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Abstract

In the framework of inverse electromagnetic scattering tech-
niques, the thesis focuses on the development and the analysis
of the integration between a multi-resolution imaging procedure
and a shape-optimization-based technique. The arising method-
ology allows, on one hand, to fully exploit the limited amount of
information collectable from scattering measurements by means
of the iterative multi-scaling approach (IMSA) which enables
a detailed reconstruction only where needed without increas-
ing the number of unknowns. On the other hand, the use of
shape-optimization, such as the level-set-based minimization,
provide an effective description of the class of targets to be re-
trieved by using “a-priori” information about the homogeneity
of the scatterers. In order to assess strong points and draw-
backs of such an hybrid approach when dealing with one or
multiple scatterers, a numerical validation of the proposed im-
plementations is carried out by processing both synthetic and
laboratory-controlled scattering data.

Keywords
Microwave Imaging, Inverse Scattering, Level Sets, Iterative
Multi-Scaling Approach, Homogeneous Dielectric Scatterers.






Résumé

La reconstruction non invasive de la position et de la forme
d’objets inconnus constitue un théme de grand intérét dans
nombre d’applications, et on citera en particulier I’évaluation et
le controle non destructif (généralement référés par les abrévi-
ations END et CND) pour la surveillance et le controle indus-
triel et le diagnostic de sous-surface [1]. Dans un tel cadre in-
téressant, beaucoup de méthodologies ont, été proposées, prin-
cipalement basées sur les rayons X [2|, les ultrasons [3], et les
courants de Foucault [4]. Cependant, des approches dans le do-
maine microonde (par lequel on entend de 300 MHz o 300 GHz)
ont été récemment reconnues comme offrant des méthodologies
d’imagerie efficaces, grace aux points clés suivants [1][5][8] :

e les ondes électromagnétiques aux fréquences microondes
peuvent pénétrer matériaux naturels et artificiels sous
réserve qu’ils ne soient pas des conducteurs idéaux ;

e les champs diffractés par le ou les objets cibles sont repré-
sentatifs non seulement des frontiéres de celui-ci ou ceux-
ci, mais aussi de la ou des structures intérieures ;



e les microondes montrent une grande sensibilité au con-
tenu en eau de la structure que I’on entreprend d’imager ;

e les sondes de ce domaine peuvent étre employées sans
aucun contact mécanique avec le spécimen testé .

De plus, en comparaison aux rayons X voire aux approches
basées sur la résonance magnétique, les méthodes microondes
minimisent (ou évitent) des effets collatéraux dans le spécimen
testé. Donc, elles peuvent par exemple étre mises en ceuvre
de maniére plus stire en imagerie biomédicale, en limitant en-
tre autre le stress du patient dans la mesure ou le contact
physique avec le systéme d’imagerie peut étre évité (e.g., le
dépistage de cancers du sein [9]), ou dans d’autres applications
critiques, telles que l'imagerie a travers les murs (dite Through-
Wall Imaging ou TWI) [10].

Une avancée supplémentaire de l'inspection non invasive
microonde est représentée par des approches de diffraction in-
verse qui sont destinées a construire une image de la région sous
test qui contiennent de I'information quantitative bien définie
[11]. La formulation mathématique du probléme de diffraction
inverse est présentée au chapitre 2 en se concentrant sur le cas
ou des informations a priori sur la géométrie sont effective-
ment disponibles. Puisque les problémes de diffraction inverse
n’ont généralement pas une solution sous une forme analytique,
une résolution numérique basée sur la méthode des moments
(MoM) est adoptée et les inconvénients principaux du modéle
qui apparaissent, tels que la non linéarité, le mauvais condi-
tionnement et la mauvaise localisation, sont discutés [12][13].
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En particulier, la mauvaise localisation est causée par la perte
d’information entre le probléme inverse et le probléme direct,
alors que la non linéarité est due au fait que la solution ne
peut pas étre exprimée comme une somme linéaire d’éléments
indépendants. Par suite de la mauvaise localisation, le prob-
léme inverse souffre également de mauvais conditionnement,
puisque la solution ne dépend pas en continuité des données.

Afin de discuter les stratégies de résolution qui ont été
développées pour surmonter de tels inconvénients, le chapitre 3
se concentre sur la situation actuelle dans le cadre de la diffrac-
tion inverse. En particulier, les solutions régularisées [38| con-
sistent a exprimer quelques propriétés physiques prévues des
diffracteurs au moyen de paramétres de régularisation, de ce
fait construisant une famille de solutions approchées. Mal-
heureusement, le choix du ou des parameétres de régularisation
devient alors le théme principal, particuliérement dans le cas
des problémes non linéaires pour lesquels la littérature ne four-
nit aucun critére. De facon analogue, I'utilisation des approx-
imations, telles que Born, Rayleigh et Rytov [13], est limitée
a une classe spécifique des problémes de diffraction inverse,
c’est-a-dire traitant les diffracteurs de faibles contrastes.

A la différence des techniques et approximations de régular-
isation, les techniques de minimisation tentent de faire face a la
non-linéarité du probléme de diffraction inverse. Ces méthodolo-
gies reformulent le probléme comme une procédure d’optimisation
visant & la minimisation de I’écart entre les champs mesurés et
la solution d’essai numériquement calculée. A cet effet, une
fonction de cott appropriée est définie et ’espace de recherche
est exploré au moyen de stratégies adaptées au probléme ef-
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fectif. Par conséquent, I'exactitude de la solution dépend de
lefficacité de la stratégie de solution, puisque le probléme peut
posséder des solutions erronées de par sa non-linéarité. Dans le
cadre de stratégies de minimisation, la theése décrit stratégies
déterministes et heuristiques de minimisation. Les plus large-
ment connues pour la premiére catégorie sont les méthodologies
basées sur des minimisations par descente selon le gradient ainsi
que présentées par Kleinman et al. [54]. Ces méthodologies
sont basées sur la définition d’une série de solutions d’essai as-
sociées a des valeurs strictement décroissantes de la fonction de
cott et elles sont caractérisées par la mise a jour du champ élec-
trique inconnu ainsi que des valeurs des propriétés électromag-
nétiques (i.e., permittivité diélectrique et conductivité) dans
le domaine de recherche. Malheureusement, la convergence de
la minimisation déterministe dépend du point d’initialisation,
puisque la solution peut étre bloquée a des minima locaux par
suite de la non-linéarité du probléme. Au contraire, les tech-
niques heuristiques peuvent limiter le probléme de minima lo-
caux grace a leur capacité d’explorer I'espace de recherche en
totalité ainsi que a la possibilité d’inclure de 'information a pri-
ori dans la solution. Une telle classe de stratégies de minimi-
sation se compose généralement d’algo-rithmes stochastiques
inspirés du comportement d’insectes pour la mise a jour des
inconnues.

Sans élaborer au dela du nécessaire a ce stade, le carac-
tére mal posé est fortement lié & la quantité d’information que
I’on peut collecter lors d’une expérience de diffraction a but
d’imagerie, et habituellement le nombre de données indépen-
dantes est plus faible que la dimension de I’espace des solutions;
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des systémes a vue multiple (on collecte le champ diffracté dans
plusieurs directions ou sur plusieurs surfaces de l’espace en-
vironnant la zone étudiée) ou/et & illumination multiple (on
éclaire cette zone d’étude de plusieurs directions ou a partir de
sources réparties dans plusieurs domaines) sont donc générale-
ment adoptés. Cependant, il est bien connu que 'information
qui est effectivement accessible par ce ou ces moyens est une
quantité qui connait une limite supérieure [14]|[15]. En con-
séquence, il est nécessaire d’exploiter de maniére efficace toute
I'information contenue dans les échantillons recueillis du champ
diffracté afin d’atteindre une reconstruction (d’obtenir une im-
age) qui soit satisfaisante. Comme discuté dans le chapitre
3, afin d’exploiter effectivement toute l'information collectée
a partir des mesures de diffraction effectuées, des stratégies
dites de multi-résolution ont été récemment proposées. L’idée
est de viser une résolution spatiale performante (c¢’est-a-dire
améliorée par rapport a celle couramment choisie ou assurée
dans la zone d’étude) seulement dans les régions d’intérét (Re-
gions of Interest dites Rols) de I'espace ot les diffracteurs in-
connus sont localisés (plus précisément, ot ils sont estimés étre
par le processus d’'imagerie qui est mis en ceuvre) [16] et/ot
des discontinuités entre matériaux apparaissent étre présentes
[17][18]. Quant aux réalisations pratiques, des stratégies déter-
ministes ou impliquant des analyses statistiques des données
ont été proposées afin de déterminer le niveau de résolution
optimal, tandis que des approches impliquant des fonctions
splines de degrés variés ont été employées afin d’améliorer le
niveau de résolution. Par ailleurs, des approches multi-étapes
ont été implémentées dans le but d’accroitre de maniére itéra-



tive la résolution spatiale au moyen d’une procédure analogue
a celle d'un zoom [19] en gardant le rapport entre le nombre
d’inconnues (e.g., les paramétres électromagnétiques de cellules
avec lesquelles on considére que la zone d’étude est divisée) et
le nombre de données (e.g., les échantillons recueillis du ou
des champs diffractés) suffisamment faible et constant de telle
fagon que le risque de la survenue de minima locaux d’une fonc-
tionnelle cott (qui traduit de maniére usuelle I’écart entre les
données et celles que 1'on pourrait associer par la simulation
numérique aux objets modélisés par la procédure d’inversion,
et qui correspond au moins indirectement a la différence entre
les objets réels et ceux qui nous apparaissent reconstruits) dans
le probléme d’optimisation tel que considéré [15].

Par ailleurs, I’absence d’information affectant la bonne ré-
solution du probléme inverse a été considérée, particuliérement
en END-CND, a travers I’exploitation de la connaissance a pri-
ori que 'on peut avoir sur la scéne de test, et du scénario
de l'interaction électromagnétique mis en jeu, au moyen d’une
représentation efficace des inconnues de celle-ci. En effet, dans
beaucoup d’applications, le ou les objets inconnus sont carac-
térisés par des propriétés électromagnétiques connues (i.e., per-
mittivité diélectrique et conductivité) et ils sont localisés dans
une région hote connue au moins & un certain degré (des incer-
titudes peuvent ’affecter, ceci menant & une complexité addi-
tionnelle qui pourrait étre significative). De plus, cela dépen-
dant de la précision recherchée, des scénarii plus complexes
peuvent étre approchés via l'introduction d’un ensemble de ré-
gions homogénes caractérisées par des parameétres géométriques
(de forme) et électromagnétiques différents [20]. Sous de telles
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hypothéses, un probléme d’imagerie se réduit a un probléme
de reconstruction de forme, plus précisément un probléme pour
lequel ce sont les supports de ces régions homogénes qui doivent
étre reconstruits. Afin d’atteindre un tel but, des techniques
paramétriques qui sont destinées a représenter 1’objet inconnu
en terme de paramétres descriptifs de formes de référence [21]
[22], des approches plus sophistiquées telles que ’évolution con-
trolée de courbes de type splines [23][25], des gradients de
forme [26]|28], ou des méthodes d’évolution d’ensembles de
niveaux [31]|32], ont été proposées. Plus en détail, quant aux
stratégies d’optimisation de forme les plus importantes dans
la formation d’images en microonde (le chapitre 4), des ap-
proches paramétriques sont basées sur la description des objets
au moyen de formes de base qui sont correctement paramétrées.
Pour ce qui concerne les méthodes d’ensembles de niveaux, le
contour zéro d’un tel ensemble définit la frontiére du ou des
objets homogeénes recherchés, ce qui, en contraste aux straté-
gies qui impliquent une description en pixels ou paramétriques,
permet de représenter des formes complexes ou des régions
d’une maniére relativement simple (on parlera de méthodes
d’inversion libres de contraintes topologie). De plus, a la dif-
férence des approches paramétriques, les ensembles de niveau
permettent de controler la fusion et la division des objets d’une
maniére naturelle.

Dans le cadre brossé ci-dessus, la thése se focalise sur le
développement et ’analyse de I'intégration d’une stratégie multi-
échelle itérative (dite Iterative Multi-Scaling Approach ou IMSA)
[19] et de la représentation en ensembles de niveaux (Level-
Sets ou LS) [33]. L’implémentation qui en résulte a pour but
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d’exploiter de maniére profitable tant la connaissance a pri-
ori disponible sur le scénario joué (e.g., 'homogé-néité du ou
des diffracteurs en est le point clé) que le contenu informatif
des mesures effectuées. Par raison de simplicité, et sans pré-
tention a exhaustivité, la formulation du probléme inverse est
réduite au cas bidimensionnel de polarisation transverse mag-
nétique (TM) quand on traitera d'une ou de plusieurs régions
d’intérét.

En particulier, ’architecture de la stratégie proposée est
présentée au chapitre 4. La formulation mathématique de
I’approche itérative multi-résolution avec la minimisation basée
sur I’ensemble de niveaux (notée IMSA-LS) est concentrée sur
I’architecture multi-étape. L’algorithme est basé sur des étapes
ol la résolution spatiale est itérativement augmentée en con-
centrant la région d’intérét sur le secteur ot I’'objet est localisé.
A la premiére étape, le domaine de recherche est discrétisé et
une solution brute est recherchée. Puis, a partir de la premiére
évaluation, la premiére région d’intérét est estimée et le niveau
de résolution est augmenté seulement a l'intérieur de la région
d’intérét. A cet effet, une nouvelle fonction multi-résolution
d’ensemble des niveaux est définie et son évolution est menée
en résolvant un probléme adjoint qui correspond a la dérivation
de la fonction de cofit.

[’évaluation des possibilités de reconstruction d’TMSA-LS
est effectuée premiérement en considérant des géométries sim-
ples, telles qu'un cylindre circulaire avec un rayon de la demi-
longueur d’onde, et des données synthétiques. L’algorithme est
initialisé avec la solution vraie afin de réaliser un essai de stabil-
ité, puis des reconstructions sans et avec bruit sont effectuées.
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Pendant de telles expériences, le comportement de la fonc-
tion multi-résolution d’ensemble des niveaux est également dis-
cuté. En outre, 'exécution proposée est comparée a ’approche
dite "bare", c’est-a-dire la méthode standard. Généralement,
PIMSA-LS semble étre plus précis particuliérement avec de
faibles rapports signal a bruit. Les mémes conclusions tien-
nent également en considérant des formes plus complexes, telles
que le cylindre rectangulaire ou le cylindre creux. Pour mieux
investiguer ’évaluation, des données acquises en situation con-
trolée de laboratoire pour quelques géométries d’essai ont été
aussi considérées. Dans de telles expériences, IMSA-LS et
I’approche "bare" fournissent des résultats similaires en termes
d’exactitude, puisque ces données sont probablement affectées
par un faible niveau du bruit.

Le chapitre 5 se concentre sur un développement ultérieur
de 'IMSA-LS, caractérisé par la possibilité de traiter des ré-
gions d’intérét multiples, particuliérement pour reconstruire
plusieurs objets de facon plus efficace en termes d’attribution
des inconnues. Plus en détail, une telle stratégie, appelée
IMSMRA-LS, est caractérisée par une architecture multi-étape,
ot a chaque niveau de résolution différentes régions d’intérét
sont prises en considération simultanément. A la premiére
étape, un probléme "bare" est résolu en choisissant le nom-
bre de domaines selon la quantité d’information indépendante
dans les données diffractées [14]. Puis, a partir des évaluations
brutes des objets, les régions d’intérét sont définies au moyen
d’une stratégie adaptée a nos besoins, basée sur I'identification
des contours des formes reconstruites. La résolution spatiale
est augmentée dans ces régions en les discrétisant avec une frac-
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tion des cellules qui ont été considérées a la premiére étape, afin
de maintenir le nombre d’inconnues limité pendant la procé-
dure d’inversion. La reconstruction multi-résolution est réitérée
jusqu’a ce que les paramétres des régions d’intérét, c’est-a-dire
leurs barycentres et leurs dimensions, deviennent constants.
Le chapitre 5 discute également la performance de recon-
struction de 'implémentation multi-région. Afin de comparer
Pexactitude de la reconstruction fournie par IMSMRA-LS aux
résultats de ’approche avec une seule région, une validation
préliminaire prend en considération un diffracteur simple, tel
qu'un cylindre circulaire avec un rayon de la demi-longueur
d’onde, situé dans un domaine carré de coté deux longueurs
d’onde. Dans une telle expérience, 'IMSMRA-LS s’avére plus
efficace que 'TMSA-LS, particuliérement en raison de I'utilisation
d’une stratégie de mise a jour de l’ensemble de niveaux plus
appropriée. Aprés la discussion du choix des paramétres pour
le criteére d’arrét, ce chapitre 5 propose quelques expériences
numeériques caractérisées par des diffracteurs multiples, tels que
deux cylindres circulaires, deux rectangles, ou trois objets de
différentes formes. Dans toutes ces expériences, 'TMSMRA-LS
fournit une reconstruction légérement plus précise que 'approche
"bare", alors que 'exactitude des résultats de 'IMSA-LS est
raisonnablement inférieure en raison de la résolution spatiale
plus élevée. Cependant, en considérant des formes plus com-
plexes, telles que les cylindres creux et des croix, aussi bien
que des données bruitées, 'TMSMRA-LS surpasse ’approche
"bare". La derniére illustration considérée a trait a la recon-
struction réalisée en traitant des données expérimentales de
laboratoire. La géométrie de référence se compose de deux



cylindres circulaires diélectriques. Comme dans la derniére ex-
périence du chapitre 4, 'exécution proposée semble fournir des
résultats tout a fait similaires a ceux de la méthode avec une
seule région, puisque les données expérimentales sont carac-
térisées par des rapports signal a bruit élevés. Cependant, en
ce qui concerne le dernier cas du chapitre 4, 'IMSMRA-LS
semble étre plus précis en estimant la forme des cibles.

En conclusion, ce travail propose I'intégration entre ’appro-
che multi-échelle et une méthode d’ensemble de niveaux afin
d’exploiter de maniére profitable la quantité d’information ob-
tenue via les mesures de la diffraction aussi bien que 'informa-
tion disponible a priori sur le probléme considéré. Deux réali-
sations sont présentées afin de traiter effectivement des config-
urations caractérisées par un ou plusieurs objets. Les éléments
principaux de ’approche peuvent étre récapitulés comme suit

e représentation innovatrice multi-niveau des inconnues du
probléme dans la technique de reconstruction basée sur
les ensembles de niveaux ;

e limitation du risque de blocage en des solutions erronées
grace au rapport réduit entre données et inconnues ;

e exploitation utile d’informations a priori (i.e., homogénéité
d’objets) sur le scénario a l'essai ;

e résolution spatiale augmentée seulement dans les régions
d’intérét .
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En outre, de la validation numérique et expérimentale pro-
posée, les conclusions suivantes peuvent étre tirées :

e 'IMSA-LS s’est habituellement avéré plus efficace que
I’approche "bare", particuliérement en traitant des don-
nées bruitées diffractées par un objet de géométrie simple
aussi bien que complexe ;

e 'IMSMRA-LS a semblé étre aussi efficace que I’approche
"bare" en traitant des géométries simples, alors qu’une
architecture multi-région appropriée a amélioré I'exacti-
tude de la reconstruction avec les diffuseurs multiples ;

e les stratégies intégrées (i.e., IMSA-LS et IMSMRA-LS)
ont semblé nécessiter moins de calculs que l'approche
standard, en atteignant une reconstruction possédant le
méme niveau de résolution spatiale dans la description
de I'objet .
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A Two-Step Inverse Scattering Procedure for the
Qualitative Imaging of Homogeneous Cracks in
Known Host Media—Preliminary Results

Manuel Benedetti, Massimo Donelli, Dominique Lesselier, and Andrea Massa, Member, IEEE
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Abstract—In the framework of tructive ev: tion and
testing, microwave inverse scattering approaches demonstrated
their effectiveness and the feasibility of detecting unknown anom-
alies in dielectric materials. In this letter, an innovative technique
is proposed in order to enhance their reconstruction accuracy. The
approach is aimed at first estimating the region-of-interest (Rol)
where the defect is supposed to be located and then at improving
the qualitative imaging of the crack through a level-set-based
shaping procedure. In order to assess the effectiveness of the pro-
posed approach, representative numerical results concerned with
different scenarios and blurred data are presented and discussed.

Index Terms—Genetic algorithms, level set, microwave imaging,
nondestructive testing and nondestructive evaluation (NDT/NDE).

I. INTRODUCTION

ONDESTRUCTIVE testing and nondestructive evaluation
N(NDT/NDE) techniques are aimed at detecting unknown
defects and other anomalies buried in known host objects by
means of noninvasive methodologies [1]-[3]. In such a frame-
work, electromagnetic inverse scattering approaches can play an
important role. As an example, some approaches that approxi-
mate defective regions with rectangular shapes have been pro-
posed [4], [5]. Despite the satisfactory results, such techniques
are adequate when facing NDE/NDT problems where the re-
trieval of the positions and the rough estimation of the sizes of
the defects are enough, but they cannot be reliably used when an
accurate knowledge of the shapes of the defects is needed as in
some industrial processes and usually in biomedical diagnosis.
Notwithstanding, they are useful for providing a “first-step” in-
formation concerned with a rough localization of the defects to
be further improved by means of a successive refinement recon-
struction carried out with suitable contour detection methods.

Towards this end, this letter presents a two-step procedure
aimed at improving the reconstruction of [4], [S]. More in de-
tail, starting from the knowledge of the scattered field with and
without the defect, the approximate problem in which the defect
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is assumed of simple shape (e.g., a rectangle) is reformulated in
terms of an inverse scattering one and successively solved by
means of the minimization of a suitably defined cost function
[6]. After such a step, the region-of-interest (RoI) where the de-
fect is supposed to be located is determined and the second re-
trieval phase takes place by applying a shape-based optimization
technique based on the numerical evolution of a level-set func-
tion [7].

The outline of this letter is as follows. The mathematical for-
mulation of the proposed approach is presented in Section II
by focusing on the second step of the reconstruction procedure.
Then, the effectiveness of the approach is discussed with refer-
ence to a set of representative numerical results in dealing with
blurred measurement data (Section III). Finally, some conclu-
sions follow (Section IV).

