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The study of combinatorial properties of mathematical objects is a very important 
research field and continued fractions have been deeply studied in this sense. However, 
multidimensional continued fractions, which are a generalization arising from an algorithm 
due to Jacobi, have been poorly investigated in this sense, up to now. In this paper, we 
propose a combinatorial interpretation of the convergents of multidimensional continued 
fractions in terms of counting some particular tilings, generalizing some results that hold 
for classical continued fractions.
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1. Introduction

Multidimensional continued fractions were introduced by Jacobi [15] (and then generalized by Perron [20]) in the at-
tempt to answer a problem posed by Hermite [13] who asked for an algorithm that provides periodic representations for 
algebraic irrationals of any degree, in the same way as continued fractions are periodic if and only if they represent quadratic 
irrationals. Unfortunately, the Jacobi–Perron algorithm does not solve the problem, which is still a beautiful open problem in 
number theory, but opened a new and rich research field. Indeed, there are many studies about multidimensional continued 
fractions and their modifications, aiming to generalize the results and properties of classical continued fractions.

Continued fractions have been widely studied from different points of view. Several works explore the combinatorial 
properties of continued fractions giving many interesting interpretations. In the book of Benjamin and Quinn [3], one chap-
ter is devoted to show that numerators and denominators of convergents of continued fractions count some particular 
tilings, reporting also some results proved in [4]. In [10], the author extends these results studying tilings where the height 
conditions for the tiles can also be negative and the number of these tilings is computed by means of convergents of nega-
tive continued fractions. In [2], the authors provide further results regarding the properties of continued fractions in terms 
of counting tilings and give also a combinatorial interpretation to the expansion of e. Different works on combinatorial 
interpretations of continued fractions can be found in [7–9,11,12,16,18,19,21,22].

Regarding multidimensional continued fractions, there are just few works about their combinatorial properties. In [14], 
the Jacobi–Perron algorithm is used for giving a generating method of the so-called stepped surfaces. In [5], the authors used 
multidimensional continued fractions to obtain a method for the generation of discrete segments in the three-dimensional 
space. Finally, in [1], multidimensional continued fractions have been exploited for obtaining results about tilings, discrete 
approximations of lines and planes, and Markov partitions for toral automorphism.
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In this paper, we generalize the results of [4] and [10] giving a combinatorial interpretation for multidimensional con-
tinued fractions in terms of counting the number of tilings of a board using tiles of length one, two or three, where we 
can also stack such tiles. We also give an interpretation to negative conditions for the height of the stacks. In particular, 
Section 2 is devoted to the preliminary definitions and properties of multidimensional continued fractions, where we also 
introduce them from a formal point of view. Section 3 presents the main results.

2. Preliminaries

Definition 2.1. Let (ai)i≥0, (bi)i≥0, (ci)i≥0 be three sequences of integers, we define An
j , B

n
j , C

n
j , for any j, n ∈ N with n ≥ j, 

by the following product of matrices:⎛
⎜⎝

An
j An−1

j An−2
j

Bn
j Bn−1

j Bn−2
j

Cn
j Cn−1

j Cn−2
j

⎞
⎟⎠ :=

n∏
i= j

⎛
⎝ai 1 0

bi 0 1
ci 0 0

⎞
⎠ . (1)

The sequence (An
j ) satisfies some recurrence properties that will be exploited later. In particular, by (1), we get

An
0 = an An−1

0 + bn An−2
0 + cn An−3

0 (2)

for all n ≥ 3, since⎛
⎝ An

0 An−1
0 An−2

0
Bn

0 Bn−1
0 Bn−2

0
Cn

0 Cn−1
0 Cn−2

0

⎞
⎠ =

⎛
⎝ An−1

0 An−2
0 An−3

0
Bn−1

0 Bn−2
0 Bn−3

0
Cn−1

0 Cn−2
0 Cn−3

0

⎞
⎠

⎛
⎝an 1 0

bn 0 1
cc 0 0

⎞
⎠ .

