody dynamic model of the vehicle
simulator to be controlled, the MLT lap time may be over-
estimated. It is out of the scope of this paper to formulate and
solve an MLT problem with the exact vehicle model to be
controlled.

Since the vehicle does not have an ABS nor a TC
(Section II-B), the planned accelerations should produce
minimum-time maneuvers without inducing partial wheel
lock or spin conditions, which would decrease the vehicle
stability and increase the model mismatches. To ensure the
prescribed controllability requirements ((c1)-(c3) in IV-B)
and maximize the achievable performance, during the identi-
fication rounds n◦2 and n◦3 our automatic procedure (IV-B1)
computes the best scaling for the first-round G-G-v diagram,
returning the factors {η1, η2, nb} (Table 4).
In the second round, the E-NMPC planner is more cau-

tious, to satisfy the conditions (c1)-(c3) despite the incom-
plete knowledge of the vehicle dynamics: the identified
parameters {η1, η2} are lower and the lap time is higher, with
respect to the third round.

In the third identification round, the dependency upon the
longitudinal acceleration ax is introduced in the low-level
steering controller NNcext and in the high-level lateral speed
model. Such augmented models yield an improved prediction
accuracy, which enables the use of larger factors {η1, η2} and
results in a lower lap time (Table 4 and 6).
The entire motion planning and control framework is

developed in C++ code, and a MacBook Pro machine with
a 2.6 GHz 6-Core Intel i7 processor is used. Solving the
E-NMPC problems with Pins takes an average CPU time of
20 ms. While a new E-NMPC solution is being computed,
the low-level controllers use the solution of the previous
E-NMPC step. The execution of the low-level longitudinal
and steering controllers requires on average less than 18 µs.
We underline that no GPU is used to run the neural net-
works, whose computational complexity is reduced through
the physics-driven formulation. The overall planning and

FIGURE 18. Trajectory replanned by the agent at the turn n.8 of the
Valencia circuit. Due to a slightly different initial relative yaw angle ξ with
respect to the MLT solution, the agent replans a new time-optimal
maneuver (orange solid line), which is then accurately executed (blue
dashed line). (a) vehicle path, (b) lateral coordinate n and relative yaw
angle ξ .

control structure can therefore run online, with the execution
rates given in Section III.

A. IMPORTANCE OF REPLANNING
The ability to quickly replan and execute time-optimal tra-
jectories is a key characteristic of professional drivers [57],
which is not achievable with a pure tracking of a fixed
minimum-time trajectory, as highlighted in [23]. The zoomed
views in Fig. 15(a) show that, in certain corners, the artifi-
cial agent plans and then executes different maneuvers with
respect to theMLT, to comply with the real initial states of the
vehicle in the corner entry phases. Fig. 18 depicts the trajec-
tory replanned at the turn n.8 of the Valencia circuit. As the
vehicle enters the corner (red dot in Fig. 18), the deviations of
the lateral coordinate n and the relative yaw angle ξ (Fig. 5)
from the MLT solution are 1n = nMLT−n = 3.2 − 3.0 =
0.2 m and 1ξ = ξMLT − ξ = 4.3 − 3.6 = 0.7 deg. The
shape of the time-optimal trajectory is particularly sensitive
to the initial relative yaw angle ξ : on account of 1ξ , the
E-NMPC plans a new slightly wider maneuver (orange solid
line) in the corner entry phase, which then becomes a sort
of late-apex maneuver towards the exit phase. As depicted
in Fig. 18(a), the agent starts replanning quite soon, before
entering the corner, and then accurately executes the newly
planned maneuver throughout the turn (blue dashed line).
Given the real vehicle initial conditions, the MLT path (green
dashed line) would lead to a violation of the G-G-v constraint,
which is the reason why the E-NMPC changes the minimum-
time trajectory.

The deviations of the executed path from the MLT solution
should therefore not be seen as MLT path tracking errors, but
rather as different trajectories replanned online by the agent,
to consider the real vehicle state at each replanning step. In a
similar way, the authors of [57] show that expert race drivers
use different trajectories, depending on the current situation
and on their driving styles, yet achieving similar final lap
times.
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The replanning capability of our E-NMPC is improved by
the long prediction horizon (300 m) and the high number of
mesh points (346), in comparison with many related literature
papers, like [6], [8], [9], and [27]. The use of such a long
horizon is enabled by the novel kineto-dynamical vehicle
model for E-NMPC, and by the effectiveness of the OC solver
Pins (Section III-A3).