II. MATHEMATICAL FORMULATION

Let us consider a 2-D scenario where a homogeneous defect
(or crack) characterized of unknown position . = (., y.) and
shape (2 lies in a cylindrical host region D characterized by
known relative permittivity ep and conductivity op. The de-
fective host medium is probed by V' electromagnetic transverse
magnetic (TM) plane waves with an incident field E}, (r) =
E} .(r)z,and the induced electromagnetic field £}, (r) is given
by

(1) = Blo(r) + / / (1) B ()Gt fr)dr’ (1)
D

where G is the free-space Green’s function and 7(r) = &(r) —
1—j(o(r)/27 feo) is the object function (f being the working
frequency), or analogously, in a more “practical” expression [8]

Biae) = Biiep©) + [ [ 70le) Bty ()G /)’
" Q

2
by considering the inhomogeneous Green’s function G4 (r’/r)
and the total electric field in the scenario without defects

B} (ep(r) defined as follows:

Been(®) = Biul) + [ [ 70 B ) Gole' )’ 3
D

where 7q(r) is the differential object given by

’.(UC_UD) .
TQ(T)_{(EC—ED)—JQWJCEO, 1fz€Q_
0, ifr ¢

“
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With reference to the “differential formulation,” the first step
of the approach considers the partitioning of D in NN; and the
only one computation of the inhomogeneous Green’s matrix
[G1] of N1 x Nj entries according to the procedure detailed
in [8]. Then, the Rol R is modeled with a rectangular homo-
geneous shape described through the coordinates of the center
rr = (zRr,yR), its length L, its side Wg, and the relative ori-
entation fr. Accordingly, R turns out to be fully described by
means of the following object function profile:

. Lr Lg
fXxX —_—
To(r), i G{ D)
Tr(r) = andY € —% & ®
27 2
0, otherwise

where X = (z — 2g) cosfr + (y — yr)sinfg and X = (z —
zg)sinfr + (y — yr)cosOr. Under these assumptions, the
unknown array

rpEQ (6)

is determined by solving the inverse scattering problem formu-
lated in terms of an optimization one.

In detail, starting from the knowledge of the data samples
collected in the observation domain O (i.e., the total field
with the defect ¢, (r,,) and without the defect Ef | o (1),
m 1,...,M) and in the investigation domain D (i.e.,
Ef (r,),n = 1,...,Ny), x is obtained by minimizing the
mismatching between estimated and measured scattering data
evaluated through the computation of ©1(x), as shown in (7)
at the bottom of the page. As far as the minimization process
is concerned, @ trial solutions {xi.q 1
are randomly initialized (j 0, j being the iteration
index) and an iterative procedure takes place until a stop-
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Xopt arg{ming=1,___ q[minj=1_s... ©1(x3)]}). At each
iteration, the following operations are performed:
1) the iteration index is updated (j = j + 1);
2) asetof genetic operators described in [5] is applied to x7 !
in order to generate the jth [x/ = S(x/1)]; B
3) the  best trial solution  achieved  so
onpt = arg{luinizly--,]‘ [el(Xépt)]} being Xépt
arg{ming—1__ o[O1(x;)]}, is stored and its fitness
evaluated ©1(x],,) in order to check the threshold
condition for the stopping criterion.
At the end of the first step, the genetic algorithm (GA)-based
optimization returns the array Xop¢ that defines the Rol R

far,

where the superscript~denotes the estimated values.

The second step of the approach is aimed at refining the esti-
mate of the defect starting from the knowledge coming from the
first step (i.e., the homogeneous defect lies in ). Towards this
purpose, a level-set-based strategy is employed. The algorithm
is initialized by defining an elliptic trial shape ¥ centered at
g, with axes equal to Lr /2 and Wr /2, respectively, and ro-
tated by fr. Then, the level set ¢ is defined in €2 according
to the rule based on the oriented distance function [9]. In par-
ticular, ¢ (r,,) is equal to win,, lrow, — 7.l if 7,, € Yo,
and —min,. lrog, — 7, otherwise, r,q,, being a point be-
longing to the contour of W [7], [9]. Concerning the numerical
implementation, €2 is discretized in N, cells and the following
sequence is iteratively applied.

1) The accuracy of the current trial shape ¥, in retrieving the
actual shape of the defect is evaluated by computing the
value of the metric shown in (9) at the bottom of the page,
where 7i(r,) is the differential object function equal to

ping criterion holds true (j = Juax OF O1(Xopt) < vtlh, (ec —ep) — (Jloc — op) /27 fep) if </>k(£p) < 0and 0
2
vV M P
vgl mZ:l E:}o( (lm) - Etvot(cf)(£7n) - p;l TR(IP)E;}Ot(C) (TP)Ger(rm/Tp):|
O, (v) =
1(X) v 4 3
Z:l 21 [Ez'ot (zm) - Eﬁ;c(zm)]
2
V. N ) ’ P Y
L 2 | Bloen tn) + Biou(r) = p; TR(1) By ) (Tp)Gl,R(Tn/Tp)]

+ — ) (7)

vV N

> X ER(r)
v=1n=1
2
VvV M , . N, R .
E Z EZ‘O( (zm) - Etot(cf)(zm) - Z T (rp)Etot(c)(rp)Glaﬂ(Tln/TP)]
kY _ v=1lm=1 p=1
9> () = vV M 2 ©
% 5 [Biur,) - Bz,

v=1
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otherwise. Furthermore, Ef, ) (r,,,) is the solution of the
following equation:

Ny
E;Ut((f) (lm) = E;;1r(£m) + Z TDE(’Z)[(cf) (ZH)GO(Km/En)'
n=1

(10

2) The level-set-based process ends if a fixed number of it-

eration is performed (k < Kpax) or O2(7;) < vy, and

\I/(,f_pt is assumed as the crack profile. Otherwise, the level

set function ¢y is updated (k = k + 1) by solving a

Hamilton—Jacobi equation
brr1(ry) — dr(r,)

A = —R{wi(r,) H{de(r,)} (D
t

where H{¢x(r,)} stands for the numerical counter-
part of the Hamiltonian operator [9], [10] and At is the
time-step parameter chosen according to the Courant—
Friedrich-Leroy condition [11]. Moreover, v (r,) is
the velocity function determined by solving the adjoint
problem as detailed in [7] and [9].

III. NUMERICAL ANALYSIS

This section is devoted to a numerical analysis of the pro-
posed approach. A set of selected and representative numerical
results related to a couple of experiments are reported and dis-
cussed for pointing out the improvement in the crack detection
and shaping.

The first experiment (indicated as the “experiment A”) con-
siders an unknown void defect of elliptical cross section that lies
in a square lossless host medium of side Lp = 2.0 and charac-
terized by a dielectric permittivity equal toe p = 2.0. The defect
is located at r, = (11/30X,11/30A) and rotated by «/4 with
axes equal to 2/5X and 11/50), respectively. The scenario has
been probed by V' = 30 orthogonal and equally spaced angular
directions and the field has been measured at M = 30 points.
Moreover, the scattering data have been blurred with an additive
noise of Gaussian-type characterized by a fixed signal-to-noise
ratio (SNR).

Concerning the numerical procedure, D has been discretized
in Ny = 289 and 2 in N5 = 441 subdomains.

As an example, Fig. 1(a) shows the reconstruction result from
the two-step procedure in correspondence with SNR = 10 dB.
As it can be observed, the support of the defect (whose actual
perimeter is evidenced by the dotted line) belongs to the Rol R
(dashed—dotted line) estimated at the end of the first step. How-
ever, the crack dimension is largely overestimated. On the con-
trary, the shape of the crack is more faithfully retrieved, despite
the nonfavorable SNR. Such an event is quantitatively quanti-
fied by the value of the localization error 6o = 1.2% [12] that
improves by 30% with respect to the single-step inversion. For
comparison purposes, Fig. 1(b) shows the reconstruction ob-
tained by the “bare” level-set method setting R = D and dis-
cretizing the domain such that the spatial resolution is equal
to that of Fig. 1(a). As it can be noticed, the reconstruction
worsens.

As far as the area error A [12] is concerned, Fig. 2 shows
the behavior of the error figure versus the SNR. As it can be
noticed, the two-step approach turns out to be more robust than
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1.0 r) 0.0
(a)

1.0 () 0.0
(b)

Fig. 1. Experiment A: (a) reconstruction after the first step (i.e., the Rol I2)
and dielectric distribution estimated at the end of the two-step procedure;
(b) dielectric distribution estimated by means of the “bare” level set approach
(ie, R = D).

Stepl] ——
Step2 e

SNR [dB]

Fig. 2. Experiment A: area error versus SNR.

the blurring on data and the resulting performances are better in
an amount between 150% and 100%.

The “experiment B” deals with a more complex cross-sec-
tion shape of defect indicated by the dotted line in Fig. 3(a).
As an example, let us analyze the case of SNR = 20 dB, when
the profile reconstructed by the proposed method is shown in
Fig. 3(a), while Fig. 3(b) gives the dielectric distribution esti-
mated by the “bare” level set. Starting from the estimation of the
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1.0 () 0.0
(b)

Fig. 3. Experiment B: (a) reconstruction after the first step (i.e., the Rol I?)
and dielectric distribution estimated at the end of the two-step procedure;
(b) dielectric distribution estimated by means of the “bare” level-set approach
(ie., R = D).

Rol, the two-step approach provides a satisfactory reconstruc-
tion improving both the localization error and the area error with
respect to the first step (61 = 1.5%, 62 = 0.5%; A1 = 3.7%,
Ay = 1.5%). Similar considerations hold true when smaller
SNRs are considered, as pointed out by the values of the area
error pictorially reported in Fig. 4.

IV. CONCLUSION

In this letter, an innovative two-steps procedure for NDE/
NDT applications has been proposed and preliminarily as-
sessed. The method consists of a first step aimed at determining
the region of interest where the defect is supposed to be located
and a successive shaping process for enhancing the qualitative
imaging. The approach has been evaluated by considering

5 T
Stepl ——
Step 2 e

4

3

<

2

1

0 . n

5 10 15 20

SNR [dB]

Fig. 4. Experiment B: area error versus SNR.

blurred synthetic data and different crack cross sections. The
achieved results have pointed out the effectiveness of the ap-
proach, thus suggesting its future employment in biomedical
imaging.
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1. Introduction

The non-invasive reconstruction of position and shape of unknown targets is a topic
of great interest in many applications, such as non-destructive evaluation and testing
(NDE/NDT) for industrial monitoring and subsurface sensing [1]. In this framework,
many methodologies have been proposed based on x-rays [2], ultrasonics [3], and
eddy currents [4]. Furthermore, microwave imaging has been recognized as a suitable
methodology since [1][5]: (a) electromagnetic fields at microwave frequencies can
penetrate non-ideal conductor materials; (b) the field scattered by the target is
representative of its inner structure and not only of its boundary; (¢) microwaves show
a high sensibility to the water content of the structure under test; (d) microwave sensors
can be employed without mechanical contacts with the specimen. In addition, compared
to x-ray and magnetic resonance, microwave-based approaches minimize (or avoid)
collateral effects in the specimen under test. Therefore, they can be safely employed in
biomedical imaging.

A further advance in microwave non-invasive inspection is represented by inverse
scattering approaches aimed at reconstructing a complete image of the region under test.
Unfortunately, the underlying mathematical model is characterized by several drawbacks
preventing their massive employment in NDE/NDT applications. In particular, inverse
scattering problems are intrinsically ill-posed [6] as well as non-linear [7].

Since the ill-posedness is strongly related to the amount of collectable information
and usually the number of independent data is lower than the dimension of the solution
space, multi-view/multi-illumination systems are generally adopted. However, it is
well known that the collectable information is an upper-bounded quantity [8]-[10].
Consequently, it is necessary to effectively exploit the overall information contained
in the scattered field samples for achieving a satisfactory reconstruction.

Towards this end, multi-resolution strategies have been recently proposed. The idea
is that of using an enhanced spatial resolution only in those regions where the unknown
scatterers are found to be located. Accordingly, Miller et al. [11] proposed a statistically-
based method for determining the optimal resolution level, while Baussard et al. [12]
developed a strategy based on spline pyramids for sub-surface imaging problems. As for
an example concerned with qualitative microwave imaging, Li et al. [13] implemented a
multiscale technique based on Linear Sampling Method (LSM) to effectively reconstruct

the contour of the scatterers. Unlike [11]-[13], the iterative multi-scale approach (IMSA)
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developed by Caorsi et al. [14] performs a multi-step, multi-resolution inversion process
in which the ratio between unknowns and data is kept suitably low and constant at each
step of the inversion procedure, thus reducing the risk of occurrence of local minima [9)
in the arising optimization problem.

On the other hand, the lack of information affecting the inverse problem has been
addressed through the exploitation of the a-priori knowledge (when available) on the
scenario under test by means of an effective representation of the unknowns. As far as
many NDE/NDT applications are concerned, the unknown defect is characterized by
known electromagnetic properties (i.e., dielectric permittivity and conductivity) and it
lies within a known host region. Under these assumptions, the imaging problem reduces
to a shape optimization problem aimed at the search of location and boundary contours
of the defect. Parametric techniques aimed at representing the unknown object in terms
of descriptive parameters of reference shapes [15]|16] and more sophisticated approaches
such as evolutionary-controlled spline curves [17][18], shape gradients [19]-[21] or level-
sets [22]-|30] have then been proposed. As far as level-set-based methods are concerned,
the homogeneous object is defined as the zero level of a continuous function and, unlike
pixel-based or parametric-based strategies, such a description enables one to represent
complex shapes in a simple way.

In order to exploit both the available a-priori knowledge on the scenario under test
(e.g., the homogeneity of the scatterer) and the information content from the scattering
measurements, this paper proposes the integration of the iterative multi-scaling strategy
(IMSA) |14] and the level-set (LS) representation [23|.

The paper is structured as follows. The integration between IMSA and LS is
detailed in Sect. 2 dealing with a two-dimensional geometry. In Section 3, numerical
testing and experimental validation are presented, a comparison with the standard LS

implementation being made. Finally, some conclusions are drawn (Sect. 4).

2. Mathematical Formulation

Let us consider a cylindrical homogeneous non-magnetic object with relative
permittivity ¢- and conductivity o that occupies a region T belonging to an
investigation domain D;. Such a scatterer is probed by a set of V' transverse-magnetic

(T M) plane waves, with electric field directed along the axis of the cylindrical geometry,
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namely ¢"(r) = ¢"(r)z (v =1,...,V), r = (z,y). The scattered field, £"(r) = £"(r)2, is

collected at M(v), v = 1,...,V, measurement points r,, distributed in the observation

m
domain Dg.
In order to electromagnetically describe the investigation domain Dy, let us define

the contrast function 7(r) given by

) = { e ret )

0 otherwise

where 7 = (¢ — 1) — 5 , [ being the frequency of operation (the time dependence

oc
2mfeo
€72™ft being implied).
The scattering problem is described by the well-known Lippmann-Schwinger integral
equations

2m

£ (1) = < i )Q/Dl T (') E* (') Gop (tn, ©') dr’, 1., € Do (2)

0=~ () [ ) B @) ), reD ()
1
where ) is the background wavelength, E? is the total electric field, and Gap (r, ') =
—A{H((]Z) (27" lr — [’H) is the free-space two-dimensional Green’s function, H{? being the
second-kind, zeroth-order Hankel function.

In order to retrieve the unknown position and shape of the target T by step-by-
step enhancing the spatial resolution only in that region, called region-of-interest (Rol),
R € Dy, where the scatterer is located [14], the following iterative procedure of S,q.
steps is carried out.

With reference to Fig. 1(a) and to the block diagram displayed in Fig. 2, at the
first step (s = 1, s being the step number) a trial shape Ty = T4, belonging to Dy,
is chosen and the region of interest R, | Rs—; = Dj| is partitioned into Njps4 equal
square sub-domains, where Nyjs4 depends on the degrees of freedom of the problem at
hand and it is computed according to the guidelines suggested in [9].

In addition, the level set function ¢ is initialized by means of a signed distance
function defined as follows [23]25]:

b (r) = { “miny . =l 70 = 7 "
ming_y g, [r — 1) if7(x) =0
where r, = (2, yp) is the b-th border-cell (b=1,..., B,) of Ts_;.
Then, at each step s of the process (s = 1, ..., Siaz), the following optimization

procedure is repeated (Fig. 2):
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e Problem Unknown Representation - The contrast function is represented in

terms of the level set function as follows

s Nimsa

T ()= > B (n) reD; (5)

i=1 n;=1
where the index ks indicates the k-th iteration at the s-th step [k, = 1,..., k2],
B (znl) is a rectangular basis function whose support is the n-th sub-domain at the

i-th resolution level |n; = 1,..., Njysa, @ = 1, ..., s, and the coefficient 7, is given

by
e it (c (r.,) <0 ©)
" 0 otherwise
letting
e ( t) _ (251«1 (fni) ifi=s (7)

(bk:;pt (17%) if (i <s)and (znl c Rz)
withi=1,...,s as in (5).
e Field Distribution Updating - Once 7, (r) has been estimated, the electric
field £} (r) is numerically computed according to a point-matching version of the

Method of Moments (MoM) [31] as
B, (1) = 2024 ¢ (1) [L= 7 (5) G (0 )]
®)

Tps Ty € Dr

ni 1 L

n; = 17 ~--7NI'MSA .
e Cost Function Evaluation - Starting from the total electric field distribution
(8), the reconstructed scattered field &2 . (r,,) at the m-th measurement point,

m = 1,..., M(v), is updated by solving the following equation

s Nimsa

EIZS (fm) = ; 2:21 %ki (fni) ( ) Gap ( Tins —m) (9)

and the fit between measured and reconstructed data is evaluated by the multi-

resolution cost function © defined as
2
S Sl |, ( ) =&, ()
v 2
Zv 1 m:l s (zm)‘

e Minimization Stopping - The iterative process stops [i.e., k% = k; and 7%= 7|

O {¢w.} = (10)

when: (a) a set of conditions on the stability of the reconstruction holds true or (b)

when the maximum number of iterations is reached |[ks = Kinq:] or (¢) when the
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value of the cost function is smaller than a fixed threshold 7. As far as the stability
of the reconstruction is concerned [condition (a)], the first corresponding stopping
criterion is satisfied when, for a fixed number of iterations, K, the maximum
number of pixels which vary their value is smaller than a user defined threshold .,

according to the relationship

Nimsa |= ~
— { G2 7, () = Formy ()

P2 o } <% Nrusa- (11)
The second criterion, about the stability of the reconstruction, is satisfied when the
cost function becomes stationary within a window of Kg iterations as follows:
1200} O (b} _
Ke i O {¢r.} e

Ko being a fixed number of iterations and yg being user-defined thresholds;. When

(12)

the iterative process stops, the solution 72! at the s-th step is selected as the one

represented by the “best” level set function ¢ defined as

o' = ang [miny_, e (O {0})] (13)

e Iteration Update - The iteration index is updated |ks — ks + 1];

o Level Set Update - The level set is updated according to the following Hamilton-

Jacobi relationship

Ok, (fns) = ¢k.-*1 (fns) - Atsvk‘sfl (fns) H {¢k571 (fns)} (14)

where H {-} is the Hamiltonian operator [32]|33] given as

max? {D,f:; 0} + min? {D,’f.:r; 0} +
+max? {’D;"C’:; 0} + min? {’D;"C’:r; 0}
if Vis) (En(s)) >0
H o, (ra,)} = (15)
min? {Df’ 0} + max® {D,’f, O} +
+min? {Dg:; 0} + max? {Dkﬁ, 0}

otherwise

and sz = EOk @nedt ne) Ty (@ns tns) Dfi — (s Una k)T (naitina) At g the

ls ls

time-step chosen as Aty = Atlﬁ with At; to be set heuristically according to the

literature [23], I; being the cell-side at the s-th resolution level. V, is the velocity
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function computed following the guidelines suggested in [23] by solving the adjoint
problem of (8) in order to determine the adjoint field F} . Accordingly,

S By (r,,) 7 (ra,)
Vi (1) = —R | e e (0 7
b (£n.) { S e e )

ns=1,..., Ninsa

where ¢ stands for the real part.

When the s-th minimization process terminates, the contrast function is updated
[7Pt (r)= T, (r), r € Dy (5)] as well as the Rol |R, — Rs_1]|. To do so, the following

s

operations are carried out:

o Computation of the Barycenter of the Rol - the center of R, of coordinates
(¢, 7¢) is determined by computing the center of mass of the reconstructed shapes
as follows [14] [Fig. 1(b)]

e Jp, 2T (r) B(r) dxdy

o=y (17)
Ip, 77 (r) B (x) dzv dy

o Jp,y7¥ (r) B(r) dvdy

S [ 7N (r) B (r) dz dy (18)

o Estimation of the Size of the Rol - the side L, of R, is computed by evaluating

the maximum of the distance 4, (r) = \/(:r — )2+ (y — 7)* in order to enclose
the scatterer, namely
~ 7Pt (1
L, = max, {2 X “’7(*)66 (f)} . (19)
r -
Once the Rol has been identified, the level of resolution is enhanced [ks — ks 4] only
in this region by discretizing R into Njprs4 sub-domains [Fig. 1(c)] and by repeating
the minimization process until the synthetic zoom becomes stationary (s = s,p), i.e.,

{7@5*1 —Ql, 100} <79, Q=3 L (20)
|Qs-1]
7o being a threshold set as in [14], or until a maximum number of steps (Sopt = Smaz)
is reached.
At the end of the multi-step process (s = s,pt), the problem solution is obtained as

~=opt __ ~=opt — .
TP (Enl) = TP (an)y n;=1,..., Nipsa, i =1, .., Sopt-
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3. Numerical Validation

In order to assess the effectiveness of the IMSA-LS approach, a selected set of
representative results concerned with both synthetic and experimental data is presented

herein. The performances achieved are evaluated by means of the following error figures:

e Localization Error 0

Fc| — pc 2_ el — q¢ 2
5‘p:\/(xslp III,)A (7, = v7l,) 100 1)

where .|, = (:p“|p, y“\p) is the center of the p-th true scatterer, p = 1,..., P, P

being the number of objects. The average localization error < § > is defined as
1P
<6>:F;6\p. (22)

e Area Estimation Error A

1 1 Ninvsa

> /\/’,h} x 100 (23)

A=
i=1 NIMSA n;=1

where A, is equal to 1 if 7P (zm) =T (ﬁm) and 0 otherwise.

As far as the numerical experiments are concerned, the reconstructions have been
performed by blurring the scattering data with an additive Gaussian noise characterized

by a signal-to-noise-ratio (SN R)
T St [€° ()

M(v
Vo o) [ ?

SNR = 10log (24)

©™ being a complex Gaussian random variable with zero mean value.

3.1. Synthetic Data - Circular Cylinder

3.1.1. Preliminary Validation In the first experiment, a lossless circular off-centered
scatterer of known permittivity ¢ = 1.8 and radius p = A/4 is located in a square
investigation domain of side Lp = A [23]. V =10 TM plane waves are impinging from
the directions 0, = 2w (v—1)/V, v = 1,...,V, and the scattering measurements are
collected at M = 10 receivers uniformly distributed on a circle of radius po = .

As far as the initialization of the IMSA-LS algorithm is concerned, the initial trial
object Ty is a disk with radius A\/4 and centered in D;. The initial value of the time
step is set to At; = 1072 as in [23]. The Rol is discretized in Njysa = 15 x 15

sub-domains at each step of the iterative multi-resolution process. Concerning the
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stopping criteria, the following configuration of parameters has been selected according
to a preliminary calibration dealing with simple known scatterers and noiseless data:
Smaz = 4 (maximum number of steps), 'ygc = 'y?jc = 0.01 and ’yz = 0.05 (multi-
step process thresholds), K. = 500 (maximum number of optimization iterations),
ve = 0.2 and 7, = 0.02 (optimization thresholds), Ke¢ = K, = 0.15 K., (stability
counters), and v, = 1077 (threshold on the cost function).