Moreover, from⎛
⎝ An

0 An−1
0 An−2

0
Bn

0 Bn−1
0 Bn−2

0
Cn

0 Cn−1
0 Cn−2

0

⎞
⎠ =

⎛
⎝a0 1 0

b0 0 1
c0 0 0

⎞
⎠

⎛
⎝ An

1 An−1
1 An−2

1
Bn

1 Bn−1
1 Bn−2

1
Cn

1 Cn−1
1 Cn−2

1

⎞
⎠

we obtain

Cn
0 = c0 An

1, Bn
0 = b0 An

1 + Cn
1, An

0 = a0 An
1 + Bn

1 (3)

and by substitutions we get

An
0 = a0 An

1 + b1 An
2 + c2 An

3. (4)

When ci = 1, for all i ≥ 0, the sequences (An
0)n≥0, (Bn

0)n≥0, (Cn
0)n≥0 are numerators and denominators of convergents 

of a multidimensional continued fraction (of dimension two). Given a pair of real numbers (α0, β0) the Jacobi algorithm 
evaluates a pair of sequences of integers (ai)i≥0, (bi)i≥0 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ai = �αi�
bi = �βi�
αi+1 = 1

βi − bi

βi+1 = αi − ai

βi − bi

i = 0,1,2, . . .

The elements of the sequences of real numbers (αi)i≥0, (βi)i≥0 satisfy the following relations:

αi = ai + βi+1

αi+1
, βi = bi + 1

αi+1
(5)

for all i ≥ 0, from which

α0 = a0 + β1

α1
= a0 +

b1 + 1

α2

a1 + β2
= . . .
α2

2
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β0 = b0 + β1

α1
= b0 + 1

a1 + β2

α2

= . . .

Then, it follows that

α0 = αi Ai−1
0 + βi Ai−2

0 + Ai−3
0

αi C
i−1
0 + βiC

i−2
0 + C i−3

0

, β0 = αi Bi−1
0 + βi Bi−2

0 + Bi−3
0

αi C
i−1
0 + βi C

i−2
0 + C i−3

0

,

for all i ≥ 0, where the Ai
0, Bi

0, C i
0 are as in Definition 2.1 (with ci = 1 for all i ≥ 0) and we observe that A−1

0 = 1, A−2
0 =

0, B−1
0 = 0, B−2

0 = 1, C−1
0 = 0, C−2

0 = 0 by (1) when j = n = 0. Moreover, equation (5) determines the multidimensional 
continued fraction that has the following expansion

α0 = a0 +

b1 + 1

a2 +
b3 + 1

. . .

a3 +
. . .

. . .

a1 +

b2 + 1

a3 +
. . .

. . .

a2 +
b3 + 1

. . .

a3 +
. . .

. . .

, β0 = b0 + 1

a1 +

b2 + 1

a3 +
. . .

. . .

a2 +
b3 + 1

. . .

a3 +
. . .

. . .

which is usually written shortly as [(a0, a1, . . .), (b0, b1, . . .)] and

[(a0, . . . ,ai), (b0, . . . ,bi)] =
(

Ai
0

C i
0

,
Bi

0

C i
0

)
,

for all i ≥ 0. For more details about multidimensional continued fractions and the Jacobi–Perron algorithm (which is the 
generalization of the Jacobi algorithm to higher dimensions) we refer the reader to [6].

Multidimensional continued fractions can be introduced also in a formal way (see, e.g., [17, Section 2]), where the partial 
quotients are not in general obtained by an algorithm and the numerators are not necessarily equal to 1, as well as in the 
classical case. In fact, given two sequences (ai)i≥0, (bi)i≥0, one can introduce and study the continued fraction

a0 + b1

a1 + b2

a2 + . . .

.

In our case, we deal with three sequences of integers (ai)i≥0, (bi)i≥0, (ci)i≥0 and three sequences of real numbers 
(αi)i≥0, (βi)i≥0, (γi)i≥0 subjected to the relations

αi = ai + βi

αi
, βi = bi + γi

αi
, γi = ci

for any i ≥ 0. These relations determine the multidimensional continued fraction that has the following expansion
3
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α0 = a0 +

b1 + c2

a2 +
b3 + c4

. . .

a3 +
. . .

. . .

a1 +

b2 + c3

a3 +
. . .

. . .

a2 +
b3 + c4

. . .

a3 +
. . .

. . .

, β0 = b0 + c1

a1 +

b2 + c3

a3 +
. . .

. . .

a2 +
b3 + c4

. . .

a3 +
. . .

. . .

