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Thesis abstract 

 

Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory 

quality of fruits is widely determined by qualitative and quantitative composition of VOCs. 

The aroma of grape is a complex of hundreds of VOCs belonging to different chemical 

classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids 

and many more. VOCs play important role as they determine the flavor of grapes and wine 

made from it. The objective of this thesis is to study of VOCs through development of 

different mass spectrometry based analytical methodologies and its applications for the 

comprehensive investigation and construction of database of the VOCs in grapes.   

  

First part of the study was dedicated to generation of the comprehensive database of grape 

VOCs through the screening of multiple grape varieties (n=124) representing different 

species, color and origin. The experiment was carried out using headspace solid-phase 

microextraction (HS-SPME) and gas chromatography mass spectrometry (GC-MS) based 

approach and according to metabolomics protocols. A customized dataset of reference 

standards (>350) was generated and, an automated pipeline for data analysis was created in 

collaboration with data management group of the institute. The results showed annotation 

of “level 1”of 117 VOCs in grape. The established database in this experiment will represent 

the significant portion of the future Grape Metabolome database.  

 

The second part of the study was dedicated to study the differential behavior of volatile 

organic compounds and their glycosylated precursors qualitatively and semi quantitatively. 

Volatile secondary metabolites also exist in the form of nonvolatile and odorless 

glycosylated precursors in grape and studies have confirmed that concentration of these 

precursors can be much higher than its free counterparts. The elevated concentrations of 

volatiles in glycosylated forms can significantly affect the wine aroma because of possible 

chemical modifications throughout the process of fermentation and wine ageing. In 

addition, the investigation of the biosynthesis and accumulation of VOCs in the fruit tissues 

requires the consideration of both the free and bound forms.  

 



To study the phenomenon an experiment was carried using solid phase extraction (SPE) of 

the free and glycosylated precursors; with enzymatic hydrolysis aglycone part of the 

precursors was released followed by subsequent GC-MS analysis. Over 10 different selected 

grape varieties were analyzed. Sixty-six significant different aroma compounds in grapes 

(pre and post hydrolysis) were identified. Identification was done based on several 

parameters like retention time, retention index and MS spectral database. The multivariate 

statistical analysis by two-way hierarchical clustering with heat map visualization showed 

distribution of the compounds within different varieties before and after hydrolysis.      

   

In the third part of the study, we performed experiments dedicated to training and 

applications of atmospheric pressure gas chromatography mass spectrometry (APGC-MS). 

The experiment was carried out at the Department of Biological Sciences, University of 

North Texas, under the supervision of Prof. Vladimir Shulaev. We have established the 

metabolomics protocol for the analysis of fruit volatiles using APGC-MS with an optimized 

GC and MS conditions and created novel library of the fruit volatile compounds using 

APGC-MS system. Six different grape varieties were analyzed as a case study and 

experimental results showed APGC-MS as a valuable solution for metabolomics analysis. 

The data processing and statistical evaluation was done using XCMS and Progenesis QI© 

software. Moreover, observations based on injections of pure reference standards showed 

high abundance of molecular ions with minimal fragmentation at low collision energy that 

is typically missing in traditional vacuum source GC-MS. Moreover, the use of elevated 

collision energy data resulted in a spectrum similar to the traditional EI data.   
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Plants possess tremendous capacity to synthesize, store and release large number of volatile 

organic compounds (VOCs). These compounds are produced as secondary metabolites by 

plants and play many important functions in its life cycle. VOCs are low molecular weight 

compounds (MW<300) with low boiling points and shows large structural diversity (figure 

1). Plants synthesizes these compounds through a variety  of  biosynthetic  routes, 

predominantly  from  amino  and  fatty  acids, terpene  biosynthetic  pathways and 

carotenoid cleavage (Mathieu, Terrier, Procureur, Bigey, & Günata, 2005; Pichersky, Noel, & 

Dudareva, 2006). Based on the basic skeleton produced through these pathways the diverse 

classes of volatiles are further synthesized via modification reactions like acylation, 

methylation, oxidation/reduction etc. (El Hadi, Zhang, Wu, Zhou, & Tao, 2013). Many 

volatile organic compounds are 

synthesized in fruits depending 

upon its genetic and other 

characters (Aprea et al., 2011; 

Degenhardt, Köllner, & 

Gershenzon, 2009; Emanuelli et 

al., 2010; Jiang & Zhang, 2010; 

Myles et al., 2011; Pacifico et al., 

2011; Anthony L. Robinson et al., 

2013).  

 

Monoterpene is an important class of fruit VOCs, especially grapes, this class contains some 

of the most aroma active compounds like citronellol, nerol, geraniol, alpha terpineol and 

linalool with aroma threshold ranging 100-500 µg/L (J. Marais, 1983). In general, 

monoterpenes contains 10-carbon backbone structure synthesized from the common 

precursor geranyl diphosphate and catalyzed by enzymes catalyzes called monoterpene 

synthases e.g. S-linalool synthase, geraniol synthase and (R)-limonene synthase (Chen, 

Tholl, Bohlmann, & Pichersky, 2011; Lund & Bohlmann, 2006).   

 

Sesquiterpene also significantly represents the terpenic-fraction of grape volatiles e.g. beta-

caryophyllene, humulene, farnesene, farnesol and cadinene are considered important in 

grapes (Coelho, Rocha, Delgadillo, & Coimbra, 2006). Formation of sesquiterpene starts 

According to the official definition given by 

European commission  “Volatile organic compound 

(VOC) is any organic compound having an initial 

boiling point less than or equal to 250° C measured 

at a standard atmospheric pressure of 101.3 kPa” 

(Official Journal of the European Union, 2004).  

http://en.wikipedia.org/wiki/Farnesene
http://en.wikipedia.org/wiki/Farnesol
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from farnesyl diphosphate and enzymes sesquiterpene synthase. The synthesis works 

similarly to carbocationic based reaction mechanisms catalyzed by monoterpene synthases. 

However, the larger carbon skeleton of farnesyl diphosphate (FPP) and the presence of 

three, instead of two, double bonds greatly increase structural diversity of the products 

(Degenhardt et al., 2009).  

 

 

 

Figure 1 Chemical structures of some plant derived VOCs 

 

C13-norisoprenoids beta-damascenone, beta-ionone, 1,1,6-trimethyl-1,2-dihydronaphthalene 

(TDN) are also considered as potent aroma producers in both red and white wines (J. 

Marais, 1983; Skouroumounist & Winterhalter, 1994; Maurizio Ugliano & Moio, 2008; 

Winterhalter, Sefton, & Williams, 1990). The primary biosynthesis of these compounds takes 

place with the breakdown of carotenoids with carotenoid cleavage dioxygenase (CCD) 

catalysis (Günata, 2013).   
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Different VOC mediates many biotic interactions of the plants with other plants, insects and 

microorganisms, such as attracting pollinators and seed dispersers, defense against pest and 

pathogen by attracting other predator species and interspecific signaling in plants (figure 2). 

These kind of interactions are widely studied aspects in chemical ecology (Buttery, Ling, & 

Wellso, 1982; Gershenzon, 2007; Shulaev, Silverman, & Raskin, 1997). Several specific 

examples of plant VOC functions include role of methyl salicylate as airborne signaling 

molecule of tobacco mosaic virus infection in tobacco plant which activates the disease 

resistance and the expression of defense-related genes in neighboring plants and in the 

healthy tissues of the infected plant (Shulaev et al., 1997). 

 

 

Figure 2 multiple roles of plant VOCs 

 

Studies by Takabayashi et al 1994 demonstrated that volatile terpenes linalool, farnesene, 

ocimene, 4,8-dimethyl-1,3,7-nonatriene, 4,8,12-trimethyl-1,3,7,11-tridecatetraene were 

released by different plants in response to herbivore attack. Particularly in grapevine the 

compounds (E)-beta-caryophyllene, (E)-beta-farnesene and (E)-4,8-dimethyl-1,3,7-

nonatriene were reported as attractants of grapevine moth Lobesia botrana (Tasin, Bäckman, 

Bengtsson, Ioriatti, & Witzgall, 2006). Antimicrobial activity of plant volatiles is also 
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reported, volatile compounds like hexanal, 2-E-hexenal, 3-Z-hexenal were known to show 

antifungal activity against a number of fungi and were suggested as an alternative approach 

to synthetic fungicides (Rowan, 2011; Jun Song & Bangerth, 1996). 

 

Many of the VOCs are important as scents to the humans because of their detection or sense 

by the human olfactory system at trace levels. High volatility and low molecular weights 

makes them readily diffusible into the gas phase and therefore detected by human sensory 

system. The human genome encoded many test receptors and several hundred olfactory 

receptors involved in recognition of specific foods and their compositions, but the impact of 

a chemical on flavor perception is determined by both its concentration and the odor 

threshold (Goff & Klee, 2006). The foodborne stimulus space has co-evolved with, and 

roughly match our circa 400 olfactory receptors as best natural agonists (Dunkel et al., 2014) 

(table 1). (Buck & Axel, 1991) described the odorants as “volatile chemical compounds that 

are carried by inhaled air to the olfactory epithelium located in the nasal cavities of the 

human nose”. Some of the key aroma compounds in fruits and their odor description are 

described in table 1.  

 

Some VOCs are also known to produce the off-flavor or undesirable aroma in food and 

beverages. Compounds 2,4,6-trichloroanisole (TCA), 2,3,4,6-tetrachloroanisole, 1-octen-3-

one, (+)-fenchone, ethyl acetate, vinyl-4-guaiacol, indole-3-acetic acid, tryptophan were 

some of those known to be generate off-flavors in wine (Boutou & Chatonnet, 2007; F. 

Mattivi, Vrhovšek, & Versini, 1999; Roland, Vialaret, Razungles, Rigou, & Schneider, 2010). 

Production of stale-flavor is also one of the problem faced by of recent food packaging 

industry, and different studies are currently being carried out to understand the possible 

production mechanism of the precursors of stale-flavors and possible ways to eliminate 

them from the process (Patel, Prajapati, & Balakrishnan, 2014; Perkins, Zerdin, Rooney, 

D’Arcy, & Deeth, 2007). 

 

Due to their sensory properties and increasing demand in different industries, many plants 

derived VOCs are produced synthetically at large scale; Food, beverage, cosmetics, perfume 

and pharmaceuticals are some of the key industries amongst its potential consumers. 

International Fragrance Association (http://www.ifraorg.org) is an official self-regulatory 
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organization of the fragrance industry worldwide. It was founded in 1973 and is based in 

Geneva, Switzerland. In 2011, a survey conducted by the organization listed around 3059 

chemicals used in the flavor and fragrance industry worldwide. This survey was estimated to 

represent about 90% of world's production volume of fragrances. Some of the common 

industrially using flavor compounds are geraniol, linalool, citronellol, limonene etc.  

 

Table 1 Important Plant/Fruit derived VOCs and their odor description. 

 

No Name of the compound Odor descriptor 

1 Linalool Citrus, orange,  floral, terpene, waxy and rose, 

2 Geraniol Floral, sweet, rose, fruity and citronella-like with a citrus nuance,  

3 Citronellol Floral, rosy, sweet, citrus with green fatty terpene nuances 

4 Limonene Sweet, citrus and peel 

5 Hexanoic ethyl ester Sweet, fruity, pineapple, waxy, fatty and ester  with a green banana 

nuance 

6 Octanoic ethyl ester Waxy, sweet, musty, pineapple and fruity with a creamy, dairy 

nuance 

7 Vanillin Sweet, vanilla, vanillin, creamy and phenolic 

8 Furaneol Sweet, slightly burnt brown caramellic, cotton candy with a savory 

nuance 

9 Ethyl cinnamate Sweet, balsamic, spice, fruity and powdery 

10 beta-damascenone Woody, sweet, fruity, earthy with green floral nuances 

11 alpha Ionone Sweet, woody, floral, violet, tropical fruity 

12 Hexanol Pungent, etherial, fruity and alcoholic, sweet with a green top note 

13 Myrtenol Camphoreous, woody, cooling, minty  with a medicinal nuance 

14 Methoxy pyrazine Green pea green bell pepper green pea galbanum 

15 3-Mercapto hexanol Sulfurous, metallic and pungent with a slight spicy, green leafy, 

wasabi-like and vegetative note with and earthy nuance  

Odor descriptions were adapted from online database of “The good scents company”. 

(http://www.thegoodscentscompany.com) 

 

Apart from their diverse ecological functions and sensory properties, many VOCs are 

significant to human health and used as medicines, this is the perhaps less studied aspect of 

these compounds. A commonly found fruit VOC geraniol was reported to inhibit the 

http://www.thegoodscentscompany.com/
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ornithine decarboxylase activity, a key enzyme of polyamine biosynthesis, which is 

enhanced in cancer growth in humans (Carnesecchi et al., 2001). Similarly it inhibits a 

mevalonate biosynthesis which suppresses the growth of hepatoma and melanoma in 

transplanted rats and mice (Yu, Hildebrandt, & Elson, 1995). Other compounds citronellol, 

linalool and limonene were found to have chemoprevention and anticarcinogenic properties 

(Gould, 1997; Usta et al., 2009; Zhuang et al., 2009).  

 

Complex profile of VOCs keeps changing during the life cycle of the plant. Factors like age, 

genetics, environmental conditions, postharvest handling, storage conditions, sunlight, 

irrigation, fertilization, chemical applications and other human practices can alter the 

qualitative and quantitative composition of the VOCs among fruit. Genetic variation is very 

important factor which can be responsible for differentiation of VOCs in grapes (Emanuelli 

et al., 2010, 2013). For example, terpenoids are abundant in Vitis vinifera Muscat grapes while 

c-13 norisoprenoids are dominant in V. cinerea, the Native American grapes (Results from 

chapter 4) (Sun, Gates, Lavin, Acree, & Sacks, 2011). Age or maturity also affects aroma of the 

fruit, as fully ripen fruits throw more aroma than unripe and immature fruits(May, Lange, & 

Wüst, 2013; Anthony L. Robinson et al., 2014; Sarry & Gunata, 2004). Aroma potential was 

reported to be highest in vines under mild water deficit and moderate nitrogen supply and 

severe water deficit limits the  aroma potential in grapes (Des Gachons et al., 2005). 

Refrigeration induced changes in levels of 3-methylbutanal, linalool, guiacol, hexanol, trans-

2-hexenal and trans-3-hexenol are reported  in tomato (Díaz de León-Sánchez et al., 2009).  

 

Constant development and advancement of the analytical tools like gas chromatography, 

mass spectrometry as well as rapid sample extraction and enrichment methods are 

providing new comprehensions to the field of plant VOCs analysis and characterization. 

Moreover, with the advent of advanced metabolomics tools it is possible to perform the 

comprehensive studies covering large number of metabolites. The holistic approach for the 

analysis, annotation and comprehensive databases of the VOCs will assist the future need to 

understand numerous biological interactions, also in the quality assurance of the food 

products, medicine and upcoming research in associated fields. 

 

 



9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Methodology in the analysis of fruit VOCs 
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2.1. Gas chromatography (GC) and mass spectrometry (MS)  

 

Gas chromatography-mass spectrometry (GC-MS) is the most commonly and widely used 

technique for the analysis of VOCs. GC-MS is the most compatible technique for the 

analysis of VOCs due to their properties like high vapor pressure, volatility, small molecular 

weights, relatively low-polarity and good thermal stability. A GC-MS (figure 3) is the 

combination of a gas chromatograph (GC) which is involved in separation of the chemicals 

and a mass spectrometer (MS) which further ionizes and detects the chemicals according to 

their mass to charge (m/z) ratio.  

 

GC technique is mainly used for the analysis of volatile compounds from different biological 

and environmental matrices; GC also can be used with different types of detector based 

upon applications. Detectors like those that flame ionization detector (FID) which is a sort 

of “universal detector” mainly used for the volatile hydrocarbons analysis in many 

industries. Electron capture detector (ECD) is a GC detector that is mainly used for the trace 

level analysis of organochlorine compounds (pesticides, dioxins, PCBs) due to its sensitivity 

and selectivity. Nitrogen phosphorous detector (NPD) is utilized for the selective analysis of 

volatile compounds containing nitrogen and phosphorous. GC with specific and Non-MS 

detectors could provide only separation, quantitation, and not the characterization of the 

molecule. The use of pure reference standards is mandatory in those cases. The GC analysis 

was later enhanced by its combination with mass spectrometry, as it complemented the 

analysis with the m/z information of the compound fragments. Ever since its discovery, 

almost more than a century, mass spectrometry (MS) becomes one of the fundamental 

research tools with applications covering many fields of biology, chemistry, pharmaceutical 

and medical sciences.  

 

Typical GC-MS system comprises gas chromatograph hyphenated to mass spectrometer 

(figure 3) which provides the superb separation ability of GC with simultaneous detection of 

the compounds giving information about its molecular mass. When the sample is injected 

into the GC inlet, where it is volatilized and a characteristic portion is carried onto the 

column by the constant stream of carrier gas. Different chemicals present in the sample are 

then separated based on the different strengths of interaction of the compounds with the 
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stationary phase (other factors like boiling point of compound, column length, column 

temperature, carrier gas flow rate and the polarity of analyte and stationary phase can also 

affect the separation).  Each separated sample component then elute from the column into 

the mass spectrometer through the heated transfer line. The mass spectrometer is made up 

of three essential units, i.e. ion source, analyzer and detector system (requires high vacuum, 

~10-6 to 10-8 mm of mercury). Once the separated components from GC enter into the ion 

source, they are ionized based on ionization source and polarity selection. Further, the mass 

analyzer resolves the ions into their characteristics mass components according to their 

mass-to-charge (m/z) ratio and finally they are sent into the detector system for the ion 

detection and recording the relative abundance of each of the resolved ionic species. The 

signals are then amplified and sent to the data system where the chromatogram is 

electronically constructed. 

 

Figure 3 Schematic of GC-MS  

 

2.2. Ionization techniques 

Ionization is necessary in any MS technique in order to allow the subsequent detection of 

the ions generated according to their m/z ratio. The ionization techniques used in the study 

are as follows,   
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2.2.1. Electron ionization (EI) 

 

Electron ionization or EI is the most common ionization method used in the GC-MS 

analysis. In EI source, (figure 4) electrons are generated by thermionic emission by heating a 

wired filament with high energy of 70 eV and by exposing a sample to these high-energy 

electrons. This is referred as "hard” ionization technique, the energy of the electrons 

interacting with the molecule of interest is generally much higher than in the chemical 

bonds of the molecule. The high energy breaks bonds in a well characterized, multiple ways 

(figure 5). The result is predictable, identifiable fragments from which we perform molecular 

identification. Abstraction of only an electron from the outer shell yields a radical cation in 

the positive mode (M.+) and a rich spectrum of fragments (Balogh, 2009).  

 

 

 

Figure 4 Schematic of EI ion source and 
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Figure 5 EI spectra of linalool from reference standard analysis 

 

The EI spectrum (figure 5) generated by one-instrument looks much like a spectrum of the 

same compound from another EI instrument and because of this standardized ionization 

condition (70eV) method many commercial libraries are available for identification of 

compounds.   

 

2.2.2. Atmospheric pressure gas chromatography mass spectrometry (APGC-MS) 

 

Atmospheric pressure chemical ionization or APCI is the emerging method in GC-MS 

analysis. It is relatively soft ionization process when compared with traditional EI technique 

and offers a significant reduction in fragmentation. It provides more information on 

molecular ion (which is usually gets by knocking an electron off an organic molecule to form 

a positive ion and usually represented by M+) and provides clean spectra similarly as CI 

does. Moreover, it does not require reagent gases like methane, ammonia and isobutene and 

can be simply used with nitrogen. The Waters Corporation has recently introduced this 

technology coupled to gas chromatography under the trade name APGC-MS. The 

experiment conducted using this novel technology and results will be further discussed in 

the fourth chapter of the thesis.  
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APGC ionization uses nitrogen as make-up gas that flows through the GC interface (≈ 350 

mL/min) and forms plasma with the help of corona discharge needle (2 μA) in the source. 

The plasma ionizes analytes entering into the source (figure 6). In case of charge transfer, 

the plasma reacts directly with analyte molecules and forming M+●. Alternatively, ionization 

can take place indirectly through proton transfer reactions by introducing some moisture in 

the system. The figure 7 also shows proton source as water but methanol or other protonic 

solvent can be used.  It is possible to select between proton transfer and charge transfer in 

APGC by shifting source conditions depending on the chemistry of the target analytes.  

                                                               

 

 

Figure 6 Schematic of APGC source components 
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Figure 7 APGC ionization mechanism 

 

 (Figures 6 and 7 are reproduced by kind permission of Waters Corporation) 

 

Another ionization technique often used in GC-MS is chemical ionization (CI); a soft 

ionization method (like APGC) generates fewer fragments and cleaner spectra of the 

molecules comparatively to EI. In a typical CI experiment ions are generated through the 

analyte collision with ions of reagent gas present (mostly used reagent gas are methane, 

ammonia and isobutane). Different type of the ionizations can be achieved using CI, the 

primary ion formation happens through the charge transfer reaction from plasma to analyte 

molecule which gives M+●, likewise protonation, hydride abstraction can also be possible in 

the CI (Balogh, 2009).  

 

2.3. GC-MS data analysis and annotation  

 

Data generation in GC-MS experiment depends on its size of the experiment. I.e. Typical 

GC-MS metabolomics experiment can produce large amounts data and thus turning the 

data into the results is a big challenge. Usual GC-MS data processing includes peak peaking, 

compound identification and quantification and most of the vendor provided software’s 
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could perform these tasks. Xcalibur© 2.2 (Thermofisher Scientific) and Masslynx© version 4.1 

(Waters Corporation) were extensively used for data processing (chapter 3, 4 & 5). Also 

many GC-MS brands equipped with EI ionization method provide the NIST Mass Spectral 

Search Program© (http://www.nist.gov/srd/nist1a.cfm) as a default software component. 

NIST MS search provides extensive collection of spectra of reference compounds and many 

different library options, the current version of NIST MS database have ≈276248 reference 

spectra in its main EI MS library. It is specially used for the in-silico comparison of unknown 

spectra with library spectra and eventually for compound identification; furthermore this 

library database can be linked with other software for the annotation of large number of 

sample sets.  

 

In case of metabolomics experiments, where large sample data sets needs fast processing 

with some specific tasks to perform like retention time alignment, data normalization, 

statistical evaluation etc. Performing the specialized functions is many times not possible by 

using vendor specific software only. Many online tools/software are available like, XCMS 

(Benton, Wong, Trauger, & Siuzdak, 2008; Smith, Want, O’Maille, Abagyan, Siuzdak, et al., 

2006; Tautenhahn, Patti, Rinehart, & Siuzdak, 2012) (https://xcmsonline.scripps.edu), MZmine 

(http://mzmine.sourceforge.net), MetaboAnalyst  (http://www.metaboanalyst.ca/MetaboAnalyst), Spectconnect 

(http://spectconnect.mit.edu) and MET-IDEA (Broeckling et al. 2006) offers these specialized tasks. 

AMDIS (http://www.amdis.net) is one of the software used for de-convolution of GC-MS data. 

Further statistical methods are also important to understand variation between the data. 