Figure 3 shows samples of reconstructions with the IMSA-LS. At the first step
[Fig. 3(a) - s = 1], the scatterer is correctly located, but its shape is only roughly
estimated. Thanks to the multi-resolution representation, the qualitative imaging of the
scatterer is improved in the next step [Fig. 3(b) - s = sop = 2] as confirmed by the error
indexes in Tab. 1. For comparison purposes, the profile retrieved by the single-resolution
method (23] (indicated in the following as Bare-LS), when Dy has been discretized in
Npare = 31 x 31 equal sub-domains, is shown |Fig. 3(c)|. In general, the discretization
of the Bare-LS has been chosen in order to achieve in the whole investigation domain
a reconstruction with the same level of spatial resolution obtained by the ITMSA-LS in
the Rol at s = sqp.

Although the final reconstructions [Figs. 3(b)(c¢)| achieved by the two approaches
are similar and quite close to the true scatterer sampled at the spatial resolution of Bare-
LS |Fig. 3(d)] and IMSA-LS |Fig. 3(b)|, the IMSA-LS more faithfully retrieves the
symmetry of the actual object, even though the reconstruction error appears to be larger
than the one of the Bare-LS (Fig. 4). During the iterative procedure, the cost function
Oopt = O {2} is initially characterized by a monotonically decreasing behavior. Then,
Oopt] 12154 Decomes stationary until the stopping criterion defined by relationships (11)
and (12) is satisfied (Fig. 4 - s = 1). Then, after the update of the field distribution
inducing the error spike when s = s,,; = 2 and ks = 1, @DpthMSA settles to a value of
6.28 x 10~* which is of the order of the Bare-LS error (Oup ] p,,. = 1.42x107*). Such a

slight difference between Oy | ;4 and © depends on the different discretization

oth Bare
[i.e., the basis functions B (Kn(izz)): n(i) = 1,..., Niysa are not the same as those of
Bare-LS|, but it does not affect the reconstruction in terms of both localization and
area estimation, since 6], a4 1o < 0)pue_pgand Ao, o< Alp o (Tab. 1).

Fig. 4 also shows that the multi-step multi-resolution strategy is characterized by
a lower computational burden because of the smaller number of iterations for reaching
Bare = 177, being ko the total
number of iterations defined as ki, = Y227 k2P for the IMSA-LS), and especially to the

s=1

the convergence (Fig. 4 - ki) pi9a = 125 vs. Kot
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reduced number of floating-point operations. As a matter of fact, since the complexity
of the LS-based algorithms is of the order of O (2 x %), n = Niysa, Npare (i€, the
solution of two direct problems is necessary for computing an estimate of the scattered
field and for updating the velocity vector), the computational cost of the IMSA-LS at

each iteration is two orders in magnitude smaller than that of the Bare-LS.

3.1.2. Noisy Data As for the stability of the proposed approach, Figure 5 shows
the reconstructions with the IMSA-LS |Figs. 5(a)(c)(e)] compared to those of the
Bare-LS |Figs. 5(b)(d)(f)] with different levels of additive noise on the scattered
data [SNR = 20dB (top); SNR = 10dB (middle); SNR = 5dB (bottom)|. As
expected, when the SNR decreases, the performances worsen. However, as outlined
by the behavior of the error figures in Tab. 2, blurred data and/or noisy conditions
affect more evidently the Bare implementation than the multi-resolution approach. For
completeness, the behavior of Oy |;,,c4 versus the iteration index is reported in Fig.
6 for different levels of SNR. As it can be noticed, the value of the error at the end of
the iterative procedure decreases as the SN R increases.

In the second experiment, the same circular scatterer, but centered at a different
position within a larger investigation square of side Lp = 2\ (po = 2)), has been
reconstructed. According to 9], M = 20; v = 1,...,V receivers and V = 20 views are
considered and Dy is discretized in Nyjye4 = 13 X 13 pixels.

Figure 7(a) shows the reconstruction obtained at the convergence (sq = 3) by
IMSA-LS when SNR = 5dB. The result reached by the Bare-LS (Npagre = 47 x 47)
is reported in Fig. 7(b) as well. As it can be noticed, the multi-resolution inversion is
characterized by a better estimation of the object center and shape as confirmed by the
values of 0 and A (8] ,3,64_15 =059 vs. 0] g o 1o =272 and Al qa ;g = 0.48 vs.
Al pare—1ng = 0.64). As for the computational load, the same conclusions from previous

experiments hold true.

3.2. Synthetic Data - Rectangular Scatterer

The second test case deals with a more complex scattering configuration. A rectangular
off-centered scatterer (L = 0.27X and W = 0.13)) characterized by a dielectric
permittivity ec = 1.8 is located within an investigation domain of L = 3\ as indicated
by the red dashed line in Fig. 8. In such a case, the imaging setup is made up of V"= 30

sources and M = 30 measurement points for each view v [9]. Dy is partitioned into
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Nimsa =19 x 19 sub-domains (while Npy. = 33 X 33) and At is set to 0.06.

3.2.1. Validation of the Stopping Criteria Before discussing the reconstruction
capabilities, let us show a result concerned with the behavior of the proposed approach
when varying the user-defined thresholds (ve, v, Vi, Ve 73) of the stopping criteria.
Figure 8 displays the reconstructions achieved by using the sets of parameters given in
Tab. 3 |I'y - Fig. 8(a); T - Fig. 8(b); I's - Fig. 8(¢); I'y - Fig. 8(d)| while the behaviors
of the cost function are depicted in Fig. 9. As it can be noticed, the total number of
iterations k;,; increases as the values of the thresholds vg and 7, decrease. However,
in spite of a larger ki, using lower threshold values does not provide better results, as
shown by the comparison between settings 'y and 'y [Figs. 8(b)-(d), and Fig. 9]|. The
sets of parameters characterized by 7o = 0.2 and 7, = 0.02 provide a good trade-off
between the arising computational burden and the quality of the reconstructions. As
far as the stopping criterion of the multi-resolution procedure is concerned, Figure 9
also shows two different behaviors of the cost function when using I'y and T's (letting
7e = 0.2 and ~, = 0.02). In particular, the proposed approach stops at s,,; = 3,
instead of s, = 4, when increasing by a degree of magnitude the values of vz, v, and
73 Although with a heavier computational burden, the choice v;. = 75 = 0.01 and

77 = 0.05 results more effective [see Fig. 8(b) vs. Fig. 8(c)|.

3.2.2. Noisy Data Figures 10-12 and Table 4 show the results from the comparative
study carried out in correspondence with different values of signal-to-noise ratio [SNR =
20dB - Fig. 10(a) vs. Fig. 10(b); SNR = 10dB - Fig. 10(c¢) vs. Fig. 10(d); SNR =
5dB - Fig. 10(e) vs. Fig. 10(f)]. They further confirm the reliability and efficiency
of the multi-resolution strategy in terms of qualitative reconstruction errors (Fig. 11),
especially when the noise level grows. In particular, the Bare implementation does not
yield either the position or the shape of the rectangular scatterer when SNR = 5dB,
whereas the IMSA-LS properly retrieves both the barycenter and the contour of the
target. As for the computational cost, it should be noticed that although the IMSA-LS
requires a greater number of iterations for reaching the convergence (Fig. 12, Tab. 4),
the total amount of complex floating-point operations, fyos = O (2 X %) X ko, usually

results smaller (Tab. 4).
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3.3. Numerical Data - Hollow Cylinder

The third test case is concerned with the inversion of the data scattered by a higher
permittivity (¢ = 2.5) off-centered cylindrical ring, letting Lp = 3A. The external
radius of the ring is pe;; = %)\, and the internal one is pj; = % By assuming the
same arrangement of emitters and receivers as in Section 3.2, the investigation domain
is discretized with Njjpyrs4 = 19 x 19 and N = 35 X 35 square cells for the IMSA-LS
and the Bare-LS, respectively. Moreover, At; is initialized to 0.003.

As it can be observed from Fig. 13, where the profiles when SNR = 20dB |Figs.
13(a)(b)] and SNR = 10dB [Figs. 13(c¢)(d)| reconstructed by means of the IMSA-LS
[Figs. 13(a)(c)] and the Bare-LS [Figs. 13(b)(d)| are shown, the integrated strategy
usually overcomes the standard one both in locating the object and in estimating the
shape. In particular, when SNR = 20dB, the distribution in Fig. 13(a) is a faithful
estimate of the scatterer under test (6] ;,,94_.¢ = 1.25 and A6, ;¢ = 3.13). On
the contrary, the reconstruction with the Bare-LS is very poor (6] g,,. ;¢ = 65.2 and
Al pare—rs = 34.39). Certainly, a smaller SNR value impairs the inversion as shown
in Fig. 13(¢) [compared to Fig. 13(a)]. However, in this case, the IMSA-LS is able to
properly locate the object (6] ;364_rg = 1.7 vs. 6] gue_ps = 65.9) giving rough but

useful indications about its shape (A];;qa_1g = 7.6 vs. Alg. . ;o= 34.55).

3.4. Synthetic Data - Multiple Scatterers

The last synthetic test case is aimed at illustrating the behavior of the IMSA-LS when
dealing with P = 3 scatterers (ec = 2.0) distanced from one another. The test geometry
is characterized by an elliptic off-centered cylinder, a circular off-centered scatterer, and
a square off-centered object located in a square investigation domain characterized by
Lp = 3\. By adopting the same arrangement of emitters and receivers as in Section
3.3, the investigation domain is discretized with Njys4 = 23 x 23 and Npge = 31 x 31
square cells for the TMSA-LS and the Bare-LS, respectively. Moreover, At is set to
0.03.

Figures 14 and 15 show the results from the comparative study carried out
in correspondence with different values of signal-to-noise ratio. As shown by the
reconstructions (Fig. 14) and as expected, the multi-resolution approach provides more
accurate results and appears to be more reliable than the Bare-LS especially with low

SNR. This conclusion is further confirmed by the behavior of the reconstruction errors
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(Fig. 15), for which the IMSA-LS achieves a lower localization error as well as a lower
area error than those of Bare-LS, especially for SNR = 5dB. On the other hand,
both algorithms provide good estimates of the scatterer under test when inverting data

affected by low noise [SNR = 20dB - Fig. 14(a) vs. Fig. 14(b); Fig. 15(a) and (b)].

3.5. Laboratory-Controlled Data

In order to further assess the effectiveness of the IMSA-LS also in dealing
with experimental data, the multiple-frequency angular-diversity bi-static benchmark
provided by Institut Fresnel in Marseille (France) has been considered. With reference
to the experimental setup described in [34], the dataset “dielTM_ dec8f.exp“ has been
processed. The field samples [M = 49, V = 36| are related to an off-centered
homogeneous circular cylinder p = 15mm in diameter, characterized by a nominal
value of the object function equal to 7(r) = 2.0 £ 0.3, and located at z. = 0.0,
Yo = —30mm within an investigation domain assumed in the following of square
geometry and extension 20 x 20 cm?.
By setting ec = 3.0, the reconstructions achieved are shown in Fig. 16 (left column)
compared to those from the standard LS (right column) at F = 4 different operation
frequencies. Whatever the frequency, the unknown scatterer is accurately localized and
both algorithms yield, at convergence, structures that occupy a large subset of the true
object. Such a similarity of performances, usually verified in synthetic experiments when
the value of SINR is greater than 20 dB, seems to confirm the hypothesis of a low-noise
environment as already evidenced in [35].

Finally, also in dealing with experimental datasets, the TMSA-LS proves its
efficiency since the overall amount of complex floating point operations still remains

two orders in magnitude lower than the one of the Bare-LS (Tab. 5 - Fig. 17).

4. Conclusions

In this paper, a multi-resolution approach for qualitative imaging purposes based on
shape optimization has been presented. The proposed approach integrates the multi-
scale strategy and the level set representation of the problem unknowns in order to
profitably exploit the amount of information collectable from the scattering experiments
as well as the available a-priori information on the scatterer under test.

The main key features of such a technique can be summarized as follows:
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e innovative multi-level representation of the problem unknowns in the shape-
deformation-based reconstruction technique;

o cffective exploitation of the scattering data through the iterative multi-step
strategy;

e limitation of the risk of being trapped in false solutions thanks to the reduced ratio
between data and unknowns;

e useful exploitation of the a-priori information (i.e., object homogeneity) about the

scenario under test;

e enhanced spatial resolution limited to the region of interest.

From the validation concerned with different scenarios and both synthetic and

experimental data, the following conclusions can be drawn:

e the IMSA-LS usually proved more effective than the single-resolution implementa-
tion, especially when dealing with corrupted data scattered from simple as well as
complex geometries characterized by one or several objects;

e the integrated strategy appeared less computationally-expensive than the standard
approach in reaching a reconstruction with the same level of spatial resolution

within the support of the object.
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Figure 1. Graphical representation of the IMSA-LS zooming procedure. (a) First step

(k = 1): the investigation domain is discretized in N sub-domains and a coarse solution

is looked for. (b) First step (k = k°"): the region of interest that contains the first

estimate of the object is defined. (c¢) Second step (k = 1): an enhanced resolution level

is used only inside the region of interest.
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Figure 2. Block diagram description of the IMSA-LS zooming procedure.
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Figure 3. Numerical Data. Circular cylinder (¢ = 1.8, Lp = A, Noiseless Case).
Reconstructions with IMSA-LS at (a) s = 1 and (b) s = sou = 2, (¢) Bare-LS.

Optimal inversion (d).
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Figure 4. Numerical Data. Circular cylinder (¢ = 1.8, Lp = ), Noiseless Case).

Behavior of the cost function.
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*y/h H/A

Figure 5. Circular cylinder (e¢ = 1.8, Lp = A, Noisy Case). Reconstructions
with IMSA-LS (left column) and Bare-LS (right column) for different values of SNR
[SNR =20dB (top), SNR = 10dB (middle), SNR = 5dB (bottom)|.
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Figure 6. Numerical Data. Circular cylinder (e = 1.8, Lp = \). Behavior of the cost

function versus the noise level.
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Figure 7. Numerical Data. Circular cylinder (¢ = 1.8, Lp = 2\, SNR = 5dB).
Reconstructions with (a) IMSA-LS and (b) Bare-LS.
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Figure 8. Numerical Data. Rectangular cylinder (ec = 1.8, Lp = 3\, Noiseless Case).

Reconstructions with ITMSA-LS for the different settings of Tab. 3 [(a) I'1, (b) I'a, ()

T3, (d) Ty|.
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Figure 9. Numerical Data. Rectangular cylinder (ec = 1.8, Lp = 3\, Noiseless Case).
Behavior of the cost function of IMSA-LS for the different settings of Tab. 3.
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Table 1. Numerical Data. Circular cylinder (e = 1.8, Noiseless Case)

. Error figures.
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Set of Parameters | Yo | v+ | Va Ve | Vi
I 0.5 0.05 | 0.01 |0.05
Iy 0.2 | 0.02 | 0.01 [0.05
Iy 0.2 | 0.02 0.1 0.5
Iy 0.02]0.002| 0.01 |0.05

Table 3. Numerical Data. Rectangular cylinder (e¢ = 1.8, Lp = 3\, Noiseless Case).

Different settings for the parameters of the stopping criteria.
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f=1GH:z f=2GH:z
IMSA— LS | Bare — LS | IMSA — LS | Bare — LS
Kot 506 69 532 200
fros | 4.88x10° | 1.22 x 10" 5.14 x 10° | 3.55 x 10
f=3GHz f=4GHz
IMSA— LS | Bare — LS | IMSA — LS | Bare — LS
Kot 678 198 621 200
Spos 6.55 x 10° | 3.51 x 10" 5.99 x 10° | 3.55 x 10

Table 5. Experimental Data (Dataset “Marseille” [34]). Circular cylinder

(“dielTM_ dec8f.exp”). Computational indexes.
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Structure of the Thesis

The thesis is structured in chapters according to the organiza-
tion detailed in the following.

The first chapter deals with an introduction to the thesis,
focusing on the main motivations and on the subject of this
work.

Then, Chapter 2 presents the mathematical formulation of
the inverse scattering problem, pointing out the main draw-
backs such as non-linearity, ill-condition, and ill-posedness.

Chapter 3 is concerned with the state-of-the-art. The ex-
ploitation of regularized solutions and approximations to cope
with the ill-posedness of the inverse problem is discussed. More-
over, both deterministic and heuristic minimization techniques
are presented. Finally, a brief coverage of the literature on
multi-resolution techniques and shape-optimization is given.

The iterative multi-scaling approach with level-set-based
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optimization is discussed in Chapter 4. The mathematical
formulation is focused on the multi-step architecture and the
proposed numerical validation, carried out when considering
both numerically-synthesized and laboratory-controlled data,
assesses the reconstruction capabilities of the proposed method-
ology by considering targets characterized by simple and com-
plex shape.

Chapter 5 deals with the iterative multi-scaling multi-region
approach with level-set-based minimization, customized for ge-
ometries characterized by multiple objects. After presenting
the mathematical formulation by focusing on the main differ-
ences with respect to the single-region version, the effectiveness
of the approach is evaluated by means of the discussion of a
selected set of results, when dealing with both numerical and
laboratory-controlled data.

Conclusions, further developments, and open problems are
presented in Chapter 6. Finally, two appendices gives more
detail on the adjoint problem (whose solution allows to com-
pute the gradient of the cost function) and on two imaging
algorithms (the edge detection operator and a technique for
counting the number of obstacles in an image).
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Chapter 1

Introduction

In the introduction, the motivation of the thesis is pointed out
starting from a brief overview about the framework of tech-
niques for non-destructive evaluation and testing.



The non-invasive reconstruction of position and shape of
unknown targets is a topic of great interest in many applica-
tions, such as non-destructive evaluation and testing (usually
referred to with the acronyms “NDE” and “NDT”) for industrial
monitoring and subsurface sensing [1]. In such an interesting
framework, many methodologies have been proposed, mainly
based on x-rays [2|, ultrasonics [3], and eddy currents [4]. How-
ever, microwave approaches have been recently recognized as
effective imaging methodologies because of the following key
points [1] [5]-[8]:

(a) electromagnetic fields at microwave frequencies can
penetrate non-ideal conductor materials;

(b) the field scattered by the target is representative
not only of its boundary, but also of its inner struc-
ture;

(c) microwaves show a high sensivity to the water con-

tent of the structure under test;

(d) microwave sensors can be employed without me-
chanical contacts with the specimen.

In addition, compared to x-ray and magnetic resonance, micro-
wave-based approaches minimize (or avoid) collateral effects in
the specimen under test. Therefore, they can be safely em-
ployed in biomedical imaging, limiting the stress for the pa-
tient since the physical contact with the imaging system can
be avoided (e.g., the breast screening [9]), or in other critical
applications, such as through-wall imaging (TWI) [10].
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A further advance in microwave non-invasive inspection is
represented by inverse scattering approaches aimed at recon-
structing the image of the region under test in a quantita-
tive fashion [11]. Unfortunately, the underlying mathemati-
cal model is characterized by several drawbacks that currently
limit their massive employment, especially in the NDE/NDT’s
framework. More in detail, the inverse scattering problems are
intrinsically ill-posed [12] as well as non-linear [13].

Since the ill-posedness is strongly related to the amount
of collectable information and usually the number of indepen-
dent data is lower than the dimension of the solution space,
multi-view /multi-illumination systems are generally adopted.
However, it is well known that the collectable information is
an upper-bounded quantity [14][15]. Consequently, it is neces-
sary to effectively exploit the overall information contained in
the scattered field samples for achieving a satisfactory recon-
struction.

In order to exploit the whole amount of information col-
lected from scattering measurements, multi-resolution strate-
gies have been recently proposed. The idea is that of using
an enhanced spatial resolution only in those regions of interest
(RoIs) where the unknown scatterers are found to be located
[16] and/or where discontinuities occur [17][18]. As for the
proposed implementations, deterministic or statistically-based
data processing strategies have been proposed to determine
the optimal resolution level, and spline-based approaches have
been employed to improve the resolution level. Furthermore,
multi-step approaches have been implemented to iteratively in-
crease the spatial resolution by means of a so-called “zooming”



procedure [19] by keeping the ratio between unknowns and data
suitably low and constant, thus reducing the risk of occurrence
of local minima [15] in the arising optimization problem.

On the other hand, the lack of information affecting the
inverse problem has been addressed, especially in NDE/NDT,
through the exploitation of the a-priori knowledge on the sce-
nario under test by means of an effective representation of the
unknowns. In many applications, the unknown defect is char-
acterized by known electromagnetic properties (i.e., dielectric
permittivity and conductivity) and it lies within a known host
region. Moreover, depending on the desired degree of accu-
racy, more complex scenarios can be approximated by a set
of homogeneous regions characterized by different “shape” and
electromagnetic parameters [20]. Under these assumptions, an
imaging problem reduces to a shape reconstruction problem,
namely to a problem where the support of the homogeneous
regions needs to be retrieved. Towards this end, parametric
techniques aimed at representing the unknown object in terms
of descriptive parameters of reference shapes [21]-[22] and more
sophisticated approaches such as evolutionary-controlled spline
curves [23]-[25], shape gradients [26]-[28] or level-sets [31]-[32]
have been proposed. As far as level-set-based methods are con-
cerned, the homogeneous object is defined as the zero level of
a continuous function and, unlike pixel-based or parametric-
based strategies, such a description enables one to represent
complex shapes or regions in a simple way.

Within such a framework, the thesis focuses on the develop-
ment and the analysis of the integration of the iterative multi-
scaling strategy (IMSA) [19] and the level-set (LS) representa-
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tion [33]. The implementation is aimed at profitably exploiting
both the available a-priori knowledge on the scenario under
test (e.g., the homogeneity of the scatterer) and the informa-
tion content from the scattering measurements. For the sake of
simplicity and with no claim of exhaustivity, the inverse prob-
lem formulation is restricted to the two-dimensional transverse-
magnetic (TM) case when dealing with one and with multiple
Rols. As for the assessment of the proposed strategy, the nu-
merical validation deals with dielectric lossless scatterers, by
considering both synthetic and experimental (i.e., laboratory-
controlled) data.






Chapter 2

The Inverse Scattering
Problem

The electromagnetic inverse scattering problem is presented in
this chapter, focusing on its mathematical formulation as well
as on the main drawbacks, such as non-linearity, ill-conditioning,
and ill-posedness.