, (6)

which can be shortly written as [(a0, a1, . . .), (b0, b1, . . .), (c0, c1, . . .)]. Then, we have

[(a0, . . . ,ai), (b0, . . . ,bi), (c0, . . . , ci)] =
(

Ai
0

C i
0

,
Bi

0

C i
0

)
,

where the Ai
0, Bi

0, C i
0 are as in Definition 2.1, for all i ≥ 0. Since A0

0
C0

0
= a0 and B0

0
C0

0
= b0, it is a natural choice to set c0 = 1. 

Moreover, we would like to highlight that An
0 does not depend on b0, c0, c1 and Bn

0 does not depend on a0, b1, c0, c2.

3. Counting the number of tilings using multidimensional continued fractions

In this section, we give a combinatorial interpretation to the convergents of a multidimensional continued fraction in 
terms of tilings of some boards, extending the approach of Benjamin and Quinn [3,4] for the classical continued fractions.

In the following, a (n + 1)–board is a 1 × (n + 1) chessboard (composed by n + 1 cells), a square is a 1 × 1 tile, a domino
is a 1 × 2 tile and a bar is a 1 × 3 tile. The n + 1 cells of the (n + 1)–board are labeled from 0 to n (i.e., we refer to the 
cell of position 0 for the first cell and so on). Thus, a square can cover a single cell of the chessboard, a domino can cover 
two consecutive cells of the chessboard and a bar three consecutive cells of the chessboard. A tiling of a n–board is a full 
covering of the chessboard using squares, dominoes and bars that can also be stacked. The height conditions for stacking the 
tiles are given by the finite sequences (a0, . . . , an), (b0, . . . , bn) and (c0, . . . , cn), where

• ai denotes the number of squares that may be stacked in the i–th position of the (n + 1)–board (e.g., a0 is the number 
of stackable squares in the cell of position 0), for any i ≥ 0;

• bi denotes the number of dominoes that may be stacked to cover the positions i − 1 and i of the (n + 1)–board (e.g., 
b1 is the number of stackable dominoes covering the positions 0 and 1), for any i ≥ 1;

• ci denotes the number of bars that may be stacked to cover the positions i − 2, i − 1 and i of the (n + 1)–board (e.g., 
c2 is the number of stackable dominoes covering the positions 0, 1 and 2), for any i ≥ 2.

In this setting the elements b0, c0, c1 do not give height conditions, however their role will be important later when dis-
cussing different types of tilings. We will denote by Mn

0 the number of possible tilings of a (n + 1)–board with height 
conditions (a0, . . . , an), (b0, . . . , bn), (c0, . . . , cn), for any n ≥ 0.

When we allow the first and the last tile of a chessboard to be bordering, i.e., position n next to 0, we call it a circular 
(n + 1)-board and the tiling covering it a circular tiling.

Example 3.1. Consider n = 5 with the following height conditions

(1,2,3,2,3,2), (b0,6,5,4,3,2), (c0, c1,1,2,3,1),

where we do not explicit the values of b0, c0, c1 since, in this case, they are not relevant for the tilings. Examples of valid 
tilings are represented in Fig. 1, while in Fig. 2 is represented a non-valid tiling for these height conditions: in this case 
there are too many bars covering the last three cells. Given the above sequences of partial quotients, the sequence of the
4
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0 1 2 3 4 5 0 1 2 3 4 5

Fig. 1. Examples of valid tilings.

0 1 2 3 4 5

Fig. 2. Example of a non-valid tiling.

convergents 

(
An

0

Cn
0

)
is the following:

n 0 1 2 3 4 5

Convergents 1 4 30
11

47
16

44
15

202
69

In this case, we have not specified the value of b0, since it does not provide any height condition, and consequently we 

can not write explicitly the sequence of convergents 

(
Bn

0

Cn
0

)
.