B. IMPACT OF THE LATERAL SPEED MODEL
In this section, we analyze the benefit brought by the novel
lateral speed vy prediction model for E-NMPC on the trajec-
tory tracking performance.

We focus our analysis on the corners n.9 and n.10 of the
Valencia circuit, and the main results are plotted in Fig. 19.

As shown in Fig. 19(a), when the vy prediction model
is not used in the E-NMPC formulation (i.e., Fvy = 0 in
(1d)), the trajectory executed by the artificial agent (red
line) has visible deviations from the MLT benchmark, since
the maneuvers planned with E-NMPC become more dif-
ficult to be tracked by the low-level steering controllers.
Such a tracking difficulty can be explained with Fig. 19(b):
when the vy model is not used, the lateral velocity planned
by the high-level E-NMPC is zero on the entire horizon
(not plotted), but the maneuver executed by the agent pro-
duces a non-zero vy evolution (red line). The lateral velocity
and the chassis side slip angle β = atan(vy/vx) have an
impact on the transient trajectory curvature, given by ρ =
(β̇ + �)/

√
v2x + v2y . If the E-NMPC model assumes that

β̇ = vy = 0, but the real vehicle executes the maneuver with
vy ̸= 0, then the planned trajectory curvature will be different
from the real one. The executed trajectory is, in certain points
of Fig. 19(a), remarkably different from the offline MLT, and
the E-NMPC decreases the forward speed vx to cope with the
large mismatch.

If instead the E-NMPC predicts vy with the proposed
model, the executed vehicle and state trajectories (blue lines
in Fig. 19) are closer to the offline MLT, and the mismatch
between planning and execution decreases. When the vy
model is used, the maneuver time is lower by 0.65 s, which is
a remarkable difference.

In the autonomous racing literature papers [5], [6], [23],
point-mass models were used for online MPC, but the yaw
rate and the lateral speed dynamics were not modeled. In this
paper, we instead develop sufficiently accurate and numer-
ically efficient models of the yaw rate and lateral speed
dynamics for E-NMPC, while preserving a kineto-dynamical
formulation that does not require the prior knowledge of the
tire or suspension parameters.

C. ROBUSTNESS ANALYSIS
1) TESTING ON NEW CIRCUITS
The robustness of the identification and control framework
is first evaluated by driving the vehicle along a new circuit,
never used in the identification process. The Adria racetrack
(Italy) is chosen, and the main results are shown in Fig. 20.

FIGURE 19. Comparison of trajectories executed by the artificial agent,
when the vy prediction model for E-NMPC is used (blue line) or not (red
line), on the corners n.9 and n.10 of the Valencia circuit: (a) vehicle
trajectories, and (b) linear velocities {vx , vy }, yaw rate � and lateral
coordinate n of the vehicle. When the vy prediction model is used, the
executed trajectories (blue lines) are a lot closer to the MLT benchmark,
and the maneuver time is lower by 0.65 s.

The planned and executed vehicle and state trajectories are
close to the MLT benchmark solution, and the G-G-v con-
straint is exploited in its entirety (Fig. 21). As shown in
Fig. 20(a), in certain corners the agent replans wider or
narrower trajectories, depending on the current vehicle states.
The lap time with online closed-loop control is TMPC =

109.648 s, while the MLT solution is TMLT = 109.473 s.
The small lap time difference (175 ms) – mainly caused
by low-level tracking errors – suggests that the framework
learned vehicle dynamic characteristics that are indepen-
dent of the racetrack. Such a robustness with respect to
the circuit layout should not be taken for granted: neural
networks with generic internal structures or non-parametric
approaches (e.g. Gaussian process regression) may need large
training sets, to provide robust predictions on test data that
differ significantly from the training scenarios. Conversely,
the physics-based formulations of the control models is less
prone to overfitting, and it shows an improved generalization
capability.
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FIGURE 20. Results on the Adria circuit, never used in the identification and learning phases: (a) comparison of the trajectories executed by the artificial
agent (‘‘real’’, colored solid line) and computed by the offline OC problem (‘‘MLT’’, green dashed line). A color map is used to highlight the difference
n − nMLT, with n and nMLT being the lateral coordinates of the executed trajectory and the MLT solution. (b) Comparison of the planned (orange),
executed (blue) and benchmark (‘‘MLT’’, green dashed) linear velocities {vx , vy } and yaw rate �.