2.1. MATHEMATICAL FORMULATION

2.1 Mathematical Formulation

2.1.1 Field Scattered by
Inhomogeneous Objects

Let us consider a region, called investigation domain Dy, char-
acterized by a relative permittivity e(r) and conductivity o(r).
As shown in Fig. 2.1, such a region is probed by a set of V
transverse-magnetic (7T'M) plane waves sources, with electric
field ¢"(r) = ¢"(r)z (v = 1,...,V), r = (x,y), and the scat-
tered field, £°(r) = £°(r)%, is collected at M(v), v = 1,...,V,
measurement points T'm(v distributed in the observation do-
main Dg.
In order to electromagnetically describe the investigation
domain Dy, let us define the contrast function
7(r) = [e(r) — 1] — j 22k
(2.1)
re Dy,

where f is the frequency of operation (the time dependence
¢/#/ being implied). Under the hypothesis of a linear, isotropic
and non-magnetic propagation medium, the scattered field dis-
tribution £(r) is the solution of the following Helmholtz equa-
tion (see [13][35][36] for a more detailed explanation)

o\ > _ v
V() - (7) §'(r) = —j2mfue(r) . (2:2)
where \ is the background wavelength. Moreover, J(r) is the
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EM Source
&Ql v=1,..,V

Figure 2.1: Geometry of an inverse scattering problem.

equivalent current density radiating in free-space, defined in
Dy as follows

J'(r) = j2n feor (1) E¥ (1) (2.3)

E" being the total electric field. By imposing that £¥(r) satis-
fies the Sommerfeld radiation condition, namely

limyy oo /2] (82”&) —j/‘i(i)fv(f)) =0, (24)

the solution of (2.2) is given by the following pair of Lippmann-

9
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Schwinger integral equations

& (L) = (5)" S, 7 (@) E” () Gap (2 /1)) !
(2.5)

fm(v) E DO )

¢ (r) = E° (r) — (2)° [, 7 () E* (') Gap (r/r') dr’
(2.6)
re D[ .

Moreover, Gyp (r/1r') is the free-space two-dimensional Green’s
function defined as follows

, J 2m ,
G /1) = =488 (Fle-r1) . @D

HéQ) being the second-kind zeroth-order Hankel function.

The aim of an inverse scattering technique is the reconstruc-
tion of both the electromagnetic properties 7(r) and the total
field distribution EV (r), with r belonging to Dy [i.e., the equiv-
alent current density J¥(r)], starting from the knowledge of the
measurements &¥ (zm(v)), Tm() € Do, and of the incident field
¢Y (r) radiated by the known source. Unfortunately, a closed
form solution of integral equations (2.5) and (2.6) does not
generally exist. Consequently, the inverse scattering problem
has to be reformulated and effective inversion methodologies
have to be employed in order to retrieve the solution. Chap-
ter 3 will focus on the state-of-the-art of the inverse scattering
approaches.

10
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’:u’070 = 0)

(6071'[’070 = )
T0 = 0

Figure 2.2: Geometry of an inverse scattering problem when
a-priori information about the scatterer is available.

2.1.2 Exploitation of the a-priori
Information about the Scatterers

Let us now assume that a cylindrical homogeneous non-magnetic
object with known relative permittivity ec and conductivity o¢

occupies a non-homogeneous region T belonging to an inves-

tigation domain D;. How could such an amount of a-prior:

information be profitably exploited? A possible solution con-

sists in re-defining the contrast function 7(r) as follows

- TC r e T
7(r) = { 0 otherwise (2.8)

11



2.2. NUMERICAL SOLUTION OF
THE INVERSE SCATTERING PROBLEM

letting
oc

27Tf€0 ‘

Since the dielectric properties of the obstacles are a-priori known
and homogeneous, the shape of T, or its contour, becomes a
sufficient parameter for the characterization of the domain un-
der test. Consequently, suitable inversion techniques can be
applied in order to retrieve the boundaries of T by solving
equations (2.5) and (2.6). Such techniques, usually known as
shape-optimization methods [37], are dealt with in Sect. 3.4.

Although the hypothesis of homogeneous objects and a-
priori known permittivity and conductivity appears to be strong
and restrictive, many inverse problems can be reduced to the
search of homogeneous obstacles inside homogeneous or a-priori
known backgrounds [32][33].

o= (ec—1)—j (2.9)

2.2 Numerical Solution of
the Inverse Scattering Problem

In order to allow a numerical solution of the inverse scattering
problem, equations (2.5) and (2.6) can be discretized according
to a point-matching version of the Method of Moments (MoM)
[39]. More in detail, the investigation domain D; is partitioned
in N square sub-domains D,, with barycentres r,,, n =1,..., N.
In each sub-domain, a pulse basis function is defined as

1 ifr, € D,
B(r )_{ 0 i éD, (2.10)

12
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while the discrete contrast function is given by the following
relationship

T(r) =Y B (1)
S (2.11)

Consequently, by assuming that the incident field (¥ and
the total field E¥ are constant inside each sub-domain D,,, the
discrete form of the Lippmann-Schwinger integral equations is
given by the following relationships

é.71;1(1)) (Zm(v)) = Z;}:f:l TTLEZ (in) Gap (Zm(v) /zn)
(2.12)

¢ (r,) = E5(r,) = S0l B (r,) Gap (r,/1,)
(2.13)

where Gop (r,,/7,,) is the two-dimensional discrete Green op-
erator given by

Gap (fm/zn) -
_ { ~1 [WHOAHI(Q) (KoA) — Qj] ifm=n
— Iy (ko A) By (o e — 1)) ifm #m
(2.14)
where A is the area of the square sub-domain, xk, = QT” is

the free-space wavenumber, H 1(2) is the second kind first order

Hankel function, and J; is the first kind Bessel function.
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SCATTERING PROBLEM

2.3 Drawbacks of the Inverse
Scattering Problem

Unlike the forward scattering problem, which is aimed at de-
termining the fields £” and EV (i.e., the “effects”) starting from
¢ and the 7 (i.e., the “cause”), the inverse scattering prob-
lem should reconstruct the cause starting from the observation
of the measurable effects. It is also well known (see [13| and
[38] for an exhaustive and detailed overview) that the inverse
problems are intrinsically characterized by several drawbacks,
which are detailed in the following:

e Ill-posedness - The forward problem is characterized
by a loss of information, since its solution represents a
transformation from a physical quantity (i.e., the com-
plete description of the scatterer 7 and the knowledge of
the electromagnetic source (V) with a certain information
content to the scattered field, which is characterized by
a lower information content. In addition, the scattered
field provided by a band-limited system is smoother than
the one provided by the actual object. As a consequence,
the corresponding inverse scattering problem requires a
gain of information in order to retrieve a solution as close
as possible to the “cause”. Such a loss of information is
known as “ill-posedness” of the inverse problem. To cope
with the ill-posedness, the “golden rule” consists in adding
some additional information to compensate the loss of in-
formation of the imaging process. Such a information is
defined as additional since it cannot be derived neither

14
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from the scattered field nor from the properties of the
mapping between the data and the space of unknowns,
which describes the imaging process. It comes from other
informative sources or from previous information gained
on the object [40] and it is usually referred to as a-priori
information.

e Non-linearity - With reference to equations (2.12) and
(2.13), the inverse problem is non-linear because the vari-
able 7 to be solved can not be written as a linear sum
of independent components. As a matter of fact, the to-
tal field £V depends on the dielectric properties of the
domain under test. On the other hand, the inverse scat-
tering problem is linear with respect to the equivalent
current density JY(r) = 7(r)E"(r), according to a con-
trast source formulation [41][42].

e Ill-conditioning - As a consequence of the ill-posedness
and due to the band-limited nature of the system as well,
the numerical counterpart of the inverse scattering prob-
lem appears to be ill-conditioned, since the solution does
not depend continuously on the data. As a matter of
fact, the numerical solution may suffer from numerical
instability and a small error in the initial data can result
in much larger errors in the answers.

These drawbacks have to be taken into account when solving
an inverse scattering problem. In Ch. 3, a brief overview on
the state-of-the-art of the inversion methodologies will be pre-
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sented, focusing on the multi-resolution approaches and the
shape-optimization methods.
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Chapter 3

An Overview on Inverse
Scattering Techniques

This chapter deals with an overview on the inverse scattering
techniques. The exploitation of regularized solutions and ap-
proximations to cope with the ill-posedness of the inverse prob-
lem will be discussed. Then, both deterministic and heuristic
minimization techniques will be presented. Finally, the chapter
focuses on the state-of-the-art on multi-resolution techniques
and shape-optimization.
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3.1. REGULARIZED SOLUTIONS AND
APPROXIMATIONS

3.1 Regularized Solutions and
Approximations

As pointed out in Sect. 2.3, the inverse problem is charac-
terized by ill-posedness, which is a consequence of the loss of
information between “cause” and “effect” in the forward prob-
lem. A possible solution consists in mathematically expressing
some expected physical properties of the scatterer and to ex-
plicitly use such a knowledge to build families of approximate
solutions. Forinstance, A. N. Tikhonov and V. Y. Arsenin |38]
introduced a family of approximate solutions depending on a
reqularization parameter. For noise-free data, the approximate
solutions converge to the true solution when the regularization
parameter tends to zero. Otherwise, an optimal approxima-
tion of the exact solution exists for a non-zero value of the
regularization parameter. However, the choice of the value of
the regularization parameter becomes the main issue, since it
could depend on the geometry under test. Furthermore, while
mathematical methods and efficient numerical algorithms are
already available for linear inverse scattering problems, the sci-
entific literature does not provide any simple rule for the op-
timal choice of the regularization coefficient when nonlinear
problems are dealt with [43|. Looking for criteria, in [44] and
[45] the authors considered this parameter an additional un-
known which has to be controlled by the optimization process.

On the other hand, the improvement of the robustness with
respect to false solutions and the convergence rate as well as the
non-uniqueness and ill-conditioning inherent to inverse scatter-
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ing problems has been dealt with as well [46]-[50]. As far as
non-linearity is concerned, some attempts have been devoted
to the problem linearization by using suitable approximations.
However, the use of Born, Rayleigh and Rytov approximations
[13] is suitable only for dealing with weakly scattering objects
[51]. The iterative Born method [52] and its modified form [53]
could extend their availability, but they still remain techniques
that can be applied only to dielectric scatterers.

3.2 An Overview on
Minimization Techniques

In order to cope with the non-linearity, the inverse scattering
problem can be recast as an optimization procedure, where
a suitable cost function depending on the mismatch between
the measured fields and the numerically evaluated one is min-
imized. Such a cost function is computed on the basis of the
trial solution 7 = {7,,; n = 1, ..., N} and it is usually expressed
in matrix form as follows [13]

(I) {;} — &||£ GEXT—EH
- [El
(3.1)
¢— E'+_ IE‘H
ﬂ || INT
I<]l”
where G and G’ , are the M x N external Green’s matrix

and the N >< N 1nternal Green’s matrix, respectively, and «, 3
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are two user-defined regularization parameters. Furthermore,
¢ is the N x 1 incident field array, ¢ is the M x 1 measured

field, and E is the N x 1 estimated total electric field.
The optimal solution 7, is found as the N x 1 array that
minimizes the relationship (3.1), namely

Top = arg {ming—y __x [® {7, ]} (3:2)

where 7, is the trial solution achieved at the step k£ by the iter-
ative updating procedure. As a consequence, the quality of the
final solution depends mostly on the search strategy, since the
problem may have false solutions due to its non-linearity. The
next two subsections discuss both deterministic and heuristic
approaches.

3.2.1 Deterministic Approaches

As far as deterministic approaches are concerned, the most
widely used are the gradient-based techniques introduced by
Kleinman et al. in [54]. Such methodologies are based on a
simultaneous update of the unknown field Ek and scatterers
contrast 7, in order to avoid the full solution of the forward
problem at each iteration. Towards this end, a sequence of trial

solutions Xk = [fk, Ek}, k=1,.., K, is defined with strictly

decreasing cost function values. At each iteration k, the trial
solution is updated as follows

Npoy = X, Ve - Uy (3.3)
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where U, is the value of the updating function at the iteration
k,kE=1,.. K, and

v = arg {minp [CID {Xk + v, L{k}] } . (3.4)

The iterative procedure is iterated until the value of (3.1) is
smaller than a fixed threshold or a stationary condition is
reached.

The updating of the unknowns U, consists in the evalu-

ation of the steepest descent I'), = —V, <<I> {Xk}) Several

updating strategies have been developed, but one of the most
effective architecture in terms of convergence rate is the Polak-
Ribiere procedure [55]. Such an algorithm defines the following
update term

Ly (0 — L)

|y

Qk = Ek - uk—l (3-5)
where the superscript 1" indicates the transpose operator.

As for some examples of other updating strategies, the bi-
congugate gradient method (see [56] and [57] for more details),
or its development called the bi-conjugate gradient stabilized
method (see [58] for more details), have been implemented to
solve nonsymmetric systems. Moreover, the generalized min-
imum residual (GM-RES) method (see [59] for more details)
and the quasi minimal residual method (see [60] for more de-
tails) have a different approach based on the creation of proper
basis functions to represent the solution space. However, such
strategies are often more demanding, even though a faster con-
vergence rate is reported. Moreover, at the best of the author’s
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knowledge, these updating approaches are generally used to
solve linear problems.

3.2.2 Heuristic Minimization Methodologies

Unfortunately, the convergence of the deterministic minimiza-
tion strategies is strictly dependent on the initialization point.
As a matter of fact, since the problem at hand is non-linear,
the solution can be easily trapped in local minima representing
false reconstructions if the initialization is not appropriate.

Since false solutions are physically unacceptable solutions,
the minimization methods should meet the following require-
ments to avoid local minima:

(a) the possibility of easily including the whole amount
of available a-prior: information on the unknown
solution;

(b) on-line control of the solution quality in order to as-

sure that trial solutions, estimated during the sam-
pling of the search space, are physically admissible
solutions;

(¢) suitable operators able to fully exploit the informa-
tion on the solution gained during the minimization
and /or arising from the a-priori information;

(d) operators able to easily replace non-feasible solu-
tions by newly feasible ones, without introducing
user-defined penalty functions.

22



CHAPTER 3. AN OVERVIEW ON INVERSE
SCATTERING TECHNIQUES

Such properties are usually owned by the heuristic optimization
techniques based on evolutionary algorithms. These strategies
are characterized by the definition of a set of W trial solution

X = {XZ”, w=1,..., W}, commonly called population, that is
iteratively updated according to the following general relation-
ship

X, =X +Y {Tie=10} (3.6)
where the updating operator gk{} depends on the current
solution and on the previous k—1 trial solution. Consequently,
the optimal solution is found as the one minimizing the cost

function (3.1), namely

Xopt — 218 {minkzl,...,K [minwzl,...,W (CD {Xf})] } . (3.7

where 7, is the trial solution achieved at the step k by the
iterative updating procedure.

As far as the updating strategies are concerned, many ap-
proaches have been developed. Simulated Annealing [61] is
one of the first and most common single agent algorithm (i.e.,
W =1). The basis idea is to define U, according to a ”temper—
ature parameter” that incrementally decreases at each iteration
converging to a stable condition. However, the smaller the up-
date becomes, the lesser the hill-climbing® capability is.

In order to increase the hill-climbing capabilities, multiple
agent techniques (i.e., W > 1) have been also adopted. Some

!The hill-climbing capability refers to the possibility of dealing with
multi-minima cost function, without the solution being trapped in a local
minima.
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well known examples are the Genetic-Algorithms (GA) [62]-
[64] [21] and the Particle Swarm Optimizer (PSO) [65]. In
G'A, a population of trial solution is defined and it is evolved
by mimicing Darwin’s evolution theory by means of a set of
updated operators, known as selection, crossover, and mutation
[66]. The procedure is based on a competitive process aimed at
extracting the best individual among the population. On the
contrary, the PSO is based on a cooperative logic inspired by
the behavior of flocks of birds looking for food [67][68]. Each
particle (i.e., trial solution) collects information and makes it
available to the whole swarm in order to cooperate in searching
the global minimum. As a matter of fact, the update term U
is characterized by a “personal” term and a “social” term.

Evolutionary techniques are much more demanding than
the deterministic procedures in terms of computational resour-
ces, but they provide a suitable exploitation of the a-priori
information together with an efficient representation of the so-
lution space.

3.3 State-of-the-Art on
Multi-Resolution Approaches

In order to deal with the ill-posedness of the inverse scatter-
ing problems, many approaches to collect a greater amount
of information have been considered. More in detail, multi-
illumination [69] and/or multi-view [70] and/or multi-source
[71] and/or multi-frequency systems [72| are generally used,
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but the information collectable from the scattering experiments
still remains limited [13] to an upper bound that depends on
the geometrical characteristics of the imaging system and on
the working frequency [12|. In order to reduce the dimension
of the space of unknowns, some a-priori information (when
available) on the scenario under test [73][40] can be added by
imposing a set of constraints [15] on the retrievable dielectric
profile.

In order to restore the “well-position” of the inverse prob-
lem, a different approach consists in fully exploiting all avail-
able information on the scenario under test. In more detail, the
representation of the unknown scatterer belongs to a finite di-
mensional space, whose dimension is smaller than the essential
dimension of data (i.e., the number of retrievable unknowns
should be lower than the amount of information in data). Be-
cause of the analytical nature of the scattering operator, such
an optimal dimension is a known quantity since it depends on
the extension of the investigation domain with respect to the
wavelength [74] and on the characteristics of the acquisition
system [12]. Starting from these considerations and since the
scattered field is a spatial band-limited function, the optimal
numbers of views V' and of measurement points M depend on
the size of the investigation domain. As a matter of fact, the
degrees of freedom of the field scattered by an obstacle located
in free space is [15]

R = 2kKocx (3.8)

where « is the radius of the minimum circle enclosing the scat-
terer. Moreover, the number Z of independent measurements
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that can be collected, starting from the number of total mea-
surement (i.e., M x V), is T = R}/2. Consequently, when
M x'V measurements are available, the optimal number N,
of unknowns (i.e., independent equations) to be allocated is
given as

Nopt = min {Z, M x V/2} . (3.9)

Unfortunately, the optimal number N, of retrievable unknowns
(equal to the essential dimension of the scattered data) does
not usually meet the criterion given in [39] for a suitable repre-
sentation (in terms of spatial resolution) for both the dielectric
profile of the scatterer and the induced electric field.

In order to suitably represent the unknowns and keep the
ratio between unknown and data, namely N,,;/(M x V'), small
and constant during the inversion procedure, a more effective
representation of the problem unknown should be adopted. A
possible solution consists in the use of multi-resolution meshes,
by decreasing the size of the sub-domains where the targets
are located and using a coarse resolution level otherwise [75].
According to such a basic idea, various strategies based on
a multi-resolution expansion of the unknowns have been pro-
posed. These methods define discretization schemes and corre-
sponding tailored basis functions to better represent the geom-
etry under test (i.e., higher resolution level near the discontinu-
ities and coarse grid in the external homogeneous background).
Taking advantage of such a kind of expansion, it is possible to
distribute in a non-uniform fashion the unknowns inside the
scattering domain (for more details see [76][77]).
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3.3.1 Wavelet-based
multi-resolution approaches

In order to better allocate the number of unknowns of the in-
verse problem, a statistical model is employed in [17] to gather
information on the suitable resolution levels to be adopted in
a linear inverse problem. In practice, the relative error covari-
ance matriz (RECM ) provides a rational basis for dealing with
resolution /accuracy trade-offs and to identify the optimal spa-
tial resolution. As a matter of fact, such an approach is able
to identify those regions in space where the information pro-
vided by data is higher, thus increasing the spatial resolution
by means of wavelet decomposition of the signals. The arising
inverse scattering problem is then recast into the minimization
of a two-term cost function enforcing fidelity to scattering data
and matching with the statistical prior model for the contrast,
respectively. As a consequence, the inverse problem is regular-
ized through the multiscale approach that allows the collection
of a-priori information.

A similar approach has been considered in [16]. Starting
from a-priori considerations on the mathematical nature of
the problem and from the intrinsic features exhibited by the
class of retrievable functions, such a multi-resolution strategy
associates part of the optimal number of unknowns N, to a
coarse representation of the whole domain. Then, it concen-
trates the remaining ones in those parts of the region under
test where a better resolution can be achieved. Mathemati-
cally, the arising problem is solved through the minimization
(only once) of a cost function related to the scattering equa-
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tions. Furthermore, the unknowns are represented with the
a-priori multi-resolution expansion by considering a suitable
wavelet transformation.

3.3.2 Adaptive Multiscale Techniques

A different approach based on a step-wise refinement proce-
dure is developed [78] for a nonlinear scattering model. A se-
quence of different tests based on a-priori hypotheses (i.e., a
collection of anomaly configurations) are employed first to lo-
calize anomalous behaviors in large areas and then to refine
these initial estimates in order to better characterize the ac-
tual structures. The proposed stable coarse-to-fine localization
method defines a decomposition procedure (able to zoom on
strong scatterers before refining other structures) and a prun-
ing step to remove unreliable candidate anomalies. In further
works (for details see [18] and referred works), a different ap-
proach based on an adaptive iterative strategy is proposed to
improve spatial resolution by means of spline pyramids. Fi-
nally, the multiscale distribution of the contrast is determined
by adding detail close to the surface and defining a coarse scale
deeper into the the material, pruning away unnecessary degrees
of freedom.

3.3.3 The Iterative Multi-Scaling Approach

In the framework of adaptive multi-resolution approaches, Caorsi
et al. developed an iterative technique, called iterative multi-
scaling approach (IMSA), where the distribution of the un-
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knowns is a-posteriori determined by exploiting the informa-
tion gathered during the multi-step procedure [79]. Taking ad-
vantage of a constant multi-scaling piece-wise pulse representa-
tion able to deal with all possible multi-resolution combinations
(unlike wavelet expansion), such an approach is aimed at de-
termining firstly the regions-of-interest (Rols) where the scat-
terers are located, thus increasing the spatial resolution only
where needed. The amount of information collected through
the field measurements is suitably exploited by allowing an
enhanced spatial resolution only in the Rols and keeping the
ratio Nop/(M x V) low according to the criterion previously
discussed. As a consequence, the risk for the solution of being
trapped in a local minima is sensibly reduced [15], even though
it cannot be fully removed.

At each step of the iterative procedure, the reconstruction
is performed through the minimization of a suitable multi-
resolution cost function. The process is iterated until the un-
knowns’ distribution reaches a stationary condition. The op-
erations characterizing each step s, s = 1,...,.9, of the IMSA
can be summarized as follows (for more details, see [79]):

e Multi- Resolution Expansion - The representation of
the unknowns is updated according to the new resolution
level s, s = 1,...,S, by means of the following multi-
resolution expansion

T)=>_> FB(r,), reb (3.10)

i=1 n;=1
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where B (zn) is a rectangular basis function whose sup-
port is the n;-th sub-domain of the region of interest R;
at the i-th resolution level, i =1, ..., S.

e Multi-Resolution Profile Retrieval - Minimize the
multi-resolution cost function at the resolution level s,
given as

-~ é Zz = z zH
P {X } || 1 EXT
- [Hik

(3.11)

BHZZ 1[ — —INT11E1]||

by considering the multi-resolution representation for the
unknowns, namely XS = {[’7: (zns) , BY ([ns)} N =
1,...,N;1=1,...,s}. At each resolution level, the Green’s
functions G° and G’ = 1,..., 8, need to be recom-
puted (for more detail see [79])

e Update of the Resolution Level - The resolution level
is updated (s < s+ 1).

e Rols Estimation - The location (z¢, y¢) and the exten-
sion (L¢) of the Rol is defined according to the clustering
procedure described in [19], by using the previous step
reconstruction image and performing a noise filtering to
eliminate some artifacts in the reconstructed image [79).

e Termination Procedure - Go to “ Multi-Resolution Fx-
pansion” until a stationary condition on the qualitative

30



CHAPTER 3. AN OVERVIEW ON INVERSE
SCATTERING TECHNIQUES

reconstruction parameters

Qy_1 — o~
{% X 100} <o, Q=1°75L (3.12)
s—1

is reached (s = Sopt), where v are fixed thresholds ex-
perimentally determined.