Two methods i.e. unsupervised principal component analysis (PCA) and super-vised partial 

least squares-discriminant analysis (PLS-DA) are widely used in metabolomics studies 

(Arapitsas, Speri, Angeli, Perenzoni, & Mattivi, 2014; Hendriks et al., 2011; Shulaev, Cortes, 

Miller, & Mittler, 2008). PCA is often used to show the most important factors of variation 

defining the data set of study and for the quality control of the experiment. A supervised 

method aims to get useful information from the dataset with an assumed hypothesis, 

enabling prediction of the relationship of the analytical samples in different study groups 

(Hu & Xu, 2013). 

 

 

 

http://www.nist.gov/srd/nist1a.cfm
https://xcmsonline.scripps.edu/
http://mzmine.sourceforge.net/
http://www.metaboanalyst.ca/MetaboAnalyst
http://spectconnect.mit.edu/
http://www.amdis.net/
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2.4. Sample preparation techniques 

 

2.4.1.  Solid-phase microextraction (SPME) 

 

Solid phase microextraction (SPME) is a sample extraction and enrichment technique for 

the chemicals. It was developed in early 90s (Pawliszyn, Pawliszyn, & Pawliszyn, 1997; 

Pawliszyn, 1999, 2012) to address the need for fast, solvent free and applicable in the field 

sample preparation method. Presently it is a well-developed technology, suitable for large 

experiments since it allows the automatization of the analytical protocols, with wide range 

of applications in food chemistry and other relevant areas and offers extraction with 

minimum or no matrix effects of the sample. A typical SPME assembly consists of polymeric 

SPME fiber placed inside the hollow needle and plunger for the movement of fiber (figure 8)  

 

 

 

Figure 8 SPME assembly with fiber 

 

SPME is based on the partition equilibrium of target analytes between a polymeric 

stationary phase (coated fused silica fiber) and the sample matrix. In order to extract 

analytes SPME does not require organic solvents. The transport of analytes from the matrix 

into the coating begins when the coated fiber has been placed in contact with the sample.  

The equilibrium conditions can be described as,  

 

 

 

 

n =
𝐾𝑓𝑉𝑓𝑉𝑠𝐶𝑜
𝐾𝑓𝑠𝑉𝑓+𝑉𝑠

    ____    (Pawliszyn 1999) 
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where, n is the amount extracted by the coating, KfS. is a fiber coating/sample matrix 

distribution constant, Vf is the fiber coating volume, VS is the sample volume, C° is the initial 

concentration of a given analyte in the sample. The microextraction process is complete 

when the analytes concentration has reached distribution equilibrium between the sample 

matrix and the fiber coating. 

 

We have used headspace solid-phase microextraction (HS-SPME) for grape volatiles 

extraction in the experiment reported in chapter 3. A typical HS-SPME experiment consists 

of a two main steps; first is adsorption and second is desorption. Volatiles in the sample are 

released into the headspace of the vial by heating the sample to the desired temperature and 

later they are adsorbed on SPME fiber (figure 9). After adsorption, the fiber is inserted onto 

the heated GC inlet where pre-adsorbed volatiles are released directly into the 

chromatographic column, and subsequently separated by GC. Several types of different 

fibers are now available on the market depending on the nature of analyte; many 

applications of SPME were reported in the field of fruit chemistry and especially for fruit 

aroma analysis. Volatiles in grape and wine are extensively studied by using SPME over the 

years (Fedrizzi et al., 2012; Nasi, Ferranti, Amato, & Chianese, 2008; Ong & Acree, 1999; 

Risticevic, Deell, & Pawliszyn, 2012; Sánchez-Palomo, Díaz-Maroto, & Pérez-Coello, 2005; 

Yang et al., 2009).  
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Figure 9 HS-SPME sampling mechanism 

 

2.4.2.  Solid phase extraction (SPE)  

 

 

Figure 10 Solid phase extraction experiment 
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Solid phase extraction (SPE) is a popular sample preparation technique very similar to 

classical column chromatography method. It is mainly used for the sample purification 

and/or for the extraction of compounds. A typical syringe shaped SPE cartridge contains a 

sorbent particles and chromatographic phase packed in it. SPE prominently deals with 

liquid samples; a typical SPE workflow (figure 10) includes steps like conditioning, sample 

loading and extraction. In conditioning step, the chromatographic particles in the cartridge 

were activated by solvents (done by the methanol followed by water in our experiment) it 

also removes small air in the cartridges that makes further steps easier. Next step is sample 

loading, where liquid sample is loaded onto the cartridge and passed through by applying 

vacuum or pressure. In figure 10 sample loading is displayed by orange colored cartridge 

where active analytes in red and green color are being trapped in the chromatographic 

phase. In next step the set of non-polar analytes (red color) is eluted with choice of organic 

solvent and then rest of polar metabolites (green) were eluted with polar solvent.  

 

In the experiment (chapter 4), we have used Isolute ENV+ (1 g, 6 mL) cartridges for the 

extraction of free and glycosidically conjugated volatiles from the grapes. Many studies 

(Baek & Cadwallader, 1999; Boido et al., 2003; Metafa & Economou, 2012; Vrhovsek et al., 

2014) reported the use and applications of SPE in grape aroma analysis. This technique is 

also used for sample simplification, matrix effect reduction, fractionation and trace 

components concentration.    
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3. Comprehensive mapping of volatile organic 

compounds in grapes 
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3.1. Introduction 

 

Grape is one of the oldest fruit to be cultivated by the humankind and today it is amongst 

most extensively produced and consumed fruit in the world. Currently about ≈20970, 

cultivars registered globally (Vitis international variety catalogue, http://www.vivc.de). In 

the year 2013 Grape ranked 3rd highest produced fruit worldwide following to apple and 

banana with 77 million tonnes production and about 7.1 million Ha area under cultivation. 

Moreover, in the same year totally 27.4 million tonnes of grape wine was produced 

worldwide (FAOSTAT 2013, http://faostat3.fao.org). Increasing consumption of grape and 

wine over the years places grape as an economically important fruit and the development of 

new grape varieties will play a very crucial role in the growing need of the consumers of 

grape and wine. Moreover, new varieties with consistent production of balanced and 

flavorful berries are always been an interest to the community of grape growers and 

oenologists. Prior information on the quality of grape (genetic background, polyphenols, 

sugar, disease resistance and aroma profile) can make great impact on the breeding of new 

grape varieties. Furthermore, additional information on these quality parameters can aid 

grape growers in optimal selection of harvest plans and other agricultural practices.  

 

VOCs in grape are one of the important factors that determine the aroma based varietal 

characteristics and are crucial part the flavor of grape and its other processed products like 

wine, raisin etc. For many years VOCs been extensively studied through different studies 

where hundreds of compounds in grape and wine were identified (Anthony L. Robinson et 

al., 2013, 2014; Schreier, Drawert, & Junker, 1976). Synthesis of volatile organic compounds in 

grape occur through different biosynthetic pathways which are mainly depends on its 

genetic characters. In addition to grape derived compounds, many others are introduced 

through the process of vinification (including pressing, fermentation, ageing) in the case of 

wine. The complex profile of these compounds gives unique characteristic aroma to grape 

and its wine.   

 

Metabolomics is an emerging field in the biology and chemistry that offers a valuable tool 

for the study of multiple classes of plant secondary metabolites on large scale. Studies in 

recent years have demonstrated different metabolomics approaches to understand different 

http://www.vivc.de/
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molecular mechanisms in the plant (Cramer et al., 2007; Figueiredo et al., 2008; Flamini et 

al., 2013; Schauer, Zamir, & Fernie, 2005; Jianqiang Song, Shellie, Wang, & Qian, 2012). 

Similarly, several studies were also reported using different metabolomics profiling methods 

in grapes (Figueiredo et al., 2008; Gil et al., 2013; Pacifico et al., 2011; Son et al., 2009). 

Figueiredo et al. 2008 described transcriptional and metabolomics profiling of grape for 

understanding possible innate resistance against pathogenic fungi. Recent study by 

Vrhovsek and co-workers (Vrhovsek et al., 2014) proposed a targeted metabolomics profiling 

for the quantitation of multiple volatiles in grape.  

 

At present genomes of the different fruits like grape (Grimplet et al., 2012; Jaillon et al., 2007; 

Velasco et al., 2007), apple (Velasco et al., 2010) and strawberry (Shulaev et al., 2011) are 

available and continuous advancement in the field of genomics could reveal many more fruit 

genomes in the near future and as suggested and cited by Oksman-Caldentey et al. 

(Oksman-Caldentey & Saito, 2005)  

 

 

 

Metabolic profiling of the volatile aroma compounds in large selection of grape genotypes 

through the state-of-the-art methodology was performed in this experiment. The database 

of compounds identified in selected grape varieties was created, which will be further 

combined to the grape metabolome database of the.   

 

3.2.   Material and methods 

 

3.2.1. Sample collection  

 

Diverse collection of grape genotypes representing different species, colors and genetic 

characters was selected for the experiment (table 3). The Fondazione Edmund Mach, San 

Spectacular advances in plant metabolomics offer new possibilities together with the aid 

of systems biology, to explore the extraordinary complexity of the plant biochemical 

capacity. State-of-the art genomics tools can be combined with metabolic profiling to 

identify key genes that could be engineered for the production of improved crop plants 
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Michelle all’Adige (TN) Italy is one of the leading institutes in the world in the field of grape 

and wine research and holds broad range of ampelographic collection of grapes. All the 

grape varieties included in this chapter were obtained from the same collection. Healthy 

grape berries were sampled in four consecutive vintages (2007-2010) at technological 

maturity, where technological maturity is defined as the content of soluble solids in the 

must corresponding to 18° Brix. The berries were collected from different vines and different 

bunches of each vine. Approximately 500 g of berries from three different wines were 

collected. Table 1 indicates the list of the grape varieties included in the study.  

 

Girelli F3 (30, 53, 66, 104, Pn x Me) and IASMA ECO 3 varieties in the study were crossings of 

Muscat Ottonel and Malvasia di Candia; 41B is a cross of Chasselas and Vitis berlandieri; 

Kober 5 BB is a cross of Vitis berlandieri planchon and Vitis riparia michaux; Isabella is a 

cross of Vitis labrusca and Vitis vinifera.  

 

 

 

 

http://www.vivc.de/datasheet/dataResult.php?data=13606
http://www.vivc.de/datasheet/dataResult.php?data=13584
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Table 2 List of the grape varieties included in the study (Chapter 3) 

 

 

Variety CODE 
Variety number 

(http://www.vivc.de/)  

Colour 
Vintage Year 

Species 

2007 2008 2009 2010 

1 Aglianico AGL 121  RED I I I I Vitis vinifera 

2 Aleatico ALE 259 RED I I I I Vitis vinifera 

3 Alicante bouchet ALB 304 RED I I I I Vitis vinifera 

4 Ancncellotta ANC 447 RED I I I I Vitis vinifera 

5 Inzolia INZ 492 White I I I I Vitis vinifera 

6 Bruni 45* BAR NA RED I I I I Vitis vinifera 

7 Grignolino GRI 1283  RED I I I I Vitis vinifera 

8 Vernaccia trentina VEN 1329  White I I I I Vitis vinifera 

9 Franconia FRN 1459 RED I I I I Vitis vinifera 

10 Sangiovese SAN 1709  RED I I I I Vitis vinifera 

11 Cabernet franc CAF 1927  RED I I I I Vitis vinifera 

12 Cabernet sauvignon CAS 1929  RED I I I I Vitis vinifera 

13 Nero d'Avola NED 1986 RED I I I I Vitis vinifera 

14 Carmenere CAR 2109  RED I I I I Vitis vinifera 

15 Tannat TAN 2257  RED I I I I Vitis vinifera 

16 Cataratto CAT 2341  White I I I I Vitis vinifera 

17 Cesanese CES 2398  RED I I I I Vitis vinifera 

18 Chardonnay CHA 2455 White NI I I I Vitis vinifera 

19 Ciliegiolo CIG 2660 RED I I I I Vitis vinifera 

20 Corvina COR 2863 RED I I NI I Vitis vinifera 

21 Croatina CRO 3251  RED I I I I Vitis vinifera 

22 Riesling RIE 10077  White I I I I Vitis vinifera 

23 Dolcetto DOL 3626  RED I I NI I Vitis vinifera 

24 Fiano FIA 4124 White I I I I Vitis vinifera 

25 Enantio ENA 4171  RED I I I I Vitis vinifera 

26 Frappato FRP 4225  RED NI I I I Vitis vinifera 

http://www.vivc.de/
http://www.vivc.de/
http://www.vivc.de/datasheet/dataResult.php?data=121
http://www.vivc.de/datasheet/dataResult.php?data=259
http://www.vivc.de/datasheet/dataResult.php?data=304
http://www.vivc.de/datasheet/dataResult.php?data=447
http://www.vivc.de/datasheet/dataResult.php?data=492
http://www.vivc.de/datasheet/dataResult.php?data=1283
http://www.vivc.de/datasheet/dataResult.php?data=1329
http://www.vivc.de/datasheet/dataResult.php?data=1459
http://www.vivc.de/datasheet/dataResult.php?data=1709
http://www.vivc.de/datasheet/dataResult.php?data=1927
http://www.vivc.de/datasheet/dataResult.php?data=1929
http://www.vivc.de/datasheet/dataResult.php?data=1986
http://www.vivc.de/datasheet/dataResult.php?data=2109
http://www.vivc.de/datasheet/dataResult.php?data=12257
http://www.vivc.de/datasheet/dataResult.php?data=2341
http://www.vivc.de/datasheet/dataResult.php?data=2398
http://www.vivc.de/datasheet/dataResult.php?data=2455
http://www.vivc.de/datasheet/dataResult.php?data=2660
http://www.vivc.de/datasheet/dataResult.php?data=2863
http://www.vivc.de/datasheet/dataResult.php?data=3251
http://www.vivc.de/datasheet/dataResult.php?data=10077
http://www.vivc.de/datasheet/dataResult.php?data=3626
http://www.vivc.de/datasheet/dataResult.php?data=4124
http://www.vivc.de/datasheet/dataResult.php?data=4171
http://www.vivc.de/datasheet/dataResult.php?data=4225
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27 Gaglioppo GAL 4306  RED I I I I Vitis vinifera 

28 Garganega GAR 4419 White I I I I Vitis vinifera 

29 Cannonau CAN 4461 RED I I I I Vitis vinifera 

30 Bovale Sardo BOV 4935  RED I I I I Vitis vinifera 

31 Grechetto GRH 4966 White I I I I Vitis vinifera 

32 Greco de tufo GRT 4970 White I I I I Vitis vinifera 

33 Groppello Gentile GRO 5078  RED I I I I Vitis vinifera 

34 Italia ITA 5582 White NI I I I Vitis vinifera 

35 Lagrein  LGR 6666 RED I I I I Vitis vinifera 

36 Lambrusco olive LAO 6698 RED NI I I I Vitis vinifera 

37 Lambrusco Salamino LAS 6701  RED I I I I Vitis vinifera 

38 Malvasia Puntinata MAP 7256  White I I I I Vitis vinifera 

39 Malvasia nera di lecce MNL 7273  RED I I I I Vitis vinifera 

40 Incrocio Manzoni INM 7360 White NI I I I Vitis vinifera 

41 Marsanne MAR 7434 White I I I I Vitis vinifera 

42 Marzemino MAZ 7463 RED I I I I Vitis vinifera 

43 Merlot MER 7657 RED I I I I Vitis vinifera 

44 Molinara MOL 7899 Pink I I I I Vitis vinifera 

45 Montagna MON 7937  White I I I I Vitis vinifera 

46 Primitivo PRI 7949 RED I I I I Vitis vinifera 

47 Moscato Rosa MOR 8057  Pink NI I I I Vitis vinifera 

48 Moscato ottonel MOO 8243  White I I I I Vitis vinifera 

49 Muscat Rouge de Madere MRM 8249 Pink I I I I Vitis vinifera 

50 Muskat vostochny B19 8298  RED NI NI I I Vitis vinifera 

51 Nebbiolo NBB 8417  RED I I I I Vitis vinifera 

52 Negroamaro NEG 8456 RED I I I I Vitis vinifera 

53 Nosiola NOS 8606  White I I I I Vitis vinifera 

54 Ortrugo ORT 8813  White I I I I Vitis vinifera 

55 Visentiona VIS 9057 RED I I I I Vitis vinifera 

56 Perla di Csaba PER 9166  White I I NI I Vitis vinifera 

57 Pedirosso B37 9239  RED NI NI I I Vitis vinifera 

58 Pignoletto PIG 9254 White I I I I Vitis vinifera 

59 Pinot gris PNG 9275 Pink I I I I Vitis vinifera 

http://www.vivc.de/datasheet/dataResult.php?data=4306
http://www.vivc.de/datasheet/dataResult.php?data=4419
http://www.vivc.de/datasheet/dataResult.php?data=4461
http://www.vivc.de/datasheet/dataResult.php?data=4935
http://www.vivc.de/datasheet/dataResult.php?data=4966
http://www.vivc.de/datasheet/dataResult.php?data=4970
http://www.vivc.de/datasheet/dataResult.php?data=5078
http://www.vivc.de/datasheet/dataResult.php?data=5582
http://www.vivc.de/datasheet/dataResult.php?data=6666
http://www.vivc.de/datasheet/dataResult.php?data=6698
http://www.vivc.de/datasheet/dataResult.php?data=6701
http://www.vivc.de/datasheet/dataResult.php?data=7256
http://www.vivc.de/datasheet/dataResult.php?data=7273
http://www.vivc.de/datasheet/dataResult.php?data=7360
http://www.vivc.de/datasheet/dataResult.php?data=7434
http://www.vivc.de/datasheet/dataResult.php?data=7463
http://www.vivc.de/datasheet/dataResult.php?data=7657
http://www.vivc.de/datasheet/dataResult.php?data=7899
http://www.vivc.de/datasheet/dataResult.php?data=7937
http://www.vivc.de/datasheet/dataResult.php?data=7949
http://www.vivc.de/datasheet/dataResult.php?data=8057
http://www.vivc.de/datasheet/dataResult.php?data=8243
http://www.vivc.de/datasheet/dataResult.php?data=8249
http://www.vivc.de/datasheet/dataResult.php?data=8298
http://www.vivc.de/datasheet/dataResult.php?data=8417
http://www.vivc.de/datasheet/dataResult.php?data=8456
http://www.vivc.de/datasheet/dataResult.php?data=8606
http://www.vivc.de/datasheet/dataResult.php?data=8813
http://www.vivc.de/datasheet/dataResult.php?data=9057
http://www.vivc.de/datasheet/dataResult.php?data=9166
http://www.vivc.de/datasheet/dataResult.php?data=9239
http://www.vivc.de/datasheet/dataResult.php?data=9254
http://www.vivc.de/datasheet/dataResult.php?data=9275
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60 Pinot noir PNN 9279  RED I I I I Vitis vinifera 

61 Pinotage PIN 9286  RED I I NI I Vitis vinifera 

62 Primitivo di giola PRG 9703  RED I I I I Vitis vinifera 

63 Prosecco PRO 9741  White I I I I Vitis vinifera 

64 Raboso del plave RAB 9864  RED I I I I Vitis vinifera 

65 Rebo REB 9961 RED I I I I Vitis vinifera 

66 Refosco REF 9987 RED I I I I Vitis vinifera 

67 Ribolla gialla RIB 10054  White I I I I Vitis vinifera 

68 Rondinella RON 10189  RED I I I I Vitis vinifera 

69 Roussanne ROU 10258  White I I I I Vitis vinifera 

70 Xarello_I SAG 13270  White I I I I Vitis vinifera 

71 Saint Laurent SAL 10470  RED I I I I Vitis vinifera 

72 Montepulciano MOT 10680  RED I I I I Vitis vinifera 

73 Saperavi SAP 10708  RED NI NI NI I Vitis vinifera 

74 Sauvignon blanc SAU 10790  White NI I I I Vitis vinifera 

75 Schiava grossa SCG 10823  RED I I I I Vitis vinifera 

76 Schiava lombarda SCL 10825  RED I I I I Vitis vinifera 

77 Schioppettino SCH 10830  RED I I I I Vitis vinifera 

78 Syrah SYR 11748  RED I I I I Vitis vinifera 

79 Tarrango TAR 12267  RED I I I I Vitis vinifera 

80 Tempranillo TEM 12350  RED I I I I Vitis vinifera 

81 Teroldego TER 12371  RED I I I I Vitis vinifera 

82 Gewürztraminer GWT 12609  Pink I I I I Vitis vinifera 

83 Uva di troila UVT 12819  RED I I I I Vitis vinifera 

84 Peverella PEV 12963  White I I I I Vitis vinifera 

85 Verdicchio marche VEM 12963  White I I I I Vitis vinifera 

86 Verduzzo friulano VEF 12976  White I I I I Vitis vinifera 

87 Verduzzo Trevigiano VET 12977  White NI I I I Vitis vinifera 

88 Viogner VIO 13106 White I I I I Vitis vinifera 

89 Xarello XAR 13270  White I NI I I Vitis vinifera 

90 Xinomavro XIN 13284  RED NI I I I Vitis vinifera 

91 Zweigelt ZWE 13484  RED I I I I Vitis vinifera 

92 Pinot tete de negre PNT 15091  RED I I I I Vitis vinifera 

http://www.vivc.de/datasheet/dataResult.php?data=9279
http://www.vivc.de/datasheet/dataResult.php?data=9286
http://www.vivc.de/datasheet/dataResult.php?data=9703
http://www.vivc.de/datasheet/dataResult.php?data=9741
http://www.vivc.de/datasheet/dataResult.php?data=9864
http://www.vivc.de/datasheet/dataResult.php?data=9961
http://www.vivc.de/datasheet/dataResult.php?data=9987
http://www.vivc.de/datasheet/dataResult.php?data=10054
http://www.vivc.de/datasheet/dataResult.php?data=10189
http://www.vivc.de/datasheet/dataResult.php?data=10258
http://www.vivc.de/datasheet/dataResult.php?data=13270
http://www.vivc.de/datasheet/dataResult.php?data=10470
http://www.vivc.de/datasheet/dataResult.php?data=10680
http://www.vivc.de/datasheet/dataResult.php?data=10708
http://www.vivc.de/datasheet/dataResult.php?data=10790
http://www.vivc.de/datasheet/dataResult.php?data=10823
http://www.vivc.de/datasheet/dataResult.php?data=10825
http://www.vivc.de/datasheet/dataResult.php?data=10830
http://www.vivc.de/datasheet/dataResult.php?data=11748
http://www.vivc.de/datasheet/dataResult.php?data=12267
http://www.vivc.de/datasheet/dataResult.php?data=12350
http://www.vivc.de/datasheet/dataResult.php?data=12371
http://www.vivc.de/datasheet/dataResult.php?data=12609
http://www.vivc.de/datasheet/dataResult.php?data=12819
http://www.vivc.de/datasheet/dataResult.php?data=12963
http://www.vivc.de/datasheet/dataResult.php?data=12963
http://www.vivc.de/datasheet/dataResult.php?data=12976
http://www.vivc.de/datasheet/dataResult.php?data=12977
http://www.vivc.de/datasheet/dataResult.php?data=13270
http://www.vivc.de/datasheet/dataResult.php?data=13284
http://www.vivc.de/datasheet/dataResult.php?data=13484
http://www.vivc.de/datasheet/dataResult.php?data=15091
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93 Kozma palne muskotaly KPM 15732  White I I I I Vitis vinifera 