FIGURE 21. Resulting G-G-v diagram on the Adria circuit.

2) CHANGING THE VEHICLE PARAMETERS
We now analyze the robustness of the planning and con-
trol framework to a change of some vehicle parameters.
Specifically, we focus on the parameters {m, hG,L1}, being
respectively the vehicle mass, the center of mass height from
ground, and the longitudinal distance from the center of mass
to the front axle. These parameters were assumed to be known
in advance (Section II-A), since they eased the model-based
design of the speed-tracking controller, but we now show
that the framework is sufficiently robust to changes of such
quantities.

The parameter-variation analyses are reported in Table 7,
where we underline the parameters that we change in each
test scenario. The high- and low-level control models are not
modified with respect to the nominal conditions (scenario n.1

TABLE 7. Analyzing the effect of a change in the vehicle parameters m,
hG, L1 on the lap time TMPC, obtained by the artificial agent on the
Valencia circuit. In each scenario, the changed parameters are underlined.

in Table 7). The planning and control framework is therefore
unaware of the parameter variations.

A change in the parameters m, hG and L1 affects the whole
vehicle behavior: for example, it results in different dynamics
of {vx , vy, �}, it modifies the shape of the handling and lateral
velocity diagrams, and it impacts on the load transfers.

We analyze the effect of the parameters variation on the lap
time TMPC (Table 7, last column) obtained by the artificial
agent, and on the vehicle trajectory, shown in Fig. 22 and 23.
The lap time TMLT of the benchmark offline MLT problem is
recomputed only for the two extreme scenarios in which the
vehicle mass is changed.16

16The change in the vehicle mass affects the longitudinal and lateral
dynamics of the MLT vehicle model, and the G-G-v constraint. Such param-
eters and constraints of the MLTmodel are re-identified, using the automatic
procedure of Section IV, but they are used only to recompute the benchmark
MLT problem. The models used by the artificial agent are instead not
modified with respect to the nominal case.
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FIGURE 22. Comparison of the vehicle trajectories obtained in the
nominal conditions and in the scenarios n.2, 3, 7 (Table 7), in which the
vehicle mass m and the front/rear load distribution are changed. The
plots show only the corners in which the differences are more visible,
namely the corners n.1 (top left), n.2 (top right), n.8 (bottom left) and n.14
(bottom right) of the Valencia circuit.

In the scenarios n.2 and 3 of Table 7, the vehicle sprung
mass is varied by 200 kg. If m is decreased (case n.2), the
vehicle becomes more responsive, and it can quickly recover
possible speed-tracking delays or other mismatches. The lap
time TMPC reached by the artificial agent is lower (by 0.25 s)
than the nominal case n.1. The deviation of TMPC from the
offline MLT lap time TMLT is around 0.5 s, which is slightly
higher than the nominal case. However, considering that
the artificial agent is not re-trained for the new conditions,
the result shows an acceptable robustness of the agent to a
decrease in the mass. Conversely, if m is increased by 200 kg
(case n.3), the desired longitudinal accelerations computed
by the E-NMPCmay be locally unreachable for the low-level
control, the impacts on the lateral dynamics are not negligible,
and the lap time is higher (by 0.75 s) than the nominal case.
Fig. 22 and 23 show that, as explained in Section VI-A,
the high-level E-NMPC problem locally changes the planned
time-optimal trajectories, to compensate different initial yaw
angles, in the entry phases of some corners. Specifically,
when the mass is increased, the yaw angles of the executed
maneuvers are locally slightly different from the planned
values, which forces the agent to replan wider trajectories in
certain corners (Fig. 22), to minimize the maneuver time and
satisfy the G-G-v constraint, while considering the current
initial vehicle states. Nonetheless, the framework is still capa-
ble of controlling the vehicle, and the difference TMPC−TMLT
is around 0.5 s.

In the scenarios n.4 and 5, we vary the center ofmass height
hG by 0.045 m. A higher hG leads to larger longitudinal (and
lateral) load transfers, which harms the traction performance
in a front-wheel-drive vehicle. The lap time is consequently
higher (by 0.5 s) than the nominal case, but the vehicle can
still be controlled. On the other hand, lowering hG (case n.4)

FIGURE 23. Lateral coordinate of the vehicle center: comparison of the
solutions obtained in the nominal conditions and in the
parameter-variation scenarios n.2, 3, 7 (Table 7), Valencia circuit.

stabilizes the vehicle, leading to low trajectory tracking errors
and better lap times.