The multi-scaling procedure has shown to be effective also
when dealing with multiple scatterers [19][80][81]. The pro-
posed clustering procedure is able to manage different non-
connected Rols with a satisfactory accuracy.

3.4 Shape-Optimization Algorithms

In order to properly address the ill-posedness of the inverse
scattering problem, the full exploitation of whole amount of
information content appears as a key issue. That can be pro-
vided though multi-resolution methodologies which allows to
keep the ratio between unknowns and data low during the in-
version process. In addition, several approaches, such as IMSA
(Sect. 3.3.3), increase the information content step-by-step,
providing an iteratively-increasing amount of a-prior: infor-
mation about the proper spatial resolution to be employed.
However, multi-resolution techniques are not generally aimed
at taking into account the a-priori information about the ge-
ometry at hand. As a matter of fact, many practical imaging
problems can be reduced to the search of homogeneous objects
inside known host media (Sect. 2.1.2), by assuming that the
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electromagnetic properties of the targets are a-priori known
[5]-[8]. In such a case, the inverse scattering problem is limited
to a qualitative tmaging problem, where only the search of lo-
cation and shape of the targets is carried out, unlike standard
quantitative imaging problems [11], where the estimation of the
electrical conductivity and permittivity values is required.

To profitably exploit the a-priori information about the
scatterers, shape-optimization algorithms can be considered as
effective strategies to solve qualitative imaging problems. In
the following, a brief state-of-the-art about these methodolo-
gies is provided, focusing basically on two classes: the paramet-
ric approaches [21]-[25], where the target is represented by a set
of parameters, and the level-set-based strategies [31]-[32] [82],
where the shape of the scatterer is identified by the zero-level
of a continuous function.

3.4.1 Parametric Approaches

Starting from the knowledge of the unperturbed geometry and
of the electromagnetic properties of the media, the targets to
be retrieved can be profitably defined as inclusions in a known
structure and approximated with a limited set of essential pa-
rameters [21]. Such a parametrization and the use of a suitable
Green’s function 73] allow a reduction of the number of un-
knowns and consequently a non-negligible computational sav-
ing during the reconstruction process carried out in terms of
the optimization of a suitable cost function.

In general, these shape-optimization strategies describe the
targets as basic shapes, such as rectangular domains, to be
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properly parametrized. More in detail, by considering some a-
priori assumptions, the scatterer is defined by the coordinates
of its center (., y.), its length L, its side IV, and the orientation
0. Therefore, the value of the contrast function in the n-th
sub-domain, n = 1,..., N, can be re-defined according to the
following relationship

[ itPe[-hiadQe -4y
Tn = { 0 otherwise (3.13)
where
P = (2, — x.) cost + (y, — y.) sinf (3.14)
and
Q = (v, — x.)sinfd + (y, — y.) cosb . (3.15)

Accordingly, the set of parameters to be retrieved during the
reconstruction process is

X =1{(ze,ye), L, W, 0; E* (r,,) ,n=1,...,N} (3.16)

where the total electric field E” (r,) can be updated by means
of effective forward solvers [83| or estimated during the opti-
mization process.

In order to determine the optimal solution Xopt of the re-
construction problem, the problem at hand is recast as an op-
timization one via the definition of a suitable cost function

e Wl
P ix} = HE (3.17)
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where N (K) = f(K) E (K) is the equivalent current density
computed starting from y. Due to the discrete nature of the ar-
ray of unknowns, the resulting minimization procedure is usu-
ally solved by means of evolutionary optimization approaches,
such as GA. As for the use of more complex parametriza-
tion schemes, such as spline functions, it usually requires cus-
tomized strategies [23][24].

3.4.2 Level-Set-based Shape Optimization

Since 1988 when the paper of Osher and Sethian [29] appeared
in the literature, level set methods are considered effective tech-
niques for dealing with propagating fronts and interfaces [32].
Such methodologies have been successfully exploited in many
frameworks, such as modelling and simulation [84| and inverse
problems [85]-|87], or more specifically in imaging [88]-[90],
medical applications [91]-[94], and geology [95].

More in detail, once the effectiveness of these optimiza-
tion strategies has been proved for the retrieval of position and
shape of unknowns targets [31], they have been also used in
electromagnetics, for inverse scattering problems [33|[34] [97]-
[98]. In such a framework, the first works were mainly focused
on “binary” geometries, where the permittivity and conduc-
tivity of targets and background were assumed to be a-priori
known, thus turning the inverse scattering problem into a qual-
itative imaging problem, where only the shape of the scatterer
has to be reconstructed. However, recent advances deal with
more complex problems, such as the retrieval of the values of
the “binary” contrast function, the recovery of the support of
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several targets, or more complex geometries [20][99].

As for the main aspect of level-set-based optimization, the
contrast function is defined with respect to the shape T of the
scatterer as follows

T ¢(r)<0 and reX
T(t):{oc o) >0 and réT (3.18)

where ¢ is a continuous function, called level set, and the con-
tour of T is identified by ¢ = 0. In order to retrieve the
optimal shape T, of the reconstruction problem, the level set
algorithm starts from an initial guess T;—; and iteratively per-
forms the following sequence of operations (k = 1, ..., K being
the iteration index):

e Update of the Field Distribution - The values of the
scattered field §, (r,,), m = 1,..., M with r,, € Do, and
of the total field E, (r), r € Dy, are computed start-
ing from ¢y, (r) and 74 (r) by solving a forward scattering
problem.

e Gradient Computation - The shape derivative VyO {¢y}
of the cost function

0ot =6~ Gy @I B0 (319)

is computed in order to get a velocity function V, (r)
for the update of the level set function. V, (r) can be
obtained by calculating the Eulerian derivative of (3.19)
[32] or similarly by solving an adjoint problem [33]. More
details about the adjoint problem for the two-dimensional
TM case are given in Appendix A.
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e Iteration Update - The iteration index is updated (k «—
k+1).

e Level Set Update - The level set function ¢ is updated
according to the following relationship

O (1) = Pr—1 (1) + vl —1 (1) (3.20)

where U._ is the update term and v,_; is the step size
which can be determined by a line-search strategy. When
Uy—1 (1) is chosen as

Up-1= V1|V, -1, (3.21)

with i = Vy_1/ |Vdr_1], relationship (3.20) is a Hamilton-
Jacobi-type equation.

Since the updates U, could provide rough boundaries of the
trial shape Ty, k = 1, ..., K, regularization strategies for shape
inversion are often considered [32||87]. Such techniques consist
in employing smoothing operators (e.g., by assuming that the
solution belongs to a particular function space consisting of
smooth functions) or penalization terms based on the desired
geometric properties of the trial solutions. These constraints
can be determined through the analysis of the data at hand
and of the achievable resolution.
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Chapter 4

The Multi-Resolution
Level Set Approach

In this chapter, the iterative multi-scaling approach with level-
set-based optimization is presented. The mathematical for-
mulation is focused on the multi-step architecture and the
proposed numerical validation, carried out both with numeri-
cal synthesized data and laboratory-controlled data, discusses
the reconstruction capabilities of the proposed multi-resolution
methodology by considering simple and complex targets.
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4.1 Mathematical Formulation

With reference to Ch. 2 where the inverse scattering problem
has been mathematically formulated, this section is aimed at
presenting the integration of the iterative multi-scaling strategy
(IMSA) and the level-set (LS) representation. Let us consider
a cylindrical homogeneous non-magnetic object with relative
permittivity ec and conductivity oo that occupies a region T
belonging to an investigation domain D;. Such a scatterer is
probed by a set of V' transverse-magnetic (T'M) plane waves,
with electric field ¢“(r) = (“(r)z (v = 1,...,V), r = (z,y),
and the scattered field, £°(r) = £¥(r)2, is collected at M(v),
v = 1,...,V, measurement points T'm(y) distributed in the ob-
servation domain Do.

In order to retrieve the unknown position and shape of the
target T by step-by-step enhancing the spatial resolution only
in that region, called region-of-interest (Rol), R € Dj, where
the scatterer is located [19], the following iterative procedure
of S,,4c steps is carried out.

With reference to Fig. 4.1(a) and to the block diagram
displayed in Fig. 4.2, at the first step (s = 1, s being the step
number) a trial shape T, = Yy, belonging to D, is chosen
and the region of interest R | Rs—1 = Dj| is partitioned into
Niarsa equal square sub-domains, Nyjr54 being the number of
degrees of freedom of the problem at hand [14]. In addition,
the level set function ¢y is initialized as follows [33][97]:

e ):{ —miny_yp, {dnp} if7(r,.)="1c (4.1)

—TMs mlnb 1,...,Bs {dnsb} if 7 (Zns) =0
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(@)

(b)

s=1-k=Fk"

(c)

s=2-k=1

Figure 4.1: Graphical representation of the IMSA-LS zooming
procedure. (a) First step (k = 1): the investigation domain is
discretized in N sub-domains and a coarse solution is looked
for. (b) First step (k = k°P'): the region of interest that con-
tains the first estimate of the object is defined. (¢) Second step
(k = 1): an enhanced resolution level is used only inside the
region of interest.
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where o,y = \/ (2, = 2)° + (g, = )%, £, = (€0, yn,) and
r, = (xp,yp) are the center of the ng-th pixel and the b-th
border-cell (b =1,..., By) of T, respectively.

Then, at each step s of the process (s = 1,..., Sjaz), the
following optimization procedure is repeated (Fig. 4.2):

e Problem Unknown Representation - The contrast
function is represented in terms of the level set function
as follows

s Nrmsa

T () =>_ > mwB(r,) reb (4.2)

i=1 n;=1

where the index k, indicates the k-th iteration at the s-
th step [k = 1,..,k?'], B(r, ) is a rectangular basis
function whose support is the n-th sub-domain at the i-
th resolution level [n; = 1,..., Niysa, ¢ = 1,..., 5|, and
the coeflicient 7y, is given by

e iy (r,) <0
Thi = { 0 otherwise (4.3)

O, (znz) ifi =s
Uy, (r,,) = { ¢kl;pt (rn,) if (i <s)and (r,, € R)

(4.4)
with i =1,...,s as in (4.2).
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Initialization

Problem Unknown Representation
T, (1) = 300, EnN‘leSA 7B (z,,)
T, € Dr

\l

Field Distribution Updating
Compute Elt, (L,’)

s-th resolution level

r,, € Dr

i

Cost Function Evaluation

Determine E,’\ (Lm,‘) and compute © {¢y_}

Level Set Update h L, € Do

Compute ¢y, from ¢y,

LS
Sopping Criteria
Q> V6 Ve, KM

z5,Ys, L

Sopping Criterion
Ve, Ve Vg

s=s5+1
ks=0

Figure 4.2: Block diagram description of the IMSA-LS zoom-
ing procedure.
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e Field Distribution Updating - Once Ty, (r) has been

estimated, the electric field £} (r) is numerically com-
puted according to a point-matching version of the Method
of Moments (MoM) [39] as

E}, (r,) = Y0254 ¢7 (r,,) [1 =T (1) Gap (1,,/1,)]

Tnis T € D1
n; =1,..., Niysa -
(4.5)

Cost Function Evaluation - Starting from the total
electric field distribution (4.5), the reconstructed scat-
tered field E;;S (7)) at the m(v)-th measurement point,
m(v) = 1,..., M(v), is updated by solving the following
equation

s Nrmsa

& (rw) =D D T () B (20,) Go (P /20,)

(4.6)
and the fit between measured and reconstructed data is
evaluated by the multi-resolution cost function © defined
as

~ 2
21‘1/:1 27]7’\?((:))21 &k, (fm(v)> — &, (fm(v)))
23:1 Zi\:((:))ﬂ ’5155 (fm(v)) }2

O{¢n} =
(47)
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e Minimaization Stopping - The iterative process stops
[i.e., k%" = kg and T%'= T;,] when: (a) a set of condi-
tions on the stability of the reconstruction holds true or
(b) when the maximum number of iterations is reached
[ks = Kpnaz|, or (¢) when the value of the cost function is
smaller than a fixed threshold ~;,. As far as the stabil-
ity of the reconstruction is concerned [condition (a)], the
first corresponding stopping criterion is satisfied when,
for a fixed number of iterations, K, the maximum num-
ber of pixels, the value of which has changed, becomes
smaller than a user-defined threshold v, according to the
relationship

Nivsa |~ =
— K{ 3 |7 (.) TCTkSJ (r.) } < Nisa,
ns=1
(4.8)

The second criterion, about the stability of the recon-
struction, is satisfied when the cost function becomes
stationary within a window of K¢ iterations as follows:

Ko

1 O {or.} — O {dr.;}
_ Z o {¢ks} < 7Ye.

Ko being a fixed number of iterations and v being user-
defined thresholds;. When the iterative process stops,
the solution 77" at the s-th step is selected as the one
represented by the “best” level set function ¢%' defined
as

(4.9)

J=1

P = arg |min,_; ot (© {n})] - (4.10)

-----
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e Iteration Update - The iteration index is updated [ks —
ks +1];

e Level Set Update - The level set is updated according
to the following Hamilton-Jacobi relationship

Ok, (10,) = Oro1 (L,) = At Vi1 (1) H{ bk (2,) }
(4.11)

where H {-} is the Hamiltonian operator [29][30] given as

(max® {D;~;0} + min? {D{*;0} +
+max? {D} ;0} + min? {DY"; 0}
if Vi, (r,.) >0
7 (o (2.} =
min? {D,fs_; 0} + max? {D,f:r; O} +
+min? {D};0} + max? {Dzj; 0}
otherwise

(4.12)

° Dx:‘: _ i¢’ks (:Ensﬂ:l yYns )q:¢ks (xns yYng )
ks

ls ’

° Dyi _ Eon, (xnsvynsill)qjd)ks (T 7yn5)‘
S

At is the time-step chosen as At, = Atl— with A¢; to be
set heuristically according to the hterature [33], Is being
the cell-side at the s-th resolution level. V_ is the velocity
function computed following the guidelines suggested in
[33] by solving the adjoint problem of (4.5) in order to
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determine the adjoint field 7 (for more details, please
refer to the Appendix A). Accordingly,

i (1) = - { SRl

v= 1Zm(v é;ﬂ) ( m(v))|2

(4.13)

ns = 17 e Nimsa
where 3t stands for the real part.

When the s-th minimization process terminates, the contrast
function is updated [T% (r)= Ty, , (r), r € Dy (4.2)] as well as
the Rol |[Rs — Rs_1]. To do so, the center of R of coordinates
(¢, y¢) is determined as follows [19] [Fig. 4.1(b)]:

o T X2 e T (2a,) B (20,)
i

’ Zz 1 Z?J’L\ZILMISA ~Opt (—nl) B (an)
NIMSA opt B
»yv;: _ Zz 1 anjgl ~O ; (£m> (fnz) ] (415)
Zz 1 ZmI*MlSA g (zm) B (znz)

The estimated side L, of R, is computed as

r L S e T (1) B (5,)
S S 7 () B (2]

(4.14)

(4.16)

where d,,, ., = \/(xm — 7% + (yn, — 7°)°
Once the Rol has been identified, the level of resolution is
enhanced |ks — ks_1] only in this region by discretizing Ry into
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Niysa sub-domains [Fig. 4.1(¢)] and by repeating the mini-
mization process until the synthetic zoom becomes stationary
(5 = Sopt), 1.€.,

Oy_1 — Y~
{% X 100} <o, Q=77 L (4.17)
s—1

7o being a threshold set as in [19], or until a maximum num-
ber of steps (Sopt = Smaz) is reached. As far as the regions
outside R, are concerned, the spatial resolution is left un-
changed as defined in the previous steps (r,, , n; = 1, ..., Nrarsa,
i =1,..,8 — 1) and the values of the problem unknowns are
computed according to equation (4.4).

At the end of the multi-step process (s = s,,t), the problem
solution is obtained as 79 (zni) = ToPt (fni), n; =1,..., Nrarsa,
1=1,..., 80p.
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4.2 Numerical Validation:
Synthetic Data

In order to assess the effectiveness of the IMSA-LS approach, a
selected set of representative results concerned with synthetic
data is presented herein. The performances achieved are eval-
uated by means of the following error figures:

e Localization Error 6

mc _ C 2 _ 7c _ c 2
. \/<xs|p z |p> : (yslp y |,,> 00 (s

where r.[, = <xc|p, yc|p) is the center of the p-th true

scatterer, p = 1,..., P, P being the number of objects.
The average localization error < § > is defined as

P
1
<d>= >l (4.19)
p=1

e Area Estimation Error A

1 1 Nrnsa
A = N, | x 100 4.20
izl Nimsa nzzl ' (4.20)

where N, is equal to 1 if 797 (fnz) =7 ([
erwise.

) and 0 oth-

T
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As far as the numerical experiments are concerned, the recon-
structions have been performed by blurring the scattering data
with an additive Gaussian noise characterized by a signal-to-
noise-ratio (SNR)

ZX=1 Z%((;)):l }éw (fm(v)) }2
PN Zn]\f((;))d [posm @ |

p™®) being a complex Gaussian random variable with zero
mean value.

SNR = 10log

(4.21)

(2

4.2.1 [Initializing with the True Solution

In the first experiment, a lossless circular scatterer of known
permittivity e = 1.8 and radius p = \/4 is centered at z¢ =
y© = A/6 [33] in a square investigation domain of side Lp = A.
V' =10 TM plane waves are impinging from the directions 6, =
2r (v—1)/V, v = 1,..,V, and the scattering measurements
are collected at M(v) = 10 receivers uniformly distributed on
a circle of radius pp = .

As far as the initialization of the IMSA-LS algorithm is
concerned, the initial trial object T is the true solution sam-
pled at the resolution level s = 1. The initial value of the time
step is set to At; = 1072 as in [33]. The Rol is discretized
in Nrysa = 15 x 15 sub-domains at each step of the itera-
tive multi-resolution process. Concerning the stopping criteria,
the following configuration of parameters has been selected ac-
cording to a preliminary calibration dealing with simple known
scatterers and noiseless data: Sy, = 4 (maximum number of
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X/A

Figure 4.3: Numerical Data. Circular cylinder (e = 1.8, Lp =
A, Noiseless Case). Reconstructions when initializing IMSA-
LS with the true solution [(a) s = 1, (b) s = 2, and (c¢)
S = Sopt = 3] -
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MsA ——

s=1 s=2 : s=3

eopt
—_
o

0 50 100 150 200

Iteration, k

Figure 4.4: Numerical Data. Circular cylinder (¢ = 1.8,
Lp = A, Noiseless Case). Behavior of the cost function when
initializing IMSA-LS with the true solution.
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steps), 7 = 7Y = 0.01 and v = 0.05 (multi-step process
thresholds), K., = 500 (maximum number of optimization
iterations), 79 = 0.2 and v, = 0.02 (optimization thresholds),
Ko = K, = 0.15 K4, (stability counters), and vy, = 107°
(threshold on the cost function).

Figure 4.3 shows the reconstruction achieved at the end of
the iterative steps of the multi-resolution procedure [(a) s = 1
-k =kopt, () s=2-k =kop, and (¢) s = Sopt =3 - k = kopt
while the behavior of the cost function is reported in Fig. 4.4.
The regions of interest determined at steps s = 2 and s = 3
are reported on the reconstructed profile by the dashed /dotted
contour [Figs. 4.3(b) and (¢)].

As for the quality of the reconstructions, it is worth noting
that Fig. 4.3(a) is the true object sampled at the level s = 1
(i.e., it is equal to the the initial guess). Then, as the resolu-
tion increases, the reconstruction improves as expected. As a
matter of fact, the shape of the object reconstructed at the end
of the process |Fig. 4.3(c)| appears to be better retrieved than
in Figs. 4.3(a) and (b). Such an improvement is obvious also
in the behavior of the cost function, since the error “jumps” to
a lower value as the spatial resolution improves. For the sake
of completeness, let us emphasize that the spikes of the cost
function between two adjacent steps are due to the updating of
the field distribution in correspondence with the new resolution
level.

When dealing with noisy data, the method still converges to
the exact solution, even though the quality of the reconstruc-
tions gets worse with respect to the noiseless case. Figure 4.5
shows the solutions achieved with different levels of additive
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Figure 4.5: Numerical Data. Circular cylinder (e = 1.8, Lp =
A, Noisy Case). Reconstructions when initializing IMSA-LS
with the true solution [(a) SNR = 20dB, (b) SNR = 10dB,
and (¢) SNR=5dB] .
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noise on scattered data [(a) SNR =20dB; (b) SNR = 10dB;
(¢) SNR = 5dB|. The reconstructions are similar to the ac-
tual object sampled at the highest resolution level. More in
detail, the symmetry of the actual object appears to be better
retrieved as the noise on the data decreases. As for the be-
havior of the cost function (Fig. 4.6), the final error increases
as the SINR increases, as expected. Moreover, the “jump” of
the cost function due to the increase of the spatial resolution
is less visible than in the noiseless case, and it disappears with
the lowest SNR.

4.2.2 Initializing with Exact Data

For the sake of completeness, this subsection deals with the
behavior of IMSA—LS when the initial guess is the true object
sampled at the same resolution level used to solve the forward
problem that generates the data (i.e., the inverse crime occurs).
In order to perform the inversion, the number of sub-domains
has been “forced” to Niyrsa = Ngireet = D1 X 51, while the
remaining parameters are the same of the previous section. As
expected, the inversion algorithm stops immediately (s,,: = 1
- kopt = 0), since the stopping criterion on the value of the
cost function holds true. As a consequence, the reconstruction
achieved is equal to the initial trial shape (Fig. 4.7).
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" S\R=20dB ——
NR=10dB

G)opt

0 20 40 60 80 100
Iteration, k

Figure 4.6: Numerical Data. Circular cylinder (e = 1.8, Lp =
A, Noisy Case). Behavior of the cost function when initializing
IMSA-LS with the true solution.

4.2.3 Inversion of Data scattered by a Circu-
lar Cylinder

The first test case with an initial guess different from the true
solution deals with the inversion of data scattered by the circu-
lar dielectric cylinder described in Sect. 4.2.1. In such a case,
the initial trial object Y is a disk with radius A/4 and centered
in D; while the other parameters are those selected previously.
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Figure 4.7: Circular cylinder (e = 1.8, Lp = A, Noisy Case).
Circular cylinder (e = 1.8, Lp = A, Noiseless Case). Recon-
structions when initializing IMSA-LS with the exact data.