94 Lagarino bianco  LAG 20366  RED I I I I Vitis vinifera 

95 Verdealbara VER 22363  White I I I I Vitis vinifera 

96 Casetta CAE 23015  RED I I I I Vitis vinifera 

97 Malvasia bianca di candia MAC 23555  White I I I I Vitis vinifera 

98 Biancaccia BAC 40336  White I I I I Vitis vinifera 

99 Bianera BAN 40338  White I I I I Vitis vinifera 

100 Rosetta di montagna  ROS 40906  Pink I I I I Vitis vinifera 

101 Valderbara VAL 40920  RED I NI I I Vitis vinifera 

102 Vernaccia del Cavalot VEC 40924 White I I I I Vitis vinifera 

103 Vattara O biancazza VTT ITA362-2447 White I NI I I Vitis vinifera 

104 Gewürztraminer giaroni GWG 12609  Pink NI NI I NI Vitis vinifera 

105 Vernazzola VEA P11#2453  White I I I I Vitis vinifera 

106 Vitis Andersoni VAN 13491  RED I I I I non Vinifera 

107 Vitis arizonica texas VAT 13493  RED I I I NI non Vinifera 

108 Vitis californica VCA 13506  RED I I I I non Vinifera 

109 Vitis cinerea VCI 13515  RED I I I I non Vinifera 

110 Vitis slavini VSL 13596  RED I NI NI NI non Vinifera 

111 Vitis champini VCH 16423 RED I I I I non Vinifera 

112 Vitis riparia VRI NA RED I NI NI NI non Vinifera 

113 Isabella ISA 5560 RED NI I I I Interspecific crossing 

114 Kober 5 BB KBB 6313 RED I I I I Interspecific crossing 

115 Millardet et grasset 41 B 41B 7736 RED I I I I Interspecific crossing 

116 Nero NER 14013  RED I I I I Interspecific crossing 

117 Nera dei baisi NEB 40890  RED I I I I Interspecific crossing 

118 Girelli Pn x Me GPM NA RED NI I I I Interspecific crossing 

119 Girelli F3-P104 G04 NA White I I I I Interspecific crossing 

120 Girelli F3-P30 G30 NA White NI I I I Interspecific crossing 

121 IASMA ECO 3 G51 NA White I I I I Interspecific crossing 

122 Girelli F3-P63 G63 NA White NI I I I Interspecific crossing 

123 Girelli F3-P66 G66 NA White NI I I I Interspecific crossing 

124 Girelli F3-P73 G73 NA White NI I I I Interspecific crossing 

*I-Included varieties, *NI-Not included varieties, Accession names and numbers for Vernazzola & Vattara O biancazza are obtained from http://www.eu-vitis.de/ 

http://www.vivc.de/datasheet/dataResult.php?data=15732
http://www.vivc.de/datasheet/dataResult.php?data=6666
http://www.vivc.de/datasheet/dataResult.php?data=22363
http://www.vivc.de/datasheet/dataResult.php?data=23015
http://www.vivc.de/datasheet/dataResult.php?data=23555
http://www.vivc.de/datasheet/dataResult.php?data=40336
http://www.vivc.de/datasheet/dataResult.php?data=40338
http://www.vivc.de/datasheet/dataResult.php?data=40906
http://www.vivc.de/datasheet/dataResult.php?data=40920
http://www.vivc.de/datasheet/dataResult.php?data=40924
http://www.eu-vitis.de/datasheet/accDataResult.php?data=ITA362-2447&PHPSESSID=gchmsbtrtqkzdo
http://www.vivc.de/datasheet/dataResult.php?data=12609
http://www.eu-vitis.de/datasheet/accAmpelographicData.php?data=P11%232453%2F%2F1999
http://www.vivc.de/datasheet/dataResult.php?data=13491
http://www.vivc.de/datasheet/dataResult.php?data=13493
http://www.vivc.de/datasheet/dataResult.php?data=13506
http://www.vivc.de/datasheet/dataResult.php?data=13515
http://www.vivc.de/datasheet/dataResult.php?data=13596
http://www.vivc.de/datasheet/dataResult.php?data=16423
http://www.vivc.de/datasheet/dataResult.php?data=5560
http://www.vivc.de/datasheet/dataResult.php?data=14013
http://www.vivc.de/datasheet/dataResult.php?data=40890
http://www.eu-vitis.de/
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3.2.2. Grape powders   

 

The grape berries were ground using analytical mill (IKA A11) under liquid nitrogen and 

stored at -80○C. For pooled sample, berries of selected grapes varieties (Gewürztraminer, 

Moscato Ottonel, Moscato Rosa, Riesling, Malvasia bianca di Candia, Cabernet sauvignon, 

Merlot, Sangiovese and Pinot gris) were mixed and powdered together and also stored at -

80○C.  

 

3.2.3. Chemicals and reagents 

 

Magnesium sulfate, ascorbic acid and citric acid were purchased from by Sigma-Adrich 

(Milan, Italy). The water used was purified in a MilliQ device (Millipore, Bedford, MA; USA). 

D7-benzyl alcohol, d3-linalool and d11-ethyl hexanoate were purchased from Chemical 

Research 2000 (Rome, Italy).  

 

3.2.4. Internal standards 

 

A mixture of deuterated grape volatile compounds containing benzyl alcohol-d7 (24.7 

mg/L), linalool-d3 (14.5 mg/L) and ethyl hexanoate-D11 (50 mg/L) was used as internal 

standards in the experiment. The retention times of internal standards are as follows, ethyl 

hexanoate-D11 (9.74 min), linalool-d3 (16.89min) and benzyl alcohol-d7 (22.86 min). Also a 

mixture of 18 pure standard grape aroma compounds was used in batch analysis to monitor 

instrumental stability.  

 

3.2.5. Sample preparation 

 

For the analysis, water (7 mL) and  ascorbic acid (15 mg), citric acid (15 mg) and sodium 

azide (50 mL of a 1000 mg/L solution) were added as preservatives in the vial containing 4 g 

of sample grape powder and MgSO4 (2 g). All preservatives were added to avoid any 

microbiological/enzymatic reactions  during storage of the sample at 4○C (Fedrizzi et al., 

2012). An internal standard (50 µL) was also added to each sample. Four different samples 
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were prepared containing real sample, QC sample, Blank and Std. mixture (table 2) for the 

batch analysis.  

 

Table 3 Sample types in the batch experiment 

 

Ingredient Volume 
Sample type 

Real Sample QC Sample Blank Std. Mix 

Sample  Powder 4 g Yes -- -- -- 

Pooled/QC powder 4 g -- Yes -- -- 

Water 7 mL Yes Yes Yes Yes 

Ascorbic acid 15 mg Yes Yes Yes Yes 

Citric acid 15 mg Yes Yes Yes Yes 

Sodium azide 50 µL Yes Yes Yes Yes 

MgSO4 2 g Yes Yes Yes Yes 

Internal standard 50 µL Yes Yes Yes Yes 

Standard mixture 50 µL -- -- -- Yes 

 

 

3.2.6. Headspace solid phase microextraction (HS-SMPE)  

 

DVB/CAR/PDMS, 2 cm 50/30µm (Supelco, Sigma-Aldrich, Milan, Italy) SPME fibers were 

used (Fedrizzi et al., 2012)for the extraction of volatiles. The volatiles were extracted for 40 

min at 60°C with constant stirring at 450 rpm and then the analytes from fiber were 

desorbed into GC inlet at 250°C for 2 min in splitless mode. Once sample was prepared, the 

sample vial was kept in the PAL combi-xt (CTC, Zwingen, Switzerland) autosampler with 

controlled temperature of 4○C. The standing time of the samples in the autosampler was 

maintained not to exceed limit of 8 hours to prevent the further chemical reactions in the 

sampling vial.  

 

3.2.7.  GC-MS analysis 

 

The GC-MS analysis was performed by using Thermo Trace GC Ultra gas chromatograph 

coupled to a Thermo Quantum XLS mass spectrometer (Thermo Scientific, Milan, Italy). 

After SPME extraction, the analytes were desorbed from fiber onto the GC with inlet 
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temperature of 250°C in splitless mode with a narrow liner (0.75mm id, Thermo, Milan, 

Italy). Chromatographic separation was achieved by ZB-WAX 30 m long polar column with 

0.25 mm inner diameter and film thickness of 0.25 µm (Phenomenex, Castel Maggiore, 

Italy). GC oven temperature was programed from 40°C with hold of 4 min and then ramped 

with 6°C/min up to 250°C with final hold of 5 min. Helium was used as carrier gas in 

constant flow mode with the rate of 1.2 mL/min at.  Mass spectrometer was operated in 

positive mode electron ionization (70eV) with full scan mode at a scan range of 30-350 

Dalton. MS transfer line and ion source was set at 250°C. The instrument was operated and 

controlled by Xcalibur 2.1.0 software. Figure 11 shows the total ion chromatogram (TIC) of 

one of the grape samples analyzed under above conditions.  

 

 

Figure 11 TIC of Kozma Palne Muscotaly 

 

3.2.8. In-house database for the volatile organic compounds  

 

For the annotation, an in-house database of the volatile organic compounds in grape was 

created at the institute. Several pure reference standards of the grape volatiles (≥350) were 

analyzed (in mixture or individually) by maintaining the same instrumental parameters as 

for samples. Different parameters for each compound like name, retention time and CAS 

number were recorded to create a multidimensional dataset of the compounds. Instrument 

generated raw files of the standards analysis were converted into the computable document 

files (CDF) for the further data mining. Later the information of each compound and 
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corresponding CDF files were used to generate pseudospectra of the compounds. The 

pseudospectra were generated based on manually identified retention time of the pure 

compounds and further validated with Wiley/NIST 08 database; finally, they are stored in 

the in-house library database. This database is further used for the compound annotation 

using MetaMS pipeline (Wehrens, Weingart, & Mattivi, 2014).  

 

3.2.9. Annotation and quantitation 

 

The compound  annotation and identification was done exclusively using MetaMS pipeline 

(Wehrens et al., 2014). If two orthogonal properties, pseudospectra and retention time of the 

standard database compound matches with pseudospectra and retention time of the sample 

then it is considered as the level 1 identification, i.e. complete annotation. The quantification 

of the compounds is achieved by comparing the ion intensities of the pseudospectra in the 

experimental data to the ion intensities of the pseudospectra in the standard database. In 

order to obtain reliable and robust quantifications as many ions as possible are considered 

within one pseudospectra. The relative intensities values of the pseudospectra in the real 

samples to the patterns in the in-house database were obtained by using least-trimmed-

squares regression (Wehrens et al., 2014). 

 

3.2.10. Data analysis  

 

To obtain an more illustrative results for the each varieties, average of intensity values of  

four vintages were considered for the statistical analysis (Boido et al., 2003). Multivariate 

statistical analysis was performed on log transformed data (Farneti et al., 2015; Tarr et al., 

2013),  figure 13 & 14 were generated using SIMCA P+ (version 12.0, Metrics) and figure 16 was 

generated using R 3.0.2 internal statistical functions and the Package diversitree (version 0.9-

4)(Farneti et al., 2015; Fitzjohn, 2012). Bubble graph (figure 15) was generated using plotly 

online data analysis tool (https://plot.ly/).  

 

 

 

 

https://plot.ly/
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3.3. Results 

 

Using the automated pipeline, we have successfully identified total 117 compounds at level 1 

collectively in the all selected varieties and vintages. In order to provide the most robust 

results, the automatic identification was also verified manually in not less than 3 

independent samples here. The list of all the compounds is given here in table 4.  

 

Table 4 List of the compounds identified (Chapter 3) 

 

No.  Name Class 
Molecular 

Formula 

Monoisotopic 

mass 

Retention 

time 
ChemSpider ID 

1 Acetic acid Acid C2H4O2  60.02 14.87 171 

2 1-Decanol Alcohol C10H22O  158.17 17.28 7882 

3 1-Hexanol Alcohol C6H14O 102.10 12.87 7812 

4 1-Nonanol Alcohol C9H20O  144.15 19.59 8574 

5 1-Octanol Alcohol C8H18O  130.14 17.28 932 

6 1-Octen-3-ol Alcohol C8H16O  128.12 14.91 17778 

7 1-Pentanol Alcohol C5H12O  88.09 9.39 6040 

8 2-Phenoxyethanol Alcohol C8H10O2  138.07 27.39 13848467 

9 2-Phenylethanol Alcohol C8H10O  122.07 23.70 5830 

10 3-Methyl-1-butanol Alcohol C5H12O  88.09 9.08 29000 

11 5-Hexenol Alcohol C6H12O  100.09 14.00 63156 

12 6-Methyl-5-hepten-2-ol Alcohol C8H16O  128.12 15.37 19533 

13 Benzyl alcohol Alcohol C7H8O  108.06 23.11 13860335 

14 E-2-Hexenol Alcohol C6H12O  100.09 14.03 4476685 

15 E-3-Hexen-1-ol Alcohol C6H12O  100.09 13.09 4447565 

16 Z-3-Hexenol Alcohol C6H12O 100.09 13.55 21105914 

17 5-Hydroxymethyl-2-

furaldehyde 

Aldehyde C6H6O3 126.03 32.70 207215 

18 5-Methylfurfural Aldehyde C6H6O2 110.04 17.60 11600 

19 Benzaldehyde Aldehyde C7H6O 106.04 16.52 235 

20 E-2-Heptenal Aldehyde C7H12O  112.09 12.33 4446437 

21 E-2-Hexenal Aldehyde C6H10O  98.07 9.43 4444608 

22 E-2-Nonenal Aldehyde C9H16O  140.12 16.82 4446456 

23 E-2-Octenal Aldehyde C8H14O  126.10 14.61 4446445 

24 E-2-Pentenal Aldehyde C5H8O 84.06 7.44 4516892 

25 EE-2,4-Heptadienal Aldehyde C7H10O  110.07 15.87 19131 

26 EE-2,4-Hexadienal Aldehyde C6H8O 96.06 13.86 553167 

27 Furfural Aldehyde C5H4O2 96.02 15.14 13863629 

28 Heptanal Aldehyde C7H14O  114.10 8.74 7838 

29 Hexanal Aldehyde C6H12O  100.09 6.09 5949 

30 Phenyl acetaldehyde Aldehyde C8H8O  120.06 18.94 13876539 

31 Z-2-Nonenal Aldehyde C9H16O 140.12 16.82 4510945 

32 beta-Ionol C13-Norisoprenoid C13H22O  194.17 24.51 4523692 

33 Theaspirane C13-Norisoprenoid C13H22O  194.17 16.23 55810 

http://www.chemspider.com/Molecular-Formula/C2H4O2
http://www.chemspider.com/Molecular-Formula/C10H22O
http://www.chemspider.com/Molecular-Formula/C9H20O
http://www.chemspider.com/Molecular-Formula/C8H18O
http://www.chemspider.com/Molecular-Formula/C8H16O
http://www.chemspider.com/Molecular-Formula/C5H12O
http://www.chemspider.com/Molecular-Formula/C8H10O2
http://www.chemspider.com/Molecular-Formula/C8H10O
http://www.chemspider.com/Molecular-Formula/C5H12O
http://www.chemspider.com/Molecular-Formula/C6H12O
http://www.chemspider.com/Molecular-Formula/C8H16O
http://www.chemspider.com/Molecular-Formula/C7H8O
http://www.chemspider.com/Molecular-Formula/C6H12O
http://www.chemspider.com/Molecular-Formula/C6H12O
http://www.chemspider.com/Molecular-Formula/C6H6O3
http://www.chemspider.com/Molecular-Formula/C6H6O2
http://www.chemspider.com/Molecular-Formula/C7H6O
http://www.chemspider.com/Molecular-Formula/C7H12O
http://www.chemspider.com/Molecular-Formula/C6H10O
http://www.chemspider.com/Molecular-Formula/C9H16O
http://www.chemspider.com/Molecular-Formula/C8H14O
http://www.chemspider.com/Molecular-Formula/C5H8O
http://www.chemspider.com/Molecular-Formula/C7H10O
http://www.chemspider.com/Molecular-Formula/C6H8O
http://www.chemspider.com/Molecular-Formula/C5H4O2
http://www.chemspider.com/Molecular-Formula/C7H14O
http://www.chemspider.com/Molecular-Formula/C6H12O
http://www.chemspider.com/Molecular-Formula/C8H8O
http://www.chemspider.com/Molecular-Formula/C13H22O
http://www.chemspider.com/Molecular-Formula/C13H22O
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34 Sclareol_I Diterpene C20H36O2  308.27 30.70 143282 

35 Sclareol_II Diterpene C20H36O2  308.27 30.91 143282 

36 Allyl propionate Ester C6H10O2  114.07 6.70 55257 

37 Benzyl benzoate  Ester C14H12O2  212.08 34.36 13856959 

38 cis-3-Hexenyl acetate Ester C8H14O2  142.10 12.12 4515742 

39 Ethyl acetate Ester C4H8O2  88.05 2.64 8525 

40 Ethyl anthranilate Ester C9H11NO2  165.08 29.47 21106112 

41 Ethyl butyrate Ester C6H12O2  116.08 5.00 7475 

42 Ethyl decanoate Ester C12H24O2  200.18 19.15 7757 

43 Ethyl heptanoate Ester C9H18O2  158.13 12.57 7509 

44 Ethyl hexanoate Ester C8H16O2  144.12 10.12 29005 

45 Ethyl octanoate Ester C10H20O2  172.15 14.91 7511 

46 Ethyl phenylacetate Ester C10H12O2  164.08 21.57 13885245 

47 Ethyl salicylate Ester C9H10O3  166.06 21.98 21105897 

48 Ethyl trans-4-decenoate Ester C12H22O2  198.16 19.65 4515095 

49 Guaiacwood acetate Ester C17H28O2  264.21 20.25 55033 

50 Heptyl formate Ester C8H16O2  144.12 12.37 7877 

51 Hexyl acetate Ester C8H16O2  144.12 11.11 8568 

52 i-Pentyl acetate Ester C7H14O2  130.10 7.24 29016 

53 Isobornyl acetate Ester C12H20O2  196.15 17.95 6207 

54 Isoeugenyl phenylacetate Ester C18H18O3  282.13 21.58 4814022 

55 Methyl anthranilate Ester C8H9NO2  151.06 28.94 13858096 

56 Methyl salicylate Ester C8H8O3  152.05 21.38 13848808 

57 alpha-Asarone Ether C12H16O3  208.11 32.09 552532 

58 2-Ethylfuran Furan C6H8O 96.06 3.46 17522 

59 2-Pentylfuran Furan C9H14O  138.10 9.88 18465 

60 m-Xylene Hydrocarbon C8H10  106.08 7.46 7641 

61 o-Xylene Hydrocarbon C8H10  106.08 8.62 6967 

62 p-Xylene Hydrocarbon C8H10  106.08 7.28 7521 

63 1-Octen-3-one Ketone C8H14O  126.10 11.68 55282 

64 4-Hexen-3-one Ketone C6H10O  98.07 9.08 4517756 

65 6-Methyl-5-hepten-2-one Ketone C8H14O  126.10 12.59 9478 

66 alpha-Pinene Monoterpene C10H16  136.13 4.68 389795 

67 alpha-Terpinene Monoterpene C10H16  136.13 9.61 7182 

68 alpha-Terpineol Monoterpene C10H18O  154.14 20.13 13850142 

69 alpha-Terpinyl acetate Monoterpene C12H20O2  196.15 20.00 99681 

70 beta-Citronellol Monoterpene C10H20O  156.15 21.36 92127 

71 beta-Cyclocitral Monoterpene C10H16O 204.19 18.32 9511 

72 beta-Myrcene Monoterpene C10H16  136.13 8.15 28993 

73 Camphene Monoterpene C10H16  136.13 5.62 6364 

74 cis-Geraniol Monoterpene C10H18O  154.14 22.59 558917 

75 Citronellal Monoterpene C10H18O  154.14 21.22 7506 

76 Eucalyptol Monoterpene C10H18O  154.14 9.53 2656 

77 Farnesene Monoterpene C15H24 204.19 20.51 4444849 

78 Farnesol Monoterpene C15H26O  222.20 20.71 392816 

79 Fenchyl alcohol Monoterpene C10H18O  154.14 17.70 14665 

80 Geranic acid Monoterpene C10H16O2 168.12 30.48 9595 

81 Geranyl acetate Monoterpene C12H20O2  196.15 21.22 1266019 

82 Geranyl acetone _I  Monoterpene C13H22O  194.17 22.72 1266569 

http://www.chemspider.com/Molecular-Formula/C20H36O2
http://www.chemspider.com/Molecular-Formula/C20H36O2
http://www.chemspider.com/Molecular-Formula/C6H10O2
http://www.chemspider.com/Molecular-Formula/C14H12O2
http://www.chemspider.com/Molecular-Formula/C8H14O2
http://www.chemspider.com/Molecular-Formula/C4H8O2
http://www.chemspider.com/Molecular-Formula/C9H11NO2
http://www.chemspider.com/Molecular-Formula/C6H12O2
http://www.chemspider.com/Molecular-Formula/C12H24O2
http://www.chemspider.com/Molecular-Formula/C9H18O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C10H20O2
http://www.chemspider.com/Molecular-Formula/C10H12O2
http://www.chemspider.com/Molecular-Formula/C9H10O3
http://www.chemspider.com/Molecular-Formula/C12H22O2
http://www.chemspider.com/Molecular-Formula/C17H28O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C7H14O2
http://www.chemspider.com/Molecular-Formula/C12H20O2
http://www.chemspider.com/Molecular-Formula/C18H18O3
http://www.chemspider.com/Molecular-Formula/C8H9NO2
http://www.chemspider.com/Molecular-Formula/C8H8O3
http://www.chemspider.com/Molecular-Formula/C12H16O3
http://www.chemspider.com/Molecular-Formula/C9H14O
http://www.chemspider.com/Molecular-Formula/C8H10
http://www.chemspider.com/Molecular-Formula/C8H10
http://www.chemspider.com/Molecular-Formula/C8H10
http://www.chemspider.com/Molecular-Formula/C8H14O
http://www.chemspider.com/Molecular-Formula/C6H10O
http://www.chemspider.com/Molecular-Formula/C8H14O
http://www.chemspider.com/Molecular-Formula/C10H16
http://www.chemspider.com/Molecular-Formula/C10H16
http://www.chemspider.com/Molecular-Formula/C10H18O
http://www.chemspider.com/Molecular-Formula/C12H20O2
http://www.chemspider.com/Molecular-Formula/C10H20O
http://www.chemspider.com/Molecular-Formula/C10H16O
http://www.chemspider.com/Molecular-Formula/C10H16
http://www.chemspider.com/Molecular-Formula/C10H16
http://www.chemspider.com/Molecular-Formula/C10H18O
http://www.chemspider.com/Molecular-Formula/C10H18O
http://www.chemspider.com/Molecular-Formula/C10H18O
http://www.chemspider.com/Molecular-Formula/C15H24
http://www.chemspider.com/Molecular-Formula/C15H26O
http://www.chemspider.com/Molecular-Formula/C10H18O
http://www.chemspider.com/Molecular-Formula/C10H16O2
http://www.chemspider.com/Molecular-Formula/C12H20O2
http://www.chemspider.com/Molecular-Formula/C13H22O
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83 Geranyl acetone _II Monoterpene C13H22O  195.17 23.27 1266569 

84 Geranyl phenylacetate Monoterpene C18H24O2  272.18 21.36 4517973 

85 Geranyl propionate Monoterpene C13H22O2  210.16 22.44 4511742 

86 Isopulegol Monoterpene C10H18O  154.14 17.47 149356 

87 Limonene Monoterpene C10H16  136.13 9.11 20939 

88 Linalool Monoterpene C10H18O  154.14 17.12 13849981 

89 Linalool oxide_I Monoterpene C10H18O2  170.13 14.82 20938 

90 Linalool oxide_II Monoterpene C10H18O3  170.13 15.44 20938 

91 Linalyl acetate Monoterpene C12H20O2  196.15 17.36 13850082 

92 Linalyl butyrate Monoterpene C14H24O2  224.18 19.98 56116 

93 m-Cymol Monoterpene C10H14 134.11 10.74 10355 

94 Neryl acetate Monoterpene C12H20O2  196.15 20.84 1266018 

95 Neryl butyrate Monoterpene C14H24O2  224.18 23.05 4509113 

96 Neryl isobutyrate Monoterpene C14H24O2  224.18 21.89 4517923 

97 o-Cymol Monoterpene C10H14 134.11 11.48 10253 

98 p-Cymene Monoterpene C10H14 134.11 10.77 7183 

99 Rose oxide_I Monoterpene C10H18O  154.14 12.88 25927 

100 Rose oxide_II Monoterpene C10H18O  154.14 13.16 25927 

101 Sabinene hydrate Monoterpene C10H18O  154.14 10.35 56155 

102 Terpinen-4-ol Monoterpene C10H18O  154.14 18.26 10756 

103 Terpinolene Monoterpene C10H16  136.13 11.09 10979 

104 trans-beta-Farnesene Monoterpene C15H24 204.19 19.65 4444850 

105 trans-Geraniol Monoterpene C10H18O 154.14 21.79 13849989 

106 alpha-Cedrene Sesquiterpene C15H24 204.19 17.59 454638 

107 alpha-Humulene Sesquiterpene C15H24 204.19 19.95 4444853 

108 alpha-Longipinene Sesquiterpene C15H24 204.19 15.21 454407 

109 Aromadendrene Sesquiterpene C15H24 204.19 18.57 9270876 

110 beta-Caryophyllen Sesquiterpene C15H24 204.19 17.78 4444848 

111 beta-Humulene Sesquiterpene C15H24 204.19 20.21 4476730 

112 gamma-Humulene Sesquiterpene C15H24 204.19 19.71 21170000 

113 gamma-Neoclovene Sesquiterpene C15H24 204.19 18.41 494832 

114 Guaiazulene Sesquiterpene C15H18  198.14 31.46 3395 

115 Guaiene (all isomers) Sesquiterpene C15H24 204.19 18.21 16736689 

116 Isolongifolene Sesquiterpene C15H24 204.19 17.93 92636 

117 Ledene Sesquiterpene C15H24 204.19 20.15 9085910 

 

Majority of the identified compounds were from the classes monoterpenes (n=40), esters 

(n=21), aldehyde (n=15), alcohols (n=15), sesquiterpenes (n=12) and furthermore some 

identifications were made from classes like hydrocarbons, ketones, furans, diterpenes, C13-

norisoprenoids, ether and acid. Compound class based description with a discussion of some 

key compounds is presented (figure 12) 
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Figure 12 Chemical classes based distribution of the identified compounds 

 

Unsupervised principal component analysis was performed. The PCA score plot (figure 13) 

suggested the separation of all varieties into five different groups based on their profile of 

volatile organic compound.  