Finally, the scenarios n.6 and 7 involve changing the
front/rear load distribution of the vehicle, with the parameter
L1 being varied by 0.15 m. When L1 is decreased (case n.6),
the vehicle gets more understeering, and the vertical loads
on the front tires increase, which improves the traction
potential. The lap time is very similar to the nominal case.
Conversely, an increase in L1 moves more vertical load to
the rear axle, which decreases the traction and steering capa-
bilities of the front tires. The lap time is therefore higher
(by 0.7 s) than the nominal case, but the trajectory deviations
are limited (Fig. 23).

The analyses reported in this section show that the motion
planning and control framework is sufficiently robust to tol-
erate unknown variations in the vehicle mass and load dis-
tribution (hG and L1). The low-level feedback steering and
longitudinal controllers compensate for part of the unmod-
eled dynamics, while the high-level E-NMPC locally adapts
the planned trajectories to the current initial conditions.
We underline that we do not force the E-NMPC solver to track
a pre-computed fixed trajectory, which lets the E-NMPC
compute new optimal solutions, in the presence of mis-
matches or disturbances.

VII. CONCLUSION AND FUTURE WORK
This paper develops physics-driven analytical and neu-
ral models, which are integrated in a hierarchical online
minimum-time planning and control scheme for a partially-
unknown vehicle simulator. A kineto-dynamical E-NMPC
model for high-level planning is extended with a novel lat-
eral speed predictor. A feedforward neural network with a
physics-driven structure is devised for the low-level steering
control, in combination with a feedback regulator. A low-
level speed-tracking PID controller is tuned with an iden-
tified longitudinal dynamic model. A three-step automatic
identification procedure is presented, to identify and learn the
high- and low-level models, optimize the shape of a G-G-v
constraint for E-NMPC, and learn the dependency of the
lateral dynamics on the longitudinal acceleration.
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Simulations are carried out with a partially-unknown vehi-
cle simulator, whose dynamics are identified and learned
using the devised three-step scheme. The results obtained
with online motion planning and control are very similar to
the offline MLT solution, used as a benchmark. The learned
achievable performance (G-G-v envelope) is exploited up to
the limits. A close matching exists between the planned and
executed vehicle velocities and accelerations, indicating that
the steering and longitudinal controllers effectively track the
high-level optimal trajectories. Finally, it is shown that the
framework is sufficiently robust, when driving on circuits
never used in the learning process, and even when changing
the vehicle mass and load distribution. The generalization and
adaptation capability of the framework is mainly provided
by the physics-driven structure of the control models, the
feedback regulators, and the long E-NMPC planning horizon.

Future work will be applying the proposed framework to
a real RC vehicle prototype. Testing on a real car will allow
us to further optimize the identification and learning phases,
by reducing the number of open- and closed-loop maneuvers
to be carried out. We will also investigate the framework’s
robustness to measurement noise and communication delays.
Moreover, the high- and low-level models will be further
improved, to deal with changing road adherence conditions.

APPENDIX A
DERIVATION OF THE LOW-LEVEL FEEDFORWARD
STEERING CONTROLLER
In this appendix, we provide more details about the formu-
lation of the neural steering controller NNcext, which was
introduced in Section III-B2.

The analysis here presented aims at finding some insightful
physics-driven relations, to inspire the design of the neural
controller NNcext. Our final goal is to extend the neural net-
workNNcbase, described in Section III-B1, by considering the
coupled effects of the lateral accelerations ay and the longitu-
dinal ones ax . Specifically, we augment the local model (13),
which was derived as a local linearization of the handling
diagram for the pure lateral dynamics, with additional terms
that depend on both ay and ax . The augmented local models
are formulated by extending the analysis of [52, Chapter 7]:
we perform local approximations of the nonlinear lateral
dynamics of a double-track vehicle model, around generic
quasi steady-state conditions.

Throughout this section, the notation Xij will be used to
indicate the generic quantity X for the right (j = 1) or left
(j = 2) tires, of the front (i = 1) or rear (i = 2) axles.