Theorem 3.1. Given three finite sequences of integers (a0, . . . , an), (b0, . . . , bn), (c0, . . . , cn) and An
0 , Bn

0 , Cn
0 as in Definition 2.1, then

i) An
0 counts the number of possible tilings of a (n + 1)–board with height conditions (a0, . . . , an), (b0, . . . , bn), (c0, . . . , cn).

ii) Bn
0 counts the number of possible tilings of a (n + 2)–board, where the first cell is labeled with -1 (i.e., we add a cell on the left to a 

(n + 1)–board), with height conditions (0, a0, . . . , an), (b−1, b0, . . . , bn), (c−1, c0, . . . , cn), i.e., such that the first tile of the tiling 
is a stack of dominoes or bars.

iii) Cn
0 counts the number of possible tilings of a n–board with height conditions (a1, . . . , an), (b1, . . . , bn), (c1, . . . , cn), where the 

first cell is labeled with 1, i.e. removing the first cell from a n + 1–board.

Proof. i) We want to show that the sequences (Mi
0)i≥0 and (Ai

0)i≥0 have the same initial values and satisfy the same 
recurrence. Clearly, for a 1–board we have

M0
0 = a0 = A0

0,

and for a 2–board

M1
0 = a0a1 + b1 = A1

0.

Then for a 3–board we can have tilings with:
– three stacks of squares,
– a stack of squares in the first cell and a stack of dominoes covering the second and third positions,
– a stack of dominoes covering the first and second cells and a stack of squares in the third position,
– a stack of bars.
5



M. Battagliola, N. Murru and G. Santilli Discrete Mathematics 346 (2023) 113649
Thus,

M2
0 = a0a1a2 + a0b2 + a2b1 + c2 = A2

0.

For a (n + 1)–board, with n > 2, we can observe that the number of tilings satisfies the following recursive formula:

Mn
0 = a0Mn

1 + b1Mn
2 + c2Mn

3,

since we can count the tilings dividing them in three sets: tilings that start with a stack of squares, tilings that start 
with a stack of dominoes and tilings that start with a stack of bars. Thus, the number of tilings of a (n + 1)–board 
starting with a stack of squares is a0 Mn

1 and similarly for the other two situations. Finally using (4), we obtain that 
Mn

0 = An
0.

ii) In this case, we want to show that the sequences (Mn−1)n≥−1 and (Bn
0)n≥−1 have the same initial conditions and satisfy 

the same recurrence. We can observe that if the board has only one cell (i.e., the -1 cell) there are no possible tilings 
(since a−1 = 0), then M−1

−1 = 0 and this is consistent with B−1
0 = 0 (see Section 2). Moreover, M0−1 = b0 = B0

0, since we 
can tile the 2–board only with a domino. Similarly, M1−1 = b0a1 + c1 = B1

0, because we only have two possibilities:
– a tiling composed by one domino (in cells −1 and 0) for which we have b0 possibilities and one square (in the cell 

1) for which we have a1 possibilities;
– a tiling composed by one bar (in the cells −1, 0, 1) for which we have c1 possibilities.
Finally, we can observe that the number of tilings for a (n + 2)–board, with n > 1, satisfies the recurrence

Mn−1 = b0Mn
1 + c1Mn

2 = b0 An
1 + c1 An

2 = b0 An
1 + Cn

1 = Bn
0,

since in this case we may start the tiling either with a stack of dominoes in positions −1, 0, which are exactly b0 An
1, or 

a stack of bars in positions −1, 0, 1, giving a contribution of c1 An
2. The result follows from the previous point and (3).

iii) From (3), considering c0 = 1, we have Cn
0 = An

1, for all n ≥ 1. Moreover, from i), we have that An
1 counts the number of 

possible tilings of a n–board with height conditions (a1, . . . , an), (b1, . . . , bn), (c1, . . . , cn). �
With the same notation as Theorem 3.1 we have the following corollary for a (n + 1)–circular board.

Corollary 3.2. The number of circular tilings of a (n + 1)–circular board with height conditions (a0, a1, . . . , an), (b0, b1 . . . , bn), 
(0, c1 . . . , cn) (i.e. we forbid bars covering the cells 0, n, n − 1) is An

0 + Bn−1
0 .