Figure 4.8 shows samples of reconstructions with the IMSA-
LS. At the first step [Fig. 4.8(a) - s = 1], the scatterer is cor-
rectly located, but its shape is only roughly estimated. Thanks
to the multi-resolution representation, the qualitative imaging
of the scatterer is improved in the next step |Fig. 4.8(b) -
s = Sopt = 2| as confirmed by the error indexes in Tab. 4.1.
For comparison purposes, the profile retrieved by the single-
resolution method [33] (indicated in the following as Bare-LS),
when D; has been discretized in Npg,.. = 31 X 31 equal sub-
domains, is shown [Fig. 4.8(c¢)|. In general, the discretiza-
tion of the Bare-LS has been chosen in order to achieve in

%)



4.2. NUMERICAL VALIDATION:
SYNTHETIC DATA

Figure 4.8: Numerical Data. Circular cylinder (e¢ = 1.8, Lp =
A, Noiseless Case). Reconstructions with IMSA-LS at (a) s =
1, (b) s = Sopt = 2, (¢) Bare-LS. Optimal inversion (d).
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IMSA—LS Bare — LS
s=1 ‘ s =2
5 6.58 x 1076 | 2.19 x 1076 | 5.21 x 1071
A 2.36 0.48 0.64

Table 4.1: Numerical Data. Circular cylinder (e = 1.8, Noise-
less Case). Error figures.

the whole investigation domain a reconstruction with the same
level of spatial resolution obtained by the IMSA-LS in the Rol
at s = Sept-

Although the final reconstructions [Figs. 4.8(b)(c)| achieved
by the two approaches are similar and quite close to the true
scatterer sampled at the spatial resolution of Bare-LS [Fig.
4.8(d)| and IMSA-LS |Fig. 4.8(b)|, the IMSA-LS more faith-
fully retrieves the symmetry of the actual object, even though
the reconstruction error appears to be larger than the one
of the Bare-LS (Fig. 4.9). During the iterative procedure,
the cost function ©,, = O {¢2%"'} is initially characterized by
a monotonically decreasing behavior. Then, Oy |54 be-
comes stationary until the stopping criterion defined by re-
lationships (4.8) and (4.9) is satisfied (Fig. 4.9 - s = 1). Then,
after the update of the field distribution inducing the error
spike when s = 5oy = 2 and k; = 1, Ogpt] ;44 Settles to a
value of 6.28 x 10~* which is of the order of the Bare-LS er-
ror (Oupt] 5, = 1.42 x 1071). The slight difference between
Oopt] rarsa a0d Oy |5 depends on the different discretiza-
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IMSA () ——

IMSA (@) -

BARE ...........
10" i
© 102 i
107 F -

s=1 s=2 ....................
10 ‘ v ‘
0 50 100 150 200
Iteration, k

Figure 4.9: Numerical Data. Circular cylinder (e¢ = 1.8, Lp =
A, Noiseless Case). Behavior of the cost function.

tion [i.e., the basis functions B (zn(i:m), n(i) =1,..., Njysa are
not the same as those of Bare-LS|, but it does not affect the re-
construction in terms of both localization and area estimation,
since 6] yga-rs < 0l pare—rs A Aljysa_rs < Alpare-rs
(Tab. 4.1).

Fig. 4.9 also shows that the multi-step multi-resolution
strategy is characterized by a lower computational burden be-
cause of the smaller number of iterations for reaching the con-
vergence (Fig. 4.9 - kit 1594 = 125 vS. Kiot] gore = 177,
letting k;, the total number of iterations defined as k;,; =
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Sosert kot for the IMSA-LS), and especially of the reduced
number of floating-point operations. As a matter of fact, since
the complexity of the LS-based algorithms is of the order of
O©2xn*), n = Nrsa, Npare (i-e., the solution of two direct
problems is necessary for computing an estimate of the scat-
tered field and for updating the velocity vector), the computa-
tional cost of the IMSA-LS at each iteration is two orders in
magnitude smaller than the one of the Bare-LS.

The behavior of the multi-resolution level set function W,
during the inversion procedure is shown in Figs. 4.10 and 4.11.
At iteration k = 1 of the step s = 1, the level set is initialized
according to the oriented distance function (4.1) by considering
the initial guess 1. As it can be noticed from Fig. 4.10(a), the
level set function is defined on the resolution level s = 1 and
its value is lower than zero in the center of the investigation
domain, namely inside the object defined by the trial solution.
Then, the update of Wy_ is carried out by means of the velocity
function V,, whose behavior in the investigation domain at
iteration £ = 1 and at step s = 1 is reported in Fig. 4.12(a).
After k = 20 iterations, the trial solution appears to be similar
to the actual object, since the region where ¢, _, < 0 is cen-
tered on the barycentre of the actual object |Fig. 4.10(b)|, and
the values of the velocity function are lower than at iteration
k = 1 |Fig. 4.12(b)], especially in the region where the true
scatterer is located. At the next step (i.e., s = Sopt = 2), ¥y, at
resolution level s = 2 is defined in the new Rol, while the level
set at the previous resolution level, gbkso,jl, is considered outside
R,—>. As for the update of the multi-resolution level set, the
velocity function is computed only in R,_, |Fig. 4.13(a)| and,
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@x.y)

0.01

0.005

-0.005

0.01

0.005

-0.005

Figure 4.10: Numerical Data. Circular cylinder (ec = 1.8,
Lp = A, Noiseless Case). Behavior of the level set ¢y, at s =1
[(a) k=1, (b) k = 20|
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@x.y)

0.01

0.005

0.01
-0.005

-0.01

(a)

wx.y)

0.01
0.005

0.01
-0.005

-0.01

()

Figure 4.11: Numerical Data. Circular cylinder (ec = 1.8,
Lp = A, Noiseless Case). Behavior of the level set ¢, at
s=Spt =2[(a) k=1, (b) k = kop-
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V(x.y)

0.2
0.1

-0.1
-0.2

0.2
0.1

-0.1
-0.2

Figure 4.12: Numerical Data. Circular cylinder (e¢ = 1.8,

Lp = A, Noiseless Case). Behavior of the velocity V, at s =1
[(a) k=1, (b) k = 20].
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V(x.y)

0.006
0.003
0
0.006 -0.003
0'00?) -0.006
-0.003
-0.006
-12
(a)
V(x,y)
0.006
0.003
0
0.006 -0.003
0'00(3) -0.006
-0.003
-0.006

-12

Figure 4.13: Numerical Data. Circular cylinder (ec = 1.8,
Lp = A, Noiseless Case). Behavior of the velocity V, at s =
Sopt =2 [(a@) k=1, (b) k = kopt)-
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Figure 4.14: Numerical Data. Circular cylinder (e¢ = 1.8,
Lp = A\, Noisy Case). Reconstructions with IMSA-LS (a) and
Bare-LS (b) for SNR = 20dB.

as expected, its contribution becomes more and more negligible
as the iteration index ky_, increases |Fig. 4.13(b)].

As for the stability of the proposed approach, Figures 4.14-
4.16 show the reconstructions with the IMSA-LS |Figs. 4.14-
4.16(a)| compared to those of the Bare-LS |Figs. 4.14-4.16(b)]
with different levels of additive noise on the scattered data
[Fig. 4.14 - SNR = 20dB; Fig. 4.15 - SNR = 10dB; Fig.
4.16 - SNR = 5dB (bottom)]. As expected, when the SNR
decreases, the performances worsen. However, as outlined by
the behavior of the error figures in Tab. 2, blurred data and/or
noisy conditions affect more evidently the Bare implementation
than the multi-resolution approach.
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ﬁy/'\

Figure 4.15: Circular cylinder (ec = 1.8, Lp = A, Noisy Case).
Reconstructions with IMSA-LS (left column) and Bare-LS
(right column) for SNR = 10dB.

In the second experiment, the same circular scatterer, but
centered at ¢ = —y® = 7A\/15 within a larger investigation
square of side Lp = 2\ (po = 2)), has been reconstructed. Ac-
cording to [15], M(v) = 20; v = 1, ...,V receivers and V = 20
views are considered and Dy is discretized in Nypg4 = 13 x 13
pixels. Figure 4.17(a) shows the reconstruction obtained at
the convergence (s, = 3) by IMSA-LS when SNR = 5dB.
The result reached by the Bare-LS (Nparg = 47 x 47) is
reported in Fig. 4.17(b) as well. As it can be noticed, the
multi-resolution inversion is characterized by a better estima-

tion of the object center and shape as confirmed by the values
of 6 and A (0];3,64 76 = 0.59 vs. 6|p,.. ;15 = 2.72 and
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/A

Figure 4.16: Numerical Data. Circular cylinder (e¢ = 1.8,
Lp = A, Noisy Case). Reconstructions with IMSA-LS (left
column) and Bare-LS (right column) for SNR = 5dB.

Al s =048 vs. Al o =0.64). As for the compu-
tational load, the same conclusions from previous experiments
hold true.

As far as the behavior of the level set in this second exper-
iment is concerned, Figure 4.18 shows that the function ¢, _,
at the iteration k£ = 2 presents some irregularities. The level
set is characterized in the centre of the investigation domain
by several spikes due to the update procedure at the previous
iteration [Fig. 4.18(a)]. Unfortunately, these peaks compro-
mise the computation of the update term at £ = 3, although
the behavior of the velocity function is regular [Fig. 4.18(b)].
As a matter of fact, the level set at k = 3 appears to be even
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| | 1msa - Ls | Bare - Ls |

SNR = 20dB
5 5.91 x 10~1 2.72
A 0.98 1.28
SNR=10dB
) 2.28 2.45
A 1.07 1.80
SNR=5dB
5 6.78 x 101 1.63
A 1.50 2.07

Table 4.2: Numerical Data. Circular cylinder (ec = 1.8, Noisy
Case). Values of the error indexes for different values of SN R.

more irregular than at iteration k& = 2.

4.2.4 Rectangular Scatterer

The second test case deals with a more complex scattering
configuration. A rectangular scatterer (L = 0.27\ and W =
0.13)) characterized by a dielectric permittivity e = 1.8 is
centered at x¢ = —%)\, y¢ = A within an investigation domain
of Lp = 3) as indicated by the red dashed line in Fig. 4.19. In
such a case, the imaging setup is made up of V' = 30 sources
and M = 30 measurement points for each view v [15]. Dy is
partitioned into Nyyrga = 19 x 19 sub-domains (while N, =
33 x 33) and At is set to 0.06.
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-0.50 -0.25 0.25 0.50 -1.0 -0.5 0.5 1.0
I ' I '

Figure 4.17: Numerical Data. Circular cylinder (e¢ = 1.8,
Lp = 2\, Noisy Case). Reconstructions with IMSA-LS (a)
and Bare-LS (b) when SNR = 5dB.

Before discussing the reconstruction capabilities, let us show
a result concerned with the behavior of the proposed approach
when varying the user-defined thresholds (ve, V-, Vae, Ve, V7)
of the stopping criteria. Figure 4.19 displays the reconstruc-
tions achieved by using the sets of parameters given in Tab. 4.3
[y - Fig. 4.19(a); 'y - Fig. 4.19(b); I's - Fig. 4.19(¢); I'y - Fig.
4.19(d)| while the behaviors of the cost function are depicted
in Fig. 4.20. As it can be noticed, the total number of iter-
ations ky;, increases as the values of the thresholds vg and ~,
decrease. However, in spite of a larger k;., using lower thresh-
old values does not provide better results, as shown by the
comparison between settings I's and I'y [Figs. 4.19(b)-(d), and
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ox.y) V(x,y)

Siblo—

ox.y)

Figure 4.18: Numerical Data. Circular cylinder (ec = 1.8,
Lp =2\, SNR = 5dB). Behavior of the level set ¢;, and the
velocity Vi,. (a) ¢r, at k=2, (b) Vi, at k =2, and (c¢) ¢, at
k= 3.
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y/A y/A

1.50 N 1.50

0.75 * —+ 075
1.50 0.75 0.75 150 -1.50 0.75 0.75 1.50

X/A X/\

0.75 0.75

1.50 -1.50
N ———
1 7 (z,y) 0 1 7 (z,y) 0

(a) (b)

y/A y/A

o5 1m0 uo  am o s
x/A ' x/\
ors ors
s . Lo
1 T(x,y) 0 1 T(x,y) 0

Figure 4.19: Numerical Data. Rectangular cylinder (ec = 1.8,
Lp = 3\, Noiseless Case). Reconstructions with IMSA-LS for
the different settings of Tab. 4.3 [(a) 'y, (b) T's, (¢) I's, (d)
Ly
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‘ Set of Parameters H Yo ‘ Yr "ygc,'ygc ‘ Vi ‘

Iy 0.5 | 0.05 0.01 0.05
I'> 0.2 0.02 0.01 0.05
I's 0.2 0.02 0.1 0.5
Ty 0.02 | 0.002 0.01 0.05

Table 4.3: Numerical Data. Rectangular cylinder (e = 1.8,
Lp = 3\, Noiseless Case). Different settings for the parame-
ters of the stopping criteria.

Fig. 4.20]. The sets of parameters characterized by g = 0.2
and v, = 0.02 provide a good trade-off between the arising
computational burden and the quality of the reconstructions.
As far as the stopping criterion of the multi-resolution proce-
dure is concerned, figure 9 also shows two different behaviors
of the cost function when using I's and I's (letting 7o = 0.2
and v, = 0.02). In particular, the proposed approach stops
at sopr = 3, instead of s, = 4, when increasing by a degree
of magnitude the values of vz, 15, and ~;. Although with a
heavier computational burden, the choice vz = 75 = 0.01 and
v; = 0.05 appears to be more effective [see Fig. 4.19(b) vs.
Fig. 4.19(¢)].

Figures 4.21-4.24 and Table 4.4 show the results from the
comparative study carried out in correspondence with different
values of signal-to-noise ratio [SNR = 20dB - Fig. 4.21(a) vs.
Fig. 4.21(b); SNR = 10dB - Fig. 4.22(a) vs. Fig. 4.22(b);
SNR = 5dB - Fig. 4.23(a) vs. Fig. 4.23(b)]. They fur-
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Figure 4.20: Numerical Data. Rectangular cylinder (ec = 1.8,
Lp = 3\, Noiseless Case). Behavior of the cost function of
IMSA-LS for the different settings of Tab. 4.3.
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| 1Msa—1s | Bare-Ls |

| | sve-was |
kiot 1089 41
N 361 1089
fpos 1.02 x 101! | 1.02 x 10%!
H SNR=10dB
kiot 393 53
N 361 1089
fpos 3.70 x 100 | 1.37 x 1011
SNR=5dB
ktot 410 28
N 361 1089
fpos 3.86 x 1010 | 7.23 x 1010

Table 4.4: Numerical Data. Rectangular cylinder (ec =

1.8,

Lp = 3\, Noisy Case). Computational indexes for different

values of SNR.
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ther confirm the reliability and efficiency of the multi-resolution
strategy in terms of qualitative reconstruction errors (Fig. 4.24),
especially when the noise level grows. In particular, the Bare
implementation does not yield either the position or the shape
of the rectangular scatterer when SNR = 5dB, whereas the
IMSA-LS properly retrieves both the barycenter and the con-
tour of the target. As for the computational cost, it should be
noticed that although the IMSA-LS requires a greater number
of iterations for reaching the convergence (Figs. 4.21-4.23(c¢),
and Tab. 4.4), the total amount of complex floating-point op-
erations, fpos = O (2 X 1) X ko, usually results smaller (Tab.
4.4).
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Oopt

X/ A

© o IMSA ——
BARE approach -

I
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. .
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Tteration, k

(¢)

I 1
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I I
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X/A

Figure 4.21: Numerical Data. Rectangular cylinder (ec = 1.8,
Lp = 3\, Noisy Case). Reconstructions with IMSA-LS (a)
and Bare-LS (b) for SNR = 20dB. (c) Behavior of the cost

function versus the iteration index.
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Figure 4.22: Numerical Data. Rectangular cylinder (ec = 1.8,
Lp = 3\, Noisy Case). Reconstructions with IMSA-LS (a)

and Bare-LS (b) for SNR = 10dB. (c¢) Behavior of the cost
function versus the iteration index.

76



CHAPTER 4. THE MULTI-RESOLUTION
LEVEL SET APPROACH
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Figure 4.23: Numerical Data. Rectangular cylinder (ec = 1.8,
Lp = 3\, Noisy Case). Reconstructions with IMSA-LS (a)
and Bare-LS (b) for SNR = 5dB. (c) Behavior of the cost
function versus the iteration index.
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Figure 4.24: Numerical Data. Rectangular cylinder (ec = 1.8,
Lp = 3\, Noisy Case). Values of the error figures versus SN R.
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4.2.5 Hollow Cylinder

The third test case is concerned with the inversion of the data
scattered by a higher-permittivity (ec = 2.5) cylindrical ring
centered at x¢ = y° = %)\, letting Lp = 3A. The outer radius
of the ring is peyy = %)\, and the inner one is p;,; = % By
assuming the same arrangement of emitters and receivers as
in Section 4.2.4, the investigation domain is discretized with
Nriysa = 19%x19 and Npgre = 35%x35 square cells for the IMSA-
LS and the Bare-LS, respectively. Moreover, At; is initialized
to 0.003.

Figure 4.25: Numerical Data. Hollow cylinder (e = 2.5, Lp =
3\, Noisy Case). Reconstructions with IMSA-LS (left column)
and Bare-LS (right column) for SNR =20dB .
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y/A

X/\

Figure 4.26: Numerical Data. Hollow cylinder (e = 2.5, Lp =
3\, Noisy Case). Reconstructions with IMSA-LS (left column)
and Bare-LS (right column) for SNR = 10dB .

As it can be observed from Figs. 4.25-4.26, where the pro-
files when SNR = 20dB |Figs. 4.25(a)(b)] and SNR = 10dB
[Figs. 4.26(a)(b)] reconstructed by means of the IMSA-LS
[Figs. 4.25-4.26(a)] and the Bare-LS [Figs. 4.25-4.26(b)] are
shown, the integrated strategy overcomes the standard one
both in locating the object and in estimating the shape. In par-
ticular, when SNR = 20dB, the distribution in Fig. 4.25(a)
is a faithful estimate of the scatterer under test (0];,,54 ;5 =
1.25 and AJ;;64_15 = 3.13). On the contrary, the recon-
struction with the Bare-LS is very poor (6]g,. ;5 = 65.2
and Alg,. ;¢ = 34.39). Certainly, a smaller SNR value
impairs the inversion as shown in Fig. 4.26(a) [compared
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to Fig. 4.25(a)]. However, in this case, the IMSA-LS is
still able to properly locate the object (d];,,54 75 = 1.7 vs.
0] pure_15 = 65.9) giving rough but useful indications about
its shape (A, 9415 =76 vs. Al ;5= 34.55).

4.3 Numerical Validation by means of
Laboratory-Controlled Data

In order to further assess the effectiveness of the IMSA-LS
also in dealing with experimental data, the multiple-frequency
angular-diversity bi-static benchmark provided by Institut Fres-
nel in Marseille (France) has been considered. With refer-
ence to the experimental setup described in [100], the dataset
“dielTM _dec8f.exp has been processed. The field samples
[M(v) = 49, V = 36] are related to an off-centered homo-
geneous circular cylinder p = 15mm in diameter, character-
ized by a nominal value of the object function equal to 7(r) =
2.0 £+ 0.3, and located at x. = 0.0, y. = —30mm within an
investigation domain assumed in the following of square geom-
etry and extension 30 x 30 cm?.

By setting e = 3.0, the reconstructions achieved are shown
in Figs. 4.27-4.28 (left column) compared to those from the
standard LS (right column) at F' = 4 different operation fre-
quencies. Whatever the frequency, the unknown scatterer is
accurately localized and both algorithms yield, at convergence,
structures that occupy a large subset of the true object. Such
a similarity of performances, usually verified in synthetic ex-
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| | f—1GH= | f—2GH= |
| | 1vsa—-Ls | Bare - LS || 1MsA - LS | Bare - LS |
Etot 506 69 532 200
fpos 4.88 x 109 | 1.22 x 1011 5.14 x 109 | 3.55 x 1011
| | f—3GH= | f—AGH= |
| | 1vsa—Ls | Bare - LS || 1MsA - LS | Bare - LS |
Etot 678 198 621 200
fpos 6.55 x 109 | 3.51 x 10! 5.99 x 109 | 3.55 x 10!

Table 4.5: Experimental Data (Dataset “Marseille” [100]). Cir-
cular cylinder (“dielTM _dec8f.exp”). Computational indexes.

periments when the value of SN R is greater than 20 dB, seems
to confirm the hypothesis of a low-noise environment as it was
already evidenced in [101].
Finally, also in dealing with experimental datasets, the IMSA-
LS proves its efficiency since the overall amount of complex
floating point operations still remains two orders in magnitude
lower than the one of the Bare-LS (Tab. 5 - Figs. 4.30-4.29).
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Figure 4.27: Experimental Data (Dataset “Marseille” [100]).
Circular cylinder (“dielTM _dec8f.exp”). Reconstructions with
IMSA-LS (left column) and Bare-LS (right column) at differ-
ent frequencies f |[f = 1GHz (a)(b); f =2GHz (¢)(d)].
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Figure 4.28: Experimental Data (Dataset “Marseille” [100]).
Circular cylinder (“dielTM _dec8f.exp”). Reconstructions with
IMSA-LS (left column) and Bare-LS (right column) at differ-
ent frequencies f |[f =3GHz (a)(b); f =4GHz (¢)(d)].
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Figure 4.29: Experimental Data (Dataset “Marseille” [100]).
Circular cylinder (“dielTM _dec8f.exp”). Behavior of the cost
function versus the number of iterations when (a) f = 3GHz,
and (b) f=4GHz.
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Figure 4.30: Experimental Data (Dataset “Marseille” [100]).
Circular cylinder (“dielTM _dec8f.exp”). Behavior of the cost
function versus the number of iterations when (a) f = 1GHz,
and (b) f=2GHz.
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Chapter 5

The Multi-Region
Approach

This chapter deals with the iterative multi-region multi-scaling
approach with level-set-based minimization, customized for ge-
ometries characterized by multiple objects. After presenting
the mathematical formulation by focusing onto the main dif-
ferences with respect to the single-region version, the effective-
ness of the approach is evaluated by means of the discussion
of a selected set of results, when dealing both with numerical
data and with laboratory-controlled data.
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5.1. MATHEMATICAL FORMULATION

5.1 Mathematical Formulation

This section is aimed at presenting the multi-scaling multi-
region approach (IMSMRA) integrated with level-set-based op-
timization (LS). Let us consider a set of P homogeneous ob-
stacles with relative permittivity €c and conductivity oo that
occupy the regions T, p =1, ..., P, belonging to an investiga-
tion domain D;. As in the previous chapter, such a scenario is
probed by a set of V' transverse-magnetic (T'M) plane waves,
with electric field ("(r) = ("(r)z (v = 1,...,V), r = (x,y).
The scattered field, £°(r) = £°(r)Z, is collected at M (v), v =
1,...,V, measurement points distributed in a region, called ob-
servation domain Dy, external to the investigation domain.
In order to retrieve the unknown position and shape of the
target Tp,, p = 1,..., P, a multi-step procedure aimed at suit-
ably increasing the spatial resolution only in a set of regions of
interest (Rols) containing the scatterers is considered [80][81].
With respect to the IMSA-LS discussed in Sect. 4.1, the strat-
egy presented herein is able to deal with a set of ¢ = 1, ..., Qax
regions to better allocate the unknowns when the scenario is
characterized by several objects distanced from one another.
With reference to Fig. 5.1, at the first step (s = 1, s being
the step index) an initial guess shape T,—; belonging to D;
is chosen. Since no a-priori information on the scenario under
test is assumed, the region of interest quS), g = 1,...,Qs, at
s =1 (ie, R = D;, Q.- = 1) is partitioned into Nyp
equal square sub-domains, Ny;r being the number of degrees
of freedom of the problem at hand [14]. The initialization of

(qu)

the level set function ¢s*’, with s = 1 and ¢, = 1, is carried

88



CHAPTER 5. THE MULTI-REGION APPROACH

out by means of the oriented distance function (4.1) as in Sect.
4.1. Then, at each step s of the process (s = 1,..., Spaz), the
following optimization procedure is repeated:

e Problem Unknown Representation - The problem
unknown is represented at the kg-th iteration, ks = 1, ..., k%",
as follows

s Qi N@i)lyur

W= D ™

=1 g;=1 n(qi)zl

Tk, (1) % B (Zn(qz')) re DD

(5.1)
where N(¢;)],,r is the number of sub-domains used to
discretize qui) and B ([n(qi)) is a rectangular basis func-
tion whose support is the n-th sub-domain of the ¢;-th
region of interest at the i-th resolution level. Moreover,
the coefficient T,ifi) is given by

_ TC if Wy, (Z”(Qi)) <0
Thilg, = { 0 otherwise (5-2)

letting

\Ilki (fn

P (fn(qi)) ifi=s
(qi)) -

¢kfpt (ZTL(%’)) if i < sand To(as) c REQ'L)
(5.3)

e Field Distribution Updating - After updating the prob-
lem unknown T,gfi), the value of the electric field £ (r) in
the n(g;)-th sub-domains of the g;-th region of interest is
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Initialization
Tslq; = Tl Qs:l =1

s-th resolution level

{Field Distribution Updating

Compute EI:. (Zn(qz)) g € D1

: -

Cost Function Evaluation
Determine E,g_, (r,,) and © {¢p.} 1, € Do

Level Set Update
Compute g |q,

kg —ke+1

Figure 5.1: Block diagram description of the IMSMRA-LS
zooming procedure.
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CHAPTER 5. THE MULTI-REGION APPROACH

computed by means of a customized numerical technique
based on the point-matching version of the Method of
Moments (MoM) [39] according to the following relation-
ship
E}, (aga) = .
qi v
Zqul Zn(qi):i\/lR C (Zpi)
X [1 Tki (fp(qi)> GQD( q)/ =p(qi) )}

Ln(as) Lp(q )GDI

n(q:) =1, ..., N(@i) ]y
(5.4)

Cost Fungtion Fvaluation - The reconstructed scat-
tered field & (r,,(,)) at the m(v)-th measurement point,

m(v) =1, ..., M(v), is updated by the following relation-
ship

gl’gs (fm(v ) Zz 1 Zqul Z ‘h JMR Tk; (fn(q )) X
XE (—n (ai )) Gap ( m(v)/ =n(g:) )
(5.5)
where the total electric field distribution E ( Tn(qs )) is
given by (5.4). Then, the cost function is evaluated at
the iteration ks by considering the relationship (4.7).