Let us begin by recalling that the tire lateral slip angles αij
can be derived from a kinematic analysis (see e.g. [41]):

α11 ≈ α12 = α1 = arctan
(
−
vy
vx
− L1ρ + δ

)
α21 ≈ α22 = α2 = arctan

(
−
vy
vx
+ L2ρ

) (31)

where {L1,L2} are the distances from the center of mass to the
front and rear axles, ρ = ay/v2x is the trajectory curvature,

and δ is the steering angle at the front wheels (the vehicle
is front-wheel steering). It is assumed that the lateral slips
of the tires within the same axle are approximately equal,
so that {α1, α2} indicate the lateral slips of the front and rear
tires. Performing a first-order approximation of the arctan(·)
function, it is possible to rewrite (31) as:

δ − ρL = δ −
ay
v2x
L = α1 − α2 (32)

with L = L1 + L2.
To augment the local model (13), our target is now to

derive a relation between the lateral slips {α1, α2} and the
accelerations {ay, ax}, in the vicinity of an approximation
point with {ay = ay0 , ax = ax0}.
We start from the lateral nonlinear dynamics of a double-

track vehicle model in a quasi steady-state condition:{
may0 = Fy110 + Fy120 + Fy210 + Fy220 (33a)

Iz�̇ = 0 = (Fy110 + Fy120 )L1 − (Fy210 + Fy220 )L2 (33b)

where Fyij indicates the lateral tire forces for the right (j = 1)
and left (j = 2) tires of the front (i = 1) and rear (i = 2)
axles, while Iz and �̇ are the vehicle yaw inertia and the yaw
acceleration. (33a) and (33b) are respectively the lateral and
yaw rate Newton equations17 in a quasi steady-state pointW ,
for which ay = ay0 , ax = ax0 , Fyij = Fyij0 , �̇ ≈ 0. (33a,33b)
can be equivalently rewritten as:

may0
L2
L
= Fy110 + Fy120 (34a)

may0
L1
L
= Fy210 + Fy220 (34b)

Before performing a local approximation of the lateral
force model, we introduce an ellipse of adherence [52] to
express the effect of the longitudinal tire forces Fxij on the
lateral ones Fyij :

Fyij = F̄yij (αi,Fzij)

√
1−

( 1Fxij
µmax
xij Fzij

)2
(35)

where F̄yij (·) is the pure lateral tire force, which is a nonlinear
function of the tire lateral slip αi and of the vertical tire load
Fzij . The maximum pure longitudinal tire force is µmax

xij Fzij ,
while1Fxij = Fxij−Fxij0 is the variation ofFxij with respect to
the steady-state value Fxij0 . The variation 1Fxij derives from
a reformulation of the pure longitudinal dynamics (23a):

max =
2∑
i=1

2∑
j=1

Fxij − c0 − cvvx − cav
2
x

=

2∑
i=1

2∑
j=1

(
Fxij0 +1Fxij

)
− c0 − cvvx − cav2x

=

2∑
i=1

2∑
j=1

1Fxij (36)

17Note that (33b) could be complicated with the addition of other minor
contributions, like the tire self-aligning torques, and the analysis of this
section would still hold.
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where the last step in (36) assumes that the sum of the Fxij0
forces compensates the friction and drag terms. Moreover,
it is assumed that 1Fxij has a larger effect on the lateral
dynamics, with respect to Fxij0 , which explains the use of
1Fxij in (35). Starting from (36), the terms 1Fxij can be
expressed as a function of ax :{

1Fx1j = 0p0djmax
1Fx2j = (1− 0p)0djmax

(37)

with j ∈ {1, 2} indicating the right and left tires. {0p, 0dj} ∈
(0, 1) are the traction/brake force distribution between respec-
tively the front-rear axles and the right-left tires. Recalling
(25a), the vertical tire loads Fzij appearing in (35) depend
in turn on ax . The lateral force model (35) can therefore be
rewritten by replacing the square root term with a nonlinear
function of ax , here named Gxij (ax):

Fyij = F̄yij (αi,Fzij ) · Gxij (ax) (38)

We locally approximate the combined lateral force model
(38), around the quasi steady-stateW: the pure lateral force
model F̄yij (αi,Fzij) and Gxij (ax) are linearized in the neigh-
borhood of respectively αi0 and ax0 . The approximate local
model becomes:

Fyij =
(
Yij + Cyij (αi − αi0 )

)
·

(
bij + cij(ax − ax0 )

)
(39)

where {Yij, bij, cij} are constant parameters defining the
local approximation. The parameter Cyij in (39) can be
seen as a generalized cornering stiffness, in that it is the
local slope of the nonlinear pure lateral force model, for a
generic αi0 . Following [52, Chapter 7], the cornering stiff-
nesses depend approximately linearly on the vertical loads
Fzij , and such a linear dependency can be assumed to hold
also for Cyij :

Cyij = Cyi0 +
dCyi
dFz
·

(
(−1)j−11FzYi + (−1)i

1FzX
2

)
(40)

where Cyi0 is the nominal value of Cyij in the quasi steady-

state condition W ,
dCyi
dFz

is the vertical load sensitivity,
{1FzYi ,1FzX } are the variations of the lateral and longitudi-
nal load transfers with respect to the pointW . In the vicinity
of the quasi steady-stateW , the load transfer variations1FzYi
and 1FzX are directly proportional to respectively (ay − ay0 )
and (ax − ax0 ) [41, Chapter 6]:1FzYi = ηyi (ay − ay0 )1FzX = m

hG
L
(ax − ax0 )

(41)

with ηyi being a proportionality factor that depends on the
vehicle characteristics, and hG being the center of mass
height. The expression of Cyij in (40) can be therefore be
written as a function of (ay − ay0 ) and (ax − ax0 ).
In the quasi steady-state W , the relations (34a, 34b)

hold, and (39) becomes Fyij0 = Yijbij. In the neighborhood

of W , (34a) and (39) can be used to write the following:

m(ay − ay0 )
L2
L

= Fy11 + Fy12 − (Fy110 + Fy120 )

=

2∑
j=1

(
Y1j + Cy1j (α1 − α10 )

)(
b1j + c1j(ax − ax0 )

)
+

− Y1jb1j (42)

The previous equation can be solved for α1:

α1 =
m(ay − ay0 )

L2
L + α10D1 −

∑2
j=1 Y1jc1j(ax − ax0 )

D1

(43)

where the term D1 is given by:

D1 =

2∑
j=1

Cy1j
(
b1j + c1j(ax − ax0 )

)
(44)

To obtain a relation for α1 that depends only on ay, ax and
constant terms, we can now substitute the expressions (40)
and (41) forCy1j in (43). The resulting equation can be written
as:

Bα1 = q̃y1 + q̃y2 (ay − ay0 )+ q̃x1 (ax − ax0 )

+ q̃x2 (ax − ax0 )
2
+

+ q̃y3 q̃x3 (q̃y4 + ay − ay0 )(q̃x4 + ax − ax0 )

(45a)

Aα1 = q̃y5 (ay − ay0 )+ q̃x5 (ax − ax0 )

+ q̃x6 (ax − ax0 )
2
+ q̃y6 q̃x7 (ay − ay0 )(ax − ax0 )

(45b)

α1 = Bα1/(1+ Aα1 ) (45c)

where the new parameters {q̃y1 , . . . , q̃y6} and {q̃x1 , . . . , q̃x7}
are introduced to collect the combinations of the constant
terms in (43). The subscripts y and x are used in the parame-
ters q̃y− and q̃x− to preserve the separation of the terms related
to the lateral and longitudinal dynamics. The formulation
(45c) is a local model for α1, with {ay, ax} in the vicinity of
{ay0 , ax0}.
The denominator term 1+Aα1 in (45c) can be manipulated

using the first-order Taylor approximation (1 + Aα1 )
−1
≈

1 − Aα1 , which holds for a small Aα1 (i.e., for {ay, ax} in the
vicinity of {ay0 , ax0}). The expression of α1 in (45c) becomes
Bα1 (1− Aα1 ), which can be written as:

α1 = qy1 + qy2 (ay − ay0 )+ qy3qx1 (qy4 + ay +−ay0 )

× (qx2 + ax − ax0 )
[
1+ qy5 (ay − ay0 )

+ qx3 (ax − ax0 )+ qx4 (ax − ax0 )
2
+

+ qy6qx5 (ay − ay0 )(ax − ax0 )
]
+ Qα1

(46a)

Qα1 = qy7 (ay − ay0 )
2
+

4∑
i=1

qx5+i(ax − ax0 )
i (46b)

where the parameters {qy1 , . . . , qy7} and {qx1 , . . . , qx9} in turn
contain combinations of the {q̃y1 , . . . , q̃y6} and {q̃x1 , . . . , q̃x7}
used in (45a). The Qα1 term in (46a) is isolated because,
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as discussed next, it does not improve the accuracy of the final
model, and it will therefore be neglected.