Proof. The previous theorem ensures that An
0 counts the number of all the possible tilings where the cells 0 and n are not 

covered by the same stack of dominoes or bars. The tilings that are missing are the ones where a stack of dominoes covers 
0 and n or a stack of bars covers 1, 0, n, (the only other possible case, where a stack of bars covers 0, n, n − 1 is impossible 
since c0 = 0). In particular we may suppose that in both cases the stack begins in the n–th cell. By the previous theorem 
Bn−1

0 counts the number of tilings of a n + 1 board starting from cell −1, which does not start with a stack of squares. We 
can notice that this is the same as considering a (n − 1)–board where the cell −1 is replaced with the cell n. �
3.1. Negative dominoes and bars

Now, we want to generalize Theorem 3.1 in order to allow negative values for bi, ci , following the ideas of [10].
We notice that a positive bi adds bi number of ways to tile cells i − 1, i. So a natural way to explain negative coefficient 

is to impose some restrictions such that a negative bi give us |bi | less way to cover the cells i − 1, i. More specifically, the 
idea is to discard those tilings which have a full stack of squares on the cell i − 1 (i.e. exactly ai−1 squares) and up to |bi |
squares in the cell k. An analogous argument can be done for ci .

Definition 3.1 (Mixed Tiling). Let (ai)i≥0 be a sequence of positive integers and (bi)i≥0, (ci)i≥0 be sequences of integers such 
that

• if bi < 0 and ci > 0, then ai > |bi |;
• if bi > 0 and ci < 0, then either ai > |ci | or bi > |ci |;
• if bi < 0 and ci < 0, then ai > |bi | + |ci |.

We define a mixed tiling of an (n + 1)−board with height condition respectively given by (a0, . . .an), (b0, . . .bn) and 
(c0, . . . cn), as follows: for any k ∈N ,

1. if bk ≥ 0 and ck ≥ 0, we fall back in the same case defined at the beginning of Section 3;
2. if bk < 0 and ck > 0, when there is a full stack of exactly ak−1 squares in the cell k − 1, we discard all the tilings having 

up to |bk| squares in the cell k and we refer to them as negligible tilings;
3. if ck < 0 and bk > 0, we have two cases:
6
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0 1 2 3 4 5

(a) Negligible tiling (case 2).

0 1 2 3 4 5

(b) Negligible tiling (case 3b).

0 1 2 3 4 5

(c) Negligible tiling (case 4a).

0 1 2 3 4 5

(d) Negligible tiling (case 4b).

Fig. 3. Some examples of negligible tilings.

(a) if ak > |ck|, when there is a full stack of ak−2 squares in the cell k − 2 and a full stack of ak−1 squares in the cell 
k − 1, then we consider as negligible all the tilings having up to |ck| squares in the cell k;

(b) otherwise, necessarily bk > |ck|. In this case when there is a full stack of ak−2 squares in the cell k −2, the negligible 
tilings are those with up to |ck| dominoes covering the cells k − 1, k;

4. if ck < 0 and bk < 0, we have two cases:
(a) when at the same time there is a full stack of ak−2 squares in the cell k − 2 and a full stack of ak−1 squares in the 

cell k − 1, we discard all the tilings having up to |ck| + |bk| squares in the cell k;
(b) when there is a full stack of ak−1 squares in the cells k − 1, the negligible tilings have up to |bk| squares in the cell 

k.

Remark 1. Notice that the condition 4b applies when there are less than ak−2 squares in the cell k − 2 to compensate the 
negative bk in the case 4a.

Example 3.2. Consider the height conditions given by

(2,3,1,2,2,3), (b0,−1,3,3,2,−1), (c0, c1,−2,2,1,−1).

In this case there are several restrictions given by these choice of conditions:

• Since b1 = −1, then when we have a0 = 2 squares in position 0, we need to exclude all the tilings having one square 
in the cell in position 1 (see Fig. 3a).

• Since c2 = −2 and a2 = 1 < |c2|, then we are in the case 3b and we need to exclude the tilings having two squares in 
position 0 and 1 or two dominoes in the positions 1 and 2 (see Fig. 3b).

• Finally, b5 = c5 = −1 so we are in the fourth case. Therefore the negligible tilings are those having a3 = 2 squares in 
position 3, a4 = 2 squares in position 4 and one or two squares in position 5 (see Fig. 3c). Moreover we also need to 
discard the tilings having a4 = 2 squares in position 4 and |b5| = 1 square in position 5 (see Fig. 3d).

Theorem 3.3. Consider the height conditions given by (a0, . . . , an), (b0, . . . , bn), (c0, . . . , cn) such that the conditions in Definition 3.1
hold. Then An

0 is the number of mixed tilings with these height conditions.