 

Group 1 shows grouping of 10 varieties i.e Muscat vostochny, Girelli F3-P104, Girelli F3-P30, 

IASMA ECO3, Girelli F3-P66, Girelli F3-P73, Gewürztraminer, Kozma palne muskotaly, 

Moscato ottonel and Perla di Csaba. All varieties in this group shows common presence of 

aroma active monoterpenes like linalool, linalool oxides, farnesol, beta-myrcene, rose oxide, 

geraniol, terpinolene, neryl butyrate, neryl isobutyrate and limonene. The profile of 

compounds displayed by this group explains the high floral aroma of these varieties and 

their origin, since all varieties in this group is either Muscat or its offspring (table 3). 
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Muscat grapes are typically known for their characteristic fruity and floral aroma originating 

from terpenic compounds like rose oxide, linalool oxide, linalool, a-terpineol, citronellol, 

nerol, geraniol, benzyl alcohol and 2-phenylethanol (Fenoll, Manso, Hellín, Ruiz, & Flores, 

2009; Ribéreau-Gayon, Boidron, & Terrier, 1975; Ruiz-García, Hellín, Flores, & Fenoll, 2014). 

Moreover, presence of interspecific crossings G30, G04, G66, G73 and IASMA ECO3 (table 3) 

in this group which are progenies of aromatic cultivars Moscato ottonel and Malvasia Bianca 

(Emanuelli et al., 2010; Mateo & Jiménez, 2000) also supports their genetic similarities. 

Another aromatic variety Gewürztraminer (Girard & Fukumoto, 2002; Ong & Acree, 1999) 

was also included in the same group. In general, white colour (with the exception of 

Gewürztraminer that is pink) and high monoterpenic content observed dominantly in the 

varieties in this group.   

 

In the group 2, eleven Vitis vinifera varieties were included i.e Alicante bouchet, Carmenere, 

Cesanese, Corvina, Malvasia Puntinata, Negroamaro, Primitivo, Sagrantino, Tarrango, 

Vernazzola and Vattara O biancazza. Varieties in this group commonly show high intensity 

values for the compounds farnesol, geranic acid, alpha-Pinene, citronellal and limonene. 

Some of the common compounds detected in this group are alcohols (1-hexanol, 1-octen-3-

ol, E-2-hexenol), aldehydes (benzaldehyde, E-2-heptenal, E-2-hexenal), diterpene sclareol. 

Interestingly, all verities in this group showed very rich profile of all the sesquiterpenes 

(except alpha and gamma humulene) in the table 4 than any other group. Many 

sesquiterpenes found in these varieties such as alpha-cedrene, aromadendrene and 

isolongifolene are known for woody odor and compound like beta-caryophyllene shows 

spicy aroma but with very low aroma threshold. So all these variety shows very mild 

aromatic characteristic, only one variety in this group i.e Malvasia Puntinata showed 

presence of geraniol.   

 

Group 3 includes 24 varieties with prominent number (15) of red V. vinifera verities like 

Cannonau, Dolcetto, Malvasia nera di lecce and so on. Some red aromatic cultivars like 

Aleatico, Primitivo di giola, Xinomavro were also included in this group. All varieties in this 

group shows common compounds like sesquiterpenes (aromadendrene, gamma-neoclovene 

and guaiene), alcohols (1-octen-3-ol, E-2-hexenol), aldehydes (benzaldehyde, E-2-heptenal, 

E-2-hexenal), and 1-octen-3-one, ethyl anthranilate, sclareol. Vitis californica, a non-vinifera 
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cultivar with red colored berries was also included in this group. General profile of the 

compounds showed by the varieties in this group suggests low aroma properties of these 

cultivars. 

 

Group 4 shows six verities including five prominent aromatic cultivars Moscato Rosa, 

Gewürztraminer giaroni, Italia, Malvasia bianca di Candia, Muscat Rouge de Madere and 

interspecific crossing Girelli F3P63. All cultivars commonly shows monoterpenes (cis-

geraniol, beta-citronellol, alpha-terpineol, neryl isobutyrate, trans-geraniol, rose oxide) 

along with ethyl anthranilate, hexanal, E-2-hexenal, 1-octen-3-ol 

 

Group 5 comprises remaining 73 cultivars showing diverse series of colour and species of 

grapes. Six out of seven non-vinifera cultivars in this study were included in this group 

(except Vitis californica). This group was mainly dominated by red colored varieties i.e. out 

of seventy three, forty-seven red, twenty-four white and two pink colored cultivars included 

in this group. Commonly observed compounds in this group are alcohols (1-hexanol, 1-

octen-3-ol, E-2-hexenol), aldehydes (benzaldehyde, E-2-heptenal, E-2-hexenal, hexanal), 

esters (ethyl anthranilate, methyl salicylate, heptyl formate) and  1-octen-3-one. This group 

also includes variety Isabella which is an interspecific crossing of Vitis  vinifera and Vitis 

labrusca and which is also known as strawberry grapes due to their strong aroma similar to 

the strawberry (Kulakiotu, Thanassoulopoulos, & Sfakiotakis, 2004; Pacifico et al., 2011). 

Isabella shows presence of esters (ethyl phenylacetate, isoeugenyl phenylacetate, ethyl 

hexanoate, ethyl octanoate, ethyl decanoate) and aldehydes (E-2-hexenal, hexanal) 

prominently.  
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Figure 13 PCA score plot of grape varieties based on VOC identified 
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Figure 14 PCA loading plot of the variables (labeled as chemical classes)  

 

Figure 14 illustrates the loading plot of variables (detected compounds) and distribution of 

the compounds, numbers inside each dot corresponds to the compounds in table 4. 

Monoterpenes are widely distributed throughout the graph followed by alcohols, aldehydes 

and esters.   

 

Since monoterpenes are highly aroma active compounds with  very lower aroma thresholds 

is and considered significant class of chemicals in grapes (Mateo & Jiménez, 2000), we 

calculated sum of the relative intensity values of all identified monoterpenes for each 

variety. The bubble graph of total monoterpene content (figure 15) shows first twenty 

varieties with higher intensity values of monoterpenes. 
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Figure 15 Bubble graph of total monoterpene content  

 

Polar dendrogram (figure 16) based on the cluster analysis performed on log transformed 

data of bioactive compounds content using method reported by (Farneti et al., 2015), which 

further visualizes the same data with different method. The dendrogram also explains the 

clustering of varieties in the in the PCA.  
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Figure 16 Polar dendrogram visualization based on the data 

 

3.4. Discussion 

 

Grape volatiles consist different classes of the compounds like terpenoids, norisoprenoids, 

aliphatic alcohols, esters, and benzenoids and so on (A. L. Robinson et al., 2013; Maurizio 

Ugliano & Moio, 2008). A diverse range of compounds representing different chemical 

classes (monoterpene, ester, aldehyde, alcohol, sesquiterpene, hydrocarbon, ketone, furan, 
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di-terpene, C13-norisoprenoid, ether, acid) is identified among the wide selection of grape 

genotypes in the present study.  

 

Forty monoterpenes were identified in the study including compounds with high aroma 

thresholds like linalool and its oxides, rose oxides, geraniol, citronellol and so on. 

Monoterpene is a class containing some of the most aroma active compounds in the grape 

(Doneva-Sapceska, Dimitrovski, Milanov, & Vojnovski, 2006; Mateo & Jiménez, 2000; S G 

Voirin et al., 1992; Stcphane G Voirin, Baumes, Sapis, & Bayonove, 1992). Many 

monoterpenes were attributed to characteristic fruity and floral aroma of white wines made 

from muscat and non-muscat varieties like Gewürztraminer and Riesling (Mateo & Jiménez, 

2000; Oksman-Caldentey & Saito, 2005; Ong & Acree, 1999; Ribéreau-Gayon et al., 1975). 

Concentration of these compounds above the sensory threshold is a characteristic of the so-

called Muscat varieties, which gives to the ripe berries of these cultivars floral and attractive 

aroma, a trait widely exploited in table grapes. Studies also reported genes associated with 

the productions of monoterpenes in the mucsat grapes (Emanuelli et al., 2010).  

 

Most of the varieties studied in this experiment also show 15 alcohols (including C5/C6 and 

aromatic) and 15 aldehydes. Alcohols like 1-pentanol, E-2-hexenol, E-3-hexen-1-ol, 2-

phenoxyethanol, benzyl alcohol and aldehydes; benzaldehyde, E-2-hexenal, E-2-heptenal, E-

2-pentenal were identified. Compounds like (E)-3-hexenol and its isomer (Z)-3-hexenol were  

considered as important analytical parameters to discriminate monovarietal Riesling wines 

(Oliveira, Faria, Sá, Barros, & Araújo, 2006; Rapp, Volkman, & Niebergall, 1993). C6 

compounds in grape are mainly derived from grape polyunsaturated fatty acids (primarily 

originated from membrane lipids) linoleic and aplha-linolenic acids, through a cascade of 

enzymatic reactions. This biochemical pathway yields into C6 aldehydes and therefore to C6 

alcohols. The presence of these compounds is known to be modulated by the condition of 

extraction of juice (contact with oxygen during mechanical harvest and pressing, addition of 

exogenous antioxidants). 

 

Twenty-one esters were identified; ethyl esters like ethyl and methyl anthranilate, ethyl 

butyrate, ethyl salicylate, ethyl hexanoate, methyl salicylate etc. were identified. Volatile 

esters also contributes to important floral and fruity sensory properties of wines, is an 
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important class of grape and wine (Boss et al., 2015). Different esters are formed during 

fermentation including the fatty acid ethyl esters and the acetate esters, both of which 

contribute important fruity notes to wines (Vianna & Ebeler, 2001).  

 

Twelve sesquiterpene like beta-caryophyllen, alpha-humulene, alpha-cedrene, gamma-

neoclovene, guaiene, and isolongifolene were identified in this study. Sesquiterpene is an 

important class in grapes that mainly consist of three isoprene units and have C15 in its 

molecular formula (mostly they are C15H24), they are mainly attributed to sweet and woody 

aroma. A sesquiterpene guaiene recently attracted much interest since it has been suggested  

as the immediate precursor of rotundone (Huang, Burrett, Sefton, & Taylor, 2014; Huang, 

Sefton, Sumby, Tiekink, & Taylor, 2015), which is a powerful odorant present at trace levels 

and responsible for the peppery aroma of some red (Fulvio Mattivi et al., 2011; Wood et al., 

2008) and white wines.(Caputi et al., 2011)  

 

Other compounds from the classes like C13-norisoprenoid (beta-ionol, theaspirane), 

aromatic hydrocarbons (m-xylene, o-xylene, p-xylene) (Schreier et al., 1976), furans (2-

pentylfuran, 2-ethylfuran), ketones (1-octen-3-one, 4-hexen-3-one, 6-methyl-5-hepten-2-

one), diterpenes (sclareol), ethers (alpha-asarone) and acetic acid (Vrhovsek et al., 2014) 

were detected. C13-norisoprenoids represents another important class of chemicals in grape 

aroma which are produced predominantly by carotenoid breakdown (Günata, 2013; Mendes-

pinto, 2009; Skouroumounist & Winterhalter, 1994; Winterhalter et al., 1990).  

 

Present experiment shows the complete workflow of metabolomics profiling of volatile 

organic compounds in grape achieved by methodological approach of analysis using HS-

SPME and GC-MS. The development of customized tool for compound annotation was also 

reported which appeared the useful strategy and increased confidence level of the 

annotation, and furthermore, it can be implemented within large scale or long-term 

metabolomics projects. Totally, 117 VOCs were identified successfully, which represents 124 

grape cultivars of different origins, colour and species over four consecutive vintages.  

 

The database of grape VOCs was established covering comprehensive range of grape 

cultivars from Vitis vinifera, interspecific crossings, non-vinifera and wild varieties. Current 

http://en.wikipedia.org/wiki/Isoprene
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database represents repository of VOCs in selected grape cultivars and can be used as 

volatile pattern reference compendium for selection of clones for breeding programs or 

vinification projects.  

 

Since the current experiment is a part of Grape Metabolome project, the current database 

represents the significant portion it and will be further used to complete the comprehensive 

picture of grape metabolites and combination of the metabolomics data with genomics data 

(Oksman-Caldentey & Saito, 2005) can furthermore give more insights for engineering the 

grape metabolic pathways.   

 

3.5. Contributions 

 

This experiment is part of ongoing multidisciplinary project “Grape Metabolome” at the 

Research and Innovation Centre, Fondazione Edmund Mach, San Michelle all’Adige-38010 

under the management of Dr. Fulvio Mattivi. The dataset of VOCs from this experiment will 

be the part of upcoming grape metabolome database. The experiment described in this 

chapter will be my main contribution to the database and manuscript in preparation. I 

thank the entire team involved in this project for their kind help. I personally thank Jan 

Stanstrup for making the polar dendrogram diagram and biostatistics group for the 

compound annotation.  
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4. Chemical composition of volatile aroma 

metabolites and their glycosylated counterparts 

uniquely differentiates individual grape cultivars 
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4.1. Introduction 

 

Aroma is an important aspect of quality in grapes and one of the factors that ultimately 

determines the quality of the wine made from it. Study of grape aroma has been a significant 

subject in the grapevine research community for many years. The grape aroma is a product 

of complex chemistry, as compounds from different classes develop grape aroma and give 

specific sensory characteristics to cultivars (Ebeler & Thorngate, 2009). Variability in 

chemical composition or concentration significantly changes aroma of grape of different 

grape species, cultivar-specific aroma in grapes and wine has been addressed in some 

previous studies (Dourtoglou, Antonopoulos, Dourtoglou, & Lalas, 2014; Nasi et al., 2008). 

For example monoterpenol linalool, geraniol, nerol and α-terpineol are present in high 

concentrations in Muscat grapes and contribute to the floral aroma (Ribéreau-Gayon et al., 

1975; Schreier et al., 1976). This sensorial character can be appreciated both in table grapes 

and in wine, and lead to the selection of several highly flavoured cultivars during grape 

domestication and post-domestication. 

 

 

   

Figure 17 Linalool and its glucoside molecule 

 

C13-norisoprenoids β-ionone, β-damascenone and vitispirane contribute to a more diverse 

range of aromas, while other classes lactones, alcohols, phenols, and benzenoids also make a 

significant contribution to the aroma of several grape cultivars (Ryona & Sacks, 2013). Many 

different pathways and chemical reactions are involved in the production of aroma 

compounds in the grape and several previous studies have identified hundreds of volatile 
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organic compounds in grapes (Martin, Chiang, Lund, & Bohlmann, 2012; Anthony L. 

Robinson et al., 2013). 

 

Volatile aroma compounds exist in free as well as conjugated form in grapes. The conjugated 

part is mostly the hydrophilic, non-volatile and flavourless glycosylated molecules. 

Conversion of free aroma compound into glycosylated precursor occurs through the process 

of glycosylation, which is one of the predominant modifications in plants catalysed by a 

group of enzymes called glycosyltransferases (GTs). These are mainly glucoside or 

disaccharide or trisaccharide glycosides containing a glycosyl moiety, nevertheless for the 

disaccharide glycosides the glucose is further substituted with a α-L-arabinofuranosyl, α-L-

rhamnopyranosyl and β-D-glucopyranosyl sugars (Boido, Fariña, & Carrau, 2013; Flamini et 

al., 2014; Swiegers, Bartowsky, Henschke, & Pretorius, 2005). Studies have reported that 

mature grapes show higher levels of glycosylated volatiles than their free counterparts; it has 

also been shown that glycosides of monoterpenes and C13-norisoprenoids increase post-

veraison (Ryona & Sacks, 2013). The importance of these glycosylated precursors in 

winemaking is greatly appreciated because of mild acid and/or glycosidase catalysed 

hydrolysis reactions, which release free volatiles from their sugar moieties and enhance wine 

aroma. This is also a possible reason for the enhanced aroma profile of wine coming from 

neutral grapes.  

 

Knowledge of the specific distribution of free and glycosylated volatiles in grapes is 

necessary for a complete understanding of varietal grape aroma and it is therefore important 

to consider the distribution of both free and glycosylated volatiles. Furthermore, it is also 

interesting to see in which glycosylated conjugates different cultivars/species tend to 

accumulate a specific volatile molecule. Most of the previous studies related to the analysis 

of glycosides in grapes were limited either to a single glycoside class or to a few grape 

cultivars. While the differential behaviour of aroma compounds and their precursors in 

different cultivars and species has never been specifically described (Gunata, Bayonove, 

Baumes, & Cordonnier, 1985; Maicas & Mateo, 2005; Nasi et al., 2008; Williams, Cynkar, & 

Francis, 1995).  
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Several methodologies for the extraction and analysis of free and bound compounds in 

grapes and wine have been reported (Fernández-González & Di Stefano, 2004; S G Voirin et 

al., 1992). Isolation of the glycosidic fraction in grapes was most commonly achieved using 

solid phase extraction (SPE) and further analysis carried out with GC-MS following acid or 

enzymatic hydrolysis. Some of the studies were carried out using GC-MS analysis of TMS 

and TFA derivatives of terpene glycosides (S G Voirin et al., 1992; Stcphane G Voirin et al., 

1992) or by analysing the terpenes obtained through hydrolysis of terpene glycosides 

(Maicas & Mateo, 2005) using purified enzymes or commercial enzyme preparations. Intact 

glycosidic conjugates can also be analysed using LC-MS, NMR and IR but such an approach 

has been less frequently used, with a few studies being carried out on terpenes and terpene 

glycosides of non-aromatic grapes (Boido et al., 2013; Flamini et al., 2014; Schievano et al., 

2013; Winterhalter & Skouroumounis, 1997). Some authors have proposed the use of LC/ESI-

MS or MALDI-TOF-MS techniques to characterise the entire glycosylated molecule without 

derivatization step (Nasi et al., 2008; Schievano et al., 2013). Aim of this study was to profile 

the volatile aroma metabolites and their glycosidic counterparts in the ripe berries of ten 

selected genotypes through a comprehensive chemical profiling using GC-MS technique.  

 

4.2. Materials and methods 

 

4.2.1. Grape material 

 

Ten different genotypes, including six Vitis vinifera cultivars, two American species and two 

interspecific crossing, were included in the study (table 5). All genotypes were true to type 

and sampled from the ampelographic collection of the Foundation Edmund Mach, San 

Michele all’Adige, Italy. 1 kg of healthy grapes was sampled at technical maturity, defined as 

a content of soluble solids in the juice corresponding to 18° (±0.5) Brix. After sampling, the 

berries were immediately stored at -80°C and powdered in liquid nitrogen using an 

analytical mill (IKA® -Werke GMbH & Co. Staufen, Germany) prior to sample preparation.  
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Table 5 List of the grape varieties included in the study (Chapter 4) 

 

No Prime name 
Berry 

Colour 
Species 

1 Riesling  White Vinifera 

2 Gewürztraminer Pink Vinifera 

3 Moscato rosa Pink Vinifera 

4 Girelli F3P30  White Intraspecific crossings of 

Muscat Ottonel x Malvasia 

Bianca di Candia 

5 IASMA ECO3  White 

6 Girelli F3P63 White 

7 Nero  

Red 

Interspecific crossing of  

Eger 2 x Gardonyi Geza 

8 Isabella   

Red 

Interspecific crossing of  

Vitis vinifera x Vitis labrusca 

9 Arizonica Texas Red Vitis arizonica  

10 Vitis cinerea Red Vitis cinerea Engelmann  

 

4.2.2. Chemicals and reagents 

 

Methanol, dichloromethane, formic acid and pentane were purchased from Sigma Aldrich 

(Milan, Italy). Anhydrous sodium sulphate and citric acid were purchased from Carlo Elba 

(Milan, Italy). The water used in the experiments was purified with a Milli-Q water 

purification system from Millipore (Bedford, MA, USA), SPE cartridges Isolute ENV+ (1 g, 6 

mL) were obtained from Biotage (Uppsala, Sweden), a mixture of pectinases and 

glycosidases Rapidase  AR2000© enzyme was purchased from DSM Food Specialties B.V. 

(Delft, Netherlands) 

 

4.2.3. Sample preparation 

 

Sample preparation method reported previously (Vrhovsek et al., 2014) was adopted with 

minor modifications for better extraction of target compounds. 30 g of grape powder, 80 mL 

water and 0.5 g of gluconolactone were taken and 25 µL of 1-heptanol (1257 mg/L in ethanol) 

was added as internal standard. The solution was then homogenized for 3 min at 20000 rpm 

http://www.vivc.de/datasheet/speciesTable.php?topic=VITIS%20CINEREA%20ENGELMANN
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using an ultra-turrax homogenizer, followed by centrifuging for 5 min. at 10000 rpm at 5 °C. 