The analysis outlined above can be reapplied for the case
of the rear tires, starting from (34b), and a relation of the same
type of (46a) will be found for α2 as well. In the case of α2,
the parameters {qy1 , . . . , qy7 , qx1 , . . . , qx9} used in (46a) for
α1 need to be replaced with a different set, which we call
{ry1 , . . . , ry7 , rx1 , . . . , rx9}:

α2 = ry1 + ry2 (ay − ay0 )+ ry3rx1 (ry4 + ay +−ay0 )

× (rx2 + ax − ax0 )
[
1+ ry5 (ay − ay0 )

+ rx3 (ax − ax0 )+ rx4 (ax − ax0 )
2

+ ry6rx5 (ay − ay0 )(ax − ax0 )
]
+ Qα2

(47a)

Qα2 = ry7 (ay − ay0 )
2
+

4∑
i=1

rx5+i(ax − ax0 )
i (47b)

To augment the local model (13), initially conceived for the
pure lateral dynamics, the resulting formulation (46a)-(47a)
for the tire lateral slips {α1, α2} can now be substituted in (32),
which yields the following:

δ −
ay
v2x
L

= α1 − α2 = ky1sign(ay)+ ky2
(
ay − ay0sign(ay)

)
+ ky3kx1

(
ay − (ay0 + ky4 )sign(ay)

)(
kx2 + ax − ax0

)
×

[
1+ ky5

(
ay − ay0sign(ay)

)
+ kx3 (ax − ax0 )

+ kx4 (ax − ax0 )
2
+ ky6kx5

(
ay − ay0sign(ay)

)
(ax − ax0 )

]
(48)

where {ky1 , . . . , ky6 , kx1 , . . . , kx5} is the set of parame-
ters describing the local model. Such parameters can be
seen as functions of the {qy1 , . . . , qy6 , qx1 , . . . , qx5} and
{ry1 , . . . , ry6 , rx1 , . . . , rx5} used for α1 and α2. Similarly to
what was done in the basic local model (13), the sign func-
tions are used in (48) to model a symmetric lateral behavior,
for ay > 0 and ay < 0. Note that the contributions of the
{Qα1 ,Qα2} terms in (46a)-(47a) are neglected in (48), since
they do not significantly improve the accuracy of (48). More
specifically, the terms of (46a)-(47a) involving powers of ax
improve the accuracy only when multiplied by an expression
in ay. Such a result has a physical explanation: since (48) is
used to compute the steering angle δ, if the vehicle has no
steering biases then the model should return δ = 0 when the
desired ay is zero, for any value of ax .

The local model formulation (48) is an extension of (13),
in that it allows modeling the effect of the longitudinal accel-
eration ax on the lateral dynamics, in a neighborhood of
{ay0 , ax0}. The derivation of (48) is physics-driven, in the
sense that we started from the double-track model equations
and exploited the laws of vehicle dynamics. The resulting
formulation, when used inside the neural controller NNcext

of Section III-B2, has fewer parameters and higher accuracy
with respect to black-box generic neural networks.

We remark that the model (48) could be further extended
by adding other terms, that derive from a generalization of
our analysis. For example, higher-order approximations can
be performed in (39) and (40). However, we found that such
additional terms do not improve significantly the model accu-
racy, meaning that the formulation (48) already represents a
good trade-off between accuracy and complexity.

APPENDIX B
AUXILIARY FUNCTIONS
This section defines the auxiliary smooth functions adopted
to define the high and low-level control models.

signReg := x 7→ sin(arctan(x/h1))

pSgn := x 7→
signReg(x)+ 1

2
nSgn := x 7→

signReg(x)− 1
2

pPart := x 7→ x ·
tanh(x/h2)+ 1

2
nPart := x 7→ x ·

tanh(x/h2)− 1
2

absReg := x 7→ x · signReg(x)

(49)

In (49), {h1, h2} are factors influencing the smoothness of
the functions and their derivatives, and they are selected in a
preliminary modeling stage.
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