Proof. In the following proof we will exclude the case of bn and cn being both not negative, since it follows easily by 
Theorem 3.1.

First we want to show that the number of mixed tiling Mn
0 satisfies the same initial condition and recurrence relations 

of An .
0

7



M. Battagliola, N. Murru and G. Santilli Discrete Mathematics 346 (2023) 113649
• If n = 0 we trivially have M0
0 = a0 = A0

0.
• If n = 1 we have M1

0 = a0a1 + b1 = A1
0, since b1 < 0 we may cover using only squares, that are a0a1, but we need to 

subtract |b1| negligible tilings, when we have a0 squares in the cell in position 0 and less than |b1| + 1 squares in the 
cell in position 1.

• If n = 2 we have M2
0 = a0a1a2 + a0b2 + a2b1 + c2 = A2

0, indeed a0a1a2 is the total number of tilings consisting in only 
squares, a0b2 and b1a2 are the number of tilings involving a stack of squares and a stack of dominoes that we need to 
add (when bi ≥ 0) or subtract (when bi < 0). Finally c2 is the number of tiling using only bars we need to add (when 
c2 ≥ 0)) or the number of tilings we need to subtract (c2 < 0).

We now need to prove that Mn
0 satisfies the same recurrence of An

0.

• If bn < 0 and cn > 0, then every tiling must finish either with a stack of squares or a stack of bars. By induction there 
are cn Mn−3

0 tilings that end with a stack of bars and an Mn−1
0 tilings that end with a stack of squares, ignoring the 

condition stated in Definition 3.1. Among these, we need to subtract |bn|Mn−2
0 negligible tiling, namely those having a 

full stack of an−1 squares in the cell n −1 and less than |bn| +1 squares in the cell n. Therefore the number of all tilings 
is

Mn
0 = an Mn−1

0 + bn Mn−2
0 + cn Mn−3

0 ,

which is the same as (2).
• If bn > 0 and cn < 0 then every tiling must finish either with a stack of squares or a stack of dominoes. By induction 

these are respectively an Mn−1
0 and bn Mn−2

0 . Now we need to distinguish two possible cases:

– If an > |cn|, then we need to subtract |cn|Mn−3
0 negligible tilings, i.e. those having a full stack of an−1 squares in cell 

n − 1, a full stack of an−2 squares in the cell n − 2 and less than |cn| + 1 squares in cell n.
– If an ≤ |cn|, then bn > |cn| by hypothesis and so we need to subtract |cn|Mn−3

0 negligible tiling, which in this case 
are those having a full stack of an−2 squares in the cell n − 2 and less than |cn| + 1 dominoes covering the cells in 
positions n − 1, n.

• Finally, if cn < 0 and bn < 0 then every tiling must finish with a stack of squares. By induction there are an Mn−1
0 tilings 

that end with a stack of squares. From this number we need to subtract |bn |Mn−2
0 negligible tilings, those when there 

is a full stack of an−1 squares in the cell n − 1 and less than |bn| + 1 squares in the cell n. Moreover we also need to 
subtract (|bn| + |cn|)Mn−3

0 negligible tilings, i.e. when there are full stacks of an−1 and an−2 squares in the cells n − 1
and n − 2 respectively and less than |cn| + |bn| + 1 squares in the cell n. However in this way we have counted twice 
the tilings having full stacks of an−1 and an−2 squares in the cells n − 1 and n − 2, and less than |bn| + 1 squares in the 
last cell, so we have to add up this coverings again. These are a total of |bn|Mn−3

0 tiling, obtaining the result stated by 
the thesis. �

3.2. Generalization to higher dimensions

The Jacobi algorithm has been generalized to higher dimensions by Perron [20] as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a(i)
n = �α(i)

n �
α

(1)
n+1 = 1

α
(m)
n − a(m)

n

α
(i)
n+1 = α

(i−1)
n − a(i−1)

n

α
(m)
n − a(m)

n

n = 0,1,2, . . .

starting from m real numbers α(1)
0 , . . . , α(m)

0 and providing a multidimensional continued fraction

[(a(1)
0 ,a(1)

1 , . . .), . . . , (a(m)
0 ,a(m)

1 , . . .)]
of degree m which is defined by the following relation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
α

(i−1)
n = a(i−1)

n + αi
n+1

α
(1)
n+1

, i = 2, . . . ,m

α
(m)
n = a(m)

n + 1

α
(1)
n+1

n = 0,1,2, . . .