The supernatant obtained was then filtered through filter paper and the extract was further 

used for the SPE procedure. 

 

Isolute ENV+ cartridges were conditioned with 20 mL each of methanol and milliQ water, 

then the grape extract was loaded and eluted through cartridges and the cartridges were 

washed with 20 mL of water to remove water-soluble impurities. Free volatiles were eluted 

with 20 mL of dichloromethane, elute was collected in a glass tube and 40 mL of pentane 

was added to it. This solution was dried with anhydrous Na2SO4 and concentrated to 200 µL 

using vigreux column. The glycosylated precursors were eluted with 30 mL of methanol, out 

of this 1 mL of methanol was provided for other researchers in the laboratory for their 

analysis purposes, while the rest of the fraction was evaporated to dryness by using rotary 

vacuum evaporator (Rotavapor RE121, BUCHI, Switzerland). Then the flask was rinsed with 

10 mL of dichloromethane to remove any remaining traces of free volatile compounds.  

 

4.2.4. Enzymatic hydrolysis of glycosidic precursors 

 

The commercial mixture of pectinases and glycosidases, AR2000 was used for enzymatic 

hydrolysis of glycosylated precursors of aroma compounds. The bound fraction from step 

above was redissolved in 5 mL of citrate buffer at pH 5 and 200 µL of AR2000 (70 mg/mL) 

was added to it. This set up was kept in a 40 °C water bath for 24 hrs for the hydrolysis. After 

24 hrs, 10 µL of internal standard 1-heptanol was added and free volatiles were extracted 

with 3 mL of pentane/dichloromethane 2:1, v/v, three times. All organic phase containing 

released volatiles was concentrated carefully to a volume of 200 µL for GC-MS analysis  

 

4.2.5. GC-MS analysis of volatiles  

 

Analysis of free volatiles was performed using a Trace GC Ultra gas chromatograph coupled 

to a Quantum XLS mass spectrometer (Thermo Scientific, Milan, Italy), mounted with a PAL 

combi-xt autosampler (CTC, Zwingen, Switzerland). 1 µL of sample was injected in splitless 

mode with a splitless time of 1 min and a GC inlet temperature of 250 °C. Helium was used 

as carrier gas in constant flow mode at 1.2 mL/min, with Stabilwax® 30 m length, 0.25 mm 
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inner diameter and 0.25 µm thick film columns from Restek Corporation (Bellefonte, PA, 

USA) used for analysis. GC oven temperature was initially set at 50°C with hold for 1 min and 

then ramped at the rate of 2.5 °C /min to 250°C with a final hold of 10 min. The total GC 

runtime was 91 min. The mass spectrometer was operated in positive mode electron 

ionization at 70 eV and all spectra were recorded in full scan with a mass range of 40-350 Da, 

transfer line and source temperature set at 250°C.  

 

 

 

Figure 18 Difference between profile of volatile compounds in Vitis cinerea grapes 

before and after enzymatic hydrolysis 

 

4.2.6. Data processing, compound identification and statistical analysis 

 

GC-MS data processing was done with Thermo XCALIBUR™ 2.2 software. Identification of 

the compounds (table 6) was performed by applying assignments like reference standard 

analysis, retention index calculation, and by NIST MS Search Program© (version 2.0) library 

comparison. The response of internal standard 1-heptanol was used for normalization and to 

make a relative estimation of the identified compounds as commonly accepted in the 

analysis of aroma compounds (Azzolini et al., 2012). Cluster analysis and heatmap 

visualizations of the compounds detected using GC-MS (figures 19 & 20) were done by using 
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Pearson correlation coefficient and Ward's minimum variance method (Murtagh & 

Legendre, 2014) under “R” environment (http://www.r-project.org/).  

 

4.3. Results 

 

Table 6 List of the compounds identified in the experiment (Chapter 4) 

 

 
Name RT 

PubChem 

CID 

RI 

(calculated) 

RI 

(literature) 
Literature 

Identification 

assignment 

  Acid                 

1 Hexanoic acid 32.30 8892 1826 1847 Fukami et al., 2002 --- B C 

2 Linoleic acid 75.71 5280450 3158 --- --- --- --- C 

  Alcohol                 

3 n-Hexanol 11.58  8103 1342 1354 Lee et al., 2003 A B C 

4 trans-3-Hexenol 12.71 5284503 1369 1378 Ruther J., 2000 A B C 

5 2-Hexenol 13.68 5318042 1392 --- --- A  C 

6 Benzyl alcohol 33.07 244 1844 1865 Fischer et al., 1987 A B C 

7 beta-Phenyl ethanol 34.38 6054 1881 1905 Ong et al., 1999 A B C 

8 Anisyl alcohol 47.88 7738 2240 --- --- --- --- C 

9 Cinnamyl alcohol 48.10 5315892 2246 2200 Olivero et al., 1997  B C 

10 4-Methoxyphenethyl alcohol 49.51 69705 2244 --- --- ---  C 

11 Coniferol 76.68 1549095 3146 --- --- ---  C 

12 Tryptophol 80.66 10685 3333 --- --- A B C 

  Aldehyde                 

13 Benzaldehyde 18.31 240 1499 1525 Valim  et al., 2003 A B C 

14 Phenylacetaldehyde 23.26 998 1614 1609 Qian M et al., 2003 A B C 

  Benzenoid                 

15 Eugenol 43.98 3314 2131 2141 Valim  et al., 2003 A B C 

16 4-Vinylguaiacol 45.08 332 2161 2198 Baek et al., 1997 --- B C 

17 Methyl vanillate 58.28 19844 2557 2600 Selli et al., 2004 --- B C 

18 Acetovanillone 59.26 2214 2589 2685 Cullere et al., 2004 A B C 

19 Homovanillyl alcohol 65.37 16928 2746 --- --- --- --- C 

20 Homovanillic acid 69.24 1738 2867 --- --- --- --- C 

  C13-Norisoprenoid                 

21 3-4-Dihydro-3-oxoactinidiol I 52.73 --- 2383 2418 Boido et al.,  2013 --- B --- 

22 3-4-Dihydro-3-oxoactinidiol II 53.71 --- 2413 2458 Boido et al.,  2013 --- B --- 

23 3-4-Dihydro-3-oxoactinidiol III 54.05 --- 2424 2479 Boido et al.,  2013 --- B --- 

24 3-Hydroxy-beta-damascone 56.38 5366075 2450 2563 Aubert et al., 2003 --- B C 
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25 3-Oxo-alpha-ionol 59.30 5370052 2590 2651 Selli et al., 2004 --- B C 

26 4-Oxo-beta-ionol 59.51 6430464 2596 2514 Klesk et al 2004 --- B C 

27 Dihydro-3-oxo beta ionol 60.47 520295 2628 --- --- --- --- C 

28 3,4-Dihydroactinidol 61.08 --- 2652 --- --- --- --- C 

29 Dihydro-beta-ionone 62.06 519382 2641 --- --- --- --- C 

30 9-Hydroxy megastigma-4-6-

dien-3-one 

66.21 --- 2760 --- --- --- --- C 

31 Vomifoliol 73.76 5280462 2994 3167 Selli et al., 2004  B C 

  Coumarin                 

32 Scopoletin 90.52 5280460 3679 --- --- --- --- C 

  Ester                  

33 Ethyl-beta-hydroxybutyrate 18.26  62572 1500 1483 Boulanger et al., 1999  B C 

34 Ethyl-3-hydroxyhexanoate 25.22 61293 1659 --- --- --- --- C 

35 Methyl salicylate 28.67  4133 1752 1782 Anderson et al., 1987 A B C 

36 Methyl anthranilate 46.21 8635 2193 2216 Ulrich D et al., 1997 A B C 

  Furanone                 

37 Furaneol 39.24 19309 2005 2039 Valim  et al., 2003 A B C 

  Monoterpene                 

38 trans-Linalool oxide (furanoid) 14.97 22310 1451 1453 Ong et al., 1999 A B C 

39 cis-Linalool oxide (furanoid) 16.17 11321214 1423 1423 Davies NW 1990 A B C 

40 Linalool 19.83  6549 1535 1554 Choi H-S 2003 A B C 

41 4-Terpineol 21.75 11230 1579 1590 López-Vázquez et al., 2010 A  C 

42 1-p-Menthen-9-al I 22.00 520440 1585 1593 López-Vázquez et al., 2010 --- --- C 

43 1-p-Menthen-9-al II 22.13 520440 1588 1596 López-Vázquez et al., 2010 --- --- C 

44 Hotrienol 22.49 5366264 1596 1586 Engel et al., 1983 A B C 

45 alpha-Terpineol 25.92 17100 1674 1688 Lee et al., 2005 A B C 

46 Lilac alcohol A 26.64 526973 1691 --- --- ---  C 

47 trans-Linalool oxide (pyranoid) 27.61 26396 1743 1747 Boulanger et al., 1999 --- B C 

48 cis-Linalool oxide (pyranoid) 28.79 26396 1715 1720 Boulanger et al., 1999 A B C 

49 beta-Citronellol 29.09 8842 1749 1771 Choi H. S., 2003 --- B C 

50 Lilac alcohol-B 29.52 526973 1760 --- --- A --- C 

51 Nerol 30.33 643820 1780 1753 Nishimura et al., 1995 A B C 

52 Lilac alcohol-C 31.25 526973 1801 --- --- --- --- C 

53 Geraniol 32.36 637566 1829 1850 Hognadottir et al., 2003 A B C 

54 Exo-2-hydroxycineole 32.43 529885 1831 1723 Lee et al., 2005 --- B C 

55 Terpendiol-I 36.61 71362364 1935 1959 Aubert et al., 2003 --- B C 

56 6,7-Dihydro-7-hydroxylinalool 37.79 120154 1967 --- --- --- --- C 

57 Terpendiol-II 43.27 71362364 2112 2134 Boulanger et al., 1999 --- B C 

58 Hydroxy citronellol 46.05 526767 2188 --- --- --- --- C 

59 Hydroxy nerol 48.12 --- 2247 --- ref. (27) --- --- D  
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60 trans-8-Hydroxy linalool 48.30 5280678 2246 2267 Chassagne et al., 1999 --- B C 

61 cis-8-Hydroxy linalool 49.62 5280678 2253 2267 Chassagne et al., 1999 --- B C 

62 Geranic acid 50.34 5275520 2307 --- --- A --- C 

63 p-Menth-1-ene-7,8-diol 56.03 --- 2444 --- Versini et al., 1991 --- --- C 

  Phenol                 

64 Chavicol 50.07 68148 2304 2340 Aubert et al., 2003 --- B C 

65 3,4,5-Trimethoxyphenol 71.83 69505 2961 --- --- --- --- C 

  Quinone                 

66 2-Methoxyhydroquinone 68.85 69988 2860 --- --- --- --- C 

Identification based on, A By comparing mass spectra and retention times with those of pure reference standards, B By retention index 

match on a similar phase column (literature provided in the Appendix), C NIST mass spectral database, D In-house mass spectral database 

from previous studies done at institute  

 

4.3.1. Distribution of free and enzymatically released volatile aroma compounds in 

selected grape cultivars 

 

 

 F3P30, F3P63 and IASMA ECO 3 

 

     

 

These are new botrytis-tolerant Italian cultivars obtained by intraspecific crossing of Muscat 

Ottonel and Malvasia di Candia. They are specifically designed for the production of 

aromatic white wines and this is the first report on their aroma profiling. In the analysis of 

free part, all three varieties are typically rich in monoterpene alcohols that are commonly 

known for flowery and fruity aroma. In F3P30 and IASMA ECO3, very high concentrations of 

linalool, terpendiol (I & II), trans-linalool oxide (furanoid & pyranoid) and trans-8-hydroxy 

linalool were detected in free the form. Surprisingly, similar compounds showed lower 

concentrations after hydrolysis. But F3P63 showed all the identified compounds in free form 
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lower than after hydrolysis (Except for terpendiol-I) also geraniol in F3P63 was found  very 

high in released form in  (1177.5 µg/kg) than in free (158.3 µg/kg).  

 

 Gewürztraminer 

Gewürztraminer is one of most popular aromatic grape variety 

and its wine is known for unique aroma, reminiscent of tropical 

lychee fruit due to the rich profile of monoterpenes (Martin et al., 

2012; Ong & Acree, 1999; S G Voirin et al., 1992). Studies have 

attributed the distinct flavor of Gewürztraminer, Riesling and 

Muscat grapes and wines to the presence of certain 

monoterpenes linalool, geraniol, nerol, and linalool oxides 

(Schreier et al., 1976), cis-rose oxide (Guth, 1997), 4-vinylguaiacol 

(Grando, Versini, Nicolini, & Mattivi, 1993), beta-phenylethanol and phenethyl acetate for 

spicy and rose aromas of Gewürztraminer (Ong & Acree, 1999). In free form, this variety 

show not very rich profile of aroma active compounds, but in bound form shows high 

concentrations of geraniol and geranic acid, also as reported previously; 4-vinylguaiacol was 

also detected in the bound form. In comparison to the previous cultivars, Gewürztraminer 

was shown to be poorer in the free and bound form of all monoterpenols, while it was richer 

in the bound forms of C13-norisoprenoids, benzenoids and alcohols. 

 

 Riesling 

 

 Riesling is a popular Vitis vinifera aromatic grape cultivar with an 

explicit flowery aroma; it is used to make dry, semi-sweet and 

sparkling white wines. C13-norisoprenoids and some bound 

monoterpenols were attributed to Riesling berries (Ryona & Sacks, 

2013; Strauss, Wilson, Anderson, & Williams, 1987; Winterhalter et 

al., 1990). In the free part, not much significant identification were 

found but in bound form compounds beta-phenylethanol, benzyl 

alcohol, 3-keto-alpha-ionol, acetovanillone and cis-8-hydroxy 

linalool were found in significantly high concentrations.  
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 Moscato Rosa  

 Like any other Muscat species this cultivar is also known for its 

very aromatic characteristics and typical flowery aroma rich in 

monoterpenes (Ribéreau-Gayon et al., 1975; A. L. Robinson et al., 

2013). In free form, it shows the compounds such C6 alcohols and 

monoterpenes linalool (124.1 µg/kg), geraniol (139.7 µg/kg), 

geranic acid (40.4 µg/kg) and linalool oxides. Increased 

concentration of geraniol (1945.8 µg/kg) and geranic acid (827.8 

µg/kg) were observed in bound form similarly some of the other 

compounds also showed enhanced concentrations in bound form.   

 

 Nero  

Interspecific crossing of Eger 2 x Gardonyi Geza from Eger, 

Hungary by the breeder Jozef  Csizmazia, this is a resistant table 

grape cultivar with a black berry colour. In the free fraction, 

compounds were identified like n-hexanol (332.2 µg/kg), hexanoic 

acid (166.3 µg/kg), trans-3-hexenol (151.7 µg/kg). While in the 

bound fraction, benzyl alcohol (1397.2 µg/kg) and homovanillyl 

alcohol (1213.1 µg/kg) were identified with the highest 

concentrations. Monoterpenes 8-hydroxy linalool (cis & trans), geraniol, geranic acid were 

also observed in high concentration, this variety was also rich in C13-norisoprenoidic 

compounds 3-keto-alpha-ionol, vomifoliol, dihydro-3-oxo-beta-ionol and 3-hydroxy-beta-

damascene.  

 

 Isabella 

 Isabella is an interspecific crossing of Vitis vinifera and Vitis 

labrusca, also known as the strawberry grape because of its very 

prominent strawberry-like aroma. The small sweet berries are 

consumed as table grapes in addition to being used for the 

production of homemade wines, since it retained some 

popularity in spite of being banned from the EU market. 

Previous studies have shown the specific aroma properties of 
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Isabella (Ong & Acree, 1999; Pinho & A.Bertrand, 1995). The free form had the highest 

concentration of beta-phenylethanol and ethyl beta-hydroxybutyrate, some of the other 

compounds from classes C6 alcohols, monoterpenols and c13-norisoprenoids were also 

detected in lower concentrations. However, after hydrolysis many important aroma active 

compounds were released with very high concentrations like beta-phenylethanol, ethyl-

beta-hydroxybutyrate, benzyl alcohol and alpha-terpineol. Moreover, furaneol, the key 

odorant in the strawberry was also found in both fractions of Isabella and which explains its 

strawberry-like aroma (Pinho & A.Bertrand, 1995). Overall, the bound form of the Isabella is 

clearly rich in aroma compounds qualitatively and quantitatively. 

  

 Arizonica Texas 

 

This is a variety of native North American wild grape species Vitis arizonica with very small 

grapes also known as the Canyon grape. The ripe grapes are edible and relatively flavorful. 

To our knowledge, there is no literature available on the aroma compounds of this species to 

date. In free form C6 alcohols trans-3-hexenol, n-hexanol showed high concentrations with 

other minor compounds detected. However, in bound form this gives rich profile of 

compounds releasing many aroma active chemicals. Beta-phenylethanol (7049.6 µg/kg) and 

benzyl alcohol (3708.6 µg/kg) were the highest concentration, also 8-hydroxy linalool (cis & 

trans) were found in the bound form, and scopoletin (1067.8 µg/kg) was also identified.   

 

 Vitis cinerea 

 

Another Native American red grape species with very small berries, commonly called winter 

grapes. Previous studies have reported odor active compounds methoxypyrazine, eugenol, 

1,8-cineole and cis-3-hexenol in Vitis cinerea wines (Sun et al., 2011). Not any significant 

aroma contributor was identified in free fraction but complex profile of compounds, 

qualitatively and quantitatively, was observed after hydrolysis. Rich profile of different C13-

norisoprenoids several monoterpenes were detected. Compounds like beta-phenylethanol, 

benzyl alcohol, homovanillyl alcohol showed higher concentrations. Overall, free aroma 

profile of Vitis cinerea appears to be poorer than the bound, which appeared more complex. 

Many compounds detected previously in wines of Vitis cinerea were also detected in the 
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bound form e.g. eugenol, alpha-terpineol and beta-phenylethanol. Figure 18 also shows the 

difference between the profiles of compounds before and after enzymatic hydrolysis.  

 

4.3.2. Effects of the enzymatic hydrolysis of glycosylated precursors  

 

The commercial mixture of pectinases and glycosidases, AR2000 was used for the enzymatic 

hydrolysis of glycosylated aroma compounds. The choice was made based upon several 

previous studies (Flamini et al., 2014; Martin et al., 2012; Schneider, Charrier, Moutounet, & 

Baumes, 2004; Vrhovsek et al., 2014; Wightman & Price, 1997). A “golden hydrolysis 

procedure” has still to be established, and any choice has pros and cons. We ruled out the 

hydrolysis with strong acids, since it is known to produce several artefacts and labile aroma 

compounds can be destroyed with this approach. The enzyme-based strategy with AR2000 

was chosen as a milder approach. This product was developed at INRA Montpellier exactly 

to release the bound aroma in wines. In this way, we choose to focus on the characterization 

of those bound compounds that can be released by treatment with GRAS enzymes 

authorized (and widely used) for the wine production 

 

In a recent study by Flamini and coworkers demonstrated the potential of AR2000 for the 

complete hydrolysis of grape monoterpene glycosides (Flamini et al., 2014). Nevertheless, we 

found that AR2000 had a non-specific effect on releasing glycosylated polyphenols (data not 

shown), as has also been reported in previous papers (Wightman & Price, 1997). The data 

suggests that the potential bound aroma released, measured using GC-MS after enzymatic 

hydrolysis, is only part of the overall potential bound aroma of our cultivars.  

 

4.4. Discussion 

 

The results obtained here provide a first robust and reliable comparison of the aroma 

potential of the 10 selected genotypes and support the unique differentiation of individual 

grape cultivars based on the chemical composition of volatile aroma metabolites and their 

glycosylated precursors.  
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The diversity of the individual grape cultivar is visualized by using the hierarchical 

clustering and heatmap (figure 19 & 20). The clustering of free aroma compounds (figure 19) 

shows varieties F3P30, F3P63 and IASMA ECO3 are grouped closely, with the high 

concentration of the monoterpenol linalool, terpendiol-I and II and trans-linalool oxide 

(furanoid). Gewürztraminer and Moscato Rosa are grouped together, and show high 

concentrations of geraniol and geranic acid and some C6 alcohols. Isabella and Nero are also 

positioned separately with a prominent presence of beta-phenylethanol and furaneol. 

Riesling, Arizonica Texas and Vitis cinerea also shows high concentrations of C6 alcohols 

and homovanillinic acid. In the clustering of glycosylated aroma compounds (figure 20) 

shows Vitis cinerea, Arizonica Texas and Nero are in same group, all these are red varieties 

and shows beta-phenylethanol, benzyl alcohol, homovanillinic acid and some C13-

norisoprenoids. Isabella and Riesling together form a group that is particularly rich in 

similar compounds as above three varieties and compounds like beta-phenylethanol, ethyl-

beta-hydroxybutyrate and furaneol. F3P30, IASMA ECO3, F3P63 are also in same group 

which shows high concentrations of bound monoterpenes. Gewürztraminer and Moscato 

Rosa are grouped together and which are specifically rich in nerol, geranic acid, hydroxy 

nerol, and beta-citronellol 
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Figure 19 Hierarchical clustering and heat map visualization of glycosylated aroma compounds released after enzymatic 

hydrolysis 
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Figure 20 Hierarchical clustering and heat map visualization of free volatile aroma compounds identified in the grape 

samples
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Figure 21 MS spectra of Tryptophol in standard and in samples 

 

Monoterpenol linalool, terpendiol (I & II), trans-linalool oxide (furanoid & pyranoid) and 

trans-8-Hydroxy linalool were found to be higher in the free than the conjugated form in the 

F3P30 and IASMA ECO3 varieties. This is contrary to the general acceptance of higher 

concentrations of glycosidically conjugated monoterpenol in grapes. It also indicates that, 

no particular pattern of glycosidic accumulation of monoterpenols is common to all varieties 

and can be species-dependent. F3P30, F3P63, IASMA ECO3, Nero, Arizonica Texas and Vitis 

cinerea were studied here for the first time in this context. The database build in this study 

is readily applicable for the identification of these compounds in further studies for 

systematically profiling the thousands of genotypes available in the ampelographic 

collections. Moreover, among the other interesting results obtained in this study, it is worth 

mentioning the identification of tryptophol in higher concentrations (figure 21) in the 
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Isabella and Arizonica Texas cultivars. This compound was linked to the tryptophan 

metabolism, investigated for the production of 2-aminoacetophenone and other indole off-

flavor in wine (F. Mattivi et al., 1999).  

 

Parts of this study support  the findings of (M Ugliano & Bartowsky, 2006; Maurizio Ugliano 

& Moio, 2008) that the volatile fraction obtained after enzymatic hydrolysis can increase the 

complexity of wine volatiles. Compounds like benzyl alcohol, beta-phenylethanol, geraniol 

and linalool showed very high concentrations after enzymatic hydrolysis. Specifically, 

monoterpene alcohols, such as geraniol, linalool and its oxides and citronellol, have low 

sensory thresholds suggesting that their release from odorless precursors can play an 

important role in the development of wine varietal flavor during winemaking. For example, 

geraniol was released in concentrations that were up to 10 times higher than its free 

concentration in the F3P30, IASMA ECO3, F3P63, Riesling and Moscato Rosa varieties. This 

suggests that the application of this type of enzymatic hydrolysis in winemaking can be 

considered a risky oenological practice, with the potential not simply to enhance, but also to 

drastically modify the aroma profile of wine. Since glycosylation is one of the predominant 

modifications in plants and many secondary metabolites undergo the process, the current 

approach can be applied to improve our understanding of the chemistry of secondary 

metabolites and their glycosidic counterparts.  