Minimazation Stopping - The iterative process stops
(i.e., k" = k, and 7%'= 7, ) when a set of conditions
concerned with the stability of the reconstruction be-
comes true or when the maximum number of iterations is
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5.1. MATHEMATICAL FORMULATION

reached (ks = Ki,4,) or when the value of the cost func-
tion is smaller than a fixed threshold ~;,. As far as the
stability of the reconstructions is concerned, the following
double criterion is considered:

— The first condition is aimed at assessing if the shape
of the trial solution does not change during the iter-
ative process. In order to overcome the limitations
characterizing the standard criterion (4.8) when the
iterative solution is characterized by a “blinking” be-
havior!, a new strategy based on the Hausdorff dis-
tance £ [102|-[105] is adopted. More in detail, such
a criterion is satisfied when in the region of interest

(%) o =1,....Q,, for a fixed number of iterations,
K, the value of the Hausdorff distance computed
between the contour of the (ks — j)-th trial solution,
j=1,..., K, and the contour of the current trial so-
lution is smaller than a user defined threshold ~,.
Accordingly, the following relationship is evaluated

c{o(7l,) 0 (7, } .
(5.6)

Ls
where the operator 0 () (Sect. B.1) performs the
edge detection, providing the By,| 4, contour sub-

max;=1,. K,

qs

! The iterative solution is characterized by a “blinking” behavior when
a small amount of pixels of the reconstruction turns up intermittently (i.e.,
the level set emerges intermittently), without significantly modifying the
estimated shapes.
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CHAPTER 5. THE MULTI-REGION APPROACH

domains of the reconstructed shapes, and ls|qs is
the average value of the cell-sides in the region ¢, at
the step s, computed as follows

_ Axs|qs + Ays|‘1s
qs 2

Ls

(5.7)

Azg and Ay, being the cell-side along Z and ), re-
spectively. For the sake of completeness, the Haus-
dorff distance L is defined as

£{o(7l,.) 0 (Fussl,) b =

= max | maxy, ming, i g0 ;

max, .o My, ks ,qs.ibp }

b(qs) = 1, ceey Bks qs
plgs) =1, ..., Bks_j|qs

(5.8)
where

dkqusvjvbvp - [(xi b(qq) ks ]} qq ) +

. 213
+ yks b(gs) yk5 ]}
(5 9)

B B

<xks b(qs)’ yks b(qs)> and <xk€ J}p(q ’ yks J’p(q ) €-

ing the coordinates of the By, ]qs contour sub-domains
detected by O (-).
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5.1. MATHEMATICAL FORMULATION

— The second criterion, about the stability of the re-
construction, is satisfied when the cost function be-

comes stationary within a window of Kg iterations
as in (4.9).

e Iteration Update - The iteration index is updated (ks —
ks +1).

e Level Set Update - As for IMSA-LS, the level set in the
region ¢, at the step s is updated by solving the following
Hamilton-Jacobi equation

Or (Tn@) = Ph=1 (Tangay) —
N Ats‘qs Vi1 (zn(qs)) H {¢k5—1 (zn(qs))}
(5.10)
where H {-} is the Hamiltonian operator given as

H? {0r, (Ta,) } =

(

maxQ{D,‘z*’ ;0}+min2{D,‘§+} ;O}—i—

s 1gs s Qs

+max> {Dz_’ ;O} + min? {D}f ;O}
s 1Qgs s 1qs

if Vi, (o) 20
min? {Dig*} ;0} + max? {D,f*} ;0} v
s 1gs s 1qgs
+min? {D};’*} ;O} + max? {Der ;O}
s 1gs s 1(qs
otherwise
(5.11)

94



CHAPTER 5. THE MULTI-REGION APPROACH

with

o Dl — 46k (Tr(gs)£1:Yn(gs) ) FOks (Tr(ae) Un(as) )
ks qs - Ams‘qs ’

o DVE| — +org (wn(QS)’yn(QS)il):F(z)ks (wn(QS)’y”(QS))
ks qs Ays'qs ’

Furthermore, Vy, (zn(qs)) is the value of the velocity func-
tion in the n(qgs)-th sub-domains of the g;-th region of in-
terest at the step s and Aty 4 18 the time-step chosen by
means of the Courant-Friedrich-Leroy constraint [29][30]
as follows

min{Aws\qs , Ay, qs}
- . (5.12)

mMax, () Vi, (Tnige))

Aty

E]

In order to get the velocity function in the ¢,-th region of
interest, the adjoint problem of (5.4) is solved and start-
ing from the adjoint field F} ‘qgthe following relationship
is evaluated ‘

Sover 7B (Tntae) ) FR (Tntas) )
V r — _% s ds s qs
ks (—n(qs)) { 21‘)/=1 Z%((:j)):1 Sils (tm(v))|2 ’

n(gi) = 1,y N(@) s -
(5.13)

Level Set Re-Initialization - Unfortunately, the re-
sult of the update procedure on the level set is not a
distance function, and, in general, the level set repre-
sentation is not unique [32|[106]. To restore the ori-
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5.1. MATHEMATICAL FORMULATION

ented distance function thus reducing numerical prob-
lems concerned with the computations of the finite dif-
ferences Dy, a functional approach is considered herein.
In particular, if H {gbks (zn(qs)) }, which is an approxima-
tion of }V@S (fn(qs)) ’, is greater than a certain threshold
Yo, n(qs) = 1,..., N(¢;), then the level-set function is re-
initialized as

—ming=r,...5,, {dn)}
_ 7 (Lng,)) = 7c
. (o) = miny_y._ g, {dngs
if 7 (En(‘h)) - 0’
(5.14)
where dp(g,) 1s the distance between r, ., and r,, 1,
being b-th border-cell (b =1,...,B,,) of the trial shape

reconstructed in the region ¢,, ¢ = 1, ..., Qs.

At the end of the s-th minimization process, the contrast func-
tion is updated [77| = 7|, r € Dr and ¢ = 1,..., Q]

by means of (5.1) and the new regions of interest qus), qs =
1,...,Qs, are defined. To do so, the following set of operations
is repeated for all the regions determined at the step s (Fig.
5.2):

e Find the Number of Seeds - Since the reconstruc-
tions provided by the level-set-based strategies are bi-
nary, the first step of the “morphological” processing? is

2 The term “morphological” refers to the study of the shapes of the re-
constructed scatterers in order to get the most suitable regions of interest.
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CHAPTER 5. THE MULTI-REGION APPROACH

aimed at counting the number of targets which have been
reconstructed. Such a procedure, called erosion [80], con-

sists in creating a new “image” ?E’q of the shapes recon-
S

S

structed in the ¢s-th region, ¢; = 1, ..., Q),, as follows

7E (Tn(g.), Yn(a) =
TC if 7 (Tn(g)s Yn(q,)) = To and

1 1~
Zp:—l Zj:—l Tt (xn(qS)—pv yn(qs)—j) <9-7¢

0 otherwise .

(5.15)

The ¢4-th arising image contains at least one pixel for

each object [Fig. 5.2(b)]. Unfortunately, these pixels,

called seeds, bring no information about the actual num-

ber of targets (e.g., a hollow disc has two seeds, the first

on the inner contour and the second on the outer con-
tour).

e Count the Number of Objects - Since the seeds are
necessarily located on the contours of the reconstructed
shapes, the number of objects is counted by exploiting
both the information provided by the previous step and
the edge detection operator 0 (). That is, the contour

0 (?;pﬂqs) of the shapes reconstructed in the gs-th re-

gion of interest at the step s is found [Fig. 5.2(¢)] and
the boundaries of the reconstructed scatterers® are de-
tected by “walking” along the arising edges starting from

)

3 The term “boundary” refers to a contour of one object (e.g., the
hollow cylinder has two boundaries).
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B

In

T T

[ W)=
: DT[:LrL)f()
} [T 111 }
o
B \
=
’1':Seedst:
T 17
[T
(a) (b)
[T T ] B
[ [T ] ||| @ Boundary of object 1
f{DContourofthe shapc% || [ Boundary of object 2
N
4 | ™
U [Rol 1 HH
e |
| Rol 2 |
[T 1T

(¢) (d)

Figure 5.2: Graphical representation of the “morphological”
processing: (a) profile reconstructed at step s (Qs = 1), (b)
detection of the seeds by means of the erosion procedure,
(c¢) “walking” around the edges, and (d) detection of object’s
boundaries and of the regions of interest for the resolution level

s+ 1.
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the seeds (more details about the algorithm are given
in Sect. B.2). As a consequence, the actual number of
objects is determined by counting the number of bound-

aries, neglecting those that are included within other con-
tours [Fig. 5.2(d)].

e Define the Parameters of the Region of Interest -
(Qs+1 regions of interest are defined at the step s+ 1 by
evaluating the maximum size of the boundaries detected
in the previous step. In order to prevent the Rols to be
included in the objects or overlapping between adjacent
regions, the coordinates of the center z7, o Yo

Qs+1
, Weiq

and the sides Zsﬂ are computed by in-

gs+1 ds+1
creasing the actual size of the regions by an allowance
value Agyq, s = 1,..., S — 1. Moreover, Ly ,
qs+1
Wit have to be chosen such that
qs+1
min (Ls+1 , Wein ) 3
qs+1 qs+1 > Z (516)
max (Ls+1 s W )
qs+1 qs+1

in order to allow an accurate solution of the forward prob-
lem according to the point-matching version of the MoM
[39], since the sides of the Rols are discretized using the
same number of sub-domains.

After the definition of the parameter of the Rols, the step index
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5.1. MATHEMATICAL FORMULATION

is increased (s < s+ 1) and a convergence check of the multi-
scaling procedure is performed. The reconstruction algorithm
is stopped if both location and sides of the region of interest
become stationary (s, = s) [19], i.e.,

NC
, W
gs

QS* _QS ~c ~c Te
VR ) <on 0= 5,0, B

qs

(5.17)
Yo being a user defined threshold, or when a maximum number
of steps (Sopt = Simax) 1s reached.

If the convergence check does not hold true, the total amount
Nyr of available basis functions is split in the )s regions to
keep the ratio between data and unknown constant, according
to the following relationship

Ls . x W .
N(gs)Jan = £ Nunga #1550
pet bl X W, (5.18)
qs = 17 ooy Qs

where the operator £ returns the smaller integer part of its
argument.

Finally, at the end of the multi-step process (s = Sopt),
the problem solution is obtained as 7 (ﬁn(qi)) = TPt (zn(qi)),
n(@) =1, N(@)) yr ¢ =1,...,Qi i = 1,..., Sops.
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5.2 Preliminary Validation

5.2.1 The IMSMRA-LS when dealing
with Simple Geometries

In order to preliminary test the multi-region approach, this test
case deals with the geometry considered in the second experi-
ment of section 4.2.3, namely with the cylinder having radius
A/4 and centered at z¢ = —y¢ = TA/15 in an investigation
square of side Lp = 2\. The purpose of this section is twofold:
on one hand, to assess the reconstruction capabilities of the
multi-region approach when the geometry is characterized by
a single object. On the other hand, to discuss the behavior
of the multi-resolution level set during the iterative process,
pointing out benefits and drawbacks of the update strategy
adopted in the multi-region approach.

As for the initialization of the IMSMRA-LS technique, the
initial guess is a circular scatterer of radius A/4 centered in the
investigation domain and sampled at the resolution level s = 1.
The Rol is discretized in Nyp = 13 X 13 sub-domains at each
step of the iterative multi-region multi-resolution procedure,
while the maximum number of Rol is set to (e = 10. The
stopping criterion has been configured as follows: 7, = V2
(maximum value for the numerical Hamiltonian), Sy, = 5
(maximum number of steps), 7% =¥ = 0.01 and v* = 0.05
(multi-step process thresholds), K., = 500 (maximum num-
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5.2. PRELIMINARY VALIDATION

Figure 5.3: Numerical Data. Circular cylinder (e = 1.8, Lp =
2\, Noisy Case). Reconstructions with IMSMRA-LS at (a)
s=1,(b) s=2,and (¢) s = Sppt = 3.
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ber of optimization iterations), ¢ = 0.2 and v, = 1.5 (opti-
mization thresholds), Ko = K, = 0.10 K4, (stability coun-
ters), and 7y, = 107 (threshold on the cost function). In ad-
dition, at the s-th step and in the g-th region the value At |qs
of the time-step, with s = 1,...,5,¢ and ¢; = 1,..., @z, is
chosen according to the CFL-based relationship, while the
values of the allowance A for estimating the size of the re-
gions of interest are set to A,—o = 40%, A,—3 = 30%, and
Ay = As—s = 20%.

Figure 5.3 shows the reconstruction achieved when consid-
ering synthetic data blurred by noise characterized by SNR =
5dB. Because of the low SNR and of the coarse resolution
level, the result obtained at the end of step s = 1 [Fig. 5.3(a)]
appears to be inaccurate in terms of shape estimation, while
the barycentre of the scatterer is quite accurately estimated.
However, in spite of the inaccurate reconstruction at the first
step, the behavior of the level set ¢ks|qs, qs = 1, appears to
be quite regular [Fig. 5.4(a)], especially if compared with the
behavior of the level set at the first iterations of the second ex-
periment of Sect. 4.2.3. Such a regular shape, even at the last
iteration of the step, is mainly due to the re-initialization pro-
cedure described in Sect. 5.1 and to the C'F'L-based procedure
for choosing Aty |, .

Thanks to the increase of the spatial resolution achieved in
the Rol at s = 2, the shape of the actual scatterer is better
estimated [Fig. 5.3(b)]. Then, at the final step, s = s,y =
3, the Rol is further focused on the area that contains the
true object and the accuracy of the reconstruction is further
improved [Fig. 5.3(¢)]. Furthermore, Figs. 5.4(b) and (c¢) show
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Figure 5.4: Numerical Data. Circular cylinder (e = 1.8, Lp =
2\, Noisy Case). Behavior of the level set ¢y, at the end of the
step (a) s =1, (b) s =2, and (¢) s = Sppt = 3.
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10 T
IMSA ———

eopt

0 50 100 150 200
Iteration, k

Figure 5.5: Numerical Data. Circular cylinder (ec = 1.8, Lp =
2\, SNR = 5dB). Behavior of the cost function when using
IMSMRA-LS.

that the solving shape of ¢§f’;s, when s = 2 and s = s, = 3
respectively, is quite symmetrical with respect to the center of
the scatterer. As for the quality of the final reconstruction [Fig.
5.3(c)|, the localization error is slightly higher than the one
achieved in the reconstruction of Fig. 4.17(a) (] y,50/pa_15 =
0.73 vs. 0];1794_15 = 0.59), while the shape of the object is
better retrieved (A, ;o0 pa_rs = 045 vs. Al 64 g = 0.48

).

Finally, Figure 5.5 shows the behavior of the multi-resolution
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Figure 5.6: Numerical Data. Rectangular cylinder (e¢ = 1.8,
Lp = 3\, Noiseless Case). Behavior of the cost function of
IMSMRA-LS when varying ..

cost function ©,, when ¢ = 1. It is worth noting that the
spikes between two adjacent steps characterizing IMSA-LS’s
error curves have disappeared for IMSMRA-LS, since the field

%}7

with k£, = 1. Furthermore, as the spatial resolution improves,
the cost function is characterized by a “jump” whose amplitude
is higher between s = 1 and s = 2 than between s = 2 and
5= Sopt = 3.

distribution is updated before the evaluation of © {Atks

106



CHAPTER 5. THE MULTI-REGION APPROACH

5.2.2 Calibration of the Stopping Criterion

With reference to the mathematical formulation presented in
Sect. 5.1, this section is aimed at discussing the calibration of
the stopping criterion of IMSMRA-LS. More in detail, the fol-
lowing considerations will focus on the choice of the threshold
Y1, since the values of the other parameters have already been
discussed in Sect. 4.2.4.

In order to choose the proper value of 74, the scattering
configuration is the same as in Sect. 4.2.4, namely a rectan-
gular scatterer (L = 0.27\ and W = 0.13)) characterized by
a dielectric permittivity e = 1.8 and centered at z¢ = —%)\,
y© = X within an investigation domain of side Lp = 3. Figure
5.6 shows the behavior of the cost function, while the recon-
structions achieved by using different numerical values of 7,
are depicted in Fig. 5.7 [y, = 5.0 - Fig. 5.7(a), 7. = 1.5 - Fig.
5.7(b), vz = 0.7 - Fig. 5.7(c)|. As previously discussed (Sect.
4.2.4), the number of total iterations ky,; decreases as the value
of the threshold decreases. As a matter of fact, v, represents
the maximum Hausdorff distance (expressed in terms of I, )
between the trial solution at iterations k,; and the one at k,+ 1.
Therefore, the smaller the value of v, is, the fewer the differ-
ences between two trial solutions should be in order to meet
the requirements of the stopping criterion. Such more strict
condition usually occurs when the iteration index increases.
However, a good trade-off between the arising computational
burden and the accuracy of the reconstruction can be achieved
when setting 7, = 1.5 (i.e., the Hausdorff distance between
two trial solutions can be 1.5 x [, at most).
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Figure 5.7: Numerical Data. Rectangular cylinder (e¢ = 1.8,
Lp = 3\, Noiseless Case). Reconstructions obtained at the
end of the iterative procedure with IMSMRA-LS when varying

Ve [(a) 72 = 5.0, (b) vz = 1.5, (¢) 72 = 0.7].
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5.3 Numerical Validation: Synthetic
Data

In order to assess the effectiveness of the IMSMRA-LS tech-
nique, some representative results concerned with geometries
characterized by more than one object are presented in this
section. In order to assess the accuracy of the reconstructions,
the error figures described in Sect. 4.2 will be considered.

5.3.1 Inversion of Data scattered by Two Di-
electric Cylinders

The first synthetic test case is characterized by two dielectric
cylinders placed inside a square investigation domain of side
Lp = 3). In the first experiment, P = 2 circular scatterers
characterized by a radius p = 7A/15 and a dielectric permit-
tivity e¢ = 1.8 are centered at (z°|; = 5A/6, y°|, = 5A/6)
and (x|, = —5\/6, y°|, = —HA/6). According to the guide-
lines pointed out in [15|, the imaging setup is made up of
V' = 30 sources and M = 30 measurement points for each view
v. Consequently, in order to fully exploit the multi-resolution
approach, Dy is partitioned into Ny g = 19 x 19 sub-domains.

Figure 5.8 shows the reconstructions achieved at the end of
the steps of the multi-resolution process [Figs. 5.8(a)-(¢)] and
the optimal inversion (i.e., the true scatterer sampled at the
spatial resolution used to generate data) [Fig. 5.8(d)]. The
regions of interest defined at the resolution levels s = 2 and
S = Sopt = 3 are traced by the green dashed line in Fig. 5.8(b)
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and in Fig. 5.8(¢), respectively. At step s = 2, only one Rol is
detected (Qs=2 = 1), although two scatterers are found at the
previous step. Such a behavior is due to the criterion used for
the definition of the region of interest, whose size is computed
with a variable allowance A in order to increase gradually the
spatial resolution during the multi-step procedure. At step
s = 3, when the allowance on the size of the Rols decreases,
the number of regions of interest increases as expected up to
the number of scatterers (Qs—3 = 2). As for the quality of
the reconstruction, the increment of the spatial resolution is
obvious especially between the steps s = 2 and s = 5,1 =
3. Both scatterers are better localized at s,,, as confirmed
by the localization errors: d[, ., = 1.30 vs. 4], .5 = 1.26,
0ly, 4o = 1.72 vs. 0, .5 = 0.26. Moreover, the area error
decreases when the spatial resolution increases: A|_, = 1.65
vs. Al,_; = 1.09.

The improvement of the quality of the reconstructions dur-
ing the multi-scaling procedure is also clearly visible in the
behavior of the cost function, which is characterized by two
“jumps” at the beginning of both steps s = 2 and s = s, = 3.
For the sake of completeness, both regions of interest are dis-
cretized in N(g¢s) ],z = 13 x 13 sub-domains at s = s, = 3,
according to the multi-region procedure explained in Sect. 5.1.
As a consequence, since the complexity of the algorithm is of
the order of O (2 x n?), n, = ZqQ:':l N(¢s)] yrg» the computa-
tional cost at each iteration of the step s, is lower than the
cost at sg, since 1;—9 = 361 and 7,_3 = 338.
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X/ A

Figure 5.8: Numerical Data. Two discs (ec = 1.8, Lp = 3,
Noiseless Case). Reconstructions with IMSMRA-LS at (a)
s=1and (b) s =2, (¢) s = Sopt = 3. Optimal inversion (d).
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Iteration, k

Figure 5.9: Numerical Data. Two discs (ec = 1.8, Lp = 3,
Noiseless Case). Behavior of the cost function when using
IMSMRA-LS.

