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A B S T R A C T

Position-resolved timing characterisation tests were performed on individual pixels of hexagonal and trench
3D silicon sensors. An IR laser was used to deposit energy equivalent to 1 MIP with a 1 μm spatial resolution
onto each sensor, which were attached to custom-designed fast read-out electronics chips. Time of Arrival
(ToA) values obtained were (544 ± 29.8) ps for the hexagonal geometry, and (515 ± 8.2) ps for the trench
geometry.
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1. Introduction

Upgrades to the LHC will see integrated beam luminosity increase
by up to a factor of 7, requiring the development of radiation-hard,
fast-timing detectors. In order to perform track and vertex reconstruc-
tion after the upgrades, some experiments of the LHC have estimated
that timing resolutions of 10–50 ps are required for their vertex de-
tectors [1]. 3D silicon sensors are being developed that are able to
withstand the projected radiation levels of HL-LHC and keep within the
estimated required timing resolution [2,3]. 3D sensors hold a major
advantage over their planar counterparts as inter-electrode distance
is decoupled from and can be made significantly shorter than the
substrate thickness, as illustrated in Fig. 1.

This results in increased charge collection efficiency, reduced charge
sharing, lower depletion voltages and the ability to include an active
edge in the sensor design [4].
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2. Pixel geometries

Microscope images of hexagonal and trench pixel sensors are shown
in Figs. 2a and 2b, whilst illustrations of the geometries and dimensions
of these pixels are shown in Figs. 2c and 2d.

In both sensors, aluminium contacts allow signal read-out from the
central electrode but also block the IR laser, meaning that part of each
sensor geometry is invisible to a laser scan.

3. Front-end electronics

Developed by the TimeSPOT collaboration, the front-end electronics
is based on a single-channel, two-stage amplification scheme that acts
as a trans-impedance amplifier. AC-coupled Si-Ge bipolar transistors
are used for applications that are low in noise and high in bandwidth.
Current amplifiers that have been designed for fast signals are used,
and are based on a monolithic wide-band amplifier [5].
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Fig. 1. Illustration of the differences between inter-electrode distance and therefore
the distance travelled by ionised electrons and holes in (a) planar sensors and (b) 3D
sensors.

Fig. 2. Images of individual pixels of the (a) hexagonal and (b) trench electrode silicon
sensors being characterised. Schematic drawings of single pixels of the (c) hexagonal
and (d) trench sensor geometries. Both pixels feature an active thickness of 150 μm,

central n-type read-out electrode and outer p-type electrodes to which the external
50 V bias is applied.

Fig. 3. Schematic drawing of the lay-out of the equipment used to perform the time
characterisation tests. The pulse picker was not used for this data acquisition.

4. Experimental method

A schematic drawing of the set-up is shown in Fig. 3.
An IR laser with a wavelength of 1030 nm was passed through a

series of lenses and mirrors [6]. Using a beam-splitter, part of the beam
split off to a reference sensor and deposited energy roughly equivalent
to 10 MIPs. The remainder of the beam deposited energy equivalent
to 1 MIP on the test sensor. A silicon test structure was used for
the reference sensor, with a 0.03 mm2 active area and 907 fs timing
accuracy [1]. Sensors were attached to PCB boards, allowing a reverse
bias to be applied, with a −100 V bias used for the reference board in
2

Fig. 4. (a) ToA map and (b) ToA histograms for the hexagonal pixel sensor geometry.
Non-uniformities of the weighting field within the active region of the hexagonal pixel
gives rise to a broader ToA histogram.

all tests. Each board was connected to an oscilloscope, which displayed
the output voltage signal for each board as a function of time. The
oscilloscope used had 4 channels, a sampling rate of 20 GSas−1 and
an analog bandwidth of 8 GHz.

In turn, each of the sensor test geometries were connected to the
set-up, with a −50 V reverse bias applied to each. This reverse bias
value was chosen as it ensured full depletion and charge carrier velocity
saturation, whilst keeping the leakage current at an appropriately low
value. The laser spot of the set-up was aimed onto the sensor pixel being
characterised. Using LabView, a scan of each pixel was performed,
using 1 μm increments in x and y. The output settings of the oscilloscope
were altered such that for each laser position, 1000 waveforms of
both the reference and test signal were outputted. This meant that the
effects of electronic jitter were heavily suppressed in the results, and the
timing resolution determined is a consequence of the non-uniformity of
the weighting field in each pixel.

5. Data analysis and results

Each outputted waveform contained signal amplitude information
as a function of time. A 35% constant fraction discriminator was
applied to each waveform to assign a time-stamp to each signal. Time
of arrival (ToA) of each test signal was determined by taking the time
stamp of a given test signal and subtracting the time stamp of its
corresponding reference signal.

To remove as many regions covered by aluminium as possible,
geometric cuts were performed on both pixels to isolate the half of the
pixel with less covering aluminium. These isolated halves were then
duplicated, rotated and translated in order to obtain a fuller pixel image
for both types of sensor. In both pixels, the mean ToA for each position
of the scan was calculated, and the overall ToA value was determined
from these position-specific mean ToA values.

The ToA map and histogram for the hexagonal pixel geometry are
shown respectively in Figs. 4a and 4b.

The ToA of the hexagonal pixel was (544 ± 29.8) ps. Regions
between two adjacent outer electrodes have a lower field and hence
electron–hole pairs must diffuse to higher field regions before they can
drift and be detected [7]. By considering the weighting field of the
hexagonal pixel (as shown in Fig. 5a), it is noticed that the high field
region of the pixel is covered by the aluminium contacts, meaning that
the fastest regions of the sensor are not included in these results.

A pronounced tail is observed in the ToA histogram as a conse-
quence of slow regions in the pixel periphery, suggesting the potential
presence of inefficiencies in charge collection when fast electronics are
used.

The ToA map and histogram for the trench pixel geometry are
shown respectively in Figs. 6a and 6b.

The ToA of the trench pixel was (515 ± 8.2) ps. There is minimal
spread in ToA values over the active region of the sensor due to the
high uniformity of the weighting field within this region. The lowest
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Fig. 5. TCAD simulations of the weighting field of (a) hexagonal and (b) trench 3D
silicon pixel sensors [8].

Fig. 6. (a) ToA map and (b) ToA histogram for the trench pixel sensor geometry.
Owing to the highly uniform weighting field within the active region of the trench
pixel, the ToA histogram is well-defined.

field regions of this sensor are covered by the aluminium contacts and
so do not form a part of these results. By observing the weighting field
of the trench pixel as shown in Fig. 5b, this can be confirmed.
3

6. Conclusion

The hexagonal sensor geometry exhibits an excellent timing perfor-
mance, with a timing resolution of 29.8 ps, falling within the timing
requirement of 50 ps due to be imposed by HL-LHC. The trench sensor
geometry has even better timing performance, with a timing resolution
of 8.2 ps. The timing resolution for the trench sensor is over three times
better than that for the hexagonal pixel as the weighting field is far
more uniform within its active region.
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