 

4.5. Contributions 

 

Thanks to Marco Stefanini and Monica Dallaserra for providing the grape samples and Jan 

Stanstrup for providing expert advice with R. This chapter is a part of manuscript (Ghaste et 

al., 2015).   

 

4.6. Images source 

  

Images of grape Isabella, Gewürztraminer, Moscato Rosa, Nero and Riesling were adopted 

from, Origin of the picture: Julius Kühn-Institut Bundesforschungsinstitut für 

Kulturpflanzen (JKI) Institut für Rebenzüchtung Geilweilerhof-76833 Siebeldingen-

Germany. Reproduced from http://www.vivc.de  

http://www.jki.bund.de/
http://www.jki.bund.de/
http://www.jki.bund.de/de/startseite/institute/rebenzuechtung.html
http://www.vivc.de/
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5. Atmospheric pressure gas chromatography 

mass spectrometry (APGC-MS) based metabolomics 

profiling platform: development and application 
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5.1. Introduction 

 

Gas chromatography coupled with mass spectrometry (GC-MS) is a powerful tool for 

simultaneously profiling a large number of plant metabolites. It is well-established and 

comprehensively used approach in metabolomics. Most widely used ionization technique in 

GC-MS is electron ionization (EI) which is a hard ionization technique and creates intense 

fragmentation of the parent molecule. The molecular ion in an EI spectrum is often present 

with very low abundance or sometimes absent. This in practice means that the molecular ion 

can be observed only for a limited set of major metabolites and this piece of information is 

frequently not available for low-abundance and trace metabolites, making their annotation 

more challenging.  

 

In EI, the high energy electrons (70 eV) are used to collide with analyte molecules makes the 

production of further fragments, the similar way of fragmentation can be observed with 

different EI instrument. Since these spectral similarities, there are different databases of EI 

spectra, which are currently available for the identification of the compounds. Different 

databases like drugs, metabolites, poisons, pesticides, fungicides and common sample 

contaminants (Hurtado-Fernández et al., 2013). The NIST Mass Spectral Search Program© is 

one of the widely used commercial software for the compound identification in EI GC-MS 

experiments. Many GC-MS can perform chemical ionization (CI) and a gas chromatograph 

equipped with a high-resolution time of flight mass spectrometer (TOFMS) (Waters GCT) 

was available within the labs of Fondazione Mach to perform such experiments. 

Unfortunately, a preliminary attempt to use it (using methane, data not reported) failed since 

the measurements lacked both the sensitivity and the reproducibility to be used effectively 

within metabolomics experiments. The sensitivity is needed to obtain a reasonable coverage 

including the low abundance metabolites. The stability of the system is a pre-requisite to 

allow the comparison of several injections within the same sequence, which has been 

observed with the GCT as a general problem, given that this technique rarely has been used so 

far within metabolomics.  

 

The gas chromatography hyphenated with atmospheric pressure ionization time of flight 

mass spectrometry is relatively new technique that is commercially launched by Waters 
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Corporation under the trade name APGC-MS. It offers several benefits over traditional EI GC-

MS systems. Being a soft ionization technique it allows reduced levels of fragmentation and 

generates the spectrum conserving the molecular ion species (figure 22). Additionally the 

system offers high mass accuracy, which is extremely useful in structure elucidation of 

unknown compounds. The lack of spectral database (unlike EI) for compound identification 

is the main reason for the limited use of soft ionization techniques in GC-MS applications 

and vice versa. Recent studies from (Hurtado-Fernández et al., 2013; Pacchiarotta et al., 2013) 

Pacchiarotta et al. (2013) reported  web based online database of the compounds using APCI 

technology. Pacchiarotta et al (2013) generated MS and MS2 spectra for 150 compounds and 

Hurtado-Fernández et al. (2013) reported spectra for 100 compounds in their publically 

available web based resource. Both databases jointly contains wide range of compounds such 

as amino acids, fatty acids, sugars and derivatives, phenolic acids and related compounds, 

flavonoids, organic acids, vitamins, nucleosides and nucleobases.  

 

 

 

 

Figure 22 EI and APGC spectra of citronellal 



72 
 

 

We propose here some of the novel work done with development of APGC-MS technology 

based metabolomics platform. Two different case studies were conducted using grapes and 

Arabidopsis as an application to check the practicality of the platform.  

 

5.2.  Case study 1 – Grape 

 

5.2.1. Materials and Methods 

 

5.2.1.1. Grape samples 

 

Six grape varieties (table 7) were collected from the two different locations in Texas, i.e. Blue 

Ostrich Vineyards 5611 FM Road 2382, Saint Jo, TX 76265, and Arche Vineyards 228 Wagner 

Rd, St Jo, TX 76265.  Healthy and mature grape berries (20○-22○ Brix) were sampled and 

stored immediately at -80 ○C prior to analysis.  

 

 

 

Picture taken during sampling at Blue Ostrich Vineyards 
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Table 7 List of the grape varieties included in the study (Chapter 5) 

 

LAB Code Name Berry Color Location ○Brix 

SYR Syrah Black Arche wines 21.6 

CHA Chardonnay White Arche wines 24.4 

CAB-1 Cabernet Sauvignon Black Arche wines 23 

CAB-2 Cabernet Sauvignon Black Blue-Ostrich wines 24.4 

TEM Tempranillo Noir Blue-Ostrich wines 19.2 

CHB Chenin blanc White Blue-Ostrich wines 17 

 

5.2.1.2. Chemicals and Reagents 

 

Methanol, dichloromethane, ethanol, Pentane, sodium sulphate and ascorbic acid were 

purchased from Sigma Fisher Scientific USA. Citric acid, methyl benzoate and sodium azide 

were purchased from sigma Aldrich USA. The water used in the experiments was purified 

with a Mille-Q water purification system from Millipore (Bedford, MA, USA); SPE cartridges 

Isolate ENV+ (1 g, 6 mL) were obtained from Biotag (USA) 

 

5.2.1.3. Sample Preparation 

 

Sample preparation method was adapted from (Vrhovsek et al., 2014)  with some 

modifications. 500 g grape berries were squeezed  using  household juicer  (Model 54224 

B23, Hamilton Beach) for 10 minutes, the freshly extracted grape juice was further 

centrifuged for 5min at 8000 rpm (Allegra 6R Centrifuge, Beckman Coulter). The upper clear 

part of the juice is decanted. 20 mL of this clear extract was taken for further extraction 

procedure and to it  sodium azide (50 µL, of 1000 mg/L in water solution),  citric acid (15 

mg), ascorbic acid (15 mg) were added for to avoid any microbiological or enzymatic 

reaction (Fedrizzi et al., 2012).  Methyl benzoate (10 µL of 1000 mg/L in Ethanol) was added 

as internal standard. The solution was then vortexed for 3 min in order to get all the 

contents mixed homogeneously and the extract was further used for the solid phase 

extraction procedure. All samples prepared in three technical replicates.  
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Isolute ENV+ cartridges were conditioned with 2 mL of methanol and 6 mL milliQ water 

(Milli Q Advantage A10 model, MilliQ, USA), and then the clear grape extract was eluted 

through cartridges. Later cartridges were washed with 20 mL of water to remove any leftover 

water soluble impurities and then volatiles were eluted with 20 mL of dichloromethane, elute 

was collected in a glass tube and 40 mL of pentane was added to it. To remove traces of 

moisture, the solution was dried with anhydrous Na2SO4 and then concentrated carefully 

using TurboVap® LV (Biotage, USA) to 200 µL, and subsequently analyzed by the APGC-

TOFMS system.  

 

5.2.1.4. APGC-TOFMS Analysis 

 

Analysis  of  was  performed  with  a  7890A  gas  chromatograph (GC, Agilent Technologies, 

Wilmington, DE, USA) hyphenated to a time-of-flight mass  spectrometer  (SYNAPT™ G2, 

Waters Corp., Milford, MA, USA) through an atmospheric pressure ion source (APGC, Waters 

Corp.). Separation of fruit volatiles was carried out using an  Restek Stabilwax column  (0.25  

mm  i.d.,  30m  length  and 0.25  μm thick film ). 1 μL volume of liquid sample was injected 

into the GC using a 7693 autosampler (Agilent Technologies, Wilmington, DE, USA); 

injections were done in splitless mode. GC injector temperature was set at 230°C, oven 

temperature program was set as; initial temperature of 40°C with hold of 4 minutes, followed 

by a 6°C/min ramp to 250°C with a final hold of 5 min. Helium was used as carrier gas at 1 

mL/min (constant flow). The sample was introduced into the MS via a heated transfer line 

held at 275 °C and with a 350 mL/min sheath gas (nitrogen) flow.  Mass spectrometer was 

operated in TOF-MSE (20-40 eV) mode with corona current 2 μA, source temperature 150 °C, 

sample cone 20 V, cone gas flow 40 L/h and auxiliary gas flow of 80 liter per hour. Spectral 

recording was performed in centroid data format, resolution analyzer mode and positive 

polarity with a 0.2 sec scan time. The MS data was acquired within the mass range of m/z 50-

1200 Daltons. The system was operated with the Waters Corporation MassLynx© software 

(Version 4.1 SCN 870).   
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5.2.1.5. Data processing and Annotation 

 

Untargeted metabolomics approach was used for the data processing. Raw data was converted 

to mzXML format and then processed using XCMS (Smith, Want, O’Maille, Abagyan, & 

Siuzdak, 2006) for feature extraction, the features were further annotated using the CAMERA 

annotation package (Kuhl, Tautenhahn, Böttcher, Larson, & Neumann, 2012). The peak area 

table obtained from XCMS and CAMERA annotation was  further manually filtered by 

removing peak areas with very low intensity values (<100), also  features with m/z values 

between 50 to 350 Daltons were only considered since this is the range of molecular weights 

of the fruit volatile compounds. The final table of features and peak area was used for 

performing principle component analysis (for both high energy and low-energy 

experiments). The principle component analysis was performed by using SIMCA P+ (version 

12.0, Umetrics) software.  

 

5.2.2. Results  

 

5.2.2.1. APGC ionization of the fruit volatiles  

 

In order to understand the ionization pattern of the fruit volatiles under APGC source 

conditions, several reference standards of fruit aroma compounds (acid, aldehyde, C13-

norisoprenoid, ester, furan, ketone, monoterpene, phenol, sesquiterpene and pyrazine) were 

analyzed in the system using standardized protocols. Protonated [M+H]● species were 

observed mainly for most of the compounds as there was slight moisture present in the ion 

source. Loss of OH (-17.0028) group was also observed in the case of compounds containing 

hydroxy group. Detailed information about ionization and adducts formations; neutral losses 

of compounds are shown in the table 8. The table was further used for feature extraction from 

samples. Furthermore, clean spectra for each compound were also preserved in the 

Masslynx© library format, which is also convertible to NIST MS library format for the future 

references. Figure 23 and 24 explains the ionization of the VOC methyl benzoate under the 

high and low-energy levels of the APGC instrument as well as under EI conditions and NIST 

MS library spectra respectively.     
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Figure 23 APGC spectra of Methyl Benzoate acquired in MSE mode 
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Figure 24 EI and NIST MS library spectra of Methyl Benzoate
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Table 8. Peak table of the fruit volatile compounds generated from the analysis of reference standards 
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1 2-Ethylbutyric acid Acid 21.16 C6H12O2  116.0837 M+H C6H13O3 117.0911 117.0916 -4.5 

2 3,4-Dihydroxybenzaldehyde Aldehyde 16.86 C7H6O3  138.0317 M+H C7H7O3 139.0761 139.0759 1.4 

3 Cuminaldehyde Aldehyde 21.79 C10H12O  148.0888 M+H C10H13O 149.0981 149.0966 10.1 

4 Dodecanal Aldehyde 20.5 C12H24O  184.1827 M+H C12H25O 185.191 185.1905 2.7 

5 Phenyl acetaldehyde Aldehyde 19.18 C8H8O  120.0575 M+H C8H9O9 121.0657 121.0653 3.3 

6 Undecanal Aldehyde 18.43 C11H22O  170.1671 M+H C11H23O 171.1757 171.1749 4.7 

7 Anethole Aromatic hydrocarbon 22.7 C10H12O  148.0888 M+H C10H13O 149.0973 149.0966 4.7 

8 Vanillylacetone (zingerone) Benzenoid 37.22 C11H14O3  194.0943 M-(C2HO2) C9H13O 137.0863 137.0966 3.09 

 vanillylacetone (zingerone) Benzenoid 37.22 C11H14O3  194.0943 M+ C11H14O3  194.0949 194.0943 NA 

9 (±)-Theaspirane-I C13-norisoprenoid 16.16 C13H22O  194.1671 M-OH C13H21  177.1646 177.1643 1.7 

 (±)-Theaspirane-II C13-norisoprenoid 18.99 C13H22O  194.167 M+H C13H230 195.1753 195.1749 2 

10 alpha-Ionol C13-norisoprenoid 23.95 C13H22O  194.1671 M-OH C13H21 177.166 177.1643 9.6 

11 Theaspirane-I C13-norisoprenoid 16.11 C13H22O  194.1671 M+H C13H23O 195.1755 195.1749 3.1 

http://www.chemspider.com/Molecular-Formula/C6H12O2
http://www.chemspider.com/Molecular-Formula/C7H6O3
http://www.chemspider.com/Molecular-Formula/C10H12O
http://www.chemspider.com/Molecular-Formula/C12H24O
http://www.chemspider.com/Molecular-Formula/C8H8O
http://www.chemspider.com/Molecular-Formula/C11H22O
http://www.chemspider.com/Molecular-Formula/C10H12O
http://www.chemspider.com/Molecular-Formula/C11H14O3
http://www.chemspider.com/Molecular-Formula/C11H14O3
http://www.chemspider.com/Molecular-Formula/C11H14O3
http://www.chemspider.com/Molecular-Formula/C13H22O
http://www.chemspider.com/Molecular-Formula/C13H22O
http://www.chemspider.com/Molecular-Formula/C13H22O
http://www.chemspider.com/Molecular-Formula/C13H22O
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 Theaspirane-II C13-norisoprenoid 16.98 C13H22O  194.1671 M-OH C13H21 177.165 177.1643 4 

12 beta-Ionol C13-norisoprenoid 24.83 C13H22O  194.1671 M-OH C13H21 177.1657 177.1643 7.9 

13 2-Phenoxyethyl isobutyrate  Ester 27.96 C12H16O3  208.1099 M-(C6H5O) C6H11O2 115.0761 115.0759 0 

 2-Phenoxyethyl isobutyrate  Ester 27.96 C12H16O3  208.1099 M+H C12H17O3 209.1178 209.1178 1.7 

14 Benzyl cinnamate Ester 42.14 C16H14O2  238.0994 M-(CHO2) C15H13 193.1171 193.1229 NA 

 Benzyl cinnamate Ester 42.14 C16H14O2  238.0994 M+ C16H14O2 238.1039 238.0994 NA 

15 beta-Humulene Ester 16.65  C15H24  204.1878 M+H C15H25 205.1945 205.2056 -5.4 

16 Butyl benzoate Ester 23.29 C11H14O2  178.0994 M-(C4H7) C7H7O2 123.0449 123.0446 2.4 

17 Butyl butyrate  Ester 14.37 C8H16O2 144.115 M-(C2H4) C6H13O2 117.0916 117.0916 0 

18 Butyl heptanoate  Ester 16.57 C11H22O2  186.162 M-(C4H7) C7H1502 131.1075 131.1072 2.3 

19 Butyl isobutyrate   Ester 10.07 C8H16O2 144.1150  M-(C2H4) C6H13O2 117.0914 117.0916 -1.7 

 Butyl isobutyrate   Ester 10.07 C8H16O2 144.1150  M+H C8H17O2 145.1228 145.1229 -0.7 

20 Cinnamyl acetate Ester 28.13 C11H12O2  176.0837 M-(C2H3O2) C9H9 117.071 117.0704 4.5 

 Cinnamyl acetate Ester 28.13 C11H12O2  176.0837 M-(C2H3O) C9H9O 133.0653 133.0653 5.1 

21 cis-3-hexenyl 3-methylbutanoate   Ester 16.03 C11H20O2  184.1463 M+H C11H21O2 185.1544 185.1542 1.1 

23 Ethyl-2-methylbutyrate Ester 5.28 C7H14O2  130.0994 M-(C2H4) [C5H10O2+H] 103.0759 131.1072 -1.5 

 Ethyl-2-methylbutyrate Ester 5.28 C7H14O2  130.0994 M+H C7H15O2 131.107 103.0759 0 

24 Ethyl anthranilate Ester 30 C9H11NO2  165.079 M+H C9H12NO2 166.0879 166.0868 6.6 

 Ethyl anthranilate Ester 30 C9H11NO2  165.079 M-(CHO2) C8H10N 120.0651 120.0813 NA 

 Ethyl anthranilate Ester 30 C9H11NO2  165.079 M+ C9H11NO2 165.079 165.079 NA 

25 Ethyl butyrate Ester 6.2 C6H12O2  116.0837 M-(C2H4) C4H9O2 89.0608 117.0916 5.1 

 Ethyl butyrate Ester 6.2 C6H12O2  116.0837 M+H C6H13O2 117.0922 89.0603 5.6 

26 Ethyl caprylate Ester 14.81 C12H24O2  200.1776 M-(C2H4) C10H21O2 173.1547 173.1542 6.2 

http://www.chemspider.com/Molecular-Formula/C13H22O
http://www.chemspider.com/Molecular-Formula/C13H22O
http://www.chemspider.com/Molecular-Formula/C12H16O3
http://www.chemspider.com/Molecular-Formula/C12H16O3
http://www.chemspider.com/Molecular-Formula/C16H14O2
http://www.chemspider.com/Molecular-Formula/C16H14O2
http://www.chemspider.com/Molecular-Formula/C15H24
http://www.chemspider.com/Molecular-Formula/C11H14O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C11H22O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C11H12O2
http://www.chemspider.com/Molecular-Formula/C11H12O2
http://www.chemspider.com/Molecular-Formula/C11H20O2
http://www.chemspider.com/Molecular-Formula/C7H14O2
http://www.chemspider.com/Molecular-Formula/C7H14O2
http://www.chemspider.com/Molecular-Formula/C9H11NO2
http://www.chemspider.com/Molecular-Formula/C9H11NO2
http://www.chemspider.com/Molecular-Formula/C9H11NO2
http://www.chemspider.com/Molecular-Formula/C6H12O2
http://www.chemspider.com/Molecular-Formula/C6H12O2
http://www.chemspider.com/Molecular-Formula/C12H24O2
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 Ethyl caprylate Ester 14.81 C10H20O2  172.1463 M+H C10H21O2 173.1557 173.1542 8.7 

27 Ethyl decanoate  Ester 19.1 C9H18O2  158.1307 M-(C2H4) C7H15O2 131.107 131.1072 2.9 

 Ethyl decanoate  Ester 19.1 C12H24O2  200.1776 M+H C12H25O2 201.1861 201.1855 3 

28 Ethyl heptanoate Ester 12.44 C8H16O2 144.115 M-(C2H4) C6H13O2 117.0916 117.0916 -1.5 

 Ethyl heptanoate Ester 12.44 C9H18O2  158.1307 M+H C9H9O2 159.1385 159.1385 0 

29 Ethyl hexanoate  Ester 10.03 C8H16O3 144.115 M-(C2H4) C6H13O2 117.0916 145.1229 -1.7 

 Ethyl hexanoate  Ester 10.03 C8H16O2 144.115 M+H C8H17O2 145.1227 117.0914 -1.4 

30 Ethyl isovalerate Ester 5.3 C7H14O2  130.0994 M-(C2H4) [C5H10O2+H] 103.0756 131.1072 -3.1 

 Ethyl isovalerate Ester 5.3 C7H14O2  130.0994 M+H C7H15O2 131.1068 103.0759 -2.9 

31 Ethyl nonanoate Ester 17 C11H22O2  186.162 M-(C2H4) C9H19O2 159.1388 158.1385 1.6 

 Ethyl nonanoate Ester 17 C11H22O2  186.162 M+H C11H2303 187.1701 187.1698 1.9 

32 Ethyl phenylacetate Ester 21.92 C10H12O2  164.0837 M-(C3H5O2) C7H7 91.0551 91.0548 0 

 Ethyl phenylacetate Ester 21.92 C10H12O2  164.0837 M+H C10H13O2 165.0916 165.0916 3.3 

33 Ethyl salicylate Ester 22.35 C9H10O3  166.063 M+H C9H11O3 167.072 167.0708 7.2 

34 Ethyl sorbate Ester 16.38 C8H12O2  140.0837 M-(C2H5O) C6H70 95.0497 95.0497 -0.9 

 Ethyl sorbate Ester 16.38 C8H12O2  140.0837 M-(C2H4) C6H9O2 113.0602 113.0603 0 

 Ethyl sorbate Ester 16.38 C8H12O2  140.0837 M+H C8H13O2 141.0916 141.0916 0 

35 Eugenyl acetate Ester 29.82 C12H14O3  206.0943 M+H C12H15O3 207.1033 207.1021 5.8 

36 Geranyl  benzoate Ester 34.56 C17H22O2  258.162 M-(C7H5O2) C10H17 137.1331 137.133 0.7 

 Geranyl  benzoate Ester 34.56 C17H22O2  258.162 M+H C17H23O2 259.17 259.1689 0.8 

37 Geranyl butyrate  Ester 23.87 C14H24O2  224.1776 M-(C4H7O2) C10H17 137.134 137.133 7.3 

38 Geranyl phenylacetate Ester 21.33 C18H24O2  272.1776 M+H C18H25O2 273.2582 273.2582 0.7 

39 Geranyl propionate Ester 22.52 C13H22O2  210.162 M-(C3H5O2) C10H17 137.1336 137.133 4.4 

http://www.chemspider.com/Molecular-Formula/C10H20O2
http://www.chemspider.com/Molecular-Formula/C9H18O2
http://www.chemspider.com/Molecular-Formula/C12H24O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C9H18O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C7H14O2
http://www.chemspider.com/Molecular-Formula/C7H14O2
http://www.chemspider.com/Molecular-Formula/C11H22O2
http://www.chemspider.com/Molecular-Formula/C11H22O2
http://www.chemspider.com/Molecular-Formula/C10H12O2
http://www.chemspider.com/Molecular-Formula/C10H12O2
http://www.chemspider.com/Molecular-Formula/C9H10O3
http://www.chemspider.com/Molecular-Formula/C8H12O2
http://www.chemspider.com/Molecular-Formula/C8H12O2
http://www.chemspider.com/Molecular-Formula/C8H12O2
http://www.chemspider.com/Molecular-Formula/C12H14O3
http://www.chemspider.com/Molecular-Formula/C17H22O2
http://www.chemspider.com/Molecular-Formula/C17H22O2
http://www.chemspider.com/Molecular-Formula/C14H24O2
http://www.chemspider.com/Molecular-Formula/C18H24O2
http://www.chemspider.com/Molecular-Formula/C13H22O2
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40 Heptyl acetate Ester 13.41 C9H18O2  158.1307 M+H C9H19O2 159.0707 159.1358 NA 