Our results about the multidimensional continued fraction of degree 2 easily extend to a multidimensional continued frac-
tion of degree m by considering m + 1 different tiles of length 1, 2, . . . , m + 1. In this paper we dealt with the case of degree 
2 for simplicity of notation.
8



M. Battagliola, N. Murru and G. Santilli Discrete Mathematics 346 (2023) 113649
Fig. 4. Possible tiling of a 3–board with height conditions (1,1,2,3,5), (1,1,2,5,14), (2,1,3,4,7).

Example 3.3. We conclude with an example of application of Theorem 3.1 and how it can be generalized to higher dimen-
sions, specifically when we also have a tile of length four.

First, let us consider a board that we want to tile using squares, dominoes and bars with the following height conditions:

(an) = (1,1,2,3,5), (bn) = (1,1,2,5,14), (cn) = (2,1,3,4,7).

Thus, the corresponding sequences of numerators and denominators of the multidimensional continued fractions with the 
above partial quotients are

(An
0) = (1,2,9,41,345), (Bn

0) = (1,2,6,32,258), (Cn
0) = (2,2,8,42,336)

These sequences can be evaluated by the sequences of partial quotients exploiting (1). If we have a board of length one, we 
have only one tiling, since a0 = 1. Given a board of length two, the number of possible tilings is A1

0 = 2, indeed we only 
have the tiling composed by two squares and the tiling composed by one domino. Considering a 3–board, A2

0 = 9 is the 
number of possible tilings, which are all displayed in Fig. 4.

Then, by Theorem 3.1, we know that 41 and 345 are the number of possible tilings for a 4–board and a 5–board, 
respectively.

If we want to tile a chessboard using also tiles of length four, then we need a fourth sequence for the height conditions of 
this kind of tiles. In order to count the number of possible tilings in this case we need the convergents of a multidimensional 
continued fraction of degree 3. Let us consider the following height conditions for the tiles, which correspond to the partial 
quotients of our 3-dimensional continued fraction:

(an) = (1,1,2,3,5), (bn) = (1,1,2,5,14),

(cn) = (2,1,3,4,7), (dn) = (1,2,5,12,29).

In this case, we have four sequences (An
0), (Bn

0), (Cn
0), (Dn

0) for the numerators and denominators of convergents and they 
can be evaluated by⎛

⎜⎜⎝
An

0 An−1
0 An−2

0 An−3
0

Bn
0 Bn−1

0 Bn−2
0 Bn−3

0
Cn

0 Cn−1
0 Cn−2

0 Cn−3
0

Dn
0 Dn−1

0 Dn−2
0 Dn−3

0

⎞
⎟⎟⎠ :=

n∏
i=0

⎛
⎜⎜⎝

ai 1 0 0
bi 0 1 0
ci 0 0 1
di 0 0 0

⎞
⎟⎟⎠ .

Thus, we obtain

(An
0) = (1,2,9,53,434), (Bn

0) = (1,2,11,47,432),

(Cn
0) = (2,4,12,64,574), (Dn

0) = (1,1,4,21,197).

Note that the sequence An
0 has the first three elements equal to the previous case, since the tile of length four clearly 

does not affect the tiling of boards with length less than four. Now, we can observe that an analogous of Theorem 3.1 still 
works. The number of possible tilings of a 4–board can be evaluated as
9
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a3 A2
0 + b3 A1

0 + c3 A0
0 + d3 A−1

0 = 3 · 9 + 5 · 2 + 4 · 1 + 12 · 1 = 53 = A3
0,

where, as usual, we consider A−1
0 = 1 and we have exploited the analogous of recurrence (2). Indeed, we know that A2

0, 
A1

0, A0
0 are the number of possible tilings of a 3–board, 2–board, 1–board, respectively. Thus the sum in the equation above 

gives the number of possible tilings of a 4–board remembering that a3 is the height condition for squares in the cell of 
position 3, b3 is the height condition for dominoes in the cells in positions 2 and 3, c3 is the height condition for bars in 
the cells in positions 1, 2, 3, d3 is the height condition for the tile of length four in the cells in positions 0, 1, 2, 3.
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