In order to further analyze the proposed approach, Fig-
ures 5.10-5.12 shows the reconstructions when dealing with
noisy data [SNR = 20dB - Figs. 5.10(a), SNR = 10dB
- 5.11(a), and SNR = 10dB - 5.12(a)]. The multi-region
technique is compared with IMSA-LS |[SNR = 20dB - Figs.
5.10(b), SNR =10dB - 5.11(b), and SNR = 10dB - 5.12(b)]
as well as the Bare-LS approach [SNR = 20dB - Figs. 5.10(c),
SNR =10dB - 5.11(¢), and SNR = 10dB - 5.12(c)|. As pre-
viously discussed in Ch. 4, the multi-scaling approach usually
appears to achieve better reconstructions than the Bare-LS
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strategy when data are affected by a high level of noise. As ex-
pected, the quality of the reconstructions of IMSMRA-LS does
not worsen when the SN R decreases, while the performance of
the IMSA-LS is limited by the distance between the scatterers,
since only a region of interest is exploited. Such a behavior is
further confirmed by the reconstruction errors versus the SN R
shown in Fig. 5.13. While the area error of IMSA-LS is about
three times higher than the one of IMSMRA-LS, the localiza-
tion errors of the multi-scaling techniques appears to be similar
when SNR = 5dB. As for the Bare approach, barycentre and
shape of the scatterers are usually accurately estimated and
the reconstruction at SNR = 20 dB appears to be better than
the one of IMSMRA-LS. As a matter of fact, the multi-scaling
procedure of IMSMRA-LS stops at s = 2 when SNR =20dB
and only one region of interest is detected (Qs—o = 1). As a
result, the spatial resolution is not increased, since the zooming
on the regions of interest is not carried out. Such a situation
is a consequence of the high value of the allowance A at s = 2
(Aszz = 40% vs. As—3 = 30%). As a matter of fact, A has
to be large enough to include correctly the estimated shapes
in the regions of interest, but at the same time it should be as
small as possible to enhance the spatial resolution.

In order to discuss the computational effectiveness of IMS-
MRA-LS, let us consider the behavior of the cost function when
SNR =5dB (Fig. 5.14).
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Figure 5.10: Numerical Data. Two discs (¢ = 1.8, Lp =
3\, SNR = 20dB). Reconstructions with IMSMRA-LS (a),
IMSA-LS (b), and Bare-LS (c).
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y/A
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Figure 5.11: Numerical Data. Two discs (¢ = 1.8, Lp =
3\, SNR = 10dB). Reconstructions with IMSMRA-LS (a),
IMSA-LS (b), and Bare-LS (c).
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Figure 5.12: Numerical Data. Two discs (e¢ = 1.8, Lp = 3,
SNR = 5dB). Reconstructions with IMSMRA-LS (a), IMSA-
LS (b), and Bare-LS (c).
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30 IMSMRA ———
2.5 f

SNR [dB]
(a)
5.0
IMSMRA ———
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BARE
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0.0
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Figure 5.13: Numerical Data. Two discs (e = 1.8, Lp
SNR = 5dB). Values of the error figures versus SN R.
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Iteration, k

Figure 5.14: Numerical Data. Two discs (e¢ = 1.8, Lp = 3,
SNR = 5dB). Behavior of the cost function.

In agreement with the quality of the reconstructions and
the error figures at the lowest SN R, the final value of the
cost function of the multi-region approach is characterized by
a lower value than those of the Bare-LS and IMSA-LS. More-
over, IMSMRA-LS requires less iterations to achieve the opti-
mal solution (ko] ;ysnrars = 198 V8. Kiot| jarsa_rs = 212).
On the other hand, IMSMRA-LS is not characterized by a
faster convergence with respect to the Bare approach. How-
ever, the multi-region methodology appears to be, as expected,
more computational effective than the other approaches. That
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| | tmsvrA—Ls | 1MSA- LS | Bare - Ls |

| | SNR=5dB |
kP 95 84 101
No=1 361 361 900
kP, 53 84 -
Ns=2 361 361 -
EoPE, 50 - -
Ns=3 338 - -

‘ fros ‘ 8.89 x 109 ‘ 9.97 x 10° ‘ 7.36 x 1010 ‘

Table 5.1: Numerical Data. Two discs (ec = 1.8, Lp = 3,
SNR =5dB). Computational indexes.

is, the total number of complex floating point operations f,,s =
SO (2 5 )<k, 1, = S0 Ny Ninesas Noare-ss:
of IMSMRA-LS is lower than the ones of the other methods
(Tab. 5.1).

In the second experiment, P = 2 rectangular scatterers
(L|, = A\/2, W|, = 5)\/6, L|, = 5\/6, and W|, = \/2) are
located inside a square investigation domain (Lp = 3\) with
barycentres (z°|, = 2A/3, y°|; = 2)A/3) and (z°|, = —2)\/3,
y°l, = —2X/3). The reconstructions achieved by IMSMRA-LS,
IMSA-LS, and Bare-LS when SNR = 20dB are shown in Fig.
5.15. The result obtained in this experiment further confirms
the effectiveness of the multi-region methodology, since both
positions and shapes of the rectangular scatterers appear to
be accurately estimated [Fig. 5.15(a)|. As a confirmation, the
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y/A y/A
1.50
N L |
Ro o | §
g=1| | | §
150 0.75 3)\4575 1.50
' A A
q=2 X X
| 0
i+ -0.75
-1.50 .
1 7 (z,y) 0
(a)
1%
1.50
1.50 0.75 " Tors 1.50
' X/A
- 770"
-1.50 =

Figure 5.15: Numerical Data. Two rectangular scatterers
(¢ = 1.8, Lp = 3\, SNR = 20dB). Reconstructions with
IMSMRA-LS (a), IMSA-LS (b), and Bare-LS (c).
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‘ H IMSMRA—LS ‘ IMSA—-LS ‘ Bare — LS ‘

SNR =20dB
<d6> 2.98 3.40 2.43
A 0.34 0.61 0.57

Table 5.2: Numerical Data. Two rectangular scatterers (ec =
1.8, Lp = 3\, SNR = 20dB).Values of the error indexes.

s=1 s=2 s=3

0 50 100 150 200 250

Iteration, k

Figure 5.16: Numerical Data. Two rectangular scatterers (ec =
1.8, Lp = 3\, SNR = 20dB). Behavior of the cost function.
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reconstruction errors of IMSMRA-LS are lower than those of
the other methods, except for the average localization error
which is of the same order of magnitude as the one of Bare-LS.

The behavior of the cost functions of IMSMRA-LS, IMSA-
LS, and Bare-LS is depicted in Fig. 5.16. As just indicated,
the final value of the error is lower than the ones of the other
methods. As for the computational burden, the IMSMRA-LS
is characterized by a faster convergence with respect to IMSA-
LS. Furthermore, the arising total number of complex floating

point operations appears to be the lowest ( fpos] ;3/s1/p4- 15 =

6.24 X 109 VS, foos| e g = 452 x 1019).
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5.3.2 Experiment with Three Objects

This experiment is aimed at illustrating the behavior of the
IMSA-LS when dealing with P = 3 scatterers (e¢ = 2.0)
characterized by simple shapes but distanced from one an-
other. The test geometry is characterized by an elliptic cylin-
der (z°), = =2\, ¥, = —3A, and af, = 3\, 3], = 0.43) as
axes), a circular scatterer (z°|, = 0, y°|, = 2\, pl, = TA),
and a square object (2°|; = %)\, Yely = %)\, L|; = 0.83\ and
Wi, = %/\) located in a square investigation domain charac-
terized by Lp = 3A. By adopting the same arrangement of
emitters and receivers as in Section 5.2.2, the investigation do-

?y/)\ ?W’\

X/ A

Figure 5.17: Numerical Data. Three scatterers (e¢ = 1.8,
Lp = 3\, SNR = 20dB). Reconstructions with IMSMRA-
LS (a) and Bare-LS (b).
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y/A ﬁy/x

Figure 5.18: Numerical Data. Three scatterers (e¢ = 1.8,
Lp = 3\, SNR = 10dB). Reconstructions with IMSMRA-
LS (a) and Bare-LS (b).

main is discretized with Ny p = 23x23 and Npgre—r.g = 31 x31
square cells for the IMSMRA-LS and the Bare-LS, respectively.
Moreover, Aty is set to 0.03.

Figures 5.17-5.20 show the results from the comparative
study carried out in correspondence with different values of
signal-to-noise ratio. As shown by the reconstructions (Figs.
5.17-5.19) and as expected, the multi-resolution approach pro-
vides more accurate results and appears to be more reliable
than the Bare-LS especially with low SN R. This conclusion is
further confirmed by the behavior of the reconstruction errors
(Fig. 5.20), for which the IMSMRA-LS achieves a lower local-
ization error as well as a lower area error than those of Bare-LS,
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especially for SNR = 5dB (N(¢s) | 5 = 16x16, ¢s = 1, ..., Qs,
with s = s, = 3 and Qs—3 = 3). On the other hand, both
algorithms provide good estimates of the scatterer under test
when inverting data affected by low noise [SNR = 20dB - Fig.
5.17(a) vs. Fig. 5.17(b); Fig. 5.20(a) and (b)].

5.3.3 Experiments with Complex Shapes

The third test case with synthetic data is concerned with scat-
terers characterized by complex shapes. In the first experi-
ment, two higher permittivity (ec = 2.5) cylindrical rings are
centered at (z¢|, = A\/4, y°|; = 3A\/4) and (z°|, = A, y°|, = A)

? y/A

X/ A

Figure 5.19: Numerical Data. Three scatterers (e¢ = 1.8,
Lp =3\, SNR = 5dB). Reconstructions with IMSMRA-LS
(a) and Bare-LS (b).
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in a square investigation domain of side Lp = 5\. The exter-
nal radius of the rings is pe;y = A/3 and the internal one is
pint = A/6, so that the scatterer are not joined. The imaging
setup is made up of V' = 40 sources and M = 40 measure-
ment points for each view v, while the investigation domain
is discretized in Ny p = 29 x 29 and Npgre—rs = 50 x 50 for
IMSMRA-LS and Bare-LS, respectively.

Figures 5.21 and 5.22 show the reconstruction achieved
when considering SNR = 20dB and SNR = 10dB, respec-
tively. The multi-region approach obtains the final result at
the end of the step s = s,y = 2, with ;- = 1. The Rol is
characterized by a rectangular shape, in order to better repre-
sent the area where the scatterer are located. The reconstruc-
tion is characterized by a correct estimation of position and
shape of the circular scatterer, even though the objects are
not separated |[Fig. 5.21(a)|. On the other hand, the result of
Bare-LS is noticeably less accurate, since the symmetry of the
true shapes is not retrieved [Fig. 5.21(b)]. However, the cost
function of Bare ends up with an error lower than the value
achieved by IMSMRA-LS.

The same conclusions hold true when increasing the level of
noise on the data (SNR = 10dB - Fig. 5.22). In such a case,
the reconstruction obtained by the multi-region [Fig. 5.22(a)]
appears to be as accurate as the result in Fig. 5.21(a). On the
other hand, the Bare approach is not able to reconstruct the
scatterer, even though the artifacts are mainly located on the
discs. This result is further confirmed by the behavior of the
error functions, since the final value of IMSMRA-LS is lower
than that of Bare-LS.
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4.0
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2.0 L
5 10 15 20
SNR [dB]
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6.0
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1.0 L L
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Figure 5.20: Numerical Data. Three scatterers (e¢ = 1.8,
Lp = 3\, Noisy Case). Values of the error figures versus SNR.
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Figure 5.21: Numerical Data. Two hollow cylinders (ec = 2.5,
Lp =5\, SNR =20dB). Reconstructions with (a) IMSMRA-
LS and (b) Bare-LS. Behavior of the cost function (c¢).
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The second experiment deals with three scatterers char-
acterized by the complex shapes depicted by the red dashed
line in Figs. 5.23(a) and 5.23(b). The objects are centered
at (o], = ~5A/4, 7], = 6/5), (2], = A, y¥l, = ), and
(z¢, = A, y°l, = A), letting Lp = 5. The measurement
setup is the same as the one in the first experiment and the
investigation domain is discretized in Nyr = 29 x 29 and
Npare—rs = 50 x 50 for IMSMRA-LS and Bare-LS, respec-
tively.

The reconstructions achieved when SN R = 20 dB are char-
acterized by an accurate estimation of location and shape of the
scatterer, both for IMSMRA-LS and Bare-LS. More in detail,
the multi-region approach retrieves the shape of cross-shaped
scatterer better than Bare, while the circular obstacle is sligthly
overestimated (N(gs =1)|,p = 13 x 13, N(¢s=2)]n =
13 x 13, N(gs =3)]zr = 21 x 21, with s = s,,, = 3 and
Qs=3 = 3). As for the rectangular scatterer, the reconstruc-
tions achieved by IMSMRA-LS and Bare-LS are similar. For
what concerns the behavior of the cost function [Fig. 5.23(c¢)],
the final error of IMSMRA-LS appears to be lower than that of
Bare-LS. Furthermore, the total number of floating point op-
erations required by the multi-region strategy is lower with re-
spect to the single-region’s case ( fpos | /arsa7pa_rg = D78 % 101
VS, fpos) pape_rg = 2.52x10'%). Finally, the error figures [< ¢ >
- Fig. 5.24(a), A - Fig. 5.24(b)] confirm that in general the
multi-region approach is more effective in the estimation of the
shape, especially with noisy data.
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Figure 5.22: Numerical Data. Two hollow cylinders (ec = 2.5,
Lp =5\, SNR = 10dB). Reconstructions with (a) IMSMRA-
LS and (b) Bare-LS. Behavior of the cost function (c¢).
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. . . . .
0 200 400 600 800 1000 1200
Tteration, k

(¢)

Figure 5.23: Numerical Data. Three objects characterized by
complex shapes (e¢ = 1.8, Lp = 5\, SNR = 20dB). Recon-
structions with (a) IMSMRA-LS and (b) Bare-LS. Behavior
of the cost function (c).
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Figure 5.24: Numerical Data. Three objects characterized by
complex shapes (ec = 1.8, Lp = 5\, Noisy Case). Values of
the error figures versus SN R.
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5.4 Validation by using
Laboratory-Controlled Data

The last experiment of this thesis deals with the data collected
at the laboratories of the Institut Fresnel in Marseille (France)
in 1999 [100]. The multiple-frequency angular-diversity bi-
static dataset “twodiel TM _Jf.exp” consists of the field samples
scattered by two off-centered homogeneous circular cylinders
(p = 15mm) characterized by a nominal value of the object
function equal to 7(r) = 2.0 £ 0.3 and located in an inves-
tigation domain assumed in the following of square geometry
and extension 30 x 30cm?. The field samples are collected
in M(v) = 49 measurement points, according to the V' = 36
different angular direction of the source (v =1, ..., V).

In Fig. 5.25, the reconstructions achieved by IMSMRA-LS
[Figs. 5.25(a) and (c¢)] are compared with those of Bare-LS
[Figs. 5.25(b) and (d)] at F' = 2 different frequencies. By set-
ting ec = 3.0, the scatterers are always accurately localized.
On the other hand, the estimation of the shape of the targets
appears to be less accurate, especially for the Bare-LS and
at the highest frequency (f = 4GHz). However, the recon-
structed structures cover in all cases a large part of the true
object, depicted by the red dashed line in Fig. 5.25. These
conclusions are further confirmed by the behavior of cost func-
tions, reported in Fig. 5.26.

Such a good performance of both the reconstruction al-
gorithms when dealing with laboratory-controlled data could
depend on to the low level of noise characterizing the measure-
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x [m] x[m]

(a)
y [m] y[m]
0.10 0.10
0.10 0.05 0.05 0.1 -0.10 -0.05 0.05 0.1
x [m] x[m]

Figure 5.25: Experimental Data (Dataset “Marseille” [100]).
Two circular cylinders (“twodielTM _jf.exp”). Reconstructions
with IMSMRA-LS (left column) and Bare-LS (right column)
at different frequencies f [f = 2GHz (a)(b); f = 4GHz

(e)(d)].
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Figure 5.26: Experimental Data (Dataset “Marseille” [100]).
Two circular cylinders (“twodielTM _jf.exp”). Behavior of the
cost function versus the number of iterations when (a) f =
2GHz, and (b) f =4GHz.
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ments, thus further confirming the hypothesis of a low-noise
environment as already evidenced in [101].

136



Chapter 6

Conclusions and Open
Problems

In this chapter, some conclusions are drawn and further ad-
vances are envisaged in order to address the open problems.
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In this thesis, a multi-resolution approach for qualitative
imaging purposes based on shape optimization has been pre-
sented. The proposed strategy integrates the multi-scale method
and the level set representation of the problem unknowns in or-
der to profitably exploit the amount of information collectable
from the scattering experiments as well as the available a-prior:
information on the scatterer under test. Two implementations
have been presented in order to effectively deal with configu-
rations characterized by one or multiple objects.

In general, the main key features of the multi-resolution
level set approach can be summarized as follows:

e innovative multi-level representation of the problem un-
knowns in the shape-deformation-based reconstruction
technique;

e effective exploitation of the scattering data through the
iterative multi-step strategy;

e limitation of the risk of being trapped in false solutions
thanks to the reduced ratio between data and unknowns;

e useful exploitation of the a-priori information (i.e., ob-
ject homogeneity) about the scenario under test;

e enhanced spatial resolution limited to the region of inter-
est.

From the validation concerned with different scenarios and
both synthetic and experimental data, the following conclu-
sions can be drawn:
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e the IMSA-LS usually proved more effective than the single-
resolution implementation, especially when dealing with
corrupted data scattered from simple as well as complex
geometries characterized by one target;

o the IMSMRA-LS appeared to be as effective as the single-
region implementation when dealing with simple geome-
tries, while the effective multi-region architectures im-
proved the reconstruction accuracy when considering mul-
tiple scatterers;

e the integrated strategy (i.e., IMSA-LS and IMSMRA-
LS) appeared less computationally-expensive than the
standard approach in reaching a reconstruction with the
same level of spatial resolution within the support of the
object.

However, the actual implementation is still characterized by
open problems. For instance, the regularity of the level set
function needs to be preserved during the level set update ac-
cording to the distance-function-based initialization. Further-
more, different velocity functions should be considered in order
to find the optimal compromise between the reconstruction ac-
curacy and the numerical stability. These and other related
aspects will have to be further investigated, especially to deal
with the more attractive but also more numerically complicated
three-dimensional inverse scattering problem.
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Appendix A

The Adjoint Problem

The adjoint field FV (r) is defined by the following relationship

[ VIF () = F (1) = = &, (L) — & ()] B
re’¥Y
VI (1) ~ R (r)F () = 0
\ rgT
(A1)

where kc(r) = 2w fr\/ oo [To + 1] is the wavenumber in the
region inside the scatterer characterized by a contrast function
7o, Ko(r) = 27 f/Hie€, is the free-space wavenumber, and 6, ()
is the Kronecker delta, m(v) = 1,...,M(v), v = 1,...,V. In
order to determine FV (r), let us consider the adjoint incident
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field ZV (r) which is the solution of
V2T (r) — kg (r)Z° (r) = — [51?@ (Timw)) — &k (Zm('v)>:| Om(ov)
(A.2)
with r,, € D;. By assuming that Z" (r) satisfies the Sommerfeld
radiation condition, namely

iy /I (S5 = 0T () =0 (A3)

it can be determined by solving the following equation

I°(r) = Z%((:))ZI [glg (fm(v)) — &k, (Zm(v))] Gap ( /7")

T'm@) € Do,
(A.4)
that can be achieved by replacing £¥ (r) with ZV (r) and
JwpoJ? (r) with the right member of (A.2) in equation (2.5).
Consequently, F" (r) is obtained by solving the following rela-
tionship

() =F ()= (%) fp, 7 (/) Gop (z/1) dr-

for a given 7 (r), r € Dy.
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Appendix B

Algorithms

B.1 The Edge Detection Operator O-)

Let us consider a contrast function 7 defined in the investiga-
tion domain D; by the following relationship

7(r,) = (60_1)_‘727(:?50 rp €71
- 0 otherwise (B.1)

n=1,....N

where T is the shape of a scatterer located in D; and character-
ized by the permettivity ¢ and the conductivity oc. In order
to retrieve the contour of the shape Y, the function 77 (r,) is
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B.2. HOW TO COUNT
THE NUMBER OF OBJECTS

computed as follows

™ (r,) =0 (r,)] =

n+1 n+1 (z
’71 o Zp:nfl b=n—1 ( P7yb)—‘ T (xTH yn) e TC (B2)

97c

0 otherwise

where [-] is the ceiling function

[v] =min{s € Z|v <} (B.3)
and e
= —1)—7 B.4
7o = (e = 1) —Jg (B.4)
More in detail, 75 (r,) = 1 only when r, is a border sub-

domain of Y. Such pixels are then grouped in a set I defined
as

o= {r) = (2, ya) |77 (x)) =1} . (B.5)

B.2 How to Count
the Number of Objects

Let us consider a contrast function 7, the set of contour sub-
domains, IT := {r? = (2Z, y7) |75 (r?) = 1}, and the Nyceas
“seeds” rF, i = 1,...,Nieeas- 77 and 7F can be achieved by

means of the operators J(-) and erosion, respectively. The
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APPENDIX B. ALGORITHMS

number of objects in the reconstruction can be estimated ac-
cording to the pseudo-code lines reported in Alg. 1 and in Alg.
2. More in detail, the program described in Alg. 1 returns the
number of regions () in the contrast function 7. If the objects
are separated enough from each other, then () is equal to the
number of objects.
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B.2. HOW TO COUNT
THE NUMBER OF OBJECTS

Algorithm 1 Pseudo-code lines describing how the number of
objects in a reconstruction 7 is counted.

function (@ = count-the-number-of-objects (77, %)

1=1
M = Nseeds
while i < M
¥; = walk-along-7B-starting-from (fZE)
if there are other seeds 7%
jg=1,.,0—1,i+1, ..., Neeeas, in the set X; then
remove those seeds from the set XJ;
update M
endif
find the region R; that holds ¥;
=141
end
while i < M
if R; is overlapping other regions then
redefine R;
update M
endif
=141
end

return M
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APPENDIX B. ALGORITHMS

Algorithm 2 Pseudo-code lines describing the function “walk-
along-TP-starting-from (r)”.

i

function ¥ = walk-along-77-starting-from (r”)

find the seed r¥ in the set II
define the first pixel 73, of the boundary ¥ as r3, =
1 =2
while 7' = TRUE
find the adjacent pixel r* such that 77 (le> =1
if 7> ¢ 3 then
add r¥ to X
else
T = FALSE
endif
1=1+1
end

E

return 2
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