41 Hexyl acetate  Ester 22.45 C8H16O2 144.115 M+H C8H17O2 145.1243 145.1229 9.6 

42 Hexyl hexanoate   Ester 18.62 C12H24O2  200.1776 M-(C6H11) C6H13O2 117.0917 117.0916 0.9 

43 Isobutyl acetate  Ester 13 C6H12O2  116.0837 M+H C6H13O2 117.0912 117.0916 0.9 

44 Linalyl butyrate Ester 20.05 C14H24O2  224.1776 M-(C4H7O2) C10H17 137.1338 137.133 5.8 

45 Linalyl propionate Ester 18.56 C13H22O2  210.162 M-(C3H5O2) C10H17 137.1333 137.133 2.2 

46 Methyl 3-(methylthio)propionate Ester 12.06 C5H10O2S  134.0401 M+H C5H11O2S 135.0478 135.048 -1.5 

47 Methyl anthranilate Ester 29.49 C8H9NO2  151.0633 M+H  C8H10NO2 152.0692 152.0686 NA 

48 Methyl caproate Ester 8.78 C7H14O2  130.0994 M+H C7H15O2 131.107 131.1072 -1.5 

49 Methyl jasmonate Ester 30.91 C13H20O3  224.1412 M+H C13H21O3 225.1513 225.1491 9.8 

50 Methyl n-methylanthranilate Ester 20.72 C9H11NO3  165.079 M-(CH3O) C8H8NO 134.0615 134.0606 4.2 

 Methyl n-methylanthranilate Ester 20.72 C9H11NO2  165.079 M+H C9H12NO2 166.0875 166.0868 6.7 

51 Methyl pelargonate Ester 16.06 C10H20O2  172.1463 M+H C10H21O2 173.1552 173.1543 5.8 

52 Methyl salicylate Ester 21.71 C8H8O3  152.0473 M+H C8H9O3 153.056 153.0552 5.2 

53 Methyl trans-cinnamate Ester 26.93 C10H10O2  162.0681 M+H C10H11O2 163.0766 163.0759 4.3 

54 Neryl acetate Ester 20.8 C12H20O2  196.1463 M-(C2H3O2) C10H18 137.1331 137.133 0.7 

55 n-Hexyl butanoate  Ester 14.47 C10H20O2  172.1463 M-(C6H11) C4H9O2 89.0606 89.0603 1.2 

 n-Hexyl butanoate  Ester 14.47 C10H20O2  172.1463 M+H C10H21O2 173.1544 173.1543 3.4 

56 n-Pentyl acetate Ester 5.7 C7H14O2  130.0994 M-(C2H4) [C5H10O2+H] 103.0757 131.1072 -2.3 

 n-Pentyl acetate Ester 5.7 C7H14O2  130.0994 M+H C7H15O2 131.1069 103.0759 -1.9 

57 Octyl acetate Ester 15.68 C10H20O2  172.1463 M+H C10H21O2 173.1541 173.1542 -0.6 

58 Propyl propionate  Ester 12.12 C6H12O2  116.0837 M+H C6H13O2 117.0914 117.0914 -1.7 

59 Sabinene hydrate Ester 15.4 C10H18O  154.1358 M-OH C10H17 137.1329 137.133 -0.1 

http://www.chemspider.com/Molecular-Formula/C9H18O2
http://www.chemspider.com/Molecular-Formula/C8H16O2
http://www.chemspider.com/Molecular-Formula/C12H24O2
http://www.chemspider.com/Molecular-Formula/C6H12O2
http://www.chemspider.com/Molecular-Formula/C14H24O2
http://www.chemspider.com/Molecular-Formula/C13H22O2
http://www.chemspider.com/Molecular-Formula/C5H10O2S
http://www.chemspider.com/Molecular-Formula/C8H9NO2
http://www.chemspider.com/Molecular-Formula/C7H14O2
http://www.chemspider.com/Molecular-Formula/C13H20O3
http://www.chemspider.com/Molecular-Formula/C9H11NO2
http://www.chemspider.com/Molecular-Formula/C9H11NO2
http://www.chemspider.com/Molecular-Formula/C10H20O2
http://www.chemspider.com/Molecular-Formula/C8H8O3
http://www.chemspider.com/Molecular-Formula/C10H10O2
http://www.chemspider.com/Molecular-Formula/C12H20O2
http://www.chemspider.com/Molecular-Formula/C10H20O2
http://www.chemspider.com/Molecular-Formula/C10H20O2
http://www.chemspider.com/Molecular-Formula/C7H14O2
http://www.chemspider.com/Molecular-Formula/C7H14O2
http://www.chemspider.com/Molecular-Formula/C10H20O2
http://www.chemspider.com/Molecular-Formula/C6H12O2
http://www.chemspider.com/Molecular-Formula/C10H18O
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60 trans-2-Hexenyl acetate Ester 18.55 C8H14O2  142.0994 M+H C8H15O 143.1081 143.1072 4.9 

61 alpha-Methylbenzyl acetate    Ester 20.33 C10H12O2  164.0837 M-(C2H3O2) C8H9 105.0706 105.0704 1.9 

62 alpha-Asarone Ether 32.75 C12H16O3  208.1099 M+H C12H17O3 209.1174 209.1178 -1.9 

63 5-Hydroxymethyl furfural Furan 33.31 C6H6O4  126.0317 M-OH C6H5O2 109.0294 109.029 3.7 

 5-Hydroxymethyl furfural Furan 33.31 C6H6O3 126.0317 M+H C6H7O3 127.0402 127.0395 5.5 

64  3-Hexanone Ketone 5.58 C6H12O  100.0888 M+H C6H13O 101.0587 101.0966 NA 

65 1R,2R,5R-(+)-Hydroxy-3-pinanone Ketone 24.89 C10H16O2  168.115 M-(C2H3O2) C8H13 109.1018 109.1017 0 

 1R,2R,5R-(+)-Hydroxy-3-pinanone Ketone 24.89 C10H16O2  168.115 M-OH C10H15O 151.1123 151.1123 0 

 1R,2R,5R-(+)-Hydroxy-3-pinanone Ketone 24.89 C10H16O2  168.115 M+H C10H17O2 169.1229 169.1229 0.9 

66 2,6,6-Trimethylcyclohexanone Ketone 11.95 C9H16O  140.1201 M+H C9H17O 123.1174 123.1174 0 

 2,6,6-Trimethylcyclohexanone Ketone 11.95 C9H16O  140.1201 M-OH C9H15 141.1279 141.1279 0 

67 2-Nonanone Ketone 13.79 C9H18O  142.1358 M+H C9H190 143.1441 143.1436 3.5 

68 3-Octanone Ketone 10.46 C8H16O  128.1201 M+H C8H17O 129.1278 129.1279 -0.8 

69 4-Hexen-3-one Ketone 8.88 C6H10O  98.07317 M+H C6H11O 99.0804 99.081 -6.1 

70 6-Methyl-5-hepten-2-one  Ketone 10.19 C8H14O  126.1045 M-OH C8H13 109.1018 109.1017 0.9 

71 Damascenone Ketone 22.51 C13H18O  190.1357 M+H C13H19O 191.1444 191.1436 4.2 

72 gamma-Octalactone  Lactone 24.24 C8H14O2  142.0994 M-OH C8H13O  125.0972 125.0966 4.8 

 gamma-Octalactone  Lactone 24.24 C8H14O2  142.0994 M+H C8H1502 143.1079 143.1072 4.9 

73 (-)-Menthone Monoterpene 15.28 C10H18O  154.1358 M+H C10H19O 155.1434 155.1436 -1.3 

74 (-)-Myrtenol Monoterpene 22 C10H16O  152.1201 M-OH C10H15 135.1177 135.1174 2.2 

75 (-)-Rose oxide-I  Monoterpene 13.64 C10H18O  154.1358 M-OH C10H17 137.133 137.133 0 

 (-)-Rose oxide-II  Monoterpene 14.04 C10H18O  154.1357 M+H C10H19O 155.1439 155.1436 1.9 

76 (+)-alpha-Terpineol Monoterpene 20.24 C10H18O  154.1358 M-OH C10H17 137.1332 137.133 1.5 
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77 (+)-Camphene  Monoterpene 5.73 C10H16 136.1252 M+H C10H17 137.1245 137.133 NA 

78 (+)-Menthofuran Monoterpene 15.79 C10H14O  150.1045 M+H C10H150 151.1125 151.1123 1.3 

79 (+)-Menthone-I Monoterpene 15.34 C10H18O  154.1358 M+H C10H19O 155.143 155.1436 -3.9 

 (+)-Menthone-II Monoterpene 15.92 C10H18O  154.1358 M-OH C10H17 137.1329 137.133 -0.7 

80 (2E,6E)-Farnesol Monoterpene 30.79 C15H26O  222.1984 M-OH C15H25 205.1956 205.1956 0 

81 (R)-(+)-Limonene Monoterpene 8.96 C10H16 136.1251 M+H C10H17 137.1329 137.133 -0.7 

 (R)-(+)-Pulegone Monoterpene 19.14 C10H16O  152.1201 M+H C10H17O 153.1286 153.1279 4.6 

82 (S)-(−)-Limonene Monoterpene 11.37 C10H16 136.1252 M+H C10H17 137.1329 137.133 -0.7 

83 2-Phenoxyethanol (rose ether) Monoterpene 27.98 C8H10O2 138.0681 M-OH C8H9O 121.0651 121.0651 -1.7 

84 3-Carene Monoterpene 7.36 C10H16 136.1252 M+H C10H17 137.0759 137.133 NA 

85 5-Methylfurfural Monoterpene 11.78 C6H6O2  110.0368 M+H C6H7O2 111.0451 111.0446 4.5 

86 Acetanisole Monoterpene 27.94 C9H10O2  150.0681 M+H C9H11O2 151.0773 151.0759 9.3 

87 Acetovanillone Monoterpene 35.2 C9H10O3  166.063 M+H C9H11O3 167.0741 167.0708 NA 

88 alfa-Pinene Monoterpene 5.13 C10H16 136.1252 M+H C10H17 137.133 137.133 0 

89 Camphor Monoterpene 14.44 C10H16O  152.1201  M+H  C10H17O 153.0647 153.1279 NA 

90 Carvacrol Monoterpene 29.15 C10H14O  150.1045 M+H C10H15O 151.1128 151.1123 3.3 

91 cis-Jasmone Monoterpene 24.66 C11H16O  164.1201 M+H C11H17O 165.1299 165.1279 12.1 

92 Citral Monoterpene 9.22 C10H16O  152.1201 M+H C10H17O 153.1276 153.1279 -2 

93 Citronellal Monoterpene 14.48 C10H18O  154.1357 M-OH C10H17 137.1334 137.133 2.9 

 Citronellal Monoterpene 14.48 C10H18O  154.1357 M+H C10H19O 155.1441 155.1436 3.2 

94 delta-Neoclovene-I Monoterpene 17.47 C15H24  204.1878 M+H C15H25 205.1958 205.1956 1 

 delta-Neoclovene-II Monoterpene 18.3 C15H24  204.1878 M+H C15H25 205.1958 205.1956 1 

95 dihydro-alpha-ionone Monoterpene 22.43 C13H22O  194.1671 M+H C13H23O 195.1768 195.1749 9.7 
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96 Eugenol Monoterpene 28.4 C10H12O2  164.0837 M+H C10H13O2 165.0916 165.0916 0 

97 Geranic acid-I Monoterpene 30.6 C10H16O2  168.115 M+H  C10H17O2 169.1239 169.1229 5.9 

 Geranic acid-II Monoterpene 31.26 C10H16O2  168.115 M-(CHO2) C9H15 123.1182 123.1174 6.5 

98 Geraniol Monoterpene 23.05 C10H18O  154.1357  M-OH C10H17 137.1336 137.133 4.4 

99 Geranyl acetone –I Monoterpene 22.69 C13H22O  194.1671 M+H C13H23O 195.1752 195.1749 2.8 

 Geranyl acetone –II Monoterpene 23.15 C13H22O  194.1671 M+H C13H23O 195.1752 195.1749 NA 

100 Linalool Monoterpene 15.79 C10H18O  154.1357  M-OH C10H17 137.1329 137.133 -1.3 

 Linalool Monoterpene 15.79 C10H18O  154.1357  M+H  C10H19O 155.1434 155.1436 -0.7 

101 Linalool oxide-I Monoterpene 13.06 C10H18O2 170.1307 M-OH C10H17O 153.1285 153.1279 3.9 

102 Linalool oxide-II Monoterpene 12.6 C10H18O2 170.1307 M-OH C10H17O 153.1287 153.1279 5.2 

103 p-Cymene Monoterpene 10.75 C10H14 134.1095 M-(CH3) C9H11 119.0922 119.0861 NA 

104 p-Menth-1-ene Monoterpene 7.16 C10H18  138.1409 M-H C10H17 137.0746 137.133 NA 

105 Safranal Monoterpene 15.87 C10H14O  150.1045 M+H C9H150 151.1126 151.1123 2 

106 Terpinen-4-ol Monoterpene 18.31 C10H18O  154.1358 M-OH C10H17 137.133 137.133 0 

107 trans-Beta farnesene Monoterpene 19.68 C15H24  204.1878 M+H C15H25 205.1963 205.1956 3.4 

108 trans-Terpin Monoterpene 27.23 C10H20O2  172.1463 M-(H3O2) C10H17 137.134 137.133 5.2 

 trans-Terpin Monoterpene 27.23 C10H20O2  172.1463 M-(H3O) C10H17O 153.1287 153.1279 7.3 

109 trans-2-Octenal Monoterpene 11.43 C8H14O  126.1045 M+H C8H150 127.1126 127.1123 2.4 

110 2-Methoxy-4-vinylphenol phenol 28.25 C9H10O2  150.0681 M+H C9H11O2 151.0762 151.0759 2 

111 4-Ethylphenol Phenol 28.58 C8H10O  122.0732 M+H C8H11O 123.0811 123.0817 0.8 

112 Benzophenone Phenol 32.96 C13H10O  182.0732 M+H C13H11O 183.0824 183.081 7.6 

113 2-Isobutyl-3-methoxypyrazine Pyrazine 16.72 C9H14N2O  166.1106 M+H C9H15N2O 167.1189 167.1189 -2.9 

114 2-Methoxy-3-isopropyl pyrazine Pyrazine 14.71 C8H12N2O  152.095 M+H C8H13N2O 153.1039 153.1028 7.2 
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115 2-Methoxy-3-secbutylpyrazine Pyrazine 16.25 C9H14N2O  166.1106 M+H C9H15N2O 167.1208 167.1208 -14.3 

116 Isopropyl methoxy pyrazine Pyrazine 14.73 C8H12N2O  152.095 M+H C8H15N2O 153.1046 153.1045 0.6 

117 2-Methylthio-benzothiazole S-compound (thiol) 32.18 C8H7NS2  181.002 M+H C8H8NS2 182.0106 182.0098 4.4 

118 2-Methylthiolan-3-one S-compound (thiol) 16.78 C5H8OS  116.0296 M+H C5H9OS 117.0378 117.0374 3.4 

119 4-Methylthio-1-butanol S-compound (thiol) 22.9 C5H12OS  120.0609 M-OH C5H11S 103.0582 103.0581 1 

120 6-Mercapto-1-hexanol S-compound (thiol) 26.87 C6H14OS  134.0765 M+ C6H14OS 134.0601 134.0606 -3.7 

121 (+)-Cedrol-I Sesquiterpene 25.86 C15H26O  222.1984 M-OH C15H25 205.1968 205.1956 5.8 

 (+)-Cedrol-II Sesquiterpene 27.54 C15H26O  222.1984 M-OH C15H25 205.1968 205.1956 NA 

122 (+)-Ledene Sesquiterpene 20.1 C15H24  204.1878 M+H C15H25 205.2151 205.1856 NA 

123 alpha-Humulene Sesquiterpene 19.66 C15H24  204.1878 M+H C15H25 205.1951 205.1956 -2.4 

124 Caryophyllene oxide Sesquiterpene 25.34 C15H24O  220.1827 M-OH C15H25O 203.1824 203.18 5.9 

 Caryophyllene oxide Sesquiterpene 25.34 C15H24O  220.1827 M+H C15H25O 221.1918 221.1905 11.8 

125 gamma-Humulene Sesquiterpene 19.53 C15H24  204.1878 M+H C15H25 205.1964 205.1956 3.9 

125 Guaiene Sesquiterpene 20.02 C15H24  204.1878 M+H C15H25 205.1961 205.1956 2.4 

126 Isolongifolene Sesquiterpene 16.55 C15H24  204.1878 M+H C15H25 205.1964 205.1956 3.9 

127 beta-Caryophyllen Sesquiterpene 25.31 C15H24  204.188 M-H C15H23 203.1809 203.18 4.4 

128 p-Propylanisole -- 18.59 C10H14O  150.1044 M+H C10H15O 151.1122 151.1123 -0.7 
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16 compounds, (+) alpha-terpineol, (R)-(+)-pulegone, 3-carene, anethole, benzophenone, 

citronellal, delta-neoclovene, dihydro-alpha-ionone, geraniol, linalool oxide, methyl 

pelargonate, methyl salicylate, phenyl acetaldehyde, p-propyl anisole, sabinene hydrate, 

trans-terpin were putatively annotated by using table 8 parameters and CAMERA (Kuhl et al., 

2012) annotation package and XCMS (Benton et al., 2008; Smith, Want, O’Maille, Abagyan, & 

Siuzdak, 2006). 

 

As the data was acquired in low and high-energy modes (figure 23), we have extracted 

features from two different functions; principle component analysis was performed on the 

feature extracted. Figure 25 shows the differentiation in the samples based on the features 

extracted from the low-energy data while figure 26 shows the differentiation in the samples 

based on the features extracted from the high-energy data. The preliminary analysis shows 

good separation of the all varieties in both energy based data acquisition.  
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Figure 25 PCA score plot of features extracted in low-energy data acquisition 
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Figure 26 PCA score plot of features extracted in high-energy data acquisition 
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5.3. Case study 2- Arabodopsis 
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5.4. Discussion  

 

Ever increasing applications of GC-MS technology needs to address new requirements of the 

user some of them are soft ionization and preservation of molecular ion in the spectrum.   

The current technique of APGC-MS has shown its possible potentials in the future of GC-MS 

analysis. With the analysis of commercially available pure reference compounds of known 

fruit aroma compounds, we observed that APGC-MS provided abundant molecular ions with 

minimal fragmentation at low collision energy. For further confidence level in compound 

identification, the collision energy was ramped from 20 to 40 eV in the high-energy function 

to generate maximum information from fragment ions (figure 23). The use of charge 

exchange chemical ionization and elevated collision energy data resulted in a spectrum 

similar to the traditional EI data (figure 24) which is fascinating result and opens the use of EI 

spectral database for the compound identification.  

 

To my belief, the main reason that limits the use of APGC-MS technology is the lack of 

spectral databases that compliments the compound identification. There are many studies 

recently coming up with small spectral databases based on APGC ionization (Hurtado-

Fernández et al., 2013; Pacchiarotta et al., 2013). We also report our database containing 

spectra, retention times, and accurate mass-to-charge ratio (m/z) for precursor and fragment 

ions of 128 Fruit VOCs, the current database is also available in Masslynx© library format.  

 

The experimental results from the analysis of selected grape samples showed that by using 

the features and further statistical tools we were able to discriminate the different grape 

varieties. The use of orthogonal information for the metabolite identification (accurate mass, 

retention time, and theoretical or measured fragmentation) increased the confidence of 

metabolite identification. Sixteen aroma compounds were putatively identified using 

metabolomics annotation tools.  

 

Overall experience with the APGC-MS suggested its capacity to play a potential alternative 

approach to the common EI technique, if supported by spectral databases for compound 

identifications. The results from the analysis of grape and Arabidopsis samples also proposed 

that it is a valuable solution for GC-MS based metabolomics experiments. This is the first step 
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towards the exploration of this technology, which in future needs focused studies utilizing all 

possibilities of the technique.   

 

5.5. Contributions 

 

Thanks to Waters Corporation, Sung Baek and Biotage USA for all their kind support during 

the APGC-MS experiments Jan Stanstrup for the help during data processing of grape 

experiment. The case study of Arabidopsis is included in the thesis as a significant example 

of application of the technology and I have contributed with the APGC-MS experimental 

part.   
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6. Thesis conclusions 
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The sensory quality of the fruits is widely determined by the qualitative and quantitative 

composition of volatile organic compound present in it. This thesis comprises research on 

the mapping of volatile compounds in grape. The work mainly describes the development 

and application of different gas chromatography mass spectrometry techniques, advanced 

data analysis strategies, statistical tools and some of novel multidimensional datasets of the 

grape VOCs. In the experiment of comprehensive mapping of VOCs, 124 grape cultivars were 

profiled for their VOCs content by the use of headspace solid phase microextraction and gas 

chromatography mass spectrometry. Additionally, automated pipeline and in-house 

database of grape VOCs were generated for the identification of the compounds, this work 

was done in collaboration with data management team at FEM. The annotation resulted 

into the “level 1” identification of 118 VOCs of different chemical classes and reports the 

dataset information which will allow to classify the most cultivated and distributed grape 

cultivars on the basis of their aromatic profile.  

 

The glycosylated precursors are considered as a storehouse of aroma of grapes, many aroma 

active compounds are preserved in the grape berries in the form of these precursors in very 

high concentrations. We performed analysis of free and bound aroma compounds in 10 

selected grape genotypes and successfully annotated 66 compounds. Many compounds 

showed qualitative and quantitate differences in free and glycosylated conjugated form. 

Cultivars Nero and species viz. Vitis arizonica and Vitis cinerea were studied for first time 

with this approach. The data produced will be beneficial for wine producers, in order to 

obtain information about not only the directly available free fraction but also their 

precursors that can significantly change its aroma during winemaking. The methodology 

used was simple, practical and reproducible and could be of general interest for the study of 

aroma precursors in other matrices.   

 

The last part of the thesis was dedicated to study the development and applications of 

atmospheric pressure ionization gas chromatography mass spectrometry (APGC-MS), the 

relatively new technique in the field of GC-MS analysis. It offers several benefits over 

traditional EI GC-MS systems, as soft ionization based reduced levels of fragmentation and 

conservation of the molecular ion species. An APGC-MS method was developed and several  

for the analysis of several fruit volatile reference compounds was performed using 
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standardized protocols for the understanding of ionization patterns. To add confidence to 

compound identification the data was acquired into MSE mode where collision energy was 

ramped from 20 to 40 eV. The low-energy function produced spectra with minimum 

fragmentation containing molecular ion species and high energy function generated spectra 

similar to EI. The final database contains spectra of 135 compounds and information like 

retention times, and accurate mass-to-charge ratio (m/z) for precursor and fragment ions. In 

a case study of grapes the clean spectra of 135 reference standards were saved in a Masslynx© 

library format which can be useful for any further studies. Six different grape varieties were 

analyzed by the same protocol and 16 aroma compounds were putatively identified using 

metabolomics annotation tools. This suggests that the APGC-MS is a valuable solution for 

GC-MS based metabolomics experiments and good possible alternative to traditional EI 

based systems.  

 

The wide range of grape varieties studied in the thesis and three different datasets were 

created out of which the dataset from chapter 3 and chapter 5 jointly reports 177 VOCs. 

Some of new grape cultivars were studied in this thesis like Girelli hybrids and some non-

vinifera cultivars. All the datasets generated in the study can be used as comprehensive 

repository of VOCs in selected grape cultivars. Most importantly, this database represents 

the significant portion of the grape secondary metabolism and a necessary part of grape 

metabolome. Moreover, the protocols reported in the study were tested with the grape as 

sample fruit and further can be extended to more fruit commodities.  
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8.1. Supplementary data 
 

Table 9 Average concentrations (µg/Kg) and standard deviation for the compounds identified in the free fraction of grapes 

  F3P30  F3P51  F3P63  Riesling  Gewürztraminer 

Moscato 

Rosa  Isabella  Nero  AT VC 

Compounds  Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD 

Acid                                         

Hexanoic acid 58.3 11.3 71.1 5.9 49.9 6.4 50.9 6.6 219.2 11.9 71.6 6.9 105.9 14.3 166.3 18.8 58.7 7.2 74.6 7.8 

Linoleic acid ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 165.3 23.1 74.6 9.1 

Alcohol                                         

trans 3-hexenol 49.1 7.8 144.7 26.1 51.1 12.3 22.7 3.9 10.2 1.0 161.5 14.3 24.9 2.9 151.7 10.4 357.7 25.4 1013.1 98.5 

n-hexanol 307.1 56.0 170.6 19.5 301.6 43.1 202.0 11.7 96.0 7.8 309.5 14.0 222.1 49.5 332.2 119.5 272.6 68.8 422.3 13.0 

Tryptophol ---- ---- ---- ---- 18.8 2.6 ---- ---- ---- ---- ---- ---- 22.8 7.1 ---- ---- ---- ---- ---- ---- 

Coniferol ---- ---- 10.7 3.5 ---- ---- 15.4 11.0 20.4 3.4 27.1 1.5 15.9 5.5 ---- ---- 163.0 31.8 151.2 30.0 

beta Phenyl ethanol 24.3 2.2 11.2 3.4 13.4 1.5 23.3 4.4 22.9 3.1 23.2 2.5 3002.9 256.2 55.2 48.9 69.2 6.2 8.5 2.7 

Benzyl alcohol 51.9 10.7 37.7 5.3 19.5 2.4 17.3 1.3 26.8 1.2 35.7 8.6 23.0 1.7 23.6 3.4 18.1 1.6 5.7 0.8 

2-Hexenol 186.5 30.0 144.6 6.8 84.2 11.2 163.0 9.0 114.5 6.8 136.8 14.8 212.9 27.6 166.7 26.6 143.7 51.3 83.5 9.5 

Aldehyde                                         

Benzaldehyde ---- ---- ---- ---- 2.4 0.1 3.5 0.5 ---- ---- ---- ---- ---- ---- 3.9 0.5 5.4 0.3 8.1 0.9 

Phenylacetaldehyde 19.1 3.3 10.9 0.4 12.5 1.0 10.4 1.2 6.0 0.4 15.3 0.9 112.4 16.6 31.1 5.5 10.8 0.6 38.2 3.8 

Benzenoid                                         

Methyl vanillate ---- ---- ---- ---- ---- ---- 1.4 0.2 ---- ---- 1.2 0.1 1.4 0.1 0.7 0.2 ---- ---- 1.7 1.7 

4-vinylguaiacol ---- ---- 1.3 0.1 1.3 0.1 4.0 0.6 5.8 0.5 4.9 0.5 3.7 0.2 2.7 0.2 3.7 0.8 5.4 3.1 

Homovanillyl alcohol 33.0 21.5 ---- ---- 4.9 0.7 4.4 0.7 5.1 0.7 19.1 1.2 ---- ---- 53.2 10.5 3.7 0.4 28.9 23.3 

Homovanillinic acid 4.5 1.9 9.3 2.6 9.0 0.2 11.9 8.2 13.8 2.8 34.8 2.1 20.2 6.8 24.9 18.3 90.9 16.9 165.4 27.3 

Acetovanillone ---- ---- ---- ---- ---- ---- 3.7 0.7 ---- ---- ---- ---- ---- ---- ---- ---- 9.1 3.7 ---- ---- 

C13-Norisoprenoid                                         

Dihydro beta ionone ---- ---- 9.6 2.2 12.2 1.2 6.1 0.8 5.9 0.6 5.9 0.3 6.3 1.5 ---- ---- 11.6 2.9 25.4 3.6 

4-oxo beta ionol ---- ---- ---- ---- 2.7 0.4 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 
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3 hydroxy beta damascone ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

vomifoliol ---- ---- 33.1 1.8 ---- ---- 13.3 4.4 15.8 1.4 30.7 1.1 ---- ---- 17.8 3.6 ---- ---- 36.5 6.1 

Ester                                          

Methyl salicylate ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 4.4 0.4 15.6 3.3 ---- ---- ---- ---- 

Ethyl 3-hydroxyhexanoate ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 8.0 1.3 ---- ---- ---- ---- ---- ---- 

Ethyl beta hydroxybutyrate ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 478.0 34.5 ---- ---- ---- ---- ---- ---- 

Methyl anthranilate ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 14.1 2.9 ---- ---- ---- ---- ---- ---- 

Furanone                                         

Furaneol 8.5 1.7 8.5 2.0 11.1 9.1 3.5 4.6 2.2 1.7 0.5 0.1 380.7 6.5 5.8 9.6 4.9 6.9 2.3 0.3 

Monoterpene                                         

cis Linalool oxide (Pyranoid) 166.9 18.7 679.5 31.4 68.1 2.5 7.7 0.3 1.6 0.2 50.2 6.9 1.1 0.1 ---- ---- ---- ---- 4.3 1.4 

p-menth-1-ene-7,8-diol ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 8.6 0.9 ---- ---- ---- ---- 6.3 1.0 

Lilac alcohol C 7.2 1.3 5.9 0.4 1.4 0.1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

6,7-Dihydro-7-hydroxylinalool 52.5 10.6 20.5 1.6 4.5 1.0 5.9 0.4 4.9 0.5 4.1 0.6 3.4 0.8 3.5 0.6 30.8 1.2 31.9 0.2 

cis Linalool oxide (Furanoid) 112.6 19.9 206.8 23.4 ---- ---- ---- ---- ---- ---- 10.6 1.9 ---- ---- ---- ---- ---- ---- ---- ---- 

Hotrienol 56.1 18.8 30.2 4.9 18.8 8.8 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

trans Linalool oxide (Pyranoid) 584.8 36.4 2093.5 64.8 222.5 8.9 23.5 0.5 2.7 0.3 44.4 5.4 1.9 0.7 ---- ---- ---- ---- 2.1 0.2 

Terpendiol II 2122.8 335.0 1751.9 107.2 100.7 22.3 9.4 2.1 4.3 1.7 33.8 5.3 ---- ---- 6.7 5.0 7.4 5.3 7.2 7.8 

Hydroxy Citronellol ---- ---- ---- ---- ---- ---- ---- ---- 5.0 0.4 5.0 0.8 ---- ---- ---- ---- ---- ---- ---- ---- 

trans Linalool oxide (Furanoid) 403.2 64.6 205.5 21.8 40.4 5.2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Terpendiol I 2017.2 446.4 1561.0 187.7 869.7 73.4 81.8 14.3 22.2 2.2 20.9 1.2 10.8 2.0 27.1 13.6 11.4 3.6 31.6 7.7 

Linalool 3846.2 576.2 3813.2 649.4 139.8 55.6 25.2 1.4 ---- ---- 124.1 23.2 ---- ---- ---- ---- ---- ---- 9.4 2.3 

alpha Terpineol 73.4 12.0 27.6 4.7 4.0 1.2 ---- ---- ---- ---- ---- ---- 38.0 0.9 ---- ---- ---- ---- 3.6 0.3 

Nerol 15.9 2.2 6.1 1.8 15.8 1.2 ---- ---- 22.0 2.5 18.2 0.7 ---- ---- 4.8 0.5 ---- ---- ---- ---- 

trans 8 Hydroxy linalool 535.6 100.6 316.3 35.8 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Geraniol 187.1 28.7 59.1 9.2 158.3 22.0 ---- ---- 186.5 10.2 139.7 2.8 ---- ---- ---- ---- ---- ---- ---- ---- 

Geranic acid 92.5 40.3 31.4 2.2 87.7 15.1 ---- ---- 92.0 4.1 40.4 1.7 ---- ---- 21.6 9.4 ---- ---- ---- ---- 

Phenol                                         

3,4,5-Trimethoxyphenol ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 4.2 0.4 ---- ---- ---- ---- 

ATAArizonica Texas, VCVitis cinerea   



116 
 

Table 10 Average concentrations (µg/Kg) and standard deviation for the compounds released after enzymatic hydrolysis of 

grapes 

  F3P30  F3P51  F3P63  Riesling  Gewürztraminer 

Moscato 

Rosa  Isabella  Nero  VAT Cinerea 

Compounds  Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD Conc ± SD 

Acid                                         

Hexanoic acid ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 7.6 2.5 

Linoleic acid ---- ---- 93.5 107.2 37.9 17.7 ---- ---- 32.0 26.3 ---- ---- ---- ---- 123.6 53.5 573.5 26.0 827.7 45.5 

Alcohol                                         

trans 3-hexenol 2.0 0.4 4.5 0.5 4.6 1.6 9.3 0.6 3.5 0.6 14.3 1.8 29.6 5.3 96.1 3.1 157.9 2.6 119.7 0.9 

n-hexanol 13.5 3.1 18.6 1.3 30.3 7.8 52.3 0.5 15.7 3.6 25.8 3.4 224.7 58.7 153.5 1.1 525.6 6.4 289.7 3.7 

Tryptophol 17.5 4.3 35.0 4.6 24.1 4.4 26.9 0.4 20.0 3.0 12.5 0.6 518.4 105.9 38.7 9.5 218.7 4.0 68.0 2.2 

Coniferol 37.8 17.4 55.5 1.2 58.0 19.3 150.0 1.4 44.7 17.7 21.3 2.9 318.2 68.3 234.9 188.1 1318.6 61.5 519.9 20.1 

beta Phenyl ethanol 321.8 52.1 161.0 13.1 182.0 43.8 385.4 75.5 158.1 30.1 317.5 16.3 9420.3 1843.0 525.0 12.6 7049.6 520.8 2449.2 51.4 

Benzyl alcohol 426.4 86.5 204.8 5.6 268.5 63.9 619.5 12.5 300.3 65.8 520.4 22.9 1451.7 197.8 1397.2 65.4 3708.6 60.0 1120.4 13.2 

2-Hexenol ---- ---- ---- ---- ---- ---- 8.5 0.3 ---- ---- ---- ---- 17.1 4.5 ---- ---- 33.8 0.1 14.8 0.3 

4-Methoxyphenethyl alcohol ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 22.2 0.6 498.8 71.8 

Anisyl alcohol ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 127.8 6.8 205.9 2.6 226.2 4.9 

Cinnamyl alcohol ---- ---- ---- ---- ---- ---- 5.6 0.2 ---- ---- ---- ---- ---- ---- ---- ---- 332.6 1.9 15.8 0.8 

Aldehyde                                         

Benzaldehyde 2.7 0.5 ---- ---- 1.9 0.0 4.1 0.3 2.2 0.3 3.2 0.2 ---- ---- ---- ---- 27.8 3.1 11.0 0.4 

Phenylacetaldehyde 4.5 0.1 2.5 0.2 6.1 0.2 11.7 0.1 7.0 0.8 6.8 0.9 46.7 11.0 12.3 0.8 5.7 0.3 11.5 0.4 

Benzenoid                                         

Eugenol 3.7 0.8 2.6 0.3 1.7 0.4 4.4 0.1 14.3 2.7 4.4 0.1 81.3 16.4 4.7 0.2 190.9 1.6 214.0 5.3 

Methyl vanillate 12.6 3.4 5.2 0.7 7.0 2.3 68.2 2.2 17.1 4.5 15.7 1.4 121.9 33.3 27.4 2.3 19.5 0.3 74.3 1.5 

4-vinylguaiacol 13.5 4.2 12.1 4.2 33.4 7.3 61.8 2.7 46.8 7.8 3.8 0.9 195.8 37.1 36.3 30.7 158.0 7.8 93.8 9.6 

Homovanillyl alcohol 20.3 7.6 6.6 0.8 10.1 3.1 94.3 3.3 55.7 12.2 70.9 4.9 11.0 1.9 1213.1 199.1 225.9 3.5 1448.0 24.3 

Homovanillinic acid 26.5 14.7 50.3 0.6 48.2 14.2 143.9 1.5 30.1 14.0 13.8 3.7 141.9 28.7 276.1 274.8 779.6 18.7 513.5 17.8 

Acetovanillone 80.4 22.1 26.7 2.3 31.7 10.2 203.1 6.2 60.7 13.4 46.4 4.1 210.5 42.9 ---- ---- 162.3 3.7 ---- ---- 
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C13-Norisoprenoid                                         

3-4-dihydro-3-oxoactinidiol I 2.5 0.5 4.0 0.5 ---- ---- 4.8 0.2 ---- ---- ---- ---- 21.8 4.9 14.5 1.2 28.5 0.6 19.1 0.4 

3-4-dihydro-3-oxoactinidiol II 2.8 0.6 3.5 0.5 ---- ---- 7.8 0.2 ---- ---- ---- ---- 15.4 2.5 13.8 0.5 55.4 2.1 31.6 0.4 

3-4-dihydro-3-oxoactinidiol III 3.9 1.0 6.2 0.7 ---- ---- 16.4 0.7 ---- ---- ---- ---- 10.4 2.2 16.2 0.4 47.1 1.1 24.5 0.5 

9-Hydroxy megastigma-4-6-

dien-3-one 5.5 1.4 8.7 1.8 3.7 1.2 5.8 0.3 ---- ---- ---- ---- ---- ---- 10.3 0.4 36.4 1.0 245.0 7.4 

Dihydro beta ionone 6.2 1.2 4.5 1.6 5.6 2.2 3.7 0.2 7.5 1.6 4.3 0.9 10.7 2.1 37.8 2.3 150.7 4.5 133.5 1.2 

4-oxo beta ionol 7.3 2.0 7.2 0.6 8.7 2.5 38.3 1.8 5.0 1.7 4.9 0.2 92.9 20.6 36.6 3.4 ---- ---- 114.5 1.0 

3 hydroxy beta damascone 36.9 14.6 34.9 3.2 28.4 10.8 68.9 2.0 25.1 6.5 22.4 1.2 66.6 23.0 155.8 7.4 164.7 3.2 194.8 2.4 

vomifoliol 43.4 18.0 61.6 8.7 48.9 14.4 149.5 3.7 52.9 15.4 33.6 3.5 101.9 14.3 505.0 200.2 119.5 3.0 155.0 4.3 

Dihydro-3-oxo beta ionol 84.8 20.0 28.1 4.2 32.3 9.1 137.4 2.9 33.4 7.6 27.1 1.7 336.0 67.9 335.7 37.3 89.4 3.8 665.4 10.2 

3-keto alpha ionol 196.2 37.5 155.8 24.9 108.9 33.8 364.8 12.3 49.6 22.0 61.9 1.7 54.9 16.6 923.7 56.5 292.3 22.1 1810.8 35.0 

3,4-Dihydroactinidol ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 3.3 0.9 4.2 0.2 ---- ---- 10.7 0.5 

Coumarin                                         

Scopoletin ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1067.8 6.0 ---- ---- 

Ester                                          

Methyl salicylate 1.9 0.5 1.0 0.2 4.2 1.4 1.3 0.1 1.8 0.4 2.8 0.2 24.4 7.4 319.7 2.0 3.3 0.1 1.8 0.1 

Ethyl 3-hydroxyhexanoate ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 87.6 10.6 ---- ---- ---- ---- ---- ---- 

Ethyl beta hydroxybutyrate ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2072.4 151.2 ---- ---- ---- ---- ---- ---- 

Methyl anthranilate ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 16.5 3.4 ---- ---- ---- ---- ---- ---- 

Furanone                                         

Furaneol 1.3 0.4 0.9 0.1 1.1 0.3 2.1 0.4 1.1 0.2 1.2 0.1 183.3 23.1 2.4 1.2 3.2 0.1 2.7 0.0 

Monoterpene                                         

1-p-menthen-9-al I 3.2 1.9 4.2 0.1 0.6 0.2 0.7 0.0 0.5 0.1 0.7 0.1 0.3 0.1 ---- ---- 3.9 0.1 ---- ---- 

1-p-menthen-9-al II 3.6 2.0 4.5 0.0 0.7 0.3 0.8 0.0 0.6 0.1 0.8 0.1 0.3 0.1 ---- ---- 4.1 0.1 ---- ---- 

Lilac alcohol A 10.1 2.5 9.0 0.8 11.5 3.2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 49.2 1.0 ---- ---- 

cis Linalool oxide (Pyranoid) 14.0 2.6 18.3 2.3 22.8 6.0 13.2 0.2 6.5 0.5 4.1 0.5 3.4 0.9 35.5 1.4 14.9 0.2 19.6 0.3 
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p-menth-1-ene-7,8-diol 16.2 8.8 4.5 0.6 22.3 6.0 88.9 3.0 10.0 2.4 5.1 0.7 495.3 99.0 29.2 5.5 33.7 0.5 866.9 6.6 

Lilac alcohol C 22.5 5.1 14.9 1.6 28.4 8.4 2.0 0.0 ---- ---- 1.7 0.1 2.6 0.4 4.3 0.2 107.6 1.4 1.6 0.2 

6,7-Dihydro-7-hydroxylinalool 23.3 9.4 25.9 1.8 8.4 1.8 4.4 0.1 4.9 1.0 4.1 0.2 1.1 0.3 4.6 1.4 6.9 0.4 4.3 0.3 

4-terpineol 27.3 13.5 43.6 2.0 13.1 4.5 4.2 0.2 3.1 0.6 4.9 0.4 ---- ---- ---- ---- ---- ---- ---- ---- 

beta-Citronellol 27.6 3.9 6.9 0.7 30.0 8.9 1.8 0.1 24.3 5.8 10.8 1.2 28.0 4.6 12.4 0.9 ---- ---- ---- ---- 

Hydroxy nerol 30.7 15.6 29.7 3.1 32.4 4.8 ---- ---- 27.1 6.2 19.0 8.7 12.9 3.2 17.0 1.9 ---- ---- ---- ---- 

Lilac alcohol B 33.3 7.9 14.3 1.0 43.2 12.6 2.2 0.1 ---- ---- 1.9 0.1 ---- ---- 5.4 0.7 73.6 1.4 ---- ---- 

cis Linalool oxide (Furanoid) 34.8 18.8 111.7 2.9 15.5 4.1 26.3 0.5 10.0 0.8 8.7 0.2 3.9 0.2 33.8 2.2 24.0 0.8 40.7 1.5 

Hotrienol 52.9 32.6 95.7 39.4 35.5 15.9 4.0 0.2 ---- ---- 3.2 0.4 ---- ---- ---- ---- ---- ---- ---- ---- 

trans Linalool oxide (Pyranoid) 66.3 9.0 41.8 5.2 36.5 9.6 21.4 0.3 8.4 1.6 9.1 0.8 15.6 1.8 17.6 1.1 90.6 1.4 41.7 0.3 

Terpendiol II 72.2 19.8 86.3 18.2 19.3 5.7 3.9 0.3 2.6 0.8 3.4 0.2 ---- ---- ---- ---- ---- ---- ---- ---- 

Hydroxy Citronellol 99.6 30.9 31.6 2.9 52.6 15.8 21.2 0.7 59.6 12.2 31.7 2.2 22.6 4.8 71.7 7.7 7.5 0.4 5.3 0.3 

trans Linalool oxide (Furanoid) 114.1 51.6 371.8 19.8 62.8 18.4 35.8 0.2 13.9 1.6 16.3 0.7 16.7 3.1 22.3 2.4 23.1 1.2 38.5 0.5 

Terpendiol I 183.0 20.1 284.0 81.9 414.3 114.6 31.0 0.7 8.8 3.0 32.7 1.5 13.2 0.7 48.7 2.4 ---- ---- 62.5 1.6 

Linalool 224.8 30.6 200.5 41.9 221.9 65.2 41.5 0.6 12.8 2.8 84.2 7.6 8.9 0.9 38.8 1.4 ---- ---- 3.5 0.3 

alpha Terpineol 245.8 147.6 391.3 7.9 145.8 27.9 63.6 1.5 30.6 7.4 44.7 3.6 750.9 128.2 17.2 0.3 4.1 0.8 43.4 0.3 

Nerol 312.0 39.3 188.5 16.2 451.2 120.3 7.8 0.5 281.8 77.7 234.7 31.3 134.9 29.2 247.5 3.5 5.1 0.4 15.1 0.1 

cis 8 Hydroxy linalool 592.9 135.7 511.5 40.9 665.7 183.2 302.0 7.7 201.8 40.2 321.9 35.9 145.8 32.5 500.8 41.0 1805.1 29.2 ---- ---- 

trans 8 Hydroxy linalool 763.2 175.9 632.3 121.5 286.4 84.0 47.7 1.4 25.2 4.5 125.1 15.3 47.7 9.0 100.9 7.6 797.0 9.2 ---- ---- 

Geraniol 860.1 99.2 603.1 63.4 1177.5 290.8 62.2 0.8 1490.7 324.1 1945.8 204.2 230.6 54.9 512.3 9.5 40.9 0.4 30.1 0.9 

Geranic acid 1771.9 20.2 1071.5 137.6 1536.1 313.7 35.4 0.7 1185.1 232.9 827.8 45.9 28.8 7.3 545.6 24.1 ---- ---- 50.9 1.2 

exo-2-Hydroxycineole ---- ---- ---- ---- ---- ---- 21.4 0.3 ---- ---- ---- ---- 36.9 4.6 23.0 0.7 53.5 0.7 21.0 0.2 

Phenol                                         

Chavicol 1.9 0.2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 29.2 0.6 2.8 0.2 

3,4,5-Trimethoxyphenol 41.9 17.1 35.3 2.0 33.7 11.4 158.7 5.7 46.8 12.8 39.4 2.1 133.2 25.4 204.6 41.7 18.6 0.5 103.1 0.8 

Quinone                                         

2-Methoxyhydroquinone ---- ---- ---- ---- ---- ---- 6.9 0.2 ---- ---- 32.5 3.6 44.7 6.4 191.2 51.1 238.8 12.4 529.3 6.9 

ATAArizonica Texas, VCVitis cinerea   
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ॐ सह नाववतु । सह नौ भुनकु्त । सह वीरं्य करवावह ै।  

तेजस्वव नावधीतमवतु मा स्वस्िषावह ै। 

ॐ शास््तिः शास््तिः शास््तिः ॥ 

 

ॐ सवे भव्तु सुस्िनिः सवे स्तु स्नरामर्यािः । 

सवे भद्रास्ि पश्र्य्तु मा कस्िदु्िःिभाग्भवेत् । 

ॐ शास््तिः शास््तिः शास््तिः ॥ 

 

 

Oh Almighty! May he protect all of us! 
May he cause us to enjoy! 

May we acquire strength together! 
May our knowledge become brilliant! 

May we not hate each other! 
Oh Almighty! May peace prevail! Everywhere! 

 
 

Oh Almighty! May everybody be happy! 
May all be free from ailments! 

May all see what is auspicious! 
May no one be subject to miseries! 

Oh Almighty! May peace prevail! Everywhere!  
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